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H I G H L I G H T S
c The protein universe can be realized in a 60-dimensional Euclidean space termed as the protein space.
c The distance between two points in protein space represents the biological distance of the corresponding two proteins.
c We propose a natural and unique graphical representation for inferring protein phylogenies.
c Our new approach will solve the fundamental question of how proteins are distributed in the protein universe.
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a b s t r a c t

Current methods cannot tell us what the nature of the protein universe is concretely. They are based on

different models of amino acid substitution and multiple sequence alignment which is an NP-hard

problem and requires manual intervention. Protein structural analysis also gives a direction for mapping

the protein universe. Unfortunately, now only a minuscule fraction of proteins’ 3-dimensional structures

are known. Furthermore, the phylogenetic tree representations are not unique for any existing tree

construction methods. Here we develop a novel method to realize the nature of protein universe. We show

the protein universe can be realized as a protein space in 60-dimensional Euclidean space using a distance

based on a normalized distribution of amino acids. Every protein is in one-to-one correspondence with a

point in protein space, where proteins with similar properties stay close together. Thus the distance

between two points in protein space represents the biological distance of the corresponding two proteins.

We also propose a natural graphical representation for inferring phylogenies. The representation is natural

and unique based on the biological distances of proteins in protein space. This will solve the fundamental

question of how proteins are distributed in the protein universe.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The protein universe is the collection of all known proteins
(Ladunga, 1992). It is a large and mysterious entity, which is an
essential underpinning of all biology (Levitt, 2009). The current
methods (Levitt, 2009; Dokholyan et al., 2002; Jaroszewski et al.,
2009; Koonin, 2007; Koonin et al., 2002; Povolotskaya and
Kondrashov, 2010) to reveal the nature of the protein universe
cluster sequences into families by similarities. However, these
methods cannot even tell us what the nature of the protein universe
is concretely. Moreover, they are based on different models of amino
acid substitution (Yang, 2006) and require manual intervention, and
therefore the results are often controversial. On the other hand, the
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methods generate protein families using multiple sequence align-
ment (Altschul et al., 1990; Lipman., Pearson (1985); Smith and
Waterman, 1981) which is an NP-hard problem. Analysis of 3-
dimensional structures of proteins also gives a direction for map-
ping the protein universe (Holm and Sander, 1996). Unfortunately,
up to now, only a minuscule fraction of proteins’ 3-dimensional
structures are known (Berman et al., 2000). Therefore, the current
methods are impossible to annotate the huge protein universe of
8 million members.

Detecting homology may help in partially realizing the nature of
protein universe. Domains play an important role in studying the
homology of proteins. Domains in protein sequences and structures
can evolve, function, and exist independently of the rest of the
protein chain. Because they are independently stable, domains
become the important bases for inferring homology and classifying
proteins. Many studies (Bateman et al., 2004; Corpet et al., 2000)
show that protein domains are powerful in the analysis of newly
discovered protein sequences. However, many proteins consist of at
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least two domains. These domains and nature of their interactions
determine the function of the protein. Therefore, multidomain
proteins make the deduction of homology very difficult.
For example, if protein 1 contains domains A and B, protein
2 contains domains B and C, protein 3 contains domains C and D,
then are protein 1 and protein 3 homologous? This simple example
indicates the inadequacy of domain-based analysis methods.

The total number of all protein sequences, i.e., the size of the
protein universe, is very large. A question of fundamental and
practical interest is how these sequences are distributed in this
universe (Koonin et al., 2002). The answer of this question may
reveal important aspects of the evolution of proteins from a diverse
range of organisms. To answer this question, we need to have a
space where all proteins live so that this question makes sense.

We develop a novel method, protein space, to realize the nature of
protein universe that is motivated from our previous studies of
genomes (Yu et al., 2010; Deng et al., 2011). Unlike the current
protein databases, our proposed protein space is a space where all
proteins live, which supports simultaneous comparative study for all
available proteins. We can accomplish the ‘‘impossible mission’’ of
characterizing the huge protein universe in a relatively short time
period. Furthermore, we propose a novel graphical representation for
protein phylogeny. The representation is natural and unique based on
the Euclidean distances of proteins in protein space. This will solve
the fundamental question of how proteins are distributed in the
protein universe.
2. Materials and methods

We will construct our protein space as a subspace in R20Nþ20

(NZ2) by means of the natural vector mapping which is based on
the global distributions of the protein sequences. Every protein is in
one-to-one correspondence with a point in this protein space. The
Euclidean distance between two points truly represents the biolo-
gical distance of the corresponding two proteins. We can perform
phylogenetic and cluster analysis for all the existing proteins. A key
finding is that this protein space is a 60-dimensional space.
We emphasize that our natural vectors depend only on the numbers
and distributions of amino acids in the protein sequences. They do
not depend on any model assumption. There are two reasons that
the protein is represented as a point in the protein space without
losing inherent biological information. First, the 60-dimensional
natural vector mapping on all the data-sets we examined is
one-to-one. Second, we do not gain any more information using
the 80-dimensional natural vector mapping. Our new approach of
classifying proteins is not a domain-based method. Our protein
space is constructed based on the global sequence information of
proteins, and thus natural and convincing.

2.1. Natural vector

To avoid losing any important information hidden in protein
sequences, the pseudo amino acid composition (PseAAC) was
proposed (Chou, 2001, 2005) to replace the simple amino acid
composition (AAC) for representing the sample of a protein. For a
summary about its recent development and applications, see a
comprehensive review (Chou, 2009). Ever since the concept of
PseAAC was proposes by Chou (2001), its has rapidly penetrated
into almost all the fields of protein attribute prediction, such as
identifying bacterial virulent proteins (Nanni et al., 2011), predicting
homo-oligomeric proteins (Qiu et al., 2011), predicting protein
secondary structure content (Chen et al., 2006, 2009), predicting
supersecondary structure (Zou et al., 2011), predicting protein
structural classes (Lin and Li, 2007; Li et al., 2009; Sahu and
Panda, 2010), predicting protein quaternary structure (Zhang et al.,
2008), predicting enzyme family and sub-family classes (Zhou et al.,
2007; Qiu et al., 2010; Wang et al., 2010), predicting protein
subcellular location (Li and Li, 2008; Zhang et al., 2008; Du et al.,
2009; Fan and Li, 2012), predicting subcellular localization of
apoptosis proteins (Ding and Zhang, 2008; Jiang et al., 2008; Li
et al., 2009; Kandaswamy et al., 2010), predicting protein subnuclear
location (Jiang et al., 2008; Xiao et al., 2012), predicting protein
submitochondria locations (Lin et al., 2008; Nanni and Lumini, 2008;
Zeng et al., 2009), identifying cell wall lytic enzymes (Ding et al.,
2009), identifying risk type of human papillomaviruses (Esmaeili
et al., 2010), identifying DNA-binding proteins (Fang et al., 2008;
Lin et al., 2011), predicting G-Protein-Coupled Receptor Classes
(Qiu et al., 2009; Gu et al., 2010), predicting protein folding rates
(Guo et al., 2011), predicting outer membrane proteins (Lin, 2008;
Gao et al., 2010; Mahdavi and Jahandideh, 2011; Hayat and Khan,
2012), predicting cyclin proteins (Mohabatkar, 2010), predicting
GABA(A) receptor proteins (Mohabatkar et al., 2011), identifying
bacterial secreted proteins (Yu et al., 2010), identifying the cofactors
of oxidoreductases (Zhang and Fang, 2008), identifying lipase types
(Zhang et al., 2008), identifying protease family (Hu et al., 2011),
predicting Golgi protein types (Ding et al., 2011), classifying amino
acids (Georgiou et al., 2009), mapping protein sequences (Yau et al.,
2008; Wu et al., 2010; Yu et al., 2011), combining with cellular
automata (Xiao and Chou, 2011; Xiao et al., 2011; Xiao et al., 2011),
among many others.

According to Eq. (6) of a recent comprehensive review (Chou,
2011), the general form of Chou’s PseAAC can be formulated as
P¼ ½c1,c2,:::,cO�

T , where T is a transpose operator, while the
subscript O reflects the dimension of the vector and its value as
well as the components c1,c2,::: will be defined by a series of
feature extractions as elaborated below.

Let us first introduce the definition of normalized central
moments which is the most important part of natural vector.
Normalized central moments are defined as follows:

Dk
j ¼

Xnk

i ¼ 1

s½k�½i��mk

� �j

nj�1
k nj�1

, j¼ 1,2,. . .,nk

where k¼20 amino acids (A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T,
W, Y, V). nk denotes the number of amino acid k in the protein
sequence and n is the length of the protein sequence. s½k�½i� is the
distance from the first amino acid (regarded as origin) to the ith
amino acid k in the protein sequence. Tk ¼

Pnk

i ¼ 1 s½k�½i� denotes the
total distance of each set of 20 amino acids to the origin. mk ¼

Tk
nk

,
which is the mean value of the distances of the amino acids from the
origin. Therefore, we have the sequence of normalized central
moments: DA

1 , DA
2 ,:::, DA

nA
, DR

1, DR
2,. . ., DR

nR
,:::, DV

1 , DV
2 ,:::, DV

nV

D E
.

Observe that these are natural parameters associated to a
protein sequence.

Our method described below gives a complete understanding
of the distribution of 20 amino acids.
(1)
 The quantities of the 20 amino acids of a protein sequence are
chosen as the first 20 parameters of the natural vector. The 20
integers nA, nR, nN , y, nV denote the numbers of 20 amino
acids in a protein sequence.
(2)
 The second group of 20 numerical parameters which are a
part of the natural vector are the arithmetic mean values of
total distance for each of the 20 amino acids:

mk ¼
Tk

nk
, k¼ A, R, N,. . .,V:
(3)
 The final group of parameters that we include in the natural
vector are composed of normalized central moments as defined
earlier. If the distribution of each amino acid is different, protein
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sequences cannot be similar even though they may have the
same amino acid contents and the same total distance measure-
ment. Therefore, the information about distribution has also
been included in the natural vector. As described above, each
subset of numerical parameters is not sufficient to annotate
protein sequences. However, the combined numerical para-
meters are sufficient to characterize each protein sequence. So
the natural vector is given as follows:
nA,mA,DA
1 ,. . .,DA

nA
,nR,mR,DR

1,. . .,DR
nR

,::::,nV ,mV ,DV
1 ,. . .,DV

nV

D E

If a specific amino acid k does not exist, we define nk, mk, and
Dk

j to be zero. In order to express the vector elegantly, we rewrite
it as follows:

nA,nR,::::,nV ,mA,mR,:::,mV ,DA
1 ,DR

1,:::,DV
1 ,:::,DA

nA
,DR

nR
,. . .,DV

nV

D E
ð1Þ

Alternatively, the natural vector can be written as

nA,nR,::::,nV ,mA,mR,:::,mV ,DA
1 ,DR

1,:::,DV
1 ,:::,DA

np
,DR

np
,. . .,DV

np

D E
ð2Þ

where np ¼maxfnA,nR,:::,nV g. By definition, Dk
j ¼ 0, if j4nk.

We prove mathematically that the correspondence between a
protein sequence and its natural vector is one-to-one. Actually, all
the 1st order central moments DA

1 ,DR
1,:::,DV

1 are zero, so we do not
need to compute them in the natural vector. (See the theorem in
Supplementary material)

2.2. Construction of protein space

The natural vector is obtained by concatenating the first group of
parameters (the number of each base) and the second group of
parameters (the mean value of total distance of each base) to the
normalized central moments. Obviously, higher moments converge
to zero for a random generated sequence since for any given k,

Dk
j ¼

Xnk

i ¼ 1

s½k�½i��mk

� �j

nj�1
k nj�1

r
Xnk

i ¼ 1

max
i

9s½k�½i��mk9
j

nj�1
k nj�1

rnk

max
i

9s½k�½i��mk9
j

nj�1
k nj�1

r
nj

nj�2
k nj�1

¼
n

nj�2
k

It is clear thatnkZ2, otherwise, s½k�½i��mk ¼ 0, which yields
Dk

j ¼ 0. From the viewpoint of probability, suppose that the
expectation number of any amino acid is nk ¼ n=20(uniform
distribution) for a sequence with given length n, then

lim
j

n

nj�2
k

¼ lim
j

n

n=20
� �j�2

¼ lim
j

n� 20j�2

nj�2
¼ lim

j

20j�2

nj�3

clearly, this limit goes to 0 as j approaches nk. For example, for a
kinase C protein from human (GenBank ID: P05771) which has
length 671, we can get DA

2 ¼ 69:9855, DA
3 ¼�0:2916, DA

4 ¼ 0:0127,
DA

5 ¼�9:7059e�005, DA
6 ¼ 2:7284e�006: That is, the higher cen-

tral moments converge to zero very quickly.
We will use this natural vector to construct a protein space. A

protein space is a moduli space of proteins. In this space, each
point corresponds to a protein. The natural distance between two
proteins in the protein space reflects the biological distance
between these two proteins. For a protein sequence with length
n, we can compute its (nþ20)-dimensional natural vector

nA,nR,::::,nV ,mA,mR,:::,mV ,DA
2 ,DR

2,:::,DV
2 ,:::,DA

nA
,DR

nR
,. . .,DV

nV

D E
: ð3Þ

But the breakthrough of the subject is that we do not need to
compute the high central moments in the vector since we have
explained that the higher central moments converge to zero very
quickly. So, when computing the distance between two natural
vectors the high central moments hardly make any contribution.
Thus, we can get a low dimensional natural vector by only using
the first several central moments:

nA,nR,::::,nV ,mA,mR,:::,mV ,DA
2 ,DR

2,:::,DV
2 ,:::,DA

N ,DR
N ,. . .,DV

N

D E
ð4Þ

This vector is (20Nþ20)-dimensional with N {n. Using these
natural vectors, we can construct the protein space as a subspace in
R20Nþ20. Every protein corresponds to a point in this Euclidean space.
In this work, using the Euclidean distance between two points as a
metric, we perform phylogenetic and clustering analysis for the
protein sequences. We also tried other distances, such as Mahalanobis
distance, Manhattan distance, Chebyshev distance and cosine
distance. The current results show that the Euclidean distance is the
best of them. Actually, the Euclidian distance is the most natural
distance in the Euclidian space, but whether it is the best metric for
all the universal proteins still needs further study. Here we use N¼2
because the 60-dimensional natural vectors have allowed us to obtain
stable classified results—when higher moments are included, the
relationship of being close or farther away remains unchanged. Here
we present an example of three PKC proteins to show this. For three
PKC proteins (NP_001006133, nPKC; NP_001008716, nPKC;
NP_001012707, aPKC), we calculate their 80-dimensional natural
vectors (N¼3): NP_001006133, nPKC: (38, 35, 29, 43, 20, 47, 29, 47,
16, 39, 57, 64, 17, 50, 27, 39, 36, 11, 19, 36, 287.03, 336.06, 379.48,
425.07, 262.55, 351.45, 255.59, 328.55, 341.94, 347.33, 370.61,
355.22, 286.88, 387.28, 376.81, 385.56, 353.03, 377.18, 370.74,
309.61, 49.405, 57.129, 57.741, 43.69, 25.892, 71.847, 53.46, 45.969,
39.234, 61.83, 55.831, 56.245, 59.089, 60.672, 82.67, 61.97, 61.619,
55.095, 54.556, 45.66, 0.15244, 0.045811, 0.0063567, �0.08494,
0.1412, �0.032894, 0.37673, 0.0007835, 0.089498, �0.0092364,
�0.086433, 0.02586, 0.26779, �0.10689, �0.28529, �0.086607,
�0.03630, �0.43702, �0.12304, 0.039236); NP_001008716, nPKC:
(39, 28, 28, 40, 21, 47, 28, 44, 18, 40, 56, 63, 18, 47, 24, 32, 33, 10, 20,
37, 261.23, 320.32, 357.93, 392.73, 263.62, 341.66, 281.25, 346.11,
331.89, 347.07, 364.25, 341.03, 264.33, 384.45, 356.96, 331.19,
344.76, 355.4, 344.8, 312.35, 60.707, 60.429, 45.524, 47.915, 23.464,
65.424, 50.299, 39.828, 37.491, 48.41, 54.22, 54.973, 56.995, 57.679,
79.029, 69.966, 62.278, 54.331, 57.306, 49.799, 0.21819, 0.14251,
0.15492, �0.12262, 0.077574, �0.041408, 0.20865, �0.022511,
0.033844, �0.035522, �0.097136, 0.026068, 0.33381, �0.10588,
�0.19271, 0.033953, �0.050089, �0.31804, �0.15787, 0.046949);
NP_001012707, aPKC: (24, 37, 3, 44, 17, 46, 26, 37, 20, 31, 49, 33, 19,
33, 33, 36, 22, 7, 16, 34, 294.29, 251.73, 314.78, 315.48, 216.06,
301.17, 320.5, 304.62, 235.45, 288.81, 315.24, 282.33, 255.95, 336,
294.73, 284.81, 265.77, 286, 277.81, 326.24, 44.008, 37.624,
54.748, 55.53, 42.176, 52.532, 60.399, 40.566, 34.654, 48.619,
37.548, 41.273, 53.228, 56.898, 58.504, 49.77, 55.023, 45.686,
35.078, 46.843, 0.060023, 0.089067, �0.1222, �0.10414, 0.6895,
0.036974, �0.22546, �0.024875, 0.088956, 0.015227, �0.01682,
0.06324, 0.081133, �0.23701, 0.013292, �0.023058, �0.012138,
0.021487, 0.015769, �0.071503). We can see that the 3-order central
moments have already been approaching zero. The distance matrix
for these 80-dimensional vectors is:

The reason for this is because when computing the distance
between two natural vectors the high central moments
(approaching zero) hardly make any contribution. Moreover, the
60-dimensional natural vector mapping restricted on the dataset
we examined is still one-to-one mapping.

The protein space supports simultaneous comparative study
for all available proteins which other methods cannot do it in real
time. The results can be used to predict properties of unknown
proteins based on their amino acid sequences distribution. Once a
protein space has been constructed, it can be stored in a database.
There is no need to reconstruct the protein space for any
subsequent application, whereas in multiple alignment methods,
realignment is needed for add-on new sequences. Furthermore,
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one can have global comparison of all proteins simultaneously,
which no other existing method can achieve this. Thus, the
protein space provides a new powerful tool for analyzing the
classification of proteins and their phylogenetic relationships.
NP_001006133 NP_001008716 NP_001012707

NP_001006133 0 98.91 326.56
NP_001008716 98.91 0 262.52
NP_001012707 326.56 262.52 0

The distance matrix for the 60-dimensional vectors is still:

NP_001006133 NP_001008716 NP_001012707

NP_001006133 0 98.91 326.56
NP_001008716 98.91 0 262.52
NP_001012707 326.56 262.52 0
2.3. A novel graphical representation for protein phylogeny

Inferring phylogenies from molecular sequences classically has
two phases: a biological distance is estimated relying on alignment,
and then a tree is produced based on the distance. Unfortunately this
distance is not natural as it depends on the alignment parameters.
Distance matrices are usually used for phylogenetic analysis of DNA
and proteins. Many algorithms (Sokal and Michener, 1958; Fitch and
Margoliash, 1967; Saitou and Nei, 1987) may produce either rooted or
unrooted phylogenetic trees based on the distance matrices. For
example, the neighbor-joining algorithm (Saitou and Nei, 1987)
produces unrooted trees, while the UPGMA algorithm (Sokal and
Michener, 1958) produces rooted trees. Given a distance matrix, the
resulting trees are not unique for any existing tree construction
methods (Backeljau et al., 1996). Thus, the phylogenetic results are
controversial due to the above two basic problems.

Since we have already constructed natural distance between
two proteins, to overcome the disadvantages of existing methods,
we propose a natural graphical representation for inferring
phylogenies. Specifically, given a distance matrix of finite ele-
ments, the algorithm is as follows:
(1)
 For each element A, find the closest elements B1, B2, y, Bk to
A. Then draw directed lines from A toB1, B2, y, Bk.
(2)
 We then get many graphs after step (1). We compute the
distance matrix for these graphs. The distance between two
graphs is defined as the minimum of all distance between
any element in one graph and any element in the other
graph.
(3)
 We then obtain a new distance matrix, in which the elements
are the connected graphs obtained in step (2).
(4)
 Repeat the process in steps (1) and (2). Finally, we get one
connected graph for all elements, which is the final graphical
representation.
Fig. 1. The natural graphical representation of 124 proteins from PKC like subfamily.

We break the large original figure into three pieces: (A)–(C). This figure is Part (A).
A detailed example of the construction process is given in
Supplementary material. The direction in the graph can show the
closest elements of each element based on their biological
distances. For example, given a protein (A), biologists would like
to know which protein (B) is closest to (A), then an arrow from
(A) to (B) in the graph represents this relation. Furthermore, we
can let the lengths of lines in the graphical representation be
proportional with the biological distances in protein space. Here we
need to point out that the natural graphical representation is not
necessarily a tree. After realizing the protein universe of 8 million
members in our protein space, a cycle may exist in the graphical
representation. Actually, when one protein has two equidistant
nearest neighbors in the protein space, a cycle may exist in the
natural graphical representation (see a simulation example in sup-
plementary Fig. 1). In this case, the existence of cycle may provide
new information for the biologists, e.g. the evolutionary relationship
of proteins in the cycle may be not straight but circular, say, A evolves
into B, B evolves into C, and C evolves into A back.
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3. Results and discussion

We will use a real protein dataset to examine our proposed
protein space and its natural graphical representation. Protein
Fig. 2. The natural graphical representation of 124 proteins from PKC like

subfamily. This figure is Part (B).

Fig. 3. The natural graphical representation of 124 prote
kinase C (PKC) is a family of enzymes which are involved in
controlling the function of other proteins through the phosphor-
ylation of hydroxyl groups of serine and threonine amino acid
residues on these proteins. The structure of all PKC proteins
consists of a regulatory domain and a catalytic domain tethered
together by a hinge region. The regulatory domain is often the
principal determinant of classification, as the catalytic domain
tends to be highly conserved. PKC family is divided into three
subfamilies: conventional PKCs (cPKCs: a, bI, bII, and g), novel
PKCs (nPKCs: y, e, d, and Z), and atypical PKCs (aPKCs: l/i, z)
[Mellor and Parker, 1998]. However, a controversial group of
potential PKCs including PKCn and PKCm/PKD (protein kinase D)
has regulatory domains similar to PKCs, but their catalytic
domains are more similar to the myosin light-chain kinase of
Dictostelium (Hurley et al., 1997; Webb et al., 2000). Furthermore,
fungi have PKC homologs that characteristically contain more
residues than mammalian PKCs with significantly different reg-
ulatory domains but similar catalytic domains (Mellor and Parker,
1998). There are also PKC-related kinases (PRKs) that are found in
many animals and have features similar to fungal PKCs (Mellor
and Parker, 1998). Thus, domain-based classification of this group
is controversial because it is not based on the full protein.

As discussed above, the PKC-like superfamily is composed of six
categories of PKCs and PKC-related protein molecules: cPKC, nPKC,
aPKC, PKCmu (n, m, and D2 types), PKC1 (from fungus), and PRK
(similar to PKC1 but from animals). We examined a dataset of 124
proteins from the PKC-like superfamily as shown in Table S3 in
Supplementary material. Here we calculate the 60-dimensional

natural vector: nA,nR,::::,nV ,mA,mR,:::,mV ,DA
2 ,DR

2,:::,DV
2

D E
for the 124

proteins. By computing the Euclidean distances between these
vectors, we obtain the distance matrix. In Figs. 1–3, we give the
natural graphical representation for the 124 proteins. The lengths of
ins from PKC like subfamily. This figure is Part (C).
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lines in this graphical representation are proportional with the
biological distances among the proteins. Our classifying results for
these proteins totally agree with those from GenBank (NCBI)
descriptions and literature (see Table S3). For No. 5 (GenBank ID:
O17874), it is a PKC-like protein from C. elegans, and has a PKC-
related kinase homology region 1 domain which is often found in
vertebrate PKC and yeast PKC1 proteins. In the natural graphical
representation, it is closest to No. 89 (a PKC1 protein). Furthermore,
we check all the other PRK proteins in the dataset: No. 49
(from mouse), No. 62 (from human), No. 63 (from rat), No. 70
(from human), and No. 108 (from flog). Clearly, they are all from
vertebrate animals. Thus, we believe that PRK subfamily should be
divided into two smaller groups, one is from vertebrate animals
(PRK-v) and the other is from invertebrate animals (PRK-inv). Thus,
No. 5 belongs to a new subfamily PRK-inv, which is more close to
PKC1 subfamily than PRK-v. For No. 84 (GenBank ID: Q69G16),
GenBank describes it as cPKC. According to our result, the closest
protein to it is No. 102 (an aPKC protein), but the next closest to it is
No. 100 (a cPKC protein). Thus, our theory predicts that there are
some cPKC members missing in our dataset, lying between No. 84
and No. 100 in our protein space. It is the job for biologists to find
these new cPKC members. This unique natural graphical represen-
tation gives a whole picture of phylogenetic relationships of the PKC
like superfamily. It allows us to have global comparison of proteins
simultaneously, which no other existing method can achieve. For a
better direct comparison between our method and the traditional
method on protein sequence classification, we provide a phyloge-
netic tree of protein kinase C with the traditional graph representa-
tion as shown in Fig. 4. This figure is directly from the work of
Fig. 4. A phylogenetic tree of protein kinase C with the traditional graph

representation which is directly from the work of Mellor and Parker (1998).
Mellor and Parker (1998), and made by Clustal V software with
PAM 250 residue tables.

In order to further illustrate the efficiency of our method we
examine a dataset of beta-globins of 25 animals. The corresponding
natural graphical representation is shown in Fig. 5. From this figure,
we note that the 25 beta-globins are separated into two main
clusters by level-3 line. One cluster contains mammalian beta-
globins, and the other contains beta-globins from avian, fish, and
reptilian species. Because the chimpanzee beta-globin sequence is
the same as the human beta-globin sequence, these two proteins
have the same natural vector. For the same reason, black bear and
polar bear beta-globin sequences have the same natural vector.
Here we should point out that to get an accurate evolutionary tree
for organisms, the complete genome sequences may be necessary.
In this paper, we focus on the protein sequences. Despite of this,
this figure still clearly shows the similarity of these 25 protein
sequences.

In the above examples, we only use the 2nd order central
moments in the natural vector in Eq. (4). That is, the vector is

60-dimensional with N¼2: nA,nR,::::,nV ,mA,mR,:::,mV ,DA
2 ,DR

2,:::,DV
2

D E
.

Here we should emphasize that we do not need to calculate all
the moments to determine the biological information of proteins.
The 60-dimensional natural vectors have allowed us to obtain the
stable classified results because higher central moments converge
to 0 very quickly. In addition, we also check that the 60-
dimensional natural vector gives a one-to-one map on this real
dataset. Furthermore, our approach surpasses the multiple align-
ment method for both computational efficiency and biological
results (See the comparison with MSA method in Supplementary
material). Since user-friendly and publicly accessible web-servers
represent the future direction for developing practically more
useful predictors (Chou and Shen, 2009), we will make efforts in
our future work to provide a web-server for the method pre-
sented. Currently the source codes and dataset of this work are
freely available at http://homepages.math.uic.edu/�clyu/codes/
NaturalVector.rar.

The proposed graphical representation of protein space is natural
for two reasons. Firstly, the distances in the graphical representation
are based on natural vectors. The natural vectors are naturally
obtained from the original sequence, not any artificial parameters.
Secondly, the graphical representation is naturally based on the
minimum distances among any two proteins. The direction in the
graph can show the closest elements of each element based on their
distances. It is not based any tree-construction algorithms which
usually produce not unique resulting trees for the same distance
matrix (Buneman, 1974; Backeljau et al., 1996).

Our results suggest the following possible law of molecular
biology: the normalized distribution of amino acids may determine
the property of the protein. Our universe is a 4-dimensional space.
Physicists speculate the Big Bang theory which states that all the
galaxies must have originated from the same point. The protein
universe is the collection of all known proteins. Here realizing the
nature of the protein universe means that, we first find out how
proteins are distributed in the protein universe, and then try to find
the origin of protein phylogeny and explain the evolutionary process
of proteins. Actually, for the Big Bang theory of protein universe,
there have been many works on this field (Dokholyan et al., 2002;
Povolotskaya and Kondrashov, 2010). Unfortunately, these works
are not based on a concrete space of proteins. For the first time, we
are able to construct the protein universe concretely and show that
the protein universe is a 60-dimensional Euclidean space. In our
protein universe, the galaxies may correspond to a superfamily of
proteins while the star systems may correspond to a subfamily of
proteins. So we can speculate the Big Bang theory for the protein
universe may possibly be true. We can simply compute the centre of



Fig. 5. The natural graphical representation of 25 animal beta-globins.
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our protein universe. Of course, this conjecture needs further
in-depth study. We will present the results in our future work.
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