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ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY

RICCI SOLITONS

HUAI-DONG CAO AND QIANG CHEN

Abstract. In this paper, we classify n-dimensional (n ≥ 3) complete non-
compact locally conformally flat gradient steady solitons. In particular, we
prove that a complete noncompact nonflat locally conformally flat gradient
steady Ricci soliton is, up to scaling, the Bryant soliton.

1. The results

A complete Riemannian metric gij on a smooth manifold Mn is called a gradient
steady Ricci soliton if there exists a smooth function F on Mn such that the Ricci
tensor Rij of the metric gij is given by the Hessian of F :

(1.1) Rij = ∇i∇jF.

The function F is called a potential function of the gradient steady soliton. Clearly,
when F is a constant the gradient steady Ricci soliton is simply a Ricci flat manifold.
Thus Ricci solitons are natural extensions of Einstein metrics. Gradient steady
solitons play an important role in Hamilton’s Ricci flow as they correspond to
translating solutions, and often arise as Type II singularity models. Thus one is
interested in classifying them and understanding their geometry.

It turns out that compact gradient steady solitons must be Ricci flat. In dimen-
sion n = 2, Hamilton [14] discovered the first example of a complete noncompact
gradient steady soliton on R2, called the cigar soliton, where the metric is given by

ds2 =
dx2 + dy2

1 + x2 + y2
.

The cigar soliton has positive curvature and is asymptotic to a cylinder of finite cir-
cumference at infinity. Furthermore, Hamilton [14] showed that the only complete
steady soliton on a two-dimensional manifold with bounded (scalar) curvature R
which assumes its maximum at an origin is, up to scaling, the cigar soliton. For
n ≥ 3, Bryant [2] proved that there exists, up to scaling, a unique complete ro-
tationally symmetric gradient Ricci soliton on Rn, see, e.g., Chow et al. [8] for
details. The Bryant soliton has positive sectional curvature, linear curvature decay
and volume growth on the order of r(n+1)/2. In the Kähler case, the first author
[3] constructed a complete gradient steady Kähler-Ricci soliton on C

m, for m ≥ 2,
with positive sectional curvature and U(m) symmetry.
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2378 HUAI-DONG CAO AND QIANG CHEN

A well-known conjecture is that, in dimension n = 3, the Bryant soliton is the
only complete noncompact (κ-noncollapsed) gradient steady soliton with positive
sectional curvature.1 We remark that S.-C. Chu [9] and H. Guo [12] have studied the
geometry of 3-dimensional gradient steady solitons with positive sectional curvature
and the scalar curvature R attaining its maximum at some origin. For n ≥ 4, it is
also natural to ask if the Bryant soliton is the only complete noncompact, positively
curved, locally conformally flat gradient steady soliton. In this paper, we classify n-
dimensional (n ≥ 3) complete noncompact locally conformally flat gradient steady
solitons and give an affirmative answer to the latter question. Our main results:

Theorem 1.1. Let (Mn, gij , F ), n ≥ 3, be an n-dimensional complete noncompact
locally conformally flat gradient steady Ricci soliton with positive sectional curva-
ture. Then, (Mn, gij , F ) is isometric to the Bryant soliton.

Theorem 1.2. Let (Mn, gij , F ), n ≥ 3, be an n-dimensional complete noncompact
locally conformally flat gradient steady Ricci soliton. Then, (Mn, gij , F ) is either
flat or isometric to the Bryant soliton.

Our work was motivated in part by the works of physicists Israel [16] and Robin-
son [21] concerning the uniqueness of the Schwarzschild black hole among all static,
asymptotically flat vacuum space-times. In their setting, the Einstein field equa-
tions take the form

(1.2) Rij + V −1∇i∇jV = 0

and
ΔV = 0

for a certain positive potential function V on a three-dimensional space-like hyper-
surface (N3, gij). They proved that such (N3, gij , V ) must be rotationally symmet-
ric without assuming locally conformal flatness. In fact, they were able to prove
that such (N3, gij , V ) is locally conformally flat. However, it remains a challenge
to do the same for 3-dimensional gradient steady Ricci solitons.

2. Preliminaries

In this section, we recall some basic facts and collect several known results about
gradient steady solitons.

Let (Mn, gij , F ) be a gradient steady Ricci soliton so that the Ricci tensor Rij

of the metric gij is given by the Hessian of the potential function F :

Rij = ∇i∇jF.

Taking the covariant derivatives and using the commutating formula for covariant
derivatives, we obtain

(2.1) ∇iRjk −∇jRik = Rijkl∇lF.

Taking the trace on j and k, and using the contracted second Bianchi identity

∇jRij =
1

2
∇iR,

we get
∇iR = −2Rij∇jF.

1Perelman ([20], 11.9) claimed that the conjecture is true but didn’t give any detail, or sketch,
of a proof.
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LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2379

Thus

∇i(R+ |∇F |2) = −2(Rij −∇i∇jF )∇F = 0.

Hence we have

Lemma 2.1 (Hamilton [15]). Let (Mn, gij , F ) be a complete gradient steady soliton
satisfying (1.1). Then we have

(2.2) ∇iR = −2Rij∇jF

and

(2.3) R+ |∇F |2 = C0

for some constant C0. Here R denotes the scalar curvature.

Taking the trace in (1.1), we get

(2.4) R = ΔF.

Combining (2.4) with (2.3), we have

(2.5) ΔF + |∇F |2 = C0.

If M is compact, then it follows that

0 =

∫
M

Δ(eF ) =

∫
M

(ΔF + |∇F |2)eF = C0

∫
M

eF .

Thus C0 = 0. Now integrating (2.5), with C0 = 0, over M yields∫
M

|∇F |2 = 0,

implying that F is a constant. Therefore, we get

Proposition 2.1 (cf. Hamilton [15], Ivey [17]). On a compact manifold Mn, a
gradient steady Ricci soliton is necessarily a Ricci flat Einstein metric.

Complete noncompact steady solitons do exist and here are some basic examples:

Example 2.1 (The cigar soliton). In dimension two, Hamilton [14] discovered
the first example of a complete noncompact steady soliton on R2, called the cigar
soliton, where the metric is given by

ds2 =
dx2 + dy2

1 + x2 + y2

with potential function

F = log(1 + x2 + y2).

The (scalar) curvature of the cigar soliton is given by

R =
1

1 + x2 + y2
.

Hence it is positive, attains its maximum at the origin, and decays to zero expo-
nentially fast (in terms of the geodesic distance) at space infinity. Furthermore,
the cigar soliton has linear volume growth and is asymptotic to a cylinder of finite
circumference at ∞.
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2380 HUAI-DONG CAO AND QIANG CHEN

Example 2.2 (The Bryant soliton). In the Riemannian case, higher-dimensional
examples of noncompact gradient steady solitons were found by Robert Bryant
[2] on R

n (n ≥ 3). They are rotationally symmetric and have positive sectional
curvature. Furthermore, the geodesic sphere Sn−1 of radius s has a diameter of
the order

√
s. Thus the volume of the geodesic balls Br(0) grows according to the

order of r(n+1)/2.

Example 2.3 (Noncompact gradient steady Kähler solitons). In the Kähler
case, the first author [3] found two examples of complete rotationally symmetric
noncompact gradient steady Kähler-Ricci solitons

(a) On Cn (for n = 1 it is just the cigar soliton). These examples are U(n)
invariant and have positive sectional curvature. It is interesting to point out that the
geodesic sphere S2n−1 of radius s is an S1-bundle over CPn−1 where the diameter
of S1 is of the order 1, while the diameter of CPn−1 is of the order

√
s. Thus the

volume of the geodesic balls Br(0) grows according to the order of rn, n being the
complex dimension. Also, the curvature R(x) decays like 1/r.

(b) On the blowup of Cn/Zn at the origin. This is the same space on which
Eguchi-Hansen (n = 2) and Calabi (n ≥ 2) constructed examples of hyper-Kähler
metrics. For n = 2, the underlying space is the canonical line bundle over CP1.

Now a Ricci flat metric is clearly a stationary solution of Hamilton’s Ricci flow

∂gij(t)

∂t
= −2Rij(t).

This happens, for example, on a flat torus or on any K3-surface with a Calabi-Yau
metric.

On the other hand, suppose that we have a complete steady Ricci soliton gij on
a smooth manifold Mn with potential function F . As observed by Z.-H. Zhang [22],
the gradient vector field V = ∇F is a complete vector field on M . Let ϕt denote the
one-parameter group of diffeomorphisms of Mn generated by −V . Then it easily
follows that

g̃ij(t) = ϕ∗
t gij

is a solution to the Ricci flow for −∞ < t < ∞, with g̃ij(0) = gij .
Next we present a useful result, which was implicitly proved by B.-L. Chen [7].

For the reader’s convenience, we include a proof here (see also Proposition 5.5 in
[4]).

Proposition 2.2. Let gij(t) be a complete ancient solution to the Ricci flow on a
noncompact manifold Mn. Then the scalar curvature R of gij(t) is nonnegative for
all t.

Proof. Suppose gij(t) is defined for −∞ < t ≤ T for some T > 0. We divide the
argument into two steps:

Step 1. Consider any complete solution gij(t) defined on [0, T ]. For any fixed point
x0 ∈ M , pick r0 > 0 sufficiently small so that

|Rc|(·, t) ≤ (n− 1)r−2
0 on Bt(x0, r0)

for all t ∈ [0, T ]. Then for any positive number A > 2, pick KA > 0 such that
R ≥ −KA on B0(x0, Ar0) at t = 0. We claim that there exists a universal constant
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LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2381

C > 0 (depending on the dimension n) such that

(2.6) R(·, t) ≥ min{− n

t+ 1
KA

,− C

Ar20
} on Bt(x0,

3A

4
r0)

for each t ∈ [0, T ].

Indeed, take a smooth nonnegative decreasing function φ on R such that φ = 1
on (−∞, 7/8], and φ = 0 on [1,∞). Consider the function

u(x, t) = φ(
dt(x0, x)

Ar0
)R(x, t),

where dt(x0, x) is the distance function from x0 to x at time t. Then we have

(
∂

∂t
−Δ)u =

φ′R

Ar0
(
∂

∂t
−Δ)dt(x0, x)−

φ′′R

(Ar0)2
+ 2φ|Rc|2 − 2∇φ · ∇R

at smooth points of dt(x0, ·).
Let umin(t) = minM u(·, t). Whenever umin(t0) ≤ 0, assume umin(t0) is achieved

at some point x̄ ∈ Bt0(x0, r0); then φ′R(x̄, t0) ≥ 0. On the other hand, by Lemma
8.3(a) of Perelman [20] (see also Lemma 3.4.1 (i) of [5]), we know that

(
∂

∂t
−Δ)dt(x0, x) ≥ −5(n− 1)

3r0

outside Bt(x0, r0). Following (Section 3, Hamilton [13]), we define

d

dt

∣∣∣∣
t=t0

umin = lim inf
h→0+

umin(t0 + h)− umin(t0)

h
,

the lim inf of all forward difference quotients. Then

d

dt

∣∣∣∣
t=t0

umin ≥ −5(n− 1)

3Ar20
φ′R+

2

n
φR2 +

1

(Ar0)2
(
2φ′2

φ
− φ′′)R.

Hence,
d

dt

∣∣∣∣
t=t0

umin ≥ 1

n
u2
min(t0)−

C2

(Ar20)
2

provided umin(t0) ≤ 0. Now integrating the above inequality, we get

umin(t) ≥ min{− n

t+ 1
KA

,− C

Ar20
} on Bt(x0,

3A

4
r0),

and the inequality (2.6) in our claim follows.

Step 2. Now if our solution gij(t) is ancient, we can replace t by t− α in (2.6) and
get

R(·, t) ≥ min{− n

t− α+ 1
KA

,− C

Ar20
} on Bt(x0,

3A

4
r0).

Letting A → ∞ and then α → −∞, we see that R(·, t) ≥ 0 for all t. This completes
the proof of Proposition 2.2. �

As an immediate corollary, we have

Lemma 2.2. Let (Mn, gij , F ) be a complete gradient steady soliton. Then it has
nonnegative scalar curvature R ≥ 0.
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2382 HUAI-DONG CAO AND QIANG CHEN

We remark that Munteanu-Sesum [19] recently proved a Liouville-type theorem
for gradient steady solitons; namely, a gradient steady soliton does not admit any
nontrivial harmonic function with finite Dirichlet energy. As a consequence, a
gradient steady soliton has at most one nonparabolic end.

For steady solitons with nonnegative Ricci curvature, we have the following.

Lemma 2.3 (Hamilton [15]). Let (Mn, gij , F ) be a complete gradient steady soliton
with nonnegative Ricci curvature Rc ≥ 0 and assume the scalar curvature R attains
its maximum at some point x0. Then the potential function F is weakly convex and
attains its minimum at x0.

Moreover, if the Ricci curvature of (Mn, gij , F ) is assumed to be positive, then
Lemma 2.3 can be strengthened to the following.2

Proposition 2.3. Let (Mn, gij , F ) be a complete noncompact gradient steady soli-
ton with positive Ricci curvature Rc > 0. Assume the scalar curvature R attains
its maximum at some origin x0. Then, there exist some constants 0 < c1 ≤

√
C0

and c2 > 0 such that the potential function F satisfies the estimates

(2.7) c1r(x)− c2 ≤ F (x) ≤
√
C0r(x) + |F (x0)|,

where r(x) = d(x0, x) is the distance function from x0, and C0 = Rmax is the
constant in (2.2). In particular, F is a strictly convex exhaustion function achiev-
ing its minimum at the only critical point x0, and the underlying manifold Mn is
diffeomorphic to Rn.

Proof. It is clear that the upper estimate in (2.7) in fact holds for complete gradient
steady solitons in general, because |∇F |2 ≤ C0 by (2.3) and Lemma 2.2.

To prove the lower estimate, we consider any minimizing normal geodesic γ(s),
0 ≤ s ≤ s0 for large s0 > 0, starting from the origin x0 = γ(0). Denote by

X(s) = γ̇(s) the unit tangent vector along γ, and Ḟ = ∇XF (γ(s)). By (1.1), we
have

(2.8) ∇X Ḟ = ∇X∇XF = Rc(X,X).

Integrating (2.8) along γ and noting that x0 is the (unique) minimum point of F ,
we get, for s ≥ 1,

Ḟ (γ(s)) =

∫ s

0

Rc(X,X)ds ≥
∫ 1

0

Rc(X,X)ds ≥ c1,

where c1 > 0 is the least eigenvalue of Rc on the unit geodesic ball Bx0
(1). Thus,

F (γ(s0)) =

∫ s0

1

Ḟ (γ(s))ds+ F (γ(1)) ≥ c1s0 − c1 + F (γ(1)). �

Now we turn our attention to locally conformally flat steady Ricci solitons. For
any Riemannian manifold (Mn, g), let

Wijkl = Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)

2See also Remark 5.5 in [4], as well as Lemma 3.2 in [9] .
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LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2383

be the Weyl tensor, and denote by

(2.9) Cijk = ∇kRij −∇jRik − 1

2(n− 1)
(gij∇kR− gik∇jR)

the Cotton tensor. It is well known that, for n = 3, Wijkl vanishes identically while
Cijk = 0 if and only if (M3, gij) is locally conformally flat; for n ≥ 4, Wijkl = 0 if
and only if (Mn, gij) is locally conformally flat. Moreover, for n ≥ 4, the vanishing
of the Weyl tensor Wijkl implies the vanishing of the Cotton tensor Cijk, while
Cijk = 0 corresponds to the Weyl tensor being harmonic.

In proving Theorem 1.2, we need the following important facts due to B.-L. Chen
[7] (for n = 3) and Z.-H. Zhang [23] (for n ≥ 4):

Proposition 2.4. Let (Mn, gij , F ) be a complete gradient steady Ricci soliton.
Then (Mn, gij , F ) has nonnegative curvature operator Rm ≥ 0, provided either

(a) n = 3, or
(b) n ≥ 4 and (Mn, gij , F ) is locally conformally flat.

Remark 2.1. Part (a) is a special case of a more general result due to B.-L. Chen
[7] for 3-dimensional complete ancient solutions. Part (b) was essentially proved
by Z.-H. Zhang [23]. In fact, the same arguments in [23] imply that a complete
ancient solution gij(t) to the Ricci flow with vanishing Weyl tensor for each time t
is necessarily of nonnegative curvature operator.

Combining Proposition 2.4 with (2.3) in Lemma 2.1, we have

Proposition 2.5. Let (Mn, gij , F ) be a complete gradient steady soliton such
that either n = 3, or n ≥ 4 and (Mn, gij , F ) is locally conformally flat. Then
(Mn, gij , F ) has bounded and nonnegative curvature operator 0 ≤ Rm ≤ C.

3. The proofs of Theorem 1.1 and Theorem 1.2

Throughout this section, we assume that (Mn, gij , F ) (n ≥ 3) is a complete
noncompact locally conformally flat gradient steady soliton. We are going to prove
Theorem 1.1, which is the same as Proposition 3.1 below, and Theorem 1.2.

Proposition 3.1. If (Mn, gij , F ), n ≥ 3, is an n-dimensional complete noncompact
locally conformally flat gradient steady soliton with positive sectional curvature,
then (Mn, gij , F ) is a rotationally symmetric gradient steady soliton on Rn, hence
isometric to the Bryant soliton.

Proof. First of all, since the sectional curvature of (Mn, gij , F ) is positive we know
that Mn is diffeomorphic to Rn by Gromoll-Meyer [11] (or by Proposition 2.3 if
R attains its maximum at some origin x0). Moreover, since the Ricci curvature
is positive, the potential function F is strictly convex, thus having at most one
critical point. Secondly, if we denote by G = |∇F |2, then in any neighborhood,
where G 	= 0, of the equipotential hypersurface

Σc =: {x ∈ M : F (x) = c}

of a regular value c of F , we can express the metric ds2 = gij(x)dx
idxj as

(3.1) ds2 =
1

G(F, θ)
dF 2 + gab(F, θ)dθ

adθb,
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2384 HUAI-DONG CAO AND QIANG CHEN

where θ = (θ2, · · · , θn) denotes intrinsic coordinates for Σc. It is clear that the
key step in proving Proposition 3.1 is to show that in (3.1) we have G = G(F ),
gab = gab(F ), and that (Σc, gab) is a space form of positive curvature.

Note that an n-dimensional rotationally symmetric metric is of the form

ds2 = ψ2(t)dt2 + ϕ2(t)ḡ,

where ḡ is the standard metric on the unit sphere Sn−1, and the Ricci tensor of
such a metric is given by

Rc = (n− 1)(−ϕtt

ϕ
+

ϕtψt

ϕψ
)dt2 − (

ϕϕtt

ψ2
+

(n− 2)ϕ2
t

ψ2
− ϕϕtψt

ψ3
+ 2− n)ḡ.

In particular, it has at most two distinct eigenvalues depending only on t.
We shall first derive a useful formula for the norm square of the Cotton tensor for

steady solitons with vanishing Weyl tensor. This formula plays an important role
in our derivation of the desired property of the Ricci tensor for the steady soliton
metric. Moreover, as Wijkl = 0 always when n = 3, this formula is of particular
interest in the three-dimensional case.

Lemma 3.1. For any n-dimensional gradient steady soliton (n ≥ 3) with vanishing
Weyl tensor Wijkl = 0, we have

(3.2) |Cijk|2 =
1

(n− 2)2
(|Rik∇jF −Rij∇kF |2 − 2

(n− 1)
|R∇F − 1

2
∇G|2).

Here Cijk is the Cotton tensor defined by (2.9).

Proof. Notice that, by (1.1) and Lemma 2.1, we have

(3.3) ∇G = 2Rc(∇F, ·) = −∇R.

Using (2.1), (3.3), and the assumption Wijkl = 0, we can express

Cijk = ∇kRij −∇jRik − 1

2(n− 1)
(gij∇kR − gik∇jR)

= Rkjil∇lF +
1

2(n− 1)
(gij∇kG− gik∇jG)

=
1

n− 2
(Rik∇jF −Rij∇kF ) +

1

2(n− 1)(n− 2)
(gik∇jG− gij∇kG)

− R

(n− 1)(n− 2)
(gik∇jF − gij∇kF ).

Hence, by direct computations, we have

|Cijk|2 =
1

(n− 2)2
|Rik∇jF −Rij∇kF |2 + 1

2(n− 1)(n− 2)2
|∇G|2

+
2R2

(n− 1)(n− 2)2
|∇F |2 + 2

(n− 1)(n− 2)2
[R∇G · ∇F −Rc(∇F,∇G)]

− 4R

(n− 1)(n− 2)2
[R|∇F |2 −Rc(∇F,∇F )]− 2R

(n− 1)(n− 2)2
∇G · ∇F.

On the other hand, by (3.3),

Rc(∇F,∇G) =
1

2
|∇G|2
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and

Rc(∇F,∇F ) =
1

2
∇G · ∇F.

Thus,

|Cijk|2 =
1

(n− 2)2
|Rik∇jF −Rij∇kF |2

− 1

2(n− 1)(n− 2)2
(|∇G|2 − 4R∇G · ∇F + 4R2|∇F |2)

=
1

(n− 2)2
(|Rik∇jF −Rij∇kF |2 − 2

(n− 1)
|R∇F − 1

2
∇G|2). �

Next, using Lemma 3.1, we show that the Ricci tensor of our (Mn, gij , F ) has, at
least pointwisely, the desired property that it has at most two distinct eigenvalues.

Lemma 3.2. At any point p ∈ Σc, the Ricci tensor of (Mn, gij , F ) either has a
unique eigenvalue λ, or has two distinct eigenvalues λ and μ of multiplicity 1 and
n− 1 respectively. In either case, e1 = ∇F/|∇F | is an eigenvector with eigenvalue
λ. In other words, for any orthonormal basis e2, · · · , en tangent to the level surface
Σc at p, the Ricci tensor has the following properties:

(i) Rc(e1, e1) = R11,
(ii) Rc(e1, eb) = R1b = 0, b = 2, · · · , n,
(iii) Rc(ea, eb) = Raaδab, a, b = 2, · · · , n,

where either R11 = · · · = Rnn = λ or R11 = λ and R22 = · · · = Rnn = μ.

Proof. For any regular value c of F , pick an orthonormal basis {E1, · · · , En} of the
tangent space TpM at p ∈ Σc = {x ∈ M : F (x) = c} so that Rc(Ei, Ej) = λiδij .
Then, we have

|Rik∇jF −Rij∇kF |2 = 2

n∑
j=1

|∇jF |2
∑
i �=j

λ2
i

and

|R∇F − 1

2
∇G|2 =

n∑
j=1

|∇jF |2(
∑
i �=j

λi)
2.

Plugging the above two identities into (3.2) and noticing that Cijk = 0 by assump-
tion, it follows that

(3.4)

n∑
j=1

|∇jF |2(
∑

i �=j,k �=j

(λi − λk)
2) = 0.

Since c is a regular value of F and p ∈ Σc, ∇F (p) 	= 0. On the other hand, from
(3.4) it is easy to see that if ∇F (p) has two or more nonzero components with
respect to {Ei}ni=1, then λ1 = · · · = λn, so the Ricci tensor has a unique eigenvalue.
Otherwise, taking ∇1F 	= 0 and ∇iF = 0 for i = 2, · · · , n, then ∇F = |∇F |E1,
with E1 = ∇F/|∇F |, is an eigenvector of Rc, and λ2 = · · · = λn. In either
case, we conclude that ∇F is an eigenvector, and the Ricci tensor has the desired
properties. �

Remark 3.1. Fernández-López and Garćıa-Rı́o [10] showed, by a different argument,
that for shrinking solitons with harmonic Weyl tensor, the gradient of any potential
function is an eigenvector of the Ricci tensor.
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Finally we show that the eigenvalues of the Ricci tensor and the scalar curvature
R are constant on level surfaces Σc = {F = c}.

Lemma 3.3. Let c be a regular value of F and Σc = {F = c}. Then:
(a) The function G = |∇F |2 is constant on Σc; i.e. G is a function of F only.
(b) The scalar curvature R of (Mn, gij , F ) is constant on Σc.

(c) The second fundamental form hab of Σc is of the form hab =
H

n−1gab.

(d) The mean curvature H is constant on Σc.
(e) Σc, with the induced metric gab, is of constant sectional curvature.

Proof. Let {e1, e2, · · · , en} be an orthonormal frame with e1 = ∇F/|∇F | and
e2, · · · , en tangent to Σc.

First of all, by (3.3) and Lemma 3.1 (ii),

∇aG = 2Rc(∇F, ea) = 0, a = 2, · · · , n.
Hence G is constant on Σc, and so is R by (2.3). This proves (a) and (b).

Next, since Rab = Raagab and R22 = · · · = Rnn by Lemma 3.1, we have

hab = G−1/2Rab =
H

n− 1
gab, a, b = 2, · · · , n,

where

H = G−1/2(R−R11).

Moreover, the Codazzi equation says that, for a, b, c = 2, · · · , n,
R1cab = ∇Σc

a hbc −∇Σc

b hac.

Tracing over b and c, we obtain

0 = R1a = ∇Σc
a H −∇Σc

b hab = (1− 1

n− 1
)eaH,

proving (c) and (d).
Finally, by the Gauss equation, the sectional curvatures of (Σc, gab) are given by

(3.5) RΣc

abab = Rabab + haahbb − h2
ab = Rabab +

H2

(n− 1)2
.

On the other hand, since Wijkl = 0,

Rabab =
2

n− 2
Raa −

R

(n− 1)(n− 2)

=
2G1/2H −R

(n− 1)(n− 2)
.

But we already showed that G,H,R are constant on Σc. Therefore (Σc, gab) has
constant sectional curvature

Kc =
2G1/2H −R

(n− 1)(n− 2)
+

H2

(n− 1)2
,

proving (e). �

With Lemma 3.3 in our hands, we now conclude the proof of Proposition 3.1.
Recall that in any neighborhood, where G 	= 0, of the equipotential hypersurface

Σc =: {x ∈ M : F (x) = c}
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of a regular value c of F , we can express the metric ds2 = gij(x)dx
idxj as

ds2 = G−1(F, θ)dF 2 + gab(F, θ)dθ
adθb,

where θ = (θ2, · · · , θn) denotes the intrinsic coordinates for Σc. Then Lemma 3.3
tells us that G = G(F ), gab = gab(F ), and that (Σc, gab) is a space form, with
positive curvature (this follows from (3.5) and the assumption that (Mn, gij , F )
has positive sectional curvature). Also, F has exactly one minimum at some origin
x0; otherwise (M

n, gij , F ) would split out a flat factor, which is impossible. Hence,
on M \ {x0} we have

(3.6) ds2 = G−1(F )dF 2 + ϕ2(F )ḡ,

where ḡ denotes the standard metric on the unit sphere Sn−1, and φ is some smooth
function on Mn depending only on F and vanishing only at x0. Thus, (M

n, gij , F )
is a rotationally symmetric gradient steady soliton on Rn. Therefore, it is the
Bryant soliton. �

Proof of Theorem 1.2. Now, by assumption, (Mn, gij , F ) is a complete noncompact
locally conformally flat gradient steady soliton. By Proposition 2.5, we know that
(Mn, gij , F ) has bounded and nonnegative curvature operator 0 ≤ Rm ≤ C. From
Hamilton’s strong maximum principle (see [13] and [15]), (Mn, gij , F ) is either of
positive curvature operator, or its holonomy group reduces.

If (Mn, gij , F ) has positive curvature operator Rm > 0, then by Proposition
3.1/Theorem 1.1, (Mn, gij , F ) must be the Bryant soliton.

On the other hand, if (Mn, gij , F ) has reduced holonomy, then (Mn, gij , F ) is
either a Riemannian product, or a locally symmetric space, or irreducible but not
locally symmetric.

• Case (a): (Mn, gij , F ) is a Riemannian product.
It is known (cf. p.61 in [1]) that the only conformally flat Riemannian products

are either the product of a space form Nn−1 with S1 or R1, or the product of two
Riemannian manifolds, one with constant sectional curvature −1 and the other
with constant sectional curvature 1. However, since our (Mn, gij) is a steady Ricci
soliton with nonnegative sectional curvature, this implies that the latter case cannot
occur and that in the former case Nn−1 must be flat. Hence (Mn, gij , F ) is flat in
case (a).

• Case (b): (Mn, gij , F ) is a locally symmetric space.
In case (b), (Mn, gij , F ) is necessarily Einstein. However, (Mn, gij , F ) is non-

compact and of nonnegative sectional curvature. Therefore it follows that it must
be Ricci flat and hence flat.

• Case (c): (Mn, gij , F ) is irreducible and not locally symmetric.
In this case the flatness of (Mn, gij , F ) follows from the holonomy classification

theorem of Berger and Simons (cf. [1]), the fact that

(3.7) |Wijkl|2 ≥ 3(m− 1)

m(m+ 1)(2m− 1)
R2

for Kähler manifolds of complex dimension m > 1 (cf. Proposition 2.68 in [1]), and
that our (Mn, gij , F ) is noncompact, conformally flat and of nonnegative sectional
curvature.

Thus we have shown that in all of the above three cases, (Mn, gij , F ) are flat.
This completes the proof of Theorem 1.2. �
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Remark 3.2. Shortly after our work appeared on the arXiv, Catino and Mantegazza
[6] obtained a similar result to our Theorem 1.1 for dimension n ≥ 4 by studying
the evolution of the Weyl tensor under the Ricci flow. However, as pointed out in
[6], their argument does not work for n = 3.

4. Further remarks

In this section, we point out that several lemmas in the proof of Theorem 1.1 for
gradient steady Ricci solitons also hold for gradient shrinking and expanding Ricci
solitons satisfying

(4.1) Rij = ∇i∇jF + ρgij ,

with ρ = 1/2 for shrinkers and ρ = −1/2 for expanders, respectively. In particular,
our method, when combined with a result of Kotschwar [18], yields another proof of
the classification theorem for n-dimensional (n ≥ 4) complete locally conformally
flat shrinking gradient solitons (see Proposition 4.1).

Remark 4.1. A similar version of Lemma 3.1 is valid for locally conformally flat
gradient shrinkers and expanders.

First of all, similar arguments to those in Lemma 2.1 imply that

∇iR = −2Rij∇jF

and

R + |∇F |2 + 2ρF = C0

for some constant C0. Hence, by defining

Gρ =: G+ 2ρF = |∇F |2 + 2ρF,

we have

R+Gρ = C0

and

(4.2) ∇Gρ = −∇R = 2Rc(∇F, ·).
Therefore, by replacing G = |∇F |2 by Gρ = G+2ρF and carrying out the same

arguments as in the proof of Lemma 3.1, we obtain

Lemma 4.1. For any n-dimensional gradient shrinking or expanding soliton (n ≥
3) with vanishing Weyl tensor Wijkl = 0, the Cotton tensor Cijk has the property
that

(4.3) |Cijk|2 =
1

(n− 2)2
(|Rik∇jF −Rij∇kF |2 − 2

(n− 1)
|R∇F − 1

2
∇Gρ|2).

Consequently, Lemma 3.2 and Lemma 3.3 hold for locally conformally flat gra-
dient shrinkers and expanders as well.

Lemma 4.2. Let (Mn, gij , F ) be any n-dimensional, n ≥ 3, complete locally con-
formally flat gradient shrinking or expanding Ricci soliton satisfying (4.1). Then,
at any regular point p ∈ Σc, the Ricci tensor of (Mn, gij , F ) either has a unique
eigenvalue λ or has two distinct eigenvalues λ and μ of multiplicity 1 and n − 1,
respectively. In either case, e1 = ∇F/|∇F | is an eigenvector with eigenvalue λ. In
other words, for any orthonormal basis e2, · · · , en tangent to the level surface Σc at
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p, the Ricci tensor has the following properties:
(i) Rc(e1, e1) = R11,
(ii) Rc(e1, eb) = R1b = 0, b = 2, · · · , n,
(iii) Rc(ea, eb) = Raaδab, a, b = 2, · · · , n,

where either R11 = · · · = Rnn = λ or R11 = λ and R22 = · · · = Rnn = μ.

Lemma 4.3. Let (Mn, gij , F ) be any n-dimensional, n ≥ 3, complete locally con-
formally flat gradient shrinking or expanding Ricci soliton satisfying (4.1), and let
c be a regular value of F and Σc = {F = c}. Then:

(a) The function G = |∇F |2 is constant on Σc; i.e., G is a function of F only.
(b) R, the scalar curvature of (Mn, gij , F ), is constant on Σc.

(c) The second fundamental form hab of Σc is of the form hab =
H

n−1gab.

(d) The mean curvature H is constant on Σc.
(e) (Σc, gab) is of constant sectional curvature Kc,ρ.

Note that for shrinking solitons, we have Kc,1/2 ≥ 0, according to [23].

Remark 4.2. There is another formula for |Cijk|2 which is valid for all n-dimensional
(n ≥ 3) complete gradient shrinking, steady, and expanding Ricci solitons with
vanishing Weyl tensor. This new formula relates |Cijk|2 more explicitly to the
geometry of the level surfaces of F and immediately implies Lemma 3.2/4.2 and
Lemma 3.3/4.3 (a)-(d).

Lemma 4.4. For any n-dimensional gradient shrinking, or steady, or expanding
soliton (Mn, gij , F ) (n ≥ 3) with vanishing Weyl tensor Wijkl = 0, we have

(4.4) |Cijk|2 =
2G2

(n− 2)2
|hab −

H

n− 1
gab|2 +

1

2(n− 1)(n− 2)
|∇aG|2,

where hab and H are, as in Lemma 3.3, the second fundamental form and the mean
curvature for the level surface Σc = {F = c} at any regular value c of F .

Proof. Denote again

G = |∇F |2 and Gρ = G+ 2ρF

so that G0 = G. Let c be any regular value of the potential function F and consider
the corresponding equipotential hypersurface

Σc =: {x ∈ M : F (x) = c}.
Let {e1, e2, · · · , en} be any orthonormal frame, with e1 = ∇F/|∇F | = ∇F/

√
G

and e2, · · · , en tangent to Σc. Then the second fundamental form hab and the
mean curvature H are given respectively by

hab =〈∇ae1, eb〉 = 〈∇a
∇F√
G
, eb〉

=
1√
G
Rab, a, b = 2, · · · , n

and

H =
1√
G
(R−R11).

By (4.2),

R11 =
1

G
Rc(∇F,∇F ) =

1

2G
∇F · ∇Gρ
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and

R1a =
1√
G
Rc(∇F , ea) =

1

2
√
G
∇aGρ.

Moreover,

|∇Σc
Gρ|2 =

n∑
a=2

|∇aGρ|2

=|∇Gρ|2 −
1

G
|∇Gρ · ∇F |2.

Thus, by direct computations, we obtain

|hab −
H

n− 1
gab|2 = |hab|2 −

H2

n− 1

=
1

G
(|Rc|2 − 2

n∑
a=2

R2
1a −R2

11)−
(R−R11)

(n− 1)G

2

=
1

G
|Rc|2 + R

(n− 1)G2
∇F · ∇Gρ −

1

2G2
|∇Gρ|2

+
n− 2

4(n− 1)G3
|∇F · ∇Gρ|2 −

R2

(n− 1)G
.

Now noticing that, by Lemma 4.1, we also have

|Cijk|2 =
2G

(n− 2)2
|Rc|2 − 1

2(n− 2)2
|∇Gρ|2

− 1

2(n− 1)(n− 2)2
(|∇Gρ|2 − 4R∇Gρ · ∇F + 4R2G),

one can therefore verify directly that

2G2

(n− 2)2
|hab −

H

n− 1
gab|2 = |Cijk|2 −

1

2(n− 1)(n− 2)
|∇Σc

Gρ|2.

This completes the proof of Lemma 4.4. �

Remark 4.3. Based on Lemma 4.3 for shrinkers, it is not hard to see that the
universal cover (M̃n, g̃ij , F̃ ) of a complete locally conformally flat gradient shrinking

Ricci soliton is a rotationally symmetric gradient shrinking Ricci soliton and M̃n is
diffeomorphic to either Rn, or Sn, or Sn−1 × R. Combining this with the result of
Kotschwar [18], one obtains another proof of the following classification theorem for
n-dimensional (n ≥ 4) complete locally conformally flat shrinking gradient solitons
(which is first due to the combined works of Z.-H. Zhang and Ni-Wallach, and also
the combination of more recent work of Munteanu-Sesum and the earlier works of
either Petersen-Wylie, or X. Cao, B. Wang and Z. Zhang).

Proposition 4.1. Any n-dimensional, n ≥ 4, complete locally conformally flat
gradient shrinking Ricci soliton is a finite quotient of Rn, or Sn, or Sn−1 × R.
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