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Abstract In this paper we provide a detailed proof of the second variation formula,
essentially due to Richard Hamilton, Tom Ilmanen and the first author, for Perelman’s
ν-entropy. In particular, we correct an error in the stability operator stated in Theorem
6.3 of (Cao in Adv Lect Math 11:1–38, 2010). Moreover, we obtain a necessary con-
dition for linearly stable shrinkers in terms of the least eigenvalue and its multiplicity
of certain Lichnerowicz type operator associated to the second variation.
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1 The Results

A complete Riemannian metric gi j on a smooth manifold Mn is called a gradient
shrinking Ricci soliton if there exists a smooth function f on Mn such that the Ricci
tensor Ri j of the metric gi j satisfies the equation

Ri j + ∇i∇ j f = 1

2τ
gi j , (1.1)
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748 H.-D. Cao, M. Zhu

for some constant τ > 0. The function f is called a potential function of the Ricci
soliton. When f is a constant we obtain an Einstein metric of positive scalar curvature.
Thus, Ricci solitons include Einstein metrics as a special case.

Ricci solitons correspond to self-similar solutions of Hamilton’s Ricci flow, and
often arise as limits of dilations of singularities in the Ricci flow. In particular shrink-
ing solitons are possible Type I singularity models in the Ricci flow. We refer the
readers to [2,3] and the references therein for more information on Ricci solitons.

Ricci solitons can be viewed as fixed points of the Ricci flow, as a dynamical
system, on the space of Riemannian metrics modulo diffeomorphisms and scalings.
In [15], Perelman introduced the W-functional

W(gi j , f, τ ) =
∫

M

[τ(R + |∇ f |2) + f − n](4πτ)−
n
2 e− f dV,

on a compact manifold Mn , where gi j is a Riemannian metric, R the scalar curvature,
f a smooth function on Mn , and τ a positive scale parameter. The associated ν-entropy
is defined by

ν(gi j ) = inf

{
W(g, f, τ ) : f ∈ C∞(M), τ > 0, (4πτ)−

n
2

∫
e− f dV = 1

}
.

It turns out that the ν-entropy is monotone increasing under the Ricci flow, and its crit-
ical points are precisely given by gradient shrinking solitons. In particular, it follows
that all compact shrinking Ricci solitons are gradient shrinking solitons, a fact shown
by Perelman [15].

In dimensions 2 and 3, Hamilton [11] and Ivey [12] respectively showed that the only
compact shrinking solitons are quotients of the round spheres. However, for dimension
n ≥ 4, compact non-Einstein shrinking solitons do exist. Specifically in dimension n =
4, Koiso [13] and the first author [1] independently constructed a gradient Kähler-Ricci
shrinking soliton on CP2#(−CP2), and Wang-Zhu [16] on CP2#(−2CP2), while in
the noncompact case Feldman-Ilmanen-Knopf [8] constructed the U (2)-invariant gra-
dient shrinking Kähler-Ricci solitons on the tautological line bundle O(−1) of CP1,
the blow-up of C

2 at the origin. These are the only known examples of nontrivial (i.e.,
non-Einstein or non-product) complete shrinking Ricci solitons in dimension 4 so far.

In [4], Hamilton, Ilmanen and the first author initiated the study of linear stability
of Ricci solitons. They found the second variation formula of the ν-energy for positive
Einstein manifolds and investigated the linear stability of certain Einstein manifolds.
By definition, a Ricci shrinker or Einstein manifold is called linearly stable if the
second variation is non-positive. They showed that, while the round sphere S

n and the
complex projective space CPn are linearly stable, many known Einstein manifolds
are unstable for the Ricci flow so that generic perturbations acquire higher ν-entropy
and thus can never return near the original metric. In particular, all Kähler-Einstein
manifolds with Hodge number h1,1 > 1 are unstable.

In dimension n ≥ 4, so far no one knows how to classify Einstein manifolds of
positive scalar curvature, let alone gradient shrinking Ricci solitons. However, as far as
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On second variation of Perelman’s Ricci shrinker entropy 749

applications of the Ricci flow to topology is concerned, one is more interested in stable
shrinking solitons since unstable ones could be perturbed away thus may not represent
generic singularities. For this reason, it is desirable and important to classify stable
shrinking Ricci solitons. Note that, the work of Cao-Hamilton-Ilmanen [4] suggests
that most gradient shrinking Ricci solitons are unstable. In fact, Hamilton conjectured
that, at least in dimension n = 4, compact linearly stable shrinkers are rank one sym-
metric spaces, namely either the round sphere S

4 or the complex projective space CP2

with the Fubini-Study metric. Of course, in studying linear stability of shrinkers, the
second variation formula of the ν-entropy is indispensable. In this paper, we present
a detailed proof of the second variation formula, first due to Hamilton, Ilmanen and
the first author (cf. Theorem 6.3 in [2]), for Ricci shrinkers.

To state the second variation formula, we need some notations first. For any sym-
metric 2-tensor h = hi j and 1-form ω = ωi , we denote

Rm(h, ·) := Ri jklh jl ,

div ω := ∇iωi , (div h)i := ∇ j h ji .

Moreover, as done in [2], we define

div f ω := e f div(e− f ω) = ∇iωi − ωi∇i f, (1.2)

and

div f h := e f div(e− f h) = div h − h∇ f, (1.3)

i.e.,

(div f h)i = ∇ j hi j − hi j∇ j f.

We also define div†
f on 1-forms (and similarly on functions) by

(div†
f ω)i j = −(∇iω j + ∇ jωi )/2 = −(1/2)Lω# gi j (1.4)

so that

∫

M

e− f < div†
f ω, h > dV =

∫

M

e− f < ω, div f h > dV . (1.5)

Here ω# is the vector field dual to ω. Clearly, div†
f is just the adjoint of div f with

respect to the weighted L2-inner product

(·, ·) f =
∫

M

< ·, · > e− f dV . (1.6)
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750 H.-D. Cao, M. Zhu

Finally we denote

� f := � − ∇ f · ∇. (1.7)

Remark 1.1 If we denote by div∗ the adjoint of div with respect to the L2-inner product

(·, ·) =
∫

M

< ·, · > dV,

then, as pointed out in [2], one can easily verify that

div†
f = div∗ . (1.8)

Now we can state the full second variation formula for Ricci shrinkers:

Theorem 1.1 (Cao-Hamilton-Ilmanen) Let (Mn, gi j , f ) be a compact Ricci
shrinker with the potential function f and satisfying the Ricci soliton equation (1.1).
For any symmetric 2-tensor h = hi j , consider variations gi j (s) = gi j + shi j . Then
the second variation δ2

gν(h, h) is given by

d2

ds2

∣∣∣∣
s=0

ν(g(s)) = τ

(4πτ)n/2

∫

M

< N̂h, h > e− f dV,

where the stability operator N̂ is given by

N̂h := 1

2
� f h + Rm(h, ·) + div†

f div f h + 1

2
∇2v̂h − Rc

∫
M < Rc, h > e− f∫

M Re− f
,

(1.9)

and v̂h is the unique solution of

� f v̂h + v̂h

2τ
= div f div f h,

∫

M

v̂he− f = 0.

Remark 1.2 As we pointed out before, Theorem 1.1 is essentially due to Hamilton,
Ilmanen and the first author (cf. Theorem 6.3 in [2]). However, the coefficient of the
last term of the stability operator N̂ (which depends on δτ , the first variation of the
parameter τ ) was stated incorrectly in [2]. One of our contributions in this paper is
to derive an explicit formula for δτ (see Lemma 2.4 below), thus obtaining the cor-
rect coefficient and hence a complete second variation formula for Ricci shrinkers.
Of course, it would be interesting to investigate the noncompact case as well. In this
case, the asymptotic estimates on potential functions and volume growth upper bound
proved by Cao-Zhou [5], and an integral bound on the Ricci curvature by Munteanu-
Sesum [14] should be very helpful. We point out that, while the stability operator N̂ is
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On second variation of Perelman’s Ricci shrinker entropy 751

already quite useful even without knowing the explicit coefficient of the last term, it
will be rather crucial to have this explicit and correct coefficient in efforts of trying to
classify stable shrinkers. For example, this explicit coefficient is essential in showing
that the Ricci tensor is a null eigen-tensor of N̂ (see Lemma 3.3) which rules out any
hope of using the Ricci tensor as a possible unstable direction.

Remark 1.3 In the very recent work [10], Stuart Hall and Thomas Murphy proved
that Kähler-Ricci shrinking solitons with Hodge number h1,1 > 1 are unstable, thus
extending the results of Cao-Hamilton-Ilmanen [4] in the Kähler-Einstein case men-
tioned above. In the course of their proof, they also verified the second variation
formula stated in [2], though didn’t find out explicitly the coefficient of the last term
of N̂ (which does not affect the proof of their result since they only considered certain
special variations orthogonal to Rc).

Remark 1.4 If (Mn, gi j ) is Einstein with Rc = 1
2τ

gi j , Theorem 1.1 reduces to

Theorem 1.2 (Cao-Hamilton-Ilmanen [4]) Let (Mn, gi j ) be a Einstein manifold and
consider variations gi j (s) = gi j + shi j . Then the second variation δ2

gν(h, h) is given
by

d2

ds2

∣∣∣∣
s=0

ν(g(s)) = τ

Vol(M, g)

∫

M

< Nh, h > dV,

where

Nh := 1

2
�h + Rm(h, ·) + div∗ div h + 1

2
∇2vh − g

2nτ Vol(M, g)

∫

M

trg h dV,

and vh is the unique solution of

�vh + vh

2τ
= div div h,

∫

M

vh = 0.

Finally, using the second variation formula, we obtain the following necessary
condition for linearly stable shrinkers:

Theorem 1.3 Suppose (Mn, gi j , f ) is a compact linearly stable shrinking soliton
satisfying (1.1), then − 1

2τ
is the only negative eigenvalue of the operator L f (with Rc

being an eigen-tensor), defined by

L f h = 1

2
�h + Rm(h, ·), (1.10)

on ker div f and the multiplicity of − 1
2τ

is one. In particular, − 1
2τ

is the least eigenvalue
of L f on ker div f .
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Remark 1.5 In proving Theorem 1.3, the explicit coefficient of Rc term in N̂ is not
needed.

Remark 1.6 In the mean curvature flow, Colding and Minicozzi [7] have shown that
for any shrinker its mean curvature H is an eigenfunction of certain operator involved
in the corresponding stability operator, and that for any (linearly) stable shrinker the
mean curvature function H belongs to the least eigenvalue of the operator which in
turn implies that H does not change sign. This fact and a prior theorem of Huisken
allow them to classify compact stable mean curvature shrinkers. Our Theorem 1.3
above can be considered as the Ricci flow analogy of their results.

2 The Proof of Theorem 1.1

In this section, we describe the first variation of the ν-entropy and derive the second
variation formula as stated in Theorem 1.1.

On any given compact manifold Mn , Perelman [15] introduced the W-functional

W(gi j , f, τ ) =
∫

M

[τ(R + |∇ f |2) + f − n](4πτ)−
n
2 e− f ,

where gi j is a Riemannian metric, R the scalar curvature, f a smooth function on
Mn , and τ a positive scale parameter. Clearly the functional W is invariant under
simultaneous scaling of τ and gi j , and invariant under diffeomorphisms. Namely, for
any positive number a and any diffeomorphism ϕ we have

W(aϕ∗gi j , ϕ
∗ f, aτ) = W(gi j , f, τ ).

Lemma 2.1 (Perelman [15], see also Lemma 1.5.7 in [6]) If hi j = δgi j , φ = δ f ,
and η = δτ , then

δW(hi j , φ, η) = (4πτ)− n
2

⎛
⎝

∫

M

−τhi j

(
Ri j + ∇i ∇ j f − 1

2τ
gi j

)
e− f

+
∫

M

(
1

2
trg h − φ − n

2τ
η

)
[τ(R + 2� f − |∇ f |2) + f − n − 1]e− f

+
∫

M

η
(

R + |∇ f |2 − n

2τ

)
e− f

⎞
⎠ .

Now, recall that the associated ν-energy is defined by

ν(gi j ) = inf{W(g, f, τ ) : f ∈ C∞(M), τ > 0},
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On second variation of Perelman’s Ricci shrinker entropy 753

subject to the constraint

(4πτ)−
n
2

∫
e− f = 1. (2.1)

One checks that ν(gi j ) is realized by a pair ( f, τ ) that solve the equations

τ(−2� f + |∇ f |2 − R) − f + n + ν = 0, (2.2)

and

(4πτ)−
n
2

∫
f e− f = n

2
+ ν. (2.3)

For any symmetric 2-tensor h = hi j , consider variations gi j (s) = gi j + shi j . Using
Lemma 2.1, (2.2) and (2.3), one obtains the following first variation for the ν-entropy.

Lemma 2.2 The first variation δgν(h) of the ν-entropy is given by

d

ds
ν(gi j (s)) = (4πτ)−

n
2

∫
−τ < h, Rc + ∇2 f − 1

2τ
g > e− f dV

= (4πτ)−
n
2

∫
−τhi j

(
Ri j + ∇i∇ j f − 1

2τ
gi j

)
e− f dV .

A stationary point of ν thus satisfies the Ricci soliton equation (1.1):

Ri j + ∇i∇ j f − 1

2τ
gi j = 0,

which says that gi j is a gradient shrinking Ricci soliton.
Note that, by diffeomorphism invariance of ν, δgν(h) vanishes on Lie derivatives,

hence on hi j = ∇i∇ j f = 1
2 L∇ f gi j . By scale invariance it also vanishes on multiplies

of the metric. Inserting hi j = −2
(
Ri j + ∇i∇ j f − 1

2τ
gi j

)
, one recovers Perelman’s

formula that finds that ν(gi j (t)) is monotone increasing on the Ricci flow, and con-
stant if and only if gi j (t) is a gradient shrinking Ricci soliton. In particular, it follows
that any compact shrinking Ricci soliton is necessarily a gradient soliton, a result first
shown by Perelman [15].

Now we are going to derive the second variation formula.
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Proof of Theorem 1.1 From the first variation formula in Lemma 2.2, we see that the
second variation at a gradient shrinker (Mn, gi j , f ) is given by

δ2νg(h, h) = (4πτ)−
n
2

∫
−τ < h, δ

(
Rc + ∇2 f − 1

2τ
g

)
> e− f

= (4πτ)−
n
2

∫
−τ < h, δRc + δ∇2 f − 1

2τ
h > e− f

+ (4πτ)−
n
2

(
− δτ

2τ

) ∫

M

trg he− f .

Lemma 2.3 We have

δRc + δ∇2 f − 1

2τ
h = −1

2
� f h − Rm(h, ·) − div†

f div f h − ∇2
(

−δ f + 1

2
trg h

)
.

Proof First of all, it is well-known that the variation δRc of the Ricci tensor is given
by

(δRc)i j = −Rik jl hkl + 1

2
(∇i∇kh jk + ∇ j∇khik + Rikh jk

+ R jkhik − �hi j − ∇i∇ j trg h), (2.4)

and, by direct computations (see, e.g., [17]),

(δ∇2 f )i j = ∇i∇ j (δ f ) − 1

2
(∇i h jk + ∇ j hik − ∇khi j )∇k f. (2.5)

On the other hand, by the definition of div f and div†
f and using the shrinking soliton

equation (1.1), we have

div†
f div f h = −1

2
[∇i (div f h) j + ∇ j (div f h)i ]

= −1

2
[∇i (∇kh jk − h jk∇k f ) + ∇ j (∇khik − hik∇k f )]

= −1

2
(∇i∇kh jk + ∇ j∇khik − ∇k f ∇i h jk − ∇k f ∇ j hik)

−1

2
(Rikhk j + R jkhki ) + 1

2τ
hi j .

Now, combining the above computations, we arrive at
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On second variation of Perelman’s Ricci shrinker entropy 755

δRc + δ∇2 f = −1

2
� f h − Rm(h, ·) − div†

f div f h

−∇2(−δ f + 1

2
trg h) + 1

2τ
h.

��
Next we derive the variation δτ of the parameter τ .

Lemma 2.4 We have

δτ = τ

∫
M < Rc, h > e− f∫

M Re− f
.

Proof First of all, from (1.1) we get

R + � f = n

2τ
. (2.6)

Also, it is well-known that

R + |∇ f |2 = f − ν

τ
. (2.7)

From (2.6) and (2.7) it follows that

− � f f =: |∇ f |2 − � f = f − ν − n/2

τ
. (2.8)

Moreover, from (2.4) and (2.5) and using (1.1), we get

δR = − 1

2τ
trg h + hi j∇i∇ j f + ∇i∇ j hi j − � trg h, (2.9)

and

δ(� f ) = �(δ f ) − hi j∇i∇ j f − ∇i hi j∇ j f + 1

2
∇i trg h∇i f (2.10)

respectively. Also,

δ|∇ f |2 = 2∇i f ∇ j (δ f ) − hi j∇i f ∇ j f. (2.11)

When we integrate (2.2) against the measure (4πτ)− n
2 e− f dV and use (2.3), we obtain

(4πτ)−
n
2

∫

M

τ(|∇ f |2 + R)e− f dV = n

2
. (2.12)
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On the other hand, by differentiating (2.1) and (2.3), we have

(4πτ)−
n
2

∫

M

(
− n

2τ
δτ − δ f + 1

2
trg h

)
e− f = 0, (2.13)

and

(4πτ)−
n
2

∫

M

f

(
− n

2τ
δτ − δ f + 1

2
trg h

)
e− f + (4πτ)−

n
2

∫

M

δ f e− f = 0.

(2.14)

Now, differentiating (2.2) and using (2.6), (2.10) and (2.11), we obtain

0 = δτ
(
− n

2τ
+ |∇ f |2 − � f

)
− δ f

+ τ(−2�(δ f ) + 2hi j∇i∇ j f + 2∇i hi j∇ j f − ∇i (trg h)∇i f

+ 2∇i f ∇i (δ f ) − hi j∇i f ∇ j f − δR).

Substituting (1.1) and (2.9) in the above identity, we get

0 = − n

2τ
δτ − 2τ�(δ f ) + 2τ∇(δ f )∇ f − δ f + δτ(|∇ f |2 − � f )

+ τ(2hi j∇i∇ j f + 2∇i hi j∇ j f − ∇i (trg h)∇i f − hi j∇i f ∇ j f )

+ τ(
1

2τ
trg h − hi j∇i∇ j f − ∇i∇ j hi j + � trg h).

But, by definition of div f , we compute that

div f div f h = ∇i (∇ j hi j − hi j∇ j f ) − ∇i f (∇ j hi j − hi j∇ j f )

= ∇i∇ j hi j − hi j∇i∇ j f − 2∇i f ∇ j hi j + hi j∇i f ∇ j f.

Hence, we get

0=
(
−nδτ

2τ
− δ f + 1

2
trg h

)
+ δτ(−� f f ) + τ� f (−2δ f + trg h) − τ div f div f h.
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Multiplying the above identity by f and integrating against the measure
(4πτ)− n

2 e− f dV , we get

0 = (4πτ)−
n
2

∫

M

f

(
− n

2τ
δτ − δ f + 1

2
trg h

)
e− f dV

+ (4πτ)−
n
2 δτ

∫

M

f (−� f f )e− f dV

+ (4πτ)−
n
2

∫

M

τ f � f (−2δ f + trg h)e− f dV

− (4πτ)−
n
2

∫

M

τ f (div f div f h)e− f dV .

By (2.14) and integration by parts, the above identity becomes

0 = (4πτ)−
n
2

∫

M

−δ f e− f dV + δτ(4πτ)−
n
2

∫

M

|∇ f |2e− f dV

+ (4πτ)−
n
2

∫

M

τ(−2δ f + trg h)� f f e− f dV

− (4πτ)−
n
2

∫

M

τ < h,∇2 f > e− f dV .

Using (1.1), (2.8) and (2.12), we obtain

0 = −(4πτ)−
n
2

∫

M

δ f e− f dV + n

2τ
δτ − δτ(4πτ)−

n
2

∫

M

Re− f dV

+ (4πτ)−
n
2

∫

M

2τ

(
n

2τ
δτ + δ f − 1

2
trg h

)(
1

τ
f − ν

τ
− n

2τ

)
e− f dV

+ (4πτ)−
n
2

∫

M

(
−1

2
trg h + τhi j Ri j

)
e− f dV .
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By using (2.13) and (2.14), we arrive at

0 = (4πτ)−
n
2

∫

M

(
n

2τ
δτ + δ f − 1

2
trg h

)
e− f dV − δτ(4πτ)−

n
2

∫

M

Re− f dV

+ (4πτ)−
n
2

∫

M

τ Ri j hi j e
− f dV

= −δτ(4πτ)−
n
2

∫

M

Re− f dV + (4πτ)−
n
2

∫

M

τ Ri j hi j e
− f dV .

Therefore,

δτ = τ

∫
M Ri j hi j e− f dV∫

M Re− f
.

��
Now, by Lemmas 2.3 and 2.4, the second variation becomes

δ2νg(h, h) = (4πτ)−
n
2

∫

M

−τ < h, δRc + δ∇2 f − 1

2τ
h > e− f

+ (4πτ)−
n
2

(
− δτ

2τ

)∫

M

trg he− f

= (4πτ)−
n
2

∫

M

τ < h,
1

2
� f h + Rm(h, ·) + div†

f div f h > e− f

+ (4πτ)−
n
2

∫

M

τ < h,∇2
(

−δ f + 1

2
trg h

)
> e− f

+ (4πτ)−
n
2

(
− δτ

2τ

)∫

M

trg he− f

= τ(4πτ)−
n
2

∫

M

<h,
1

2
� f h + Rm(h, ·) + div†

f div f h + 1

2
∇2v̂h > e− f

+ τ(4πτ)−
n
2
δτ

τ

∫

M

< h,∇2 f − 1

2τ
g > e− f

= τ(4πτ)−
n
2

∫

M

<h,
1

2
� f h + Rm(h, ·) + div†

f div f h + 1

2
∇2v̂h > e− f

− τ(4πτ)−
n
2

∫
M < Rc, h > e− f dV∫

M Re− f dV

∫

M

< h, Rc > e− f dV .
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Here,

v̂h = −2δ f + trg h − 2δτ

τ
( f − ν),

and it is straightforward to check that

� f v̂h + v̂h

2τ
= div f div f h,

∫

M

v̂he− f dV = 0. (2.15)

To see the uniqueness of the solution to (2.15), it suffices to show that λ1(� f ) > 1
2τ

,
where λ1 = λ1(� f ) denotes the first eigenvalue of � f . Let u be a (non-constant) first
eigenfunction so that

� f u = −λ1u.

Then by direct computations (see also [9]), we get

1

2
� f |∇u|2 = |∇2u|2 + ∇(� f u) · ∇u + (Rc + ∇2 f )(∇u,∇u)

≥ 1

n
|�u|2 +

(
1

2τ
− λ1

)
|∇u|2.

Thus,

0 =
∫

M

1

2
� f |∇u|2e− f dV ≥ 1

n

∫

M

|�u|2e− f dV +
(

1

2τ
− λ1

)∫

M

|∇u|2e− f dV .

Since u is non-constant, we obtain

λ1 >
1

2τ
.

This completes the proof of Theorem 1.1. ��

3 Further remarks and the proof of Theorem 1.3

Recall that a gradient shrinking Ricci soliton (Mn, gi j , f ) is called linearly stable
if the stability operator N̂ ≤ 0 on symmetric 2-tensors. Note that N̂ is degenerate
negative elliptic. In this section we shall exhibit the action of the stability operator on
a couple of special symmetric 2-tensors h: (i) hi j = gi j and (ii) hi j = Ri j , and prove
Theorem 1.3.
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Without loss of generality, we assume τ = 1 so that our shrinking soliton (Mn,

gi j , f ) satisfies the equation

Ri j + ∇i∇ j f = 1

2
gi j . (3.1)

We also normalize f so that

(4π)−
n
2

∫

M

e− f = 1.

First of all, notice that we have

� f g = �g − ∇ f ∇g = 0

div f g = −gi j∇ j f = −∇ f, div†
f div f g = ∇2 f,

v̂h = −2( f − f̄ ), f̄ = (4πτ)−
n
2

∫

M

f e− f .

Hence, we get

N̂ (g) = Rc + ∇2 f + 1

2
∇2(−2 f + 2 f̄ ) − Rc = 0 (3.2)

as we expected.
On the other hand, we have

Lemma 3.1 For any complete shrinking Ricci soliton satisfying (3.1), we have

Rc ∈ ker div f .

Proof By definition and the second contracted Bianchi identity,

(div f Rc)i = ∇ j Ri j − Ri j∇ j f = 1

2
∇i R − Ri j∇ j f.

On the other hand, it is a basic fact that our shrinker satisfies

∇i R = 2Ri j∇ j f. (3.3)

Therefore, div f (Rc) = 0. ��
Recall the operator L f on symmetric 2-tensors defined in (1.10):

L f h := 1

2
� f h + Rm(h, ·).
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It is easy to see that L f is a self-adjoint operator with respect to the weighted L2-inner
product (·, ·) f defined in (1.6).

Lemma 3.2 For any complete shrinking soliton satisfying (3.1), its Ricci tensor is an
eigen-tensor of the operator L f with eigenvalue −1/2:

L f (Rc) = 1

2
Rc.

Proof The following computations are familiar to experts, but we carry out here for
completeness.

From the soliton equation (3.1), we have

Ri j = 1

2
gi j − ∇i∇ j f.

By commuting covariant derivatives, we have

�Ri j = −∇k∇k∇i∇ j f

= −∇k(∇i∇k∇ j f + Rki jl∇l f )

= −∇k∇i∇ j∇k f − ∇k Rki jl∇l f − Rki jl∇k∇l f.

On the other hand, by commuting covariant derivatives again and using the contracted
second Bianchi identity as well as (3.1), we obtain

∇k∇i∇ j∇k f = ∇i∇k∇ j∇k f + Rki jl∇l∇k f + Rkikl∇ j∇l f

= −1

2
∇i∇ j R − Rki jl Rkl − Ril Rl j

= −∇ j Ril∇l f − 1

2
Ri j − Rki jl Rkl .

Here we have used (3.3) in deriving the last equality.
Moreover, by the second Bianchi identity, we have

∇k Rki jl∇l f = (∇ j Ril − ∇l Ri j )∇l f.

Combining the above calculations and using the Ricci soliton equation (3.1), we arrive
at

�Ri j = ∇l Ri j∇l f + 2Rki jl Rkl + Ri j , (3.4)

i.e., 2L f (Ri j ) = Ri j . ��
Now, for any h ∈ ker div f , the stability operator N̂ is given by

N̂h = L f h − Rc

∫
M < Rc, h > e− f∫

M Re− f
. (3.5)
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Moreover, from (3.4) we obtain

� f R = R − 2|Rc|2, (3.6)

from which it follows that

2
∫

M

|Rc|2e− f =
∫

M

Re− f . (3.7)

Therefore, by Lemma 3.2, (3.5) and (3.7), we have

Lemma 3.3

N̂ (Rc) = 0.

Now we are ready to prove

Proposition 3.1 Suppose (Mn, gi j , f ) is a linearly stable compact shrinking soli-
ton satisfying (3.1), then −1/2 is the only negative eigenvalue of the operator L f on
ker div f , and the multiplicity of −1/2 is one. In particular, −1/2 is the least eigenvalue
of L f on ker div f .

Proof By Lemmas 3.1 and 3.2, we know that Rc ∈ ker div f , and is an eigen-tensor
of L f with eigenvalue −1/2. Suppose there exists a (non-zero) symmetric 2-tensor
h ∈ ker div f such that

L f h = αh,

with α > 0, and

(Rc, h) f =:
∫

M

< Rc, h > e− f = 0.

Then, by Theorem 1.1 and (3.5), we have

δ2νg(h, h) = 1

(4π)n/2

∫

M

< N̂h, h > e− f

= 1

(4π)n/2

∫

M

< L f h, h > e− f

= α

(4π)n/2

∫

M

|h|2e− f > 0,

a contradiction to the linear stability of (Mn, gi j , f ). Thus −1/2 is the only negative
eigenvalue of L f on ker div f , with multiplicity one. ��
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Remark 3.1 In [10], the authors have given a very nice interpretation of their proof in
terms of the multiplicity of the eigenvalue −1/2: for any compact shrinking Kähler-
Ricci soliton satisfying (3.1), the eigen-space of eigenvalue −1/2 has multiplicity at
least h1,1. Hence a compact shrinking Kähler-Ricci soliton with h1,1 > 1 is unstable.
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