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Abstract. Finding a fixed point to a nonexpansive operator, i.e., x∗ = Tx∗, abstracts many
problems in numerical linear algebra, optimization, and other areas of data sciences. To solve fixed-
point problems, we propose ARock, an algorithmic framework in which multiple agents (machines,
processors, or cores) update x in an asynchronous parallel fashion. Asynchrony is crucial to parallel
computing since it reduces synchronization wait, relaxes communication bottleneck, and thus speeds
up computing significantly. At each step of ARock, an agent updates a randomly selected coordinate
xi based on possibly out-of-date information on x. The agents share x through either global memory
or communication. If writing xi is atomic, the agents can read and write x without memory locks.

We prove that if the nonexpansive operator T has a fixed point, then with probability one, ARock
generates a sequence that converges to a fixed point of T . Our conditions on T and step sizes are
weaker than comparable work. Linear convergence is obtained under suitable assumptions.

We propose special cases of ARock for linear systems, convex optimization, machine learning, as
well as distributed and decentralized consensus problems. Numerical experiments of solving sparse
logistic regression problems are presented.
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1. Introduction. Technological advances in data gathering and storage have
led to a rapid proliferation of big data in diverse areas such as climate studies, cos-
mology, medicine, the Internet, and engineering [30]. The data involved in many of
these modern applications are large and grow quickly. Therefore, parallel computa-
tional approaches are needed. This paper introduces a new approach to asynchronous
parallel computing with convergence guarantees.

In a synchronous(sync) parallel iterative algorithm, the agents must wait for the
slowest agent to finish an iteration before they can all proceed to the next one (Figure
1a). Hence, the slowest agent may cripple the system. In contract, the agents in an
asynchronous(async) parallel iterative algorithm run continuously with little idling
(Figure 1b). However, the iterations are disordered, and an agent may carry out an
iteration without the newest information from other agents.
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Fig. 1: Sync-parallel computing (left) versus async-parallel computing (right).

Asynchrony has other advantages [9]: the system is more tolerant to computing
faults and communication glitches; it is also easy to incorporate new agents.
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On the other hand, it is more difficult to analyze asynchronous algorithms and
ensure their convergence. It becomes impossible to find a sequence of iterates that one
completely determines the next. Nonetheless, we let any update be a new iteration and
propose an async-parallel algorithm (ARock) for the generic fixed-point iteration. It
converges if the fixed-point operator is nonexpansive (Def. 1.2) and has a fixed point.

Let H1, . . . ,Hm be Hilbert spaces and H := H1 × · · · × Hm be their Cartesian
product. For a nonexpansive operator T : H → H, our problem is to

(1.1) find x∗ ∈ H such that x∗ = Tx∗.

Finding a fixed point to T is equivalent to finding a zero of S ≡ I − T, denoted by x∗

such that 0 = Sx∗. Hereafter, we will use both S and T for convenience.
Problem (1.1) is widely applicable in linear and nonlinear equations, statistical

regression, machine learning, convex optimization, and optimal control. A generic
framework for problem (1.1) is the Krasnosel’skĭi–Mann (KM) iteration [33]:

(1.2) xk+1 = xk + α (Txk − xk), or equivalently, xk+1 = xk − αSxk,

where α ∈ (0, 1) is the step size. If FixT — the set of fixed points of T (zeros of S)
— is nonempty, then the sequence (xk)k≥0 converges weakly to a point in FixT and
(Txk − xk)k≥0 converges strongly to 0. The KM iteration generalizes algorithms in
convex optimization, linear algebra, differential equations, and monotone inclusions.
Its special cases include the following iterations: alternating projection, gradient de-
scent, projected gradient descent, proximal-point algorithm, Forward-Backward Split-
ting (FBS) [45], Douglas-Rachford Splitting (DRS) [37], a three-operator splitting [17],
and the Alternating Direction Method of Multipliers (ADMM) [37, 28].

In ARock, a set of p agents, p ≥ 1, solve problem (1.1) by updating the coordinates
xi ∈ Hi, i = 1, . . . ,m, in a random and asynchronous fashion. Algorithm 1 describes
the framework. Its special forms for several applications are given in Section 2 below.

Algorithm 1: ARock: a framework for async-parallel coordinate updates

Input : x0 ∈ H, K > 0, a distribution (p1, . . . , pm) > 0 with
∑m
i=1 pi = 1;

global iteration counter k ← 0;
while k < K, every agent asynchronously do

select ik ∈ {1, . . . ,m} with Prob(ik = i) = pi;
perform an update to xik according to (1.3);
update the global counter k ← k + 1;

Whenever an agent finishes updating a coordinate, the global iteration counter k
increases by one. The kth update is applied to xik ∈ Hik , where ik ∈ {1, . . . ,m} is
an independent random variable. Each coordinate update has the form:

(1.3) xk+1 = xk − ηk
mpik

Sik x̂
k,

where ηk > 0 is a scalar whose range will be set later, Sikx := (0, ..., 0, (Sx)ik , 0, ..., 0),
and mpik is used to normalize nonuniform selection probabilities. In the uniform case,
namely, pi ≡ 1

m for all i, we have mpik ≡ 1, which simplifies the update (1.3) to

(1.4) xk+1 = xk − ηkSik x̂k.

Here, the point x̂k is what an agent reads from global memory to its local cache and
to which Sik is applied, and xk denotes the state of x in global memory just before the
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update (1.3) is applied. In a sync-parallel algorithm, we have x̂k = xk, but in ARock,
due to possible updates to x by other agents, x̂k can be different from xk. This is a
key difference between sync-parallel and async-parallel algorithms. In Subsection 1.2
below, we will establish the relationship between x̂k and xk as

(1.5) x̂k = xk +
∑
d∈J(k)(x

d − xd+1),

where J(k) ⊆ {k−1, . . . , k−τ} and τ ∈ Z+ is the maximum number of other updates
to x during the computation of (1.3). Equation (1.5) has appeared in [38].

The update (1.3) is only computationally worthy if Six is much cheaper to com-
pute than Sx. Otherwise, it is more preferable to apply the full KM update (1.2). In
Section 2, we will present several applications that have the favorable structures for
ARock. Our recent work [46] studies coordinate friendly structures more thoroughly.

The convergence of ARock (Algorithm 1) is stated in Theorems 3.7 and 3.9. Here
we include a shortened version, leaving the bounds on ηk to the full theorems:

Theorem 1.1 (Global and linear convergence). Let T : H → H be a nonexpansive
operator with a fixed point. Let (xk)k≥0 be the sequence generated by Algorithm 1 with
properly bounded step sizes ηk. Then, with probability one, (xk)k≥0 converges weakly
to a fixed point of T . This convergence becomes strong if H has a finite dimension.

In addition, if T is demicompact (see Definition 1.3 below), then with probability
one, (xk)k≥0 converges strongly to a fixed point of T .

Furthermore, if S ≡ I − T is quasi-strongly monotone (see Definition 1.2 below),
then T has a unique fixed-point x∗, (xk)k≥0 converges strongly to x∗ with probability
one, and E‖xk − x∗‖2 converges to 0 at a linear rate.

In the theorem, the weak convergence result only requires T to be nonexpansive
and has a fixed point. In addition, the computation requires: (a) bounded step sizes;
(b) random coordinate selection; and (c) a finite maximal delay τ . Assumption (a) is
standard, and we will see the bound can be O(1). Assumption (b) is essential to both
the analysis and the numerical performance of our algorithms. Assumption (c) is not
essential; an infinite delay with a light tail is allowed (but we leave it to future work).
The strong convergence result applies to all the examples in Section 2, and the linear
convergence result applies to Examples 2.2 and 2.4 when the corresponding operator
S is quasi-strongly monotone. Step sizes ηk are discussed in Remarks 2 and 4.

1.1. On random coordinate selection. ARock employs random coordinate
selection. This subsection discusses its advantages and disadvantages.

Its main disadvantage is that an agent cannot cache the data associated with a
coordinate. The variable x and its related data must be either stored in global memory
or passed through communication. A secondary disadvantage is that pseudo-random
number generations take time, which becomes relatively significant if each coordinate
update is cheap. (The network optimization examples in Subsections 2.3 and 2.6.2
are exceptions, where data are naturally stored in a distributed fashion and random
coordinate assignments are the results of Poisson processes.)

There are several advantages of random coordinate selection. It realizes the user-
specified update frequency pi for every component xi, i = 1, . . . ,m, even when dif-
ferent agents have different computing powers and different coordinate updates cost
different amounts of computation. Therefore, random assignment ensures load bal-
ance. The algorithm is also fault tolerant in the sense that if one or more agents fail, it
will still converge to a fixed-point of T . In addition, it has been observed numerically
on certain problems [12] that random coordinate selection accelerates convergence.
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1.2. Uncoordinated memory access. In ARock, since multiple agents simul-
taneously read and update x in global memory, x̂k — the result of x that is read from
global memory by an agent to its local cache for computation — may not equal xj

for any j ≤ k, that is, x̂k may never be consistent with a state of x in global memory.
This is known as inconsistent read. In contrast, consistent read means that x̂k = xj

for some j ≤ k, i.e., x̂k is consistent with a state of x that existed in global memory.

We illustrate inconsistent read and consistent read in the following example, which
is depicted in Figure 2. Consider x = [x1, x2, x3, x4]T ∈ R4 and x0 = [0, 0, 0, 0]T

initially, at time t0. Suppose at time t1, agent 2 updates x1 from 0 to 1, yielding
x1 = [1, 0, 0, 0]T ; then, at time t2, agent 3 updates x4 from 0 to 2, further yielding
x2 = [1, 0, 0, 2]T . Suppose that agent 1 starts reading x from the first component x1 at
t0. For consistent read (Figure 2a), agent 1 acquires a memory lock and only releases
the lock after finishing reading all of x1, x2, x3, and x4. Therefore, agent 1 will read in
[0, 0, 0, 0]T . Inconsistent read, however, allows agent 1 to proceed without a memory
lock: agent 1 starts reading x1 at t0 (Figure 2b) and reaches the last component, x4,
after t2; since x4 is updated by agent 3 prior to it is read by agent 1, agent 1 has read
[0, 0, 0, 2]T , which is different from any of x0, x1, and x2.
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(a) Consistent read. While agent 1 reads x
in memory, it acquires a global lock.
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(b) Inconsistent read. No lock. Agent 1
reads (0, 0, 0, 2)T , a non-existing state of x.

Fig. 2: Consistent read versus inconsistent read: A demonstration.

Even with inconsistent read, each component is consistent under the atomic co-
ordinate update assumption, which will be defined below. Therefore, we can express
what has been read in terms of the changes of individual coordinates. In the above
example, the first change is x11 − x01 = 1, which is added to x1 just before time t1 by
agent 2, and the second change is x24 − x14 = 2, added to x4 just before time t2 by
agent 3. The inconsistent read by agent 1, which gives the result [0, 0, 0, 2]T , equals
x0 + 0× (x1 − x0) + 1× (x2 − x1).

We have demonstrated that x̂k can be inconsistent, but each of its coordinates is
consistent, that is, for each i, x̂ki is an ever-existed state of xi among xki , . . . , x

k−τ
i .

Suppose that x̂ki = x
d
i , where d ∈ {k, k−1, . . . , k−τ}. Therefore, x̂ki can be related to

xki through the interim changes applied to xi. Let Ji(k) ⊂ {k − 1, . . . , k − τ} be the
index set of these interim changes. If Ji(k) 6= ∅, then d = min{d ∈ Ji(k)}; otherwise,

d = k. In addition, we have x̂ki = x
d
i = xki +

∑
d∈Ji(k)(x

d
i − x

d+1
i ). Since the global

counter k is increased after each coordinate update, updates to xi and xj , i 6= j,
must occur at different k’s and thus Ji(k) ∩ Jj(k) = ∅, ∀i 6= j. Therefore, by letting
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J(k) := ∪iJi(k) ⊂ {k−1, . . . , k− τ} and noticing (xdi −x
d+1
i ) = 0 for d ∈ Jj(k) where

i 6= j, we have x̂ki = xki +
∑
d∈J(k)(x

d
i − xd+1

i ),∀i = 1, . . . ,m, which is equivalent

to (1.5). Here, we have made two assumptions:

• atomic coordinate update: a coordinate is not further broken to smaller com-
ponents during an update; they are all updated at once.

• bounded maximal delay τ : during any update cycle of an agent, x in global
memory is updated at most τ times by other agents.

When each coordinate is a single scalar, updating the scalar is a single atomic in-
struction on most modern hardware, so the first assumption naturally holds, and our
algorithm is lock-free. The case where a coordinate is a block that includes multiple
scalars is discussed in the next subsection.

1.2.1. Block coordinate. In the “block coordinate” case (updating a block
of several coordinates each time), the atomic coordinate update assumption can be
met by either employing a per-coordinate memory lock or taking the following dual-
memory approach: Store two copies of each coordinate xi ∈ Hi in global memory,

denoting them as x
(0)
i and x

(1)
i ; let a bit αi ∈ {0, 1} point to the active copy; an agent

will only read xi from the active copy x
(αi)
i ; before an agent updates the components

of xi, it obtains a memory lock to the inactive copy x
(1−αi)
i to prevent other agents

from simultaneously updating it; then after it finishes updating x
(1−αi)
i , flip the bit αi

so that other agents will begin reading from the updated copy. This approach never
blocks any read of xi, yet it eliminates inconsistency.

1.3. Straightforward generalization. Our async-parallel coordinate update
scheme (1.3) can be generalized to (overlapping) block coordinate updates after a
change to the step size. Specifically, the scheme (1.3) can be generalized to

(1.6) xk+1 = xk − ηk
npik

(Uik ◦ S)x̂k,

where Uik is randomly drawn from a set of operators {U1, . . . , Un} (n ≤ m), Ui : H →
H, following the probability P (ik = i) = pi, i = 1, . . . , n (pi > 0, and

∑n
i=1 pi = 1).

The operators must satisfy
∑n
i=1 Ui = IH and

∑n
i=1 ‖Uix‖2 ≤ C‖x‖2 for some C > 0.

Let Ui : x 7→ (0, . . . , 0, xi, 0, . . . , 0), i = 1, . . . ,m, which has C = 1; then (1.6)
reduces to (1.3). If H is endowed with a metric M such that ρ1‖x‖2 ≤ ‖x‖2M ≤ ρ2‖x‖2
(e.g., the metric in the Condat-Vũ primal-dual splitting [16, 57]), then we have

m∑
i=1

‖Uix‖2M ≤ ρ2
m∑
i=1

‖Uix‖2 = ρ2C‖x‖2 ≤
ρ2C

ρ1
‖x‖2M .

In general, multiple coordinates can be updated in (1.6). Consider linear Ui : x 7→
(ai1x1, · · · , aimxm), i = 1, . . . ,m, where

∑n
i=1 aij = 1 for each j. Then, for C :=

max
{∑n

i=1 a
2
i1, · · · ,

∑n
i=1 a

2
im

}
, we have

n∑
i=1

‖Uix‖2 =

n∑
i=1

m∑
j=1

a2ij‖xj‖2 =

m∑
j=1

n∑
i=1

a2ij‖xj‖2 ≤ C‖x‖2.

This generalization is useful for applying ARock to primal-dual splitting schemes (see
Appendix D of [46] for detailed discussion).
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1.4. Special cases. If there is only one agent (p = 1), ARock (Algorithm 1)
reduces to randomized coordinate update, which includes the special case of random-
ized coordinate descent [42] for convex optimization. Sync-parallel coordinate update
is another special case of ARock corresponding to x̂k ≡ xk. In both cases, there is no
delay, i.e., τ = 0 and J(k) = ∅. In addition, the step size ηk can be more relaxed. In
particular, if pi = 1

m , ∀i, then we can let ηk = η, ∀k, for any η < 1, or η < 1/α when
T is α-averaged (see Definition 1.3 for the definition of an α-averaged operator).

1.5. An alternative way of counting iterations. Throughout the paper, the
iteration counter k increments, i.e., a new iteration is defined, once an agent finishes
making an update. Alternatively, the paper [36] increments k right after an agent
finishes reading x̂k. The two approaches define new iterations in different ways, and
they have both pros and cons. In the former approach, x̂k is read before the kth
iteration is defined, and thus J(k) in (1.5) depends on how long it takes to compute
(1.4). Because it may take longer to compute for some coordinates than the others,
J(k) depends on ik; however, their statistical independence is assumed in analysis. In
the latter approach, once x̂k is read, a new iteration is defined. If we further define
xk :=

∑k−1
j=0 ηjSij x̂

j , then J(k) in (1.5) does not depends on how long it takes to
compute (1.4) (instead, J(k) depends only on the previous iterations k− 1, . . . , k− τ
that overlap with the reading of x̂k); hence, this gives the statistical independence
between J(k) and ik required by analysis. However, the latter approaches bring new
issues: (i) the assumptive xk becomes a “halo sequence”, instead of the status of x
in the global memory; (ii) the independence would hold only if every agent reads the
entire x̂k even if computing Sik x̂

k does not require so. In practice, we always sample
ik then read x̂k and only read its useful components, so there is no way to make them
independent just by redefining iterations. Anyway, no matter which definition is used,
the same line of analysis in this paper is applicable.

1.6. Related work. Chazan and Miranker [14] proposed the first async-parallel
method in 1969. The method was designed for solving linear systems. Later, async-
parallel methods have been successful applied in many fields, e.g., linear systems [3,
10, 25, 53], nonlinear problems [4, 5], differential equations [1, 2, 13, 20], consensus
problems [35, 24], and optimization [31, 38, 39, 54, 61]. We review the theory for
async-parallel fixed-point iterations and its applications.

General fixed point problems. Totally async-parallel∗ iterative methods for a
fixed-point problem go back as early as to Baudet [5], where the operator was assumed
to be P-contraction.† Later, Bertsekas [7] generalized the P-contraction assumption
and showed convergence. Frommer and Szyld [26] reviewed the theory and appli-
cations of totally async-parallel iterations prior to 2000. This review summarized
convergence results under the conditions in [7]. However, ARock can be applied to
solve many more problems since our nonexpansive assumption, though not strictly
weaker than P-contraction, is more pervasive. As opposed to totally asynchronous
methods, Tseng, Bertsekas, and Tsitsiklis [8, 56] assumed quasi-nonexpansiveness‡

and proposed an async-parallel method, converging under an additional assumption,

∗“Totally asynchronous” means no upper bound on the delays; however, other conditions are
required, for example: each coordinate must be updated infinitely many times. By default, “asyn-
chronous” in this paper assumes a finite maximum delay.
†An operator T : Rn → Rn is P-contraction if |T (x)− T (y)| ≤ P |x− y|, component-wise, where

|x| denotes the vector with components |xi|, i = 1, ..., n, and P ∈ Rn×n is a nonnegative matrix
with a spectral radius strictly less than 1.
‡An operator T : H → H is quasi-nonexpansive if ‖Tx− x∗‖ ≤ ‖x− x∗‖, ∀x ∈ H, x∗ ∈ FixT .
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which is difficult to justify in general but can be established for problems such as
linear systems and strictly convex network flow problems [8, 56].

The above works assign coordinates in a deterministic manner. Different from
them, ARock is stochastic, works for nonexpansive operators, and is more applicable.

Linear, nonlinear, and differential equations. The first async-parallel method
for solving linear equations was introduced by Chazan and Miranker in [14]. They
proved that on solving linear systems, P-contraction was necessary and sufficient for
convergence. The performance of the algorithm was studied by Iain et al. [10, 53]
on different High Performance Computing (HPC) architectures. Recently, Avron et
al. [3] revisited the async-parallel coordinate update and showed its linear conver-
gence for solving positive-definite linear systems. Tarazi and Nabih [23] extended the
poineering work [14] to solving nonlinear equations, and the async-parallel methods
have also been applied for solving differential equations, e.g., in [1, 2, 13, 20]. Except
for [3], all these methods are totally async-parallel with the P-contraction condition or
its variants. On solving a positive-definite linear system, [3] made assumptions similar
to ours, and it obtained better linear convergence rate on that special problem.

Optimization. The first async-parallel coordinate update gradient-projection
method was due to Bertsekas and Tsitsiklis [8]. The method solves constrained opti-
mization problems with a smooth objective and simple constraints. It was shown that
the objective gradient sequence converges to zero. Tseng [55] further analyzed the
convergence rate and obtained local linear convergence based on the assumptions of
isocost surface separation and a local Lipschitz error bound. Recently, Liu et al. [39]
developed an async-parallel stochastic coordinate descent algorithm for minimizing
convex smooth functions. Later, Liu and Wright [38] suggested an async-parallel
stochastic proximal coordinate descent algorithm for minimizing convex composite
objective functions. They established the convergence of the expected objective-error
sequence for convex functions. Hsieh et al. [31] proposed an async-parallel dual coordi-
nate descent method for solving `2 regularized empirical risk minimization problems.
Other async-parallel approaches include asynchronous ADMM [29, 58, 61, 32]. Among
them, [58, 32] use an asynchronous clock, and [29, 61] use a central node to update the
dual variable; they do not deal with delay or inconsistency. Async-parallel stochastic
gradient descent methods have also been considered in [40, 50].

Our framework differs from the recent surge of the aforementioned sync-parallel
and async-parallel coordinate descent algorithms (e.g., [47, 34, 39, 38, 31, 51]). While
they apply to convex function minimization, ARock covers more cases (such as ADMM,
primal-dual, and decentralized methods) and also provides sequence convergence. In
Section 2, we will show that some of the existing async-parallel coordinate descent
algorithms are special cases of ARock, through relating their optimality conditions
to nonexpansive operators. Another difference is that the convergence of ARock only
requires a nonexpansive operator with a fixed point, whereas properties such as strong
convexity, bounded feasible set, and bounded sequence, which are seen in some of the
recent literature for async-parallel convex minimization, are unnecessary.

Others. Besides solving equations and optimization problems, there are also
applications of async-parallel algorithms to optimal control problems [35], network
flow problems [22], and consensus problems of multi-agent systems [24].

1.7. Contributions. Our contributions and techniques are summarized below:

• ARock is the first async-parallel coordinate update framework for finding a
fixed point to a nonexpansive operator.

• By introducing a new metric and establishing stochastic Fejér monotonicity,
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we show that, with probability one, ARock converges to a point in the solution
set; linear convergence is obtained for quasi-strongly monotone operators.

• Based on ARock, we introduce an async-parallel algorithm for linear systems,
async-parallel ADMM algorithms for distributed or decentralized computing
problems, as well as async-parallel operator-splitting algorithms for nons-
mooth minimization problems. Some problems are treated in they async-
parallel fashion for the first time in history. The developed algorithms are
not straightforward modifications to their serial versions because their under-
lying nonexpansive operators must be identified before applying ARock.

1.8. Notation, definitions, background of monotone operators. Through-
out this paper, H denotes a separable Hilbert space equipped with the inner product
〈·, ·〉 and norm ‖ · ‖, and (Ω,F , P ) denotes the underlying probability space, where Ω,
F , and P are the sample space, σ-algebra, and probability measure, respectively. The
map x : (Ω,F)→ (H,B), where B is the Borel σ-algebra, is an H-valued random vari-
able. Let (xk)k≥0 denote either a sequence of deterministic points in H or a sequence
of H-valued random variables, which will be clear from the context, and let xi ∈ Hi
denote the ith coordinate of x. In addition, we let X k := σ(x0, x̂1, x1, ..., x̂k, xk)
denote the smallest σ-algebra generated by x0, x̂1, x1, ..., x̂k, xk. “Almost surely” is
abbreviated as “a.s.”, and the n product space of H is denoted by Hn. We use →
and ⇀ for strong convergence and weak convergence, respectively.

We define FixT := {x ∈ H | Tx = x} as the set of fixed points of operator T ,
and, in the product space, we let X∗ := {(x∗, x∗, ..., x∗) | x∗ ∈ FixT} ⊆ Hτ+1.

Definition 1.2. An operator T : H → H is c-Lipschitz, where c ≥ 0, if it
satisfies ‖Tx− Ty‖ ≤ c‖x− y‖, ∀x, y ∈ H. In particular, T is nonexpansive if c ≤ 1,
and contractive if c < 1.

Definition 1.3. Consider an operator T : H → H.
• T is α-averaged with α ∈ (0, 1), if there is a nonexpansive operator R : H →
H such that T = (1−α)IH+αR, where IH : H → H is the identity operator.

• T is β-cocoercive with β > 0, if 〈x− y, Tx−Ty〉 ≥ β‖Tx−Ty‖2, ∀x, y ∈ H.
• T is µ-strongly monotone, where µ > 0, if it satisfies 〈x − y, Tx − Ty〉 ≥
µ‖x− y‖2, ∀x, y ∈ H. When the inequality holds for µ = 0, T is monotone.

• T is quasi-µ-strongly monotone, where µ > 0, if it satisfies 〈x − y, Tx〉 ≥
µ‖x − y‖2, ∀x ∈ H, y ∈ zerT := {y ∈ H | Ty = 0}. When the inequality
holds for µ = 0, T is quasi-monotone.

• T is demicompact [48] at x ∈ H if for every bounded sequence (xk)k≥0 in H
such that Txk − xk → x, there exists a strongly convergent subsequence.

Averaged operators are nonexpansive. By the Cauchy-Schwarz inequality, a β-
cocoercive operator is 1

β -Lipschitz; the converse is generally untrue, but true for the
gradients of convex differentiable functions. Examples are given in the next section.

2. Applications. In this section, we provide some applications that are special
cases of the fixed-point problem (1.1). For each application, we identify its nonexpan-
sive operator T (or the corresponding operator S) and implement the conditions in
Theorem 1.1. For simplicity, we use the uniform distribution, p1 = · · · = pm = 1/m,
and apply the simpler update (1.4) instead of (1.3).

2.1. Solving linear equations. Consider the linear system Ax = b, where A ∈
Rm×m is a nonsingular matrix with nonzero diagonal entries. Let A = D +R, where
D and R are the diagonal and off-diagonal parts of A, respectively. Let M := −D−1R
and T (x) := Mx + D−1b. Then the system Ax = b is equivalent to the fixed-point
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problem x = D−1(b − Rx) =: T (x), where T is nonexpansive if the spectral norm
‖M‖2 satisfies ‖M‖2 ≤ 1. The iteration xk+1 = T (xk) is widely known as the Jacobi
algorithm. Let S = I − T . Each update Sik x̂

k involves multiplying just the ikth row
of M to x and adding the ikth entry of D−1b, so we arrive at the following algorithm.

Algorithm 2: ARock for linear equations

Input : x0 ∈ Rn, K > 0.
set the global iteration counter k = 0;
while k < K, every agent asynchronously do

select ik ∈ {1, . . . ,m} uniformly at random;

subtract ηk
aikik

(
∑
j aikj x̂

k
j − bik) from the component xik of the variable x;

update the global counter k ← k + 1;

Proposition 2.1. [6, Example 22.5] Suppose that T is c-Lipschitz continuous
with c ∈ [0, 1). Then, I − T is (1− c)-strongly monotone.

Suppose ‖M‖2 < 1. Since T is ‖M‖2-Lipschitz continuous, by Proposition 2.1, S
is (1− ‖M‖2)-strongly monotone. By Theorem 3.9, Algorithm 2 converges linearly.

2.2. Minimize convex smooth function. Consider the optimization problem

(2.1) minimize
x∈H

f(x),

where f is a closed proper convex differentiable function and ∇f is L-Lipschitz con-
tinuous, L > 0. Let S := 2

L ∇f . As f is convex and differentiable, x is a minimizer
of f if and only if x is a zero of S. Note that S is 1

2 -cocoercive. By Lemma 3.1,
T ≡ I − S is nonexpansive. Applying ARock, we have the following iteration:

(2.2) xk+1 = xk − ηkSik x̂k,

where Sikx = 2
L (0, ..., 0,∇ikf(x), 0, ..., 0)T . Note that ∇f needs a structure that

makes it cheap to compute ∇ikf(x̂k). Let us give two such examples: (i) quadratic
programming: f(x) = 1

2x
TAx − bTx, where ∇f(x) = Ax − b and ∇ikf(x̂k) only

depends on a part of A and b; (ii) sum of sparsely supported functions: f =
∑N
j=1 fj

and ∇f =
∑N
j=1∇fj , where each fj depends on just a few variables.

Theorem 3.7 below guarantees the convergence of (xk)k≥0 if ηk ∈ [ηmin,
1

2τ/
√
m+1

).

In addition, If f(x) is restricted strongly convex, namely, for any x ∈ H and x∗ ∈ X∗,
where X∗ is the solution set to (2.1), we have 〈x− x∗,∇f(x)〉 ≥ µ‖x− x∗‖2 for some
µ > 0, then S is quasi-strongly monotone with modulus µ. According to Theorem 3.9,
iteration (2.2) converges at a linear rate if the step size meets the condition therein.

Our convergence and rates are given in term of the distance to the solution set X∗.
In comparison, the results in the work [39] are given in terms of objective error under
the assumption of a uniformly bounded (xk)k≥0. In addition, their step size decays
like O( 1

τρτ ) for some ρ > 1 depending on τ , and our O( 1
τ ) is better. Under similar

assumptions, Bertsekas and Tsitsiklis [8, Section 7.5] also describes an algorithm
for (2.1) and proves only subsequence convergence [8, Proposition 5.3] in Rn.

2.3. Decentralized consensus optimization. Consider that m agents in a
connected network solve the consensus problem of minimizing

∑m
i=1 fi(x), where x ∈

Rd is the shared variable and the convex differentiable function fi is held privately
by agent i. We assume that ∇fi is Li-Lipschitz continuous for all i. A decentralized
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gradient descent algorithm [41] can be developed based on the equivalent formulation

(2.3) minimize
x1,...,xm∈Rd

f(x) :=
∑m
i=1 fi(xi), subject to Wx = x,

where x = (x1, ..., xm)T ∈ Rm×d and W ∈ Rm×m is the so-called mixing matrix
satisfying: Wx = x if and only if x1 = · · · = xm. For i 6= j, if wi,j 6= 0, then
agent i can communicate with agent j; otherwise they cannot. We assume that W is
symmetric and doubly stochastic. Then, the decentralized consensus algorithm [41]
can be expressed as xk+1 = Wxk−γ∇f(xk) = xk−γ(∇f(xk) + 1

γ (I−W )xk), where

∇f(x) ∈ Rm×d is a matrix with its ith row equal to (∇fi(xi))T ; see [60]. The compu-
tation of Wxk involves communication between agents, and ∇fi(xi) is independently
computed by each agent i. The iteration is equivalent to the gradient descent iter-
ation applied to minx

∑m
i=1 fi(xi) + 1

2γxT (I −W )x. To apply our algorithm, we let

S := 2
L∇F = 2

L (∇f+ 1
γ (I−W )) with L = maxi Li+(1−λmin(W ))/γ, where λmin(A)

is the smallest eigenvalue of W . Computing Six̂
k reduces to computing ∇fi(x̂ki ) and

the ith entry of W x̂k or
∑
j wi,j x̂

k
j , which involves only x̂ki and x̂kj from the neighbors

of agent i. Note that since each agent i can store its own xi locally, we have x̂ki ≡ xki .
If the agents are p independent Poisson processes and that each agent i has

activation rate λi, then the probability that agent i activates before other agents
is equal to λi∑p

i=1 λi
[43] and therefore our random sample scheme holds and ARock

applies naturally. The algorithm is summarized as follows:

Algorithm 3: ARock for decentralized optimization (2.3)

Input : Each agent i sets x0i ∈ Rd, K > 0.
while k < K do

when an agent i is activated,
xk+1
i = xki −

ηk
L (∇fi(xki ) + 1

γ (xki −
∑
j wi,j x̂

k
j ));

increase the global counter k ← k + 1;

2.4. Minimize smooth + nonsmooth functions. Consider the problem

(2.4) minimize
x∈H

f(x) + g(x),

where f is closed proper convex and g is convex and L-Lipschitz differentiable with
L > 0. Problems in the form of (2.4) arise in statistical regression, machine learning,
and signal processing and include well-known problems such as the support vector
machine, regularized least-squares, and regularized logistic regression. For any x ∈ H
and scalar γ ∈ (0, 2

L ), define the proximal operator proxf : H → H and the reflective-
proximal operator reflf : H → H as

(2.5) proxγf (x) := arg min
y∈H

f(y) +
1

2γ
‖y − x‖2 and reflγf := 2proxγf − IH,

respectively, and define the following forward-backward operator TFBS := proxγf ◦
(I − γ∇g). Because proxγf is 1

2 -averaged and (I − γ∇g) is γL
2 -averaged, TFBS is

α-averaged for α ∈ [ 23 , 1) [6, Propositions 4.32 and 4.33]. Define S := I − TFBS =
I − proxγf ◦ (I − γ∇g). When we apply Algorithm 1 to T = TFBS to solve (2.4),
and assume f is separable in all coordinates, that is, f(x) =

∑m
i=1 fi(xi), the update

for the ikth selected coordinate is

(2.6) xk+1
ik

= xkik − ηk
(
x̂kik − proxγfik

(x̂kik − γ∇ikg(x̂k))
)
,
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Examples of separable functions include `1 norm, `2 norm square, the Huber function,
and the indicator function of box constraints, i.e., {x|ai ≤ xi ≤ bi, ∀i}. They all have
simple prox maps. If ηk ∈ [ηmin,

1
2τ/
√
m+1

), then the convergence is guaranteed by

Theorem 3.7. To show linear convergence, we need to assume that g(x) is strongly
convex. Then, Proposition 2.2 below shows that proxγf ◦ (I − γ∇g) is a quasi-
contractive operator, and by Proposition 2.1, operator I−proxγf ◦(I−γ∇g) is quasi-
strongly monotone. Finally, linear convergence and its rate follow from Theorem 3.9.

Proposition 2.2. Assume that f is a closed proper convex function, and g is
L-Lipschitz differentiable and strongly convex with modulus µ > 0. Let γ ∈ (0, 2

L ).
Then, both I − γ∇g and proxγf ◦ (I − γ∇g) are quasi-contractive operators.

Proof. We first show that I − γ∇g is a quasi-contractive operator. Note

‖(x− γ∇g(x))− (x∗ − γ∇g(x∗))‖2

=‖x− x∗‖2 − 2γ〈x− x∗,∇g(x)−∇g(x∗)〉+ γ2‖∇g(x)−∇g(x∗)‖2

≤‖x− x∗‖2 − γ(2− γL)〈x− x∗,∇g(x)−∇g(x∗)〉
≤(1− 2γµ+ µγ2L)‖x− x∗‖2,

where the first inequality follows from the Baillon-Haddad theorem§ and the second
one from the strong convexity of g. Hence, I−γ∇g is quasi-contractive if 0 < γ < 2/L.
Since f is convex, proxγf is firmly nonexpansive, and thus we immediately have the
quasi-contractiveness of proxγf ◦ (I − γ∇g) from that of I − γ∇g.

2.5. Minimize nonsmooth + nonsmooth functions. Consider

(2.7) minimize
x∈H

f(x) + g(x),

where both f(x) and g(x) are closed proper convex and their prox maps are easy to
compute. Define the Peaceman-Rachford [37] operator:

TPRS := reflγf ◦ reflγg.

Since both reflγf and reflγg are nonexpansive, their composition TPRS is also nonex-
pansive. Let S := I−TPRS.When applying ARock to T = TPRS to solve problem (2.7),
the update (1.6) reduces to:

(2.8) zk+1 = zk − ηk Uik ◦
(
I − reflγf ◦ reflγg

)
ẑk,

where we use z instead of x since the limit z∗ of (zk)k≥0 is not a solution to (2.7);
instead, a solution must be recovered via x∗ = proxγgz

∗. The convergence follows
from Theorem 3.7 and that TPRS is nonexpansive. If either f or g is strongly convex,
then TPRS is contractive and thus by Theorem 3.9, ARock converges linearly. Finer
convergence rates follow from [18, 19]. A naive implementation of (2.8) is

x̂k = proxγg(ẑ
k),(2.9a)

ŷk = proxγf (2x̂k − ẑk),(2.9b)

zk+1 = zk + 2ηk Uik(ŷk − x̂k),(2.9c)

§Let g be a convex differentiable function. Then,∇g is L-Lipschitz if and only if it is 1
L

-cocoercive.
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where x̂k and ŷk are intermediate variables. Note that the order in which the proximal
operators are applied to f and g affects both zk [59] and whether coordinate-wise
updates can be efficiently computed. Next, we present two special cases of (2.7) in
Subsections 2.5.1 and 2.6 and discuss how to efficiently implement the update (2.9).

2.5.1. Feasibility problem. Suppose that C1, ..., Cm are closed convex subsets
of H with a nonempty intersection. The problem is to find a point in the intersection.
Let ICi be the indicator function of the set Ci, that is, ICi(x) = 0 if x ∈ Ci and ∞
otherwise. The feasibility problem can be formulated as the following

minimize
x=(x1,...,xm)∈Hm

m∑
i=1

ICi(xi) + I{x1=···=xm}(x).

Let zk = (zk1 , . . . , z
k
m) ∈ Hm, ẑk = (ẑk1 , . . . , ẑ

k
m) ∈ Hm, and ˆ̄zk ∈ H. We can imple-

ment (2.9) as follows (see Appendix A for the step-by-step derivation):

ˆ̄z
k

= 1
m

∑m
i=1 ẑ

k
i ,(2.10a)

ŷkik = ProjCik

(
2ˆ̄z
k − ẑkik

)
,(2.10b)

zk+1
ik

= zkik + 2ηk(ŷkik − ˆ̄z
k
).(2.10c)

The update (2.10) can be implemented as follows. Let global memory hold z1, . . . , zm,
as well as z̄ = 1

m

∑m
i=1 zi. At the kth update, an agent independently generates a ran-

dom number ik ∈ {1, . . . ,m}, then reads zik as ẑkik and z̄ as ˆ̄z
k
, and finally computes

ŷik and updates zik in global memory according to (2.10). Since z̄ is maintained in
global memory, the agent updates z̄ according to z̄k+1 = z̄k + 1

m (zk+1
ik
− zkik). This

implementation saves each agent from computing (2.10a) or reading all z1, . . . , zm.
Each agent only reads zik and z̄, executes (2.10b), and updates zik (2.10c) and z̄.

2.6. Async-parallel ADMM. This is another application of (2.9). Consider

(2.11) minimize
x∈H1, y∈H2

f(x) + g(y) subject to Ax+By = b,

where H1 and H2 are Hilbert spaces, A and B are bounded linear operators. We
apply the update (2.9) to the Lagrange dual of (2.11) (see [27] for the derivation):

(2.12) minimize
w∈G

df (w) + dg(w),

where df (w) := f∗(A∗w), dg(w) := g∗(B∗w)−〈w, b〉, and f∗ and g∗ denote the convex
conjugates of f and g, respectively. The proximal maps induced by df and dg can
be computed via solving subproblems that involve only the original terms in (2.11):
z+ = proxγdf (z) can be computed by (see Appendix A for the derivation)

(2.13)

{
x+ ∈ arg minx f(x)− 〈z,Ax〉+ γ

2 ‖Ax‖
2,

z+ = z − γAx+,

and z+ = proxγdg (z) by

(2.14)

{
y+ ∈ arg miny g(y)− 〈z,By − b〉+ γ

2 ‖By − b‖
2,

z+ = z − γ(By+ − b).
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Plugging (2.13) and (2.14) into (2.9) yields the following naive implementation

ŷk ∈ arg min
y
g(y)− 〈ẑk, By − b〉+

γ

2
‖By − b‖2,(2.15a)

ŵkg = ẑk − γ(Bŷk − b),(2.15b)

x̂k ∈ arg min
x
f(x)− 〈2ŵkg − ẑk, Ax〉+

γ

2
‖Ax‖2,(2.15c)

ŵkf = 2ŵkg − ẑk − γAx̂k,(2.15d)

zk+1
ik

= zkik + ηk(ŵkf,ik − ŵ
k
g,ik

).(2.15e)

Note that 2ηk in (2.9c) becomes ηk in (2.15e) because ADMM is equivalent to the
Douglas-Rachford operator, which is the average of the Peaceman-Rachford operator
and the identity operator [37]. Under favorable structures, (2.15) can be implemented
efficiently. For instance, when A and B are block diagonal matrices and f, g are
corresponding block separable functions, steps (2.15a)–(2.15d) reduce to independent
computation for each i. Since only ŵkf,ik and ŵkg,ik are needed to update the main

variable zk, we only need to compute (2.15a)–(2.15d) for the ikth block. This is
exploited in distributed and decentralized ADMM in the next two subsections.

2.6.1. Async-parallel ADMM for consensus optimization. Consider the
consensus optimization problem:

(2.16) minimize
xi,y∈H

∑m
i=1 fi(xi) subject to xi − y = 0, ∀i = 1, ...,m,

where fi(xi) are proper close convex functions. Rewrite (2.16) to the ADMM form:

minimize
xi,y∈H

∑m
i=1 fi(xi) + g(y)

subject to


IH 0 · · · 0
0 IH · · · 0

. . .

0 0 · · · IH



x1
x2
...
xm

−

IH
IH
...
IH

 y = 0,(2.17)

where g = 0. Now apply the async-parallel ADMM (2.15) to (2.17) with dual variables
z1, ..., zm ∈ H. In particular, the update (2.15a), (2.15b), (2.15c), (2.15d) reduce to

ŷk = arg miny
{∑m

i=1〈ẑki , y〉+ γm
2 ‖y‖

2
}

= − 1
γm

∑m
i=1 ẑ

k
i

(ŵkdg )i = ẑki + γ ŷk(2.18)

x̂ki = arg minxi
{
fi(xi)− 〈2(ŵkdg )i − ẑki , xi〉+ γ

2 ‖xi‖
2
}
,

(ŵkdf )i = 2(ŵkdg )i − ẑki − γ x̂ki
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Therefore, we obtain the following async-parallel ADMM algorithm for the prob-
lem (2.16). This algorithm applies to all the distributed applications in [11].

Algorithm 4: ARock for consensus optimization

Input : set shared variables y0, z0i , ∀i, and K > 0.
while k < K every agent asynchronously do

choose ik from {1, ...,m} with equal probability;

evaluate (ŵkdg )ik , x̂kik , and (ŵkdf )ik following (2.18);

update zk+1
ik

= zkik + ηk ((ŵkdf )ik − (ŵkdg )ik);

update yk+1 = yk + 1
γm (zkik − z

k+1
ik

);

update the global counter k ← k + 1;

2.6.2. Async-parallel ADMM for decentralized optimization. Let V =
{1, ...,m} be a set of agents and E = {(i, j) | if agent i connects to agent j, i < j} be
the set of undirected links between the agents. Consider the following decentralized
consensus optimization problem on the graph G = (V,E):

(2.19) minimize
x1,...,xm∈Rd

f(x1, . . . , xm) :=
∑m
i=1 fi(xi), subject to xi = xj , ∀(i, j) ∈ E,

where x1, ..., xm ∈ Rd are the local variables and each agent can only communicate
with its neighbors in G. By introducing the auxiliary variable yij associated with
each edge (i, j) ∈ E, the problem (2.19) can be reformulated as:

(2.20) minimize
xi,yij

∑m
i=1 fi(xi), subject to xi = yij , xj = yij , ∀(i, j) ∈ E.

Define x = (x1, ..., xm)T and y = (yij)(i,j)∈E ∈ R|E|d to rewrite (2.20) as

(2.21) minimize
x,y

∑m
i=1 fi(xi), subject to Ax+By = 0,

for proper matrices A and B. Applying the async-parallel ADMM (2.15) to (2.21)
gives rise to the following simplified update: Let E(i) be the set of edges connected
with agent i and |E(i)| be its cardinality. Let L(i) = {j | (j, i) ∈ E(i), j < i} and
R(i) = {j | (i, j) ∈ E(i), j > i}. To every pair of constraints xi = yij and xj = yij ,
(i, j) ∈ E, we associate the dual variables zij,i and zij,j , respectively. Whenever some
agent i is activated, it calculates

x̂ki = arg min
xi

fi(xi) +
( ∑
l∈L(i)

ẑkli,l +
∑
r∈R(i)

ẑkir,r
)
xi +

γ

2
|E(i)| · ‖xi‖2,(2.22a)

zk+1
li,i =zkli,i − ηk((ẑkli,i + ẑli,l)/2 + γx̂ki ), ∀l ∈ L(i),(2.22b)

zk+1
ir,i =zkir,i − ηk((ẑkir,i + ẑir,r)/2 + γx̂ki ), ∀r ∈ R(i).(2.22c)

We present the algorithm based on (2.22) for problem (2.19) in Algorithm 5.

Algorithm 5: ARock for the decentralized problem (2.20)

Input : Each agent i sets the dual variables z0e,i = 0 for e ∈ E(i), K > 0.

while k < K, any activated agent i do
(previously received ẑkli,l from neighbors l ∈ L(i) and ẑkir,r from r ∈ R(i));

update x̂ki according to (2.22a);

update zk+1
li,i and zk+1

ir,i according to (2.22b) and (2.22c), respectively;

send zk+1
li,i to neighbors l ∈ L(i) and zk+1

ir,i to neighbors r ∈ R(i);
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Algorithm 5 activates one agent at each iteration and updates all the dual vari-
ables associated with the agent. In this case, only one-sided communication is needed,
for sending the updated dual variables in the last step. We allow this communication
to be delayed in the sense that agent i’s neighbors may be activated and start their
computation before receiving the latest dual variables from agent i.

Our algorithm is different from the asynchronous ADMM algorithm by Wei and
Ozdaglar [58]. Their algorithm activates an edge and its two associated agents at
each iteration and thus requires two-sided communication at each activation. We
can recover their algorithm as a special case by activating an edge (i, j) ∈ E and its
associated agents i and j at each iteration, updating the dual variables zij,i and zij,j
associated with the edge, as well as computing the intermediate variables xi, xj , and
yij . The updates are derived from (2.21) with the orders of x and y swapped. Note
that [58] does not consider the situation that adjacent edges are activated in a short
period of time, which may cause overlapped computation and delay communication.
Indeed, their algorithm corresponds to τ = 0 and the corresponding stepsize ηk ≡ 1.
Appendix B presents the steps to derive the algorithms in this subsection.

3. Convergence. We establish weak and strong convergence in Subsection 3.1
and linear convergence in Subsection 3.2. Step size selection is also discussed.

3.1. Almost sure convergence. Assumption 1. Throughout our analysis,
we assume pmin := mini pi > 0 and

(3.1) Prob(ik = i | X k) = Prob(ik = i) = pi, ∀i, k.

We let |J(k)| be the number of elements in J(k) (see Subsection 1.2). Only for
the purpose of analysis, we define the (never computed) full update at kth iteration:

x̄k+1 := xk − ηkSx̂k.(3.2)

Lemma 3.1 below shows that T is nonexpansive if and only if S is 1/2-cocoercive.
Lemma 3.1. Operator T : H → H is nonexpansive if and only if S = I − T is

1/2-cocoercive, i.e., 〈x− y, Sx− Sy〉 ≥ 1
2‖Sx− Sy‖

2,∀ x, y ∈ H.
Proof. See textbook [6, Proposition 4.33] for the proof of the “if” part, and the

“only if” part, though missing there, follows by just reversing the proof.
The lemma below develops an upper bound for the expected distance between

xk+1 and any x∗ ∈ FixT .
Lemma 3.2. Let (xk)k≥0 be the sequence generated by Algorithm 1. Then for any

x∗ ∈ FixT and γ > 0 (to be optimized later), we have

E
(
‖xk+1 − x∗‖2

∣∣X k) ≤‖xk − x∗‖2 + γ
m

∑
d∈J(k) ‖xd − xd+1‖2

+ 1
m

(
|J(k)|
γ + 1

mpmin
− 1

ηk

)
‖xk − x̄k+1‖2.

(3.3)

Proof. Recall Prob(ik = i | X k) = pi. Then we have

(3.4)

E
(
‖xk+1 − x∗‖2 | X k

)
(1.3)
= E

(
‖xk − ηk

mpik
Sik x̂

k − x∗‖2 | X k
)

= ‖xk − x∗‖2 + E
(

2ηk
mpik

〈
Sik x̂

k, x∗ − xk
〉

+
η2k

m2p2ik
‖Sik x̂k‖2

∣∣X k)
= ‖xk − x∗‖2 + 2ηk

m

∑m
i=1

〈
Six̂

k, x∗ − xk
〉

+
η2k
m2

∑m
i=1

1
pi
‖Six̂k‖2

= ‖xk − x∗‖2 + 2ηk
m

〈
Sx̂k, x∗ − xk

〉
+

η2k
m2

∑m
i=1

1
pi
‖Six̂k‖2.
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Note that

(3.5)

m∑
i=1

1

pi
‖Six̂k‖2 ≤

1

pmin

m∑
i=1

‖Six̂k‖2 =
1

pmin
‖Sx̂k‖2 (3.2)

=
1

η2kpmin
‖xk − x̄k+1‖2,

and

〈Sx̂k, x∗ − xk〉
(1.5)
= 〈Sx̂k, x∗ − x̂k +

∑
d∈J(k)(x

d − xd+1)〉
(3.2)
= 〈Sx̂k, x∗ − x̂k〉+ 1

ηk

∑
d∈J(k)〈xk − x̄k+1, xd − xd+1〉

≤〈Sx̂k − Sx∗, x∗ − x̂k〉+ 1
2ηk

∑
d∈J(k)

(
1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2
)

(3.6)

≤− 1
2‖Sx̂

k‖2 + 1
2ηk

∑
d∈J(k)(

1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2)

(3.2)
= − 1

2η2k
‖xk − x̄k+1‖2 + |J(k)|

2γηk
‖xk − x̄k+1‖2 + γ

2ηk

∑
d∈J(k) ‖xd − xd+1‖2,

where the first inequality follows from the Young’s inequality. Plugging (3.5) and (3.6)
into (3.4) gives the desired result.

We need the following lemma on nonnegative almost supermartingales [52].
Lemma 3.3 ([52, Theorem 1]). Let F = (Fk)k≥0 be a sequence of sub-sigma

algebras of F such that ∀k ≥ 0, Fk ⊂ Fk+1. Define `+(F ) as the set of se-
quences of [0,+∞)-valued random variables (ξk)k≥0, where ξk is Fk measurable, and
`1+(F ) := {(ξk)k≥0 ∈ `+(F )|

∑
k ξk < +∞ a.s.}. Let (αk)k≥0, (vk)k≥0 ∈ `+(F ), and

(ηk)k≥0, (ξk)k≥0 ∈ `1+(F ) be such that

E(αk+1|Fk) + vk ≤ (1 + ξk)αk + ηk.

Then (vk)k≥0 ∈ `1+(F ) and αk converges to a [0,+∞)-valued random variable a.s..
Let Hτ+1 =

∏τ
i=0H be a product space and 〈· | ·〉 be the induced inner product:

〈
(z0, . . . , zτ ) | (y0, . . . , yτ )

〉
=

τ∑
i=0

〈zi, yi〉, ∀(z0, . . . , zτ ), (y0, . . . , yτ ) ∈ Hτ+1.

Let M ′ be a symmetric (τ + 1)× (τ + 1) tri-diagonal matrix with its main diagonal as√
pmin[ 1√

pmin
+ τ, 2τ −1, 2τ −3, . . . , 1] and first off-diagonal as −√pmin[τ, τ −1, . . . , 1],

and let M = M ′ ⊗ IH. Here ⊗ represents the Kronecker product. For a given
(y0, · · · , yτ ) ∈ Hτ+1, (z0, · · · , zτ ) = M(y0, · · · , yτ ) is given by:

z0 = y0 +
√
pmin(y0 − y1),

zi =
√
pmin

(
(i− τ − 1)yi−1 + (2τ − 2i+ 1)yi + (i− τ)yi+1

)
, if 1 ≤ i ≤ τ − 1,

zτ =
√
pmin(yτ − yτ−1).

Then M is a self-adjoint and positive definite linear operator since M ′ is symmetric
and positive definite, and we define 〈· | ·〉M = 〈· |M ·〉 as the M -weighted inner product
and ‖ · ‖M the induced norm. Let

xk = (xk, xk−1, . . . , xk−τ ) ∈ Hτ+1, k ≥ 0, and x∗ = (x∗, x∗, . . . , x∗) ∈ X∗ ⊆ Hτ+1,

where we set xk = x0 for k < 0. With
(3.7)

ξk(x∗) := ‖xk − x∗‖2M = ‖xk − x∗‖2 +
√
pmin

∑k−1
i=k−τ (i− (k − τ) + 1) ‖xi − xi+1‖2,
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we have the following fundamental inequality:

Theorem 3.4 (Fundamental inequality). Let (xk)k≥0 be the sequence generated
by ARock. Then for any x∗ ∈ X∗, it holds that

(3.8) E
(
ξk+1(x∗)

∣∣X k)+ 1
m

(
1
ηk
− 2τ

m
√
pmin
− 1

mpmin

)
‖x̄k+1 − xk‖2 ≤ ξk(x∗).

Proof. Let γ = m
√
pmin. Since J(k) ⊂ {k − 1, · · · , k − τ}, then (3.3) indicates

(3.9)
E
(
‖xk+1 − x∗‖2

∣∣X k) ≤‖xk − x∗‖2 + 1√
pmin

∑k−1
i=k−τ ‖xi − xi+1‖2

+ 1
m

(
τ

m
√
pmin

+ 1
mpmin

− 1
ηk

)
‖xk − x̄k+1‖2.

From (1.3) and (3.2), it is easy to have E(‖xk − xk+1‖2|X k) ≤ 1
m2pmin

‖xk − x̄k+1‖2,

which together with (3.9) implies (3.8) by using the definition of ξk(x∗).

Remark 1 (Stochastic Fejér monotonicity). From (3.8), if 0 < ηk ≤ mpmin

2τ
√
pmin+1 ,

then we have E(‖xk+1 − x∗‖2M |X k) ≤ ‖xk − x∗‖2M , ∀x∗ ∈ X∗.

Remark 2. Let us check our step size bound mpmin

2τ
√
pmin+1 . Consider the uniform

case: pmin ≡ pi ≡ 1
m . Then, the bound simplifies to 1

1+2τ/
√
m

. If the maximal delay

is no more than the square root of the number of coordinates, i.e., τ = O(
√
m), then

the bound is O(1). In general, τ depends on several factors such as problem structure,
system architecture, load balance, etc. If all updates and agents are identical, then τ
is proportional to p, the number of agents. Hence, ARock takes an O(1) step size for
solving a problem with m coordinates by p =

√
m agents under balanced loads.

The next lemma is a direct consequence of the invertibility of the metric M .

Lemma 3.5. A sequence (zk)k≥0 ⊂ Hτ+1 (weakly) converges to z ∈ Hτ+1 under
the metric 〈· | ·〉 if and only if it does so under the metric 〈· | ·〉M .

In light of Lemma 3.5, the metric of the inner product for weak convergence in
the next lemma is not specified. The lemma and its proof are adapted from [15].

Lemma 3.6. Let (xk)k≥0 ⊂ H be the sequence generated by ARock with ηk ∈
[ηmin,

cmpmin

2τ
√
pmin+1 ] for any ηmin > 0 and 0 < c < 1. Then we have:

(i)
∑∞
k=0 ‖xk − x̄k+1‖2 <∞ a.s..

(ii) xk − xk+1 → 0 a.s. and x̂k − xk+1 → 0 a.s..
(iii) The sequence (xk)k≥0 ⊂ Hτ+1 is bounded a.s..

(iv) There exists Ω̃ ∈ F such that P (Ω̃) = 1 and, for every ω ∈ Ω̃ and every
x∗ ∈ X∗, (‖xk(ω)− x∗‖M )k≥0 converges.

(v) Let Z (xk) be the set of weakly convergent cluster points of (xk)k≥0. Then,
Z (xk) ⊆ X∗ a.s..

Proof. (i): Applying Lemma 3.3 with ξk = ηk = 0 and αk = ξk(x∗), ∀k to (3.8)

and noting infk

(
1
ηk
− 2τ

m
√
pmin
− 1

mpmin

)
> 0 gives this result directly.

(ii) From (i), we have xk− x̄k+1 → 0 a.s.. Since ‖xk−xk+1‖ ≤ 1
mpmin

‖xk− x̄k+1‖,
we have xk − xk+1 → 0 a.s.. Then from (1.5), we have x̂k − xk → 0 a.s..

(iii): From Lemma 3.3, we have that (‖xk−x∗‖2M )k≥0 converges a.s. and so does
(‖xk − x∗‖M )k≥0, i.e., limk→∞ ‖xk − x∗‖M = γ a.s., where γ is a [0,+∞)-valued
random variable. Hence, (‖xk − x∗‖M )k≥0 must be bounded a.s. and so is (xk)k≥0.

(iv): The proof follows directly from [15, Proposition 2.3 (iii)]. It is worth noting
that Ω̃ in the statement works for all x∗ ∈ X∗, namely, Ω̃ does not depend on x∗.
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(v): By (ii), there exists Ω̂ ∈ F such that P (Ω̂) = 1 and

xk(w)− xk+1(w)→ 0, ∀w ∈ Ω̂.(3.10)

For any ω ∈ Ω̂, let (xkn(ω))n≥0 be a weakly convergent subsequence of (xk(ω))k≥0,
i.e., xkn(ω) ⇀ x, where xkn(ω) = (xkn(ω), xkn−1(ω)..., xkn−τ (ω)) and x = (u0, ..., uτ ).
Note that xkn(ω) ⇀ x implies xkn−j(ω) ⇀ uj , ∀j. Therefore, ui = uj , for any i, j ∈
{0, · · · , τ} because xkn−i(ω)− xkn−j(ω)→ 0.

Furthermore, observing ηk ≥ ηmin > 0, we have

(3.11) lim
n→∞

x̂kn(ω)−T x̂kn(ω) = lim
n→∞

Sx̂kn(ω) = lim
n→∞

1

ηkn
(xkn(ω)− x̄kn+1(ω)) = 0.

From the triangle inequality and the nonexpansiveness of T , it follows that∥∥xkn(ω)− Txkn(ω)
∥∥

=
∥∥xkn(ω)− x̂kn(ω) + x̂kn(ω)− T x̂kn(ω) + T x̂kn(ω)− Txkn(ω)

∥∥
≤
∥∥xkn(ω)− x̂kn(ω)

∥∥+
∥∥x̂kn(ω)− T x̂kn(ω)

∥∥+
∥∥T x̂kn(ω)− Txkn(ω)

∥∥
≤2
∥∥xkn(ω)− x̂kn(ω)

∥∥+ ‖x̂kn(ω)− T x̂kn(ω)‖
≤2
∑
d∈J(kn)

∥∥xd(ω)− xd+1(ω)
∥∥+ ‖x̂kn(ω)− T x̂kn(ω)‖.

From (3.10), (3.11), and the above inequality, it follows limn→∞ xkn(ω)−Txkn(ω) = 0.
Finally, the demiclosedness principle [6, Theorem 4.17] implies u0 ∈ FixT .

Theorem 3.7. Under the assumptions of Lemma 3.6, the sequence (xk)k≥0
weakly converges to an X∗-valued random variable a.s.. In addition, if T is demicom-
pact at 0, (xk)k≥0 strongly converges to an X∗-valued random variable a.s..

Proof. The proof for a.s. weak convergence follows from Opial’s Lemma [49, 44]
and Lemma 3.6 (iv)-(v). Next we assume that T is demicompact at 0. From the proof
of Lemma 3.6 (v), there is Ω̂ ∈ F such that P (Ω̂) = 1 and, for any w ∈ Ω̂ and any
weakly convergent subsequence of (xkn(w))n≥0, limn→∞ xkn(w)−Txkn(w) = 0. Since
T is demicompact, (xkn(w))n≥0 has a strongly convergent subsequence, for which
we still use (xkn(w))n≥0. Hence, xkn(w) → x̄(w) ∈ FixT . Lemma 3.6 (ii) yields

xkn(w) → x̄(w) ∈ X∗. Then by Lemma 3.6 (iv), there is Ω̃ ∈ F such that P (Ω̃) = 1
and, for every w ∈ Ω̃ and every x∗ ∈ X∗, (‖xk(w) − x∗‖M )k≥0 converges. Thus, for

any w ∈ Ω̂ ∩ Ω̃, we have limk→∞ ‖xk(w) − x̄(w)‖M = 0. Because P (Ω̂ ∩ Ω̃) = 1, we
conclude that (xk)k≥0 strongly converges to an X∗-valued random variable a.s..

Remark 3. For the generalization in Section 1.3, we need to replace (3.5) by∑m
i=1

1
pi
‖Ui ◦ Sx̂k‖2 ≤ 1

pmin

∑m
i=1 ‖Ui ◦ Sx̂k‖2 ≤

C
pmin
‖Sx̂k‖2 = C

η2kpmin
‖xk − x̄k+1‖2,

and update the step size condition to ηk ∈ [ηmin,
cmpmin

2τ
√
pmin+C

]. Then the proofs of

Theorem 3.7 and Lemma 3.6 will go through and yield the same convergence result.

3.2. Linear convergence. In this section, we establish linear convergence under
the assumption that S is quasi-strongly monotone. We first present a key lemma.

Lemma 3.8. Assume that the step size is fixed, i.e., ηk = η, and satisfies

(3.12) 0 < η ≤ η
1

:= (1− 1
ρ )
m
√
pmin

8
ρ1/2−1

ρ(τ+1)/2−1

for some ρ > 1. Then we have, for all k ≥ 1,

(3.13) E‖x̄k − xk−1‖2 ≤ ρE‖x̄k+1 − xk‖2.
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Proof. We prove (3.13) by induction. First, based on the inequality ‖a‖2−‖b‖2 ≤
2‖a‖‖b− a‖ we observe that, for any k ≥ 1,

‖x̄k − xk−1‖2 − ‖x̄k+1 − xk‖2 ≤ 2‖x̄k − xk−1‖‖x̄k+1 − xk − x̄k + xk−1‖
= 2‖x̄k − xk−1‖‖ηS(x̂k)− ηS(x̂k−1)‖
≤ 4η‖x̄k − xk−1‖‖x̂k − x̂k−1‖.(3.14)

Applying the triangle inequality and (1.5) yields

‖x̂k − x̂k−1‖ ≤‖xk − x̂k‖+ ‖xk − xk−1‖+ ‖xk−1 − x̂k−1‖
≤

∑
d∈J(k)

‖xd − xd+1‖+ ‖xk − xk−1‖+
∑

d∈J(k−1)
‖xd − xd+1‖

≤ 2
∑τ
t=0 ‖xk−t − xk−t−1‖.(3.15)

For the basic case, we have x̂0 = x0, x̂1 ∈ {x0, x1}. Letting k = 1 in (3.14) gets us

E‖x̄1 − x0‖2 − E‖x̄2 − x1‖2 ≤ 4ηE‖x̄1 − x0‖‖x1 − x0‖
≤ 2η

(
1

m
√
pmin

E‖x̄1 − x0‖2 +m
√
pminE‖x1 − x0‖2

)
= 2η

(
1

m
√
pmin

E‖x̄1 − x0‖2 +m
√
pmin

∑m
i=1 pi

η2

m2p2i
(Six

0)2
)

≤ 2η
(

1
m
√
pmin

E‖x̄1 − x0‖2 + 1
m
√
pmin

E‖x̄1 − x0‖2
)

= 4η
m
√
pmin

E‖x̄1 − x0‖2.

Rearranging the above inequality yields E‖x̄1−x0‖2 ≤ 1
1− 4η

m
√
pmin

E‖x̄2−x1‖2. By (3.12)

and ρ > 1, it holds that 0 < η ≤ (1 − 1
ρ )
m
√
pmin

8
ρ1/2−1

ρ(τ+1)/2−1 ≤ (1 − 1
ρ )
m
√
pmin

4 . Hence,

E‖x̄1 − x0‖2 ≤ ρE‖x̄2 − x1‖2.
For the induction step, applying Young’s inequality gives us

E‖x̄k − xk−1‖‖xk−t − xk−t−1‖ ≤ 1
2E
{
a‖xk−t − xk−t−1‖2 + 1

a‖x̄
k − xk−1‖2

}
≤ 1

2E
{

a
m2pmin

‖x̄k−t − xk−t−1‖2 + 1
a‖x̄

k − xk−1‖2
}

≤ 1
2

{
aρt

m2pmin
+ 1

a

}
E‖x̄k − xk−1‖2

= ρt/2

m
√
pmin

E‖x̄k − xk−1‖2. (letting a = m
√
pminρ

−t/2)

Taking the expectation on (3.15) and combining it with (3.14) yield

E‖x̄k − xk−1‖2 − E‖x̄k+1 − xk‖2 ≤ 8η
∑τ
t=0 E‖x̄k − xk−1‖‖xk−t − xk−t−1‖

≤ 8η
m
√
pmin

∑τ
t=0 ρ

t/2E‖x̄k − xk−1‖2 ≤ 8η
m
√
pmin

1−ρ(τ+1)/2

1−ρ1/2 E‖x̄k − xk−1‖2.

Finally, rearranging the above inequality and using (3.12) lead to E‖x̄k − xk−1‖2 ≤
ρE‖x̄k+1 − xk‖2. This completes the proof.

With this lemma, we are ready to derive the linear convergence rate of ARock.
Theorem 3.9 (Linear convergence). Assume that S is quasi-µ-strongly monotone

with µ > 0. Let β ∈ (0, 1) and (xk)k≥0 be the sequence generated by ARock with a
constant stepsize η ∈ (0,min{η

1
, η

2
}], where η

1
is given in (3.12) and

(3.16) η
2

=
−b+
√
b2+4(1−β)a
2a , a = 2βµτ

m2pmin

ρ(ρτ−1)
ρ−1 , b = 1

mpmin
+ 2

m

√
ρ(ρτ−1)τ
(ρ−1)pmin

.
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Then

(3.17) E
(
‖xk − x∗‖2

)
≤
(

1− βµη
m

)k
‖x0 − x∗‖2.

Proof. Following the proof of Lemma 3.2 and starting from (3.6), we have

〈Sx̂k, x∗ − xk〉
≤〈Sx̂k − Sx∗, x∗ − x̂k〉+ 1

2η

∑
d∈J(k)

(
1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2
)

≤− βµ‖x̂k − x∗‖2 − 1−β
2 ‖Sx̂

k‖2 + 1
2η

∑
d∈J(k)(

1
γ ‖x

k − x̄k+1‖2 + γ‖xd − xd+1‖2)

=− βµ‖xk − x∗ +
∑
d∈J(k)(x

d − xd+1)‖2 − 1−β
2η2 ‖x

k − x̄k+1‖2

+ |J(k)|
2γη ‖x

k − x̄k+1‖2 + γ
2η

∑
d∈J(k) ‖xd − xd+1‖2

≤− βµ
2 ‖x

k − x∗‖2 + βµ‖
∑
d∈J(k)(x

d − xd+1)‖2 − 1−β
2η2 ‖x

k − x̄k+1‖2

+ |J(k)|
2γη ‖x

k − x̄k+1‖2 + γ
2η

∑
d∈J(k) ‖xd − xd+1‖2

≤− βµ
2 ‖x

k − x∗‖2 + βµ|J(k)|
∑
d∈J(k) ‖xd − xd+1‖2 − 1−β

2η2 ‖x
k − x̄k+1‖2

+ |J(k)|
2γη ‖x

k − x̄k+1‖2 + γ
2η

∑
d∈J(k) ‖xd − xd+1‖2,

where the second inequality holds because S is 1
2 -cocoercive and also quasi-µ-strongly

monotone, and the last one comes from the Cauchy-Schwartz inequality. Plugging
the above inequality and (3.5) into (3.4) and noting |J(k)| ⊂ {k − τ, . . . , k − 1} gives

E
(
‖xk+1 − x∗‖2

∣∣X k) ≤(1− βµη
m

)
‖xk − x∗‖2 + 1

m (2βηµτ + γ)
∑k−1
d=k−τ ‖xd − xd+1‖2

+ 1
m

(
τ
γ + 1

mpmin
− 1−β

η

)
‖xk − x̄k+1‖2.

Taking expectation over both sides of the above inequality, noting E‖xd − xd+1‖2 ≤
1

m2pmin
E‖xd − x̄d+1‖2, and using Lemma 3.8, we have

E
(
‖xk+1 − x∗‖2

)
≤
(
1− βµη

m

)
E‖xk − x∗‖2 + 1

m3pmin
(2βηµτ + γ)

∑τ
d=1 ρ

dE‖xk − x̄k+1‖2

+ 1
m

(
τ
γ + 1

mpmin
− 1−β

η

)
E‖xk − x̄k+1‖2

=
(
1− βµη

m

)
E‖xk − x∗‖2 + 1

m3pmin
(2βηµτ + γ) ρ(ρ

τ−1)
ρ−1 E‖xk − x̄k+1‖2

+ 1
m

(
τ
γ + 1

mpmin
− 1−β

η

)
E‖xk − x̄k+1‖2

=
(
1− βµη

m

)
E‖xk − x∗‖2

+ 1
m

(
2βηµτ
m2pmin

ρ(ρτ−1)
ρ−1 + 2

m

√
ρ(ρτ−1)τ
(ρ−1)pmin

+ 1
mpmin

− 1−β
η

)
E‖xk − x̄k+1‖2

≤
(
1− βµη

m

)
E‖xk − x∗‖2,

where we have let γ = m
√

τ(ρ−1)pmin

ρ(ρτ−1) in the second equality, and the last inequality

holds because of the choice of η. Therefore, (3.17) holds.
Remark 4. Assume ik is chosen uniformly at random, so pmin = 1

m . We
consider the case when m and τ are large. Let

√
ρ = 1 + 1

τ . Then from the fact
that (1 + 1

k )k increasingly converges to the natural number e, we have from (3.12)
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that η
1

= O(
√
m
τ2 ). In addition, note from (3.16) that a = O(b2) = O( τ

2

m ), and thus

η
2

= O(
√
m
τ ). Therefore, if τ = O(m

1
4 ), then the stepsize in Theorem 3.9 can be

η = O(1). Hence, linear speedup can be achieved.

4. Experiments. We illustrate the behavior of ARock for solving the `1 regu-
larized logistic regression problem. Our primary goal is to show the efficiency of the
async-parallel implementation compared to the single-threaded implementation and
the sync-parallel implementation.

Our experiments run on 1 to 32 threads on a machine with eight Quad-Core
AMD OpteronTM Processors (32 cores in total) and 64 Gigabytes of RAM. All of the
experiments were coded in C++ and OpenMP. We use the Eigen library¶ for sparse
matrix operations. Our codes [21] as well as numerical results for other applications
are publicly available on the authors’ website.

The running times and speedup ratios of both sync-parallel and async-parallel
algorithms are sensitive to a number of factors, such as the size of each coordinate
update (granularity), sparsity of the problem data, compiler optimization flags, and
operations that affect cache performance and memory access contention. In addition,
since all agents in the sync-parallel implementation must wait for the last agent to
finish an iteration, a large load imbalance will significantly degrade the performance.
We do not have the space in this paper to present numerical results under all variations
of these cases.

4.1. `1 regularized logistic regression. In this subsection, we apply ARock
with the update (2.6) to the `1 regularized logistic regression problem:

(4.1) minimize
x∈Rn

λ‖x‖1 +
1

N

N∑
i=1

log
(
1 + exp(−bi · aTi x)

)
,

where {(ai, bi)}Ni=1 is the set of sample-label pairs with bi ∈ {1,−1}, λ = 0.0001, and
n and N represent the numbers of features and samples, respectively. This test uses
the datasets‖: rcv1 and news20, which are summarized in Table 1.

Name # samples # features # nonzeros in {a1, . . . , aN}
rcv1 20, 242 47, 236 1, 498, 952

news20 19, 996 1, 355, 191 9, 097, 916

Table 1: Two datasets for sparse logistic regression.

We let each coordinate hold roughly 50 features. Since the total number of fea-
tures is not divisible by 50, some coordinates have 51 features. We let each agent
draw a coordinate uniformly at random at each iteration. We stop all the tests after
100 epochs since they have nearly identical progress per iteration. The step size is set
to ηk = 0.9, ∀k. Let A = [a1, . . . , aN ]T and b = [b1, ..., bN ]T . In global memory, we
store A, b, and x. We also store the product Ax in global memory so that the forward
step can be efficiently computed. Whenever a coordinate of x gets updated, Ax is
immediately updated at a low cost. Note that if Ax is not stored in global memory,
every coordinate update will have to compute Ax from scratch, which involves the
entire x and will be very expensive.

¶http://eigen.tuxfamily.org
‖http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://eigen.tuxfamily.org
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


22 Z. Peng, Y. Xu, M. Yan, and W. Yin

0 200 400 600 800 1000
coordinate (each has ~50 features)

101

102

103

104

105
#

 n
o
n
ze

ro
s

rcv1

(a) dataset rcv1

0 5000 10000 15000 20000 25000 30000
coordinate (each has ~50 features)

101

102

103

104

105

#
 n

o
n
ze

ro
s

news20

(b) dataset news20

Fig. 3: The distribution of coordinate sparsity. Each dot represents the total number
of nonzeros in the vectors ai that correspond to each coordinate. The large distribution
in (b) is responsible for the large load imbalance and thus the poor sync-parallel
performance.

Table 2 gives the running times of the sync-parallel and ARock (async-parallel)
implementations on the two datasets. We can observe that ARock achieves almost-
linear speedup, but sync-parallel scales very poorly as we explain below.

In the sync-parallel implementation, all the running cores have to wait for the last
core to finish an iteration, and therefore if a core has a large load, it slows down the
iteration. Although every core is (randomly) assigned to roughly the same number
of features (either 50 or 51 components of x) at each iteration, their ai’s have very
different numbers of nonzeros (see Figure 3 for the distribution), and the core with the
largest number of nonzeros is the slowest (Sparse matrix computation is used for both
datasets, which are very large.) As more cores are used, despite that they altogether
do more work at each iteration, the per-iteration time increases as the slowest core
tends to be slower. The very large imbalance of load explains why the 32 cores only
give speedup ratios of 4.0 and 1.3 in Table 2.

On the other hand, being asynchronous, ARock does not suffer from the load
imbalance. Its performance grows nearly linear with the number of cores. In theory,
a large load imbalance may cause a large τ , and thus a small ηk. However, the uniform
ηk = 0.9 works well in all the tests, possibly because the ai’s are sparse.

Finally, we have observed that the progress toward solving (4.1) is mainly a
function of the number of epochs and does not change appreciably when the number
of cores increases or between sync-parallel and async-parallel. Therefore, we always
stop at 100 epochs.

5. Conclusion. We have proposed an async-parallel framework, ARock, for
finding a fixed-point of a nonexpansive operator by coordinate updates. We establish
the almost sure weak and strong convergence, linear convergence rate and almost-
linear speedup of ARock under certain assumptions. Preliminary numerical results
on real data illustrate the high efficiency of the proposed framework compared to the
traditional parallel (sync-parallel) algorithms.

6. Acknowledgements. We would like to thank Brent Edmunds for offering in-
valuable suggestions on the organization and writing of this paper. We would also like
to thank Robert Hannah for coming up with the dual-memory approach. The authors
are grateful to Kun Yuan for helpful discussions on decentralized optimization.

REFERENCES



ARock: Async-Parallel Coordinate Updates 23

# cores
rcv1 news20

Time (s) Speedup Time (s) Speedup
async sync async sync async sync async sync

1 122.0 122.0 1.0 1.0 591.1 591.3 1.0 1.0
2 63.4 104.1 1.9 1.2 304.2 590.1 1.9 1.0
4 32.7 83.7 3.7 1.5 150.4 557.0 3.9 1.1
8 16.8 63.4 7.3 1.9 78.3 525.1 7.5 1.1
16 9.1 45.4 13.5 2.7 41.6 493.2 14.2 1.2
32 4.9 30.3 24.6 4.0 22.6 455.2 26.1 1.3

Table 2: Running times of ARock (async-parallel) and sync-parallel FBS implemen-
tations for the `1 regularized logistic regression on two datasets. Sync-parallel has a
very poor speedup due to the large distribution of coordinate sparsity (Figure 3) and
thus the large load imbalance across cores.

[1] Dan Aharoni and Amnon Barak, Parallel iterative discontinuous Galerkin finite-element
methods, in Discontinuous Galerkin Methods, Springer, 2000, pp. 247–254.

[2] Dganit Amitai, Amir Averbuch, Moshe Israeli, and Samuel Itzikowitz, Implicit-explicit
parallel asynchronous solver of parabolic pdes, SIAM Journal on Scientific Computing, 19
(1998), pp. 1366–1404.

[3] Haim Avron, Alex Druinsky, and Anshul Gupta, Revisiting asynchronous linear solvers:
Provable convergence rate through randomization, in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, IEEE, 2014, pp. 198–207.

[4] Jacques Bahi, Jean-Claude Miellou, and Karim Rhofir, Asynchronous multisplitting
methods for nonlinear fixed point problems, Numerical Algorithms, 15 (1997), pp. 315–
345.

[5] Gérard M Baudet, Asynchronous iterative methods for multiprocessors, Journal of the ACM
(JACM), 25 (1978), pp. 226–244.

[6] Heinz H Bauschke and Patrick L Combettes, Convex analysis and monotone operator
theory in Hilbert spaces, Springer Science & Business Media, 2011.

[7] Dimitri P Bertsekas, Distributed asynchronous computation of fixed points, Mathematical
Programming, 27 (1983), pp. 107–120.

[8] Dimitri P Bertsekas and John N Tsitsiklis, Parallel and distributed computation: numerical
methods, vol. 23, Prentice hall Englewood Cliffs, NJ, 1989.

[9] , Some aspects of parallel and distributed iterative algorithmsa survey, Automatica, 27
(1991), pp. 3–21.

[10] Iain Bethune, J Mark Bull, Nicholas J Dingle, and Nicholas J Higham, Performance
analysis of asynchronous Jacobi’s method implemented in mpi, shmem and openmp, In-
ternational Journal of High Performance Computing Applications, 28 (2014), pp. 97–111.

[11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein, Dis-
tributed optimization and statistical learning via the alternating direction method of mul-
tipliers, Foundations and Trends in Machine Learning, 3 (2011), pp. 1–122.

[12] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin, Coordinate descent method for large-
scale l2-loss linear support vector machines, The Journal of Machine Learning Research, 9
(2008), pp. 1369–1398.

[13] M. Chau, P. Spiteri, R. Guivarch, and H.C. Boisson, Parallel asynchronous iterations
for the solution of a 3d continuous flow electrophoresis problem, Computers & Fluids, 37
(2008), pp. 1126 – 1137.

[14] Daniel Chazan and Willard Miranker, Chaotic relaxation, Linear algebra and its applica-
tions, 2 (1969), pp. 199–222.

[15] Patrick L. Combettes and Jean-Christophe Pesquet, Stochastic quasi-Fejér block-
coordinate fixed point iterations with random sweeping, SIAM Journal on Optimization,
25 (2015), pp. 1221–1248.

[16] Laurent Condat, A primal–dual splitting method for convex optimization involving lips-
chitzian, proximable and linear composite terms, Journal of Optimization Theory and
Applications, 158 (2013), pp. 460–479.

[17] Damek Davis and Wotao Yin, A three-operator splitting scheme and its optimization appli-
cations, arXiv preprint arXiv:1504.01032, (2015).

[18] , Convergence rate analysis of several splitting schemes, in Splitting Methods in Com-
munication and Imaging, Science and Engineering,, R. Glowinski, S. Osher, and W. Yin,



24 Z. Peng, Y. Xu, M. Yan, and W. Yin

eds., Springer, New York, 2016.
[19] , Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity

assumptions, Mathematics of Operations Research, (to appear, 2016).
[20] Diego A Donzis and Konduri Aditya, Asynchronous finite-difference schemes for partial

differential equations, Journal of Computational Physics, 274 (2014), pp. 370–392.
[21] Brent Edmunds, Zhimin Peng, and Wotao Yin, TMAC: A toolbox of modern async-parallel,

coordinate, splitting, and stochastic methods, arXiv preprint arXiv:1606.04551, (2016).
[22] Didier El Baz, Pierre Spiteri, Jean Claude Miellou, and Didier Gazen, Asynchronous

iterative algorithms with flexible communication for nonlinear network flow problems, Jour-
nal of Parallel and Distributed Computing, 38 (1996), pp. 1–15.

[23] Mouhamed Nabih El Tarazi, Some convergence results for asynchronous algorithms, Nu-
merische Mathematik, 39 (1982), pp. 325–340.

[24] Lei Fang and Panos J Antsaklis, Information consensus of asynchronous discrete-time
multi-agent systems, in American Control Conference, 2005. Proceedings of the 2005, IEEE,
2005, pp. 1883–1888.

[25] Andreas Frommer, Hartmut Schwandt, and Daniel B Szyld, Asynchronous weighted addi-
tive schwarz methods, Electronic Transactions on Numerical Analysis, 5 (1997), pp. 48–61.

[26] Andreas Frommer and Daniel B Szyld, On asynchronous iterations, Journal of computa-
tional and applied mathematics, 123 (2000), pp. 201–216.

[27] Daniel Gabay, Chapter ix applications of the method of multipliers to variational inequalities,
Studies in mathematics and its applications, 15 (1983), pp. 299–331.

[28] Roland Glowinski and A Marroco, Sur l’approximation, par elements finis d’ordre un, et
la resolution, par penalisation-dualite d’une classe de problemes de dirichlet non lineaires,
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et
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Appendix A. Derivation of certain updates. We show in details how to obtain
the updates in (2.10) and (2.15).

A.1. Derivation of updates in (2.10). Let x = (x1, . . . , xm) ∈ Hm,

f(x) :=

m∑
i=1

ICi(xi), g(x) := I{x1=···=xm}(x),

where g(x) equals 0 if x1 = · · · = xm and ∞ otherwise. Then (2.9a) reduces to

x̂k = arg min
z∈Hm

g(z) +
1

2γ
‖z − ẑk‖2 = arg min

z∈Hm:z1=···=zm
‖z − ẑk‖2

= arg min
z∈Hm:z1=···=zm

m∑
i=1

‖z1 − ẑki ‖2 =

(
1

m

m∑
i=1

ẑki , . . . ,
1

m

m∑
i=1

ẑki

)
∈ Hm,
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where the last equality is obtained by noting that z1 = 1
m

∑m
i=1 ẑ

k
i is the unique minimizer

of
∑m
i=1 ‖z1 − ẑ

k
i ‖2. Next, (2.9b) reduces to

ŷk = arg min
z∈Hm

f(z) +
1

2γ
‖z − (2x̂k − ẑk)‖2 = arg min

z:zi∈Ci,∀i

m∑
i=1

‖zi − (2x̂ki − ẑki )‖2.

It is easy to see that ŷki = ProjCi(2x̂
k
i − ẑki ), ∀i.

Since (2.9c) only updates the ikth coordinate of z, we only need x̂kik and ŷkik , and thus

in (2.10a) and (2.10b), we only compute x̂kik and ŷkik . Plugging the above x̂k and ŷk into
(2.9c) gives (2.10c) directly.

A.2. Derivation of (2.15). We first show how to get (2.12). The Lagrangian of
(2.11) is L(x, y, w) = f(x) + g(y)− 〈w,Ax+By − b〉, and the Lagrange dual function is

d(w) = min
x∈H1,y∈H2

L(x, y, w)

=
(

min
x∈H1

f(x)− 〈A∗w, x〉
)

+
(

min
y∈H2

g(y)− 〈B∗w, y〉
)

+ 〈w, b〉

=−
(

max
x∈H1

−f(x) + 〈A∗w, x〉
)
−
(

max
y∈H2

−g(y) + 〈B∗w, y〉
)

+ 〈w, b〉

=− f∗(A∗w)− g∗(B∗w) + 〈w, b〉,

where the last equality is from the definition of convex conjugate: f∗(z) = maxx〈z, x〉−f(x).
Hence, the dual problem is maxw d(w), which is equivalent to (2.12).

Secondly, we show why z+ = proxγ·dg (z) is given by (2.14). Note

mins dg(s) + 1
2γ
‖s− z‖2 = mins g

∗(B∗s)− 〈s, b〉+ 1
2γ
‖s− z‖2

= mins maxy〈B∗s, y〉 − g(y)− 〈s, b〉+ 1
2γ
‖s− z‖2

= maxy mins〈B∗s, y〉 − g(y)− 〈s, b〉+ 1
2γ
‖s− z‖2

= maxy mins〈s,By − b〉 − g(y) + 1
2γ
‖s− z‖2

= maxy −g(y) + 〈z,By − b〉 − γ
2
‖By − b‖2

=−miny g(y)− 〈z,By − b〉+ γ
2
‖By − b‖2,

where the fifth equality holds because s∗ = z−γ(By− b) = arg mins〈s,By− b〉+ 1
2γ
‖s−z‖2.

Hence, by the definition of the proximal operator and the above arguments, we have that
z+ = proxγ·dg (z) can be obtained from (2.14). Then (2.13) is from (2.14) through replacing
g to f , B to A, and b to 0.

Finally, it is straightforward to have (2.15) by plugging (2.13) and (2.14) into (2.9).

Appendix B. Derivation of async-parallel ADMM for decentralized op-
timization. This section describes how to implement the updates (2.15) for the model (2.21).

In (2.21), g(y) and b vanish and, corresponding to the two constraints xi = yij and xj =

yij , the two rows of matrices A and B are

[
· · · 1 · · · · · · · · ·
· · · · · · · · · 1 · · ·

] [
· · · −1 · · ·
· · · −1 · · ·

]
,

where · · · are zeros, the two coefficients 1 correspond to xi and xj , and the two coefficients
−1 correspond to yij . Then, (2.15a) and (2.15b) can be calculated as

ŷkli = (ẑkli,l + ẑkli,i)/(2γ) ∀l ∈ L(i),

(ŵkg )li,i = (ẑkli,i − ẑkli,r)/2 ∀l ∈ L(i),

ŷkir = (ẑkir,i + ẑkir,r)/(2γ) ∀r ∈ R(i),

(ŵkg )ir,i = (ẑkir,i − ẑkir,r)/2 ∀r ∈ R(i).

In addition, x̂ki can be obtained by solving (2.22a), and both zk+1
li,i and zk+1

ir,i can be updated
from (2.22b) and (2.22c).
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Furthermore, as mentioned in Section 2.6.2, we can derive another version of async-
parallel ADMM for decentralized optimization, which reduces to the algorithm in [58], by
activating an edge (i, j) ∈ E instead of an agent i each time. In this version, the agents i and
j associated with the edge (i, j) must also be activated. Here we derive the update (2.15)
for the model (2.21) with the update order of x and y swapped. Following (2.15) we obtain
the following steps whenever an edge (i, j) ∈ E is activated:

x̂ki = arg min
xi

fi(xi)−
( ∑
l∈L(i)

ẑkli,i +
∑
r∈R(i)

ẑkir,i
)
xi +

γ

2
|E(i)| · ‖xi‖2

x̂kj = arg min
xj

fj(xj)−
( ∑
l∈L(j)

ẑklj,j +
∑

r∈R(j)

ẑkjr,j
)
xj +

γ

2
|E(j)| · ‖xj‖2

(ŵkf )ij,i = ẑkij,i − γx̂ki
(ŵkf )ij,j = ẑkij,j − γx̂kj

ŷkij = arg min
yij
〈2(ŵkf )ij,i − ẑkij,i + 2(ŵkf )ij,j − ẑkij,j , yij〉+

γ

2
‖yij‖2

(ŵkg )ij,i = 2(ŵkf )ij,i − ẑkij,i + γŷkij

(ŵkg )ij,j = 2(ŵkf )ij,j − ẑkij,j + γŷkij

zk+1
ij,i = zkij,i + ηk((ŵkg )ij,i − (ŵkf )ij,i)

zk+1
ij,j = zkij,j + ηk((ŵkg )ij,j − (ŵkf )ij,j).

Every agent i in the network maintains the dual variables zli,i, l ∈ L(i), and zir,i, r ∈
R(i), and the variables x, y, w are intermediate and do not need to be maintained between

the activations. When an edge (i, j) is activated, the agents i and j first compute their

{x̂ki , (ŵkf )ij,i} and {x̂kj , (ŵkf )ij,j} independently and respectively, then they collaboratively

compute ŷkij , and finally they update their own zkij,i and zkij,j , respectively. We allow adjacent

edges (which share agents) to be activated in a short period of time when their updates are

possibly overlapped in time. When τ = 0, i.e., there is no simultaneous activation or overlap,

it reduces to the algorithm in [58].


