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ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY
RICCI SOLITONS

HUAI-DONG CAO AND QIANG CHEN

ABSTRACT. In this paper, we classify n-dimensional (n > 3) complete non-
compact locally conformally flat gradient steady solitons. In particular, we
prove that a complete noncompact nonflat locally conformally flat gradient
steady Ricci soliton is, up to scaling, the Bryant soliton.

1. THE RESULTS

A complete Riemannian metric g;; on a smooth manifold M™ is called a gradient
steady Ricci soliton if there exists a smooth function F' on M™ such that the Ricci
tensor R;; of the metric g;; is given by the Hessian of F:

(1.1) Rij = V;V,F.

The function F' is called a potential function of the gradient steady soliton. Clearly,
when F' is a constant the gradient steady Ricci soliton is simply a Ricci flat manifold.
Thus Ricci solitons are natural extensions of Einstein metrics. Gradient steady
solitons play an important role in Hamilton’s Ricci flow as they correspond to
translating solutions, and often arise as Type II singularity models. Thus one is
interested in classifying them and understanding their geometry.

It turns out that compact gradient steady solitons must be Ricci flat. In dimen-
sion n = 2, Hamilton [I4] discovered the first example of a complete noncompact
gradient steady soliton on R?, called the cigar soliton, where the metric is given by

ds? = M

1 + 1'2 + y2
The cigar soliton has positive curvature and is asymptotic to a cylinder of finite cir-
cumference at infinity. Furthermore, Hamilton [14] showed that the only complete
steady soliton on a two-dimensional manifold with bounded (scalar) curvature R
which assumes its maximum at an origin is, up to scaling, the cigar soliton. For
n > 3, Bryant [2] proved that there exists, up to scaling, a unique complete ro-
tationally symmetric gradient Ricci soliton on R™, see, e.g., Chow et al. [§] for
details. The Bryant soliton has positive sectional curvature, linear curvature decay
and volume growth on the order of 7("+1)/2 In the Kihler case, the first author
[3] constructed a complete gradient steady Kéhler-Ricci soliton on C™, for m > 2,
with positive sectional curvature and U(m) symmetry.
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2378 HUAI-DONG CAO AND QIANG CHEN

A well-known conjecture is that, in dimension n = 3, the Bryant soliton is the
only complete noncompact (k-noncollapsed) gradient steady soliton with positive
sectional curvature[] We remark that S.-C. Chu [9) and H. Guo [12] have studied the
geometry of 3-dimensional gradient steady solitons with positive sectional curvature
and the scalar curvature R attaining its maximum at some origin. For n > 4, it is
also natural to ask if the Bryant soliton is the only complete noncompact, positively
curved, locally conformally flat gradient steady soliton. In this paper, we classify n-
dimensional (n > 3) complete noncompact locally conformally flat gradient steady
solitons and give an affirmative answer to the latter question. Our main results:

Theorem 1.1. Let (M",g;;, F), n > 3, be an n-dimensional complete noncompact
locally conformally flat gradient steady Ricci soliton with positive sectional curva-
ture. Then, (M™, g;;, F) is isometric to the Bryant soliton.

Theorem 1.2. Let (M",g;;, F), n > 3, be an n-dimensional complete noncompact
locally conformally flat gradient steady Ricci soliton. Then, (M",g;;, F) is either
flat or isometric to the Bryant soliton.

Our work was motivated in part by the works of physicists Israel [16] and Robin-
son [21] concerning the uniqueness of the Schwarzschild black hole among all static,
asymptotically flat vacuum space-times. In their setting, the Einstein field equa-
tions take the form
(1.2) Rij+V~'V,V,;V =0
and

AV =0
for a certain positive potential function V on a three-dimensional space-like hyper-
surface (N3, gij)- They proved that such (N 3, gij, V) must be rotationally symmet-
ric without assuming locally conformal flatness. In fact, they were able to prove

that such (N3, g;;,V) is locally conformally flat. However, it remains a challenge
to do the same for 3-dimensional gradient steady Ricci solitons.

2. PRELIMINARIES

In this section, we recall some basic facts and collect several known results about
gradient steady solitons.

Let (M™, gi;, F') be a gradient steady Ricci soliton so that the Ricci tensor R;;
of the metric g;; is given by the Hessian of the potential function F":

Ri; = V,V,F.

Taking the covariant derivatives and using the commutating formula for covariant
derivatives, we obtain

(21) ViRjk — VjRik = RijlelF.

Taking the trace on j and k, and using the contracted second Bianchi identity
1

we get

ViR = —2R;;V,F.

IPerelman ([20], 11.9) claimed that the conjecture is true but didn’t give any detail, or sketch,
of a proof.

Licensed to Lehigh Univ. Prepared on Sun Mar 12 23:02:04 EDT 2017 for download from IP 128.180.0.162.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2379
Thus
Vi(R+|VF]*) = —2(R;; — V;V;F)VF = 0.
Hence we have

Lemma 2.1 (Hamilton [15]). Let (M™, gi;, F') be a complete gradient steady soliton
satisfying (1.1). Then we have

(2.2) ViR = —2R;;V,F
and
(2.3) R+ |VF*=Cy

for some constant Cy. Here R denotes the scalar curvature.

Taking the trace in (1.1), we get

(2.4) R=AF.
Combining (2.4) with (2.3), we have
(2.5) AF + |VF|? = Cy.

If M is compact, then it follows that
0= [ A= / (AF +|VF|?)ef =Cy [ eF.
M M M
Thus Cy = 0. Now integrating (2.5), with Cy = 0, over M yields

[ vre=o
M

implying that F' is a constant. Therefore, we get

Proposition 2.1 (c¢f. Hamilton [I5], Ivey [I7]). On a compact manifold M™, a
gradient steady Ricci soliton is necessarily a Ricci flat Finstein metric.

Complete noncompact steady solitons do exist and here are some basic examples:

Example 2.1 (The cigar soliton). In dimension two, Hamilton [I4] discovered
the first example of a complete noncompact steady soliton on R2, called the cigar
soliton, where the metric is given by
dz? + dy?
ds* = gty
L+a2 492
with potential function
F =log(1+ z* 4+ 4?).

The (scalar) curvature of the cigar soliton is given by

B 1

Sl a4y?
Hence it is positive, attains its maximum at the origin, and decays to zero expo-
nentially fast (in terms of the geodesic distance) at space infinity. Furthermore,

the cigar soliton has linear volume growth and is asymptotic to a cylinder of finite
circumference at oco.
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2380 HUAI-DONG CAO AND QIANG CHEN

Example 2.2 (The Bryant soliton). In the Riemannian case, higher-dimensional
examples of noncompact gradient steady solitons were found by Robert Bryant
[2] on R™ (n > 3). They are rotationally symmetric and have positive sectional
curvature. Furthermore, the geodesic sphere S”~! of radius s has a diameter of
the order y/s. Thus the volume of the geodesic balls B,.(0) grows according to the
order of r(»+1)/2,

Example 2.3 (Noncompact gradient steady Kéhler solitons). In the Kéhler
case, the first author [3] found two examples of complete rotationally symmetric
noncompact gradient steady Kéahler-Ricci solitons

(a) On C™ (for n = 1 it is just the cigar soliton). These examples are U(n)
invariant and have positive sectional curvature. It is interesting to point out that the
geodesic sphere S2"~1 of radius s is an S'-bundle over CP"~! where the diameter
of St is of the order 1, while the diameter of CP™"~! is of the order /s. Thus the
volume of the geodesic balls B,.(0) grows according to the order of 7™, n being the
complex dimension. Also, the curvature R(z) decays like 1/r.

(b) On the blowup of C"/Z,, at the origin. This is the same space on which
Eguchi-Hansen (n = 2) and Calabi (n > 2) constructed examples of hyper-Kéhler
metrics. For n = 2, the underlying space is the canonical line bundle over CP*.

Now a Ricci flat metric is clearly a stationary solution of Hamilton’s Ricci flow

9gi5(t)
=t = —2R;i(t).
8t J( )
This happens, for example, on a flat torus or on any K 3-surface with a Calabi-Yau

metric.

On the other hand, suppose that we have a complete steady Ricci soliton g;; on
a smooth manifold M™ with potential function F'. As observed by Z.-H. Zhang [22],
the gradient vector field V' = VF' is a complete vector field on M. Let ¢, denote the
one-parameter group of diffeomorphisms of M™ generated by —V. Then it easily
follows that

9ij (t) = ¢ 9ij
is a solution to the Ricci flow for —oco <t < oo, with §;;(0) = g;;.

Next we present a useful result, which was implicitly proved by B.-L. Chen [7].
For the reader’s convenience, we include a proof here (see also Proposition 5.5 in

).

Proposition 2.2. Let g;;(t) be a complete ancient solution to the Ricci flow on a
noncompact manifold M™. Then the scalar curvature R of g;;(t) is nonnegative for
all t.

Proof. Suppose g;;(t) is defined for —oo < ¢ < T for some T' > 0. We divide the
argument into two steps:

Step 1. Consider any complete solution g;;(t) defined on [0, T]. For any fixed point
xg € M, pick ro > 0 sufficiently small so that

|Re|(-,t) < (n —1)ry > on By(xg, o)

for all ¢t € [0,7]. Then for any positive number A > 2, pick K4 > 0 such that
R > —K 4 on By(zg, Arg) at t = 0. We claim that there exists a universal constant
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LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2381

C > 0 (depending on the dimension n) such that

. n o 3A
(2.6) R(-,t) > mm{—til, _A—rg} on By (zo, TTO)

Ka
for each ¢ € [0, T7.

Indeed, take a smooth nonnegative decreasing function ¢ on R such that ¢ =1
on (—o00,7/8], and ¢ =0 on [1,00). Consider the function

) = o M) R ),

where d; (9, x) is the distance function from z( to x at time ¢. Then we have
9 &R O &R ,
2 Au=22E Ay O 95|Re? — 2V - VR
(at )’LL ATO (at ) t(x07x) (ATO)Q + ¢| C| v¢ V
at smooth points of d;(z, -).

Let tmin(t) = minps u(-,t). Whenever umin (to) < 0, assume umin (to) is achieved
at some point T € By, (2o, 70); then ¢’ R(Z,to) > 0. On the other hand, by Lemma
8.3(a) of Perelman [20] (see also Lemma 3.4.1 (i) of [5]), we know that

0 5(n—1)

(@ = A)dy(z0,7) > —

outside By(zg,70). Following (Section 3, Hamilton [I3]), we define

3T0

d min — Umin
— Umin = lim inf Umin(fo + h) = u (to),
dt|,_y, h—0+ h
the liminf of all forward difference quotients. Then
d 5n—1),. 2 1 297,
— min > ————=—¢ R+ —¢pR" + —— — R.
dt t=t0u 3Ar2 SR+ n¢ + (A’I“O)Q( o )
Hence,
d 1 C?
- Umin = _U'12nin (to) T T A2\2
dt |y, n (Ard)?
provided umin(to) < 0. Now integrating the above inequality, we get
) n C 3A
umin(t) Z mln{—ﬁ,—A—r%} on Bt(IO;TTO)a

and the inequality (2.6) in our claim follows.

Step 2. Now if our solution g;;(¢) is ancient, we can replace t by t — « in (2.6) and

get
) n C 3A
R(jt) Zmln{—@,—A—T%} on Bt(.’I](),IT'O).
Letting A — oo and then a@ — —o0, we see that R(-,t) > 0 for all ¢. This completes
the proof of Proposition 2.2. O

As an immediate corollary, we have

Lemma 2.2. Let (M™,g;;,F) be a complete gradient steady soliton. Then it has
nonnegative scalar curvature R > 0.
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2382 HUAI-DONG CAO AND QIANG CHEN

We remark that Munteanu-Sesum [19] recently proved a Liouville-type theorem
for gradient steady solitons; namely, a gradient steady soliton does not admit any
nontrivial harmonic function with finite Dirichlet energy. As a consequence, a
gradient steady soliton has at most one nonparabolic end.

For steady solitons with nonnegative Ricci curvature, we have the following.

Lemma 2.3 (Hamilton [15]). Let (M™, gi;, F') be a complete gradient steady soliton
with nonnegative Ricci curvature Re > 0 and assume the scalar curvature R attains
its maximum at some point xo. Then the potential function F is weakly convex and
attains its minimum at xg.

Moreover, if the Ricci curvature of (M™, g;;, F') is assumed to be positive, then
Lemma 2.3 can be strengthened to the following

Proposition 2.3. Let (M™,g;;,F) be a complete noncompact gradient steady soli-
ton with positive Ricci curvature Re > 0. Assume the scalar curvature R attains
its mazimum at some origin xo. Then, there exist some constants 0 < ¢ < +/Co
and co > 0 such that the potential function F satisfies the estimates

(2.7) car(z) — ca < F(z) < /Cor(x) + |F(x0)],

where r(x) = d(xo,x) is the distance function from xg, and Co = Ryaqx 18 the
constant in (2.2). In particular, F is a strictly convex ezhaustion function achiev-
ing its minimum at the only critical point xg, and the underlying manifold M™ is
diffeomorphic to R™.

Proof. Tt is clear that the upper estimate in (2.7) in fact holds for complete gradient
steady solitons in general, because |VF|?> < Cj by (2.3) and Lemma 2.2.

To prove the lower estimate, we consider any minimizing normal geodesic 7(s),
0 < s < s for large sp > 0, starting from the origin g = 7(0). Denote by
X(s) = #(s) the unit tangent vector along v, and F' = VxF(v(s)). By (1.1), we
have

(2.8) VxF =VxVxF = Re(X, X).

Integrating (2.8) along v and noting that z is the (unique) minimum point of F,
we get, for s > 1,

F(y(s)) = /O Re(X, X)ds 2/0 Re(X, X)ds > ¢,

where ¢; > 0 is the least eigenvalue of Rc on the unit geodesic ball B, (1). Thus,

F(v(s0)) = /180 F(3(s))ds + F(v(1)) 2 e1so — e1 + F(y(1)). O

Now we turn our attention to locally conformally flat steady Ricci solitons. For
any Riemannian manifold (M™, g), let
1
Wikt = Rijri — m(gz’kle — guRjr — gjxRi + g1 Rix)
R

+ m(gikgjl — Gigik)

2See also Remark 5.5 in [4], as well as Lemma 3.2 in [9] .
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LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2383

be the Weyl tensor, and denote by

(2.9) Cijk = ViRij — VR, — (9:j ViR — gV, R)

1
2(n—1)
the Cotton tensor. It is well known that, for n = 3, Wjjx, vanishes identically while
Cijr = 0 if and only if (M3, g;;) is locally conformally flat; for n > 4, Wi = 0 if
and only if (M™, g;;) is locally conformally flat. Moreover, for n > 4, the vanishing
of the Weyl tensor Wj;i; implies the vanishing of the Cotton tensor Cjjj, while
Ciji. = 0 corresponds to the Weyl tensor being harmonic.

In proving Theorem 1.2, we need the following important facts due to B.-L.. Chen
[7 (for n = 3) and Z.-H. Zhang [23] (for n > 4):

Proposition 2.4. Let (M",g;;, F) be a complete gradient steady Ricci soliton.
Then (M™, g5, F) has nonnegative curvature operator Rm > 0, provided either
(a) n=3, or
(b) n >4 and (M™, g;;, F) is locally conformally flat.

Remark 2.1. Part (a) is a special case of a more general result due to B.-L. Chen
[7] for 3-dimensional complete ancient solutions. Part (b) was essentially proved
by Z.-H. Zhang [23]. In fact, the same arguments in [23] imply that a complete
ancient solution g;;(¢) to the Ricci flow with vanishing Weyl tensor for each time ¢
is necessarily of nonnegative curvature operator.

Combining Proposition 2.4 with (2.3) in Lemma 2.1, we have

Proposition 2.5. Let (M™,g;;,F) be a complete gradient steady soliton such
that either n = 3, or n > 4 and (M",g;;, F) is locally conformally flat. Then
(M™, g;5, F) has bounded and nonnegative curvature operator 0 < Rm < C.

3. THE PROOFS OF THEOREM 1.1 AND THEOREM 1.2

Throughout this section, we assume that (M™,g;;, F) (n > 3) is a complete
noncompact locally conformally flat gradient steady soliton. We are going to prove
Theorem 1.1, which is the same as Proposition 3.1 below, and Theorem 1.2.

Proposition 3.1. If (M", g,;, F'), n > 3, is an n-dimensional complete noncompact
locally conformally flat gradient steady soliton with positive sectional curvature,
then (M™, g;;,F) is a rotationally symmetric gradient steady soliton on R™, hence
isometric to the Bryant soliton.

Proof. First of all, since the sectional curvature of (M™, g;;, F') is positive we know
that M™ is diffeomorphic to R" by Gromoll-Meyer [II] (or by Proposition 2.3 if
R attains its maximum at some origin zp). Moreover, since the Ricci curvature
is positive, the potential function F' is strictly convex, thus having at most one
critical point. Secondly, if we denote by G = |VF|?, then in any neighborhood,
where G # 0, of the equipotential hypersurface

Ye=A{xeM:F(z)=c}

of a regular value ¢ of F, we can express the metric ds? = gij(x)dxidxj as

(3.1) ds® = dF? + gap(F,0)d0°d6°,

1
G(F,0)
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2384 HUAI-DONG CAO AND QIANG CHEN

where § = (6%,---,0") denotes intrinsic coordinates for .. It is clear that the
key step in proving Proposition 3.1 is to show that in (3.1) we have G = G(F),
Jab = gap(F), and that (X, gup) is a space form of positive curvature.

Note that an n-dimensional rotationally symmetric metric is of the form

ds® = > (t)dt* + *(t)g,

where g is the standard metric on the unit sphere S*~!, and the Ricci tensor of
such a metric is given by
i Py o e (R—2)0] oty
Rc = (n—1)( 80+€01/))dt (77/}2 + e 0
In particular, it has at most two distinct eigenvalues depending only on t.

We shall first derive a useful formula for the norm square of the Cotton tensor for
steady solitons with vanishing Weyl tensor. This formula plays an important role
in our derivation of the desired property of the Ricci tensor for the steady soliton
metric. Moreover, as Wj;i = 0 always when n = 3, this formula is of particular
interest in the three-dimensional case.

+2—n)g.

Lemma 3.1. For any n-dimensional gradient steady soliton (n > 3) with vanishing
Weyl tensor Wi = 0, we have

1
mﬂRiijF — Ry Vi F|* —

Here C;j;i, is the Cotton tensor defined by (2.9).

(32)  |Cinl* =

2 1
D) |RVF — 5VG|2).

Proof. Notice that, by (1.1) and Lemma 2.1, we have
(3.3) VG =2Re¢(VF,:) = —VR.
Using (2.1), (3.3), and the assumption W i = 0, we can express

Cijk = ViRij — VR, — (9ij ViR — gV, R)

1
2(n—1)

1
= RpiuViF+ ——(gis — gV
Rkj Vi F + 2(7’L— 1) (g jva ngjG)
1 1
- (RWV.F—R-NyF)4 — ~
(RaV3F = R VuF) + 5o

—" 9ixV;iG — 9i;ViG)

R
(n—1)(n-2)

Hence, by direct computations, we have

(9i Vi F — 9i; Vi F).

2 =—""  |R. F— R.. 2 ; 2
ikl =G gy Vil = Ry Vi [+ gy =5y IV C
2R? 2
+ mIVFF g VG VE — R(VE VG)
4R 2 2R
" oD 2 RIVEE - RA(VEVE) = oy VG - V.

On the other hand, by (3.3),

1
Re(VF,VG) = 5\VG|2
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LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS 2385

and )
RC(VF, VF) = §VG -VF.
Thus,
1
|Cijil® = mmmij— RV FI?
1
~ s =g VGP ~4RVG VE AR VEP)
= V.F — R.V.F|? — F_- 2y 0
(n — 2)2 (|Rzkv_7 RUVk | (n — 1) |RV ZVG‘ )

Next, using Lemma 3.1, we show that the Ricci tensor of our (M", g;;, F') has, at
least pointwisely, the desired property that it has at most two distinct eigenvalues.

Lemma 3.2. At any point p € X., the Ricci tensor of (M",g;;, F) either has a
unique eigenvalue X, or has two distinct eigenvalues A and p of multiplicity 1 and
n — 1 respectively. In either case, e1 = VF/|VF| is an eigenvector with eigenvalue
A. In other words, for any orthonormal basis es, - -+ , e, tangent to the level surface
Y. at p, the Ricci tensor has the following properties:

(i) Rc(er,e1) = Ri,

(ii) Re(er,ep) = R1p =0, b=2,--- |n,

(iii) Re(eq,ep) = Raalab, a0 =2, n,
where either Ry =--- =Ry =X or Ri1 =X and Res = --- = Ry, = 1.

Proof. For any regular value ¢ of F', pick an orthonormal basis {E1,--- , E,} of the
tangent space T,M at p € £, = {x € M : F(x) = ¢} so that Re(E;, Ej) = \idyj.

Then, we have
n

|RikV;F — Ry Vi F|? =2) |V;FPY N7
j=1 i#j
and

1 n
|RVF — 5VG|2 =D IVFPO M)
j=1 i
Plugging the above two identities into (3.2) and noticing that C;;r = 0 by assump-
tion, it follows that

(3.4) SUVEEC S (- A =0,
=1 i k]

Since ¢ is a regular value of F and p € X., VF(p) # 0. On the other hand, from
(3.4) it is easy to see that if VF(p) has two or more nonzero components with
respect to {E;}_ 1, then A\; = --- = \,, so the Ricci tensor has a unique eigenvalue.
Otherwise, taking V1 F # 0 and V;F = 0 for i = 2,--- ,n, then VF = |VF|Ey,
with By = VF/|VF|, is an eigenvector of Rc, and Ao = --- = A,. In either
case, we conclude that VF' is an eigenvector, and the Ricci tensor has the desired
properties. U

Remark 3.1. Ferndndez-Lépez and Garcia-Rio [10] showed, by a different argument,
that for shrinking solitons with harmonic Weyl tensor, the gradient of any potential
function is an eigenvector of the Ricci tensor.
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2386 HUAI-DONG CAO AND QIANG CHEN

Finally we show that the eigenvalues of the Ricci tensor and the scalar curvature
R are constant on level surfaces ¥, = {F = c}.

Lemma 3.3. Let ¢ be a regular value of F and ¥, = {F = c}. Then:
(a) The function G = |VF|? is constant on X.; i.e. G is a function of F only.
b) The scalar curvature R of (M™, g;;, F') is constant on X..
¢) The second fundamental form hgy of X. is of the form hqp, = %gab.
d) The mean curvature H is constant on X..
e) Y., with the induced metric gqp, is of constant sectional curvature.

(
(
(
(

Proof. Let {e1,e2, -+ ,e,} be an orthonormal frame with e; = VF/|VF| and
ea2, -+ , e, tangent to 2.
First of all, by (3.3) and Lemma 3.1 (ii),

V.G =2Rc(VF,e,) =0, a=2,--- ,n.
Hence G is constant on X, and so is R by (2.3). This proves (a) and (b).
Next, since Ry = Raagap and Rog = --- = R, by Lemma 3.1, we have
H
hab = G_l/QRab = ——Gab, @, b= 27 N,
n—1
where
H =G Y*R-Ry).
Moreover, the Codazzi equation says that, for a,b,c =2,--- . n,
Rica = VEchbc - Vbzchac'

Tracing over b and ¢, we obtain
1

0=Rio=VrH—Vihy=(1-

1)eaH,

proving (c) and (d).
Finally, by the Gauss equation, the sectional curvatures of (., g.5) are given by

2
S _
(3.5) R0 = Rapab + haahir — h2y = Rapap + o1
On the other hand, since Wy = 0,
2 R
R =—Ryg— ————
abab n_2 aa (n—l)(n—?)
_ 2G'Y?H-R
(n—=1)(n-2)

But we already showed that G, H, R are constant on X.. Therefore (3., g.s) has
constant sectional curvature

_ 2GY?H-R N H?
T n-1D(n-2) (n-12’

proving (e). O

With Lemma 3.3 in our hands, we now conclude the proof of Proposition 3.1.
Recall that in any neighborhood, where G # 0, of the equipotential hypersurface

YSc==A{rxeM:F(z)=c}
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of a regular value ¢ of F, we can express the metric ds? = g;;(x)dz'dz? as
ds®> = G7H(F,0)dF? + gu(F,0)d0°de°,

where 0 = (6%,---,0™) denotes the intrinsic coordinates for ¥.. Then Lemma 3.3
tells us that G = G(F), gap = gab(F), and that (., g.p) is a space form, with
positive curvature (this follows from (3.5) and the assumption that (M",g,;, F)
has positive sectional curvature). Also, F' has exactly one minimum at some origin
xo; otherwise (M™, g;;, F') would split out a flat factor, which is impossible. Hence,
on M\ {xo} we have

(3.6) ds®> = G7Y(F)dF? + *(F)g,

where g denotes the standard metric on the unit sphere S*!, and ¢ is some smooth
function on M™ depending only on F' and vanishing only at xo. Thus, (M", g5, F')
is a rotationally symmetric gradient steady soliton on R™. Therefore, it is the
Bryant soliton. (]

Proof of Theorem 1.2. Now, by assumption, (M™, g;;, F') is a complete noncompact
locally conformally flat gradient steady soliton. By Proposition 2.5, we know that
(M™, gi;, F) has bounded and nonnegative curvature operator 0 < Rm < C. From
Hamilton’s strong maximum principle (see [13] and [I5]), (M™, g;;, F) is either of
positive curvature operator, or its holonomy group reduces.

If (M™,gij, F) has positive curvature operator Rm > 0, then by Proposition
3.1/Theorem 1.1, (M™, g;;, F') must be the Bryant soliton.

On the other hand, if (M", g;;, F) has reduced holonomy, then (M™,g;;, F) is
either a Riemannian product, or a locally symmetric space, or irreducible but not
locally symmetric.

e Case (a): (M™,gij, F) is a Riemannian product.

It is known (cf. p.61 in [I]) that the only conformally flat Riemannian products
are either the product of a space form N?~! with S' or R', or the product of two
Riemannian manifolds, one with constant sectional curvature —1 and the other
with constant sectional curvature 1. However, since our (M™, g;;) is a steady Ricci
soliton with nonnegative sectional curvature, this implies that the latter case cannot
occur and that in the former case N"~! must be flat. Hence (M™, g;;, F) is flat in
case (a).

e Case (b): (M™,gi;, F) is a locally symmetric space.

In case (b), (M™,gi;, F') is necessarily Einstein. However, (M", g;;, F)) is non-
compact and of nonnegative sectional curvature. Therefore it follows that it must
be Ricci flat and hence flat.

e Case (c): (M™,g;5,F) is irreducible and not locally symmetric.

In this case the flatness of (M™, g;;, F') follows from the holonomy classification
theorem of Berger and Simons (cf. [1]), the fact that

3(m—1) 2
m(m+1)(2m — 1)

(3.7) (Wini|* >

for Kéhler manifolds of complex dimension m > 1 (cf. Proposition 2.68 in [I]), and
that our (M", g5, F) is noncompact, conformally flat and of nonnegative sectional

curvature.
Thus we have shown that in all of the above three cases, (M™,g;;, F') are flat.
This completes the proof of Theorem 1.2. O
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Remark 3.2. Shortly after our work appeared on the arXiv, Catino and Mantegazza
[6] obtained a similar result to our Theorem 1.1 for dimension n > 4 by studying
the evolution of the Weyl tensor under the Ricci flow. However, as pointed out in
[6], their argument does not work for n = 3.

4. FURTHER REMARKS

In this section, we point out that several lemmas in the proof of Theorem 1.1 for
gradient steady Ricci solitons also hold for gradient shrinking and expanding Ricci
solitons satisfying
(4.1) R;j = ViV;F + pgi;,

with p = 1/2 for shrinkers and p = —1/2 for expanders, respectively. In particular,
our method, when combined with a result of Kotschwar [18], yields another proof of
the classification theorem for n-dimensional (n > 4) complete locally conformally
flat shrinking gradient solitons (see Proposition 4.1).

Remark 4.1. A similar version of Lemma 3.1 is valid for locally conformally flat
gradient shrinkers and expanders.
First of all, similar arguments to those in Lemma 2.1 imply that

ViR = —2R;;V;F
and
R+|VF? +2pF = Cy
for some constant Cy. Hence, by defining

G, =:G+2pF = |VF|* + 2pF,

we have
R+G,=0Cy
and
(4.2) VG, =—-VR =2Rc(VF,").

Therefore, by replacing G = |[VF|? by G, = G +2pF and carrying out the same
arguments as in the proof of Lemma 3.1, we obtain

Lemma 4.1. For any n-dimensional gradient shrinking or expanding soliton (n >
3) with vanishing Weyl tensor Wi = 0, the Cotton tensor Ciji, has the property
that

1 2
(43)  [Cinl® =

(n—2)? (n—1)

Consequently, Lemma 3.2 and Lemma 3.3 hold for locally conformally flat gra-
dient shrinkers and expanders as well.

(|RixV;F — Ri; Vi F|* —

1
[RVE — 2VG,[).

Lemma 4.2. Let (M",g;;, F) be any n-dimensional, n > 3, complete locally con-
formally flat gradient shrinking or expanding Ricci soliton satisfying (4.1). Then,
at any regular point p € E., the Ricci tensor of (M™, gi;, F) either has a unique
etgenvalue \ or has two distinct eigenvalues A and p of multiplicity 1 and n — 1,
respectively. In either case, ey = VF/|VF| is an eigenvector with eigenvalue . In
other words, for any orthonormal basis es, - - - , e, tangent to the level surface ¥ at
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p, the Ricci tensor has the following properties:
(i) Rc(er,e1) = Ry,
(i) Re(er,ep) = Rip =0, b=2,---,n,
(iii) Re(eq,ep) = Raalab, a,b=2,-++ n,
where either R11. =+ =Rpn =X or Ri1 =X and Ryo = -+ = Ry, = .

Lemma 4.3. Let (M",g;;, F) be any n-dimensional, n > 3, complete locally con-
formally flat gradient shrinking or expanding Ricci soliton satisfying (4.1), and let
¢ be a regular value of F and ¥, = {F = c}. Then:

(a) The function G = |VF|? is constant on %.; i.e., G is a function of F only.
b) R, the scalar curvature of (M™, g;;, F), is constant on 3.
c¢) The second fundamental form hap of ¥. is of the form hqp, = %gab.
d) The mean curvature H is constant on X..
e) (Xe¢, gap) is of constant sectional curvature K. ,.

(
(
(
(

Note that for shrinking solitons, we have K/, > 0, according to [23].

Remark 4.2. There is another formula for |C;jx|* which is valid for all n-dimensional
(n > 3) complete gradient shrinking, steady, and expanding Ricci solitons with
vanishing Weyl tensor. This new formula relates |Cijk\2 more explicitly to the
geometry of the level surfaces of F' and immediately implies Lemma 3.2/4.2 and
Lemma 3.3/4.3 (a)-(d).

Lemma 4.4. For any n-dimensional gradient shrinking, or steady, or expanding
soliton (M™, g;;,F) (n > 3) with vanishing Weyl tensor Wy;,, = 0, we have

2G? H 1
(4.4) |Cij| 2 [hap = ——= gav|” + DY) V.G,

where hqy and H are, as in Lemma 3.3, the second fundamental form and the mean
curvature for the level surface . = {F = ¢} at any regular value ¢ of F.

Proof. Denote again
G=|VF]? and G,=G+2pF

so that Gy = G. Let ¢ be any regular value of the potential function F’ and consider
the corresponding equipotential hypersurface

Ye=A{xeM:F(z)=c}.

Let {e1,e2,---,e,} be any orthonormal frame, with e; = VF/|VF| = VF/V/G
and es,---,e, tangent to X.. Then the second fundamental form h,, and the
mean curvature H are given respectively by

VF

hay =(Vae1,ep) = <vaﬁ;eb>

1
=——Rw, a,b=2,--- n
Nl
and )
H=——(R—- Ry).
Nk 1)
By (4.2),

1 1
Riy = ZRe(VE.VF) = 5-VF VG,
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and

1
Rias = —=Re(VF,e,) =

VG-
VG ’

1
2VG
Moreover,

n

|vEqu|2 = Z |vaGp|2

a=2
1
=|VG,|* - VG, VF|2.

Thus, by direct computations, we obtain

H H?
ha — —~Ya 2= ha -
[hat n—lgb| [ n—1
_ 1 2 o 2 (R_Rll)2
- G(‘RC| 2ZR1¢1 Rll) (n_ 1)G
a=2
1 2 1 2
= — _ __VF. -
G|Rc\ + (n—l)G2v VG, 2G2|VGP|
n—2 R?
- % |\VF. 2_ -
+4(n—1)G3|V VG| (n—1)G
Now noticing that, by Lemma 4.1, we also have
2G 1
Cijkl* = ——=|Rc|* = ——=|VG,|?
| 7/]k| (’I’L—2)2‘ C| 2(n_2)2| p|
1

gV Ol VG, VE A ARG),

one can therefore verify directly that

2G? H 1
hap — 2= |Ciik]? - =——————|V5.G,%
(n_2)2| ab n_lg(lb| ‘ Uk| 2(n_1)(n_2)| 3e p|
This completes the proof of Lemma 4.4. O

Remark 4.3. Based on Lemma 4.3 for shrinkers, it is not hard to see that the
universal cover (M™, g;;, F) of a complete locally conformally flat gradient shrinking
Ricci soliton is a rotationally symmetric gradient shrinking Ricci soliton and M™ is
diffeomorphic to either R™, or S*, or S*~! x R. Combining this with the result of
Kotschwar [I8], one obtains another proof of the following classification theorem for
n-dimensional (n > 4) complete locally conformally flat shrinking gradient solitons
(which is first due to the combined works of Z.-H. Zhang and Ni-Wallach, and also
the combination of more recent work of Munteanu-Sesum and the earlier works of
either Petersen-Wylie, or X. Cao, B. Wang and Z. Zhang).

Proposition 4.1. Any n-dimensional, n > 4, complete locally conformally flat
gradient shrinking Ricci soliton is a finite quotient of R™, or S, or S~ x R.
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