
J Sci Comput
DOI 10.1007/s10915-017-0376-0

A Globally Convergent Algorithm for Nonconvex
Optimization Based on Block Coordinate Update

Yangyang Xu1 · Wotao Yin2

Received: 14 March 2016 / Revised: 31 October 2016 / Accepted: 24 January 2017
© Springer Science+Business Media New York 2017

Abstract Nonconvex optimization arises in many areas of computational science and engi-
neering. However, most nonconvex optimization algorithms are only known to have local
convergence or subsequence convergence properties. In this paper, we propose an algorithm
for nonconvex optimization and establish its global convergence (of the whole sequence) to
a critical point. In addition, we give its asymptotic convergence rate and numerically demon-
strate its efficiency. In our algorithm, the variables of the underlying problem are either treated
as one block or multiple disjoint blocks. It is assumed that each non-differentiable compo-
nent of the objective function, or each constraint, applies only to one block of variables. The
differentiable components of the objective function, however, can involve multiple blocks of
variables together. Our algorithm updates one block of variables at a time by minimizing a
certain prox-linear surrogate, along with an extrapolation to accelerate its convergence. The
order of update can be either deterministically cyclic or randomly shuffled for each cycle. In
fact, our convergence analysis only needs that each block be updated at least once in every
fixed number of iterations. We show its global convergence (of the whole sequence) to a
critical point under fairly loose conditions including, in particular, the Kurdyka–Łojasiewicz
condition, which is satisfied by a broad class of nonconvex/nonsmooth applications. These
results, of course, remain valid when the underlying problem is convex.We apply our conver-
gence results to the coordinate descent iteration for non-convex regularized linear regression,
aswell as amodified rank-one residue iteration for nonnegativematrix factorization.We show
that both applications have global convergence. Numerically, we tested our algorithm on non-

This work is supported in part by NSF DMS-1317602, EECS-1462397, and ONR N000141712162.

B Yangyang Xu
yangyang.xu@ua.edu

Wotao Yin
wotaoyin@math.ucla.edu

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL, USA

2 Department of Mathematics, UCLA, Los Angeles, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0376-0&domain=pdf
http://orcid.org/0000-0002-4163-3723
http://orcid.org/0000-0001-6697-9731

J Sci Comput

negative matrix and tensor factorization problems, where random shuffling clearly improves
the chance to avoid low-quality local solutions.

Keywords Nonconvex optimization · Nonsmooth optimization · Block coordinate descent ·
Kurdyka–Łojasiewicz inequality · Prox-linear · Whole sequence convergence

1 Introduction

In this paper, we consider (nonconvex) optimization problems in the form of

minimize
x

F(x1, . . . , xs) ≡ f (x1, . . . , xs) +
s∑

i=1

ri (xi),

subject to xi ∈ Xi , i = 1, . . . , s,

(1)

where variable x = (x1, . . . , xs) ∈ R
n has s blocks, s ≥ 1, function f is continuously

differentiable, functions ri , i = 1, . . . , s, are proximable1 but not necessarily differentiable.
It is standard to assume that both f and ri are closed and proper and the sets Xi are closed
and nonempty. Convexity is not assumed for f , ri , orXi . By allowing ri to take the∞-value,
ri (xi) can incorporate the constraint xi ∈ Xi since enforcing the constraint is equivalent to
minimizing the indicator function of Xi , and ri can remain proper and closed. Therefore, in
the remainder of this paper, we do not include the constraints xi ∈ Xi . The functions ri can
incorporate regularization functions, often used to enforce certain properties or structures in
xi , for example, the nonconvex �p quasi-norm, 0 ≤ p < 1, which promotes solution sparsity.

Special cases of (1) include the following nonconvex problems: �p-quasi-norm (0 ≤
p < 1) regularized sparse regression problems [10,32,42], sparse dictionary learn-
ing [1,40,62], matrix rank minimization [50], matrix factorization with nonnegativ-
ity/sparsity/orthogonality regularization [27,33,47], (nonnegative) tensor decomposition
[29,57], and (sparse) higher-order principal component analysis [2].

Due to the lack of convexity, standard analysis tools such as convex inequalities and
Fejér-monotonicity cannot be applied to establish the convergence of the iterate sequence.
The case becomesmore difficult when the problem is nonsmooth. In these cases, convergence
analysis of existing algorithms is typically limited to objective convergence (to a possibly
non-minimal value) or the convergence of a certain subsequence of iterates to a critical point.
(Some exceptions will be reviewed below.) Although whole-sequence convergence is almost
always observed, it is rarely proved. This deficiency abates some widely used algorithms.
For example, KSVD [1] only has nonincreasing monotonicity of its objective sequence, and
iterative reweighted algorithms for sparse and low-rank recovery in [17,32,41] only has
subsequence convergence. Some other methods establish whole sequence convergence by
assuming stronger conditions such as local convexity (on at least a part of the objective) and
either unique or isolated limit points, which may be difficult to satisfy or to verify. In this
paper, we aim to establish whole sequence convergence with conditions that are provably
satisfied by a wide class of functions.

Block coordinate descent (BCD) (more precisely, block coordinate update) is very general
and widely used for solving both convex and nonconvex problems in the form of (1) with
multiple blocks of variables. Since only one block is updated at a time, it has a lowper-iteration

1 A function f is proximable if it is easy to obtain the minimizer of f (x) + 1
2γ ‖x − y‖2 for any input y and

γ > 0.

123

J Sci Comput

cost and small memory footprint. Recent literature [8,26,38,43,48,51,53] has found BCD
as a viable approach for “big data” problems.

1.1 Proposed Algorithm

In order to solve (1), we propose a block prox-linear (BPL) method, which updates a block
of variables at each iteration by minimizing a prox-linear surrogate function. Specifically, at
iteration k, a block bk ∈ {1, . . . , s} is selected and xk = (xk1, . . . , xks) is updated as follows:
for i = 1, . . . , s,

{
xki = xk−1

i , if i �= bk,
xki ∈ arg min

xi
〈∇xi f (x

k−1
�=i , x̂ki), xi 〉 + 1

2αk
‖xi − x̂ki ‖2 + ri (xi), if i = bk, (2)

where (xk−1
�=i , x̂ki) denotes the point (xk−1

1 , . . . , xk−1
i−1 , x̂ki , xk−1

i+1 , . . . , xk−1
s), αk > 0 is a step-

size and x̂ki is the extrapolation

x̂ki = xk−1
i + ωk(x

k−1
i − xprevi), (3)

where ωk ≥ 0 is an extrapolation weight and xprevi is the value of xi before it was updated
to xk−1

i . The framework of our method is given in Algorithm 1. At each iteration k, only the
block bk is updated.

Algorithm 1: Randomized/deterministic block prox-linear (BPL) method for problem
(1)

1 Initialization: x−1 = x0.
2 for k = 1, 2, . . . do
3 Pick bk ∈ {1, 2, . . . , s} in a deterministic or random manner.

4 Set αk , ωk and let xk ← (2).
5 if stopping criterion is satisfied then
6 Return xk .

While we can simply set ωk = 0, appropriate ωk > 0 can speed up the convergence; we
will demonstrate this in the numerical results below. We can set the stepsize αk = 1

γ Lk
with

any γ > 1, where Lk > 0 is the Lipschitz constant of ∇xi f (x
k−1
�=i , xi) about xi . When Lk is

unknown or difficult to bound, we can apply backtracking on αk under the criterion:

f (xk) ≤ f (xk−1) +
〈
∇xi f (x

k−1), xki − xk−1
i

〉
+ 1

2γαk
‖xki − xk−1

i ‖2.

1.2 Special Cases

When there is only one block, i.e., s = 1,Algorithm1 reduces to thewell-known (accelerated)
proximal gradient method (e.g., [7,22,44]). When the update block cycles from 1 through
s, Algorithm 1 reduces to the cyclic block proximal gradient (Cyc-BPG) method in [8,61].
We can also randomly shuffle the s blocks at the beginning of each cycle. We demonstrate in
Sect. 3 that random shuffling leads to better numerical performance. When the update block

123

J Sci Comput

is randomly selected following the probability pi > 0, where
∑s

i=1 pi = 1, Algorithm 1
reduces to the randomized block coordinate descent method (RBCD) (e.g., [37,38,43,51]).
Unlike these existing results, we do not assume convexity.

In our analysis, we impose an essentially cyclic assumption—each block is selected for
update at least once within every T ≥ s consecutive iterations—otherwise the order is
arbitrary. Our convergence results apply to all the above special cases except RBCD, whose
convergence analysis requires different strategies; see [38,43,51] for the convex case and
[37] for the nonconvex case.

1.3 Kurdyka–Łojasiewicz Property

To establish whole sequence convergence of Algorithm 1, a key assumption is the Kurdyka–
Łojasiewicz (KL) property of the objective function F .

A lot of functions are known to satisfy the KL property. Recent works [4, section 4]
and [61, section 2.2] give many specific examples that satisfy the property, such as the
�p-(quasi)norm ‖x‖p with p ∈ [0,+∞], any piecewise polynomial functions, indicator
functions of polyhedral set, orthogonal matrix set, and positive semidefinite cone, matrix
rank function, and so on.

Definition 1 (Kurdyka–Łojasiewicz property) A function ψ(x) satisfies the KL property at
point x̄ ∈ dom(∂ψ) if there exist η > 0, a neighborhood Bρ(x̄) � {x : ‖x − x̄‖ < ρ},
and a concave function φ(a) = c · a1−θ for some c > 0 and θ ∈ [0, 1) such that for any
x ∈ Bρ(x̄) ∩ dom(∂ψ) and ψ(x̄) < ψ(x) < ψ(x̄) + η, it holds

φ′(|ψ(x) − ψ(x̄)|)dist(0, ∂ψ(x)) ≥ 1, (4)

where dom(∂ψ) = {x : ∂ψ(x) �= ∅} and dist(0, ∂ψ(x)) = min{‖y‖ : y ∈ ∂ψ(x)}.
The KL property was introduced by Łojasiewicz [36] for real analytic functions. Kurdyka

[31] extended it to functions of the o-minimal structure. Recently, the KL inequality (4) was
further extended to nonsmooth sub-analytic functions [11]. The work [12] characterizes the
geometric meaning of the KL inequality.

1.4 Related Literature

There are many methods that solve general nonconvex problems. Methods in the papers
[6,15,18,21], the books [9,45], and in the references therein, do not break variables into
blocks. They usually have the properties of local convergence or subsequence convergence
to a critical point, or global convergence in terms of the violation of optimality conditions.
Next, we review BCD methods, which can significantly outperform their full coordinate
update if the problems or the updates satisfy the coordinate-friendly structure [48,54].

BCD has been extensively used in many applications. Its original form, block coordi-
nate minimization (BCM), which updates a block by minimizing the original objective with
respect to that block, dates back to the 1950s [24] and is closely related to the Gauss–Seidel
and SOR methods for linear equation systems. Its convergence was studied under a variety
of settings (cf. [23,49,55] and the references therein). The convergence rate of BCM was
established under the strong convexity assumption [39] for the multi-block case and under
the general convexity assumption [8] for the two-block case. To have even cheaper updates,
one can update a block approximately, for example, by minimizing an approximate objective
like was done in (2), instead of sticking to the original objective. The work [56] is a block
coordinate gradient descent (BCGD) method where taking a block gradient step is equivalent

123

J Sci Comput

to minimizing a certain prox-linear approximation of the objective. Its whole sequence con-
vergence and local convergence rate were established under the assumptions of a so-called
local Lipschitzian error bound and the convexity of the objective’s nondifferentiable part.
The randomized block coordinate descent (RBCD) method in [37,43] randomly chooses the
block to update at each iteration and is not essentially cyclic. Objective convergence was
established [43,51], and the violation of the first-order optimality condition was shown to
converge to zero [37]. There is no iterate convergence result for RBCD.

Some special cases of Algorithm 1 have been analyzed in the literature. Thework [61] uses
cyclic updates of a fixed order and assumes block-wise convexity; [13] studies two blocks
without extrapolation, namely, s = 2 and x̂ki = xk−1

i , ∀k in (2). A more general result is [5,
Lemma 2.6], where three conditions for whole sequence convergence are given and are met
by methods including averaged projection, proximal point, and forward-backward splitting.
Algorithm 1, however, does not satisfy the three conditions in [5].

The extrapolation technique in (3) has been applied to accelerate the (block) prox-linear
method for solving convex optimization problems (e.g., [7,38,44,51]). Recently, [22,61]
show that the (block) prox-linear iteration with extrapolation can still converge if the nons-
mooth part of the problem is convex, while the smooth part can be nonconvex. Because of
the convexity assumption, their convergence results do not apply to Algorithm 1 for solv-
ing the general nonconvex problem (1). Numerically, [35,58] demonstrate that extrapolation
technique can also accelerate algorithms for nonconvex matrix factorization problems.

1.5 Contributions

We summarize the main contributions of this paper as follows.

– We propose a block prox-linear (BPL) method for nonconvex smooth and nonsmooth
optimization. Extrapolation is used to accelerate it. To our best knowledge, this is the
first work of prox-linear acceleration for fully nonconvex problems (where both smooth
and nonsmooth terms are nonconvex) with a convergence guarantee. However, we have
not proved any improved convergence rate.

– Assuming essentially cyclic updates of the blocks, we obtain the whole sequence con-
vergence of BPL to a critical point with rate estimates, by first establishing subsequence
convergence and then applying the Kurdyka–Łojasiewicz (KL) property. Furthermore,
we tailor our convergence analysis to several existing algorithms, including non-convex
regularized linear regression and nonnegativematrix factorization, to improve their exist-
ing convergence results.

– We numerically tested BPL on nonnegative matrix and tensor factorization problems. At
each cycle of updates, the blocks were randomly shuffled. We observed that BPL was
very efficient and that random shuffling avoided local solutions more effectively than the
deterministic cyclic order.

1.6 Notation and Preliminaries

We restrict our discussion inRn equippedwith the Euclidean norm, denoted by ‖·‖. However,
all our results can be extended to general of primal and dual norm pairs. The lower-case letter
s is reserved for the number of blocks and �, L , Lk, . . . for various Lipschitz constants.
x<i is short for (x1, . . . , xi−1), x>i for (xi+1, . . . , xs), and x �=i for (x<i , x>i). We simplify
f (x<i , x̂i , x>i) to f (x �=i , x̂i). The distance of a point x to a set Y is denoted by dist(x,Y) =
infy∈Y ‖x − y‖.

123

J Sci Comput

Since the update may be aperiodic, extra notation is used for when and how many times
a block is updated. Let K[i, k] denote the set of iterations in which the i th block has been
selected to update till the kth iteration:

K[i, k] � {κ : bκ = i, 1 ≤ κ ≤ k} ⊆ {1, . . . , k}, (5)

and let

dki �
∣∣K[i, k]∣∣,

which is the number of times the i th block has been updated till iteration k. For k = 1, . . . ,
we have ∪s

i=1K[i, k] = [k] � {1, 2, . . . , k} and∑s
i=1 d

k
i = k.

Let xk be the value of x after the kth iteration, and for each block i , x̃ j
i be the value of xi

after its j th update. By letting j = dki , we have xki = x̃ j
i .

The extrapolated point in (2) (for i = bk) is computed from the last two updates of the
same block:

x̂ki = x̃ j−1
i + ωk(x̃

j−1
i − x̃ j−2

i), where j = dki , (6)

for someweight 0 ≤ ωk ≤ 1.We partition the set of Lipschitz constants and the extrapolation
weights into s disjoint subsets as

{Lκ : 1 ≤ κ ≤ k} = ∪s
i=1{Lκ : κ ∈ K[i, k]} � ∪s

i=1

{
L̃ j
i : 1 ≤ j ≤ dki

}
, (7a)

{ωκ : 1 ≤ κ ≤ k} = ∪s
i=1{ωκ : κ ∈ K[i, k]} � ∪s

i=1

{
ω̃

j
i : 1 ≤ j ≤ dki

}
. (7b)

Hence, for each block i , we have three sequences:

value of xi : x̃1i , x̃2i , . . . , x̃
dki
i , . . . ; (8a)

Lipschitz constant: L̃1
i , L̃

2
i , . . . , L̃

dki
i , . . . ; (8b)

extrapolation weight: ω̃1
i , ω̃

2
i , . . . , ω̃

dki
i , (8c)

For simplicity, we take stepsizes and extrapolation weights as follows

αk = 1

2Lk
, ∀k, ω̃

j
i ≤ δ

6

√
L̃ j−1
i /L̃ j

i , ∀i, j, for some δ < 1. (9)

However, if the problem (1) has more structures such as block convexity, we can use larger
αk and ωk ; see Remark 2. Table 1 summarizes the notation. In addition, we initialize x̃−1

i =
x̃0i = x0i , ∀i .

We make the following definitions, which can be found in [52].

Definition 2 (Limiting Fréchet subdifferential [30]) A vector g is a Fréchet subgradient of a
lower semicontinuous function F at x ∈ dom(F) if

lim inf
y→x,y �=x

F(y) − F(x) − 〈g, y − x〉
‖y − x‖ ≥ 0.

The set of Fréchet subgradient of F at x is called Fréchet subdifferential and denoted as
∂̂F(x). If x /∈ dom(F), then ∂̂F(x) = ∅.

The limiting Fréchet subdifferential is denoted by ∂F(x) and defined as

∂F(x) = {g: there is xm → x and gm ∈ ∂̂F(xm) such that gm → g}.

123

J Sci Comput

Table 1 Summary of notation

Notion Definition

s The total number of blocks

bk The update block selected at the kth iteration

K[i, k] The set of iterations up to k in which xi is updated; see (5)

dki
∣∣K[i, k]∣∣: the number of updates to xi within the first k iterations

xk The value of x after the kth iteration

x̃ j
i The value of xi after its j th update; see (8a)

Lk Gradient Lipschitz constant of the update block at the kth iteration; see (11)

L̃ j
i Gradient Lipschitz constant of block i at its j th update; see (7a) and (8b)

ωk The extrapolation weight used at the kth iteration

ω̃
j
i The extrapolation weight used at the j th update of xi ; see (7b) and (8c)

If F is differentiable2 at x, then ∂F(x) = ∂̂F(x) = {∇F(x)}; see [52, Exercise 8.8] for
example, and if F is convex, then ∂F(x) = {g:F(y) ≥ F(x) + 〈g, y − x〉, ∀y ∈ dom(F)}.
We use the limiting subdifferential for general nonconvex nonsmooth functions. For problem
(1), it holds that (see [4, Lemma 2.1] or [52, Prop. 10.6, pp. 426])

∂F(x) = {∇x1 f (x) + ∂r1(x1)} × · · · × {∇xs f (x) + ∂rs(xs)}, (10)

where X1 × X2 denotes the Cartesian product of X1 and X2 .

Definition 3 (Critical point) A point x∗ is called a critical point of F if 0 ∈ ∂F(x∗).

Definition 4 (Proximalmapping)For a proper, lower semicontinuous function r , its proximal
mapping proxr (·) is defined as

proxr (x) = arg miny
1

2
‖y − x‖2 + r(y).

As r is nonconvex, proxr (·) is generally set-valued. Using this notation, the update in (2)
can be written as (assume i = bk)

xki ∈ proxαkri

(
x̂ki − αk∇xi f

(
xk−1
�=i , x̂ki

))

1.7 Organization

The rest of the paper is organized as follows. Section 2 establishes convergence results.
Examples and applications are given in Sect. 3, and finally Sect. 4 concludes this paper.

2 Convergence Analysis

In this section, we analyze the convergence of Algorithm 1. Throughout our analysis, we
make the following assumptions.

2 A function F on R
n is differentiable at point x if there exists a vector g such that

limh→0
|F(x+h)−F(x)−g�h|

‖h‖ = 0

123

J Sci Comput

Assumption 1 F is proper and lower bounded in dom(F) � {x:F(x) < +∞}, f is con-
tinuously differentiable, and ri is proper lower semicontinuous for all i . Problem (1) has a
critical point x∗, i.e., 0 ∈ ∂F(x∗).

Assumption 2 Let i = bk .∇xi f (x
k−1
�=i , xi) has Lipschitz continuity constant Lk with respect

to xi , i.e., ∥∥∥∇xi f
(

xk−1
�=i , u

)
− ∇xi f

(
xk−1
�=i , v

)∥∥∥ ≤ Lk‖u − v‖, ∀u, v, (11)

and there exist constants 0 < � ≤ L < ∞, such that � ≤ Lk ≤ L for all k.

Assumption 3 (Essentially cyclic block update) In Algorithm 1, within any T consecutive
iterations, every block is updated at least one time.

Our analysis proceeds with several steps. We first estimate the objective decrease after
every iteration (see Lemma 1) and then establish a square summable result of the iterate
differences (see Proposition 1). Through the square summable result, we show a subsequence
convergence result that every limit point of the iterates is a critical point (see Theorem 1).
Assuming the KL property (see Definition 1) on the objective function and a monotonicity
condition (see Condition 1), we establish whole sequence convergence of our algorithm and
also give estimate of convergence rate (see Theorems 2 and 3).

We will show that a range of nontrivial ωk > 0 always exists to satisfy Condition 1
under a mild assumption, and thus one can backtrack ωk to ensure F(xk) ≤ F(xk−1), ∀k.
Also, from the result below in (12), one can simply set ωk = 0 and redo the kth update
if F(xk) > F(xk−1) is detected. Maintaining the monotonicity of F(xk) can significantly
improve the numerical performance of the algorithm, as shown in our numerical results below
and also in [46,60]. Note that subsequence convergence does not require this condition.

We begin our analysis with the following lemma. The proofs of all the lemmas and
propositions are given in “Appendix 1”.

Lemma 1 Take αk and ωk as in (9). After each iteration k, it holds

F(xk−1) − F(xk) ≥ c1 L̃
j
i

∥∥∥x̃ j−1
i − x̃ j

i

∥∥∥
2 − c2 L̃

j
i

(
ω̃

j
i

)2 ∥∥∥x̃ j−2
i − x̃ j−1

i

∥∥∥
2

(12)

≥ c1 L̃
j
i

∥∥∥x̃ j−1
i − x̃ j

i

∥∥∥
2 − c2 L̃

j−1
i

36
δ2
∥∥∥x̃ j−2

i − x̃ j−1
i

∥∥∥
2
, (13)

where c1 = 1
4 , c2 = 9, i = bk and j = dki .

Remark 1 We can relax the choices of αk and ωk in (9). For example, we can take αk =
1

γ Lk
, ∀k, and ω̃

j
i ≤ δ(γ−1)

2(γ+1)

√
L̃ j−1
i /L̃ j

i , ∀i, j for any γ > 1 and some δ < 1. Then, (12)

and (13) hold with c1 = γ−1
4 , c2 = (γ+1)2

γ−1 . In addition, if 0 < infk αk ≤ supk αk < ∞
(not necessary αk = 1

γ Lk
), (12) holds with positive c1 and c2, and the extrapolation weights

satisfy ω̃
j
i ≤ δ

√
(c1 L̃

j−1
i)/(c2 L̃

j
i),∀i, j for some δ < 1, then all our convergence results

below remain valid.
Note that dki = dk−1

i + 1 for i = bk and dki = dk−1
i ,∀i �= bk . Adopting the convention

that
∑q

j=p a j = 0 when q < p, we can write (13) into

F(xk−1) − F(xk) ≥
s∑

i=1

dki∑

j=dk−1
i +1

1

4

(
L̃ j
i

∥∥∥x̃ j−1
i − x̃ j

i

∥∥∥
2 − L̃ j−1

i δ2
∥∥∥x̃ j−2

i − x̃ j−1
i

∥∥∥
2
)

,

(14)

123

J Sci Comput

which will be used in our subsequent convergence analysis.

Remark 2 If f is block multi-convex, i.e., it is convex with respect to each block of variables
while keeping the remaining variables fixed, and ri is convex for all i , then taking αk = 1

Lk
,

we have (12) holds with c1 = 1
2 and c2 = 1

2 ; see the proof in “Appendix 1”. In this case, we

can take ω̃
j
i ≤ δ

√
L̃ j−1
i /L̃ j

i , ∀i, j for some δ < 1, and all our convergence results can be
shown through the same arguments.

2.1 Subsequence Convergence

Using Lemma 1, we can have the following result, through which we show subsequence
convergence of Algorithm 1.

Proposition 1 (Square summable) Let {xk}k≥1 be generated from Algorithm 1 with αk and
ωk taken from (9). We have

∞∑

k=1

‖xk−1 − xk‖2 < ∞. (15)

Theorem 1 (Subsequence convergence) Under Assumptions 1 through 3, let {xk}k≥1 be
generated from Algorithm 1 with αk and ωk taken from (9). Then any limit point x̄ of {xk}k≥1

is a critical point of (1). If the subsequence {xk}k∈K̄ converges to x̄, then

lim
K̄�k→∞

F(xk) = F(x̄). (16)

Remark 3 The existence of finite limit point is guaranteed if {xk}k≥1 is bounded, and for some
applications, the boundedness of {xk}k≥1 can be satisfied by setting appropriate parameters
in Algorithm 1; see examples in Sect. 3. If ri ’s are continuous, (16) immediately holds. Since
we only assume lower semi-continuity of ri ’s, F(x) may not converge to F(x̄) as x → x̄, so
(16) is not obvious.

Proof Assume x̄ is a limit point of {xk}k≥1. Then there exists an index set K so that the
subsequence {xk}k∈K converging to x̄. From (15), we have ‖xk−1 − xk‖ → 0 and thus
{xk+κ }k∈K → x̄ for any κ ≥ 0. Define

Ki =
{
k ∈ ∪T−1

κ=0 (K + κ):bk = i
}

, i = 1, . . . , s.

Take an arbitrary i ∈ {1, . . . , s}. NoteKi is an infinite set according to Assumption 3. Taking
another subsequence if necessary, Lk converges to some L̄i asKi � k → ∞. Note that since
αk = 1

2Lk
,∀k, for any k ∈ Ki ,

xki ∈ arg minxi

〈
∇xi f

(
xk−1
�=i , x̂ki

)
, xi − x̂ki

〉
+ Lk

∥∥∥xi − x̂ki

∥∥∥
2 + ri (xi). (17)

Note from (15) and (6) that x̂ki → x̄i asKi � k → ∞. Since f is continuously differentiable
and ri is lower semicontinuous, letting Ki � k → ∞ in (17) yields

ri (x̄i) ≤ lim inf
Ki�k→∞

(
∇xi f

(
xk−1
�=i , x̂ki

)
, xki − x̂ki 〉 + Lk

∥∥∥xki − x̂ki

∥∥∥
2 + ri

(
xki
))

(17)≤ lim inf
Ki�k→∞

(
∇xi f

(
xk−1
�=i , x̂ki

)
, xi − x̂ki 〉 + Lk

∥∥∥xi − x̂ki

∥∥∥
2 + ri (xi)

)
,

= 〈∇xi f (x̄), xi − x̄i
〉+ L̄i ‖xi − x̄i‖2 + ri (xi), ∀xi ∈ dom(F).

123

J Sci Comput

Hence,

x̄i ∈ arg minxi 〈∇xi f (x̄), xi − x̄i 〉 + L̄i‖xi − x̄i‖2 + ri (xi),

and x̄i satisfies the first-order optimality condition:

0 ∈ ∇xi f (x̄) + ∂ri (x̄i). (18)

Since (18) holds for arbitrary i ∈ {1, . . . , s}, x̄ is a critical point of (1).
In addition, (17) implies

〈
∇xi f

(
xk−1
�=i , x̂ki

)
, xki − x̂ki

〉
+ Lk

∥∥∥xki − x̂ki

∥∥∥
2 + ri

(
xki
)

≤
〈
∇xi f

(
xk−1
�=i , x̂ki

)
, x̄i − x̂ki

〉
+ Lk

∥∥∥x̄i − x̂ki

∥∥∥
2 + ri (x̄i).

Taking limit superior on both sides of the above inequality over k ∈ Ki gives lim sup
Ki�k→∞

ri (xki) ≤
ri (x̄i). Since ri is lower semi-continuous, lim inf

Ki�k→∞ri (xki) ≥ ri (x̄i), and thus

lim
Ki�k→∞ ri

(
xki
)

= ri (x̄i), i = 1, . . . , s.

Noting that f is continuous, we complete the proof. ��
2.2 Whole Sequence Convergence and Rate

In this subsection, we establish the whole sequence convergence and rate of Algorithm 1 by
assuming the following monotonicity condition.

Condition 1 (Nonincreasing objective) The weight ωk is chosen so that F(xk) ≤
F(xk−1), ∀k.
Remark 4 From (12), if ωk = 0,∀k, namely, no extrapolation, then Condition 1 holds.
However, extrapolation technique can often accelerate the algorithm. Although without the
monotonicity, Theorem 1 can still guarantee convergence of the algorithm, numerically we
notice that maintaining monotonicity of the objective can further improve the performance of
the algorithm. To employ extrapolation and also maintain monotonicity, one can first do the
update with a positive ωk and check the objective, and if F(xk) > F(xk−1), then redo the kth
update by usingωk = 0. For the problems that satisfy the assumptions of the next proposition,
one can findωk > 0 through backtracking to maintain the monotonicity of F(xk). In general,
how to choose ωk depends on specific applications. We will test two different settings of ωk

in the numerical experiments.

The following proposition shows that under mild assumptions, Condition 1 holds for certain
ωk > 0.

Proposition 2 Let i = bk. Assume proxαkri is single-valued near xk−1
i −αk∇xi f (x

k−1) and

xk−1
i /∈ arg min

xi
〈∇xi f (x

k−1), xi − xk−1
i 〉 + 1

2αk

∥∥∥xi − xk−1
i

∥∥∥
2 + ri (xi), (19)

namely, progress can still be made by updating the i th block. Then, there is ω̄k > 0 such that
for any ωk ∈ [0, ω̄k], we have F(xk) ≤ F(xk−1).

123

J Sci Comput

The proof of Proposition 2 involves the continuity of proxαkri and is deferred to “Proof
of Proposition 2” in Appendix 1.

Under Condition 1 and the KL property of F (Definition 1), we show that the sequence
{xk} converges as long as it has a finite limit point. We first establish a lemma, which has its
own importance and together with the KL property implies Lemma 2.6 of [5].

The result in Lemma 2 below is very general because we need to apply it to Algorithm 1 in
its general form. To ease understanding, let us go over its special cases. If s = 1, n1,m = m and
β = 0, then (21) below with α1,m = αm and A1,m = Am reduces to αm+1A2

m+1 ≤ Bm Am ,

which together with Young’s inequality gives
√

αAm+1 ≤
√

α

2 Am + 1
2
√

α
Bm . Hence, if

{Bm}m≥1 is summable, so will be {Am}m≥1. This result can be used to analyze the prox-
linear method. The more general case of s > 1, ni,m = m, ∀i and β = 0 applies to the cyclic
block prox-linearmethod. In this case, (21) reduces to

∑s
i=1 αi,m+1A2

i,m+1 ≤ Bm
∑s

i=1 Ai,m,

which together with the Young’s inequality implies

√
α

s∑

i=1

Ai,m+1 ≤ √
s

√√√√
s∑

i=1

αi,m+1A2
i,m+1 ≤ sτ

4
Bm + 1

τ

s∑

i=1

Ai,m, (20)

where τ is sufficiently large so that 1
τ

<
√

α. Less obviously but still, if {Bm}m≥1 is summable,
so will be {Ai,m}m≥1, ∀i . Finally, we will need β > 0 in (21) to analyze the accelerated block
prox-linear method.

Lemma 2 For nonnegative sequences {Ai, j } j≥0, {αi, j } j≥0, i = 1, . . . , s, and {Bm}m≥0, if

0 < α = inf
i, j

αi, j ≤ sup
i, j

αi, j = α < ∞,

and
s∑

i=1

ni,m+1∑

j=ni,m+1

(
αi, j A

2
i, j − αi, j−1β

2A2
i, j−1

) ≤ Bm

s∑

i=1

ni,m∑

j=ni,m−1+1

Ai, j , 0 ≤ m ≤ M, (21)

where 0 ≤ β < 1, and {ni,m}m≥0,∀i are nonnegative integer sequences satisfying: ni,m ≤
ni,m+1 ≤ ni,m + N ,∀i,m, for some integer N > 0. Then we have that for 0 ≤ M1 < M2 ≤
M,

s∑

i=1

ni,M2+1∑

j=ni,M1+1

Ai, j ≤ 4sN

α(1 − β)2

M2∑

m=M1

Bm +
(

√
s + 4β

√
αsN

(1 − β)
√

α

)
s∑

i=1

ni,M1∑

j=ni,M1−1+1

Ai, j .

(22)
In addition, if

∑∞
m=1 Bm < ∞, limm→∞ ni,m = ∞,∀i , and (21) holds for all m, then we

have ∞∑

j=1

Ai, j < ∞, ∀i. (23)

The proof of this lemma is given in “Proof of Lemma 2” in Appendix 1.

Remark 5 To apply (21) to the convergence analysis of Algorithm 1, we will use Ai, j for

‖x̃ j−1
i − x̃ j

i ‖ and relate αi, j to Lipschitz constant L̃ j
i . The second term in the bracket of the

left hand side of (21) is used to handle the extrapolation used in Algorithm 1, and we require
β < 1 such that the first term can dominate the second one after summation.

We also need the following result.

123

J Sci Comput

Proposition 3 Let {xk} be generated from Algorithm 1. For a specific iteration k ≥ 3T ,
assume xκ ∈ Bρ(x̄), κ = k − 3T, k − 3T + 1, . . . , k for some x̄ and ρ > 0. If for each i ,
∇xi f (x) is Lipschitz continuous with constant LG within B4ρ(x̄) with respect to x, i.e.,

‖∇xi f (y) − ∇xi f (z)‖ ≤ LG‖y − z‖, ∀y, z ∈ B4ρ(x̄),

then

dist(0, ∂F(xk)) ≤ (2(LG + 2L) + sLG
) s∑

i=1

dki∑

j=dk−3T
i +1

∥∥∥x̃ j−1
i − x̃ j

i

∥∥∥ . (24)

We are now ready to present and show the whole sequence convergence of Algorithm 1.

Theorem 2 (Whole sequence convergence) Suppose that Assumptions 1 through 3 and Con-
dition 1 hold. Let {xk}k≥1 be generated from Algorithm 1. Assume

1. {xk}k≥1 has a finite limit point x̄;
2. F satisfies the KL property (4) around x̄ with parameters ρ, η and θ .
3. For each i , ∇xi f (x) is Lipschitz continuous within B4ρ(x̄) with respect to x.

Then

lim
k→∞ xk = x̄.

Remark 6 Before proving the theorem, let us remark on the conditions 1–3. The condition
1 can be guaranteed if {xk}k≥1 has a bounded subsequence. The condition 2 is satisfied for a
broad class of applications aswementioned in Sect. 1.3. The condition 3 is aweak assumption
since it requires the Lipschitz continuity only in a bounded set.

Proof From (16) and Condition 1, we have F(xk) → F(x̄) as k → ∞. We consider two
cases depending on whether there is an integer K0 such that F(xK0) = F(x̄).
Case 1 Assume F(xk) > F(x̄), ∀k.

Since x̄ is a limit point of {xk} and according to (15), one can choose a sufficiently large
k0 such that the points xk0+κ , κ = 0, 1, . . . , 3T are all sufficiently close to x̄ and in Bρ(x̄),
and also the differences ‖xk0+κ − xk0+κ+1‖, κ = 0, 1, . . . , 3T are sufficiently close to zero.
In addition, note that F(xk) → F(x̄) as k → ∞, and thus both F(x3(k0+1)T) − F(x̄) and
φ(F(x3(k0+1)T) − F(x̄)) can be sufficiently small. Since {xk}k≥0 converges if and only if
{xk}k≥k0 converges, without loss of generality, we assume k0 = 0, which is equivalent to
setting xk0 as a new starting point, and thus we assume

F(x3T) − F(x̄) < η, (25a)

Cφ
(
F(x3T) − F(x̄)

)+ C
s∑

i=1

d3Ti∑

j=1

‖x̃ j−1
i − x̃ j

i ‖ +
s∑

i=1

‖x̃
d3Ti
i − x̄i‖ ≤ ρ, (25b)

where

C = 48sT
(
2(LG + 2L) + sLG

)

�(1 − δ)2
≥ √

s + 4δ
√
3sT L

(1 − δ)
√

�
. (26)

Assume that x3mT ∈ Bρ(x̄) and F(x3mT) < F(x̄) + η, m = 0, . . . , M for some M ≥ 1.
Note that from (25), we can take M = 1. Letting k = 3mT in (24) and using KL inequality
(4), we have

123

J Sci Comput

φ′(F(x3mT) − F(x̄))

⎛

⎜⎝
(
2(LG + 2L) + sLG

) s∑

i=1

d3mT
i∑

j=d3(m−1)T
i +1

‖x̃ j−1
i − x̃ j

i ‖
⎞

⎟⎠ ≥ 1, (27)

where LG is a uniformLipschitz constant of∇xi f (x),∀i withinB4ρ(x̄). In addition, it follows
from (14) that

F(x3mT) − F(x3(m+1)T) ≥
s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

(
L̃ j
i

4
‖x̃ j−1

i − x̃ j
i ‖2 − L̃ j−1

i δ2

4
‖x̃ j−2

i − x̃ j−1
i ‖2

)
.

(28)
Let φm = φ(F(x3mT) − F(x̄)). Note that

φm − φm+1 ≥ φ′(F(x3mT) − F(x̄))[F(x3mT) − F(x3(m+1)T)].
Combining (27) and (28) with the above inequality and letting C̃ = 2(LG + 2L)+ sLG give

s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

(
L̃ j
i

4
‖x̃ j−1

i − x̃ j
i ‖2 − L̃ j−1

i δ2

4
‖x̃ j−2

i − x̃ j−1
i ‖2

)

≤ C̃(φm − φm+1)

s∑

i=1

d3mT
i∑

j=d3(m−1)T
i +1

‖x̃ j−1
i − x̃ j

i ‖. (29)

Letting Ai, j = ‖x̃ j−1
i − x̃ j

i ‖, αi, j = L̃ j
i /4, ni,m = d3mT

i , Bm = C̃(φm − φm+1), and β = δ

in Lemma 2, we note d3(m+1)T
i − d3mT

i ≤ 3T and have from (22) that for any intergers N
and M ,

s∑

i=1

d3(M+1)T
i∑

j=d3NT
i +1

‖x̃ j−1
i − x̃ j

i ‖ ≤ CφN + C
s∑

i=1

d3NT
i∑

j=d3(N−1)T
i +1

‖x̃ j−1
i − x̃ j

i ‖, (30)

where C is given in (26). Letting N = 1 in the above inequality, we have

‖x3(M+1)T − x̄‖ ≤
s∑

i=1

‖x̃
d3(M+1)T
i

i − x̄i‖

≤
s∑

i=1

⎛

⎜⎝
d3(M+1)T
i∑

j=d3Ti +1

‖x̃ j−1
i − x̃ j

i ‖ + ‖x̃
d3Ti
i − x̄i‖

⎞

⎟⎠

≤Cφ1 + C
s∑

i=1

d3Ti∑

j=1

‖x̃ j−1
i − x̃ j

i ‖ +
s∑

i=1

‖x̃
d3Ti
i − x̄i‖

(25b)≤ ρ.

Hence, x3(M+1)T ∈ Bρ(x̄). In addition F(x3(M+1)T) ≤ F(x3MT) < F(x̄) + η. By
induction, x3mT ∈ Bρ(x̄),∀m, and (30) holds for all M . Using Lemma 2 again, we have that

{x̃ j
i } is a Cauchy sequence for all i and thus converges, and {xk} also converges. Since x̄ is a

limit point of {xk}, we have xk → x̄, as k → ∞.
Case 2 Assume F(xK0) = F(x̄) for a certain integer K0.

123

J Sci Comput

Since F(xk) is nonincreasingly convergent to F(x̄), we have F(xk) = F(x̄), ∀k ≥ K0.
Take M0 such that 3M0T ≥ K0. Then F(x3mT) = F(x3(m+1)T) = F(x̄), ∀m ≥ M0.
Summing up (28) from m = M ≥ M0 gives

0 ≥
∞∑

m=M

s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

(
L̃ j
i

4
‖x̃ j−1

i − x̃ j
i ‖2 − L̃ j−1

i δ2

4
‖x̃ j−2

i − x̃ j−1
i ‖2

)

=
∞∑

m=M

s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

L̃ j
i (1 − δ2)

4
‖x̃ j−1

i − x̃ j
i ‖2 −

s∑

i=1

∑

j=d3MT
i

L̃ j
i δ

2

4
‖x̃ j−1

i − x̃ j
i ‖2. (31)

Let

am =
s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

‖x̃ j−1
i − x̃ j

i ‖2, SM =
∞∑

m=M

am .

Noting � ≤ L̃ j
i ≤ L , we have from (31) that �(1 − δ2)SM+1 ≤ Lδ2(SM − SM+1) and thus

SM ≤ γ M−M0 SM0 , ∀M ≥ M0,

where γ = Lδ2

Lδ2+�(1−δ2)
< 1. By the Cauchy–Schwarz inequality and noting that am is the

summation of at most 3T nonzero terms, we have

s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

‖x̃ j−1
i − x̃ j

i ‖ ≤ √
3T

√
am ≤ √

3T
√
Sm ≤ √

3Tγ
m−M0

2 SM0 , ∀m ≥ M0.

(32)

Since γ < 1, (32) implies

∞∑

m=M0

s∑

i=1

d3(m+1)T
i∑

j=d3mT
i +1

‖x̃ j−1
i − x̃ j

i ‖ ≤
√
3T SM0

1 − √
γ

< ∞,

and thus xk converges to the limit point x̄. This completes the proof. ��
In addition, we can show convergence rate of Algorithm 1 through the following lemma.

Lemma 3 For nonnegative sequence {Ak}∞k=1, if Ak ≤ Ak−1 ≤ 1, ∀k ≥ K for some integer
K , and there are positive constants α, β and γ such that

Ak ≤ α(Ak−1 − Ak)
γ + β(Ak−1 − Ak), ∀k, (33)

we have

1. If γ ≥ 1, then Ak ≤ (α+β
1+α+β

)k−K
AK , ∀k ≥ K;

2. If 0 < γ < 1, then Ak ≤ ν(k − K)
− γ

1−γ , ∀k ≥ K , for some positive constant ν.

Theorem 3 (Convergence rate) Under the assumptions of Theorem 2, we have:

1. If θ ∈ [0, 1
2], ‖xk − x̄‖ ≤ Cαk,∀k, for a certain C > 0, α ∈ [0, 1);

123

J Sci Comput

2. If θ ∈ (12 , 1), ‖xk − x̄‖ ≤ Ck−(1−θ)/(2θ−1),∀k, for a certain C > 0.

Remark 7 Before proving the theorem, let us make a few remarks on the parameter θ . First,
we see that smaller θ implies faster convergence speed, and also note that the condition in
(4) is stronger if θ is smaller. Secondly, it is generally not easy to determine the value of θ .
For several classes of functions, [61] gives its range of possible values. The very recent work
[34] presents methods to estimate its value for a function formed from other functions, for
which the values of θ are known.

Proof When θ = 0, then φ′(a) = c,∀a, and there must be a sufficiently large integer k0
such that F(xk0) = F(x̄), and thus F(xk) = F(x̄),∀k ≥ k0, by noting F(xk−1) ≥ F(xk)
and limk→∞ F(xk) = F(x̄). Otherwise F(xk) > F(x̄),∀k. Then from the KL inequality
(4), it holds that c · dist(0, ∂F(xk)) ≥ 1, for all xk ∈ Bρ(x̄), which is impossible since
dist(0, ∂F(x3mT)) → 0 as m → ∞ from (24).

For k > k0, since F(xk−1) = F(xk), and noting that in (14) all terms but one are zero
under the summation over i , we have

s∑

i=1

dki∑

j=dk−1
i +1

√
L̃ j−1
i δ‖x̃ j−2

i − x̃ j−1
i ‖ ≥

s∑

i=1

dki∑

j=dk−1
i +1

√
L̃ j
i ‖x̃ j−1

i − x̃ j
i ‖.

Summing the above inequality over k from m > k0 to ∞ and using � ≤ L̃ j
i ≤ L ,∀i, j , we

have

√
Lδ

s∑

i=1

‖x̃
dm−1
i −1

i − x̃
dm−1
i

i ‖ ≥ √
�(1 − δ)

s∑

i=1

∞∑

j=dm−1
i +1

‖x̃ j−1
i − x̃ j

i ‖, ∀m > k0. (34)

Let

Bm =
s∑

i=1

∞∑

j=dm−1
i +1

‖x̃ j−1
i − x̃ j

i ‖.

Then from Assumption 3, we have

Bm−T − Bm =
s∑

i=1

dm−1
i∑

j=dm−T−1
i +1

‖x̃ j−1
i − x̃ j

i ‖ ≥
s∑

i=1

‖x̃
dm−1
i −1

i − x̃
dm−1
i

i ‖.

which together with (34) gives Bm ≤
√
Lδ√

�(1−δ)
(Bm−T − Bm). Hence,

BmT ≤
(√

Lδ√
Lδ + √

�(1 − δ)

)
B(m−1)T ≤

(√
Lδ√

Lδ + √
�(1 − δ)

)m−�0

B�0T ,

where �0 = min{� : �T ≥ k0}. Letting α = (
√
Lδ√

Lδ+√
�(1−δ)

)1/T , we have

BmT ≤ αmT (α−�0T B�0T
)
. (35)

Note ‖xm−1 − x̄‖ ≤ Bm . Hence, choosing a sufficiently large C > 0 gives the result in item
1 for θ = 0.

123

J Sci Comput

When 0 < θ < 1, if for some k0, F(xk0) = F(x̄), we have (35) by the same arguments
as above and thus obtain linear convergence. Below we assume F(xk) > F(x̄), ∀k. Let

Am =
s∑

i=1

∞∑

j=d3mT
i +1

‖x̃ j−1
i − x̃ j

i ‖,

and thus

Am−1 − Am =
s∑

i=1

d3mT
i∑

j=d3(m−1)T
i +1

‖x̃ j−1
i − x̃ j

i ‖.

From (27), it holds that

c(1 − θ)
(
F(x3mT) − F(x̄)

)−θ ≥ ((2(LG + 2L) + sLG)(Am−1 − Am)
)−1

,

which implies

φm = c
(
F(x3mT) − F(x̄)

)1−θ ≤ c (c(1 − θ)(2(LG + 2L) + sLG)(Am−1 − Am))
1−θ
θ .

(36)
In addition, letting N = m in (30), we have

s∑

i=1

d3(M+1)T
i∑

j=d3mT
i +1

‖x̃ j−1
i − x̃ j

i ‖ ≤ Cφm + C
s∑

i=1

d3mT
i∑

j=d3(m−1)T
i +1

‖x̃ j−1
i − x̃ j

i ‖,

where C is the same as that in (30). Letting M → ∞ in the above inequality, we have

Am ≤ C1φm + C1(Am−1 − Am)

≤C1c (c(1 − θ)(2(LG + 2L) + sLG)(Am−1 − Am))
1−θ
θ + C1(Am−1 − Am),

where the second inequality is from (36). Since Am−1 − Am ≤ 1 as m is sufficiently large
and ‖xm − x̄‖ ≤ A� m

3T �, the results in item 2 for θ ∈ (0, 1
2] and item 3 now immediately

follow from Lemma 3. ��
Before closing this section, let us make some comparison to the recent work [61]. The

whole sequence convergence and rate results in this paper are the same as those in [61]. How-
ever, the results here cover more applications. We do not impose any convexity assumption
on (1) while [61] requires f to be block-wise convex and every ri to be convex. In addition,
the results in [61] only apply to cyclic block prox-linear method. Empirically, a different
block-update order can give better performance. As demonstrated in [16], random shuffling
can often improve the efficiency of the coordinate descent method for linear support vector
machine, and [59] shows that for the Tucker tensor decomposition [see (47)], updating the
core tensor more frequently can be better than cyclicly updating the core tensor and factor
matrices.

3 Applications and Numerical Results

In this section, we give some specific examples of (1) and show the whole sequence con-
vergence of some existing algorithms. In addition, we demonstrate that maintaining the
nonincreasingmonotonicity of the objective value can improve the convergenceof accelerated

123

J Sci Comput

gradient method and that updating variables in a random order can improve the performance
of Algorithm 1 over that in the cyclic order.

3.1 FISTA with Backtracking Extrapolation

FISTA[7] is an acceleratedproximal gradientmethod for solving composite convexproblems.
It is a special case3 of Algorithm 1with s = 1 and specificωk’s. For the readers’ convenience,
we present the method in Algorithm 2, where both f and g are convex functions, and L f

is the Lipschitz constant of ∇ f (x). The algorithm reaches the optimal order of convergence
rate among first-order methods, but in general, it does not guarantee monotonicity of the
objective values. A restarting scheme is studied in [46] that restarts FISTA from xk whenever
F(xk+1) > F(xk) occurs.4 It is demonstrated that the restarting FISTA can significantly
outperform the original one. In this subsection, we show that FISTA with backtracking
extrapolation weight can do even better than the restarting one.

Algorithm 2: Fast iterative shrinkage–thresholding algorithm (FISTA)

1 Goal: to solve convex problem minx F(x) = f (x) + g(x)

2 Initialization: set x0 = x1, t1 = 1, and ω1 = 0
3 for k = 1, 2, . . . do
4 Let x̂k = xk + ωk (xk − xk−1)

5 Update xk+1 = arg minx〈∇ f (x̂k), x − x̂k 〉 + L f
2 ‖x − x̂k‖2 + g(x)

6 Set tk+1 = 1+
√
1+4t2k
2 and ωk+1 = tk−1

tk+1

We test the algorithms on solving the following problem

min
x

1

2
‖Ax − b‖2 + λ‖x‖1, (37)

where A ∈ R
m×n and b ∈ R

m are given. In the test, we set m = 1000, n = 3000 and λ = 1
and generate two data sets. The first one is generated in the same way as that in [46]: first
generate A with all its entries independently following standard normal distributionN (0, 1),
then a sparse vector x with only 50 nonzero entries independently following N (0, 1), and
finally let b = Ax + y with the entries in y sampled from N (0, 0.1). This way ensures the
optimal solution is approximately sparse. In the second data set, we have an ill-conditioned
sensingmatrixA = U�V�, whereU ∈ R

m×m andV ∈ R
n×m arematrices with orthonormal

columns, and � is a diagonal matrix with the i-th diagonal element σi = 10−4 + i−1
10 for

i = 1, . . . ,m. Hence, the condition number of A is about 106. The measurement vector b is
generated in the same way as in the first data set. We set L f to the spectral norm of A∗A and
the initial point to zero vector for all threemethods. For the proposedmethod, at each iteration,
we start the extrapolation weight at that given by FISTA and do backtracking by halving it
whenever the objective is detected to increase. In addition, if the backtrackedweight is smaller
than 10−2, we simply set it to zero. Figure 1 plots their convergence behavior in terms of

3 Note that from Remark 2, for convex problems, we can take larger extrapolation weight but require it to
be uniformly less than one. Hence, although our algorithm framework includes FISTA as a special case, our
whole sequence convergence result does not imply that of FISTA.
4 Another restarting option is tested based on gradient information.

123

J Sci Comput

0 1000 2000 3000 4000 5000
Number of iterations

10-15

10-10

10-5

100

105
O

bj
ec

tiv
e

va
lu

e
- O

pt
im

al
 v

al
ue

FISTA
Restarting FISTA
Proposed method

0 5 10 15 20 25
Running time (sec)

10-15

10-10

10-5

100

105

O
bj

ec
tiv

e
va

lu
e

- O
pt

im
al

 v
al

ue

FISTA
Restarting FISTA
Proposed method

0 1000 2000 3000 4000 5000
Number of iterations

10-15

10-10

10-5

100

105

O
bj

ec
tiv

e
va

lu
e

- O
pt

im
al

 v
al

ue

FISTA
Restarting FISTA
Proposed method

0 5 10 15 20 25
Running time (sec)

10-15

10-10

10-5

100

105

O
bj

ec
tiv

e
va

lu
e

- O
pt

im
al

 v
al

ue

FISTA
Restarting FISTA
Proposed method

Fig. 1 Results on solving (37) by the FISTA [7], the restarting FISTA [46], and the proposed method with
backtracking ωk to ensure Condition 1. Top row standard Gaussian randomly generated A; Bottom row ill-
conditioned A with condition number 106

iteration number and also running time, where the optimal objective value is given by running
the proposed method to 10,000 iterations. For both Gaussian random (well-conditioned) and
ill-conditionedA, the proposedmethod performs significantly better than the original FISTA.
In addition, it is better than the restarting FISTA for the well-conditioned case.

3.2 Coordinate Descent Method for Nonconvex Regression

As the number of predictors is larger than sample size, variable selection becomes important
to keep more important predictors and obtain a more interpretable model, and penalized
regression methods are popularly used to achieve variable selection. The work [14] considers
the linear regression with nonconvex penalties: the minimax concave penalty (MCP) [63]
and the smoothly clipped absolute deviation (SCAD) penalty [20]. Specifically, the following
model is considered

min
β

1

2n
‖Xβ − y‖2 +

p∑

j=1

rλ,γ (β j), (38)

where y ∈ R
n and X ∈ R

n×p are standardized such that

n∑

i=1

yi = 0,
n∑

i=1

xi j = 0, ∀ j, and
1

n

n∑

i=1

x2i j = 1, ∀ j, (39)

123

J Sci Comput

and MCP is defined as

rλ,γ (θ) =
{

λ|θ | − θ2

2γ , if |θ | ≤ γ λ,
1
2γ λ2, if |θ | > γλ,

(40)

and SCAD penalty is defined as

rλ,γ (θ) =

⎧
⎪⎨

⎪⎩

λ|θ |, if |θ | ≤ λ,
2γ λ|θ |−(θ2+λ2)

2(γ−1) , if λ < |θ | ≤ γ λ,

λ2(γ 2−1)
2(γ−1) , if |θ | > γλ.

(41)

The cyclic coordinate descent method used in [14] performs the update from j = 1 through
p

βk+1
j = arg minβ j

1

2n
‖X(βk+1

< j , β j ,β
k
> j) − y‖2 + rλ,γ (β j),

which can be equivalently written into the form of (2) by

βk+1
j = arg minβ j

1

2n
‖x j‖2(β j − βk

j)
2 + 1

n
x�
j

(
X(βk+1

< j ,βk
≥ j) − y

)
β j + rλ,γ (β j). (42)

Note that the data has been standardized such that ‖x j‖2 = n. Hence, if γ > 1 in (40)
and γ > 2 in (41), it is easy to verify that the objective in (42) is strongly convex, and there
is a unique minimizer. From the convergence results of [55], it is concluded in [14] that any
limit point5 of the sequence {βk} generated by (42) is a coordinate-wise minimizer of (38).
Since rλ,γ in both (40) and (41) is piecewise polynomial and thus semialgebraic, it satisfies
the KL property (see Definition 1). In addition, let f (β) be the objective of (38). Then

f (βk+1
< j ,βk

≥ j) − f (βk+1
≤ j ,βk

> j) ≥ μ

2
(βk+1

j − βk
j)
2,

whereμ is the strong convexity constant of the objective in (42).Hence, according toTheorem
2 and Remark 1, we have the following convergence result.

Theorem 4 Assume X is standardized as in (39). Let {βk} be the sequence generated from
(42) or by the following update with random shuffling of coordinates

βk+1
πk
j

= arg minβ
πkj

1

2n

∥∥∥xπk
j

∥∥∥
2
(

βπk
j
− βk

πk
j

)2

+ 1

n
x�
πk
j

(
X
(

βk+1
πk

< j
,βk

πk≥ j

)
− y
)

βπk
j
+ rλ,γ

(
βπk

j

)
,

where (πk
1 , . . . , πk

p) is any permutation of (1, . . . , p), and rλ,γ is given by either (40) with

γ > 1 or (41) with γ > 2. If {βk} has a finite limit point, then βk converges to a coordinate-
wise minimizer of (38).

3.3 Rank-One Residue Iteration for Nonnegative Matrix Factorization

The nonnegative matrix factorization can be modeled as

min
X,Y

‖XY� − M‖2F , s.t. X ∈ R
m×p
+ , Y ∈ R

n×p
+ , (43)

5 It is stated in [14] that the sequence generated by (42) converges to a coordinate-wise minimizer of (38).
However, the result is obtained directly from [55], which only guarantees subsequence convergence.

123

J Sci Comput

where M ∈ R
m×n+ is a given nonnegative matrix,Rm×p

+ denotes the set ofm× p nonnegative
matrices, and p is a user-specified rank. The problem in (43) can be written in the form of
(1) by letting

f (X, Y) = 1

2
‖XY� − M‖2F , r1(X) = ι

R
m×p
+

(X), r2(Y) = ι
R
n×p
+

(Y).

In the literature, most existing algorithms for solving (43) update X and Y alternatingly;
see the review paper [28] and the references therein. The work [25] partitions the variables
in a different way: (x1, y1, . . . , xp, yp), where x j denotes the j th column of X, and proposes
the rank-one residue iteration (RRI) method. It updates the variables cyclically, one column
at a time. Specifically, RRI performs the updates cyclically from i = 1 through p,

xk+1
i = arg minxi≥0 ‖xi (yki)

� + Xk+1
<i (Yk+1

<i)� + Xk
>i (Y

k
>i)

� − M‖2F , (44a)

yk+1
i = arg minyi≥0 ‖xk+1

i (yi)� + Xk+1
<i (Yk+1

<i)� + Xk
>i (Y

k
>i)

� − M‖2F , (44b)

whereXk
>i = (xki+1, . . . , xkp). It is a cyclic blockminimizationmethod, a special case of [55].

The advantage of RRI is that each update in (44) has a closed form solution. Both updates in
(44) can be written in the form of (2) by noting that they are equivalent to

xk+1
i = arg minxi≥0

1

2
‖yki ‖2‖xi − xki ‖2 + (yki)

�(Xk+1
<i (Yk+1

<i)� + Xk
≥i (Y

k
≥i)

� − M
)�xi ,

(45a)

yk+1
i = arg minyi≥0

1

2
‖xk+1

i ‖2‖yi − yki ‖2

+ y�
i

(
Xk+1

<i (Yk+1
<i)� + xk+1

i (yki)
� + Xk

>i (Y
k
>i)

� − M
)�xk+1

i . (45b)

Since f (X, Y) + r1(X) + r2(Y) is semialgebraic and has the KL property, directly from
Theorem 2, we have the following whole sequence convergence, which is stronger compared
to the subsequence convergence in [25].

Theorem 5 (Global convergence of RRI) Let {(Xk, Yk)}∞k=1 be the sequence generated by
(44) or (45) from any starting point (X0, Y0). If {xki }i,k and {yki }i,k are uniformly bounded
and away from zero, then (Xk, Yk) converges to a critical point of (43).

However, during the iterations of RRI, it may happen that some columns of X and Y
become or approach to zero vector, or some of them blow up, and these cases fail the assump-
tion of Theorem 5. To tackle with the difficulties, we modify the updates in (44) and improve
the RRI method as follows.

Our first modification is to require each column of X to have unit Euclidean norm; the
second modification is to take the Lipschitz constant of ∇xi f (X

k+1
<i , xi , Xk

>i , Yk+1
<i , Yk

≥i) to

be Lk
i = max(Lmin, ‖yki ‖2) for some Lmin > 0; the third modification is that at the beginning

of the kth cycle, we shuffle the blocks to a permutation (πk
1 , . . . , πk

p). Specifically, we perform
the following updates from i = 1 through p,

123

J Sci Comput

Fig. 2 Some images in the Swimmer dataset

xk+1
πk
i

= arg minx
πki

≥0, ‖x
πki

‖=1

Lk
πk
i

2
‖xπk

i
− xk

πk
i
‖2

+ (yk
πk
i
)�
(

Xk+1
πk

<i
(Yk+1

πk
<i

)� + Xk
πk≥i

(Yk
πk≥i

)� − M
)�

xπk
i
, (46a)

yk+1
πk
i

= arg miny
πki

≥0
1

2
‖yπk

i
‖2

+ y�
πk
i

(
Xk+1

πk
<i

(Yk+1
πk

<i
)� + Xk

πk
>i

(Yk
πk

>i
)� − M

)�
xk+1
πk
i

. (46b)

Note that if πk
i = i and Lk

i = ‖yki ‖2, the objective in (46a) is the same as that in (45a).
Both updates in (46) have closed form solutions; see “Appendix 2”. Using Theorem 2, we
have the following theorem, whose proof is given in “Proof of Theorem 6” in Appendix 3.
Compared to the original RRI method, the modified one automatically has bounded sequence
and always has the whole sequence convergence.

Theorem 6 (Whole iterate sequence convergence of modified RRI) Let {(Xk, Yk)}∞k=1 be the
sequence generated by (46) from any starting point (X0, Y0). Then {Yk} is bounded, and
(Xk, Yk) converges to a critical point of (43).

3.3.1 Numerical Tests

We tested (45) and (46) on randomly generated data and also the Swimmer dataset [19]. We
set Lmin = 0.001 in the tests and found that (46) with πk

i = i,∀i, k produced the same final
objective values as those by (45) on both random data and the Swimmer dataset. In addition,
(46) with random shuffling performed almost the same as those with πk

i = i,∀i (i.e., fixed
cyclic order) on randomly generated data. However, random shuffling significantly improved
the performance of (46) on the Swimmer dataset. There are 256 images of resolution 32×32
in the Swimmer dataset, and each image (vectorized to one column of M) is composed of
four limbs and the body. Each limb has four different positions, and all images have the body
at the same position; see Fig. 2. Hence, each of these images is a nonnegative combination
of 17 images: one with the body and each one of another 16 images with one limb. We set
p = 17 in our test and ran (45) and (46) with/without random shuffling to 100 cycles. If
the relative error ‖Xout (Yout)� − M‖F/‖M‖F is below 10−3, we regard the factorization
to be successful, where (Xout , Yout) is the output. We ran the three different updates for
50 times independently, and for each run, they were fed with the same randomly generated
starting point. Both (45) and (46) without random shuffling succeed 20 times, and (46) with
random shuffling succeeds 41 times. Figure 3 plots all cases that occur. Every plot is in terms
of running time (sec), and during that time, both methods run to 100 cycles. Since (45) and
(46) without random shuffling give exactly the same results, we only show the results by

123

J Sci Comput

only random succeeds both succeed only cyclic succeeds both fail
occurs 25/50 occurs 16/50 occurs 4/50 occurs 5/50

0 0.1 0.2 0.3 0.4
10−6

10−4

10−2

100

Running time (sec)

R
el

at
iv

e
er

ro
r With random shuffling

Fixed cyclic order

0 0.1 0.2 0.3 0.4
10−6

10−4

10−2

100

Running time (sec)

R
el

at
iv

e
er

ro
r

With random shuffling
Fixed cyclic order

0 0.1 0.2 0.3 0.4
10−6

10−4

10−2

100

Running time (sec)

R
el

at
iv

e
er

ro
r With random shuffling

Fixed cyclic order

0 0.1 0.2 0.3 0.4

10−0.8

10−0.6

10−0.4

Running time (sec)

R
el

at
iv

e
er

ro
r

With random shuffling
Fixed cyclic order

50%

32%

8%

10%

only random succ both succ only cyclic succ both fail

Fig. 3 All four cases of convergence behavior of the modified rank-one residue iteration (46) with fixed cyclic
order and with random shuffling. Both run to 100 cycles. The first plot implies random version succeeds while
the cyclic version fails and occurs 25 times among 50; the second plot implies both two versions succeed and
occurs 16 times among 50; the third plot implies cyclic version succeeds while the random version fails and
occurs 4 times among 50; the fourth plot implies both two versions fail and occurs 5 times among 50

(46). From the figure, we see that (46) with fixed cyclic order and with random shuffling has
similar computational complexity while the latter one can more frequently avoid bad local
solutions.

3.4 Block Prox-Linear Method for Nonnegative Tucker Decomposition

The nonnegative Tucker decomposition is to decompose a given nonnegative tensor (multi-
dimensional array) into the product of a core nonnegative tensor and a few nonnegative factor
matrices. It can be modeled as

min
C≥0,A≥0

‖C ×1 A1 · · · ×N AN − M‖2F , (47)

where A = (A1, . . . , AN) and X ×i Y denotes tensor-matrix multiplication along the i th
mode (see [29] for example). The cyclic block proximal gradient method for solving (47)
performs the following updates cyclically

Ck+1 = arg minC≥0〈∇C f (Ĉk
, Ak),C − Ĉk〉 + Lk

c

2
‖C − Ĉk‖2F , (48a)

Ak+1
i = arg minAi≥0〈∇Ai f (Ck+1, Ak+1

<i , Âk
i , Ak

>i), A − Âk〉

+ Lk
i

2
‖A − Âk‖2F , i = 1, . . . , N . (48b)

Here, f (C, A) = 1
2‖C ×1 A1 . . .×N AN −M‖2F , Lk

c and Lk
i (chosen no less than a positive

Lmin) are gradient Lipschitz constants with respect to C and Ai respectively, and Ĉk
and Âk

i
are extrapolated points:

123

J Sci Comput

0 200 400 600 800 1000
10−4

10−3

10−2

10−1

100

Iterations

R
el

at
iv

e
E

rr
or

No extrapolation
With extrapolation

Fig. 4 Relative errors, defined as ‖Ck ×1 Ak
1 · · · ×N Ak

N − M‖F/‖M‖F , given by (48) on Gaussian

randomly generated 80×80×80 tensor with core size of 5×5×5. No extrapolation: Ĉk = Ck , Âk = Ak , ∀k;
With extrapolation: Ĉk

, Âk set as in (49) with extrapolation weights by (50)

Ĉk = Ck + ωk
c (Ck − Ck−1), Âk

i = Ak
i + ωk

i (A
k
i − Ak−1

i), i = 1, . . . N . (49)

with extrapolation weight set to

ωk
c = min

⎛

⎝ωk, 0.9999

√
Lk−1
c

Lk
c

⎞

⎠ , ωk
i = min

⎛

⎝ωk, 0.9999

√√√√ Lk−1
i

Lk
i

⎞

⎠ , 1 ≤ i ≤ N , (50)

where ωk is the same as that in Algorithm 2. Our setting of extrapolated points exactly
follows [59]. If after the kth iteration, the objective increases, we redo that iteration with
no extrapolation. It is interesting to notice that the objective almost always decreases with
the above weight and the re-update occurs less than 10 among 500 iterations. Figure 4
shows that the extrapolation technique significantly accelerates the convergence speed of
the method. Note that the block-prox method with no extrapolation reduces to the block
coordinate gradient method in [56].

Since the core tensor C interacts with all factor matrices, the work [59] proposes to update
Cmore frequently to improve the performance of the block proximal gradientmethod. Specif-
ically, at each cycle, it performs the following updates sequentially from i = 1 through N

Ck+1,i = arg minC≥0〈∇C f (Ĉk,i
, Ak+1

<i , Ak
≥i),C − Ĉk,i 〉 + Lk,i

c

2
‖C − Ĉk,i‖2F , (51a)

Ak+1
i = arg minAi≥0〈∇Ai f (Ck+1,i , Ak+1

<i , Âk
i , Ak

>i), A − Âk〉 + Lk
i

2
‖A − Âk‖2F . (51b)

It was demonstrated that (51) numerically performs better than (48). Numerically, we
observed that the performance of (51) could be further improved if the blocks of variables
were randomly shuffled as in (46), namely, we performed the updates sequentially from i = 1
through N

123

J Sci Comput

only random succeeds both succeed only cyclic succeeds both fail
occurs 14/50 occurs 7/50 occurs 4/50 occurs 25/50

0 5 10 15
10−15

10−10

10−5

100

Running time (sec)

R
el

at
iv

e
er

ro
r

With random shuffling
Fixed cyclic order

0 5 10 15
10−15

10−10

10−5

100

Running time (sec)

R
el

at
iv

e
er

ro
r

With random shuffling
Fixed cyclic order

0 5 10 15

10−0.7

10−0.5

10−0.3

Running time (sec)

R
el

at
iv

e
er

ro
r

With random shuffling
Fixed cyclic order

28%

14%

8%

50%

only random succ both succ only cyclic succ both fail

Fig. 5 All four cases of convergence behavior of the method (52) with fixed cyclic order and with random
shuffling. Both run to 500 iterations. The first plot implies random version succeeds while the cyclic version
fails and occurs 14 times among 50; the second plot implies both two versions succeed and occurs 7 times
among 50; the third plot implies cyclic version succeeds while the random version fails and occurs 4 times
among 50; the fourth plot implies both two versions fail and occurs 25 times among 50

Ck+1,i = arg minC≥0〈∇C f (Ĉk,i
, Ak+1

πk
<i

, Ak
πk≥i

),C − Ĉk,i 〉 + Lk,i
c

2
‖C − Ĉk,i‖2F , (52a)

Ak+1
πk
i

= arg minA
πki

≥0〈∇A
πki

f (Ck+1,i , Ak+1
πk

<i
, Âk

πk
i
, Ak

πk
>i

), A − Âk〉 + Lk
i

2
‖A − Âk‖2F ,

(52b)

where (πk
1 , πk

2 , . . . , πk
N) is a random permutation of (1, 2, . . . , N) at the k-th cycle. Note

that both (48) and (52) are special cases of Algorithm 1 with T = N + 1 and T = 2N + 2
respectively. If {(Ck, Ak)} is bounded, then so are Lk

c, L
k,i
c and Lk

i ’s. Hence, by Theorem 2,
we have the convergence result as follows.

Theorem 7 The sequence {(Ck, Ak)} generated from (48) or (52) is either unbounded or
converges to a critical point of (47).

We tested (51) and (52) on the 32 × 32 × 256 Swimmer dataset used above and set the
core size to 24 × 17 × 16. We ran them to 500 cycles from the same random starting point.
If the relative error ‖Cout ×1 Aout

1 . . . ×N Aout
N − M‖F/‖M‖F is below 10−3, we regard

the decomposition to be successful, where (Cout , Aout) is the output. Among 50 independent
runs, (52) with random shuffling succeeds 21 times while (51) succeeds only 11 times. Figure
5 plots all cases that occur. Similar to Fig. 3, every plot is in terms of running time (s), and
during that time, both methods run to 500 iterations. From the figure, we see that (52) with
fixed cyclic order and with random shuffling has similar computational complexity while the
latter one can more frequently avoid bad local solutions.

123

J Sci Comput

4 Conclusions

We have presented a block prox-linear method, in both randomized and deterministic ver-
sions, for solvingnonconvexoptimizationproblems.Themethod applieswhen the nonsmooth
terms, if any, are block separable. It is easy to implement and has a small memory footprint
since only one block is updated each time. Assuming that the differentiable parts have Lips-
chitz gradients, we showed that the method has a subsequence of iterates that converges to a
critical point. Further assuming the Kurdyka–Łojasiewicz property of the objective function,
we showed that the entire sequence converges to a critical point and estimated its asymp-
totic convergence rate. Many applications have this property. In particular, we can apply our
method and its convergence results to �p-(quasi)norm (p ∈ [0,+∞]) regularized regression
problems, matrix rank minimization, orthogonality constrained optimization, semidefinite
programming, and so on. Very encouraging numerical results are presented.

Acknowledgements Fundingwasprovided in part byNational ScienceFoundation (GrantNo.DMS-1317602
and EECS-1462397) and Office of Naval Research (Grant No. N000141712162).

Appendix 1: Proofs of Key Lemmas

In this section, we give proofs of the lemmas and also propositions we used.

Proof of Lemma 1

We show the general case of αk = 1
γ Lk

,∀k and ω̃
j
i ≤ δ(γ−1)

2(γ+1)

√
L̃ j−1
i /L̃ j

i , ∀i, j . Assume

bk = i . From the Lipschitz continuity of ∇xi f (x
k−1
�=i , xi) about xi , it holds that (e.g., see

Lemma 2.1 in [61])

f (xk) ≤ f (xk−1) + 〈∇xi f (x
k−1), xki − xk−1

i 〉 + Lk

2
‖xki − xk−1

i ‖2. (53)

Since xki is the minimizer of (2), then

〈∇xi f (x
k−1
�=i , x̂ki), xki − x̂ki 〉 + 1

2αk
‖xki − x̂ki ‖2 + ri (xki)

≤ 〈∇xi f (x
k−1
�=i , x̂ki), xk−1

i − x̂ki 〉 + 1

2αk
‖xk−1

i − x̂ki ‖2 + ri (x
k−1
i). (54)

Summing (53) and (54) and noting that xk+1
j = xkj ,∀ j �= i , we have

F(xk−1) − F(xk)

= f (xk−1) + ri (x
k−1
i) − f (xk) − ri (xki)

≥ 〈∇xi f (x
k−1
�=i , x̂ki) − ∇xi f (x

k−1), xki − xk−1
i 〉 + 1

2αk
‖xki − x̂ki ‖2

− 1

2αk
‖xk−1

i − x̂ki ‖2 − Lk

2
‖xki − xk−1

i ‖2

= 〈∇xi f (x
k−1
�=i , x̂ki) − ∇xi f (x

k−1), xki − xk−1
i 〉 + 1

αk
〈xki − xk−1

i , xk−1
i − x̂ki 〉

+
(

1

2αk
− Lk

2

)
‖xki − xk−1

i ‖2

123

J Sci Comput

≥ −‖xki − xk−1
i ‖

(
‖∇xi f (x

k−1
�=i , x̂ki) − ∇xi f (x

k−1)‖ + 1

αk
‖xk−1

i − x̂ki ‖
)

+
(

1

2αk
− Lk

2

)
‖xki − xk−1

i ‖2

≥ −
(

1

αk
+ Lk

)
‖xki − xk−1

i ‖ · ‖xk−1
i − x̂ki ‖ +

(
1

2αk
− Lk

2

)
‖xki − xk−1

i ‖2

(6)= −
(

1

αk
+ Lk

)
ωk‖xki − xk−1

i ‖ · ‖xk−1
i − x̃

dk−1
i −1

i ‖ +
(

1

2αk
− Lk

2

)
‖xki − xk−1

i ‖2

≥ 1

4

(
1

αk
− Lk

)
‖xki − xk−1

i ‖2 − (1/αk + Lk)
2

1/αk − Lk
ω2
k‖xk−1

i − x̃
dk−1
i −1

i ‖2

= (γ − 1) Lk

4
‖xki − xk−1

i ‖2 − (γ + 1)2

γ − 1
Lkω

2
k‖xk−1

i − x̃
dk−1
i −1

i ‖2.

Here,we have usedCauchy–Schwarz inequality in the second inequality, Lipschitz continuity
of ∇xi f (x

k−1
�=i , xi) in the third one, the Young’s inequality in the fourth one, the fact xk−1

i =
x̃
dki −1
i to have the third equality, and αk = 1

γ Lk
to get the last equality. Substituting ω̃

j
i ≤

δ(γ−1)
2(γ+1)

√
L̃ j−1
i /L̃ j

i and recalling (8) completes the proof.

Proof of the Claim in Remark 2

Assume bk = i and αk = 1
Lk
. When f is block multi-convex and ri is convex, from Lemma

2.1 of [61], it follows that

F(xk−1) − F(xk)

≥ Lk

2
‖xki − x̂ki ‖2 + Lk〈x̂ki − xk−1

i , xki − x̂ki 〉
(6)= Lk

2
‖xki − xk−1

i − ωk(x
k−1
i − x

dk−1
i −1

i)‖2

+ Lkωk

〈
xk−1
i − x

dk−1
i −1

i , xki − xk−1
i − ωk

(
xk−1
i − x

dk−1
i −1

i

)〉

= Lk

2
‖xki − xk−1

i ‖2 − Lkω
2
k

2
‖xk−1

i − x
dk−1
i −1

i ‖2.

Hence, if ωk ≤ δ

√
L̃ j−1
i /L̃ j

i , we have the desired result.

Proof of Proposition 1

Summing (14) over k from 1 to K gives

F(x0) − F(xK) ≥
s∑

i=1

K∑

k=1

dki∑

j=dk−1
i +1

(
L̃ j
i

4
‖x̃ j−1

i − x̃ j
i ‖2 − L̃ j−1

i δ2

4
‖x̃ j−2

i − x̃ j−1
i ‖2

)

=
s∑

i=1

dK
i∑

j=1

(
L̃ j
i

4
‖x̃ j−1

i − x̃ j
i ‖2 − L̃ j−1

i δ2

4
‖x̃ j−2

i − x̃ j−1
i ‖2

)

123

J Sci Comput

≥
s∑

i=1

dK
i∑

j=1

L̃ j
i (1 − δ2)

4
‖x̃ j−1

i − x̃ j
i ‖2

≥
s∑

i=1

dK
i∑

j=1

�(1 − δ2)

4
‖x̃ j−1

i − x̃ j
i ‖2,

where we have used the fact d0i = 0,∀i in the first equality, x̃−1
i = x̃0i ,∀i to have the second

inequality, and L̃ j
i ≥ �,∀i, j in the last inequality. Letting K → ∞ and noting dK

i → ∞ for
all i by Assumption 3, we conclude from the above inequality and the lower boundedness of
F in Assumption 1 that

s∑

i=1

∞∑

j=1

‖x̃ j−1
i − x̃ j

i ‖2 < ∞,

which implies (15).

Proof of Proposition 2

From Corollary 5.20 and Example 5.23 of [52], we have that if proxαkri is single valued

near xk−1
i − αk∇xi f (x

k−1), then proxαkri is continuous at xk−1
i − αk∇xi f (x

k−1). Let x̂ki (ω)

explicitly denote the extrapolated point with weight ω, namely, we take x̂ki (ωk) in (6). In
addition, let xki (ω) = proxαkri

(
x̂ki (ω) − αk∇xi f (x

k−1
�=i , x̂ki (ω))

)
. Note that (14) implies

F(xk−1) − F(xk(0)) ≥ ‖xk−1 − xk(0)‖2 (19)
> 0. (55)

From the optimality of xki (ω), it holds that

〈∇xi f (x
k−1
�=i , x̂ki (ω)), xki (ω) − x̂ki (ω)〉 + 1

2αk
‖xki (ω) − x̂ki (ω)‖2 + ri (xki (ω))

≤ 〈∇xi f (x
k−1
�=i , x̂ki (ω)), xi − x̂ki (ω)〉 + 1

2αk
‖xi − x̂ki (ω)‖2 + ri (xi), ∀xi .

Taking limit superior on both sides of the above inequality, we have

〈∇xi f (x
k−1), xki (0) − xk−1

i 〉 + 1

2αk
‖xki (0) − xk−1

i ‖2 + lim sup
ω→0+

ri (xki (ω))

≤ 〈∇xi f (x
k−1), xi − xk−1

i 〉 + 1

2αk
‖xi − xk−1

i ‖2 + ri (xi), ∀xi ,

which implies lim sup
ω→0+

ri (xki (ω)) ≤ ri (xki (0)). Since ri is lower semicontinuous, lim inf
ω→0+

ri (xki (ω)) ≥ ri (xki (0)). Hence, lim
ω→0+ri (x

k
i (ω)) = ri (xki (0)), and thus lim

ω→0+F(xk(ω)) =
F(xk(0)). Together with (55), we conclude that there exists ω̄k > 0 such that F(xk−1) −
F(xk(ω)) ≥ 0, ∀ω ∈ [0, ω̄k]. This completes the proof.

Proof of Lemma 2

Let am and um be the vectors with their i th entries

(am)i = √αi,ni,m , (um)i = Ai,ni,m .

123

J Sci Comput

Then (21) can be written as

‖am+1 � um+1‖2 + (1 − β2)

s∑

i=1

ni,m+1−1∑

j=ni,m+1

αi, j A
2
i, j

≤ β2‖am � um‖2 + Bm

s∑

i=1

ni,m∑

j=ni,m−1+1

Ai, j . (56)

Recall

α = inf
i, j

αi, j , α = sup
i, j

αi, j .

Then it follows from (56) that

‖am+1 � um+1‖2 +α(1−β2)

s∑

i=1

ni,m+1−1∑

j=ni,m+1

A2
i, j ≤ β2‖am � um‖2 + Bm

s∑

i=1

ni,m∑

j=ni,m−1+1

Ai, j .

(57)
By the Cauchy–Schwarz inequality and noting ni,m+1 − ni,m ≤ N ,∀i,m, we have

⎛

⎝
s∑

i=1

ni,m+1−1∑

j=ni,m+1

Ai, j

⎞

⎠
2

≤ sN
s∑

i=1

ni,m+1−1∑

j=ni,m+1

A2
i, j (58)

and for any positive C1,

(1 + β)C1‖am+1 � um+1‖
⎛

⎝
s∑

i=1

ni,m+1−1∑

j=ni,m+1

Ai, j

⎞

⎠

≤
s∑

i=1

ni,m+1−1∑

j=ni,m+1

(
4 − (1 + β)2

4sN
‖am+1 � um+1‖2 + (1 + β)2C2

1sN

4 − (1 + β)2
A2
i, j

)

≤ 4 − (1 + β)2

4
‖am+1 � um+1‖2 + (1 + β)2C2

1sN

4 − (1 + β)2

s∑

i=1

ni,m+1−1∑

j=ni,m+1

A2
i, j . (59)

Taking

C1 ≤
√

α(1 − β2)(4 − (1 + β)2)

4sN
, (60)

we have from (58) and (59) that

1 + β

2
‖am+1 � um+1‖ + C1

s∑

i=1

ni,m+1−1∑

j=ni,m+1

Ai, j

≤

√√√√√‖am+1 � um+1‖2 + α(1 − β2)

s∑

i=1

ni,m+1−1∑

j=ni,m+1

A2
i, j . (61)

123

J Sci Comput

For any C2 > 0, it holds

√√√√√β2‖am � um‖2 + Bm

s∑

i=1

ni,m∑

j=ni,m−1+1

Ai, j

≤ β‖am � um‖ +
√√√√√Bm

s∑

i=1

ni,m∑

j=ni,m−1+1

Ai, j

≤ β‖am � um‖ + C2Bm + 1

4C2

s∑

i=1

ni,m∑

j=ni,m−1+1

Ai, j

≤ β‖am � um‖ + C2Bm + 1

4C2

s∑

i=1

ni,m−1∑

j=ni,m−1+1

Ai, j +
√
s

4C2
‖um‖. (62)

Combining (57), (61), and (62), we have

1 + β

2
‖am+1 � um+1‖ + C1

s∑

i=1

ni,m+1−1∑

j=ni,m+1

Ai, j

≤ β‖am � um‖ + C2Bm + 1

4C2

s∑

i=1

ni,m−1∑

j=ni,m−1+1

Ai, j +
√
s

4C2
‖um‖.

Summing the above inequality over m from M1 through M2 ≤ M and arranging terms gives

M2∑

m=M1

(
1 − β

2
‖am+1 � um+1‖ −

√
s

4C2
‖um+1‖

)
+
(
C1 − 1

4C2

) M2∑

m=M1

s∑

i=1

ni,m+1−1∑

j=ni,m+1

Ai, j

≤ β‖aM1 � uM1‖ + C2

M2∑

m=M1

Bm + 1

4C2

s∑

i=1

ni,M1−1∑

j=ni,M1−1+1

Ai, j +
√
s

4C2
‖uM1‖ (63)

Take

C2 = max

(
1

2C1
,

√
s√

α(1 − β)

)
. (64)

Then (63) implies

√
α(1 − β)

4

M2∑

m=M1

‖um+1‖ + C1

2

M2∑

m=M1

s∑

i=1

ni,m+1−1∑

j=ni,m+1

Ai, j

≤ β
√

α‖uM1‖ + C2

M2∑

m=M1

Bm + 1

4C2

s∑

i=1

ni,M1−1∑

j=ni,M1−1+1

Ai, j +
√
s

4C2
‖uM1‖, (65)

123

J Sci Comput

which together with
∑s

i=1 Ai,ni,m+1 ≤ √
s‖um+1‖ gives

C3

s∑

i=1

ni,M2+1∑

j=ni,M1+1

Ai, j

= C3

M2∑

m=M1

s∑

i=1

ni,m+1∑

j=ni,m+1

Ai, j

≤ β
√

α‖uM1‖ + C2

M2∑

m=M1

Bm + 1

4C2

s∑

i=1

ni,M1−1∑

j=ni,M1−1+1

Ai, j +
√
s

4C2
‖uM1‖,

≤ C2

M2∑

m=M1

Bm + C4

s∑

i=1

ni,M1∑

j=ni,M1−1+1

Ai, j , (66)

where we have used ‖uM1‖ ≤∑s
i=1 Ai,ni,M1

, and

C3 = min

(√
α(1 − β)

4
√
s

,
C1

2

)
, C4 = β

√
α +

√
s

4C2
. (67)

From (60), (64), and (67), we can take

C1 =
√

α(1 − β)

2
√
sN

≤ min

⎧
⎨

⎩

√
α(1 − β2)(4 − (1 + β)2)

4sN
,

√
α(1 − β)

2
√
s

⎫
⎬

⎭ ,

where the inequality can be verified by noting (1−β2)(4−(1+β)2)−(1−β)2 is decreasing
with respect to β in [0, 1]. Thus from (64) and (67), we have C2 = 1

2C1
, C3 = C1

2 , C4 =
β
√

α +
√
sC1
2 . Hence, from (66), we complete the proof of (22).

If limm→∞ ni,m = ∞,∀i ,∑∞
m=1 Bm < ∞, and (21) holds for all m, letting M1 = 1 and

M2 → ∞, we have (23) from (66).

Proof of Proposition 3

For any i , assume that while updating the i th block to xki , the value of the j th block (j �= i) is

y(i)
j , the extrapolated point of the i th block is zi , and the Lipschitz constant of ∇xi f (y

(i)
�=i , xi)

with respect to xi is L̃i , namely,

xki ∈ arg minxi 〈∇xi f (y
(i)
�=i , zi), xi − zi 〉 + L̃i‖xi − zi‖2 + ri (xi).

Hence, 0 ∈ ∇xi f (y
(i)
�=i , zi) + 2L̃i (xki − zi) + ∂ri (xki), or equivalently,

∇xi f (x
k) − ∇xi f (y

(i)
�=i , zi) − 2L̃i (xki − zi) ∈ ∇xi f (x

k) + ∂ri (xki), ∀i. (68)

Note that xi may be updated to xki not at the kth iteration but at some earlier one, which
must be between k − T and k by Assumption 3. In addition, for each pair (i, j), there must
be some κi, j between k − 2T and k such that

y(i)
j = x

κi, j
j , (69)

123

J Sci Comput

and for each i , there are k − 3T ≤ κ i
1 < κ i

2 ≤ k and extrapolation weight ω̃i ≤ 1 such that

zi = x
κ i2
i + ω̃i (x

κ i2
i − x

κ i1
i). (70)

By triangle inequality, (y(i)
�=i , zi) ∈ B4ρ(x̄) for all i . Therefore, it follows from (10) and (68)

that

dist(0, ∂F(xk))
(68)≤
√√√√

s∑

i=1

‖∇xi f (xk) − ∇xi f (y
(i)
�=i , zi) − 2L̃i (xki − zi)‖2

≤
s∑

i=1

‖∇xi f (x
k) − ∇xi f (y

(i)
�=i , zi) − 2L̃i (xki − zi)‖

≤
s∑

i=1

(
‖∇xi f (x

k) − ∇xi f (y
(i)
�=i , zi)‖ + 2L̃i‖xki − zi‖

)

≤
s∑

i=1

(
LG‖xk − (y(i)

�=i , zi)‖ + 2L̃i‖xki − zi‖
)

≤
s∑

i=1

⎛

⎝(LG + 2L)‖xki − zi‖ + LG

∑

j �=i

‖xkj − y(i)
j ‖
⎞

⎠ , (71)

where in the fourth inequality, we have used the Lipschitz continuity of∇xi f (x)with respect
to x, and the last inequality uses L̃i ≤ L . Now use (71), (69), (70) and also the triangle
inequality to have the desired result.

Proof of Lemma 3

The proof follows that of Theorem 2 of [3].When γ ≥ 1, since 0 ≤ Ak−1−Ak ≤ 1,∀k ≥ K ,
we have (Ak−1 − Ak)

γ ≤ Ak−1 − Ak , and thus (33) implies that for all k ≥ K , it holds that
Ak ≤ (α + β)(Ak−1 − Ak), from which item 1 immediately follows.

When γ < 1, we have (Ak−1 − Ak)
γ ≥ Ak−1 − Ak , and thus (33) implies that for all

k ≥ K , it holds that Ak ≤ (α +β)(Ak−1 − Ak)
γ . Letting h(x) = x−1/γ , we have for k ≥ K ,

1 ≤ (α + β)1/γ (Ak−1 − Ak)A
−1/γ
k

= (α + β)1/γ
(
Ak−1

Ak

)1/γ

(Ak−1 − Ak)A
−1/γ
k−1

≤ (α + β)1/γ
(
Ak−1

Ak

)1/γ ∫ Ak−1

Ak

h(x)dx

= (α + β)1/γ

1 − 1/γ

(
Ak−1

Ak

)1/γ (
A1−1/γ
k−1 − A1−1/γ

k

)
,

where we have used nonincreasing monotonicity of h in the second inequality. Hence,

A1−1/γ
k − A1−1/γ

k−1 ≥ 1/γ − 1

(α + β)1/γ

(
Ak

Ak−1

)1/γ

. (72)

Let μ be the positive constant such that

1/γ − 1

(α + β)1/γ
μ = μγ−1 − 1. (73)

123

J Sci Comput

Note that the above equation has a unique solution 0 < μ < 1. We claim that

A1−1/γ
k − A1−1/γ

k−1 ≥ μγ−1 − 1, ∀k ≥ K . (74)

It obviously holds from (72) and (73) if
(Ak
Ak−1

)1/γ ≥ μ. It also holds if
(Ak
Ak−1

)1/γ ≤ μ from
the arguments

(
Ak

Ak−1

)1/γ

≤ μ ⇒Ak ≤ μγ Ak−1 ⇒ A1−1/γ
k ≥ μγ−1A1−1/γ

k−1

⇒A1−1/γ
k − A1−1/γ

k−1 ≥ (μγ−1 − 1)A1−1/γ
k−1 ≥ μγ−1 − 1,

where the last inequality is from A1−1/γ
k−1 ≥ 1. Hence, (74) holds, and summing it over k

gives

A1−1/γ
k ≥ A1−1/γ

k − A1−1/γ
K ≥ (μγ−1 − 1)(k − K),

which immediately gives item 2 by letting ν = (μγ−1 − 1)
γ

γ−1 .

Appendix 2: Solutions of (46)

In this section, we give closed form solutions to both updates in (46). First, it is not difficult
to have the solution of (46b):

yk+1
πi

= max
(
0,
(
Xk+1

π<i
(Yk+1

π<i
)� + Xk

π>i
(Yk

π>i
)� − M

)�xk+1
πi

)
.

Secondly, since Lk
πi

> 0, it is easy to write (46a) in the form of

min
x≥0, ‖x‖=1

1

2
‖x − a‖2 + b�x + C,

which is apparently equivalent to
max

x≥0, ‖x‖=1
c�x, (75)

which c = a − b. Next we give solution to (75) in three different cases.
Case 1 c < 0. Let i0 = arg maxi ci and cmax = ci0 < 0. If there are more than one

components equal cmax, one can choose an arbitrary one of them. Then the solution to (75)
is given by xi0 = 1 and xi = 0,∀i �= i0 because for any x ≥ 0 and ‖x‖ = 1, it holds that

c�x ≤ cmax‖x‖1 ≤ cmax‖x‖ = cmax.

Case 2 c ≤ 0 and c �< 0. Let c = (cI0 , cI−)where cI0 = 0 and cI− < 0. Then the solution
to (75) is given by xI− = 0 and xI0 being any vector that satisfies xI0 ≥ 0 and ‖xI0‖ = 1
because c�x ≤ 0 for any x ≥ 0.

Case 3 c �≤ 0 Let c = (cI+ , cI c+) where cI+ > 0 and cI c+ ≤ 0. Then (75) has a unique

solution given by xI+ = cI+
‖cI+‖ and xI c+ = 0 because for any x ≥ 0 and ‖x‖ = 1, it holds that

c�x ≤ c�
I+xI+ ≤ ‖cI+‖ · ‖xI+‖ ≤ ‖cI+‖ · ‖x‖ = ‖cI+‖,

where the second inequality holds with equality if and only if xI+ is collinear with cI+ , and
the third inequality holds with equality if and only if xI c+ = 0.

123

J Sci Comput

Appendix 3: Proofs of Convergence of Some Examples

In this section, we give the proofs of the theorems in Sect.3.

Proof of Theorem 6

Through checking the assumptions of Theorem 2, we only need to verify the boundedness
of {Yk} to show Theorem 6. Let Ek = Xk(Yk)� − M. Since every iteration decreases the
objective, it is easy to see that {Ek} is bounded. Hence, {Ek + M} is bounded, and

a = sup
k

max
i, j

(Ek + M)i j < ∞.

Let yki j be the (i, j)th entry of Yk . Thus the columns of Ek + M satisfy

a ≥ eki + mi =
p∑

j=1

yki jx
k
j , ∀i, (76)

where xkj is the j th column of Xk . Since ‖xkj‖ = 1, we have ‖xkj‖∞ ≥ 1/
√
m, ∀ j . Note that

(76) implies each component of
∑p

j=1 y
k
i jx

k
j is no greater than a. Hence fromnonnegativity of

Xk and Yk and noting that at least one entry of xkj is no less than 1/
√
m, we have yki j ≤ a

√
m

for all i, j and k. This completes the proof.

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

2. Allen, G.: Sparse higher-order principal components analysis. In: International Conference on Artificial
Intelligence and Statistics, pp. 27–36. (2012)

3. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Math. Program. 116(1), 5–16 (2009)

4. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection
methods for nonconvex problems: an approach based on the Kurdyka–Lojasiewicz inequality. Math.
Oper. Res. 35(2), 438–457 (2010)

5. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math.
Program. 137(1–2), 91–129 (2013)

6. Bagirov, A.M., Jin, L., Karmitsa, N., Al Nuaimat, A., Sultanova, N.: Subgradient method for nonconvex
nonsmooth optimization. J. Optim. Theory Appl. 157(2), 416–435 (2013)

7. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

8. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J. Optim.
23(4), 2037–2060 (2013)

9. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
10. Blumensath, T.,Davies,M.E.: Iterative hard thresholding for compressed sensing.Appl.Comput.Harmon.

Anal. 27(3), 265–274 (2009)
11. Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with

applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)
12. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of łojasiewicz inequalities: subgradient

flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
13. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and

nonsmooth problems. Math. 146(1), 459–494 (2014)
14. Breheny, P., Huang, J.: Coordinate descent algorithms for nonconvex penalized regression, with applica-

tions to biological feature selection. Ann. Appl. Stat. 5(1), 232–253 (2011)

123

J Sci Comput

15. Burke, J.V., Lewis, A.S., Overton,M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex
optimization. SIAM J. Optim. 15(3), 751–779 (2005)

16. Chang, K.W., Hsieh, C.J., Lin, C.J.: Coordinate descent method for large-scale l2-loss linear support
vector machines. J. Mach. Learn. Res. 9, 1369–1398 (2008)

17. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, pp. 3869–3872. IEEE
(2008)

18. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134(1), 71–99
(2012)

19. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into
parts. In: Advances in Neural Information Processing Systems, vol. 16. (2003)

20. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.
Stat. Assoc. 96(456), 1348–1360 (2001)

21. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting
planes and proximity control. SIAM J. Optim. 14(3), 743–756 (2004)

22. Ghadimi, S., Lan,G.:Accelerated gradientmethods for nonconvex nonlinear and stochastic programming.
Math. Program. 156(1), 59–99 (2016)

23. Grippo, L., Sciandrone, M.: Globally convergent block-coordinate techniques for unconstrained opti-
mization. Optim. Methods Softw. 10(4), 587–637 (1999)

24. Hildreth, C.: A quadratic programming procedure. Naval Res. Logist. Q. 4(1), 79–85 (1957)
25. Ho, N., Van Dooren, P., Blondel, V.: Descent methods for nonnegative matrix factorization. In: Numerical

Linear Algebra in Signals, Systems and Control, pp. 251–293. Springer, Netherlands (2011)
26. Hong,M.,Wang,X., Razaviyayn,M., Luo, Z.Q.: Iteration complexity analysis of block coordinate descent

methods. arXiv preprint arXiv:1310.6957 (2013)
27. Hoyer, P.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–

1469 (2004)
28. Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: a unified view

based on block coordinate descent framework. J. Global Optim. 58(2), 285–319 (2014)
29. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455 (2009)
30. Kruger, A.Y.: On fréchet subdifferentials. J. Math. Sci. 116(3), 3325–3358 (2003)
31. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier. 48(3),

769–783 (1998)
32. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed �q

minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)
33. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755),

788–791 (1999)
34. Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka–Lojasiewicz inequality and its applications to

linear convergence of first-order methods. arXiv preprint arXiv:1602.02915 (2016)
35. Ling, Q., Xu, Y., Yin, W., Wen, Z.: Decentralized low-rank matrix completion. In: IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 2925–2928. IEEE (2012)
36. Łojasiewicz, S.: Sur la géométrie semi-et sous-analytique.Ann. Inst. Fourier (Grenoble) 43(5), 1575–1595

(1993)
37. Lu, Z., Xiao, L.: Randomized block coordinate non-monotone gradient method for a class of nonlinear

programming. arXiv preprint arXiv:1306.5918 (2013)
38. Lu, Z., Xiao, L.: On the complexity analysis of randomized block-coordinate descent methods. Math.

Program. 152(1–2), 615–642 (2015)
39. Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable

minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)
40. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings

of the 26th Annual International Conference on Machine Learning, pp. 689–696. ACM (2009)
41. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Res.

13(1), 3441–3473 (2012)
42. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
43. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J.

Optim. 22(2), 341–362 (2012)
44. Nesterov, Y.: Introductory lectures on convex optimization: a basic course, vol. 87. Springer Science &

Business Media, Berlin (2013)
45. Nocedal, J., Wright, S.J.: Numerical Optimization, Springer Series in Operations Research and Financial

Engineering., 2nd edn. Springer, New York (2006)

123

http://arxiv.org/abs/1310.6957
http://arxiv.org/abs/1602.02915
http://arxiv.org/abs/1306.5918

J Sci Comput

46. O’Donoghue, B., Candes, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math.
15(3), 715–732 (2013)

47. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization
of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

48. Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications.
Ann. Math. Sci. Appl. 1(1), 57–119 (2016)

49. Razaviyayn, M., Hong, M., Luo, Z.Q.: A unified convergence analysis of block successive minimization
methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)

50. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

51. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for min-
imizing a composite function. Math. Program. 144(1), 1–38 (2014)

52. Rockafellar, R., Wets, R.: Variational Analysis, vol. 317. Springer, Berlin (2009)
53. Saha, A., Tewari, A.: On the nonasymptotic convergence of cyclic coordinate descent methods. SIAM J.

Optim. 23(1), 576–601 (2013)
54. Shi, H.J.M., Tu, S., Xu, Y., Yin, W.: A primer on coordinate descent algorithms. arXiv preprint

arXiv:1610.00040 (2016)
55. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J.

Optim. Theory Appl. 109(3), 475–494 (2001)
56. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math.

Program. 117(1), 387–423 (2009)
57. Welling, M., Weber, M.: Positive tensor factorization. Pattern Recogn. Lett. 22(12), 1255–1261 (2001)
58. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear

successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)
59. Xu, Y.: Alternating proximal gradient method for sparse nonnegative tucker decomposition. Math. Pro-

gram. Comput. 7(1), 39–70 (2015)
60. Xu, Y., Akrotirianakis, I., Chakraborty, A.: Proximal gradient method for huberized support vector

machine. Pattern Anal. Appl. 19(4), 989–1005 (2016)
61. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with

applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789
(2013)

62. Xu, Y., Yin, W.: A fast patch-dictionary method for whole image recovery. Inverse Probl. Imaging 10(2),
563–583 (2016)

63. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–
942 (2010)

123

http://arxiv.org/abs/1610.00040

	A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update
	Abstract
	1 Introduction
	1.1 Proposed Algorithm
	1.2 Special Cases
	1.3 Kurdyka–Łojasiewicz Property
	1.4 Related Literature
	1.5 Contributions
	1.6 Notation and Preliminaries
	1.7 Organization

	2 Convergence Analysis
	2.1 Subsequence Convergence
	2.2 Whole Sequence Convergence and Rate

	3 Applications and Numerical Results
	3.1 FISTA with Backtracking Extrapolation
	3.2 Coordinate Descent Method for Nonconvex Regression
	3.3 Rank-One Residue Iteration for Nonnegative Matrix Factorization
	3.3.1 Numerical Tests

	3.4 Block Prox-Linear Method for Nonnegative Tucker Decomposition

	4 Conclusions
	Acknowledgements
	Appendix 1: Proofs of Key Lemmas
	Proof of Lemma 1
	Proof of the Claim in Remark 2
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 2
	Proof of Proposition 3
	Proof of Lemma 3

	Appendix 2: Solutions of (46)
	Appendix 3: Proofs of Convergence of Some Examples
	Proof of Theorem 6

	References

