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Abstract. Fixed-point iterative sweeping methods were developed in the literature to
efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the
Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence
rate. They take advantage of the properties of hyperbolic partial differential equations
(PDEs) and try to cover a family of characteristics of the corresponding Hamilton-
Jacobi equation in a certain direction simultaneously in each sweeping order. Different
from other fast sweeping methods, fixed-point iterative sweeping methods have the
advantages such as that they have explicit forms and do not involve inverse opera-
tion of nonlinear local systems. In principle, it can be applied in solving very general
equations using any monotone numerical fluxes and high order approximations easily.
In this paper, based on the recently developed fifth order WENO schemes which im-
prove the convergence of the classical WENO schemes by removing slight post-shock
oscillations, we design fifth order fixed-point sweeping WENO methods for efficient
computation of steady state solution of hyperbolic conservation laws. Especially, we
show that although the methods do not have linear computational complexity, they
converge to steady state solutions much faster than regular time-marching approach
by stability improvement for high order schemes with a forward Euler time-marching.
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1 Introduction

Steady state problems for hyperbolic partial differential equations (PDEs) are common
mathematical models appearing in many applications, such as fluid mechanics, optimal
control, differential games, image processing and computer vision, geometric optics, etc.
Solution information of these boundary value problems propagates along characteristics
starting from the boundary. Weighted essentially non-oscillatory (WENO) schemes are
a popular class of high order numerical methods for spatial discretization of hyperbolic
PDEs. They have the advantage of attaining uniform high order accuracy in smooth
regions of the solution while maintaining sharp and essentially non-oscillatory transi-
tions of discontinuities. WENO scheme was first constructed in [11] for a third-order
accurate finite volume version. In [7], third- and fifth-order accurate finite difference
WENO schemes in multi-space dimensions were constructed, with a general framework
for the design of the smoothness indicators and nonlinear weights. To deal with com-
plex domain geometries, WENO schemes on unstructured meshes were developed, e.g.,
see [6, 9, 12, 23, 24, 28].

A large nonlinear system is obtained after spatial discretization of a steady state hy-
perbolic PDE by a high order WENO scheme. It is still a challenging problem how to
solve the large nonlinear system. There are at least two factors which may affect effi-
ciency and robustness of computation. One is that a high order accurate shock capturing
scheme such as a fifth order WENO scheme often suffers from difficulties in its con-
vergence towards steady state solutions. In [21], A systematic study was carried out and
discovered that slight post-shock oscillations actually cause this problem. A new smooth-
ness indicator [21] and upwind-biased interpolation technique [20] have been developed
to improve the convergence of fifth order WENO scheme for solving steady state of Eu-
ler systems. The other factor affecting the performance of computation is the iterative
scheme designed for the nonlinear system. For a highly nonlinear system derived from
high order WENO spatial discretization, one way is to solve it directly with Newton it-
erations or a more robust method such as the homotopy method [5]. Another way is
to solve the large WENO system by fast sweeping technique [26]. Fast sweeping meth-
ods utilize alternating sweeping strategy to cover a family of characteristics in a certain
direction simultaneously in each sweeping order. Coupled with the Gauss-Seidel iter-
ations, these methods can achieve a fast convergence speed for computations of steady
state solutions of hyperbolic PDEs. First order fast sweeping methods often achieve lin-
ear computational complexity for certain types of equations (e.g., see [4,13,14,27]). There
are additional difficulties to design high order fast sweeping methods with linear compu-
tational complexity, including lack of monotonicity of numerical solutions, much more
complicated local nonlinear equations, wider stencils which make alternating sweeping
less effective, etc. High order WENO fast sweeping method was developed in [26]. An
explicit strategy was designed to avoid directly solving very complicated local nonlin-
ear equations derived from WENO discretizations. The method was extended to a fifth
order version in [19] with accurate boundary treatment techniques. This explicit strat-
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egy has been applied in Lax-Friedrichs fast sweeping method to solve steady state prob-
lems for hyperbolic conservation laws in [2]. High order WENO fast sweeping meth-
ods are much more efficient than classical time marching approach for solving steady
state problems, although their computational complexity is not linear. Discontinuous
Galerkin (DG) [3] fast sweeping methods achieve linear computational complexity due
to very compact stencils which facilitate the propagation of upwind information. Second
order DG fast sweeping methods were developed in [10, 22], and a third order DG fast
sweeping method was recently developed in [18] for Eikonal equations. Although DG
fast sweeping methods have linear computational complexity, a numerical comparison
was performed in [18] and it shows that each method has its advantages. For the example
studied in [18], it was found that the DG one is more efficient than the third order WENO
fast sweeping method to obtain accurate results for the smooth region of the solution.
On the other hand, the third order WENO fast sweeping method is more efficient for the
regions with derivative singularities to get certain accuracy.

Another approach to explicitly incorporate high order WENO discretizations into fast
sweeping techniques is by fixed-point iterative methods. Fixed-point iterative sweeping
WENO methods were first developed in [25] for solving static Hamilton-Jacobi equa-
tions. Fixed-point iterative sweeping methods have the advantages such as that they
have explicit forms and do not involve inverse operation of nonlinear local systems. In
principle, they can be applied in solving very general equations using any monotone nu-
merical fluxes and high order approximations (e.g. high order WENO approximations)
easily. The approach has been applied to solve steady state solution of scalar hyperbolic
conservation laws with the third order finite difference WENO method in [1]. In this
paper, based on the recently developed fifth order WENO schemes which improve the
convergence of the classical WENO schemes by removing slight post-shock oscillations,
we design fifth order fixed-point sweeping WENO methods for efficiently solving steady
state problems of hyperbolic conservation laws. Especially, we show that although the
methods do not have linear computational complexity, they converge to steady state so-
lutions much faster than regular time-marching approach. It is interesting to see that the
acceleration of computation is essentially achieved via stability improvement for high
order schemes with a forward Euler time-marching to steady state solutions.

The rest of the paper is organized as follows. The detailed algorithm is described in
Section 2. In Section 3 we provide extensive numerical experiments to test and study
the proposed methods. Comparisons of different methods are performed. Concluding
remarks are given in Section 4.

2 Fifth order fixed-point sweeping WENO methods

Consider steady state problems of hyperbolic conservation laws with appropriate bound-
ary conditions

∇·F(U)=h, (2.1)
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where U is the vector of the unknown conservative variables, F(U) is the vector of flux
functions, and h is the source term. A spatial discretization of (2.1) usually leads to a large
nonlinear system of N equations where N is the number of spatial grid points.

2.1 WENO discretization

In this paper, to discretize (2.1) we use the fifth order finite difference WENO (WENO5)
scheme [7] with recently developed techniques to improve the convergence of WENO
schemes for steady state computations [20, 21].

For the hyperbolic terms f (u)x+g(u)y, the conservative finite difference scheme we
use approximates the point values at a uniform (or smoothly varying) grid (xi,yj) in a
conservative fashion. Namely, the derivative f (u)x at (xi,yj) is approximated along the
line y=yj by a conservative flux difference

f (u)x|x=xi,y=yj
≈ 1

∆x

(

f̂i+1/2,j− f̂i−1/2,j

)

, (2.2)

where for the fifth order WENO scheme the numerical flux f̂i+1/2,j depends on the five-
point values f (ul,j), l=i−2, i−1, i, i+1, i+2, when the wind is positive (i.e., when f ′(u)≥0
for the scalar case, or when the corresponding eigenvalue is positive for the system case
with a local characteristic decomposition). This numerical flux f̂i+1/2,j is written as a con-
vex combination of three third order numerical fluxes based on three different substencils
of three points each, and the combination coefficients depend on a “smoothness indica-
tor” measuring the smoothness of the solution in each substencil. The detailed formula
is

f̂i+1/2,j =w0 f̂
(0)
i+1/2,j+w1 f̂

(1)
i+1/2,j+w2 f̂

(2)
i+1/2,j, (2.3)

where

f̂
(0)
i+1/2,j =

1

3
f (ui−2,j)−

7

6
f (ui−1,j)+

11

6
f (ui,j),

f̂
(1)
i+1/2,j =−1

6
f (ui−1,j)+

5

6
f (ui,j)+

1

3
f (ui+1,j),

f̂
(2)
i+1/2,j =

1

3
f (ui,j)+

5

6
f (ui+1,j)−

1

6
f (ui+2,j). (2.4)

Also

wr =
αr

α0+α1+α2
, αr =

dr

(ǫ+βr)2
, r=0,1,2. (2.5)

d0 = 0.1, d1 = 0.6, d2 = 0.3 are called the “linear weights”, and β0, β1, β2 are called the
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“smoothness indicators” with the explicit formulae

β0=
13

12
( fi−2,j−2 fi−1,j+ fi,j)

2+
1

4
( fi−2,j−4 fi−1,j+3 fi,j)

2,

β1=
13

12
( fi−1,j−2 fi,j+ fi+1,j)

2+
1

4
( fi−1,j− fi+1,j)

2,

β2=
13

12
( fi,j−2 fi+1,j+ fi+2,j)

2+
1

4
(3 fi,j−4 fi+1,j+ fi+2,j)

2, (2.6)

where fk,l denotes f (uk,l). ǫ is a small positive number chosen to avoid the denominator
becoming 0. We take ǫ=10−6 in this paper.

When the wind is negative (i.e., when f ′(u)<0), right-biased stencil with numerical
values f (ui−1,j), f (ui,j), f (ui+1,j), f (ui+2,j) and f (ui+3,j) are used to construct a fifth order

WENO approximation to the numerical flux f̂i+1/2,j. The formulae for negative and pos-
itive wind cases are symmetric with respect to the point xi+1/2. For the general case of
f (u), we perform the “Lax-Friedrichs flux splitting”

f+(u)=
1

2
( f (u)+αu), f−(u)=

1

2
( f (u)−αu), (2.7)

where α=maxu | f ′(u)|. f+(u) is the positive wind part, and f−(u) is the negative wind
part. Corresponding WENO approximations are applied to find numerical fluxes f̂+i+1/2,j

and f̂−i+1/2,j respectively. Then f̂i+1/2,j = f̂+i+1/2,j+ f̂−i+1/2,j. Similar procedures are applied

to the y direction for g(u)y. Then we obtain a nonlinear system

0=−( f̂i+1/2,j− f̂i−1/2,j)/∆x−(ĝi,j+1/2− ĝi,j−1/2)/∆y+h(uij ,xi,yj),

i=1,··· ,N; j=1,··· ,M, (2.8)

where f̂ , ĝ are the numerical fluxes obtained by Lax-Friedrichs flux splitting and WENO
approximation.

High order accuracy methods including the WENO methods suffer from difficulties
in their convergence to steady state solutions. For example, as shown in [21], the residue
of WENO schemes often stops decreasing during their iterations. The residue hangs at
a level far above machine zero. A systematic study in [21] reveals that slight post-shock
oscillations actually cause this problem, and a new smoothness indicator for the fifth
order WENO scheme is designed to make the residue settle down to machine zero. In
this paper, we use the new smoothness indicator instead of the original ones (2.6). The
explicit formulae for the new smoothness indicators are

β0 =( fi−2,j−4 fi−1,j+3 fi,j)
2,

β1 =( fi−1,j− fi+1,j)
2,

β2 =(3 fi,j−4 fi+1,j+ fi+2,j)
2. (2.9)
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For systems of hyperbolic conservation laws, the local characteristic decomposition is of-
ten needed in high order accuracy schemes for solving strong shock problems. In [20],
it is shown that the local characteristic decomposition has a close relationship with the
slight post-shock oscillation. The slight post-shock oscillation often appears in a standard
high order accuracy WENO simulation if the Roe average is used to form the Jacobian at
the cell interface for the local characteristic decomposition. Again, the slight post-shock
oscillation is responsible for the numerical residue to hang at a high level instead of set-
tling down to machine zero when a fifth order WENO scheme is used to compute steady
state solutions. To improve the convergence, upwind-biased interpolation is used to form
the Jacobian in high order WENO schemes [20] and the slight post-shock oscillation can
be removed or reduced significantly. The numerical residue can settle down to a much
lower level than that by using the standard Roe average. In this paper, we incorporate
the upwind-biased interpolation in the fifth order sweeping WENO scheme.

Upwind-biased interpolation uses only or main information from one side of the
shock for grid points near the shock. In the upwind-biased interpolation for the x−direct-
ion local characteristic decomposition, we choose the physical variables on the cell inter-
face Ui+1/2,j=U(1) when ui+1/2,j≥0 (here u denotes the x−direction velocity in the Euler

equations) and Ui+1/2,j=U(2) when ui+1/2,j<0, where U(1) and U(2) are the interpolated
values on the cell interface, which are computed by the first order or the second order
one-sided interpolation, or the higher order upwind-biased WENO interpolation. The
first order upwind-biased interpolation turns out to be the most efficient and effective
one to decrease the post-shock oscillations and drive the residue of high order WENO
schemes to machine zero or a much smaller value. Its formulae are

U(1)=Ui,j,

U(2)=Ui+1,j. (2.10)

To calculate ui+1/2,j, the Roe average [15]

ui+1/2,j=

√
ρi,j√

ρi,j+
√

ρi+1,j
ui,j+

√
ρi+1,j√

ρi,j+
√

ρi+1,j
ui+1,j (2.11)

is used, where ρ is the density in the Euler equations. For the upwind-biased interpola-
tion of the y−direction local characteristic decomposition in two dimensional case, sim-
ilar procedure is followed by using the y−direction velocity v. We emphasize that the
order of accuracy of the final WENO scheme does not depend on the order of interpola-
tion in forming the Jacobian matrix for the local characteristic decomposition [7]. Hence
the first order interpolation (2.10) here does not affect the high order accuracy of the final
WENO scheme at all.

2.2 Fixed-point sweeping iterative schemes

Time marching approach for solving steady state problems is essentially a Jacobi type
fixed-point iterative scheme for the nonlinear system (2.8). The right-hand-side (RHS)
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of (2.8) is a nonlinear function of numerical values at the grid points of computational
stencils. We denote it by L and can write a Jacobi type fixed-point iterative scheme as the
following

un+1
ij =un

ij+
γ

αx/∆x+αy/∆y
L
(

un
i−r,j,··· ,un

i+s,j;u
n
ij;u

n
i,j−r,··· ,un

i,j+s

)

,

i=1,··· ,N; j=1,··· ,M, (2.12)

where r,s are values which depend on the order of the WENO approximation. For the
fifth order WENO scheme used in this paper, we have r = s= 3. n is the iteration step.
αx=maxu | f ′(u)| and αy=maxu |g′(u)| for the scalar equations, or they are the maximum
absolute values of eigenvalues of the Jacobian matrices f ′(u) and g′(u) for the system
cases. They are the maximum characteristic speeds in each spatial direction. αx and αy

are updated in every iteration. The parameter γ is chosen to be suitable values which
can guarantee that the fixed-point iteration is a contractive mapping and it converges. In
fact, the scheme (2.12) is the forward Euler (FE) time marching method with time step size
∆tn =

γ
αx/∆x+αy/∆y . The parameter γ actually represents the CFL number. Since a higher

order linear scheme with the forward Euler time discretization has linear stability issue,
the Jacobi iterative scheme (2.12) needs many iteration steps to converge even with the
help of a nonlinearly stable discretization such as WENO schemes. However, as shown in
the numerical experiments (Section 3), by applying the Gauss-Seidel sweeping technique
to the fixed-point scheme, we can obtain a much more efficient iterative scheme. The
number of iteration steps to the steady state is reduced significantly and the CFL number
γ is much larger than that in the Jacobi iteration (2.12).

The fast sweeping technique has two components, namely, the Gauss-Seidel philos-
ophy and alternating direction iterations. By the Gauss-Seidel philosophy, the newest
available numerical values of u are used in the interpolation stencils as long as they are
available. The FE type fixed-point sweeping scheme can be written as

un+1
ij =un

ij+
γ

αx/∆x+αy/∆y
L
(

u∗
i−r,j,··· ,u∗

i+s,j;u
n
ij;u

∗
i,j−r,··· ,u∗

i,j+s

)

,

i= i1,··· ,iN ; j= j1,··· , jM. (2.13)

Here the iterations do not just proceed in only one direction i=1 : N, j=1 : M as the time-
marching approach (2.12), but in the following four alternating directions repeatedly,

(1) i=1 : N, j=1 : M;

(2) i=N : 1, j=1 : M;

(3) i=N : 1, j=M : 1;

(4) i=1 : N, j=M : 1.

Since the strategy of alternating direction sweepings utilizes the characteristics property
of hyperbolic PDEs, combining with the Gauss-Seidel philosophy, we are able to observe
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the acceleration of convergence speed, which will be shown in the following numerical
experiments. By the Gauss-Seidel philosophy, we use the newest numerical values on
the computational stencil of the WENO scheme whenever they are available. That is the
reason we use the notation u∗ to represent the values in the scheme (2.13), and u∗

k,l could

be un
k,l or un+1

k,l , depending on the current sweeping direction.

Similarly for the third order TVD Runge-Kutta (RK) scheme (a RK type Jacobi itera-
tion scheme) [17]

u
(1)
ij =un

ij+∆tn L
(

un
i−r,j,··· ,un

i+s,j;u
n
ij;u

n
i,j−r,··· ,un

i,j+s

)

,

i=1,··· ,N; j=1,··· ,M, (2.14)

u
(2)
ij =

3

4
un

ij+
1

4
u
(1)
ij +

1

4
∆tn L

(

u
(1)
i−r,j,··· ,u

(1)
i+s,j;u

(1)
ij ;u

(1)
i,j−r,··· ,u

(1)
i,j+s

)

,

i=1,··· ,N; j=1,··· ,M, (2.15)

un+1
ij =

1

3
un

ij+
2

3
u
(2)
ij +

2

3
∆tn L

(

u
(2)
i−r,j,··· ,u

(2)
i+s,j;u

(2)
ij ;u

(2)
i,j−r,··· ,u

(2)
i,j+s

)

,

i=1,··· ,N; j=1,··· ,M, (2.16)

the RK type fixed-point sweeping scheme has the form

u
(1)
ij =un

ij+
γ

αx/∆x+αy/∆y
L
(

u∗
i−r,j,··· ,u∗

i+s,j;u
n
ij;u

∗
i,j−r,··· ,u∗

i,j+s

)

,

i= i1,··· ,iN ; j= j1,··· , jM, (2.17)

u
(2)
ij =u

(1)
ij +

γ

4(αx/∆x+αy/∆y)
L
(

u∗∗
i−r,j,··· ,u∗∗

i+s,j;u
(1)
ij ;u∗∗

i,j−r,··· ,u∗∗
i,j+s

)

,

i= i1,··· ,iN ; j= j1,··· , jM, (2.18)

un+1
ij =u

(2)
ij +

2γ

3(αx/∆x+αy/∆y)
L
(

u∗∗∗
i−r,j,··· ,u∗∗∗

i+s,j;u
(2)
ij ;u∗∗∗

i,j−r,··· ,u∗∗∗
i,j+s

)

,

i= i1,··· ,iN ; j= j1,··· , jM. (2.19)

The above schemes (2.17)-(2.19) denote a complete iteration step n which includes three
sub-iterations. Again, the complete iterations do not just proceed in only one direction i=
1:N, j=1:M as the time-marching approach (2.14)-(2.16), but in four alternating directions
repeatedly. Note that the sweeping directions of the three sub-iterations (2.17)-(2.19) are
the same inside a complete iteration step n. The newest numerical values are used on
the computational stencil of the WENO scheme whenever they are available. That is the
reason why we use notations such as u∗, u∗∗, u∗∗∗ to represent the values in the scheme

(2.17)-(2.19). For example u∗
k,l could be un

k,l or u
(1)
k,l , depending on the current sweeping

direction; similarly u∗∗
k,l could be u

(1)
k,l or u

(2)
k,l , and u∗∗∗

k,l could be u
(2)
k,l or un+1

k,l . For RK type
schemes, αx and αy are updated once in a complete iteration step, namely, three sub-
iterations in a complete iteration have the same αx and αy values.
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3 Numerical experiments

In this section, we use numerical experiments to test the efficiency of the fifth order
sweeping WENO schemes. Computational efficiency of four different iterative schemes
is compared. For the convenience of presentation, we name the scheme (2.12) FE Ja-
cobi scheme, the scheme (2.13) FE sweeping scheme, the scheme (2.14)-(2.16) RK Jacobi
scheme, and the scheme (2.17)-(2.19) RK sweeping scheme. With mesh refinement study,
we compute L1 and L∞ numerical errors and accuracy orders. Grid point where the max-
imum error occurs is tracked, and it is called “L∞ index i” in the following presented Ta-
bles. Iteration numbers and CPU times for each iterative method to converge are reported
and compared. The convergence of the iterations is measured by the residue which is de-
fined as

ResA =
N

∑
i=1

|Ri|
N

, (3.1)

where the local residue

Ri=
∂u

∂t

∣

∣

∣

∣

i

=
un+1

i −un
i

∆tn
, (3.2)

and N is total number of grid points and n is the iteration step. ∆tn =
γ

αx/∆x+αy/∆y . For

every test case of every example in this section, we count number of iterations for the
methods to reach convergence. For most cases, the convergence criterion is set to be
ResA<10−12 except that in some examples we study the levels that the residues can reach.
Note that number of iterations reported in every table here counts a complete update of
numerical values in all grid points once as one iteration.

3.1 Example 1. Burgers’ equation

We consider the following one-dimensional Burgers’ equation with a source term

ut+

(

u2

2

)

x

=sin(x)cos(x), x∈
[

1

4
π,

3

4
π

]

, (3.3)

and compute its steady state solution. The initial condition u(x,0) = βsin(x) is used as
the initial guess in the iterations. An inflow boundary condition is imposed at the left
boundary x=(1/4)π with u((1/4)π,t)=

√
2/2. And at the right boundary x=(3/4)π,

the outflow boundary condition is applied. If β>1, the unique steady state solution for
this problem is u(x,∞)= sin(x). We take β= 2 in this example. Four different iterative
schemes based on the WENO5 discretization with either the original smoothness indica-
tors or the new smoothness indicators are used to compute the steady state solution. For
the outflow boundary point x=(3/4)π itself and ghost points to the right of x=(3/4)π
in the stencil of WENO5 scheme, extrapolation by a degree 4 polynomial is used to com-
pute numerical values at them. ResA<10−12 is used as the iteration convergence criterion.
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Table 1: Example 1. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers and
CPU times of four different iterative schemes. The original smoothness indicators (2.6) are used in WENO5.
CPU time unit: second.

RK Jacobi, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.15e-4 1.88e-4 9 183 1.82e-3

20 2.85e-6 5.33 5.94e-6 17 4.98 258 4.36e-3

40 8.31e-8 5.10 1.86e-7 37 5.00 357 1.19e-2

80 2.17e-9 5.26 5.26e-9 79 5.14 615 4.12e-2

160 5.24e-11 5.38 1.30e-10 159 5.34 1185 0.16

320 1.11e-12 5.56 2.94e-12 316 5.46 1818 0.49

RK Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.15e-4 1.88e-4 9 150 1.60e-3

20 2.85e-6 5.33 5.94e-6 17 4.98 168 2.80e-3

40 8.31e-8 5.10 1.86e-7 37 5.00 198 6.47e-3

80 2.17e-9 5.26 5.26e-9 79 5.14 273 1.80e-2

160 5.24e-11 5.37 1.31e-10 159 5.32 408 5.40e-2

320 1.17e-12 5.48 3.09e-12 317 5.41 612 0.16

FE Jacobi, γ=0.1

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.15e-4 1.88e-4 9 1034 9.58e-3

20 2.85e-6 5.33 5.94e-6 17 4.98 1391 2.26e-2

40 8.31e-8 5.10 1.86e-7 37 5.00 1656 5.36e-2

80 2.17e-9 5.26 5.26e-9 79 5.14 2190 0.15

160 5.24e-11 5.37 1.31e-10 159 5.33 3996 0.54

320 1.13e-12 5.53 2.93e-12 317 5.48 6737 1.79

FE Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.15e-4 1.88e-4 9 104 1.05e-3

20 2.85e-6 5.33 5.94e-6 17 4.98 128 2.26e-3

40 8.31e-8 5.10 1.86e-7 37 5.00 151 5.27e-3

80 2.17e-9 5.26 5.26e-9 79 5.14 178 1.14e-2

160 5.24e-11 5.37 1.31e-10 159 5.32 222 2.79e-2

320 1.17e-12 5.48 3.23e-12 317 5.35 328 8.33e-2

The results for four different iterative schemes with the original smoothness indicators
(2.6) in the WENO5 are presented in Table 1. And the results for these iterative schemes
with the new smoothness indicators (2.9) in the WENO5 are reported in Table 2. For this
example, the WENO5 with original smoothness indicators has no difficulty to reach con-
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Table 2: Example 1. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers
and CPU times of four different iterative schemes. The new smoothness indicators (2.9) are used in WENO5.
CPU time unit: second.

RK Jacobi, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.60e-4 3.44e-4 6 204 1.85e-3

20 3.99e-6 5.32 8.04e-6 14 5.42 264 4.23e-3

40 1.02e-7 5.29 2.16e-7 32 5.22 381 1.20e-2

80 2.64e-9 5.27 5.92e-9 71 5.19 627 3.95e-2

160 6.78e-11 5.28 1.65e-10 157 5.16 1152 0.15

320 1.48e-12 5.52 4.10e-12 319 5.33 1842 0.46

RK Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.60e-4 3.44e-4 6 144 1.30e-3

20 3.99e-6 5.32 8.04e-6 14 5.42 177 2.71e-3

40 1.02e-7 5.29 2.16e-7 32 5.22 204 5.88e-3

80 2.64e-9 5.27 5.92e-9 71 5.19 288 1.68e-2

160 6.77e-11 5.28 1.65e-10 157 5.17 417 4.79e-2

320 1.64e-12 5.37 4.29e-12 319 5.26 624 0.15

FE Jacobi, γ=0.1

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.60e-4 3.44e-4 6 922 7.48e-3

20 3.99e-6 5.32 8.04e-6 14 5.42 1407 2.14e-2

40 1.02e-7 5.29 2.16e-7 32 5.22 1781 5.28e-2

80 2.64e-9 5.27 5.92e-9 71 5.19 2529 0.15

160 6.77e-11 5.28 1.65e-10 159 5.17 4390 0.54

320 1.57e-12 5.43 4.11e-12 319 5.32 7066 1.74

FE Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 1.60e-4 3.44e-4 6 226 1.75e-3

20 3.99e-6 5.32 8.04e-6 14 5.42 127 1.87e-3

40 1.02e-7 5.29 2.16e-7 32 5.22 147 4.67e-3

80 2.64e-9 5.27 5.92e-9 71 5.19 193 1.12e-2

160 6.77e-11 5.28 1.65e-10 159 5.17 234 2.70e-2

320 1.64e-12 5.37 4.47e-12 316 5.20 320 7.44e-2

vergence. We observe that all schemes achieve similar numerical errors and fifth order
accuracy when they converge, and maximum errors generally occur at grid points close
to the right boundary. In terms of algorithm efficiency, the direct forward Euler scheme
with WENO5 (i.e., the FE Jacobi scheme (2.12)) needs very small CFL number γ=0.1 to
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achieve the convergence. This is because a forward Euler time discretization with a very
high order linear spatial discretization (even a high order linear upwind one) suffers from
linear stability problem. The nonlinear stable WENO discretization can help against lin-
ear instability. As a result, the FE Jacobi scheme can converge with a small CFL number
which leads to large iteration numbers and the most CPU time among these four iterative
schemes. With a high order TVD RK scheme (the third order here), the RK Jacobi scheme
(2.14)-(2.16) under WENO5 discretization is both linearly and nonlinearly stable. Hence
a much larger CFL number γ= 1.0 can be used. The iteration numbers and CPU costs
are reduced a lot by using the RK Jacobi scheme rather than the FE Jacobi scheme. Fast
sweeping techniques improve the convergence of Jacobi schemes significantly, as shown
in Tables 1 and 2 for the performance of the RK sweeping scheme (2.17)-(2.19) and the
FE sweeping scheme (2.13). On the most refined mesh for this example, we can see that
the RK sweeping scheme just needs about 30% iteration number and CPU time of the RK
Jacobi scheme to converge, while the FE sweeping scheme only needs about 5% iteration
number and CPU time of the FE Jacobi scheme. Furthermore, it is interesting to see that
with the fast sweeping technique, the FE sweeping scheme can also use a large CFL num-
ber γ=1.0. So it suggests that the fast sweeping technique improves the linear stability of
the forward Euler scheme when it is applied in a high order spatial scheme. For a steady
state calculation, since the accuracy in the time direction is not a concern, the forward
Euler time marching actually has an advantage that it is just a simple one stage method
comparing to multi-stage Runge-Kutta schemes. However, due to its linear stability is-
sue with a high order spatial scheme, it is not practically useful. Now this problem is
solved by using the fast sweeping technique, i.e., using the FE sweeping scheme rather
than the FE Jacobi scheme. Actually, as shown in Tables 1 and 2, the FE sweeping scheme
is the most efficient one among all four iterative methods. For RK type schemes, the RK
sweeping scheme and the RK Jacobi scheme converge at similar γ values.

Next we use this example to show that the fixed-point sweeping method can be ap-
plied in arbitrary monotone fluxes, not only just the Lax-Friedrichs flux splitting (2.7).
An alternative formulation of WENO schemes, developed in [8, 17], needs to be used for
constructing numerical fluxes based on the point values of the numerical solution. In this
alternative formulation, the numerical fluxes f̂i+1/2 are obtained by Taylor expansion.
The fifth order accuracy is achieved by using

f̂i+ 1
2
= fi+ 1

2
− 1

24
∆x2 fxx|i+ 1

2
+

7

5760
∆x4 fxxxx|i+ 1

2
, (3.4)

where the first term can be approximated by any monotone flux

fi+ 1
2
=h

(

u−
i+ 1

2

,u+
i+ 1

2

)

. (3.5)

The values u+
i+1/2 and u−

i+1/2 are obtained by the WENO5 approximations based on the
point values of the numerical solution. Here we test three different monotone fluxes
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including the Godunov flux

h(a,b)=

{

mina≤x≤b f (u) if a≤b,

maxb≤x≤a f (u) if a>b;
(3.6)

the Engquist-Osher flux

h(a,b)=
∫ a

0
max( f ′(u),0)du+

∫ b

0
min( f ′(u),0)du+ f (0); (3.7)

and the Lax-Friedrichs flux

h(a,b)=
1

2

[

f (a)+ f (b)−α(b−a)
]

, (3.8)

where α=maxu | f ′(u)| is a constant and the maximum is taken over the relevant range
of u. For the other terms in (3.4), as that pointed out in [8], they only need lower order
approximations and they contribute much less to spurious oscillations due to at least ∆x2

in their coefficients. Specifically, fxx|i+1/2 should be approximated at least by a scheme
with third order accuracy due to the ∆x2 term and fxxxx|i+1/2 should have at least a first
order accuracy approximation due to the ∆x4 term in (3.4). For this example, we have

f (u)xx =(ux)
2+u·uxx, (3.9)

f (u)xxxx=3(uxx)
2+4 ux ·uxxx+u·uxxxx. (3.10)

Central differences are used to approximate ux, uxx, uxxx and uxxxx as following:

u′(x)|i+ 1
2
=

1

24h
(ui−1−27ui+27ui+1−ui+2)+O(h4), (3.11)

u′′(x)|i+ 1
2
=

1

18h2
(−ui−1+81ui+81ui+1−ui+2)−

80

18h2
(u+

i+ 1
2

+u−
i+ 1

2

)+O(h3), (3.12)

u′′′(x)|i+ 1
2
=

1

h3
(−ui−1+3ui−3ui+1+ui+2)+O(h2), (3.13)

u′′′′(x)|i+ 1
2
=

8

3h4
(ui−1−9ui−9ui+1+ui+2)+

8·8
3h4

(u+
i+ 1

2

+u−
i+ 1

2

)+O(h). (3.14)

Note that to approximate ui+1/2, we directly use the average of u+
i+1/2 and u−

i+1/2, which
are both fifth order approximations of ui+1/2. Since the FE sweeping scheme is the most
efficient one among all four iterative methods, we applied the Lax-Friedrichs flux, the
Godunov flux and the Engquist-Osher flux in the FE sweeping scheme to solve this prob-
lem. The numerical results are reported in Table 3 and Table 4 for the original smooth-
ness indicators and the new smoothness indicators respectively. We observe that all tests
achieve fifth order accuracy up to round-off errors. Slight reductions of the L∞ order for
the N=320 mesh are due to accumulations of round-off errors. In terms of efficiency, the
FE sweeping scheme has similar performance for different monotone fluxes.
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Table 3: Example 1. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers
and CPU times of the FE sweeping scheme with different monotone fluxes. The original smoothness indicators
(2.6) are used in WENO5. CPU time unit: second. γ=0.9.

Lax-Friedrichs flux

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 5.66e-6 1.21e-5 9 132 0.001

20 1.98e-7 4.84 4.80e-7 19 4.66 173 0.003

40 6.43e-9 4.94 1.63e-8 39 4.88 199 0.006

80 2.04e-10 4.98 5.25e-10 79 4.95 241 0.015

160 6.34e-12 5.01 1.65e-11 159 4.99 363 0.046

320 1.91e-13 5.06 8.79e-13 319 4.23 564 0.14

Godunov flux

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 4.15e-6 9.46e-6 9 152 0.001

20 1.42e-7 4.87 3.65e-7 19 4.69 195 0.003

40 4.58e-9 4.95 1.22e-8 39 4.91 231 0.007

80 1.45e-10 4.98 3.90e-10 79 4.97 287 0.019

160 4.49e-12 5.01 1.22e-11 159 5.00 403 0.05

320 1.34e-13 5.07 5.76e-13 315 4.40 642 0.16

Engquist-Osher flux

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 4.15e-6 9.46e-6 9 152 0.001

20 1.42e-7 4.87 3.65e-7 19 4.69 195 0.003

40 4.58e-9 4.95 1.22e-8 39 4.91 231 0.007

80 1.45e-10 4.98 3.90e-10 79 4.97 287 0.018

160 4.49e-12 5.01 1.22e-11 159 5.00 403 0.049

320 1.34e-13 5.07 5.76e-13 315 4.40 642 0.16

Remark 3.1. This example can have different steady state solutions for different initial
conditions. For a specific initial condition, there is an unique steady state solution. Our
sweeping methods are based on time-marching schemes. While the methods have time-
step size constraint by the CFL condition, they converge to the stable steady state for a
specific well-posed initial-boundary-value problem.

3.2 Example 2. 1D shallow water equation

In this example, we apply these iterative schemes in solving a one-dimensional system,
the shallow water equation

(

h
hu

)

t

+

(

hu

hu2+ 1
2 gh2

)

x

=

(

0
−ghbx

)

,
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Table 4: Example 1. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers and
CPU times of the FE sweeping scheme with different monotone fluxes. The new smoothness indicators (2.9)
are used in WENO5. CPU time unit: second. γ=0.9.

Lax-Friedrichs flux

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 6.21e-6 1.38e-5 9 130 0.001

20 2.01e-7 4.95 4.89e-7 19 4.82 176 0.003

40 6.47e-9 4.96 1.63e-8 39 4.90 193 0.006

80 2.05e-10 4.98 5.27e-10 79 4.95 301 0.018

160 6.43e-12 4.99 1.66e-11 159 4.99 362 0.042

320 1.99e-13 5.01 6.79e-13 315 4.61 572 0.14

Godunov flux

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 4.62e-6 1.08e-5 9 136 0.001

20 1.44e-7 5.00 3.72e-7 19 4.86 205 0.003

40 4.61e-9 4.97 1.22e-8 39 4.93 241 0.007

80 1.45e-10 4.99 3.91e-10 79 4.97 307 0.018

160 4.55e-12 5.00 1.24e-11 157 4.98 585 0.067

320 1.40e-13 5.02 5.58e-13 315 4.47 634 0.15

Engquist-Osher flux

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

10 4.62e-6 1.08e-5 9 136 0.001

20 1.44e-7 5.00 3.72e-7 19 4.86 205 0.003

40 4.61e-9 4.97 1.22e-8 39 4.93 241 0.007

80 1.45e-10 4.99 3.91e-10 79 4.97 307 0.018

160 4.55e-12 5.00 1.24e-11 157 4.98 585 0.067

320 1.40e-13 5.02 5.58e-13 315 4.47 634 0.15

where h denotes the water height, u is the velocity of the fluid, b(x) represents the bot-
tom topography, and g is the gravitational constant. We consider the smooth bottom
topography given by

b(x)=5e−
2
5 (x−5)2

, x∈ [0,10].

This problem has the steady state solution

h+b=10, hu=0.

The exact solution is used as the initial guess in the iterations. Since the exact steady
state solution of the PDE does not satisfy the numerical schemes, we can observe con-
vergence behavior of iterative schemes starting from it. We impose the exact solution for
numerical values at boundary points. The fifth order WENO scheme with the first order
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Table 5: Example 2. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers and
CPU times of four different iterative schemes. The original smoothness indicators (2.6) are used in U1WENO5.
CPU time unit: second.

RK Jacobi, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.57e-6 - 1.39e-5 38 - 846 0.17

160 3.85e-8 6.06 2.43e-7 82 5.84 1440 0.57

320 6.05e-10 5.99 3.75e-9 158 6.02 2361 1.86

RK Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.57e-6 - 1.39e-5 38 - 303 5.56e-2

160 3.85e-8 6.06 2.43e-7 78 5.84 516 0.19

320 6.05e-10 5.99 3.75e-9 162 6.02 1071 0.79

FE Jacobi, γ=0.1

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.57e-6 - 1.39e-5 42 - 3054 0.57

160 3.85e-8 6.06 2.43e-7 82 5.84 4818 1.79

320 - - - - - not conv -

FE Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.57e-6 - 1.39e-5 42 - 175 3.15e-2

160 3.85e-8 6.06 2.43e-7 82 5.84 272 0.10

320 6.05e-10 5.99 3.75e-9 162 6.02 460 0.34

upwind biased interpolation (2.10) (called “U1WENO5” in [20]) is used in the iterative
schemes. The results for four different iterative schemes with the original smoothness in-
dicators (2.6) in the U1WENO5 are presented in Table 5. And the results for these iterative
schemes with the new smoothness indicators (2.9) in the fifth order WENO scheme with
the first order upwind biased interpolation (called “U1ZSWENO5” in [20]) are reported
in Table 6. We observe that all schemes achieve similar numerical errors and higher than
fifth order accuracy in this example. Maximum errors generally occur at grid points near
the middle of the domain where the extrema point is. About convergence of these itera-
tive schemes, similar to Example 1, the direct forward Euler scheme with U1WENO5 /
U1ZSWENO5 (i.e., the FE Jacobi scheme) needs very small CFL number γ=0.1 to achieve
the convergence for N=80 and N=160. For N=320, residues of the direct forward Euler
scheme with U1WENO5 / U1ZSWENO5 stop at the level of 10−9 and fail to reach the
convergence criterion ResA < 10−12. Large number of iterations and the most CPU time
among four iterative schemes are needed for the FE Jacobi scheme. With the fast sweep-
ing technique, the direct forward Euler scheme with U1WENO5 / U1ZSWENO5 (i.e., the
FE sweeping scheme) converges with much smaller iteration numbers and CPU times,
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Table 6: Example 2. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers and
CPU times of four different iterative schemes. The new smoothness indicators (2.9) are used in U1ZSWENO5.
CPU time unit: second.

RK Jacobi, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.48e-6 - 2.33e-5 40 - 861 0.16

160 3.82e-8 6.02 2.60e-7 80 6.49 1449 0.54

320 6.00e-10 5.99 3.58e-9 160 6.18 2373 1.76

RK Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.48e-6 - 2.33e-5 40 - 306 5.27e-2

160 3.82e-8 6.02 2.60e-7 80 6.49 516 0.18

320 6.00e-10 5.99 3.58e-9 160 6.18 924 0.64

FE Jacobi, γ=0.1

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.48e-6 - 2.33e-5 40 - 2847 0.50

160 3.82e-8 6.02 2.60e-7 80 6.49 4996 1.73

320 - - - - - not conv -

FE Sweeping, γ=1.0

N L1 error L1 order L∞ error L∞ index i L∞ order iter # CPU time

80 2.48e-6 - 2.33e-5 40 - 322 5.45e-2

160 3.82e-8 6.02 2.60e-7 80 6.49 273 9.31e-2

320 6.00e-10 5.99 3.58e-9 160 6.18 462 0.31

and it turns out to be the most efficient scheme among these four iterative schemes. A
much larger CFL number γ = 1.0 can be used and the scheme converges for the most
refined mesh N=320 without any difficulty. Specifically, CPU times of the FE sweeping
scheme is about 5% of that of the FE Jacobi scheme, 18% of that of the RK Jacobi scheme,
and around 50% of that of the RK sweeping scheme.

3.3 Example 3. 2D Burgers’ equation

In this example we test the iterative schemes for solving the steady state of a two-dimension-
al problem, the two-dimensional Burgers’ equation with a source term

ut+

(

1√
2

u2

2

)

x

+

(

1√
2

u2

2

)

y

=sin

(

x+y√
2

)

cos

(

x+y√
2

)

,

(x,y)∈
[

π

4
√

2
,

3π

4
√

2

]

×
[

π

4
√

2
,

3π

4
√

2

]

.
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Table 7: Example 3. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers and
CPU times of four different iterative schemes. The original smoothness indicators (2.6) are used in WENO5.
CPU time unit: second.

RK Jacobi, γ=1.0

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 2.46e-6 1.23e-5 (9,9) 270 4.30e-2

20×20 6.31e-8 5.29 3.50e-7 (19,19) 5.14 342 0.23

40×40 1.37e-9 5.52 8.98e-9 (39,39) 5.28 513 1.42

80×80 2.95e-11 5.54 1.93e-10 (79,79) 5.54 855 9.54

RK Sweeping, γ=1.0

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 2.46e-6 1.23e-5 (9,9) 159 2.41e-2

20×20 6.31e-8 5.29 3.50e-7 (19,19) 5.14 186 0.12

40×40 1.37e-9 5.52 8.99e-9 (39,39) 5.28 273 0.70

80×80 2.95e-11 5.54 2.07e-10 (79,79) 5.44 450 4.72

FE Jacobi, γ=0.1

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 2.46e-6 1.23e-5 (9,9) 1195 0.18

20×20 6.31e-8 5.29 3.50e-7 (19,19) 5.14 1439 0.92

40×40 1.37e-9 5.52 8.99e-9 (39,39) 5.28 1822 3.16

80×80 2.95e-11 5.54 2.08e-10 (79,79) 5.43 3178 33.67

FE Sweeping, γ=1.0

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 2.46e-6 1.23e-5 (9,9) 113 1.77e-2

20×20 6.31e-8 5.29 3.50e-7 (19,19) 5.14 133 8.39e-2

40×40 1.37e-9 5.52 8.99e-9 (39,39) 5.28 181 0.47

80×80 2.95e-11 5.54 2.07e-10 (79,79) 5.44 286 3.04

The initial condition

u(x,y,0)=βsin

(

x+y√
2

)

is used as the initial guess in the iterations. Take β=1.5 and the exact steady state solution
is

u(x,y,∞)=sin

(

x+y√
2

)

.

For the purpose of testing the schemes, we impose exact steady state solution on bound-
ary points. The results for four different iterative schemes with the original smoothness
indicators (2.6) in the WENO5 are presented in Table 7. The results for these iterative
schemes with the new smoothness indicators (2.9) in the WENO5 are reported in Table 8.
Similar as the 1D Burgers’ equation, We observe that all schemes achieve similar numer-
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Table 8: Example 3. Accuracy, the grid point where maximum error occurs (L∞ index i), iteration numbers
and CPU times of four different iterative schemes. The new smoothness indicators (2.9) are used in WENO5.
CPU time unit: second.

RK Jacobi, γ=1.0

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 4.33e-6 1.41e-5 (9,9) 270 4.04e-2

20×20 9.33e-8 5.54 3.85e-7 (19,19) 5.19 351 0.22

40×40 2.03e-9 5.53 1.08e-8 (39,39) 5.16 528 1.35

80×80 4.30e-11 5.56 2.63e-10 (79,79) 5.36 867 8.88

RK Sweeping, γ=1.0

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 4.33e-6 1.41e-5 (9,9) 159 2.28e-2

20×20 9.33e-8 5.54 3.85e-7 (19,19) 5.19 198 0.12

40×40 2.03e-9 5.53 1.08e-8 (39,39) 5.16 279 0.67

80×80 4.30e-11 5.56 2.82e-10 (79,79) 5.26 447 4.41

FE Jacobi, γ=0.1

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 4.33e-6 1.41e-5 (9,9) 1166 0.17

20×20 9.33e-8 5.54 3.85e-7 (19,19) 5.19 1409 0.84

40×40 2.03e-9 5.53 1.08e-8 (39,39) 5.16 1937 4.74

80×80 4.30e-11 5.56 2.83e-10 (79,79) 5.25 3209 32.04

FE Sweeping, γ=1.0

N×N L1 error L1 order L∞ error L∞ index (i, j) L∞ order iter # CPU time

10×10 4.33e-6 1.41e-5 (9,9) 110 1.59e-2

20×20 9.33e-8 5.54 3.85e-7 (19,19) 5.19 136 8.00e-2

40×40 2.03e-9 5.53 1.08e-8 (39,39) 5.16 193 0.47

80×80 4.30e-11 5.56 2.82e-10 (79,79) 5.26 289 2.84

ical errors and fifth order accuracy when they converge, and maximum errors generally
occur at grid points close to the boundary. Comparing the iterative schemes’ efficiency,
we obtain the same conclusion as that for the 1D problems. The forward Euler sweep-
ing scheme (the FE sweeping scheme) is the most efficient one among all four iterative
methods as shown in Table 7 and Table 8.

3.4 Example 4. One-dimensional steady shock

Now we test the iterative schemes for solving steady state of Euler systems. First we
consider a one-dimensional steady shock problem

Ut+F(U)x=0, (3.15)
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where U =(ρ,ρu,e)T , F(U)= (ρu,ρu2+p,u(e+p))T. Here ρ,u,e are the density, velocity,
and total energy respectively. p is the pressure which is related to the total energy by
e= p

γ′−1+
1
2 ρu2, and the ratio of specific heat γ′=1.4.

The computational domain is x∈ [−1,1]. It is divided to 400 uniformly spaced mesh
points. The initial condition of the flow Mach number at the left of the shock is M∞ =
2. The shock is located at x = 0. Periodic boundary conditions are applied. The initial
condition used to start the iterations is given by the Rankine-Hugoniot jump condition
[16] as follows:

U(x,0)=

{

Ul, if x<0;

Ur, if x>0,
(3.16)

where
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
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.

The initial condition is also the exact solution of the steady state for this problem. How-
ever as before, since the exact steady state solution of the PDE does not satisfy the numer-
ical schemes, we can observe convergence behavior of iterative schemes starting from it.
The initial condition will evolve to numerical steady states of the schemes.

This example is used to study convergence improvement of fifth order WENO scheme
for solving steady state solutions of Euler equations in [20, 21]. Here our focus is to ex-
amine the effect of Gauss-Seidel sweeping technique on reduction of iteration number
and computational time required for convergence to steady state. In [21], it is shown that
the fifth order WENO schemes with the new smoothness indicator (called “ZSWENO”
scheme) can reduce the average residue for this example down to machine zero. Also
it is pointed out in [20] that both the new smoothness indicator used in ZSWENO and
the technique proposed in [20] with the first order, the second order and WENO upwind-
biased interpolation can remove post-shock oscillation completely in this 1D steady shock
problem. So here we just use the fifth order WENO schemes with the new smoothness
indicator (i.e., the ZSWENO scheme) in the four different iterative schemes to solve this
problem.

First, the FE Jacobi iterative scheme (2.12) is used to solve this example. Different
CFL numbers γ are tested. Similar as previous examples, although the fifth order linear
scheme with forward Euler is linearly unstable, the nonlinear stable WENO procedure
can help in stabilizing the scheme. As a result, the scheme (2.12) can converge with a
small CFL number γ. In this example, numerical tests show that γ needs to be less than
or equal to 0.2. For different CFL numbers γ, number of iterations required to achieve
convergence (i.e. to satisfy ResA < 10−12), the final time and total CPU time when con-
vergence is obtained are reported in Table 9. If γ= 0.3, the residue hangs at 10−1.3 and
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Figure 1: Example 4. 1D steady shock problem. The evolution history of average residue along with iterations
of four different iterative schemes with different CFL numbers. Top left: the FE Jacobi scheme; top right: the
FE sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK sweeping scheme.

does not decrease till the pre-set maximum iteration number 100,000 is reached. In Fig. 1,
the residue history in terms of iterations for different CFL numbers using the FE Jacobi
scheme with the fifth order ZSWENO is presented in the upper-left subgraph (the pic-
ture with title “FE ZSWENO”). The numerical solutions of density ρ when the scheme
converges (for γ = 0.1, 0.2) or when the pre-set maximum iteration number is reached
(for γ= 0.3) are presented in the upper-left subgraphs of Figs. 2 and 3. We can see that
for γ = 0.3, the numerical solution itself suffers from oscillation both in upstream and
downstream of the shock and the residue can not settle down to a low value. There is no
oscillation observed for γ=0.1, 0.2, for which the FE Jacobi iterative scheme converges.

Then we further test the FE sweeping method with the fifth order ZSWENO and
different CFL numbers to solve this problem. In the presented pictures, the results by
the FE sweeping method with the fifth order ZSWENO have the title “FE FS ZSWENO”.
When γ is less than or equal to 1.1, the scheme converges. The residue blows up when
γ = 1.2. Number of iterations required for convergence, the final time and total CPU
time when the scheme converges are reported in Table 10 for different CFL numbers.
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Figure 2: Example 4. 1D steady shock problem. Zoomed density distribution (upstream) of the solutions of
four different iterative schemes with different CFL numbers. Top left: the FE Jacobi scheme; top right: the FE
sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK sweeping scheme.

We observe that the iteration number required for convergence is significantly reduced
comparing with the FE Jacobi scheme, due to that much larger CFL numbers can be
used by using the fast sweeping technique. The total CPU time is largely saved (the FE
sweeping needs 3.76 seconds with the largest possible CFL number while the FE Jacobi
needs 14.16 seconds). It is also worth noting that for γ = 0.1, 0.2 where both the FE
Jacobi scheme and the FE sweeping scheme converge, numbers of iterations required
for convergence of the FE sweeping scheme is slightly smaller than that of the FE Jacobi
scheme (see Tables 9 and 10). However, CPU time for the FE sweeping scheme is more
than that of the FE Jacobi scheme. The reason is that since the newest numerical values are
always used whenever available in the Gauss-Seidel procedure, it is needed to calculate
f̂i+1/2, the numerical flux at i+1/2, twice. Namely, one is for updating numerical value
at the point i and the other is for that at the point i+1 since the newest numerical values
in the stencil for computing f̂i+1/2 are different when updating values at i and i+1. This
results in extra computational time for the FE sweeping method. Despite of this extra
computation, the large CFL number made possible by the FE sweeping method leads
to a more efficient scheme, i.e. fewer iterations and less computational time required
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Figure 3: Example 4. 1D steady shock problem. Zoomed density distribution (downstream) of the solutions of
four different iterative schemes with different CFL numbers. Top left: the FE Jacobi scheme; top right: the FE
sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK sweeping scheme.

for convergence than that of the FE Jacobi method. Residue history of the FE sweeping
scheme for various CFL numbers is shown in the upper-right subgraph of Fig. 1. The
numerical solutions of density ρ when the scheme converges are presented in the upper-
right subgraphs of Fig. 2 and Fig. 3. No post-shock oscillation is observed as expected.

It is also interesting to see the computation efficiency effects by using Gauss-Seidel
sweeping method on the RK type iterative schemes. The RK Jacobi scheme with the
fifth order ZSWENO is given the title “RK ZSWENO” in the presented pictures. The
RK sweeping scheme with the fifth order ZSWENO is given the title “RK FS ZSWENO”.
We test different CFL numbers. The RK Jacobi scheme converges if γ is less than or
equal to 1.4, i.e., the convergence criterion ResA <10−12 is satisfied. Number of iterations
required for convergence, the final time and total CPU time when the scheme converges
for different CFL numbers are shown in Table 11. If γ=1.5, the residue oscillates between
10−7 and 10−8 till the pre-set maximum iteration number 100,000 is reached. The residue
hangs at 10−2.2 for γ = 1.6. Residue history of the RK Jacobi scheme for various CFL
numbers is shown in the lower-left subgraph of Fig. 1. The numerical solutions of density
ρ when the scheme converges (for γ=0.1, 0.4, 1.0, 1.1, 1.4) or when the pre-set maximum
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Table 9: Example 4. 1D steady shock. The FE Jacobi scheme with the fifth order ZSWENO is used. Number
of iterations, the final time and total CPU time when convergence is obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 27353 9.12 27.36

0.2 14146 9.43 14.16

0.3 not convergent

Table 10: Example 4. 1D steady shock. The FE sweeping scheme with the fifth order ZSWENO is used.
Number of iterations, the final time and total CPU time when convergence is obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 26344 8.78 44.85

0.2 12270 8.18 20.95

0.3 7958 7.96 13.61

0.5 4992 8.32 8.71

0.8 3054 8.14 5.32

1.0 2426 8.09 4.20

1.1 2162 7.93 3.76

1.2 not convergent

Table 11: Example 4. 1D steady shock. The RK Jacobi scheme with the fifth order ZSWENO is used. Number
of iterations, the final time and total CPU time when convergence is obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 78954 8.77 82.21

0.4 19812 8.81 21.08

1.0 7596 8.44 8.07

1.1 6867 8.39 7.30

1.4 5286 8.22 5.52

1.5 not convergent

Table 12: Example 4. 1D steady shock. The RK sweeping scheme with the fifth order ZSWENO is used.
Number of iterations, the final time and total CPU time when convergence is obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 44964 5.00 76.99

0.4 9480 4.21 16.47

1.0 3882 4.31 6.77

1.1 3504 4.28 6.10

1.2 not convergent
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iteration number is reached (for γ=1.5, 1.6) are presented in the lower-left subgraphs of
Fig. 2 and Fig. 3. We can see that for γ= 1.5, 1.6 even the residues cannot settle down
to a low level, the numerical solutions are acceptable for this example, although it is
not the general case. Then we further test different CFL numbers for the RK sweeping
scheme with the fifth order ZSWENO. If γ is less than or equal to 1.1, the RK sweeping
scheme converges. The residue blows up when γ=1.2. Number of iterations required for
convergence, the final time and total CPU time when the scheme converges for different
CFL numbers are reported in Table 12. Again, with the Gauss-Seidel sweeping technique,
we observe that the iteration number required for convergence is significantly reduced,
around by half for the same γ. However, due to the same reason discussed earlier that
f̂i+1/2, the numerical flux at i+1/2 needs to be calculated twice in Gauss-Seidel procedure
for the RK sweeping method, although the iteration number is reduced to about half of
that of the RK Jacobi method, the computational cost is saved with an amount less than
half for the same CFL number. Residue history of the RK sweeping scheme for various
CFL numbers is shown in the lower-right subgraph of Fig. 1. The numerical solutions of
density ρ (for γ=0.1, 0.4, 1.0, 1.1) are presented in the lower-right subgraphs of Fig. 2 and
Fig. 3.

For this one-dimensional steady shock problem, we draw the same conclusion as pre-
vious examples. The FE sweeping method is the most efficient approach for fifth order
WENO computation of the steady state problem among the four methods discussed here,
in terms of both iteration number and CPU time. This is further verified by the following
two dimensional simulations of Euler systems.

3.5 Example 5. A two-dimensional oblique steady shock

In this subsection, we use these four iterative methods to simulate a two-dimensional
oblique steady shock problem, which is also tested in [21] and [20]. The shock has an
angle of 135◦ with the positive x-direction. The flow Mach number at the left of the shock
is M∞ = 2. The computational domain is 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2. The initial oblique
shock passes the point (3,0). The domain is divided into 200×100 equally spaced points
with ∆x=∆y. With periodic boundary condition along the shock direction implemented,
the residue of the first order upwind biased interpolation fifth order WENO scheme
(U1WENO) can settle down to 10−12 as that shown in [20]. U1WENO is also shown as
the most efficient scheme among those to offer the best results for this example in [20]. So
here we use the fifth order U1WENO as our WENO scheme for this example to study the
effect of introducing Gauss-Seidel sweeping method on the reduction of iteration num-
ber and computational time. Convergence criterion is set to the same value as before, i.e.,
10−12.

First, the FE Jacobi scheme with the fifth order U1WENO scheme (entitled “FE
U1WENO” in the presented pictures) is used to solve this example. Different CFL num-
bers γ are tested. Similar to the one-dimensional steady shock example, the numerical
tests show that the scheme only converges when γ is less than or equal to 0.1. Number of
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Figure 4: Example 5. 135◦ oblique shock of M∞ = 2 problem. The evolution history of average residue along
with iterations of four different iterative schemes with different CFL numbers. Top left: the FE Jacobi scheme;
top right: the FE sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK sweeping
scheme.

iterations required for convergence (i.e. ResA <10−12), the final time and total CPU time
when the scheme converges are reported in Table 13 for different CFL numbers. When
γ = 0.2, the residue hangs at 10−3.1 till the pre-set maximum iteration number 100,000
is reached. For γ= 0.3, the residue hangs at an even higher level. In Fig. 4, the residue
history in terms of iterations for different CFL numbers using the FE Jacobi scheme with
the fifth order U1WENO is presented in the upper-left subgraph. The numerical density
distribution near the shock along the horizontal line y=1 when the scheme converges (for
γ= 0.1) or when the pre-set maximum iteration number is reached (for γ= 0.2, 0.3) are
presented in the upper-left subgraphs of Fig. 5 and Fig. 6. We can see that for γ=0.2, even
the residue cannot settle down to 10−12, the numerical density distribution is acceptable.
However for γ=0.3, the numerical solution has huge post-shock oscillations.

Then we test the FE sweeping scheme with the fifth order U1WENO (entitled “FE
FS U1WENO” in the presented pictures). If γ is less than or equal to 1.0, the scheme
converges. The residue blows up when γ= 1.2. Number of iterations required for con-
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Figure 5: Example 5. 135◦ oblique shock of M∞ =2 problem. Zoomed density distribution (upstream) of the
solutions along the line y=1 by four different iterative schemes with different CFL numbers. Top left: the FE
Jacobi scheme; top right: the FE sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK
sweeping scheme.

vergence, the final time and total CPU time when the scheme converges are reported in
Table 14 for different CFL numbers. Similar to the observation from the one-dimensional
steady shock, the iteration number required for convergence is significantly reduced com-
paring with the FE Jacobi scheme, due to that much larger CFL numbers can be used by
using the fast sweeping technique. The total CPU time is largely saved. The FE sweeping
scheme only needs 616 seconds CPU time with the largest possible CFL number while
the FE Jacobi scheme needs 5510 seconds CPU time to achieve convergence. Residue
history in terms of iterations for the FE sweeping scheme with various CFL numbers is
shown in the upper-right subgraph of Fig. 4. The numerical density distribution near the
shock along the horizontal line y = 1 when the scheme converges are presented in the
upper-right subgraphs of Fig. 5 and Fig. 6.

We further examine the computational efficiency effects of the Gauss-Seidel sweeping
method on the RK iterative schemes. The RK Jacobi scheme with the fifth order U1WENO
is given the title “RK U1WENO” in the presented pictures. The RK sweeping scheme
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Figure 6: Example 5. 135◦ oblique shock of M∞ = 2 problem. Zoomed density distribution (downstream) of
the solutions along the line y=1 by four different iterative schemes with different CFL numbers. Top left: the
FE Jacobi scheme; top right: the FE sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the
RK sweeping scheme.

with the fifth order U1WENO is given the title “RK FS U1WENO”. We test different CFL
numbers. Number of iterations required for convergence, the final time and total CPU
time when the scheme converges are reported in Table 15 for the RK Jacobi scheme and
Table 16 for the RK sweeping scheme. Both schemes converge if γ is less than or equal
to 1.0. The residue of the RK Jacobi scheme hangs around 10−2.2 if γ= 1.2, and around
10−1.9 if γ=1.4. The residue of the RK sweeping scheme blows up for γ=1.2 and γ=1.4.
From Table 15 and Table 16, for a fixed γ, we can see that the RK sweeping method needs
much fewer iterations than the RK Jacobi method to achieve convergence and also less
CPU costs. In the bottom pictures of Fig. 4, we present the evolution of average residues
in terms of iterations for both the RK Jacobi scheme and the RK sweeping scheme. We
observe no oscillation in numerical density distribution for both schemes when they con-
verge in the bottom pictures of Fig. 5 and Fig. 6. However, post-shock oscillation can be
observed in Fig. 6 for the RK Jacobi scheme with γ=1.4, in which case the scheme does
not converge.
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Table 13: Example 5. 135◦ Oblique steady shock wave. The FE Jacobi scheme with the fifth order U1WENO
is used. Number of iterations, the final time and total CPU time when convergence is obtained. CPU time unit:
second.

γ: CFL number iteration number final time CPU time

0.1 23729 22.26 5510

0.2 not convergent

Table 14: Example 5. 135◦ Oblique steady shock wave. The FE sweeping scheme with the fifth order U1WENO
is used. Number of iterations, the final time and total CPU time when convergence is obtained. CPU time unit:
second.

γ: CFL number iteration number final time CPU time

0.1 27017 25.36 8569

0.2 15749 29.56 4960

0.4 7689 28.87 2428

0.6 4317 24.31 1357

0.8 3137 23.56 988

1.0 1953 18.32 616

1.2 not convergent

Table 15: Example 5. 135◦ Oblique steady shock wave. The RK Jacobi scheme with the fifth order U1WENO
is used. Number of iterations, the final time and total CPU time when convergence is obtained. CPU time unit:
second.

γ: CFL number iteration number final time CPU time

0.1 95463 29.87 22152

0.2 46734 29.24 10907

0.4 22788 28.52 5309

1.0 9507 29.74 2213

1.2 not convergent

1.4 not convergent

Table 16: Example 5. 135◦ Oblique steady shock wave. The RK sweeping scheme with the fifth order U1WENO
is used. Number of iterations, the final time and total CPU time when convergence is obtained. CPU time unit:
second.

γ: CFL number iteration number final time CPU time

0.1 43755 13.69 13655

0.2 25059 15.68 7826

0.4 12123 15.17 3812

1.0 3027 9.47 951

1.2 not convergent

1.4 not convergent
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Overall, comparing the computational costs of all four different iterative schemes for
this two-dimensional problem, we conclude that the FE sweeping scheme with the fifth
order U1WENO is still the most efficient one in terms of both iteration number and CPU
time. This is consistent with the conclusion obtained in the previous examples.

3.6 Example 6. Regular shock reflection

In this subsection, the regular shock reflection problem is used to test the iterative
schemes. This problem is a typical benchmark problem of two dimensional steady
flow. The computational domain is chosen to be [0,4.128]×[0,1] such that the impinging
shock wave and the reflected shock wave pass through two corners of the top boundary,
see [20]. The computational grid is 200×50. This example is a special and difficult prob-
lem since even the techniques proposed in [20, 21] can not make average residue settle
down to machine zero. The first order upwind biased interpolation fifth order WENO
scheme with new smoothness indicator (U1ZSWENO) is the best converged scheme for
this example as that shown in [20], giving an average residue of 10−4.4 when applying
characteristic boundary treatment. So here we use the U1ZSWENO scheme as our base
WENO scheme in the four iterative schemes to study the computational efficiency im-
provement by the Gauss-Seidel sweeping method.

We observe that when characteristic boundary condition is applied as in [20], the
average residue of the FE sweeping scheme with the fifth order U1ZSWENO (entitled
“FE FS U1ZSWENO” in the presented pictures) cannot be driven down to 10−4.4, the
level achieved by the U1ZSWENO scheme with the original Runge-Kutta time marching
in [20] (i.e., the RK Jacobi scheme, entitled “RK U1ZSWENO” in the presented pictures).
Such inconsistency makes it difficult to compare the computation efficiency, i.e. iteration
number and CPU time required for convergence, for the FE sweeping scheme and the
RK Jacobi scheme because their residues settle down to different levels. So here rather
than the characteristic boundary condition, we apply exact values obtained by Rankine-
Hugoniot condition on the left, the right, and the top boundaries, see [21]. Reflective
boundary condition is applied on the bottom boundary. Using this boundary treatment,
residues of both schemes can reach 10−3.5. Even though it is greater than 10−4.4, the con-
sistency makes it convenient for us to compare computation efficiency of the FE sweeping
scheme (the most efficient one in all previous examples) and the classical time marching
method used in [20, 21]. Hence for this example, we choose 10−3.5 as the convergence
criterion.

In Table 17, Table 18 and Table 19, number of iterations required for convergence, the
final time and total CPU time when the scheme converges are reported for the FE Jacobi
scheme with the fifth order U1ZSWENO (entitled “FE U1ZSWENO” in the presented
pictures), the FE sweeping scheme with the fifth order U1ZSWENO, and the RK Jacobi
scheme with the fifth order U1ZSWENO respectively. The FE Jacobi scheme needs to use
a small CFL number γ=0.1 to achieve convergence. The residue hangs at 10−2.4 if γ=0.2.
With the help of fast sweeping technique, the FE sweeping scheme can achieve much
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Table 17: Example 6. Regular shock reflection. The FE Jacobi scheme with the fifth order U1ZSWENO is used.
Convergence criterion is 10−3.5. Number of iterations, the final time and total CPU time when convergence is
obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 8303 9.15 970

0.2 not convergent

Table 18: Example 6. Regular shock reflection. The FE sweeping scheme with the fifth order U1ZSWENO
is used. Convergence criterion is 10−3.5. Number of iterations, the final time and total CPU time when
convergence is obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 8249 9.10 1292

0.2 4053 8.94 634

0.3 2661 8.80 415

0.4 2017 8.90 316

0.5 5797 31.99 900

0.8 not convergent

Table 19: Example 6. Regular shock reflection. The RK Jacobi scheme with the fifth order U1ZSWENO is used.
Convergence criterion is 10−3.5. Number of iterations, the final time and total CPU time when convergence is
obtained. CPU time unit: second.

γ: CFL number iteration number final time CPU time

0.1 25068 9.21 2961

0.2 12558 9.23 1475

0.3 8454 9.32 994

0.4 6378 9.38 751

0.5 not convergent

0.8 not convergent

larger CFL numbers. From numerical results, we see that the CFL numbers of the FE
sweeping scheme can be as large as those for the classical RK scheme. With γ=0.1 to 0.4
both schemes can reach the convergence criterion 10−3.5. It is interesting to observe that
for γ=0.5, the residue of the FE sweeping scheme finally reaches 10−3.5 after an unusually
many iterations. It is further verified by the upper-right subgraph of Fig. 7, which shows
that the residue hangs at 10−3.4 for a while before it finally settles down to 10−3.5. On
the other hand, the residue for the RK Jacobi scheme with γ=0.5 always hangs at 10−3.4

till the pre-set maximum iteration number is reached. This indicates that γ=0.5 is on the
boundary of CFL numbers to reach the convergence criterion 10−3.5. If γ=0.8, the residue
of the FE sweeping scheme hangs at 10−2.3. For the RK Jacobi scheme, it hangs at 10−2.5

if γ = 0.8. For this problem, the average residues of the RK sweeping scheme hang at
10−3.3 even for very small CFL number γ=0.1 and cannot meet the convergence criterion
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Figure 7: Example 6. Regular shock reflection. The evolution history of average residue along with iterations
of four different iterative schemes with different CFL numbers. Top left: the FE Jacobi scheme; top right: the
FE sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK sweeping scheme.

10−3.5 till the pre-set maximum iteration number (30,000 for this example) is reached. The
details can be observed in Fig. 7, in which we present the evolution of average residues
along with iterations for these four iterative schemes. Numerical zoomed density dis-
tributions are shown in Fig. 8. 2D contour plots of numerical solutions are presented in
Fig. 9. Again, for this example, the plots of numerical solutions are acceptable even for
the cases that the average residues are not able to reach a low level. Overall no post-
shock oscillation is observed. From the presented data, we draw the same conclusion as
the previous examples, i.e., the FE sweeping scheme has the least CPU cost (316 seconds
for the CFL number γ=0.4) and is the most efficient scheme to compute steady state for
this shock reflection problem.

4 Concluding remarks

To compute steady state of hyperbolic conservation laws, the forward Euler time march-
ing is preferred since only one stage and one step is used, as time direction accuracy has
no effects on the numerical accuracy of steady state solutions. However, a higher order



L. Wu et al. / Commun. Comput. Phys., 20 (2016), pp. 835-869 867

X
0.9 1 1.1 1.2 1.3

D
en

si
ty

1.67

1.68

1.69

1.7

1.71
FE FS U1ZSWENO

CFL = 0.1
CFL = 0.2
CFL = 0.3
CFL = 0.4
CFL = 0.5
CFL = 0.8

X
0.9 1 1.1 1.2 1.3

D
en

si
ty

1.67

1.68

1.69

1.7

1.71
RK FS U1ZSWENO

CFL = 0.1
CFL = 0.2
CFL = 0.3
CFL = 0.4
CFL = 0.5
CFL = 0.8

X
0.9 1 1.1 1.2 1.3

D
en

si
ty

1.67

1.68

1.69

1.7

1.71
FE U1ZSWENO

CFL = 0.1
CFL = 0.2

X
0.9 1 1.1 1.2 1.3

D
en

si
ty

1.67

1.68

1.69

1.7

1.71
RK U1ZSWENO

CFL = 0.1
CFL = 0.2
CFL = 0.3
CFL = 0.4
CFL = 0.5
CFL = 0.8

Figure 8: Example 6. Regular shock reflection. Zoomed density distribution near the impinging shock along the
line y=0.5 by four different iterative schemes with different CFL numbers. Top left: the FE Jacobi scheme; top
right: the FE sweeping scheme; bottom left: the RK Jacobi scheme; bottom right: the RK sweeping scheme.
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Figure 9: Example 6. Regular shock reflection. Density contours of numerical solutions by four different iterative
schemes with different CFL numbers. Top left: the FE Jacobi scheme; top right: the FE sweeping scheme;
bottom left: the RK Jacobi scheme; bottom right: the RK sweeping scheme. CFL number γ=0.1 for the FE
Jacobi scheme and γ=0.4 for the rest of three schemes.
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spatial scheme (e.g., a fifth order scheme) with the forward Euler time marching is lin-
early unstable. Nonlinear stable schemes such as WENO schemes can help to stabilize
the computation by the forward Euler but it requires a very small CFL number to con-
verge to steady state, as shown in this paper. Hence the computation is very inefficient.
In this paper, based on fifth order WENO schemes which improve the convergence of
the classical WENO schemes by removing slight post-shock oscillations, we design fifth
order fixed-point sweeping WENO methods for steady state of hyperbolic conservation
laws. It is discovered that the fast sweeping technique can largely improve the stability
of high order spatial scheme with the forward Euler time marching. Extensive numeri-
cal experiments are performed to compare four different iterative schemes including the
regular forward Euler and Runge-Kutta time marching methods, and the ones coupled
with fast sweeping technique. All numerical examples show that the forward Euler time
discretization with fast sweeping technique is the most efficient approach for fifth or-
der WENO computations of the steady state of hyperbolic conservation laws problems.
Our fixed-point iterations are based on time-marching schemes. The advantage is that
the computed steady state is stable and carries physical properties of the system and the
initial condition. The methods have time-step size constraint by the CFL condition. It is
interesting to design other fixed-point sweeping methods which are independent of time-
marching schemes, and they are free of the CFL-condition and have linear computational
complexity as that in the homotopy method [5]. The keys are how to design a fixed-point
method which is a contractive mapping for nonlinear problems and how to overcome
the possible singularity difficulty since the iterations may not follow the physical time
marching steps. This is one of our future work.
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