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KÄHLER-RICCI FLOW ON PROJECTIVE BUNDLES OVER

KÄHLER-EINSTEIN MANIFOLDS

FREDERICK TSZ-HO FONG

Abstract. We study the Kähler-Ricci flow on a class of projective bundles
P(OΣ ⊕ L) over the compact Kähler-Einstein manifold Σn. Assuming the
initial Kähler metric ω0 admits a U(1)-invariant momentum profile, we give
a criterion, characterized by the triple (Σ, L, [ω0]), under which the P1-fiber
collapses along the Kähler-Ricci flow and the projective bundle converges to
Σ in the Gromov-Hausdorff sense. Furthermore, the Kähler-Ricci flow must
have Type I singularity and is of (Cn×P1)-type. This generalizes and extends
part of Song-Weinkove’s work on Hirzebruch surfaces.

1. Introduction

The Ricci flow was introduced by Hamilton in his seminal paper [H1] in 1982,
proving the existence of a constant sectional curvature metric on any closed 3-
manifold with positive Ricci curvature. Since then, the Ricci flow has been making
breakthroughs in settling several long-standing conjectures. Just to name a few,
based on a program proposed by Hamilton, a complete proof of the Poincaré conjec-
ture was given by Perelman [P1, P2, P3] around 2003. See also [CZ, KL, MT]. Fur-
thermore, the Differentiable Sphere Theorem was proved by Brendle-Schoen [BS]
in 2007, giving an affirmative answer to a conjecture about differential structures
of quarter-pinched manifolds proposed by Berger and Klingenberg in the 1960s.
In the realm of Kähler geometry, the Kähler-Ricci flow was introduced by Cao in
[Cao1], which proves the smooth convergence towards the unique Kähler-Einstein
metric in the cases c1 < 0 and c1 = 0.

There has been much interest in understanding the limit behavior and singular-
ity formation of the Ricci flow in both Riemannian and Kähler settings. Hamilton
introduced in [H3] a method of studying singularity formation of the Ricci flow
by considering the Cheeger-Gromov limit of a sequence of rescaled dilated metrics.
The singularity model that was obtained, which is often an ancient or eternal so-
lution, captures the geometry of the singularity formation near the blow-up time
of the flow. For closed 3-manifolds, the study of ancient κ-solutions formed by the
dilated sequence limit in Hamilton-Perelman’s works (e.g. [H3, P1]) leads to a solid
understanding of singularity formation of closed 3-manifolds.

Another way of interpreting singularity formation is by the Gromov-Hausdorff
limit, regarding the manifold as a metric space. This notion was recently employed

Received by the editors April 13, 2011 and, in revised form, September 30, 2011 and October
12, 2011.

2010 Mathematics Subject Classification. Primary 53C44, 53C55; Secondary 55R25.
Key words and phrases. Kähler-Ricci flow, singularity analysis, projective bundles.
The author was supported in part by NSF Grant DMS-#0604960.

c©2013 American Mathematical Society
Reverts to public domain 28 years from publication

563

Licensed to Hong Kong University of Science & Technology. Prepared on Sun Mar 12 09:54:08 EDT 2017 for download from IP 143.89.91.56.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



564 FREDERICK T.-H. FONG

in the study of algebraic varieties by Song, Tian, Weinkove et. al in [ST1, T, ST3,
SW2, SW3, SSW]. The unified theme of these works is the conjecture that the
Kähler-Ricci flow will carry out an analytic analogue of Mori’s minimal model pro-
gram which is about searching for birationally equivalent models that are “minimal”
in some algebraic sense. Like Hamilton-Perelman’s work, a surgery may need to be
performed by continuing the flow if necessary. To this end, the Gromov-Hausdorff
convergence provides a bridge to continue the relevant geometric data.

For a better understanding of singularity formation of the Kähler-Ricci flow,
one could study some algebraically concrete spaces and explore their flow behavior
and possible singularity types and models. In the work by Feldman-Ilmanen-Knopf
[FIK], Cao [Cao2] and Koiso [Koi], gradient Kähler-Ricci solitons were constructed
on the O(−k)-bundles over Pn. Their work employs the U(n + 1)/Zk-symmetry
introduced by Calabi in [C] which reduces the Kähler-Ricci flow equation to a PDE
with one spatial variable. Assuming Calabi’s symmetry, Song-Weinkove [SW1]
characterized the limit behavior (in the Gromov-Hausdorff sense) of the Hirze-
bruch surfaces P(O ⊕ O(−k)) and their higher dimensional analogues, which are
P1-bundles over Pn. In their paper, it was proved that the Kähler-Ricci flow ex-
hibits three distinct behaviors: (1) collapsing along the P

1-fibers; (2) contracting
the exceptional divisor; or (3) shrinking to a point. This trichotomy is determined
by the triple (n, k, [ω0]), where [ω0] is the initial Kähler class. Later in [SW2], case
(2) is much more generalized and the assumption on the symmetry is removed. The
Calabi symmetry assumption is removed in case (1) by a recent preprint [SSW] by
Song, Székelyhidi and Weinkove.

The purpose of this paper is two-fold. For one thing, we generalize Song-
Weinkove’s work [SW1] on Hirzebruch surfaces to a class of projective bundles over
any compact Kähler-Einstein manifold. We will employ an ansatz, known as the
momentum construction, which coincides with Calabi’s U(n+ 1)/Zk-symmetry on
Hirzebruch surfaces where the base manifold has the Fubini-Study metric. The idea
of the momentum construction of projective bundles was introduced and studied in
the subject of extremal Kähler metrics by Hwang-Singer in [HS] and by Apostolov-
Calderbank-Gauduchon-(Tønnesen-Friedman) in [ACGT]. We will show that under
this momentum construction, one can give a cohomological criteria under which the
Kähler-Ricci flow will collapse the P1-fiber near the singularity similar to the Hirze-
bruch surface cases in [SW1]. Secondly, we study the singularity model of these
projective bundles (including Hirzebruch surfaces) via the techniques developed by
Hamilton in [H3]. We show that these collapsing projective bundles equipped with
momenta will all exhibit Cn×P1-singularities, and also that the Ricci flow solution
has a Type I singularity. Here is the summary of our results:

Main results. Let M = P(OΣ ⊕ L) be a projective bundle where (Σ, ωΣ) is a
compact Kähler-Einstein manifold such that Ric(ωΣ) = νωΣ for some ν ∈ R, and
L → Σ is a holomorphic line bundle that admits a Hermitian metric h such that
the Chern curvature is given by F∇ = −λωΣ, λ > 0. Let ω0 be a Kähler metric
on M constructed by a U(1)-invariant momentum profile with Kähler class [ω0] =
λb0[Σ∞]−λa0[Σ0]. Suppose the triple (Σ, L, [ω0]) satisfies the following conditions:

ν ≤ λ or

ν > λ and (ν − λ)b0 < (ν + λ)a0.
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Then along the Kähler-Ricci flow ∂tωt = −Ric(ωt), t ∈ [0, T ), we have

• (M, g(t)) converges in the Gromov-Hausdorff sense to (Σ, ωΣ) (Theorem
5.4);

• the associated ancient κ-solution is Cn × P1 (Theorem 7.3);
• the Ricci flow solution must have a Type I singularity (Theorem 7.4).

This paper is organized as follows. Sections 2 and 3 are the preliminaries which
define our projective bundles and construct Kähler metrics using momentum pro-
files. We will see that the Kähler-Ricci flow is equivalent to a heat-type equation
for the evolving momentum profile. Section 4 explains the trichotomy of blow-up
exhibited by a different choice of the triples (Σ, L, [ω0]) via the calculation of Kähler
classes and Chern classes. Section 5 is a variation on the theme of Song-Weinkove’s
work [SW1] on Hirzebruch surfaces (the collapsing case). We show that similar lim-
iting behavior can be observed in our projective bundles. Sections 6 and 7 are about
singularity analysis using rescaled dilations. We show in Section 6 that the ancient
κ-solution obtained from the Cheeger-Gromov limit must split into a product. We
will classify their singularity type and the curvature blow-up rate in Section 7.

We also acknowledge that Kähler-Ricci solitons on this category of bundles (and
their variants) were studied and constructed in [DW, Yg, Li].

2. Projective bundles

In this section, we will define and elaborate on the projective bundles under
consideration in this paper. We first start with a compact Kähler-Einstein manifold
Σn with dimC = n. A Kähler manifold is called Kähler-Einstein if it admits a Kähler
form ωΣ whose Ricci form is a real constant multiple of ωΣ, i.e. Ric(ωΣ) = νωΣ,
ν ∈ R. Clearly, a necessary condition for a compact Kähler manifold to be Kähler-
Einstein is that the first Chern class c1 has a definite sign. It is well known by
results of Aubin [A] and Yau [Y] that when c1 < 0 or = 0, Kähler-Einstein metric
always exists. However, if c1 > 0 (i.e. Fano manifolds), Kähler-Einstein metrics do
not exist in general. For compact Riemann surfaces, i.e. dimC = 1, the Kähler-
Einstein metric must exist according to the classical uniformization theorem. See
also Cheng-Yau’s work [CY] on pseudoconvex domains in the complete non-compact
case.

In this article, we will not go into the detail of existence issues of Kähler-Einstein
metrics, but we will start with a compact Kähler manifold Σn which is equipped
with a Kähler-Einstein metric ωΣ, such that the Ricci form is given by Ric(ωΣ) =
νωΣ where ν ∈ R. We take this Kähler-Einstein manifold to be our base manifold,
and build a projective P

1-bundle upon it. Precisely, we construct our projective
bundles as follows:

M = P(OΣ ⊕ L).

Here OΣ is the trivial line bundle, and L → Σ is a holomorphic line bundle which is
equipped with a Hermitian-Einstein metric h such that

√
−1∂∂̄ log h = λωΣ, λ ∈ R.

Here P denotes the projectivization of the holomorphic rank-2 bundle OΣ ⊕L over
Σ. The local trivialization (z, u) of this rank-2 bundle has transition functions
of the form (zα, uα) ≈ (zβ , ηαβuα) for some ηαβ ∈ Ȟ1(Σ,O∗

Σ). Passing to the
projectivization quotient, every element under this trivialization can be expressed
as either [1 : u

z ] for z �= 0 or [0 : 1], and we may regard [0 : 1] as the infinity.
One can easily check that the projectivization factors through the identification by
the transition functions OΣ ⊕ L. Therefore, one can regard the projectivization of
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OΣ⊕L as compactifying each fiber by adding an infinity point (x, [0 : 1]) and hence
M can be regarded as a P1-bundle over Σ. We define Σ0 to be the zero section
{x : [1 : 0]} and Σ∞ to be the infinity section {x : [0 : 1]}. It is easy to see that the
zero section Σ0 and the infinity section Σ∞ are global over Σ.

The class of holomorphic line bundles over Σ with tensor product as the operation
form a group which is known as the Picard group, denoted by Pic(Σ). For Σ = Pn,
it is well known (see e.g. [GH]) that Pic(Pn) = Z and the line bundles over P

n

are given by OPn(k), k ∈ Z. In particular if (Σ, L) = (P1,OP1(−k)), k > 0,
the projective bundles M = P(OP1 ⊕OP1(−k)) are called the Hirzebruch surfaces.
When k = 1, the projective bundle is P2#(−P2), i.e. P2 blown-up at a point. When
Σ = C/Λ, i.e. an elliptic curve or a 2-torus, the class of line bundles are classified
by a classical result by Appell-Humbert (see [Mum]). In general, for the Riemann
surface Σg of genus g, the Picard group Pic(Σg) is isomorphic to J(Σg)× Z where
J(Σg) is a compact complex manifold C

g/Λ of dimension g.
The projective bundle M under our consideration is characterized by the pair

(Σ, L) where Σ is a compact Kähler-Einstein manifold and L a holomorphic line
bundle over Σ which is equipped with a Hermitian metric h such that the Chern
curvature is of the form F∇ = −λωΣ. In particular, the line bundles generated by
det(T ∗M) all fall into this category. Moreover, we will only focus on line bundles
L with λ > 0, since the projective bundle P(OΣ ⊕ L) is biholomorphic to its dual
cousin P(OΣ ⊕ L∗). Since c1(L) = −c1(L

∗), one can replace L by L∗ in case c1(L)
is negative. We do not discuss the case of flat bundles, i.e. λ = 0, in this paper.

3. U(1)-invariant Kähler metrics

Let’s first recapitulate the construction of the category of projective bundles we
are concerned about in the rest of this article. We let M = P(OΣ ⊕ L), where
(Σ, ωΣ) is a Kähler-Einstein manifold such that Ric(ωΣ) = νωΣ, ν ∈ R. Suppose
L is a holomorphic line bundle over Σ such that it equips with a Hermitian metric
h whose Chern curvature is of the form F∇ = −λωΣ, λ > 0. In particular, such a
Hermitian metric h must exist if ωΣ is a compact Riemann surface.

We will discuss the construction of U(1)-invariant Kähler metrics on these pro-
jective bundles in this section. Regard the circle group U(1) as {eiθ : θ ∈ [0, 2π)}.
The U(1)-action is defined by

eiθ · (x, [z : u]) = (x, [z : eiθu]).

Clearly, the action factors through the transition functions of the bundle, and fixes
the zero and infinity sections.

Recall that ωΣ is the Kähler-Einstein form on the manifold Σ and we have
Ric(ωΣ) = νωΣ for some ν ∈ R. Using the Hermitian-Einstein metric h described
above, one can define a height parameter ρ on M\(Σ0 ∪ Σ∞) given by

ρ = log ‖ · ‖2h.
Note that ρ = −∞ corresponds to the zero section and ρ = ∞ corresponds to the
infinity section.

Our next step is to define Kähler metrics on M which are invariant under the
circle action defined above. We start by looking for possible Kähler classes that
M can have. We denote [Σ0] and [Σ∞] as the Poincaré duals (with respect to
a fixed background volume form) of Σ0 and Σ∞ in H2(M,R) respectively, i.e.∫
Σ∞

[Σ∞] = −
∫
Σ0

[Σ0] = 1. We look for Kähler metrics whose Kähler classes have
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the form bλ[Σ∞] − aλ[Σ0] with b > a > 0. Note also that c1(L) = [−
√
−1∂∂̄ρ] =

−λπ∗[ωΣ] = λ[Σ0]− λ[Σ∞].
In order to define a Kähler metric in the Kähler class b[Σ∞] − a[Σ0], we first

define a momentum profile function f(ρ) on M0 = M\(Σ0 ∪Σ∞). The idea of this
momentum construction comes from the works [HS] by Hwang-Singer and [ACGT]
by Apostolov-Calderbank-Gauduchon-(Tønnesen-Friedman) on extremal and con-
stant scalar curvature Kähler metrics. Together with a pair of asymptotic condi-
tions given below, one can extend the metric induced by f to the whole manifold
M . Here are the details:

Let f(ρ) : R → (a, b) be a strictly increasing function. We define a Kähler metric
ω on M0 by

ω = f(ρ)
√
−1∂∂̄ρ+

√
−1fρ(ρ)∂ρ ∧ ∂ρ̄.

Remark 3.1. If we let u(ρ) be the anti-derivative of f , i.e. uρ = f , then one can

check that ω =
√
−1∂∂̄u(ρ) on M0.

In order for the Kähler metric to be defined on M , we require the following
asymptotic conditions:

(1) There exists a smooth function F0 : [0,∞) → R with F0(0) = a and
F ′
0(0) > 0, so that f(ρ) = F0(e

2ρ) as ρ → −∞.
(2) There exists a smooth function F∞ : [0,∞) → R with F∞(0) = b and

F ′
∞(0) > 0 so that f(ρ) = F∞(e−2ρ) as ρ → ∞.

Note that f has to be a strictly increasing function, so we have a < f(ρ) < b for ρ ∈
R, and

lim
ρ→−∞

f(ρ) = a,

lim
ρ→∞

f(ρ) = b.

lim
ρ→±∞

fρ(ρ) = 0.

The Kähler class [ω] can be easily seen to be [ω] = bλ[Σ∞]− aλ[Σ0], because

〈[ω],Σ∞〉 =
∫
Σ∞

b[
√
−1∂∂̄ρ]

=

∫
Σ∞

bλ[Σ∞] = bλ,

〈[ω],Σ0〉 =
∫
Σ0

a[
√
−1∂∂̄ρ]

=

∫
Σ0

−aλ[Σ0] = aλ.

Under this construction, the Kähler form depends only on the height parameter
ρ. We can see immediately that these Kähler metrics are invariant under the U(1)-
action defined earlier, since the action preserves ρ: ‖eiθu‖h = ‖u‖h for any section
u ∈ Γ(Σ, L).

Note that for (Σ, L) = (Pn,OPn(−k)), i.e. Hirzebruch-type manifolds, the above
momentum construction with ωΣ = ωFS, i.e. the Fubini-Study metric, is the
U(n+ 1)/Zk-symmetry initiated by Calabi in [C].

Next we derive the local expression of the Kähler metric ω constructed by the
above momentum profile as well as its Ricci curvature. Let (z1, . . . , zn, ξ) be local
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holomorphic coordinates of M where z = (z1, . . . , zn) are the base coordinates and
ξ is the fiber coordinate. Recall that the height parameter is defined to be

ρ = log ‖ · ‖2h.

Let φ(z) be a positive function such that ‖ξ‖2 = |ξ|2φ(z) for any (z, ξ) in the local
coordinate chart. Then we have

(3.1) ρ = log |ξ|2 + log φ(z).

Using this, one can easily check ρξξ̄ = ρiξ̄ = ρξī = 0 for any i = 1, 2, . . . , n.

Moreover,
√
−1∂∂̄ρ = λπ∗ωΣ, so we can let λπ∗ωΣ = ρij̄dz

i ∧ dz̄j . Hence, the
Kähler metric in (z, ξ) coordinates is given by

ω =
√
−1

n∑
i,j=1

(fρij̄ + fρρiρj̄)dz
i ∧ dzj̄ +

√
−1fρ

n∑
i=1

ρiρξ̄dz
i ∧ dξ̄

+
√
−1fρ

n∑
i=1

ρξρīdξ ∧ dzī +
√
−1fρ|ρξ|2dξ ∧ dξ̄.

Let g be the metric associated to the Kähler form ω, and gΣ be that of ωΣ. The
determinant of the metric g and its logarithm are given by

det(g) = λnfnfρ det(gΣ)|ξ|−2,

log det(g) = n log λ+ n log f + log fρ + log det(gΣ)− log |ξ|2.

Using this, one can then compute the Ricci form −
√
−1∂∂̄ log det(g):

Ric(ω) = −
√
−1∂∂̄ log det(g)

= {(νλ−1 − ∂ρ(n log f + log fρ))ρij̄ − ∂ρρ(n log f + log fρ)ρiρj̄}dzi ∧ dzj̄

− ∂ρρ(n log f + log fρ)ρiρξ̄dz
i ∧ dξ̄ − ∂ρρ(n log f + log fρ)ρξρīdξ ∧ dzī

− ∂ρρ(n log f + log fρ)|ρξ|2dξ ∧ dξ̄.

In the computation of the Ricci form, we used the fact that ωΣ is Kähler-Einstein
so that −

√
−1∂∂̄ log det(gΣ) = νωΣ.

Observing that the ω and Ric have similar linear-algebraic expressions when ω is
constructed by a momentum profile f , one can easily see that the Kähler-Ricci flow
on M is equivalent to a parabolic equation that evolves the momentum profile. In
other words, the Kähler-Ricci flow preserves the momentum construction. Precisely,
we have

Proposition 3.2. Suppose ω0 is the initial Kähler form on M with momentum
profile f0(ρ). Then the solution ωt, t ∈ [0, T ), to the Kähler-Ricci flow ∂tωt =
−Ric(ωt) also admits a momentum profile f(ρ, t) at each time t ∈ [0, T ) where
f(ρ, t) evolves by

∂f

∂t
=

∂

∂ρ
(n log f(ρ, t) + log fρ(ρ, t))−

ν

λ
, f(ρ, 0) = f0(ρ),

or equivalently,

(3.2)
∂f

∂t
=

fρρ
fρ

+ n
fρ
f

− ν

λ
, f(ρ, 0) = f0(ρ).
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4. Kähler classes under Kähler-Ricci flow

From now on, we will consider the Kähler-Ricci flow ∂tωt = −Ric(ωt) on M
which satisfies the aforesaid U(1)-symmetry and admits evolving momenta f(ρ, t).
We say T is the blow-up time of the Ricci flow if [0, T ) is the maximal time interval
for the Ricci flow to exist. For Ricci flow on compact Kähler manifolds, the blow-up
time is completely determined by the initial Kähler class and the first Chern class.
Namely, we have the following theorem proved by Tian-Zhang:

Theorem 4.1 (Tian-Zhang, [TZ]). Let (X,ω(t)) be an (unnormalized) Kähler-
Ricci flow ∂tωt = −Ric(ωt) on a compact Kähler manifold Xn. Then the blow-up
time T is given by

T = sup{t : [ω0] + tc1(KX) > 0},
where KX := det(T ∗X) is the canonical line bundle of Xn.

Note that the Kähler class [ωt] at any time t is given by [ωt] = [ω0] + tc1(KX).
In order to work out the evolving Kähler classes and the blow-up time, one needs to
understand the first Chern class of KX , which can be computed by the adjunction
formula.

Given any smooth divisor D of compact Kähler manifold X, the adjunction
formula relates KX and KD by

(4.1) KD = (KX ⊗NM/D)
∣∣
D
,

where NM/D is the normal bundle of D in M .
Using (4.1), one can easily work out c1(KM ) by taking D = Σ0,Σ∞ in turn. For

example, taking D = Σ∞, we have

KΣ∞ = (KM ⊗ L∗)|Σ∞
,

〈c1(KΣ∞), [Σ∞]〉 = 〈c1(KM )− c1(L), [Σ∞]〉.
Since Σ is Kähler-Einstein such that Ric(ωΣ) = νωΣ, we then have

〈c1(KΣ∞), [Σ∞]〉 = −ν.

Since c1(L) = λ[Σ0]− λ[Σ∞], we have 〈c1(L), [Σ∞]〉 = −λ, and hence

〈c1(KM ), [Σ∞]〉 = −ν − λ.

Similarly, one can also show by taking D = Σ0 in (4.1) (now NM\D = L) to show

〈c1(KM ), [Σ0]〉 = −ν + λ.

Therefore, the first Chern class of the canonical line bundle KM is given by:

c1(KM ) = (−ν − λ)[Σ∞]− (−ν + λ)[Σ0].

Hence, under the Kähler-Ricci flow ∂tωt = −Ric(ωt) with initial class [ω0] =
b0λ[Σ∞]− a0λ[Σ0], the Kähler class evolves by

(4.2) [ωt] = (b0λ− (ν + λ)t)[Σ∞]− (a0λ− (ν − λ)t)[Σ0].

We denote [ωt] = λbt[Σ∞]− λat[Σ0] where at, bt are defined by

at := a0 −
(ν − λ)

λ
t,(4.3)

bt := b0 −
(ν + λ)

λ
t.(4.4)
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Note also that [π∗ωΣ] = [Σ∞]−[Σ0], therefore the Kähler class can also be expressed
as

(4.5) [ωt] = λat[π
∗ωΣ] + λ(bt − at)[Σ∞].

Hence, by Theorem 4.1, the maximal time is characterized by λ and ν in the
following way:

• Case 1: ν ≤ λ
In this case, [ωt] ceases to be Kähler when bt = at, namely, at T := b0−a0

2 .
The limiting Kähler class is given by

[ωT ] = λaT [π
∗ωΣ].

This holds true for any given b0 > a0 > 0.
• Case 2: ν > λ
We further divide it into three sub-cases
(i) (ν − λ)b0 < (ν + λ)a0:

[ωt] ceases to be Kähler when bt = at. Likewise, the limiting Kähler
class is given by

[ωT ] = λaT [π
∗ωΣ].

(ii) (ν − λ)b0 = (ν + λ)a0:

[ωt] is then proportional to c1(K
−1
M ), i.e. the canonical class. The flow

stops at T = a0λ
ν−λ and the limiting class [ωT ] = 0. It is well known

(see e.g. [ST2]) that in such a case (M, g(t)) extincts and converges to
a point in the Gromov-Hausdorff sense as t → T .

(iii) (ν − λ)b0 > (ν + λ)a0:

[ωt] ceases to be Kähler when at T = a0, and the limit class is given
by [ωT ] = λbT [Σ∞].

This trichotomy resembles that in Song-Weinkove’s work [SW1] on Hirzebruch
surfaces and Hirzebruch-type manifolds, i.e. (Σ, L) = (Pn,OPn ⊕ OPn(−k)). In
their work, from which our study was motivated, similar trichotomy of the blow-up
time of the Kähler-Ricci flow with initial Kähler class [ω0] was also exhibited, as it
is characterized by the triple (n, k, [ω0]). It was shown in [SW1] assuming Calabi’s
U(n+ 1)/Zk-symmetry and in [SSW] assuming Σ is projective that in the case of
having limiting Kähler class aT [π

∗ωΣ], the Kähler-Ricci flow collapses the P1-fiber
of the projective bundle, which hereof converges to some Kähler metric of Σ as
metric spaces in the Gromov-Hausdorff sense.

Case 2(iii) is reminiscent of Song-Weinkove’s recent works [SW2] and [SW3] of
contracting exceptional divisors, in which the O(−k)-blow-up of the arbitrary com-
pact Kähler manifold X are considered. In their works, a cohomological condition
is given on the initial Kähler class and the first Chern class, under which the blown-
up manifold will converge in the Gromov-Hausdorff sense back to X with orbifold
singularity of type O(−k). There is no symmetry assumption in these works.

In our paper, we will only focus on Case 1 and Case 2(i) which exhibit a col-
lapsing of the P1-fiber assuming the Kähler metric admits the aforesaid momentum
construction.
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5. Estimates of the Kähler-Ricci flow

From now on we assume that the triple (Σ, L, [ω0]) satisfies Case 1 or Case 2(i)
stated in the previous section, i.e. either

ν ≤ λ or

ν > λ and (ν − λ)b0 < (ν + λ)a0.

Recall that ν is the Ricci curvature of the Kähler-Einstein manifold Σ and λ is the
Chern curvature of the Hermitian-Einstein line bundle L, i.e.

Ric(ωΣ) = νωΣ,
√
−1∂∂̄ρ = −λπ∗ωΣ.

Recall that the first Chern class of KM and the evolving Kähler class are given by:

c1(KM ) = (−ν − λ)[Σ∞]− (−ν + λ)[Σ0]

= (−ν + λ)[π∗ωΣ]− 2λ[Σ∞],

[ωt] = λbt[Σ∞]− λat[Σ0]

= λat[π
∗ωΣ] + 2λ(T − t)[Σ∞]

where at and bt are defined in (4.3) and (4.4).
Since pluripotential theory plays a very important role in Kähler-Ricci flow and

in Kähler geometry in general, we would like to understand the Kähler-Ricci flow
∂tωt = −Ric(ωt) from the viewpoint of potential functions. To do so, we need a
reference family of Kähler metrics {ω̂t}t∈[0,T ) whose Kähler class at each time t
coincides with that of ωt, the Kähler-Ricci flow solution. We choose ω̂t to be the
U(1)-invariant Kähler metric induced by the following momentum profile:

f̂(ρ, t) := at +
(bt − at)e

2ρ

1 + e2ρ
= at +

2λ(T − t)e2ρ

1 + e2ρ
.

This momentum profile gives the following Kähler metric:

ω̂t = at
√
−1∂∂̄ρ+ 2

√
−1λ(T − t)

(
e2ρ

1 + e2ρ
∂∂̄ρ+

2e2ρ

(1 + e2ρ)2
∂ρ ∧ ∂̄ρ

)
.

Clearly, f̂ satisfies the asymptotic conditions for extending ω̂t to the whole M .

Also, we have [ω̂t] = [ωt] because f̂ → at as ρ → −∞ and f̂ → bt as ρ → ∞.

For simplicity, we denote Θ := e2ρ

1+e2ρ

√
−1∂∂̄ρ+ 2e2ρ

(1+e2ρ)2

√
−1∂ρ ∧ ∂̄ρ, so that

ω̂t = atπ
∗ωΣ + 2λ(T − t)Θ.

Note that [Θ] = [Σ∞] and so ∂ω̂t

∂t = (−ν+λ)π∗ωΣ−2λΘ ∈ c1(KM ). Take Ω to be a

fixed volume form of M such that ∂ω̂t

∂t =
√
−1∂∂̄ log Ω. Then the Kähler-Ricci flow

∂tωt = −Ric(ωt) is equivalent to the following complex Monge-Ampère equation:

(5.1)
∂φ

∂t
= log

det(ω̂t +
√
−1∂∂̄φ)

(T − t)Ω
, φ|t=0 = φ0

in a sense that ωt = ω̂t +
√
−1∂∂̄φ, t ∈ [0, T ), is a solution to the Kähler-Ricci flow

∂tωt = −Ric(ωt) with initial data ω0 = ω̂0 +
√
−1∂∂̄φ0 if and only if φ : M × [0, T )

is a solution to (5.1).
Working similarly as in [ST1, SW1, SW2, TZ], etc., one can derive the following

estimates using maximum principles.
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Lemma 5.1. There exists a constant C = C(n, ω0, ν, λ) > 1 such that the following
holds:

(1) |φ(t)| ≤ C,
(2) ωn+1

t ≤ CΩ, and
(3) Trωt

π∗ωΣ ≤ C.

Proof. The proof goes similarly as in [SW1]. First note that since

ω̂n+1
t ≥ 2λat(n+ 1)(T − t)(π∗ωΣ)

n ∧Θ,

one can then find a constant C > 0 independent of t such that

(5.2) C−1(T − t)Ω ≤ ω̂n+1
t ≤ C(T − t)Ω.

Consider the function φ̃ = φ+ (1 + logC)t; at the point pt ∈ M where φ̃ achieves

its minimum at time t, we have ∂∂̄φ̃ = ∂∂̄φ ≥ 0. Therefore,

d

dt
φ̃min(t) = log

det(ω̂t +
√
−1∂∂̄φ)

(T − t)Ω

∣∣∣∣
pt

+ logC

≥ log
det ω̂t

C−1(T − t)Ω

∣∣∣∣
pt

≥ 0.

Here we used (5.2). It proves φ is uniformly bounded from below as the flow
encounters finite-time singularity. The uniform upper bound for φ follows similarly.

For (2), we consider Q := ∂φ
∂t −|λ−ν|a−1φ+log(T −t) where a := inf [0,T ) at > 0.

By direct computation, we have

∂Q

∂t
= Trωt

((λ− ν)π∗ωΣ − 2λΘ) +Δ

(
∂φ

∂t

)
(5.3)

− |λ− ν|a−1(Q+ |λ− ν|a−1φ− log(T − t))− 1

T − t

= ΔQ+ |λ− ν|a−1Δφ+ (λ− ν)Trωt
π∗ωΣ − 2λTrωt

Θ

− |λ− ν|a−1(Q+ |λ− ν|a−1φ− log(T − t))− 1

T − t
.

Since ωt = atπ
∗ωΣ + 2λ(T − t)Θ +

√
−1∂∂̄φ(t), taking trace with respect to ωt

yields

n+ 1 = atTrωt
π∗ωΣ + 2λ(T − t)Trωt

Θ+Δφ ≥ atTrωt
π∗ωΣ +Δφ.

Hence we have

(5.4) |λ− ν|a−1Δφ ≤ |λ− ν|a−1(n+ 1)− |λ− ν|Trωt
π∗ωΣ.

Note that at ≥ a for any t ∈ [0, T ). Combining (5.3) and (5.4), we have

(5.5) �Q ≤ (n+ 1)|λ− ν|a−1 − |λ− ν|a−1(Q+ |λ− ν|a−1φ) + |λ− ν|a−1 log T.

As φ is uniformly bounded from (1), (5.5) implies a uniformly upper bound for Q.
Since Q = log detωt

Ω − |λ − ν|a−1φ, again together with the uniform bound for φ,
we proved (2).

Finally, for (3), we let (z1, . . . , zn, ξ) be local holomorphic coordinates such that
z = (z1, . . . , zn) is the base coordinate and ξ is the fiber coordinate. Then the
bundle map is given by π : (z, ξ) �→ z. Write λπ∗ωΣ = ρij̄dz

i ∧ dz̄j . Assuming the

Licensed to Hong Kong University of Science & Technology. Prepared on Sun Mar 12 09:54:08 EDT 2017 for download from IP 143.89.91.56.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



KRF ON PROJECTIVE BUNDLES OVER KÄHLER-EINSTEIN MANIFOLDS 573

Kähler metric ωt admits momentum profiles f(ρ, t), we have gij̄ = 1
f ρ

ij̄ and one
can prove

Trωt
π∗ωΣ =

1

λ
gij̄ρij̄ =

n

λf
which is clearly bounded from above uniformly independent of t. �

Next, we will derive estimates on the Kähler-Ricci flow by assuming the metric
is U(1)-invariant and admits a momentum profile f(ρ, t). First note that because
fρ(ρ, t) > 0 for any t and also limρ→−∞ f(ρ, t) = at, limρ→∞ f(ρ, t) = bt, we have

at < f(ρ, t) < bt, for any (ρ, t) ∈ R× [0, T ).

Note that at and bt are both bounded away from zero as t → T ; (2) in Lemma
5.1 implies fρ is also uniformly bounded. Using these, one is able to derive the
following estimates.

Lemma 5.2. There exists a constant C = C(n, ω0, ν, λ) > 0 such that

(1) C−1 ≤ f ≤ C,

(2)
∣∣∣ fρρfρ

∣∣∣ ≤ C,

(3) fρ ≤ C(T − t)

for any (ρ, t) ∈ R× [0, T ).

Proof. As discussed above, (1) clearly holds because at is bounded away from zero
and bt is uniformly bounded above on [0, T ).

For (2), first note that by the asymptotic conditions of the momentum profile

f(ρ, t), limρ→±∞

∣∣∣ fρρfρ

∣∣∣ = 2 for any t ∈ [0, T ), so supR×[0,T−ε)

∣∣∣ fρρfρ

∣∣∣ exists for every

ε > 0. We will derive the uniform lower bound for
fρρ
fρ

on [0, T ) since the upper

bound is similar. Given any ε > 0, let (ρε, tε) ∈ R × [0, T − ε) be the point such
that

fρρ
fρ

∣∣∣∣
(ρε,tε)

= sup
R×[0,T−ε)

fρρ
fρ

.

Then at (ρε, tε), one has ∂
∂t

(
fρρ
fρ

)
≥ 0, ∂

∂ρ

(
fρρ
fρ

)
= 0, and ∂2

∂ρ2

(
fρρ
fρ

)
≤ 0.

Recall that f satisfies the heat-type equation (3.2), i.e. ∂f
∂t =

fρρ
fρ

+ n
fρ
f − ν

λ . By

direct computation, one has

∂

∂t

(
fρρ
fρ

)
=

2nf2
ρ

f3
− 2nfρρ

f2
−

nf2
ρρ

ff2
ρ

+
3f3

ρρ

f4
ρ

+
nfρρρ
ffρ

− 4fρρfρρρ
f3
ρ

+
fρρρρ
f2
ρ

,

∂

∂ρ

(
fρρ
fρ

)
=

fρfρρρ − f2
ρρ

f2
ρ

,

∂2

∂ρ2

(
fρρ
fρ

)
=

2f3
ρρ

f3
ρ

− 3fρρfρρρ
f2
ρ

+
fρρρρ
fρ

.

Evaluating at (ρε, tε), the fact that ∂
∂ρ

(
fρρ
fρ

)
= 0 implies fρρρ =

f2
ρρ

fρ
at (ρε, tε). By

substituting fρρρ =
f2
ρρ

fρ
into the expressions of ∂

∂t

(
fρρ
fρ

)
and ∂2

∂ρ2

(
fρρ
fρ

)
, one can

check that after cancellation of terms, we have

0 ≤
(

∂

∂t
− 1

fρ

∂2

∂ρ2

)
fρρ
fρ

=
2nf2

ρ

f3
− 2nfρρ

f2
at (ρε, tε).
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It shows supR×[0,T−ε)
fρρ
fρ

=
fρρ
fρ

∣∣∣
(ρε,tε)

≤ fρ
f

∣∣∣
(ρε,tε)

. Since fρ is uniformly bounded

from above and f > C−1, there exists C > 0 independent of ε such that

sup
R×[0,T−ε)

fρρ
fρ

≤ C.

A similar approach proves infR×[0,T )
fρρ
fρ

≥ −C̃ for some uniform constant C̃ > 0.

It completes the proof of (2).
Part (3) follows from part (2). Precisely, (2) implies |(log fρ)ρ| ≤ C. If we let

ρt ∈ R such that fρ(ρt) = supρ∈R fρ, then by the mean-value theorem,

| log fρ(ρ, t)− log fρ(ρt, t)| ≤ C|ρ− ρt|.

Thus for ρ ∈ [ρt − C−1, ρt + C−1], we have

log

(
fρ(ρ, t)

fρ(ρt, t)

)
≥ −1,

or equivalently, fρ(ρ, t) ≥ e−1fρ(ρt, t). We then have∫
R

fρdρ ≥
∫ ρt+C−1

ρt−C−1

fρdρ ≥ 2C−1e−1fρ(ρt, t).

On the other hand, we have∫
R

fρdρ = f(∞)− f(−∞) = bt − at = 2λ(T − t).

Hence supρ∈R fρ ≤ C(T − t) for some uniform constant C. �

Lemma 5.2 implies that the P1-fiber of our manifold M is collapsing along the
flow. Precisely we have the following:

Proposition 5.3. Assume (Σ, L, [ω0]) satisfies the condition stated in Case 1 and
Case 2(i) following Theorem 4.1. Let Vx ∈ TxM be a tangent vector of M at
x ∈ M\(Σ0 ∪ Σ∞) which lies TxP

1
x. Here we denote P1

x as the P1-fiber passing
through x. Then we have ‖Vx‖g(t) → 0 as t → T .

Proof. It suffices to express ‖Vx‖g(t) in terms of f and fρ, since the metric g(t) is
given by

g(t) = fλπ∗gΣ + fρ∂ρ⊗ ∂̄ρ.

Since Vx is parallel to the fiber, we have π∗Vx = 0 and so π∗gΣ(Vx, V̄x) = 0. Hence

‖Vx‖2g(t) = fρ
∂Vx

∂ρ
∂V̄x

∂ρ → 0 as t → T . Here we have used part (3) of Lemma 5.2. �

Furthermore, Lemmas 5.1 and 5.2 provide enough estimates in order to show
(M,ωt) converges to (Σ, aTωΣ) as metric spaces in the Gromov-Hausdorff sense.

Theorem 5.4. Suppose (Σ, L, [ω0]) satisfies the condition stated in Case 1 and
Case 2(i) following Theorem 4.1, then (M, g(t)) converges to the Kähler-Einstein
manifold (Σ, aTωΣ) in the Gromov-Hausdorff sense as t → T .

Proof. The proof proceeds in almost the same manner as in Song-Weinkove’s paper
[SW1] on Hirzebruch surfaces with Calabi ansatz. We will sketch the main idea
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here. For details, please refer to Song-Weinkove’s paper. The main ingredients of
the argument are as follows:

(1) the metric g(t) is degenerating along the fiber direction on compact subsets
of M\(Σ0 ∪ Σ∞),

(2) g(t) is bounded above uniformly g(0), and
(3) for any 0 < α < 1, g(t) converges to aTπ

∗ωΣ in the Cα-sense on compact
subsets of M\(Σ0 ∪ Σ∞).

Proposition 5.3 implies (1). (2) can be proved by a uniform estimate on fρ which

can be easily obtained by the bound on the volume form ωn+1
t in Lemma 5.1.

For (3), note that ωt = f(ρ, t)
√
−1∂∂̄ρ +

√
−1fρ(ρ, t)∂ρ ∧ ∂̄ρ. One can compute

that ‖∇g0g(t)‖2g0 is a polynomial expression of f(ρ, t), fρ(ρ, t) and fρρ(ρ, t) where
the coefficients are time-independent. Lemma 5.2 then shows for any compact
subset K ∈ M\(Σ0 ∪ Σ∞), so we have supK×[0,T ) ‖∇g0g(t)‖2g0 ≤ CK for some

time-independent constant CK > 0. It proves (3).
To show the Gromov-Hausdorff convergence, first fix a leave of Σ in M\(Σ0 ∪

Σ∞). We denote it by σ(Σ). Using (2), one can choose a sufficiently small tubular
neighborhood of Σ0 and Σ∞ such that their complement contains σ(Σ). Then given
any two points x1, x2 ∈ M , we project them down to the base Σ via the bundle
map π. Consider the length of the geodesic γ joining π(x1) and π(x2); by lifting the
geodesic up by σ, we know that the lifted γ has length arbitrarily close to the aTωΣ-
length by (3). Finally, using (1), one can show xi is arbitrarily close to σ ◦ π(xi) as
t → T . Using triangle inequality, one can then prove that the g(t)-distance between
x1 and x2 is arbitrarily close to the aTωΣ-distance as t → T . �

6. Splitting lemma

In the singularity analysis of closed (real) 3-manifolds as in [H3] and [P1],
one often considers a rescaled dilation, which is a rescaled sequence of metrics
gi(t) = Kig(ti+K−1

i t) whereKi are chosen such that Ki = ‖Rm(xi)‖g(ti) → ∞ and
‖Rmgi(t)‖gi(t) ≤ C for some uniform constant C > 0 independent of i. By Hamil-
ton’s compactness [H3] and Perelman’s local non-collapsing theorem [P1], one can
extract a subsequence, still call it gi(t), such that (M, gi(t), xi) → (M∞, g∞(t), x∞)
on compact subsets in the Cheeger-Gromov sense. The convergence is in C∞-
topology because once the curvature tensor is uniformly bounded, Shi’s deriva-
tive estimate in [Shi] asserts all the higher order derivatives of Rm are uniformly
bounded. The limit obtained is often called a singularity model. According to the
curvature blow-up rate (Type I or II), a singularity model may be an ancient or
eternal solution, and is κ-non-collapsed by Perelman’s result. These singularity
models encode crucial geometric data near the singularity region of the flow.

We will show that under our momentum construction and our assumption on
the triple (Σ, L, [ω0]), the singularity model M∞ obtained by the aforesaid rescaled
dilations splits isometrically into a product N×L, where dimCN = n and dimC L =
1.

Let (z1, . . . , zn, ξ) be local holomorphic coordinates where z = (z1, . . . , zn) are the

base coordinates and ξ is the fiber coordinate. Then λπ∗ωΣ =
√
−1ρij̄(z)dz

i ∧ dzj̄ ,
the Kähler metric defined by momentum profile f(ρ, t), its inverse and the Ricci
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tensor are locally written as

gAB =

⎧⎪⎨
⎪⎩
fρij̄ + fρρiρj̄ if (A,B) = (i, j̄),

fρρiρξ̄ if (A,B) = (i, ξ̄),

fρ|ρξ|2 if (A,B) = (ξ, ξ̄),

gAB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
f ρ

ij̄ if (A,B) = (i, j̄),

− 1
fρξ̄

∑n
k=1 ρ

ik̄ρk̄ if (A,B) = (i, ξ̄),

1
|ρξ|2

(
1
fρ

+
∑n

k,l=1 ρkl̄ρkρl̄

f

)
if (A,B) = (ξ, ξ̄),

RicAB =

⎧⎪⎨
⎪⎩
(νλ−1 − Fρ)ρij̄ − Fρρρiρj̄ if (A,B) = (i, j̄),

−Fρρρiρξ̄ if (A,B) = (i, ξ̄),

−Fρρ|ρξ|2 if (A,B) = (ξ, ξ̄),

where F = n log f + log fρ.
From the local expressions of g and g−1, one can easily derive local expressions

of the Christoffel symbols which we will need for deriving our splitting result.

Lemma 6.1. The Christoffel symbols of the Kähler metric g on M constructed by
momentum profile f are given by

Γi
ξξ = 0,

Γξ
ξξ =

fρρ
fρ

ρξ +
ρξξ
ρξ

=

(
fρρ
fρ

− 1

)
ρξ,

Γξ
iξ =

(
fρρ
fρ

− fρ
f

)
ρi,

Γj
iξ =

fρ
f
δji ρξ,

Γξ
ij =

(
fρρ
fρ

− 2fρ
f

)
ρiρj
ρξ

− 1

ρξ

(
ρlk̄ρlρjk̄i + ρij

)
,

Γk
ij =

fρ
f
(ρiδ

k
j + ρjδ

k
i ) + ρkl̄ρjl̄i.

Remark 6.2. Recall that for Kähler manifolds, the only (possibly) non-zero Christof-
fel symbols are those with indexes of either all (1, 0)-type or all (0, 1)-type. For
succinctness, please excuse us for omitting those which are vanishing or conjugate
to one of the above.

Remark 6.3. We will see that the vanishing of Γi
ξξ is crucial when dealing with the

curvature tensor in the blow-up analysis in the next section. Moreover, we only
need the first four Christoffel symbols in order to obtain the splitting lemma.

Proof. Using the formula Γγ
αβ = gγδ̄∂αgβδ̄ for Kähler manifolds, one can compute

the Christoffel symbols directly:

Γi
ξξ = gij̄

∂

∂ξ
gξj̄ + giξ̄

∂

∂ξ
gξξ̄

=
1

f
ρij̄

∂

∂ξ
(fρρξρj̄)−

1

fρξ̄
ρik̄ρk̄

∂

∂ξ
(fρρξρξ̄)
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=
1

f
ρij̄(fρρρξρξρj̄ + fρρξξρj̄)−

1

fρξ̄
ρik̄ρk̄(fρρρξρξρξ̄ + fρρξξρξ̄)

= 0,

Γξ
ξξ =

n∑
i=1

gξī
∂

∂ξ
gξī + gξξ̄

∂

∂ξ
gξξ̄

= − 1

fρξ

n∑
k=1

ρkīρk
∂

∂ξ
(fρρξρī) +

1

|ρξ|2

(
1

fρ
+

∑n
k,l=1 ρ

kl̄ρkρl̄

f

)
∂

∂ξ
(fρρξρξ̄)

= − 1

fρξ

n∑
k=1

ρkīρk
∂

∂ξ
(fρρρ

2
ξρī + fρρξξρī)

+
1

|ρξ|2

(
1

fρ
+

∑n
k,l=1 ρ

kl̄ρkρl̄

f

)
(fρρρ

2
ξρξ̄ + fρρξξρξ̄)

=
fρρ
fρ

ρξ +
ρξξ
ρξ

=

(
fρρ
fρ

− 1

)
ρξ,

Γξ
iξ =

n∑
j=1

gξj̄
∂

∂zi
gξj̄ + gξξ̄

∂

∂zi
gξξ̄

= − 1

fρξ
ρkj̄ρk

∂

∂zi
(fρρξρj̄) +

1

|ρξ|2

(
1

fρ
+

∑n
k,l=1 ρ

kl̄ρkρl̄

f

)
∂

∂zi
(fρρξρξ̄)

= − 1

fρξ
ρkj̄ρk(fρρρiρξρj̄ + fρρξρij̄)

+
1

|ρξ|2

(
1

fρ
+

∑n
k,l=1 ρ

kl̄ρkρl̄

f

)
(fρρρiρξρξ̄)

=

(
fρρ
fρ

− fρ
f

)
ρi,

Γj
iξ =

n∑
k=1

gjk̄
∂

∂zi
gξk̄ + gjξ

∂

∂zi
gξξ̄

=
1

f
ρjk̄

∂

∂zi
(fρρξρk̄)−

1

fρξ̄
ρjk̄ρk̄

∂

∂zi
(fρρξρξ̄)

=
1

f
ρjk̄(fρρρiρξρk̄ + fρρξρik̄)−

1

fρξ̄
ρjk̄ρk̄(fρρρiρξρξ̄)

=
fρ
f
δji ρξ,

Γξ
ij =

n∑
k=1

gξk̄
∂

∂zi
gjk̄ + gξξ̄

∂

∂zi
gjξ̄

= − 1

fρξ
ρk̄lρl

∂

∂zi
(fρjk̄ + fρρjρk̄) +

1

|ρξ|2

(
1

fρ
+

ρkl̄ρkρl̄
f

)
∂

∂zi
(fρρjρξ̄)

= − fρ
fρξ

ρlk̄ρl(ρiρjk̄ + ρjρik̄)−
1

ρξ
ρlk̄ρjk̄iρl +

fρρ
fρρξ

ρiρj̄ +
1

ρξ
ρij̄
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=

(
fρρ
fρ

− 2fρ
f

)
ρiρj
ρξ

− 1

ρξ

(
ρlk̄ρlρjk̄i + ρij

)
,

Γk
ij =

n∑
k=1

gkl̄
∂

∂zi
gjl̄ + gkξ̄

∂

∂zi
gjξ̄

=
1

f
ρkl̄(fρρiρjl̄ + fρjl̄i + fρρρiρjρl̄ + fρρijρl̄ + fρρjρil̄)

− 1

fρξ̄
ρkl̄ρl̄(fρρρiρjρξ̄ + fρρijρξ̄)

=
fρ
f
(ρiδ

k
j + ρjδ

k
i ) + ρkl̄ρjl̄i.

�

Let’s state and prove our splitting lemma.

Lemma 6.4. Let M = P(OΣ ⊕ L) be the projective bundle such that the triple
(Σ, L, [ω0]) satisfies the assumptions stated in the subsection on main results. Let
(M,ωt), t ∈ [0, T ) be the Kähler-Ricci flow ∂tωt = −Ric(ωt) with initial Kähler
class [ω0]. Let (xi, ti) ∈ M × [0, T ) be a sequence such that ti → T and Ki :=
‖Rm(xi)‖g(ti) → ∞ as i → ∞. Define gi(t) to be a rescaled dilated sequence by Ki

and ti, i.e.
gi(t) := Kig(ti +K−1

i t), t ∈ [−βi, αi],

where βi → ∞, αi ≥ 0 and αi → A ∈ [0,∞]. Suppose the curvature tensor of
gi(t), t ∈ [−βi, αi], is uniformly bounded independent of i, i.e. there exists C > 0
independent of i such that

sup
M×[−βi,αi]

‖Rm‖gi(t) ≤ C.

Then, after passing to a subsequence, (Mn+1, gi(t), xi) converges smoothly in the
pointed Cheeger-Gromov sense to a complete ancient Kähler-Ricci flow (M∞, g∞(t),
x∞) whose universal cover is of the form

(Nn
1 ×N1

2 , h1(t)⊕ h2(t)), t ∈ (−∞, A],

where (Ni, hi(t)), i = 1, 2, are Kähler-Ricci flow solutions.

Proof. By the uniform boundedness condition of ‖Rm‖gi(t) over M × [−βi, αi], the
subsequential Cheeger-Gromov convergence can be done by Hamilton’s compact-
ness theorem and Perelman’s local non-collapsing theorem. See [CCG, H3, P1],
etc. Furthermore, we may assume the complex structure of J of M converges after
passing to a subsequence to a complex structure J∞ of M∞. That makes (M∞, J∞)
Kähler because ∇g∞J∞ = limi→∞ ∇giJ = 0.

We will use the well-known de Rham holonomy splitting theorem, which asserts

that if the tangent bundle TM∞ admits an irreducible decomposition
⊕k

i=1 Ei

under the holonomy group action, i.e. parallel translation, then the universal cover

of M∞ splits isometrically as (M∞, g) =
∏k

i=1 N
dimEi
i with TNdimEi

i = Ei. Note
that in the Kähler case where the holonomy group is a subgroup of the unitary
group, each Ni is also Kähler.

Suppose (M∞, g∞(t), x∞) is the pointed Cheeger-Gromov limit obtained above.
We would like to show that it (precisely, the universal cover) splits isometrically into
a product. According to the nature of the collapsing of the P1-fiber, it is natural
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to guess that one factor of the split product should correspond to the base and the
other should correspond to the fiber. Based on these, we define the following unit
vector fields:

Zj
gi(t)

:=
1

‖ ∂
∂zj

‖gi(t)
∂

∂zj
=

1√
Ki(fρjj̄ + fρ|ρj |2)

∂

∂zj
,(6.1)

Ξgi(t) :=
1√

Kifρρξ

∂

∂ξ
.(6.2)

Then we have ‖Zj
gi(t)

‖gi(t) = ‖Ξgi(t)‖gi(t) = 1. After passing to a subsequence, they

converge to vector fields Zj
g∞(t) and Ξg∞(t) in the limit M∞.

We will show that the real distribution E∞ = spanR{�(Ξg∞(t)),�(Ξg∞(t))} is
invariant under parallel translation. Here � and � denote the real and imaginary
parts respectively. For simplicity, we will denote Zj

gi(t)
as Zj

i and Ξgi(t) as Ξi for

any i ∈ N ∪ {∞}.
It is worthwhile to note that E⊥

∞ = spanR{�(Zj
∞),�(Zj

∞)}nj=1 since

∣∣∣〈Ξi, Z̄
j
i 〉gi(t)

∣∣∣ =
∣∣∣∣∣ 1√

Kifρρξ
· 1√

Kigjj̄
·Kifρρξρj̄

∣∣∣∣∣ ≤
√

fρ
f

· |ρj |√
ρjj̄

,

which tends to 0 as i → ∞ using Lemma 5.2. Note that we have used gjj̄ =

fρjj̄ + fρ|ρj |2 ≥ fρjj̄ . Since ρ = log |ξ|2 + log φ(z) by (3.1), the term
ρj√
ρjj̄

is

independent of ξ, i and t, and hence is uniformly bounded near ρ = ±∞. Therefore
Ξ∞ is orthogonal to each of Zj

∞, i.e. E⊥
∞ = spanR{�(Zj

∞),�(Zj
∞)}nj=1.

In order to show E∞ is invariant under parallel translation, we need to show that
by parallel translating Ξ∞ along any vector field X on M∞, it stays inside E∞.
We will prove this by showing ∇∞

XΞ∞ lies inside E∞, or equivalently, orthogonal
to E⊥

∞. We will make use of the Christoffel symbols calculated in Lemma 6.1,

∇Ξi
Ξi =

1√
Kifρρξ

∇ξ

(
1√

Kifρρξ

∂

∂ξ

)

=
1√

Kifρρξ

(
∂

∂ξ

(
1√

Kifρρξ

)
∂

∂ξ
+

1√
Kifρρξ

(
Γξ
ξξ

∂

∂ξ
+ Γj

ξξ

∂

∂zj

))

=
1√

Kifρρξ

(
1√
Ki

(
1√
fρ

− ξ
fρρ

2f
3/2
ρ

ρξ

)
∂

∂ξ
+

1√
Kifρρξ

(
fρρ
fρ

− 1

)
ρξ

∂

∂ξ

)

=
1

Ki

√
fρρξ

(
1√
fρ

∂

∂ξ
− fρρ

2
√
fρfρ

∂

∂ξ
+

1√
fρ

fρρ
fρ

∂

∂ξ
− 1√

fρ

∂

∂ξ

)

=
ξ

2Kifρ

(
fρρ
fρ

)
∂

∂ξ
.

Taking the inner product with the vectors along the base direction, we have

〈∇Ξi
Ξi, Z̄

j
i 〉gi =

ξ

2Kifρ
· fρρ
fρ

· 1√
Ki(fρjj̄ + fρ|ρj |2)

·Kifρρξρj̄ ,

|〈∇Ξi
Ξi, Z̄

j
i 〉gi | ≤

1

2
√
Ki

· fρρ
fρ

·
|ρj̄ |√
fρjj̄

.
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Letting i → ∞, we get 〈∇Ξ∞Ξ∞, Z̄j
∞〉g∞ = 0 for any j = 1, . . . , n; here ∇ is the

Levi-Civita connection with respect to g∞. We have used the estimates proved
in Lemma 5.2, which says fρρ/fρ = O(1) and f = O(1), as well as the fact that
Ki → ∞. This proves ∇Ξ∞Ξ∞ ∈ E∞.

Similarly, by parallel translating Ξ∞ along Ξ̄∞, we calculate

∇Ξ̄i
Ξi =

1√
Kifρρξ̄

∇ξ̄

(
1√
Kifρ

ξ
∂

∂ξ

)

= − 1

2Kifρ

(
fρρ
fρ

)
ξ
∂

∂ξ

= −∇Ξi
Ξi.

Hence, we also have |〈∇Ξ̄i
Ξi, Z̄

j
i 〉gi(t)| → 0 for any j = 1, . . . , n as i → ∞, and that

proves 〈∇Ξ̄∞Ξ∞Z̄j
∞〉g∞ = 0 and so ∇Ξ̄∞Ξ∞ ∈ E∞.

The other calculations are similar:

∇Zj
i
Ξi =

1√
Kigjj̄

∇j

(
1√

Kifρρξ

∂

∂ξ

)

=
1√
Kigjj̄

(
∂

∂zj

(
1√

Kifρρξ

)
∂

∂ξ
+

1√
Kifρρξ

(
Γk
jξ

∂

∂zk
+ Γξ

jξ

∂

∂ξ

))

=
1

Ki
√
gjj̄

(
− ρj

2
√
fρρξ

(
fρρ
fρ

)
∂

∂ξ

+
1√
fρρξ

(
fρ
f
δkj ρξ

∂

∂zk
+

(
fρρ
fρ

− fρ
f

)
ρj

∂

∂ξ

))

=
1

Kiρξ
√
fρgjj̄

((
fρρ
2fρ

− fρ
f

)
ρj

∂

∂ξ
+

fρ
f
ρξ

∂

∂zj

)
,

〈∇Zj
i
Ξi, Z̄

k
i 〉gi(t) =

1

Kiρξ
√
fρgjj̄

√
Kigkk̄

×
{(

fρρ
2fρ

− fρ
f

)
ρjKifρρξρk̄ +

fρ
f
ρξKi(fρjk̄ + fρρjρk̄)

}

=

√
fρ

Kigjj̄gkk̄

(
fρρ
2fρ

ρjρk̄ + ρjk̄

)
.

Hence

|〈∇Zj
i
Ξi, Z̄

k
i 〉gi(t)| ≤

√
fρ
Ki

1

f

(∣∣∣∣∣ fρρ2fρ
· ρjρk̄√

ρjj̄
√
ρkk̄

∣∣∣∣∣+
∣∣∣∣∣ ρjk̄√

ρjj̄
√
ρkk̄

∣∣∣∣∣
)

and so |〈∇Zj
i
Ξi, Z̄

k
i 〉gi(t)| → 0 as i → ∞ since by Lemma 5.2 we have fρ = O(T − t).

Finally, we have

∇Z̄j
i
Ξi =

1√
Kigjj̄

∂

∂z̄j

(
1√

Kifρρξ

∂

∂ξ

)

= − 1

Kifρ
√
gjj̄

(
fρρ
fρ

)
ρj̄ξ

∂

∂ξ
,
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〈∇Z̄j
i
Ξi, Z̄

k
i 〉gi(t) = − 1√

Kigjj̄gkk̄

(
fρρ
fρ

)
ρj̄ρk̄,

|〈∇Z̄j
i
Ξi, Z̄

k
i 〉gi(t)| ≤

1

f
√
Ki

(
fρρ
fρ

)
·
∣∣∣∣∣ ρjρk√

ρjj̄ρkk̄

∣∣∣∣∣ .
Hence |〈∇Z̄j

i
Ξi, Z̄

k
i 〉gi(t)| → 0 as i → ∞.

Since {Zj
∞,Ξ∞}nj=1 spans the whole TCM∞, the above calculations show that

for any vector field X on (M∞, g∞(t)), one has 〈∇XΞ∞, Z̄j
∞〉g∞ = 0 for any j =

1, 2, . . . , n. Therefore, ∇X�(Ξ∞),∇X�(Ξ∞) ∈ E∞. This shows whenever we have
Vx ∈ E∞|x, x ∈ M∞, and let V (s) ∈ TM be the parallel translation of Vx along

a curve γ(s), then V (s) ∈ E∞. To see this, write V (s) = V T (s) + V ⊥(s) where
V T (s) ∈ E∞ and V ⊥(s) ∈ E⊥

∞ for any s. By the above calculation, we have
∇γ′(s)V

T (s) ∈ E∞ for any s. Therefore,

0 = ∇γ′(s)V (s) = ∇γ′(s)V
T (s) +∇γ′(s)V

⊥(s).

Hence ∇γ′(s)V
⊥(s) also lies inside E∞. By the fact that V ⊥(s) ⊥ E∞, we have

d

ds
‖V ⊥(s)‖2 = 2

〈
∇γ′(s)V

⊥(s), V ⊥(s)
〉
= 0.

It implies that ‖V ⊥(s)‖ ≡ ‖V ⊥(0)‖ = 0 for any s. In other words, V (s) ≡ V T (s) ∈
E∞ for any s. Therefore, E∞ is invariant under parallel transport. By the de Rham
decomposition theorem, our splitting lemma follows. �

7. Singularity analysis

The splitting lemma in the previous section allows a dimension reduction for our
singularity analysis. The ultimate goal of this section is to analyze the singularity
formation of the Ricci flow on our projective bundles M = P(OΣ ⊕ L) whose P1-
fiber collapses near the singularity. We are going to prove that the Kähler-Ricci
flow (M, g(t)) must be of Type I (see definition below) and the singularity model
is C

n × P
1, in a sense that one can choose a sequence (xi, ti) in space-time in the

high curvature region such that the universal cover of the Cheeger-Gromov limit of
the rescaled dilated sequence is isometric to (Cn×P1, ‖dz‖2⊕ωFS(t)). Here ωFS(t)
is the shrinking Fubini-Study metric.

According to the blow-up rate of the Riemann curvature tensor, the singularity
type of a Ricci flow solution which encounters finite-time singularity is classified as
in [H3].

Definition 7.1. Let (M, g(t)) be a Ricci flow solution ∂tg(t) = −Ric(g(t)) on a
closed manifold M which becomes singular at a finite time T . We call the Ricci
flow encounters

• Type I singularity if supM×[0,T )(T − t)‖Rm‖g(t) < ∞;

• Type II singularity if supM×[0,T )(T − t)‖Rm‖g(t) = ∞.

We would like to remark that although the Type I/II classification of finite-time
singularity was proposed in the early 90s, surprisingly the first compact Type II
solution was constructed by Gu-Zhu in [GZ] only recently in 2007.

In order to understand the singularity formation, we need to bring curvatures into
the topic. Therefore, we will compute and analyze the Riemann curvature tensor of
our projective bundle M which is equipped with momentum profile f . Recall that
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582 FREDERICK T.-H. FONG

for Kähler manifolds, the Riemann curvature (3, 1)-tensor can be computed using
the formula

RD
AB̄C = − ∂

∂z̄B
ΓD
AC

where A,B,C,D = 1, . . . , n or ξ. The non-zero components of the Riemann curva-
ture tensor are given below. For the ease of inspection of the norm ‖Rm‖ later on,
we will split the components into five groups according to the number of ξ-indexes:

Rl
ij̄k = −(log f)ρρρj̄(ρiδkl + ρkδil)− (log f)ρ(δijδkl + δjkδil)− (ρlp̄ρikp̄)j̄ ,

Rl
iξ̄k = −(log f)ρρρξ̄(ρiδkl + ρkδil),

Rl
ij̄ξ = −(log f)ρρρj̄ρξδil,

Rξ
ij̄k

= − 1

ρξ
(log fρ − 2 log f)ρρρj̄ρiρk

− 1

ρξ
(log fρ − 2 log f)ρ(ρij̄ρk + ρkj̄ρi) +

1

ρξ
(ρlp̄ρlρip̄k + ρik)j̄ ,

Rl
ξj̄k = −(log f)ρρρj̄ρξδkl,

Rξ

iξ̄k
= −(log fρ − 2 log f)ρρ

ρξ̄
ρξ

ρiρk,

Rl
iξ̄ξ = −(log f)ρρ|ρξ|2δik,

Rl
ξξ̄k = −(log f)ρρ|ρξ|2δkl,

Rl
ξj̄ξ = 0,

Rξ
ξj̄k

= −(log fρ − log f)ρρρj̄ρk − (log fρ − log f)ρρkj̄ ,

Rξ
lj̄ξ

= −(log fρ − log f)ρρρj̄ρl − (log fρ − log f)ρρlj̄ ,

Rξ

lξ̄ξ
= −(log fρ − log f)ρρρξ̄ρi,

Rl
ξξ̄ξ = 0,

Rξ

ξξ̄k
= −(log fρ − log f)ρρρξ̄ρk,

Rξ
ξj̄ξ

= −(log fρ)ρρρj̄ρξ,

Rξ

ξξ̄ξ
= −(log fρ)ρρ|ρξ|2.

Since the understanding of ‖Rm‖ is crucial in analyzing the singularity according
to their type (I or II), we need an organized expression of ‖Rm‖ that is written in
terms of our momentum profile f . Obviously, it would take loads of unnecessary
work. However, in order to study the singularity model in our class of manifolds, it
suffices to understand the asymptotics of ‖Rm‖2 in terms of f and its derivatives.
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Recall from Lemma 5.2 that f = O(1), 1
f = O(1), fρρ/fρ = O(1). Therefore we

have the following asymptotics:

(log f)ρ =
fρ
f

= O(fρ),

(log f)ρρ =
fρρ
f

−
f2
ρ

f2
= O(fρ),

(log fρ)ρ =
fρρ
fρ

= O(1).

The asymptotic of (log fρ)ρρ is not yet known because it involves the third ρ-
derivative of f , which we have not derived.

Also, the local expressions of g and g−1 have the following asymptotics:

gij̄ = O(1),

giξ̄ = gīξ = gξξ̄ = O(fρ),

gij̄ = giξ̄ = gīξ = O(1),

gξξ̄ = O(f−1
ρ ).

We claim that the norm ‖Rm‖2 can be expressed in the following asymptotic
form

Lemma 7.2.

‖Rm‖2g(t) = f−2
ρ (log fρ)

2
ρρ +O(f−1

ρ (log fρ)ρρ)(7.1)

+O(f−1
ρ (log fρ)

2
ρρ) +O((log fρ)

2
ρρ)

+O((log fρ)ρρ) +O(1).

Proof. A generic term in ‖Rm‖2 can be expressed as

(**) gAB̄g
CD̄gEF̄ gGH̄RA

CF̄GR
B
DĒH

where A, . . . , H ∈ {1, . . . , n, ξ}. From Lemma 5.2, we know fρ = O(T − t), and
so f−1

ρ is a bad term as it diverges as t → T . The only factor in (**) which can

contribute to a f−1
ρ is gξξ̄, and there are at most three gξξ̄’s in (**). We are going

to check that

(1) whenever f−1
ρ appears in (**) exactly once, there must be at least one factor

of (log fρ)ρρ from the curvature components;
(2) whenever f−2

ρ appears in (**), there must be a (log fρ)
2
ρρ factor from the cur-

vature components;
(3) it is impossible for f−3

ρ to appear in (**).

Combining these, it is not difficult to see ‖Rm‖2 satisfies the asymptotic form (7.1).
We start by arguing (1). Suppose there is exactly one f−1

ρ factor in (**); we
can assume WLOG that either (C,D) = (ξ, ξ) or (E,F ) = (ξ, ξ). Suppose the
former, we can check from the list of Riemann curvatures following Definition 7.1
that almost all RA

ξF̄G
terms have either asymptotics O(fρ) (which cancels out f−1

ρ )

or a (log fρ)ρρ factor. There is only one exception: Rξ
ξj̄k

which has an O(1)-term

from (log fρ)ρ. However, if both of RA
CF̄G

and RB
DĒH

are taken to be in this form,
then (**) becomes

gξξ̄g
ξξ̄gpj̄gkq̄Rξ

ξj̄k
Rξ

ξp̄q,
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where the gξξ̄ = O(fρ) cancels out the undesirable f−1
ρ factor, and we end up with

no f−1
ρ at all. A similar argument applies to the case (E,F ) = (ξ, ξ), and (1) is

proved.
For (2), since gξξ̄ is the only possible contribution to f−1

ρ , at least two of C,F,G
(and their corresponding two ofD,E,G) must be ξ. Check again the list of Riemann
curvature components following Definition 7.1; we see all the terms with two lower
ξ-indexes must either be of O(fρ)-type or have a (log fρ)ρρ factor. It proves (2).

For (3), the only possible case for f−3
ρ to appear is that all of (C,D), (E,F ) and

(G,H) are (ξ, ξ). The only possible choice for the curvature components are Rl
ξξ̄ξ

and Rξ

ξξ̄ξ
. However, the former is 0. For the latter case, all indexes will be ξ and

(**) becomes

gξξ̄g
ξξ̄gξξ̄gξξ̄Rξ

ξξ̄ξ
Rξ

ξξ̄ξ

which can be computed easily as f−2
ρ (log fρ)

2
ρρ.

Finally, we remark that gξξ̄g
ξξ̄gξξ̄gξξ̄Rξ

ξξ̄ξ
Rξ

ξξ̄ξ
is the only term where

f−2
ρ (log fρ)

2
ρρ appears, thanks to the fact that Ri

ξξ̄ξ
= 0. As a result, the lead-

ing term of (7.1) is f−2
ρ (log fρ)

2
ρρ with coefficient 1 which can be easily verified by

computing gξξ̄g
ξξ̄gξξ̄gξξ̄Rξ

ξξ̄ξ
Rξ

ξξ̄ξ
. �

Having understood the asymptotics of ‖Rm‖2, we are in a position to study the
singularity models. Let’s first consider the Type I case:

Theorem 7.3. Let M=P(OΣ⊕L) be the projective bundle with the triple (Σ, L, [ω0])
satisfying the conditions listed in the subsection on main results. Let (M,ωt) be
the Kähler-Ricci flow ∂tωt = −Ric(ωt), t ∈ [0, T ), with initial Kähler class [ω0].
Suppose the flow encounters Type I singularity; then choose (xi, ti) in space-time
such that Ki := ‖Rm(xi, ti)‖g(ti) = maxM ‖Rm‖g(ti) and ti → T . Consider the

rescaled dilated sequence of metrics gi(t) := Kig(ti + K−1
i t), t ∈ [−tiKi, (T −

ti)Ki). Then the pointed sequence (M, gi(t), xi) converges, after passing to a sub-
sequence, smoothly in the pointed Cheeger-Gromov sense to an ancient κ-solution
(M∞, g∞(t), x∞), whose universal cover splits isometrically as

(Cn × P
1, ‖dz‖2 ⊕ ωFS(t)),

where ‖dz‖2 is the Euclidean metric and ωFS(t) denotes the shrinking Fubini-Study
metric.

Proof. Suppose C = C(n) is a constant depending only on n such that |R| ≤
C(n)‖Rm‖. Since the blow-up factor Ki is defined by Ki = maxM ‖Rm‖g(ti) =
‖Rm(xi)‖g(ti), the scalar curvature at time ti satisfies |R(g(ti))| ≤ CKi on M .

One can compute the scalar curvature explicitly:

Rg(t) = Trωt
Ric(ωt)

=
n(ν − Fρ)

f
− Fρρ

fρ
,

where F = log fρ + n log f . Hence,

Rg(t) = − 1

fρ
(log fρ)ρρ +O(1).

Licensed to Hong Kong University of Science & Technology. Prepared on Sun Mar 12 09:54:08 EDT 2017 for download from IP 143.89.91.56.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



KRF ON PROJECTIVE BUNDLES OVER KÄHLER-EINSTEIN MANIFOLDS 585

Therefore, for any ρ ∈ [−∞,∞] at ti, we have∣∣∣∣− 1

fρ
(log fρ)ρρ +O(1)

∣∣∣∣ ≤ CKi,∣∣∣∣ −1

Kifρ
(log fρ)ρρ +O(K−1

i )

∣∣∣∣ ≤ C.

Recall that Ki → ∞. Letting i → ∞ yields

(7.2) lim sup
i→∞

∣∣K−1
i f−1

ρ (log fρ)ρρ
∣∣
(ρ,ti)

≤ C.

By considering the asymptotic expression of ‖Rm‖2 given by (7.1), we have for
any ρ ∈ [−∞,∞] at time ti,

1 ≥ K−2
i ‖Rm‖2g(ti) = (Kifρ)

−2(log fρ)
2
ρρ +O(K−2

i f−1
ρ (log fρ)

2
ρρ)

+O(K−2
i f−1

ρ (log fρ)ρρ) +O(K−2
i (log fρ)

2
ρρ)

+O(K−2
i (log fρ)ρρ) +O(K−2

i ),

where equality is achieved at xi.
Letting i → ∞ and using (7.2) and the fact that fρ = O(T − t) from Lemma

5.2, we can deduce:

lim sup
i→∞

(Kifρ)
−2(log fρ)

2
ρρ ≤ 1, ρ ∈ [−∞,∞], t = ti,

lim
i→∞

(Kifρ)
−2(log fρ)

2
ρρ

∣∣
(xi,ti)

= 1.(7.3)

Recall that gi(t) = Kig(ti +K−1
i t); we then have

Rgi(t) = − 1

Kifρ
(log fρ)ρρ +O(K−1

i )

∣∣∣∣
ti+K−1

i t

.

Letting i → ∞, we have

(7.4) Rg∞(t) = − lim
i→∞

1

Kifρ
(log fρ)ρρ

∣∣∣∣
ti+K−1

i t

.

By strong maximum principle, the scalar curvature of every ancient solution must
be either identically zero or everywhere positive. In our case, (7.3) and (7.4) to-
gether imply Rg∞(0) = 1 and hence Rg∞(t) > 0 on M × (−∞, 0]. By our split-
ting lemma, Lemma 6.4, we know that the limit manifold M∞ splits isometri-
cally as a product Nn

1 × N1
2 , such that TNn

1 = spanR{�(Zj
∞),�(Zj

∞)}nj=1 and

TN1
2 = spanR{�(Ξ∞),�(Ξ∞)}. As a result, the curvature tensors also split as

RmM∞ = RmNn
1
⊕ RicN1

2
. Next, we would like to compute the curvatures of each

factor. Again, for simplicity we denote Zj
gi(t)

by Zj
i and Ξgi(t) by Ξi:

|Rmgi(t)(Z
j
i , Z̄

k
i , Z

l
i , Z̄

p
i )|(7.5)

= |Ki〈Rm(Zj
i , Z̄

k
i )Z

l
i , Z̄

p
i 〉g(ti+K−1

i t)|

≤
∣∣∣∣∣Ki

(
1√
Ki

)4
1√
fρjj̄

1√
fρkk̄

1√
fρll̄

1√
fρpp̄

Rjk̄lp̄

∣∣∣∣∣
=

1

Ki
O(1) → 0 as i → ∞.
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Hence RmNn = 0. Similarly, we have

Ricgi(t)(Ξi, Ξ̄i) =
1√
Kifρ

1√
Kifρ

1

|ρξ|2
(−(n log f + log fρ)ρρ|ρξ|2)(7.6)

= − 1

Kifρ
(log fρ)ρρ +O(K−1

i ).

By (7.4) and positivity of Rg∞(t), we know that Ricg∞(t)(Ξ∞, Ξ̄∞) > 0.
Since the Kähler-Ricci flow g(t) is of Type I, the ancient solution obtained by

the blow-up sequence is also of Type I, i.e. supM×(−∞,0] |t|‖Rm‖g∞(t) < ∞, and

is κ-non-collapsed. The limit solution splits as a product (Nn
1 , h1(t))× (N1

2 , h2(t))
where we know Nn

1 is flat and N1
2 has positive curvature. According to Hamilton’s

classification of ancient κ-solution [H3] (see also [CLN]), (N1
2 , h2(t)) must be the

shrinking round 2-sphere.
To conclude, if the Kähler-Ricci flow (M, g(t)) is of Type I, then the universal

cover of the limit solution (M∞, g∞(t)) of the rescaled dilated sequence gi(t) is
isometric to

(Cn × P
1, ‖dz‖2 ⊕ ωFS(t)).

�

Next, we will rule out the possibility of Type II singularity on (M, g(t)). We
will show that by a standard point-picking argument for Type II singularity, one
can form a rescaled dilated sequence of metrics which converges, after passing to a
subsequence, to a product of the cigar soliton and a flat factor. By Perelman’s local
non-collapsing result, such a limit model is not possible. Let’s state this result and
give its proof.

Theorem 7.4. Let M=P(OΣ⊕L) be the projective bundle with the triple (Σ, L, [ω0])
satisfying the conditions listed in the subsection on main results. Let (M,ωt) be the
Kähler-Ricci flow ∂tωt = −Ric(ωt), t ∈ [0, T ), with initial Kähler class [ω0]. Then
(M, g(t)) must be of Type I, i.e. Type II singularity is not possible.

Proof. First take an increasing sequence Ti → T . Let (xi, ti) ∈ M × [0, Ti] be such
that

(Ti − ti)‖Rm‖(xi, ti) = max
M×[0,Ti]

(Ti − t)‖Rm‖g(t)

= max
M×[−Kiti,Ki(Ti−ti)]

(Ti − (ti +K−1
i t))‖Rm‖g(ti+K−1

i t).

We denote Ki = ‖Rm‖(ρi, ti); then Ki(Ti − ti) → ∞ by the Type II condition.
As in the Type I case, we let C = C(n) be a constant depending only on n such

that |Rg(t)| ≤ C‖Rm‖g(t). Recall that scalar curvature has the following asymptotic
expression:

Rg(t) = − 1

fρ
(log fρ)ρρ +O(1).

Hence for any ρ ∈ [−∞,∞], t ∈ [0, Ti], we have∣∣∣∣− 1

fρ
(log fρ)ρρ +O(1)

∣∣∣∣ ≤ C(Ti − ti)Ki

Ti − (ti +K−1
i t)

,∣∣∣∣ −1

Kifρ
(log fρ)ρρ +O(K−1

i )

∣∣∣∣ ≤ C(Ti − ti)

Ti − (ti +K−1
i t)

,
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where we evaluate the left-hand side at ti +K−1
i t. Letting i → ∞, and using the

fact that
(Ti−ti)−K−1

i t

Ti−ti
= 1− t

Ki(Ti−ti)
→ 1, one can show

(7.7) lim sup
i→∞

| (Kifρ)
−1(log fρ)ρρ

∣∣
(x,ti+K−1

i t)
≤ 1 for any (x, t).

At (xi, ti) we have (Ti− ti)
2‖Rm‖2(xi, ti) = (Ti− ti)

2K2
i . Consider the asymptotic

expression of ‖Rm‖2 as in the Type I case; one can then show

(7.8) lim
i→∞

1

K2
i f

2
ρ

(log fρ)
2
ρρ

∣∣∣∣
(xi,ti)

= 1.

As Ki → ∞, our splitting lemma, Lemma 6.4; also implies that the limit solution
(M∞, g∞(t)) splits isometrically as a product (Nn

1 ×N1
2 , h1(t) ⊕ h2(t)). As in the

Type I case, RmNn
1
and RicN1

2
can be found by (7.5) and (7.6):

Rmgi(t)(Z
j
i , Z̄

k
i , Z

l
i , Z̄

p
i ) =

1

Ki
O(1),

Ricgi(t)(Ξi, Ξ̄i) = − 1

Kifρ
(log fρ)ρρ +O(K−1

i ).

Letting i → ∞, we have RmNn
1
(h1(t)) = 0 and

1 ≥ RicN1
2
(h2(t)) > 0 from (7.7),(7.9)

RicN1
2
(x∞, h2(0)) = h2(0) from (7.8).

(M∞, g∞(t)) is an eternal solution to the Kähler-Ricci flow since we have (Ti −
ti)Ki → ∞. By our splitting lemma, so does (N1

2 , h2(t)). From (7.9), the space-
time maximum of the scalar curvature of (N1

2 , h2(t)) is achieved at (x∞, 0). Hence
by Hamilton’s classification of eternal solutions (see the Main Theorem of [H2]),
(N1

2 , h2(t)) is a steady gradient soliton. In the case of dimR = 2, it must be the
cigar soliton (see Section 26.3 of [H3]). However, by Perelman’s local non-collapsing
[P1], the Cheeger-Gromov limit (M∞, g(t)) must be κ-non-collapsed at all scales,
and so the product of cigar soliton and a flat space is not a possible singularity
model. It leads to a contradiction and hence completes our proof. �

Remark 7.5. Throughout this paper we have focused on Case 1 and Case 2(i)
following Theorem 4.1. We would like to point out as a final remark that for Case
2(iii) we expect one could mimic Section 5.2 in [SW1] and also [SW2, SW3] to
show the contraction of Σ0 near the singular time. For singularity models obtained
by rescaling analysis in Case 2(iii), it is conjectured in [FIK] that for (Σ, ωΣ) =
(Pn, ωFS) the singularity should be modelled on Kähler-Ricci solitons on O(−k)-
bundles over Pn.
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C. R. Acad. Sci. Paris (1976), no. 283. MR0433520 (55:6496)

[BS] Simon Brendle and Richard Schoen, Manifolds with 1/4-pinched curvature are space
forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287–307. MR2449060 (2010a:53045)

[C] Eugenio Calabi, Extremal Kähler metrics, Seminar on Diff. Geom. Ann. of Math. Stud.
102 (1982), 259–290. MR645743 (83i:53088)

[Cao1] Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact
Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR799272 (87d:58051)

[Cao2] Huai-Dong Cao, Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic meth-
ods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, MA, 1996, pp. 1–16.

MR1417944 (98a:53058)
[CCG] Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg,

Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and
applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Math-
ematical Society, Providence, RI, 2007, Geometric aspects. MR2302600 (2008f:53088)

[CLN] Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, Graduate Studies in Math-
ematics, vol. 77, American Mathematical Society, Providence, RI, 2006. MR2274812
(2008a:53068)

[CY] Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric
on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm.
Pure Appl. Math. 33 (1980), no. 4, 507–544. MR575736 (82f:53074)

[CZ] Huai-Dong Cao and Xi-Ping Zhu, Hamilton-Perelman’s Proof of the Poincaré Conjec-
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