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1. Introduction

Consider two large bodies @7 and Q)2 of masses mi=mo=1 located at distance y>1
from each other initially, and two small particles @3 and @4 of masses mzg=my=p<1.
The @Q;’s interact with each other via Newtonian potential. We denote the momentum
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of (); by P;. The Hamiltonian of this system can be written as
P2 P} P2 P}
H(QlaP1§Q27P25Q3aPB§Q47P4):71+72+273+74
Bo2p
1 1% P
- - — 1.1
|Q1—Q2| |Q1—Q3] |Q1—Q4l (1.1)

p p p

CQ2-Qa  [Q2—Qa]  |Q3—Qul

We choose the mass center as the origin.
We want to study singular solutions of this system, that is solutions which cannot
be continued for all positive times. We will exhibit a rich variety of singular solutions.

Fix a small €9. Let w={w;}?2; be a sequence of 3’s and 4’s.

Definition 1.1. We say that (Q;(¢),Qi(t)), i=1,2,3,4, is a singular solution with
symbolic sequence w if there exists a positive increasing sequence {t; }‘;‘;0 such that

o t*=lim; , t;<oo.

* [Q3—Q2|(tj)<eo and |Qs—Q2[(t;)<c0.

e For t€(t; 1,t;] we have |Q7_.,, —Q2|(t)<eo, and {Qu, (t) }rep,_, ¢, leaves the eo-
neighborhood of )2, winds around )1 exactly once, then reenters the gg-neighborhood
of Q.

e limsup, |Q;(t)], limsup, |Q;(t)| =00 as t—t*, i=1,2,3, 4.

During the time interval [t; 1,%;], we refer to Q. as the traveling particle and to
Q7-.,; as the captured particle. Thus, w; prescribes which particle is the traveler during
the jth trip.

We denote by X, the set of initial conditions of singular orbits with symbolic se-

quence w.

THEOREM 1. There exists <1 such that for p<u. the set ¥,#@. Moreover,
there is an open set U on the zero-energy level and zeroth angular momentum level, and
a foliation of U by 2-dimensional surfaces such that for any leaf S of our foliation ¥,NS

is a Cantor set.

We remark that the choice of the zero-energy level is only for simplicity. Our con-

struction holds for sufficiently small non-zero energy levels.

1.1. Motivations and perspectives

Our work is motivated by the following fundamental problem in celestial mechanics.
Describe the set of initial conditions of the Newtonian N -body problem leading to global
solutions. The complement to this set splits into the initial conditions leading to the

collision and non-collision singularities.
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It is clear that the set of initial conditions leading to collisions is non-empty for all
N>1 and it is shown in [Sal] that it has zero measure. Much less is known about the
non-collision singularities. The main motivation for our work is provided by the following

basic problems.
Congecture 1. The set of non-collision singularities has zero measure for all N >3.

This conjecture can be found in the problem list [Si] as the first problem. This
conjecture remains almost completely open. The only known result, by Saari [Sa2], is
that the conjecture is true for N=4 . To obtain the complete solution of this conjecture
one needs to understand better the structure of the non-collision singularities. Our
Cantor set in Theorem 1 has zero measure and codimension 2 on the energy level, which

is in favor of Conjecture 1. As a first step, it is natural to conjecture the following.

Congecture 2. (Painlevé Conjecture, 1897) The set of non-collision singularities is

non-empty for all N>3.

There is a long history studying Conjecture 2. There are some nice surveys, see for
instance [G3]. Conjecture 2 was explicitly mentioned in Painlevé’s lectures [P], where the
author proved that for N=3 there are no non-collision singularities, using an argument
based on the triangle inequality (see also [G3] for the argument). Soon after Painlevé,
von Zeipel showed that if the system of N bodies has a non-collision singularity, then
some particle should fly off to infinity in finite time. Thus, non-collision singularities
seem quite counterintuitive. The first landmark towards proving the conjecture came in
1975. In [MM] Mather and McGehee constructed a system of four bodies on the line
where the particles go to infinity in finite time after an infinite number of binary collisions
(it was known since the work of Sundman [Su] that binary collisions can be regularized
so that the solutions can be extended beyond the collisions). Since the Mather-McGehee
example had collisions, it did not solve Conjecture 2, but made it plausible. Conjecture 2
was proved independently by Xia [Xi] for the spatial 5-body problem and by Gerver [G1]
for the planar 3N-body problem, where IV is sufficiently large. It is a general belief that a
non-collision singularity in the (N +1)-body problem can be obtained by adding one more
remote and light body to the N-body problem, to which the existence of non-collision
singularities is known. The hardest case of the problem, N =4, still remained open. Our
result proves the conjecture in the N=4 case.

We believe the method used in this paper could also be used to construct non-
collision singularities for the general N-body problem, for any N>3. We can put any
number of bodies into our system sufficiently far from the mass center of our four bodies,
orthogonal to the line passing through @, and Q2. This produces non-collision singular-
ities in the N-body problem. We have not checked all the details in that case, but we do
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not expect any significant difficulties. Treating the general N however would significantly
increase the length of the paper, so to simplify the exposition we concentrate here on the
4-body case.

Since our technique is perturbative and it is necessary that <1, we ask the following

questions.

Question 1. Are there non-collision singularities for the 4-body problem in which

all the four bodies have comparable masses?
In fact it is possible that the following stronger result holds.

Question 2. Is it true that for any choice of positive masses (mq,mz, ms, m4) ERP3

the corresponding 4-body problem has non-collision singularities?

We need to develop some non-perturbative techniques for the first question and we
need to explore the obstructions for the existence of non-collision singularities for the

second.

1.2. Sketch of the proof

The proof consists of the following three aspects: physical, mathematical and algorithmic
aspects. The physical aspect is an idealistic model constructed by Gerver [G2] (see §2.2),
in which the hyperbolic Kepler motion of one light body can extract energy from the
elliptic Kepler motion of the other light body. Moreover, after each cycle of energy
extraction, the configuration is made self-similar to the beginning, so that the procedure
of energy extraction can be iterated infinitely.

The mathematical aspect is a partially hyperbolic dynamics framework. We find
that there are two strongly expanding directions that are invariant under iterates along
our singular orbits. The strong expansions allow us to push the iteration to the future
and synchronize the two light bodies. Namely, the two light bodies can be chosen to
come to the correct place simultaneously in order to have a close encounter. One strong
expansion is given by a close encounter between Q7 and (4. This is the hyperbolicity
created by scattering (hyperbolic Kepler motion). The other one is induced by shear
coming from the elliptic Kepler motion, which seems quite new in celestial mechanics.

The algorithmic aspect is a systematic toolbox that we develop to compute the deriv-
ative of the Poincaré map in detail. This toolbox includes symplectic coordinate systems
and partition of the phase space (§4 and Appendix A), integration of the variational equa-
tions (§7) and boundary contributions (§8), coordinate change between different pieces of
the phase space (§9), collision exclusion (§6.4), etc. Moreover, we develop new methods
to regularize the double collision using hyperbolic Delaunay coordinates and extract €
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information of the near double collision from its singular limit, the elastic collision, using
polar coordinates (§10). These new methods are more suitable to our framework than
previously known methods such as Levi-Civita regularization, and hopefully have wider
applications.

The paper is organized as follows. In §2, we give the proof of the main Theorem 1.
In §3 we study the structure of the derivative of the local map and the global map. In
84, we perform several symplectic transformations to reduce the Hamiltonian system to
a form suitable for doing calculations and estimates. This section is purely algebraic
without dynamics. Next, we state our estimates for the derivatives of the factor maps of
the global map as Proposition 5.2 in §5. The following §§6—10 are devoted to the proof of
the proposition. In Appendix C, we give the proof of our main estimate for the derivative
of the global map, Lemma 3.2, based on Proposition 5.2. Finally, in Appendix A, we
give an introduction to Delaunay variables including estimates of the various partial
derivatives which are used in our calculations, and in Appendix B, we summarize the
result of Gerver in [G2].

We use the following conventions for constants:

e We use C, ¢, C , C (without subscript) to denote a constant whose value may be
different in different contexts.

e When we use subscript 1, 3, 4, for instance Cy, C3, Cy, etc., we mean the constant
has fixed value throughout the paper specifically chosen for the first, third or fourth
body.

2. Proof of the main theorem

2.1. The coordinates

We first introduce the set of coordinates needed to state our lemmas and prove our

theorems. This set of coordinates is known as the Jacobi coordinates.
Definition 2.1. (The coordinates) e We define the relative position of @1, Q3 and

Q4 to Qo as the new variables q1, g3, q4:

G =Q1—Q2, B3=Q3—Q2, qu=0Qi—Q2, (2.1)

and the new momentum p1, ps, p4, which are related to the old momentum P;, P3, P,
by

Py=pp1, Ps=pps, Py=pps. (2.2)
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e Next, we define the new set of variables (3, vs; 21, v1;24,v4) called Jacobi coor-

dinates through

V3= py+—— (Pat+p1), R
1+p
_ (g3 +qas)
vV1=Dp1, r1=dq1— 2M+1 9 (2 3)
HP1
= Hqs
Vg p4+1+2#, I4:q471+u

One can easily check that this transformation is symplectic, i.e. the following symplectic
form @ is preserved:
W= Z dp; Ndq; = Z dv; Ndx;. (24)
i=3,1,4 i=3,1,4

e The total angular momentum is

Golz Z Pi Xq; = Z Vi XTj.

i=3,1,4 i=3,1,4
In this paper we assume the total angular momentum Gy=0.

Remark 2.2. e This set of new coordinates (x3,vs;x1,v1; x4, v4) looks complicated.
Heuristically, the new coordinates have the same physical meanings as the old coordinates
(g3, D3;41,D1;q4,P4), since the transformation between them is a O(u) perturbation of
Id. We will study coordinate changes systematically in §4.

e The rescaling (2.2) changes the meanings of some physical quantities. First, vs
and v, are close to the velocities of Q3 and ()4, respectively; however, vy is not close
to the velocity of Q1 but is close to p~! times the velocity of Q;. Next, the angular
momentum Gy that we use here is actually p~! times the angular momentum defined
using the original coordinates P; and Q;, i=1,2,3,4. Similarly, the energy is also p~*
times the original energy.

We then use Appendix A to pass to Delaunay variables (x3,vs)— (L3, ¢3, G3, g3) and

(x4,v4)>(L4,24,Gyq,9g4). For Kepler motion with Hamiltonian
ngw——, (z,v) €ER*xR?,

2 |zl
the Delaunay variables have explicit geometric meanings. When Hs <0, the Kepler mo-
tion is elliptic. The quantity L? is the semimajor axis, |LG| is the semi-minor axis, g
is the argument of apapsis, and ¢ is the mean anomaly indicating the position of the
moving particle on the ellipse. When Hs >0, the Kepler motion is hyperbolic, in which
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case the Delaunay variables have similar geometric meanings. Details are provided in
Appendix A.

To start, we assume the energy E3 of the subsystem (x3,v3) is negative, while the
energy E, of the subsystem (x4,v4) is positive. The energies and their relations to the
Delaunay variables are given as follows:

CJual? ke omgkd

2 k k2
_ v 3 _ _Mshs and F,:= ——= 5
2m4 |x4| 2L4

T 2ms  |xs|  2L2

E3:

where the values of m; and k; are given explicitly in (4.5) below, and it is enough to
know that m;, k;=1+0(u), i=3,4. The variable G;=v; xx; means minus the angular
momentum of the subsystem (z;,v;), i=3,4.

We fix the zero-energy level so that we can eliminate Ly from our list of variables,
applying the implicit function theorem (§6.1). Next we pick a Poincaré section and treat
£y as the new time (see Definition 2.6 below), so that we eliminate ¢4 from our set of
coordinates. So we get (L3, (3, G3,g3;71,v1;G4,94) ER"XT? as the set of coordinates
that we use to do calculations. In this section, we use the energy F3 instead of Lg,
eccentricities e and e4 instead of the negative angular momentum G3 and G4. The new
choice of coordinates are related to the old ones through eiz\/l—&—QiG?Ei, 1=3,4. We
use the set of coordinates (Es, {3, es, gs; 1, v1; €4, g4) to give the proof of the main theo-
rem, since it is easier to study their behavior under the rescaling. Actually, our system
still has total angular momentum conservation. We could have fixed an angular momen-
tum and eliminated two more variables. However, this would lead to more complicated

calculations.

Notation 2.3. e We refer to our set of variables as
V= (Vs; Vi;Va) = (L3, l3,G3, g3; 21, 01; G4, ga).
e We denote the Cartesian variables as
X = (A5 X1; Xy) = (23, 035 01, V1; T4, Va).

e In the following, when we use Cartesian coordinates such as x and v, each letter
has two components. We will use the subscript || to denote the horizontal coordinate and

subscript L to denote the vertical coordinate. So we write 2= (z), 21 ), v=(v|,vL), etc.

2.2. Gerver’s model

Following [G2], we discuss in this section the dynamics of the subsystem Q2, @3, Q4 in
the limit case u=0 with @; ignored. We assume that
e (Y3 has elliptic motion and @4 has hyperbolic motion with focus Qs;
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Figure 1. Angular momentum transfer.

e (Y3 and Q4 arrive at the correct intersection point of their orbits simultaneously
(see Figures 1 and 2);

e (3 and @4 do not interact unless they have an exact collision, and the collision is
treated as elastic collision (energy and momentum are preserved).

The main conclusion is that

e the major axis of the elliptic motion is always kept vertical;

e the incoming and outgoing asymptotes of the hyperbolic motion are always hori-
zontal;

e after two steps of the collision procedure, the ellipse has the same eccentricity
as the ellipse before the first collision, but has a smaller semi-major axis (see Figures 1
and 2).

The interaction of Q3 and Q4 is desribed by the elastic collision. That is, velocities
before (—) and after (+) the collision are related by

vy =

Vo +U, Vo —Vy
3 4 3 4
+

U3 04 _‘U:E—vi
2 2

‘n(a) and vj = 5 5 ‘n(a), (2.5)

where n(a) is a unit vector making angle o with vz —v;. The only free parameter a
here is fixed by the condition that the outgoing asymptote of the traveling particle is
horizontal.

We next introduce the Gerver map to formalize the above description. The Gerver
map describes the parameters of the elliptic orbit change during the interaction of Q3
and Q4. The orbits of Q3 and @4 intersect in two points, of which we pick one (see
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Figure 2. Energy transfer.

Figures 1 and 2). We use the subscript j€{1,2} to describe the first or the second col-
lision in Gerver’s construction. Since Q1 is ignored, we use only the orbit parameters
(Es, 05, e3,93;€4,94). The assumptions on the horizontal asymptotes of the traveler fur-
ther remove g4. Finally, at the intersection point of the elliptic and hyperbolic orbit, we
get rid of one last variable ¢3, so we only need to work with the variables (Ej, es, g3, €4).

With this in mind, we proceed to define the Gerver map Ge, ;. (E3,es3,g3). This
map depends on two discrete parameters j€{1,2} and we{3,4}. The role of j has been
explained above, and w will tell us which particle will be the traveler after the collision.
Q)4 moves on an orbit with parameters (Ey, €4, 1)

If w=4, we choose « so that after the exchange ()4, moves on a hyperbolic orbit with

horizontal asymptote and let

G647j,4(E3» €3, 93) = (E37 es, ?]3)

If w=3, we choose a so that after the exchange (3 moves on a hyperbolic orbit with

horizontal asymptote and let
Ge,,j,3(Bs,e3,93) = (Ea, €4, Ga).

In the following, to fix our notation, we always call the captured particle Q3 and the
traveler ()4, i.e. we fix w=4.

We will denote the ideal orbit parameters in Gerver’s paper [G2] of Q3 and @4 before
the first (resp. second) collision with * (resp. **). Thus, for example, G;* will denote
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the negative angular momentum of Q)4 before the second collision. The real values after
the first (resp. after the second) collisions are denoted with a bar or double bar.
The following is the main result of [G2] and plays a key role in constructing singular

solutions.

LEMMA 2.4. ([G2], [DX, Lemma 2.2]) Assume that the total energy of the Q2, Q3, Q4
system is zero, i.e. E3+FE4=0, and fix the incoming and outgoing asymptotes of the
hyperbola to be horizontal.

(a) For E3=—3, g5=4%m and for any e3€(0,3v/2), there exist e}, e;*, \o>1 such
that

(€3,93, B3)™ = Geg1,4(e3,93, E3)"  and  (e3,—g3, \oE3)" = Gey 2.4(e3, 93, F3)™,

where E:’,,"*:Eé":—%, g§*:g§:%7r and e§*=+/1—e3?.
(b) There exists a constant 0 such that, if |(es, g3, E3)— (€3, g5, E5)| <0, then there
exist smooth functions €)(es, gs), €4 (es, g3) and A(es, g3, E3) such that

¢y(es,93)=ei, eiles,g3)=ei",  Aes, g3, E3) = Ao,
and

(€3, 73, E3) = Ges (eq,95),1,4(€3, 93, E3),
(6;, 7‘9;, )‘(633 93, E3)E§) = Geﬁl’(53,g3),2,4(633 g3, E?))

(¢) (1-homogeneity in E3) for any A>0 and (es, g3, E'3) such that

E
H(e3yg37;’ae4>_(€3ag37E37€4)TH <67

with T=x, xx, we have

Es
s Ge, jales, 93, E3) = A, Ge, ja (63’93’ A) ’

where T, means the projection to the Es component, and j=1,2 corresponds to *, *x.

Part (a) is the main content of [G2], which gives a 2-step procedure to decrease the
energy of the elliptic Kepler motion and maintain the self-similar structure (see Figures 1
and 2). We call the collision points in part (a) the Gerver’s collision points, whose exact
coordinates can be found in Appendix B. The results are summarized in Appendix B
with orbit parameters given explicitly. Part (b) says that once the ellipse gets deformed
slightly away from the standard case in Figure 1 after the first collision, we can correct
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it by changing the phase of @3 slightly at the next collision to guarantee that the ellipse
that we get after the second collision is standard.

The notion of angle of asymptote above is clear since we only deal with the Kepler
motion. We next introduce the explicit definition of angles of asymptotes, which are used

in place of g4 sometimes even when we deal with perturbed Kepler motion.

Notation 2.5. (Angles of asymptotes) In the following, we use

G4
0, :=gsa—arct -—
4 ‘= ga—arc an( ; >

for the incoming (superscript —) asymptote of the (x4, v4) motion and

0r ::7r+g4+arctan<§4) (2.6)
4

for the outgoing (superscript +) asymptote. In Lemma 2.4, we always have 6; =0 and
03 =m. Geometrically, the angle is formed by the asymptote pointing to the direction of
r4’s motion and the positive z|| axis. See Appendix A for a detailed discussion of the

choice of the sign in front of arctan G4/L,.

2.3. The local and global map, the renormalization and the domain
2.3.1. The Poincaré section and the Poincaré map

Definition 2.6. (The Poincaré section, the local map, the global map and the Poincaré
map) We define a section {x4 ) =—2} on the zero-energy level.

e Following the Hamiltonian flow, to the right of this section, we define the local

map
L: {{E47” =-2, Ug,|| > 0} — {x47“ =-2, Uy, < 0},

e and to the left we define the global map
G:{zg,)|=—2,v4) <O} — {mg) = —2,v4, > 0}.
e Finally, we define the Poincaré return map
P=GoL:{zy = 2,04 >0} — {24, = =2, 04 > 0}.
These maps G, L and P are defined by the standard procedure following the Hamil-
tonian flow. Once we find one orbit going from one section to another, the corresponding

map can be defined in a neighborhood of this orbit. The existence of a returning orbit
follows from Lemma 2.21.
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2.3.2. The renormalization map

Next, we define the renormalization map R, which will be applied after two applications
of the Poincaré map. We first fix a large number y>>1, which can be thought as a typical
distance between the heavy bodies @)1 and Q.

Definition 2.7. We define the renormalization map R in several steps as follows.

e Given a point x, called the base point, on the section {z4=-2,vs>0}, we
denote by C(x) a cube of size 1/2v/Ax centered at x, where A=—2F3 is measured at x.

Let f=—arctan(x;,1 /xy) evaluated at a, and denote by Rot(3) the rotation of
the plane by angle 8 around the origin.

e We push forward the cube C(x) to the section

. 2
{(Rot(ﬁ)_l-m4)| =08 Bxy,|+sin fry L = —3 4l > O}

along the Hamiltonian flow. We define

@: {$4,” = 72,’1}47H > 0} —_— {(Rot(ﬂ)1z4)| = 7%’1}47” > 0}

and apply the following procedure to G(C(x)).

¢ (Rotation) We rotate the x|-axis around the origin by angle 3, so that for the
center point in each cube, we have that x; | is nearly zero (to be estimated as |z | |=
O(1/x), with the error caused by G). Now, the section {(Rot(3)~! “x4) | =—2/ A, v, >0}
becomes {x4 | =—2/),v4)>0}.

e (Rescaling) We zoom in on the configuration space by A>1. Simultaneously, we
also slow down the velocities by dividing by v/X. Now, the section {zg =2/, 04 >0}
becomes {x4 | =—2,v4>0}.

o (Reflection) We reflect the whole system along the z-axis.

e Finally, we reset x to be equal to the value A|z; ||| evaluated at x.

We have

R: @(C(:B)) (C {(ROt(—ﬁ)%‘;;)H = —;, Uy || > 0}) — {1‘4’” =-2, vg,) > 0},

and

R(E?nz?n €3,93;T1,V1; 64,94) =

s 1 0
(A7£3ae37_(g3_ﬁ)7A|:0 ]

(2.7)

} Rot(8)a1, [1 0 ]Rot(ﬂ)vl

0 -1 vV

The renormalization also sends time ¢ to A\3/2t and the Poincaré Cartan invariant gets
multiplied by A/2.

;647—(94—5))
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Remark 2.8. The primary goal of the definition of the renormalization map is to
rescale the lower ellipse in Figure 2 to the size of the lower ellipse in Figure 1. The
reflection is needed since the motions on the two ellipses have opposite orientations
(compare the arrows in Figures 1 and 2). The rotation is needed since we want to put
x1 on the horizontal axis, however, £; has some angular momentum relative to zero, and

hence v, forms an angle with x;, which moves x; away from the horizontal axis.

We will iterate the map
RO@O(GOLV: {.234,H =—-2, vy, > 0} — {334’” =-2, Ug,|| > 0}.

We shall show that for orbits of interest R sends x to Ax(1+O(u)). Thus, x will
grow to infinity exponentially under iteration. Hence, B:O(X*I/ 2) decays exponentially

to zero. Without loss of generality, we always assume in our estimates that 1/y < u.

2.4. Asymptotics of the local and global map
2.4.1. The standing assumptions

To simplify the presentation, we list standard assumptions that we will impose on the
initial or final values of the local and global map, respectively.

We introduce
K=

oG
supmax{||che4,1,4(e3,g:»,,E3>|OO+He“"1

E
des (63,93, 3)

,||d<eg,ez><e3,gg>|oo}+1,

oo
where the sup is taken over t=x, %, and over all (es, g3, F3,e4) in a d-neighborhood of
(e3,93, E3,e4)T, the maps G, ¢} and ¢/ are as in Lemma 2.4, and the || - || norm for
a linear map M:R"—R™ is defined as sup | Mv||«, where the sup is taken among all
veR™ with [|v]|=1.

We consider 0<§<d/K? and fix some large numbers Cy and C},. For A=1or \o as

in Lemma 2.4, we use the following standing assumption for the local map.
AL(N):

(AL.3) Initially on the section {x4 =—2,v4 >0} we have

“ E
H<e37g3_0-(>\)'777;>_(e37g37E3)TH <KT67

(oo}

(AL.1) the initial values of (x1,v;1) satisfy

Co
L, < =X ‘xl,l-|<00/17 |'U1,J_|<?, 0<—’U1’” < Co;
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(AL.4) the incoming and outgoing asymptotes of the nearly hyperbolic motion of
T4, v4 satisfy

10, <Cop and |0 —7| <6,

and the initial value of ey satisfies |es—e}|< KT8, where
o T=x xx K*=1and K*"=K;
e §<1 is a constant independent of x and p;
o 0:{1,A}—{0,1} is defined as o(1)=0 and o(A\g)=1.

We use the following standing assumption for the global map.

AG(\):

(AG.3) Initially on the section {4 =—2,v,, <0}, we have

« E
H (637 gs _U()‘)'ﬂ-a ;) _Gez,i74(€3’ g3, E3)T H < KKT67
where =%, *x and 1=1, 2 correspond to the first and second collisions;
(AG.1) the initial conditions of x1 and vy satisfy

C! 1
—Lix<z ) <—x |z <Cop, |or,1] < ;07 — <—v1, <Cp;

Co
(AG.4) on the section {z4 | =—2}, we have that |24 1 |<Cj holds both at initial and

final moments.
If A=1, we abbreviate AL=AL(1) and AG=AG(1).

We stress that in both AL()X) and AG()), we consider only orbits on the zero-energy
level and the zeroth total angular momentum level of the Hamiltonian (1.1).

Remark 2.9. o In AL(A), we ask the initial values of (x3,v3) and (z4,v4) to be
close to Gerver’s value in Lemma 2.4. The assumption on (z1,v;) requires @1 to be far
away and not to have too much energy. We also require the outgoing asymptote to be
almost horizontal, which forces @3 and @4 to have a close encounter, since otherwise (4
moves on a slightly perturbed hyperbola whose outgoing asymptote will not be nearly
horizontal.

e In AG()\), the main requirement is (AG.4), where we require |z4_ | to be bounded
at both the initial and final moments. This will force the motion of (x4, v4) to be close

to a horizontal free motion for most of the time.
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2.4.2. The asymptotes of the local, global maps

In the next two lemmas, our notation is such that I and G send unbarred variables to
barred variables.
The next lemma shows that the real local map L is well approximated by the Gerver

map G in the €0 sense. Its proof will be given in §10.1.

LEMMA 2.10. Assume AL()), with A=1 or A=Xo. Then, after the application of
L, the following asymptotics hold uniformly:

(E?n éS7§3) = Ge4(E37 63793)+0(1)

as 1/x<pu—0 and 6—0.
The next lemma deals with the ¢ estimates for the global map G.

LEMMA 2.11. Assume AG(X) with A=1 or AXg. Then, there exist constants Cs and
Cy such that, after the application of G and @O(& the following estimates hold uniformly
in x and p as 1/x<<u—0:

(a) |Es/E3—1|<Csp, |G3/G3—1|<Cap, |gs—gs|<Cap;

(b) 104 —7|<Cuap, 105 |<Cups;

(c) the return times defining G and GG are bounded by 3x.

The proof of this lemma is given in §6.5. From now on, we choose the constant C
in AL to be larger than Cy in Lemma 2.11.

2.4.3. Dynamics of (x1,v1) under the renormalized Poincaré map
The next lemma deals with the ¢° estimates of (z1,v1). The proof is also in §6.5.

LEMMA 2.12. Fiz A=1. There exist constants Co, Cl, c1,¢1,C1>0, with ¢1<Cy,
such that the following holds. Consider an orbit with initial condition x satisfying

(i) (AL.3) and (AL.4) are satisfied when applying L for the first time, and (AG.4)
18 satisfied when applying G for the first time;

(ii) dnitially on the section {x4)=—2,v4>0},

Go=0, —x——<a)O<—x | O)< =, —a<vO)<—a. (28)

Then, we have

(a) after the application of P, (AL.1) is satisfied for (x1,v1);

(b) after the application of L and LoP (whenever the second L is defined), (AG.1)

is satisfied for (x1,v1).
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Assume (I’ and (ii) in place of (i) and (ii) above, where

(i) (AL.3) and (AL.4) are satisfied when applying L for both the first and the second
times, and (AG.4) is satisfied when applying G for both the first and the second times.

Then, we have

(c) after the application of RoGoP2, where R is based at the point P2(x), we get
that the renormalized X, denoted by X, satisfies N(1+C; ) x <X<KA(1+Cyp)x, and the
renormalized orbit parameters Go, ©1 and v1 satisfy (2.8), with x replaced by X.

Remark 2.13. We explain the physical meaning of the lemma. The assumption
implies that both vs and vs are of order 1. By (2.8), vy is also of order 1 and vy | is
bounded by C/x. In Remark 2.2 we have stressed that pv; instead of v is close to the
velocity of Q1. So Q1 moves to the left with a velocity of order p having a tiny vertical
component. It takes Q4 a long time of order x to complete a return and during this
time, Q1 moves a distance of order py. This gives the estimates of x4 and X after
renormalization. The energy exchange between 1 and Q4 will change v, | significantly,
but the renormalization will slow down v, to the interval [—¢;, —ci]. The rotation in

the renormalization controls x4 | .

2.5. The tangent dynamics and the strong expansion

Definition 2.14. Given §<§/K?, where ¢ is in Lemma 2.4, we define the following

open sets in the section {x, | =—2,v4,) >0} on the zero-energy level by

U1 (0) = {AL, except the 0; assumption therein, holds with =},
Us(8) = {AL, except the §; assumption therein, holds with = *x},
Uo(8) = {AL()\o), except the ; assumption therein, holds with f = x}.

Remark 2.15. (1) The sets U;(0), j=1,2, are neighborhoods of Gerver’s collision
points in Lemma 2.4. The set Uy is introduced to study the dynamics without the
renormalization.

(2) In the definition we do not restrict ¢3, since ¢3 can take any value in [0, 27). We
do not restrict vy, , since it can be bounded by C/x by the information in (2.8). We

also get rid of the assumption on the final value 6] in AL.

2.5.1. The invariant cone fields

We introduce the following cone fields.
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Definition 2.16. (Cone fields) Let

(1) K1CTy,(5)(R"xT?) be the set of vectors forming an angle less than a small
number 7 with span(dRws, dRW),

(2) KoCTuys)(R"xT?) be the set of vectors forming an angle less than a small
number 7 with span(ws, @),

(3) K2CTu,5)(R"xT?) be the set of vectors forming an angle less than n with
span(wy, W),

where

/o2 _
w 8andw]‘< “ 18 ! 8)5 ]:12

oty Lses Odeq Lge3 Ogq o
We choose our parameters to be 0<1/x < u<d<n<k1.

The next lemma establishes the (partial) hyperbolicity of the Poincaré map.

LEMMA 2.17. There exists a constant ¢ such that, for all x€U,(9) satisfying P(x)€
Us(8), and for all £€Us(8) satisfying P(x)€Uy(d), we have

(a) (Invariance) dP(K1)CKy, dP(K3)CKo and d(RoGoP)(Ky)CKy, where the base
point defining R can be chosen to be any point in Uy(d), since 6.

(b) (Expansion) If velly, then ||dP(v)||Zcex||vl|l. If veKa, then ||dP(v)||Zcx||v||
and [[d(R-GP) ()] Zexlo].

We give the proof in §3. The next lemma follows directly from Definition 2.16.

LEMMA 2.18. (a) The vector w=090/0¢3 is in K;.
(b) For any plane 11 in K; the projection map

Tey, by = (d64, d€3): I—s R?

s one-to-one.

2.5.2. The admissible surfaces

Definition 2.19. (Admissible surfaces) We call a 2-dimensional ¢! surface SCU;(6)
admissible if TSCIKC;, 1=0,1, 2.

Since Poincaré maps send admissible surfaces to admissible surfaces if the images
lie in U;(6),j=1,2, by Lemmas 2.17 and 2.18, we can restrict the Poincaré maps to
admissible surfaces to obtain 2-dimensional maps. The reduction is done as follows. We

introduce two cylinder sets

Co(6)=C1(6):=(ef—6,ef+6)xTt and Co(d)=(ej* — K6, ej*+K5)xT.
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By Lemma 2.18, we get that each piece of admissible surface SCU;(d) is the graph of a
function S defined on C;(d), i=0,1,2. So we get that PoS is a function of two variables
(e4,?3). However, for most points in C;(9), the map P-S is not defined, since the orbit
might not return.

Given a piece of admissible surface SCU;(d), we next introduce the maps Q1, Qo
and Qg from a subset of C;(9) to C2(d), a subset of C2(d) to Co(d) and a subset of Co()
to C2(9), respectively:

Qi ::7764,5373(8('7 ))’ Qo ::7764,5373(8('7 ))v QO::T"%,&PR@(S(" ))
where the base point of R in Qg will be specified below. The domain of Q; can be found
by taking Q; (C2(8))NC1 (), and similarly for Qy and Qy. This completes the reduction

of the Poincaré maps to 2-dimensional maps.

Definition 2.20. (Essential admissible surfaces) For ¢’<4, we call an admissible sur-
tace SCU;(6) ¢'-essential if e, ¢, S contains C;(d"), j=1,2.

LEMMA 2.21. Given 0<§'<6<0/K?2, we have the following for x sufficiently large.

(a) Given a ¢'-essential admissible surface SCU(0) and
1 1
és € <eZ—5’+,ez+5’—),
X X

there exists U5 such that 71'64738((54,!73):62*. Moreover, there exists a neighborhood
Vi(€4)(CCi(0")) of (é4,03) of diameter O(1/x) such that Q maps Vi(é4) surjectively to
Co(0).

(b) Given a ¢'-essential admissible surface SCUz(6) and

1 1
é4 c (SZ*K5/+X,€Z*+K($/X>,

there exists U3 such that 7., PS(é4,ls)=e%. Also, there is a neighborhood Va(é4)(CCa(8"))
of (¢4,03) of diameter O(1/x) such that Qy maps Va(és) surjectively to Co(6).

(¢) Given a 0'-essential admissible surface SCUy(d) and
és€ <e15’+1,e;§+6/1)
X X

there exists 03 such that 7764738((54,!73):62*. Moreover, defining the renormalization R
based at the point S(é4,03), there exists a neighborhood Vy(é4)(CCo(8")) of (é4,0s) of
diameter O(1/x) such that Qo maps Vo(€4) surjectively to Co(9).

(d) For points in V;(é4) from parts (a) and (b) (i=0,1,2), there exist constants c,
o and xo such that, for p<po and x>xo, we have that the particles Qs and Q4 avoid
collisions before the next return, and the minimal distance d between Q3 and Q4 satisfies
cp<d<p/c. Moreover, Q1 and Q4 do not collide.
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Parts (a)—(c) of the lemma are proved in §6.6. Part (d) is given in §6.4 as well as
Lemma 10.2 (b).

2.6. Proof of Theorem 1

Step 1. (Concatenating Lemmas 2.10-2.12.)

We will iterate ReGoGoLoGoL. Suppose we have a point x€U;(d) whose images
P(x)eUs () and RGP2(x) €Uy (6), where R is defined with the base point P2(z). We
assume in addition that (2.8) is satisfied for . Leaving the existence of such a point to
be addressed later, we first show how the assumptions of Lemmas 2.10-2.12 are satisfied.

The assumption AL (except the 0 assumption therein) for Lemma 2.10 is satisfied
since ¢ €U, (0). To proceed, we pick some small § and assume that |§; —7|<6 in (AL.4)
is satisfied.

The conclusion of Lemma 2.10 combined with Lemma 2.4 implies (AG.3) by choosing
1 and 6 sufficiently small, and the assumption that zelU,;(8) and P(z)eUs(5) implies
(AG.4). Next, the assumptions of Lemma 2.12 for the first application of P are satisfied,
so we get (AG.1). Now, the assumption AG is satisfied.

Now, we apply Lemma 2.11 to conclude that F5, G5 and g3 have O(u)-oscillations
and the initial and final angles of asymptotes are O(u) close to zero and 7, respectively.
By choosing p small, we see that the 6} assumption in (AL.4) is automatically satisfied.
That is to say, if G is applicable after the application of L, then the 6] assumption in
(AL.4) is redundant.

Next, we consider the second application of L. In the first application of L, we see
that L is approximated by G by Lemma 2.4. Next, the application of G gives only a
p-oscillation to the values of E3, g3 and e3, so applying Lemma 2.4, we see that (AL.3) is
satisfied for the second application of L. The 6, and e4 parts of (AL.4) are satisfied since
we have P(x)€Us(d). Lemma 2.12 implies that (AL.1) is satisfied. The only missing
assumption in (AL.4) is the assumption on the outgoing angle of asymptote éj{, which is
again redundant under the assumption RGP2(z) €U (9).

We can now apply Lemma 2.10 for the second time. Similarly, we verify the assump-
tion for the second application of G. After RGP?2, the assumption (AL.1) and (2.8) are
provided by part (c) of Lemma 2.12. The assumption (AL.3) and e4 part of (AL.4) is
provided by Lemma 2.4 and the renormalization applied to F3. The assumptions on the
angles of asymptotes in (AL.4) are again given by the existence of returning orbits, to
be addressed below. So we can apply Lemma 2.10 for the third time.
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Step 2. (Choosing the initial piece of admissible surface.)
We choose a number §’ <§/K?2. Then, by Definitions 2.16 and 2.19, on Sy we have

|Es—FE5| <d'+nd, |es—ei|<d'+nd and |g3—gi| <8 +nd, (2.9)

where 77 is the small number in Definition 2.16. Here, we choose i so small that ¢’ +nd <4.
Such a piece of ¢’-essential admissible surface Sy exists by explicit construction as follows.
We first take an integral curve in Uy (d’) along the vector field w; in Definition 2.16 such
that its e4 component is the interval (ej —¢’,e;+0¢’). Then the surface Sy can be chosen
as the product of the curve with T!(3/43).

Step 3. (Non-collision singularities.)

We wish to construct a singular orbit with initial value in Sy. We define S; in-
ductively so that S; is a ¢’-essential component of P(Sy)NUz(d), and, for i>2, S; is a
§'-essential component of (PRGP)(S;_1)NUs(6) (we shall show below that such compo-

nents exist). Given a §’-essential admissible surface S; CUs (), choose
~ * 3k / 1 ok ! 1
és€ ey —Ké'+—,ef +K&'—— .
X X

Then, the hypothesis of Lemma 2.21 (b) is satisfied, so there exist /3 and Vy;(é,) satis-
fying Lemma 2.21 (b). In particular, V5 ;(€4) is a subset of C2(d") with diameter O(u/x),
and (é4,03)€Va,i(€4). Tt follows that, for every (eq, £3)€Va,;(€4), we have

es € (e =Ko e  +K&).

In fact, this is true for every (e4,¥3) in ‘72,1'(64), the closure of V5 ;(é4). Therefore,
V2,:(€4)CC2(8"), and S; is defined on Vs ;(é4). Let §i:Si(V27i(é4)). Then, because S;
is a continuous bijection, :S'\l is closed. Also, because S;=8;(C2(d")), we have S'\iCSi.
Likewise, (PRGP)~1(S;) is a closed subset of (PRGP)~1(S;). We shall show below
that (PRGP)~1(S;11)CS;. It follows by induction on i that

{(P~HPRGP) 'S}

is a family of nested non-empty sets, whose intersection X is therefore non-empty. Choose
any z€X. (In fact, X has only one element, but we do not need to use that fact.) We
claim that x has a singular orbit. We define ¢; as the time of the orbit’s (2¢)-th visit to
the section {z4)=-2,74>0}. By Lemmas 2.4 and 2.10, the rescaled energy is close
to Gerver’s values in Lemma 2.4 and the rescaling factor satisfies No+O=A=Ng—6 >1,
where )¢ is in Lemma 2.4 and 6=4'+76, so the unrescaled energy of (x3,v3) satisfies

%(/\0—5)2;1 < —E3(ti) < %()\0%-8)1.71.
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According to Lemmas 2.11 and 2.12, and to the total energy conservation (see Lemma 4.5

below for the Hamiltonian), we get that the velocity |vs4] during the ith iteration is

cV/=Es(ti) = c(A—0) "1/,

Note that in Step 1 the initial conditions for z; and ,v; are chosen to satisfy the as-

bounded from below by

sumption (2.8). Lemma 2.12 then shows that the assumptions on z; and vy are always
satisfied. Thus, we can iterate Lemma 2.12 for arbitrarily many steps.
Now, let us look at the orbit in the physical space without doing any renormalization.

Inductively, we have
1 (t:) € [=(14pC1) ™ 2x0, =(14+pCT )™ 2 x0]

after the ith iteration using Lemma 2.12 (c), where g is the initial value for y. Therefore,
Ty,|——00 as n—oo. The value of x used during each step of PR@P, denoted by
Xi (=31, (t;)/Es(t;)), is estimated as

(Ao—08) M (1+uC )™ 2x0 < xi < (Ao +0) ™ (1+pC) ™ 2 x.

Next, for each application of L, the total time is bounded by a uniform constant.
For each application of G, the return time is bounded by 3y; by Lemma 2.11 (c). So,

without the renormalization, the time difference
i1 —t;] <C(No—08) 722 (Ao +0)"(1+uC1) X0,

where the constant C' absorbs finite powers of (Ag=£4) and (14uC1), so the total time
t.=lim; .o t; is bounded as needed. This shows that infinitely many steps complete
within finite time, and x; goes to infinity. Since p is small and in U;(6), j=1,2, both z3
and x4 are bounded, from (2.3) we see that ¢; also goes to infinity. This implies that
both @1 and Q5 escape to infinity, since ¢ =0Q1 —@2 and the mass center is fixed. We
also have that Q)3 escapes to infinity, since Q)3 is always close to @2, i.e. g3 is bounded.
Finally, Q4 travels between ()7 and Q2. To see that no collision occurs during the whole
process, we only examine the Q3-Q4 and @1-Q4 close encounters whose collisions are
excluded by part (d) of Lemma 2.21 (see §6.4 for more details).

The symbolic dynamics in the statement of the main theorem is due to the fact that
we can switch the roles of Q3 and Q4 after their close encounter. For elastic collisions,
such a switch is done by replacing @ by m—a in (2.5). Both cases (o and 7 —a) can be
shadowed by Kepler hyperbolic motion when p>0. See [G3] for more details. In the
above, we have been fixing the discrete parameter w=4 in the definition of Gerver’s map



NON-COLLISION SINGULARITIES IN A PLANAR 4-BODY PROBLEM 275

Ge, j.w, i.e. we have been choosing @4 as the traveler. In this case, the global map G
sends points in U;(d) to points in Us_;(J), j=1,2, so we see that Q4 winds around @,

once in the sense of Definition 1.1. In general it is the traveler Q,, that winds around ;.
Step 4. (The induction steps.)

It remains to show that we can find a ¢’-essential component of S; inside Us(9).
We proceed inductively, and assume that S; CUz(9), for i>2, is a ¢’-essential admissible
surface after application of (PR@P)i’l to a subset of S7. The fact that the ¢’-essential

admissible surface S exists follows from Lemma 2.21 (a) applied to Sy. Indeed,
S1=PS(Vi(é4)).

We next apply Lemma 2.21 (b). For given és€(ef*— K& +1/x,ei*+Kd' —1/x),
there exists /3€T! such that 7re477(8i(é4,l73)):ez. Moreover, there exists a neighbor-
hood V3 ;(€4) of (64753) such that Qs maps Vs ;(é4) surjectively onto Cy(d"). We denote
by S;1/2 the image P(S;(V2,:(€4))), which is admissible by Lemma 2.18 and ¢'-essential.
Moreover, every point &€S; /o satisfies (AL.3) by Lemma 2.10 and Lemma 2.11 (a),
(AL.1) by Lemma 2.12 and (AL.4) by Lemma 2.11 (b) and the §’-essentiality implies that
T, Sip1/2=(e;—0",ej+06"); thus, S; /0 CUp(6).

We next apply Lemma 2.21 (c) to find a point (e, f3) such that

Te PSiv1/2(eh, ls) =e}™.

We now introduce the renormalization R based at the point S; 1 /2(ej, Eg) and define Q.
Again by Lemma 2.21 (c), there exists a neighborhood V; ;41/2(e1) CCo(d) such that Qg
maps Vp ;41/2(e}) surjectively onto Co(0’), and we have that the diameter of Vj ;41 /2(e})
is O(p/x), which is much smaller than 1/,/x, the size of the domain of R, so R is well
defined on @(%’Hl/g(ei)) (dG is bounded).

We simply define

SZ'+1 = {:IJ S 'PR@(Si_;,_l/Q(V07i+1/2(62))) ITey 05T S C2(§/)}

By Lemma 2.17 (a), we know that S;;; is admissible.

By Definition 2.20, we know that S;11 is §’-essential. On S;11, we always have (2.9)
for the variables F3, e3 and g3 by Definitions 2.16 and 2.19. The variables (x1,v;) are
always controlled by part (¢) of Lemma 2.12, and the angle g4 is controlled by part (b)
Lemma 2.11 using the asymptotes of the hyperbolic motion (The bounds on §; and 6
require that @4 has a near collision with @3, which constrains g4). So we only need to
deal with the variables (e4,¢3) on a §’-essential admissible surface.
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Finally, to prove that (PRGP)™(S;;1)CS;, we note that

(PRGP) 1 (Si1) = {x € P71 (Sit1/2(Vojis1/2(€5))) : Tey e (PRGP) () € C2(8')}
CP(Sit1/2(Vo,it1/2(€3)) CPH(Sig1/2(C2(5)))
=P (Sis1/2) = Si(V2,i(64)) C Si(Va,i(éa)) = Si.

3. The hyperbolicity of the Poincaré map

In this section, we consider the hyperbolicity of the Poincaré map by studying the deriv-

ative of the local and global maps.

3.1. The structure of the derivative of the global map and local map

LEMMA 3.1. Suppose the initial condition x,€U;(0) satisfies AL and let T be the
closest point to x,, in the set U;(8) with p=0, which leads to a collision between bodies
3 and 4. Then,

(a) there exist a constant C independent of p, continuous vector-valued functions
1;(Z) and u;(z,0;) and a continuous matriz-valued function B;(Z,0}), where 0} is the

angle of the outgoing asymptote, such that |[u;||, ||L, || B;||<C and, as 1/x<p—0,
1 o N -
dL(@,) = (u;(@, 1) +o()e(l;(@)+o(1)+B;(,01)+o(1);

(b) moreover, there exist vectors 1; and i;, and a matriz Ej such that

L(@) 1, w(@,0)—>a;, B;(#60f)—B;, asd6-0,
where j=1,2, meaning the first or the second collision.
The proof is given in §10.2.

LEMMA 3.2. Let ® and y=G(x) be the initial and final values of the global map G
and suppose that they satisfy AG. Then,
(a) there exist continuous linear functionals 1;(x) and 1;(x), continuous vectorfields

1,(y) and u;(y), and non-vanishing constants c¢1 and co such that, as 1/x < p—0,
dG(@) = c1x* (8, (y) +0(1) @ (1;(@) +0(1)) +e2x(T; () +0(1)) @ (1 () +0(1)) +O11x);
(b) moreover, we have the following explicit expressions for the above vectors and
functionals in Delaunay coordinates (see V in Notation 2.3):
 Gaj/Lay 0 1 1 >

T': 1,0 3 T_( = = 5 Ty =0 ~o s =
J ( 1><9) J LZJ'FG?LJ 1x Lij-ﬁ-Gij L4,j
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and

- T
~ _ - Ly
u; =w:= (051701><8)T7 U =wj+tcw, w;j= (01><8;1’ 79 4’{\2 ) >
Li;+Gi,
where ¢ is some constant, I~/4’j and C~¥47j stand for the initial values of L4 ; and G4,

and IA,4,j and (?4,]4 stand for the final values, and w and w; appeared in Definition 2.16,

with Ly=L3 when p=0 and ey=+/14+(G4/L3)?.

Notation 3.3. We denote by Tj and ij the vectors corresponding to Tj and ij, respec-

tively, when L, ; and G4 ; are evaluated at Gerver’s collision points.

The proof of Lemma 3.2 is in Appendix C.

3.2. The non-degeneracy condition

LEMMA 3.4. The following non-degeneracy conditions are satisfied for E;;:,%’

L and g§:%7r:
al) span(uq, B (1 (W)dRwy =1y (dRw2)@)) is transversal to Ker(il)ﬂKer(
a2) des(dRws)#0;

e3=35
(

(42) ) L
(b1) span(ﬁg,Bg(ig(@)wl—ig(wl)@)) is transversal to Ker(ly)NKer(Ly);
(b2)

(

o ||>

1)

b2) dey(wy)#0;
C) ij"iﬁ;'éo, ig'wl#o, ildeg#O and ij'ﬁj?éo, j=1,2.

This lemma is proved in §10.3 and §10.4.

3.3. Proof of Lemma 2.17, the expanding cones

Consider for example the case where  €Us(d). We claim that, if § and p are small enough,
then dL(span(w, @)) is transversal to Ker I,nKerl,. Indeed, take I such that lo(I')=0.
If T'=aw; +aw, then als(wy)+ala(w)=0. It follows that the direction of T" is close to the
direction of f:ig(@)wl—ig(wl)@. Next, take ['=bw;+biw, where blg(wl)—l—l;lg(@);éo.
Then, the direction of dLLT is close to Ty and the direction of dIL(T) is close to By(I),
so our claim follows from Lemma 3.4.

Thus, for any plane II close to span(w;,w), we have that dIL(II) is transversal to
Kerl, ﬂKerTQ. Take any Y €/Cy. Then either Y and w; are linearly independent, or Y
and w are linearly independent. Hence, dL(span(Y, w1)) or dL(span(Y, w)) is transversal
to KerI,NKerl,. Accordingly, either Ip(dL(Y))#0 or L(dL(Y))#£0. If Iy(dL(Y))#0,
then the direction of d(GoL)(Y) is close to @i. If 13(dLL(Y))=0 then the direction of
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d(G-L)(Y) is close to @i. Next, estimating dG, we have dG-span (i, i) =span(a, @) +o(1)
(see Lemma 10.3). Next, by Definition 2.16, we get that dR span(u,u)CK;.
So, in either of the two cases above, we have d(ReGeGoL)(Y)ek, and

ld(RoGeGoL)(Y)|| > ex|[ Y]

This completes the proof in the case £ €Usz(d). The case of €U () is similar.

4. Symplectic transformations and Poincaré sections

In this section we define several Poincaré sections and perform symplectic transformations
in the regions between the consecutive sections to make the Hamiltonian system suitable

for doing calculations.

4.1. The Poincaré coordinates

We start with the Hamiltonian (1.1). The translation invariance enables us to remove
one body in the Hamiltonian. We choose ()2 as this body. We start with the symplectic

form

4
w=Y_dP;AdQ;

i=1
=d(Py+Py+P3+Py) ANdQ2+dPi Nd(Q1—Q2) +dPsAd(Q3—Q2) +dPy Nd(Q4—Q2)
Zd(P1 +P2+P3+P4)/\dQ2+dP1 Adqy +dP3Ndgs+dPyN\dgy,

where we have used (2.1). If we choose the mass center of the four bodies as the origin,
then P+ P>+ P;+P,=0. Now the Hamiltonian becomes

1 1
H(qy, P13 q3, P3;qa, Py) =P12+§ (1+M> (P +P3)+((Pr, P3)+(P1, Py)+(Ps, Py))

I Y Y e

1] ol el lo—asl la1—aqal lgz3—aal

Restricted to the subspace where P+ P>+ P3+ P;=0, up to a factor u, the symplectic
form is @ defined in (2.4). We divide the whole Hamiltonian by u to get

g(H;) (P92)+ 1((pr, pa) + (1, pa) + (3. )

1 11 1 1 [

ol ezl laal lai—as] Jo—aa]  lgz—aal

H(q1,p1; 93, P33 Qas Pa) = ip3 -+
(4.1)
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It can be checked that the Poincaré-Cartan 1-form is multiplied by a factor p due to
the coordinate change and the Hamiltonian canonical equation holds true in the new
coordinates.

In the new coordinates the total angular momentum equals
G=Q1xP1=Q2x(P1+P3+Py)+Q3x Ps+Qax Py=q1 x PL+q3 X P3+qa < Py.

Therefore, the conservation of angular momentum takes the form

E q; X pj = const.
Jj=3,1,4

4.2. More Poincaré sections

When Q4 is closer to Q;,7=1,2, we treat its motion as a hyperbolic Kepler motion with
focus at ); and perturbed by @3 and Q3_;.

Definition 4.1. We introduce one more set of coordinates

_ 14
U37p3+71+u(p1+174)7 T3 =qs,
— 1 14 14
V1 =p1+pa4, r = - + 4.2
: § 1 1+NQI 1+M(J3 1+NQ47 ( )
V4= ——Ps— —P1, T4 =qs—q1.
4 1+MP4 1+/Ap1 4=44—q1

One can check that the transformation (4.2) is symplectic with respect to the sym-

plectic form &@.

Notation 4.2. To distinguish the new set of coordinates from those of Definition 2.1,

we use superscript R (meaning right) and write

. . R_(.R R R R. R R
(37377}3737171}173747@4) —($3,U37l‘1,’l}1,l‘4,’l}4>

for the coordinates from Definition 2.1 and use superscript L (meaning left) and write

. . L_(.L L L L L L
(x3,v3,x1,v1,x4,v4) —(I3,’U3,J)1,’Ul,$4,?]4)

for the coordinates from Definition 4.1. Notice that (x3,v3)%=(x3,v3)%, so we omit this

superscript for simplicity.

Definition 4.3. (Further Poincaré sections.) We further define two more sections to
cut the global map into three pieces (see Figure 3).

e Map (I) is the Poincaré map between the sections
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L _1 R _
T =3X Ti =2

Figure 3. Poincaré sections.

e Map (II) is the Poincaré map between the sections
{%IEH = —%X,vf” <0} and {xiu = %X,vf’ﬂ >0}.
e Map (V) is the Poincaré map between the sections
{o:in = %X,vi” >0} and {xfju = —2,1}5:‘” > 0}.

e We also introduce map (IT) to change coordinates from right to the left on the

section {xf” =—1x, vf” <0} and map (IV) to change coordinates from left to the right
ot L _1, oL
on the section {354"'—5)(,114"‘ >O}.
iome R 1. R L _1. ,L :

Remark 4.4. (1) The two sections {z}} =—3x, v <0} and {af =5x, vy >0} lie
almost at the midpoint of @ and Q.

(2) In §4.3 and §4.4, we will treat the equations of motion as three Kepler motions
(x4,v;)L, i=3,1, 4, with perturbations. When perturbation is neglected, the orbit of
xlt is a hyperbola focused at the origin and opening to the left, while the orbit of x1 is

a hyperbola focused at origin and opening to the right.

In the following subsections we describe the suitable changes of variables adapted to
maps (I), (ITIT) and (V), as well as the local map L.

4.3. Hamiltonian of the right case, when Q4 is closer to Q-
We write the Hamiltonian in terms of three Kepler motions with perturbations.

LEMMA 4.5. In the coordinates (2.3), the Hamiltonian for maps (1) and (V) has the

form

H(x3,v3;21,v1;T4,04)

_ <M(1+M)v2_2u+1>+(1+uvz_1>+( 1+2u U2_1+u>+UR (4.3)
I+2u 1 pl] 20 ol ) A2 ’
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where ) L1 )
p+1 1 +u (1 u
Uk = Y (R R —=+=). 4.4
el (A Al iy
with .
p 2
a=plr,+ Ty+——x3|, b=|x1+ T4——23],
M o™ ™ o™ ™
1+p K3 T3
c=|r1— T4|, d=|xs4+ , =|—z
TS T T+p *

In Delaunay variables, we have

’02 k R m sz m Rk2
H(L3,l3,G3,g3; 21,015 Ly, by, Gy, g4) = <2m113_|5611|>_ 32L23R ;L24R+UR7
3 1
where
S 7R T £
2u(1+p)’ 1+p’ 1+2p° (4.5)
1+2u ’

kir= 0 ksr=1, kir=1+p.

4.4. Hamiltonian of the left case, when Q4 is closer to Q;

In this section, we explain the choice of the Jacobi coordinates (4.2) and derive the
corresponding Hamiltonian. When @4 is moving between the sections {xfu :—% X} and
{fo:%X} and turns around @), we treat (Q4’s motion as an approximate hyperbola
with focus at Q.

LEMMA 4.6. In the coordinates (4.2), the Hamiltonian for map (III) becomes

H(ZL’g, V4,21, V1, 24, U4)

4.6)
u2(1+u)2u(1>2211L (
= vi— +5 (14— (3 +0]) — — ——+ UL,
T+p b plz] 2 1 (v50) |ws|  |a4
where ( )2
14+u 1 1 1 p
UL — B R T 4.7
(23,21, 24) ] <a+b+c+d>7 (4.7)
with
p 1
a=p|r+ T3———Ty4|, b=|x1+ T3+ )
Mo ™ ™ R TV
1 o +
c=|r;———x3— x4|, d= x
TR e SRR
In Delaunay coordinates, we have
v? kir m3Lk‘2 'r"lélLk'2
H(Ls, s, G, g3 21,01 Lu, 04, G, ga) = e — 1L ) TM8LTSL Ut
( 3,£3,(3, 0935 %1, V15 L4, by, 4794) <2m1L |1~1|) 2L§ 2L421 + ’
where
1+ 1 14p)?
m1L=7M, ML =M4L =", /ﬁL:( #) o ksp=kar =1.

20 1+p
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4.5. Hamiltonian of the local map, away from close encounter

We cut the local map into three pieces by introducing a new section |gs—qq|=p", with
%</<;<%. The restriction /{<% comes from the proof of Lemma 10.3, where we need
1 2% to be small, and the restriction /<;>% comes from the proof of Lemma 10.2, where
we need p3*~! to be small.

When Q3 and Q4 are moving outside the circle |g3—q4|=p", we use the same trans-
formation as (2.3), but different ways of grouping terms. So, we get the following from
the first equality of (4.3).

LEMMA 4.7. In the coordinates (2.3), assume that |x3|,|x4|<2 and |xi|~x. Then,

the Hamiltonian can be written in the following form:
H(wy, 01523, v3; 24, v4) "

w(l4p) 2u+1 1+u 1 1424 1+u
(A2 ) (- )+ vi- @s)
1+2p pil 1| 2 |5 2(1+p) |4

I
|23/ (14p) —24]

+Vout (:L'S; X1, $4),

where
1+p 1 2u+1 1 1 1
V;3u ) ) = R I N N T )
dananad= (-0 )+ G -3-2-3)
with
HT3 13 K
a= x4+ , b=uplri+ Ty+ ,
4 1+ Tt 1+2M4 1+M3
1+p
= _—_— d: — .
c $1+1+2’u$4 1_'_”353 ) 1= 1o,
In Delaunay coordinates, we have
H(x1,v1; L3, U3, G3, g3; La, U4, Ga, 94)"
_( ’U% k1R> m3Rk§R m4RkiR 12 +V (49)
- T - out-
2m1R |I1| 2L§ QLZ ‘:Eg/(1+,u)*£t4‘

4.6. Hamiltonian of the local map, close encounter

When @3 and @4 are moving inside the circle |g3—q4|=p", we derive the Hamiltonian
system describing the relative motion of (5 and Q4. We start with the Hamiltonian
(4.1), and make the following symplectic changes to convert to the coordinates of relative

motion and motion of the center of mass
q- = 5(q3—qa), p- =D3—Dp4,
4+ = 3(q3+qa), and P+ =Dp3+pa, (4.10)
q1=q1 P1=D1-
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The symplectic form is now
w=dpi1 Ndg1+dp. Ndq+dp_Ndq_.

LEMMA 4.8. In the coordinates (4.10), we have |q_|<2u” inside the circle |q_|=2u"

and the following expression of the Hamiltonian (4.1):

1424 1+2p 4 2 1, I
H(q1,p159-,0-3 ¢+, D )=(up2— >+( pi—— |+ 5P — 57— ) +Vin,
o Yl 4 7 g 47 2lq_|

where

1 1 1 1 2 2

¢ —q-| lesta-| |la—arta-| la—ai—q-| o] lg]

3qe,q-) o) (¢, q4) < 3, 1 )
= pu(p1,ps)— + - +0(lg P+— ).
< +> 2|Q+|5 |Q+|3 |(]1|3 | | ‘Q1|3

%n=ﬂ<p1,p+>—|
(4.11)

The O expression holds as |q_|—0 and |q1]|—o0.

We can convert the term 1p? —/2|q-| into p?/4L?, in terms of Delaunay coordi-

nates.

5. Statement of the main technical proposition

In this section, we give the statement of our calculation of matrices needed in the proof
of the global map. We use the coordinate system (Ls, 3, G3, g3;x1,v1; G4, g4) to do the

«“
1

calculation. In the following, the superscript means “initial” and “f” means “final”.

Notation 5.1. To avoid many O notations in our estimates, we introduce the follow-
ing conventions.

e We use the notation a<b if a=0(b) or equivalently |a|<C|b| for some constant C
independent of x and p, and the notation a~b if both a<b and b<a hold.

e We also generalize this notation to vectors and matrices. For two vectors A, BER™,
we write ASB if A; <B; holds for each entry A; and B; of A and B, respectively, and
write A~B if ASB and BSA hold. Similarly for matrices.

e For a matrix [f], we refer to its blocks as

ﬁSS ﬁ31 ﬁ34

ﬁl?) ﬂll ﬂ14 )

fa3 | a1 | Haa

and its (¢, 7)-th entry as [8](¢,7), 4,5=1,2, ..., 10.



284 J. XUE

e Moreover, when we use “<”, there may be some entries in the vector or matrix,
for which we have an estimate in the sense of ~. Those entries will be important to show
that the x? and yx terms in Lemma 3.2 do not vanish. For those entries, we use bold

font.

PROPOSITION 5.2. Under the assumption AG, we have the following:
(a.1) The derivative of the global map is the product of five 10x 10 matrices

dG = (V)(IV) (L) (I)(T)
having the following form
Idio +xul @15 Ny (Idy —ud ®11) < (Id 1o +xu®l) Ny (Idyo +ul 1),
Xtiii ®liii+A)L- R~ (xu; @1;+C),

)= (
)=(
(I1T) = (Id10 +xus ©15) N3 (Id1g —xub ®13) S (Id1o +xu®1) N3(Id1g +xudl’),
) = (XUsii @lgzor +A)R- L™ (xuy @1y +C),

)=(

Id; +uf @) N5 (Id1o —xub ®15) S (Idio +ul @1 ) N5 (Id1g +xu®!l’),

(a.2) where

11.u1111)T

l’(‘ 27 )
XX X3 X X o

1aaa;aa,u7;7) )
X3 T XXX X o

0 L 1)T
1X9y 5 9 79 »Ys )
) 2m421LkiL X

Il
/—\/-\/\/\/;\/-\/-\/\/\

X

©
s
NN
:U?TF
INY
=
> | =
M
X
)_‘\.
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. 1 1 o
lfleS(lwu’aﬂwU/;vvﬂa;lvl) )
o px? 3 x

1x10
(a.3) and

[ Tdgxs | Ogx1 Ogx1 Ogx1  Osx1

A: 01><8 0 0 0 0 )
Oixs | O(1/x%) O(1/x*) O(1) 0O(1) 10x12
[ Tdsys Ogx2
O1x8 O1x2

C=1 0O1xs | O(1)1x2

Iy O(1/x)1x2
L 01><8 01><2 12x10
with

y 111 1 1 u
l'§<1777;77,u7> )
' X X3 X s

(a.4) the matrices R and L are the derivative matrices of the transformations (2.3)
and (4.2), respectively, and, in the coordinates (x3,vs;x1,v1;%4,v4), they have the fol-

lowing expression:

Idy 0 0 0 0 i
2p
0 Id 0 ——1Id 0
mz ld2 :F1+2# 2
RL7'L-R'=]| 0 0 me Ids 0 F1d, . (5.1)
0 +Ido 0 m Id, 0
2u
0 0 +—1d 0 my Id
L 1+2p : = d12x12
where
B L
T 142u R

and we choose the upper sign for R-L™' and the lower sign for L- R~ when we need to
make a choice in + or F;
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Ni—Idip S

N3—Idip S

Ns—Idip S

J. XUE
(a.5) the following estimates hold:
I T N ) R 0 S G (V0 G B
px  mx o pxo pix | @ pr o opx m | eAx X
w/x  m/x 2 /X

T R A 175 R 115 ¢ 2op/x| on on

mx  mx o pxo pix | p? T 5 G T TS G T
b

O N T T N 175 S V5 G U 10 G B T
px 1/x 1/x x| Uwpx®> 1/x* 1/x w/x|1/x 1/x
Ux  w/x w/x w/x| 1x* 1w p/x 1/x|1/x 1/x
1 weoowoop | YUx  Ix op op |11
1 1 1 1 1

I /x x now 3 ox10
w/x X XE X | Y 13 w/x /X1 1X
px  ow/x o owm/x ow/x | Uwx  Ux o opx o 1 1
w/x X XE X | Y 13 w/x /X1 1X
p/x XX X [ Y X p/x w1 1N
wx  owu/x o ow/x o ow/x | Ux o ow/x owx ot B %
pooouxE u/xE ow/XE | ow/x Uxo o opx | ow 1
Upx px® px® 1w | Upx® /X3 1Ux w/x | 1/x  1/x
Ux 1x* /X0 13 | X Yw® w/x x| Ux 1/x
I R V2GR V5 Gl S V5 G V5 G TR 1 1
L1/ 1 x| Ux Ux op op 1 1
wx I po| Yxo om/x #x @2 pop
BX M p po| Yex  l/x owx op
wx I po| x o ow/x #Px p? I
wix p I wo | Uxo ow/x pixo w? I
0 S T Ve Ve N /5 G )5 G 15 G Tl R TR
T U S Tl o G o 5 G N 70 G V0 G VN 15 I TR
wrop/x ow/x ow/x [ Y 1XE W ow/x | 1/x 1x
wou/x o ow/xo /x| UXE Upx® ot /x| 1/x 1/x
wAx  op " 1 I/x  1Yx wx w | 1 1
2 1 1 2 ] 1 1
wEX K J I /x Ix  wx onu 1 ioxio

10x10
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(b) Moreover, for the 1 entries in (a.2), we have the following exact estimates:
(b.1) As 1/x<pu—0, we have

f i T _
Uy 3, U35, U — (0’ L, O1><8)10><1 =w,

1\
Uggs — (01><8§17~> )

4,5 /10x1
5 T
L4y _
Wiyt — | O1xgs 1, =o—70— =wjy,
Gi;+L5; /i0x1

13,055,001 = (1,01x9)1x10 =1,

l; — (M’01X77_M’_ = ) :1j~
L4,j+G4,j L4,j+G4,j La4j /1x10

Here, j=1,2 means the first and second collisions in Gerver’s construction. Ly and
64 are the values of the Delaunay coordinates at the initial point for the global map and
Ly and CA¥4 are the values of the Delaunay coordinates at the final point.

(b.2) In addition, as 1/x<p—0, we have

l —>(0 L ! )
4 1x8)y =5 » = )
L3, Laj/ixio

L Y
Uy = (01X974+O(#)7070<>) )
2 X/ J12x1

liii = =liiir = (01x850(;2)7_W’O(§)7_;>1x12>-

(b.3) The O(1) blocks in N1, N3 and Ny have exact estimates as follows:

_ ) 5
Ty Ly,
2(L421,j+G421,j) 2
(N1)aa >~ =5 - ;
Ly, Ly,
2(L3 ;+G3 ;)2 2L ;+G3 )
o1 Ly
2 2
N ~ ,
( 3)44 3 1
| 2Ly 2
[ Li,j IA’4’J
2(L3+G3 ) 2
(N5)aa >~ . ’ .
13 1,
2(L2+G3 )2 2(L2J+G2j)
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where the notation ~ means up to O(u) relative error.

(b.4) Finally, the derivative of the renormalization map is

AL R LR

dR:diag{fA,L—fA,—m[

In part (a.l) of the proposition, each of the five matrices is a product of three
matrices. For the matrices (I), (III) and (V), we use the formula for the derivative
of the Poincaré map (see equation (7.1) and §8). The matrices N1, N3 and Ns are
solutions of the variational equations, and the two remaining matrices are boundary
contributions coming from the fact that different orbits take different time to travel
between two consecutive sections. For (II), we first convert from Delaunay variables to
Cartesian variables in the right, then we use L-R™! to convert (x3,vs;x1,v1; 24, v4)%—
(w3, v3; 71,015 24,v4)%, and finally we convert from Cartesian in the left to Delaunay
variables. The matrix (IV) is similar but in the opposite direction.

The plan of the proof of Proposition 5.2 is as follows.

e In §6 and 7, we write down the equations of motion, the variational equations and
estimate their solutions. This gives us the matrices N1, N3 and N5 in Proposition 5.2.

e In §8, we study the boundary contribution to the derivative of the Poincaré map.
We get all the u’s and I’s with various sub- and superscripts in (I), (IIT) and (V). Together
with Ny, N3 and N5, the estimates of the boundary contributions complete the estimates
of (I), (IIT) and (V).

e In §9, we study the transformation of coordinates from the left to the right and
that from the right to the left. This gives us the matrices (IT) and (IV) stated in Propo-
sition 5.2.

e The derivative of the renormalization map follows immediately from its definition
in Definition 2.7.

We now compute the matrices R- L~ and L-R~! based on Definitions 2.1 and 4.1.

Proof of (5.1). To get

. . R
RIL 1= 9(w3,v3; T1, V1; T4, V4)

(w3, v3; 71, V15 T4, 0a) "
we first use (4.2) to compute the matrix

3(937173; q1,P1; Q47p4)

L=
8(963703;561701;964704)

L )
then we use (2.3) to compute

3(133,1}3; T1,V1; l’4,’U4)R
3((]371)356117171;(14,1?4) '

R:=
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The composition of the two gives us R-L~!. Similarly, we get

. . L
8(553, V3,21, V1,24, 'U4)

-1 _
L-R = =

=(R-L™)~1. O
O(x3,v3;T1,V1; T4, 4) ( )
6. Equations of motion, ¥° control of the global map

6.1. The Hamiltonian equations

For the Hamiltonians in Lemmas 4.5 and 4.6, we suppress the super- or subscripts R and

L to express the Hamiltonian in one single expression in Delaunay coordinates:

m3k3 m4k2

H(L37‘€37G3793;x177}1;L47€47G4vg4):E 2L2 + 2L2 +U
where >
PO
2m1 ‘.Z‘1|

Next, we perform the energy reduction to get rid of the variables L, and /4.
We solve for L4 using energy conservation. Suppose the total energy of the system
is zero; we get

L2 mak2L2\" msk?
and hence
my "k 13
Ly=L 14+ Ei4+U —|—h0t> 6.1
=t (1 B0) o1

where the higher-order terms (h.o.t.) are in Ey+U. We treat ¢4 as the new time. So we

divide the Hamiltonian equations by the equation

d754 o m4k2 oUu

dt — L3 oLy
whose reciprocal is
dt L3 L} oU 5
— == 1+——+0(U") |.
d€4 m4k‘i < + m4k2 8L4 + ( )

Eliminating Ly using (6.1), we get

1/2 /2, 2 1/2 12y
At ma Tk jms TR g () S ) - k4/m4 £ 16 0 b,
dl, maky maks mikj OL4
U
—(1+0(W)L3(1+3(1+0(1)) L3 (E1 +U)) — (140 () L§ —+h.o.t., (6.2)

30L,

where, in the last equality, we use the fact that ks 4, m34=1+0(p).
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Now we write the equations of motion as follows:

dLs  dt U d£3_dt<m3k‘§+ 6U)
Al dl, oty dly — dey \ L3 " 9Ls )
ng o dt oU dgg - dt oU

dry  dt vy dvy  dt (ki OU
dey — dlymy’ m“m(m& am)
d£4 - CM4 894, d&Ld&L(M)

Notation 6.1. We denote the right-hand side of (6.3) by F=(Fs;Fi;Fa). Thus,
(6.3) takes the form

d

S, Vi—=J4 =3,1,4.
d€4v F, 1=3

6.2. Estimates of the Hamiltonian equations
6.2.1. Estimates of the positions

The next step in our analysis is an important a-priori bound.

We make the following standing assumptions. We first introduce a rectangle to

which x4 and x; are confined.

Definition 6.2. We let Sz be the strip bounded by two horizontal lines, z,=+C
and two vertical lines x);=—2 and z)=-2x.

6.2.2. Estimate of the derivatives of the potential

We make the following standing assumption:

|x1] 2 0.9y, |4 <0.8x, |x3|<2, |z3—24]>6>0. (6.4)

LEMMA 6.3. Define

1 H
b)) = —+—".
u(y) X3+‘£4|3+1

Suppose we have (6.4) for both the left and right cases, and for the right case, in addition
I ()]

— < <C.
C €4]
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(a) Then, we have the following estimates for the first-order derivatives:

oUER oUR 1 oURL 1
5 U(£4>, 5 ) 4H ) /S )
0z Oxy ~ x? 03+1 0z x2
L L
ou < i ou <

1
Oz ~ 3 Owy TN

(b) the second-order derivatives satisfy the following estimates

O*UFR O*UFR PUR 1
5 S,U( 4)7 5%—’_ Z ’ 2 57—’— £ )
0z} 0x30xy ~ x* [yt +1 ox: ~x3  |lyP+1
277R,L 277L 277L
Ut 1 Ut _ 1 0°U 3

drsdry ~ Xt 022 X3 Oxzdry ~ XY
c) If we assume furthermore that €S ~ and —z¥,xFeS5, then we have
nC 4 4 C

82UR,L 82UR’L 82UL<I(172+(X71)®2
0x3 7 Oxgdxq’ Ox% ™ X3 X

Proof. First, let X=cyx1+c4x4+c3z3. Then, we have

0 1 X 0? 1 —Id2+3X®X
v = " CiTomy AL A Tv — GiCj
O; | X| | X[P7 Ow;0z; |X| TIXP ReE

This is enough to give us the estimates

8UL 8UL 82UR’L 82UL (:)2UL (:)2UR,L 82UL
Ozy ' Oxs’ Oz30x’  O0r3 7 Owzdxry’  Oxydxy’ 023

Second, for the estimates

8UR’L aQUR,L
8I1 and 8117% ’

we need to utilize the cancelation due to the Kepler potentials 1/u|z1]. To see the

cancelation, we next introduce
1
t)=—,
ft) ot

so 1/]a—bl=f(1). Thus, we get f(1)=f(0)+f'(§) for some £€[0,1], and hence

11 a—&b
la=b] la| |a—&b?
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for some £€[0, 1], by the mean-value theorem. From this, we get O(1/x) instead of the
O(1/px) estimate for the term

2pu+1 1

— in UR
plar|  pler+pzs/(14+20) +pas /(14 p)|

and the term
(p+1)? 1

— in UL.
pleil pley—pas /(14 p)+pas /(14 p))

To get the first-order derivative QUL /9x1, we use the following:

_a=b _ a (_ Ids 3(a—§b)®(a—§b)>.b
la=b]* — af? |la—&b[? |la—&b[°

for some £€[0,1]. Similarly, we get the second-order derivative 02U ®L /922 using

( Id, +3(a—b)®(a—b)>_< Id, +3a®a>

~Ja—bP la—b|® a7 a5
Ids b@(a—b)+(a—b)®b , | (a—Eb)®(a—Eh)

= Sa—qp 03 la—cbff la—col"

(a—&b,b)

and the fact that x4 and z; are almost parallel, due to the assumptions GSM@ and
—zf, afeSs.

Finally, for all the remaining estimates, we use the expansion

1 1 1 1 I
— == 1——2z+ cn 2™ |,
la+b|  la| 14z |a] ( 2 ,;2 )

where
~ 2(a,b) | [bP

Gl

We apply the expansion to the term

Usy = — + inU
P Nz \Jeatpas /)| Jas/ () —ad]

such that

1 1 .
= (1-Zz+ an")»
|za+pxs/(1+p)] 1‘4< 2™ 112222 1

1 3 s 2
= — 2 — S
“a x42( M<1+u’x4>+(1+u)2|x3|
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and
I u<1122+§:cn25>’
|23 /(14 ) —za| |24 2

1 I3 1 2
= — —2 _—
& |w4|2< <x4’1+u>+(1+u) = )

It can be verified that the O(1/|z4]) and O(1/|x4]?) terms in Usy are canceled. So, we
get

—p |$3|
Uy —
34 20+ |x4|3 |x4| ch (21 +p2g),

and we have the estimates

" 1
=0 ——— d z=0(—-).
o <|e4|+1) ame = (|e4|+1>

The exponential convergence in z; allows us to take derivatives term by term. For in-

stance, we have

6U34_ - T3 1 621 822 - 12
Ors  1+p|zy)3 |$4|(3$3(chn ) (chn >_O<|é4|3+1

using the estimates

0z1 H 0z 1
5 _o a4 2 _of——_).
D (|e4|+1) R Y (|z4|+1)

We apply the same procedure to all the remaining estimates above. O

LEMMA 6.4. Suppose (6.4) and in addition |v1|<C. Then, on the zero-energy level,
we have
1
E,=—-FE3+0(pn), as —<pu—0.
VX

Proof. This lemma follows directly from the total energy conservation. We write
the Hamiltonian as 0=F;+E3+E;+U. We estimate the potential U=0O(u) by the

assumption. Next,

where my~1/2p and k1~1/p in both the left and right cases. This gives us that
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LEMMA 6.5. Suppose we have (6.4).
(a.1) Suppose in the right case in addition that

1 1 ‘134(64”
— <|L , = .
C<|G3| |Ls| < C o< A <C and |v|<C
Then,
dt d
—|~1 and 7(L3,€3,G3,93)=(0,—1,0,0)+O(U(€4),,u,U(€4),U(€4)).
dly dly

(a.2) Suppose in the left case, in addition to (6.4), that
1
6 < |G3| < |L3| <C and |’U1| <C.

Then, we have

dt d 1 1 1
—|~1 d — (L3, ¥ 3)=(0,—1 — ==, —= |-
d€4 an d€4( 35 37G37gd) (07 7070)+O(X3u,u'7 X37X3>
(b.1) Suppose in the right case, in addition to (6.4), that
1 1 [za(ly)]
5<|L3|<C, 6< A <O, |u|<C, G4 <C, x4€Sz, w1€S,4.
Then,
d
%(G4,g4)=(v(54))1x27
where )
L K
V(€4).— X2+7‘€4|3+1.

(b.2) Suppose in the left case, in addition to (6.4), that
1
5<|L3|<C, |G4‘<C, |’U1‘<C, —334686, X1 Esué.

Then,
d 1

deJG*g“:O(»@)@

(c.1) In both the right and the left cases we have

dr; v dvy ki1z: 1
- = d _— h .t:O - 5 -
dt mq an dt |l’1|3+ © (MX2>

(c.2) If we assume, in addition, that x¥, fxfeSé and 11 ES#CA,, then we have

dzq U1 dvy ka1 1 1
a ~mi " d N <u><2 x3)
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Proof. We first prove parts (a.1) and (a.2). We apply (6.2) and the assumptions to

conclude that )

dt
i<|7
C ~dly

Next, we consider the Hamiltonian equation (6.3). We have

I<C.

oU _ 90U dry
6V3 - 6.133 8]}3’

where V3=(Ls, ¢35, (3, g3). Because of the boundedness of Lz, we get that |0x3/0Vs|<C.
Now parts (a.1) and (a.2) are proved by applying Lemma 6.3 (a).
Parts (c.1) and (c.2) follow directly from the Hamiltonian equation. In fact, the
estimates for dv;/dt are given by the Kepler motion.
We next prove parts (b.1) and (b.2). We need the estimates
Oy Oy
et d —/—-24,=0(
991 T4 an 9a, T4 (Ly)
from part (c) of Lemma A.3 in Appendix A. For example in the right case in (4.3), we

consider the derivative of the term

9 1 (w1 +pwa/(14+2p) +pas/(1+p)) Dy

Gy w1 +pas)(1+2p) +pws/(A+p)|  (L+20) |z +pas/(1+20) +pas/(1+p) P G,

We claim that the above expression is O(1/x?). Indeed, the denominator is of order x3.

The main contributions to the numerator come from (x4, dx4/0G4), which is O(¢4), due

to part (c) of Lemma A.3, and from (x1,0x4/0Gy4). To estimate the later product, we
|71

x1 = w—1| (cos@)xg+|z1|(sin e,
T4

write

where a=/(x4,71) and e is the unit vector perpendicular to x4. We note that the

assumptions 2, €Sg and x4 ESHC*’ imply a=0(1/¢4). This gives

Oza\ _ (=l /[, 02
(256, =0 (o) v s oo

where the last estimate comes from Lemma A.3 (c).

81‘4

9G4

)ZO(X),

The other derivatives are estimated similarly and result in the estimates of the
lemma. In particular, the O(u/(]¢4]2+1)) part in our bound for F; comes from differen-
tiating the terms in U which do not contain z;. This bound is obtained by multiplying
the O(p/(|£4]*+1)) term in the estimate of QU /0z4 in part (a) of Lemma 6.3 by the
O(¢4) bound on 9x4/9G, from Lemma A.3 (c). O
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In the next lemma, we show that the assumption AG, which is only on the initial

and final conditions, gives control of the dynamics of x1, vy, 3 and vs for all time.

LEMMA 6.6. Assume AG and in addition |x4|<0.8x for all time t€[0,T], T<10y,
when G is defined.

Then, as 1/x<u—0, we have that

(a) L3(t)=L3(0)=0(u), G3(t)=Gs(0)=0(n) and g3(t)—g3(0)=0(p), t€[0, T};

(b) o] = (L3(0) + O+ op0a o ()5

(¢) for all t defining piece (1), mﬁL(t):O(u), xﬁn(t)—mﬁl(O):O(ux), va_(t):
O(1/x) and U{?H(t)—vﬁ“(O):O(l/ux).

Proof. We first consider the piece of orbit going from the section {J;f;u =—2} to the
section {a:ﬁ” =—1x} that we called piece (I). Let [0, 7] be the maximal time interval such
that
Gs(t)
Gs(0) '7

Ls(t)
L3(0)

€ [i;j 2|G4(6;)|+1, |off(t)|>0.95x and |vf'(t)| < CH+1.
(6.5)
During time [0, 7], we have (6.4) satisfied with the help of the additional assumption
|x4]|<0.8x.
We always have |z4|>2, since x4 is to the left of the section {z4=-2}. So, we
get Ly(t)=L3(t)+O(n) for t€[0, 7] using Lemma 6.4 and the bound on [vf(¢)| in (6.5).

Then, using formula (A.5) and
| G5
64 = 1+ fﬁ’

we find
1
[oal = maka L4\/Lﬁ(coshu—e4)2+G?1 sinh? u
! 3 2 2 2.2 2\ 2
:m4k4L4 L3(cosh® u—2e4 coshu+e3)+(Lie;—L7)sinh“ u

1
=—1I3 \/1*264 coshu+e?+e? sinh? u
maka (6.6)

1
= Li\/1—2e4 coshu+e2+e2(cosh? u—1)
maky
1
:mLfL (1—eq coshu)?
1
= L3 hu—1).
_— 4(eqcoshu—1)

We always have e, >1, so we get [(—u|>|sinhu|>1(el*l—1) from (A.4), so that u=0(¢)

as |[¢|—o0. Continuing (6.6), we have

eq coshu~ey|sinhu| =[€—u| = (140(1))[£].
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So, we obtain

|za) = L2(1+0(1))|ts], as |[€4] — oco. (6.7)
By assumption (6.5), we get that
1 |za(le)]
— < <C
C

for some constant C' for the time interval [0, 7]. So, Lemma 6.5 (a.1) is applicable. Over

time O(x), we get
Ly(t) = L3(0) =O(p), G3(t)=G3(0)=0(n) and  g3(t)—g3(0) = O(n).

From the Hamiltonian equation, we get
il:milvl and 0 :u|fcll|3+0(x12>’ (6.8)
where the O(1/x?) estimate is from Lemma 6.3 (a). We get that the assumptions on x,
and vy in (6.5) are satisfied over time O(x). This proves the estimate in item (a) for
piece (I). For the estimate in item (a) for pieces (III) and (V), in order to repeat the
above argument, we only need to show that v; is bounded, so that Lemma 6.4 applies.
From equation (5.1), we get
zl = ﬁzf‘—k%xf‘ and vl = %v{c—kvf. (6.9)
Since we have LI (t)=L3(t)+O(u)=L3(0)+O(u) on the section {xf»ll =—1x}, we get vff
hence v{ is bounded on the section. Now we can repeat the previous case (I) argument
to establish the estimate in item (a) for piece (III). Similarly for piece (V).
We next work on item (c) for piece (I) only. We assume 7 is the maximal time such
that the following holds:

—1.2x <af' () <-0.95x, |z (1) <1 and [of*(t)| < Ch+1. (6.10)

On the time interval [0, 7], we have

1 1
‘R _
vlﬁLO</j/><3+><2>

from (6.8), hence the oscillation of va is bounded by O(1/ux?+1/x) and the oscillation
of z*| is O(u) using the equation &' | =v{*| /my and my~1/p. Therefore, on the time
interval [0, 7], we always have |z{' | |<1, and obtain the estimate z{*, =O(u). Similarly,
we have
1 1

acﬁ” (t) —xf:H (0) =O(ux), vfj_(t) =0 (X) and v{?” (t) —UEH (0)=0 (MX) .
This implies that the assumption (6.10) holds for the entire piece (I) and we have proved
item (c). O
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6.3. Justification of the assumptions of Lemma 6.5

We demonstrate that the orbits satisfying AG satisfy the assumptions of Lemma 6.5. In
AG we make assumptions on the initial and final values of x4 and v4. However, in the

assumptions of Lemma 6.5, we require that the orbit of x4 to be bounded in Sg5.

LEMMA 6.7. Assume AG for an orbit defined on the time interval [0,T] such that
:Uﬁ” (0):xf:‘|‘(T):—2 and Q4 turns around @)1 once in the sense of Definition 1.1. Then,

there exist constants C and o such that, for p<pug, we have
GERW) <, ot —ak €Sz and ai b €S,5 foraltel0,T].

To prove this result, we first need the following sublemma.

SUBLEMMA 6.8. Given small 6>0 there exist woand xo such that, under the as-
sumptions of Lemma 6.7 if p<pg and x=xo for all t€[0,T), then
(a) for all t when the orbit is moving to the right of the sections {fo:%X} and
{xi”:—%x}, we have
|m—04(t)| <0 and |05 (t)| <0, (6.11)

where 0 (resp. 0;) is the angle of the outgoing (resp. incoming) asymptote of x4 (see
Notation 2.5);

(b) for all t when the orbit is~ moving to the left of the sections {xfiuzéx} and
{mfl‘:—%x}, we have |04(t) —m| <8 for the piece with w<0 and |04(t)|<@ for the piece
with u>0. (See Appendiz A.2 for the convention of u.)

Proof. Pick a large D and let 7* be the first time when |zf(7*)|=D, and let 7 be
the first time when the orbit intersects the section {xﬁu :féx}. It is enough to consider
below the times t>7*. Indeed, 8] changes by O(Du) on the time segment [0, 7*], since we
have 0} =m+gs+arctan(G4/Ly) by (2.6), hence 8 =O(u) by the Hamiltonian equation,

and we know that 7* and D are constants independent of p. Next,

R

v
0" (%)= arctan(;]’;l‘) (T")+0p—0o(1).
4,

To fix our idea we suppose that
0< <

iy
arctan(é) (")

v
4,

e

This implies that v4 has a horizontal component that is bounded away from zero, therefore
it takes time O(x) to travel between two consecutive sections. Under this assumption, we
get that |z4]< (3v2+0(1)) x<0.8x, so that the assumptions of Lemma 6.6 are satisfied.
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Let 71 be the first time when [vf(77)—vf(7*)|>0.01. For ¢t<min(7, "), we have
Dc(t—7%) < |28 (t)| < D+CO(t—1%).

On the other hand, the Hamiltonian equations give

. i +O0(uxs) ok
off = —(1+0(p)) =75~ E —N—O(X%,)),
4
where z3 is bounded by Lemma 6.6 (a):

¢ 1 D+C(s—T1*) 1.1 t?
R Ry _x <1. s i S _ .
|vg" (t) —vg' (T )|\11/T* D+c(s—7‘*)|2+0( \3 >d‘9 CD+O<X3>

Thus, the oscillation of vf is smaller than 2/cD if t<7f and t=0(x). It follows that
7=0(x) and 71 >7.
Next, we change the coordinates to the left variables. From (5.1), we get that

2u 1
ok =—alty 1+2Mx4 and vl = —mvf-ﬁ-mvi (6.12)
from which we obtain, on the section {xfu =—1x} that
L R
Vi1 \ - Va1 3 L v X2~
tan () (7)arctan P ) (7)< 2 1 0(w) and >%34,
arc an(vil >(7’) arc an(vf,” )(7’ ) C2D+ (1) and |xy  (7)] 23

by choosing D large such that 4/c?D < %é We apply a similar estimate to the left piece
of orbit to show that for the orbit between the two sections {xf‘H :féx} and {zf I =D}

the motion of x is almost linear with the estimates

L

Uy J_)‘ 0 L Xé

arctan( : >— and |xg,|> =
L 4,11 =

] 3 3

when arriving at the section {xfi“ =D}.

On the other hand, by definition we have zf=q4—¢=Q4—Q1. In order to have a
returning orbit to the section {a:ff:'u =—2}, the two bodies Q4 and @1 have to have a close
encounter. This contradicts our estimate of z at the end of the previous paragraph. This
proves that the slope of the initial outgoing asymptote satisfies |6} — | <. Similarly, we
get that the final incoming asymptote satisfies |6, | <6 by repeating the above argument
with the time reversed. For the estimate in part (b), we apply the same argument above
treating the orbits as starting from a neighborhood of ;1 moving towards Q5. O
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Proof of Lemma 6.7. The proof is a refinement of that of Sublemma 6.8 with the

same general idea.
The fact that x?esﬂé is given by Lemma 6.6 (c).

Step 1. (Boundedness of G5".)
Without any assumption on Gy, we have that

¢, = U O

Oxq Oga
is O(1/x) in the left case and is O(1/x+u/¢3+1) in the right case, directly from the
estimate of OU/0z4 in Lemma 6.3, the bound on Ls, and the fact that |0z4/0g4|=]x4].
This implies that the oscillation of G4 is O(1) over time O(x). By Sublemma 6.8 (b), we
see that in the left case the slope of asymptotes of x is bounded by 6, so |G4/Ly4| <26.
Next, by Lemmas 6.6 and 6.4, we get that 1/C'<L,;<C. Therefore, GY=0(1) when Q,
comes close to Q1. We also assumed that GE=0(1) on the section {xﬁllz—Z}. We get
GI,GE=0(1) for all the time when they are defined, in particular, when evaluated on

the sections {ﬂffH:*%X} and {fo:%X}-
Step 2. (Estimate of 2, and vf, .)

We use (6.12) to get the relation for angular momentum
Gt =vl xak
L r_ 20 R ei(l+p) g
= — X —
<1+u”4 1+2u 1rou 1 (6.13)

GY 1 po r 20(04+p) R r, 20 gp_ g
= — VU XX —————=V7 XTI + VX ITT.
1420 T+4p 2770 (A42p)2 P77 T2 P!

Using the estimates on vF=0(1,1/x), fo <—x and :cﬁJ_:O(;L) from Lemma 6.6 (c), we
get that, on the section {fo:féx},

0(1) = GE— G5 _ (14:0(u)) of X+ O] +0(W)O(1) +22 1+ OWIO).

Y142

This implies that
vy x=01)+0(p)zf | . (6.14)

Next, we have

R R R R R R X R R
O(1)=G; T U1 Ty ) Ty 1 V) = _’U4,J_§_‘T4,J_U4,H' (6.15)
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Substituting (6.14) into (6.15) and using the lower bound on vf‘H, we get xff:‘J_:O(l).
We next substitute the xfﬁ'l estimate back into (6.14) to get vfl:O(l/x). We then
obtain xiJ_:O(l) and vil:O(l/x) using (6.12). Remember that these estimates are

only established so far on the sections {fo =—%} and {o:fH =3}
Step 3. (Bounding the right piece of the orbit z4.)

We next bound the orbit between the sections {zf=—D} and {af, =—3x} for
some large constant D independent of y,u. Suppose the orbit intersects the section
{xfff”:—%x} at time to and the section {a:fj”:—D} at time t;. We have |z4 , (t1)|<C
for some constant C' due to the continuity of the flow and the boundedness of the initial
conditions on the section {xfﬁn =—2} as assumed. We have

$4’J_(t) :.%'4’J_(t0)+U4’J_(t())<t_t0)+/ /u 5[:'4’J_(S)d8du, (6.16)

where, for piece (I), we have t; <s<tq and
x4,l(s):o(”““44(8; flody M'“‘Sg) =O(W,+|x;‘,').

By Step 2, we have x4 | (t0)=0(1) and v4, 1 (t9)=0(1/x). We bound the double integral

of the term |z4]/x? in #4 1 by a constant. So, we get

t u
1 C
|24, 1 (t)| <SCH+C sup |z4,1(9)] / / TRt dsdu<C+—= sup |zg1(9)|-
to<s<ty to Jto (§X+(S—t0)) to<s<t1
Choosing D>C, this shows that xfESé for some large C for the piece of orbit in
consideration. For piece (V), tg<s<t; and the denominator of the integrand becomes
3
(3x—(s—t0))".
Step 4. (Bounding the left piece of the orbit zf and the returning orbit.)
We have zf | =O(1) on the section {fo =D}, by Sublemma 6.8 (b). We apply the

same argument as in Step 3 to both halves of the left piece between the sections {xiH =D}
and {xfiu :—%X}- This shows that —af €S for the piece of orbit in consideration. The
fact that leESu@ follows from the vy 1,41 estimate in Step 2, Lemma 6.6 (c) and
equations (6.8) and (6.9). O

Remark 6.9. From the proof, we see that Lemma 6.7 still holds if, instead of AG,
we assume (AG.3), (AG.1) and [z, (0)]<2 and 27| (0)=~2 for the initial condition and
xk(T)=0 for the final condition. The final condition implies a collision between @; and
®4. The crucial ingredient in the proof is that @1 must come close to Q4 in order to

have a return orbit.
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All the assumptions of Lemma 6.5 are implied by AG due to Lemma 6.7 and
Lemma 6.6, so we have the following.

COROLLARY 6.10. Assume AG. Then,

(a) in the right case, we have

FR— (0, 1,01Xs)+0(u<64),u,u(£4>,u(e4>;u, L

(b) in the left case, we have

1 1 1 w1 1 1 1
‘FL:(O71701 8)+O<7,uaa' ’ ) ) ) >
) XT3 3T XX

LEMMA 6.11. Assume AG. Then, we have
(a) when x4 is moving to the right of the sections {xil\:_%X} and {xil\:%X}’
we have

. Gy 1z 1 1
tan g4 = —sign(u)— 40| ——+— |, as |[l4] > 00 and — <K< pn—0;
=) 4 0( 7). sl L <
(b) when x4 is moving to the left of the sections {xf“ :—%X} and {xfu :%X}, then

1 1
G4,g4:O(> as — << pu—0.
X X

Proof. The proof is to integrate the estimates of d(G4,g4)/dls in Lemma 6.5 (b.1)
and (b.2).

Step 1. We prove part (b). Integrating the Hamiltonian equation for G} and g¥ in
Lemma 6.5 (b.2) starting from ¢4=0, we get

1
(GEa)(E) = (G af) 0 +0 (1)
when arriving at the sections {xﬁuz—%x} and {mil\:%X}' To conclude part (b), we
need to show that the initial conditions G¥(0) and g (0) are bounded by O(1/x). Using
(A.6) (we omit the superscript L and subscript 4), we have on the sections {le\ :—%X}

and {xiu :%X}

1
Ty = oy (sin gL? (coshu—e)+cos g LG sinh )
m

= %(sin 9(0)L?(cosh u—e)+cos g(0) LG(0) sinh u) +O(1).
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Note that this holds for both large positive and large negative u, and that on both sections
coshwu and |sinh u| are of order x. By Lemma 6.7, we have fxfESa, which shows that
|xij_|<25 on the sections {xf‘z”:féx} and {xiuz%x}. Next, we apply Lemmas 6.4
and 6.6 to get that 1/C'<|L4|<C. Next, arguing as in Step 1 of Lemma 6.7, we have
that |G4]|<C, and this implies that e, <C. This implies that |g(0)|, |G(0)|=0(1/x).

Step 2. Then, we use the matrix R-L~! in Proposition 5.2 to convert the left
variables to the right to obtain vi*=0(u)vE+(1+0(u))vE. From Step 1 and (A.6), we
get that the slope of v} is

Gk 1 1
gf —arctan <L2> +0 ()(2) =0 <X) ,

and from assumption (AG.1) and part (c.1) of Lemma 6.5 that the slope of v{ is O(1/x).

So the slope of v}t is
GY 1 1
gf—arctan(l%) +O(XQ> =0 (X)

on the sections {IfH:*%X} and {xfl‘:%x} due to (A.5).

Step 3. To prove part (a), we use the O(1/x) estimates of the slope of vf* in Step 2

as our initial condition. We get that the oscillation of GE, gt is

I 1
ol 24+~
(|e4|2+1+x>

from £,=0(x) to £4 by integrating the dG¥ /d¢, and dgF /dl, estimates in Lemma 6.5. [

6.4. Collision exclusion
The following lemma excludes the possibility of collisions between 1 and Q4.

LEMMA 6.12. If we assume (AG.3) and (AG.1), and |zf | (0)|<2 and xZH(O):—2
for the initial condition and x¥(T)=0 for the final condition (collision between Q and
Q1), then there is an orbit bouncing back from the Q1-Q4 collision lying entirely in a
strip Sg for some constant C. Moreover, we have GE+GE=0(n) when evaluated on
the section {xf:“ =—2}, where GIt and G are the angular momentum of (x4, v4)® before

and after the application of the global map, respectively.

Proof. By Remark 6.9, the assumption implies the assumptions of Lemma 6.6 ac-

cording to Lemma 6.7, so we can use the conclusions of Lemma 6.6.
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Suppose we have a collision. We compare the bouncing back orbit (subscript “out”)
with the time reversal of the incoming orbit (subscript “in”). We will show that the orbits

are close and so the values of G4 will be close when evaluated on the section {zf” =-2}.
Step 1. (Comparing orbits to the left of the line xfu :—%X)

For the collisional orbit and the bouncing back orbit to the left of the section
R 1

Ty ="3X the value ¢4=0 corresponds to the collision. When ¢4,=0, all the values
of (L3, g3,x1,G4,g4) are the same for the two orbits and the variables (Gs, ¢35, v1) have
opposite signs for the two orbits. Moreover, since the variables Y=(G4, g4) are constants
of motion when the potential U is neglected, we get that for small |¢4]>0 the values of
Y for the two orbits will stay close.
Let F be the right-hand side of the corresponding Hamiltonian equations (6.3) for Y.
We denote 6Y =Y, —Yout. Taking the difference of the Hamiltonian equations for Yi,
and Youg, we have
d OF N 9 S N
—0Y = —=(Yin, Yin)0YH+O(|6Y|*) +[F(Yin, Yin) —F(Yin, Youi)],
dly Y
where we denote ?Z:(Lg, l3,Gs, g3;21,v1) and in the bracketed term we fix Yi,, since
the difference Yi, — Yoyt is considered in the §Y and [§Y|? terms.
We trace the orbit back to the section {IfjH:*%X}- During the O(x) time, the

oscillation of 1 and v; are estimated as

from Lemma 6.5 (c.2), as well as the sign change of the initial condition.
The term [F(Yin, Yin) —F(Yin, Yout)] can be estimated as O(1/x3+p/x?2), where
the estimate 1/x® is given by OF /dz3, due to different values of /3 for the two orbits,

p_ow
O<X2> - Ony b

is due to different z; for the two orbits (see Lemma 6.3). The variable v; enters through

and the estimate

dt/dls in (6.3) and causes a difference in F that is much smaller than the above two cases
for 43 and x7.

We denote by ¢4 the time when the time reversed incoming orbit hits {xzu :f% X}-
Note the initial condition (Yin—Yout)(0)=0 and that the fundamental solution of the

variational equation
OF
7'=—7Z
oY
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is O(1) (the fundamental solution is given by the matrix N3 in Proposition 5.2. Here we

pick only the rows and columns corresponding to variables in Y. In fact, we have the

OoF 1
av—o(x)

in Lemma 7.3 (b) below). Since we have by DuHamel’s principle that

Zf

owo( gtz ) an=o(})
OO =+— |dly=0| = |,
@) (x2 )t X

the Gronwall inequality gives Yin—You=0(11/x) at time ¢f.

estimate

0

Step 2. (Cartesian coordinates.)

We already had in Step 1 the estimate of §(z¥,vf). We need to control the change
of (x4,v4)F as well. We have
0 0 o 1"
§ E 0Ly +0Gy = +0g1=— L
(z4,v4) 48L4+ 48G4+ 94394 (x4,v4)
Note that here we do not have §0,0/0¢4, since we have the same €4:€f1 for the two orbits,

so 60,=0. We use Lemma A.3 in the appendix to get the partial derivatives

81}4 -

ovy (91’4 o
Ox o

O(1) and r O(x), #*=1L4,G4,0,

and, in particular,

81}4J_ G4 1 8.1?4J_ G4Li€4
2 :C = —_ d 2 = :O 1
it =Cnarrmoy) ™ B =g mow

since G4=0(1/x) by Lemma 6.11 (b).
The estimates for (6G4,594)"=0(1/x) are obtained in Step 1. The estimate of §L4
is obtained from (6.1) and

L A R
5La= 2 Y 1 Ly(Y i Vin)— La(Yin, You).
oY
‘We have
OL4 . .
Y = O(l), 0Y = O(N/X)a L4(Yina Yin)7L4(Yina Yout) = O(/i)a

where the main contribution to the last p estimate is given by

0Ly

Doy O(p) and dv;=0(1).
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So, we get §Ls=0(p).
This implies 6(z4,v4)*=0(ux, p; 1, /). We also have (x4,v4)"=0(x,1;1,1/x)
and (x1,v1)5=0(x, it,1,1/x) at time ¢4 (see Step 2 of Lemma 6.7 for the estimate of

x4, and vy, ).
Step 3. (Comparing angular momenta.)

Using the relation

R__, R R
G4 =Uy Xx4

(e 20 g )

_<1+2MU4+1+2MU1 g th (6.17)
G I+p L 2u Lo.L, 2 .1

= ——— U XTI+ V] XT)+ vy Xx{,
1420 142 277V T (A42u)(Tp) LT T2 P

and the results of Step 2 we get GF=0(u) at time £1.
Step 4. (Oscillation of GE to the right of {mﬁuz—%x}.)

Now, we consider the right pieces of orbits. For the collisional orbit the oscillations
of G are O(u) by integrating the estimate in Corollary 6.10. In order to apply the same
estimate to the bouncing back orbit, we need to show that the bouncing back orbit lies
in the strip Sg.

We first get

5(%4,v4)R:O<u><,u;u,g)

using R-L~! from (5.1) of Proposition 5.2, and the estimates of §(x4,v4, 1, v1)" above.

At the time £f, the collisional orbit is on the section {xfllz—%x}, but the bouncing
back orbit might be O(uy) distance away. Tracing the bouncing back orbit over time
O(ux), so that it is also on the section {xfuz—%x}, since
kyx
04=— s +ho.t.,
|4

we see that vy gains a new oscillation O(u/x). Comparing the two orbits on the section
{JEE'H:*%X}’ we get §(xyq,v4)F=0(0, u; p, 1/ x). Applying (6.16), we see that the xfﬁl
components for the two orbits stay O(Du)-close to each other when traveling between
{xil‘:f%x} and {:cf,H:fD} for some large D independent of p and x. This shows
that the bouncing back orbit also lies in the strip Sz since the collisional orbit does.
Now we apply Corollary 6.10 to get that the oscillation of G for the bouncing back
orbit is also O(u) when traveling between the sections {xfu =—1x} and {xin =-2}.
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Steps 1-4 show that difference between the angular momenta of the reversed incom-

ing orbit and the bouncing back orbit is O(u). Without the time reversal we have
Gi+G{=0(n)
as claimed. O

The possibility of collision between Q4 and @ is excluded, since in Gerver’s con-
struction, G4 +Gy is always bounded away from zero independent of . Now, we exclude
the possibility of collisions between Q3 and Q4. Note that Q3 and Q4 have two potential
collision points corresponding to two intersections of the ellipse of Q3 and the branch of
the hyperbola utilized by Q4. See Figures 1 and 2. Now, it follows from Lemma 10.2 (b)
that Q3 and ()4 do not collide near the intersection where they have the close encounter.
We need also to rule out the collision near the second intersection point. This was done
by Gerver in [G2]. Namely, he shows that the times for Q3 and @4 to move from one
crossing point to the other are different. As a result, if )3 and Q4 come to the correct
intersection points nearly simultaneously, they do not collide at the wrong points. In the
setting of our paper (u>0), the travel times for Q3 and Q4 to move from one crossing
point to the other are O(u) perturbations of that computed in [G2]. So, it is impossible

to have a collision at a wrong intersection point.

6.5. Proofs of Lemmas 2.11 and 2.12
In this section, we prove of Lemmas 2.11 and 2.12. Now, we prove Lemma 2.11.

Proof of Lemma 2.11. We first prove part (c). We first get that

2y, (1) = (14+0(p)) w1, (0) = (1+O0(p)) x

by integrating part (c) of Lemma 6.5 for t€[0,100x]. Next, by Lemmas 6.4 and 6.6,
we get that Fy(t)=—E3(t)+O0(u)=4+0(5+u) for t€[0,100x]. This implies that |vs|>
1-0(d+p). Next, by Sublemma 6.8, we get that |v41‘||>% by choosing 8, y and 6 small.
So, we get that the total return time T<2(14+0(u))x/2 <3x(<100y).

Since AG implies the assumptions of Lemma 6.5, combined with Lemma 6.6, we
get part (a) of Lemma 2.11 from Lemma 6.6, and part (b) from Lemma 6.11 using
Notation 2.5. O

Now we are ready to prove Lemma 2.12.

Proof of Lemma 2.12. The idea of the proof is to integrate the equations 7 and ¥
for the pieces (I), (IIT) and (V), and apply the coordinate changes (IT) and (V), to keep
track of the change of x1 and v;. The main idea was sketched in Remark 2.13.
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Step 0. (Preparations.)

We use Lemma 6.5 (c.1) and (c.2) to get that

11
v = 0—|—O<,)
1=0(0) X X?

during time O(x). It follows from

dry) vy
dt mq

that over time O(x), the horizontal component z; ) can move only distance O(u).
Moreover, the local map takes only O(1) time as 1/x < u—0.

Initially, we have angular momentum conservation G;+G3+G4=0. Also, from the
initial conditions in the assumption (i) and the total energy conservation (Lemma 6.4),

we estimate

|Gs|, |Ga <2CH+1.

We get from the definition of angular momentum, Lemma 6.6 (¢) and assumption (i4),

that
G

1|

1,1
T,

2(2C+1) _ 4(CH+1
0L (0)] <oy 2| 4| 9L < o) 4 22GHD) (AGHD)
X X X

Step 1. (Piece (I) composed with the local map.)

We integrate the dv, | /dt estimates from the section {xfEH =-2, UEH >0} to the sec-
tion {xfin :—%X, fo <O} (note that the local map is included). The total traveling time
is <3x by Lemma 2.11 (c). In the following we use the notation a=0,(b) if >0, a=0(b)
and a/b>c>0 for some constant ¢. Using Lemma 6.5 (c), as 1/x < u—0, we have

xﬁu *xﬁu(o) = O+(HX)UEH(O)7 1751_*5”51_(0) = O(#X)UFJ_(O) =0(p),

3

1 1
’U{%’” E[_617_01]+O(MX>7 vﬁl:O(X>

on the section {acﬁ”:—%x,vfu <0}. On the same section, we also have

1 1
vf‘l——\/2E4—|—O<X)——\/—2E3—|—O(,u) and vﬁl—0(>,

X

by Lemmas 6.4 and 6.11, and equation (A.5) (see also Step 2 of the proof of Lemma 6.7).
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Step 2. (Piece (III).)

We use Lemma 6.7 to get 2§ €85, i.e. |xf‘||<2x and |Q:ZJ_|§6. Then, we use (5.1)
to get, on the section {xfuz—%x, fo <0}, that

1 px 1 0%
L _ R R R
L= 1+Mx1,\|(0)+0+(HX)U1,H( )— 1+2p mxl,u(o)_m_OJr(MX)a
71 = 1 0400000l (0 )+0(;)=O(u)7
L — 1 1
”UfHG 1+2M 017 72E3+O ,UlL,L_O(X>7 as ;<<M’4)O'
We integrate dvy /dt again over time O(x) to get
1 X
L __ R L
L= 135 )—1+2N—O+(ux), zf L =0(p),
L 1 1
UL € T, Tr2u T —V2E3+0(n), vfl=0(x>, as — <p 0

when arriving at the section {xf‘|:§,vf|‘>0} where the —O.(ux) term in leH has
absorbed a new —O, () contribution since vlL” <0. Again it follows from Lemma 6.11

and the energy conservation that

1 1
v£|\/2E4+O<X>\/2E3+O(,u) and vflO()

X

Step 3. (Piece (V).)

We apply (5.1) and ffcfesé (Lemma 6.7) to get that, on the section {xi“:%)(},

R

o e (PO e N o (0
W 1pou\ 14p 142u) 1420

R

_m©) sy (0
L+2u  (1+2u)? 00 (6.18)
1

5551_:0(/1), UEL:O<X)7

1
U{%#HG 1+2 Cl,_ 2\/_2E3+O 6+/1/

as 1/x<pu—0, where the extra O(u) in vff” comes from the oscillation of E5 established
in Lemma 2.11 (a), and O(6) is the deviation of the initial value E5 from Gerver’s value
E3, which is bounded by C3d. Finally, we get the same estimate as (6.18) when arriving
at the section {a:ﬁ”:—Q,vff”>0} with a new —O, (uy) added to xﬁn. This completes
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one application of P, and hence the proof of part (a). Part (b) is proved in a way similar
to Step 1, by composing the local map. The information that we need from I{{H is that
:z:f'” <:17f"”(0) after one application of P. Indeed, it follows from the first row of (6.18)

and the assumption on fo that

2ux  p(243p)x

- 14+2u o (1+2p)2 — 04 (ux) = =04 (*x) = O (ux) <0. (6.19)

i — o1 (0)

Step 4. (Renormalization.)

One period in Gerver’s construction consists of RoGoP2. We repeat the above
procedure to get after P? (we use double bar for the orbit parameters),

_ _ _ 1
Hy=alt (0= ~0.(n) <0, H, =0, 7, =0(1).

. X (6.20)
o € m[fal, —c1]—2/—2E5 —2,/—2E5*+0(6+p),

as 1/x<«<pu<d—0. The last step is to apply the renormalization R. Let us forget about
the rotation by § in Definition 2.7 for a moment, and consider only the rescaling. We

expect that

- 1 _ _
R('Uf:”) = W’Uﬁ” S [—Cl, —Cl],
which is implied by
D _ 1 i * ok -
o) € (1+2p)2 [~e1, —e1] =2¢/=2B5 —2\/=2E5" + O(§+p) C VA[-e1, —eil,

where A is the renormalization factor in Definition 2.7. This implies

_2
V-1

for some constant ¢ bounding the O in the above estimates. We choose

c1+e(0+p) < (V—2E;+/—2E5" ) <c1—&(0+p)

= 4 * % 1 * *ok
Cc1= m(\/—ZEg +\/—2E3 ) and ¢ = m(\/_QEB +\/_2E3 )

so that the above inequality is satisfied uniformly for all sufficiently small p, 6 and 1/x.

This completes the proof for R(ﬁﬁl).
Step 5. (The estimates of R(z1).)

This estimate follows by iterating (6.19) twice and applying the renormalization
map R.
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Now let us take care of the rotation 3 of R(vy,) which is

arctan(m> = O(H>
T, X

by definition. This produces an error of O(y/x) to v1,), which can be absorbed into the O
part of the estimate of v; | in (6.20), so that we leave our choice of ¢; and ¢ unchanged.

If G in the definition of R were the identity, then the rotation Rot(S) would set
x1,1 to zero. Applying G causes an error O(p/x) to z1,1 obtained by integrating the
estimate of #1, | =O(u/x) over time O(1). Since p/x<1/2v/Ax, we get the estimate for
R(x1,1) in the statement. The R(z) estimate comes from the definition of Y=Ayx and
the cube.

Step 6. (Bounding the angular momentum and vertical component of the veloc-

ity ’l:)lyj_.)

After P? and Ro@opz, we have angular momentum conservation
G1+G3+G,=0 and R(G1)+R(Gs)+R(G4)=0.

After renormalization, R(Es) is now —1+0(1//X), and |Z4,1|<2. The energy conser-
vation shows that |R(74)|<1+O(u), so that we have

IR(Gs)|, |R(G4)| < 2Ch+1.

From the definition of angular momentum and (6.20), we get that

R(Z{ )
R(Z{))

L UGy

R(D < |R(GE
R(5L)] ] @) : L

23]ty e

This completes the proof of the R(v1,1) estimate in part (c) by defining

Cy=4(C}+1). m

6.6. Choosing angular momentum: proof of Lemma 2.21
In this section, we prove Lemma 2.21. We first need two auxiliary results.

SUBLEMMA 6.13. Let SCU1(d") and é4 be as in part (a) of Lemma 2.21. Then, there
exists U3 such that m,, P(S(é4,l3))=e5*. There are analogous statements for SCUs(d")
and SCUy(d") as in parts (b) and (c) of Lemma 2.21.
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We give the proof of this sublemma immediately after we complete the proof of

Lemma 2.21. The next sublemma is easy to prove.

SUBLEMMA 6.14. Let F be a map from R? to R? such that

(1) F(a*)=b* for some a*,b*€R?;

(2) if |F(2)=b*|<R for some R>0, then ||[dF(z)(X)||=x||X]| for all vectors X €
T.R? and for some Y>1.

Then, for each b such that |b—b*| <R, there exists z such that |z|<R/X and F(z)=b.

With the help of the two sublemmas, we finish the proof of Lemma 2.21.

Proof of Lemma 2.21. We consider part (a) first. Pick a piece of ¢’-admissible sur-
face SCU;(9) for &' <6.

Choose any é,€(e;—0'+1/x,ei+06'—1/x). By Sublemma 6.13, there exists £3 such
that m, P(S(é4,ls))=ei*. Let ly=mp, P(S(és,03)). Then, Q(éy,0l3)=(ei* £5). Our
coordinates allow us to treat Q; as a map RxT—RxT. Let élz R?—R? be the covering
map of Q;. We now apply Sublemma 6.14, using a* = (&4, £3), b*=(e%*, (%), F=0, x=cx
(from Lemma 2.17) and letting R be the distance from b* to the boundary of C2(d). This
gives us a surjective map, satisfying the expansion condition, from a subset of Cy(d’) to
the open disk of radius R around b*. To extend this map to other parts of Co(0), we
can apply Sublemma 6.14 again, using a different b*, choosing each b* from a region to
which the map has already been extended. Because C2(6) is open and connected, we can
eventually extend our surjective map to all of C2(d), although we might have to apply
Sublemma 6.14 an infinite number of times. Because of the expansion condition, and the
fact that the diameter of C2(d) is O(1), the diameter of the pre-image V1 (é4) is O(1/x).
This establishes Lemma 2.21 (a).

Part (b) is similar to part (a). For part (c), we first apply Sublemma 6.13 to find
(5 for each &, such that m., P(S(&4,ls))=e;* for a given admissible surface S Uy(d).
This gives the first statement in part (c). We next introduce the renormalization R
based at the point S(é4, /) and obtain PRG satisfying ., PRG(S(é4, l3))=e*+O(1).
(We get from S(é4,05) to P(S(4,0s)) by following the Hamiltonian flow, and we get to
G(S(&4,05)) by following the first part of that same flow. PR continues the flow on a
rotated, rescaled, reflected orbit, but those transformations do not change ey or 3, so if we
continued the flow to the same section as P(S(é4, f3)), but rotated, rescaled and reflected,
we would still get ef*. Instead, we continue a distance of O(1) to a new section, mostly
because of the rescaling, but also from the rotation, and this changes e4 by O(u), because
of the interaction between Q3 and Q4.) Because 0>, we still have Qqy(é4, f3)€Ca(d').
By Lemma 2.17 and Sublemma 6.14 again, we get a neighborhood Vy(€é4) such that Qg
maps Vp(€4) surjectively to C2(d). By Lemma 2.17, the weakest expansion rate of dP
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restricted to the cone fields is a constant times x, hence the diameter of Vy(é4) is O(1/x).
Since we have O(1/x)<1/,/X, we get that R is well defined in a neighborhood of Vj(€é4).
Part (d) is given in Lemma 10.2 (b). O

Proof of Sublemma 6.13. The idea is to apply the strong expansion of the Poincaré
map in a neighborhood of the collisional orbit studied in Lemma 6.12. Note that Delaunay
coordinates regularize double collisions, in the sense that none of the variables blows up
at a double collision, so that our estimate of dG also holds for collisional orbits. We give
the proof only for initial conditions on an admissible surface SCU;(¢"). The other cases

are similar.

Step 1. We first show that there is a collisional orbit satisfying z4(t)=0 at some
time ¢, as /3 varies.

We apply the local map L to the admissible surface S with é4 fixed. Sublemma 6.8
and its proof shows that, if after the application of the local map we have 6} (0)=m—0,
O<§<(§ in Lemma 3.1), then the xil coordinate is a large positive number of order
Ox when the orbit hits {xiH:O}. Similarly, if 65 (0)=n+6, then the orbit hits the line
{:vi” =0}, so that its xi | coordinate is a large negative number. By the intermediate-
value theorem, there has to be an outgoing angle 87 (0) leading to a collisional orbit with
xk=0. So, it suffices to show that our admissible surface S contains points &1 and s
such that 8 (z1)=7—0 and 0] (x2)=n+60. We have the expression

G
0} = m+gs+arctan <~4>
Ly

(see (2.6) for the formula and see Lemma 3.2 for the tilde notation). By direct calculation,
we find dff =Ll (see Lemma 3.2 for 1 and Notation 2.5 for %). Since TSCK; and the
cone Ky is centered at the plane span(w;, w), where w=0/9¢3 (Definition 2.16). We get

where ¢(x)#0 by Lemma 3.4 (c). So, it is enough to vary ¢3 in a O(u) neighborhood
of a point whose outgoing asymptote satisfies the assumption of Lemma 3.1 in order to
get angles of outgoing asymptotes m+60. Thus, we get a collisional orbit for some point
denoted by (&4, /3).

Step 2. We next show that there exists ¢3 such that 7., (P(S(€4,¢3))) is close to e}*
for fixed é;. Now, the function 7., (P(S(€4, -))) is a function of one variable ¢3 defined
in a neighborhood of /3.

Since eq=1/14(G4/L4)? is not an injective function of G4, we use G instead of e,
and study the function G4(P(S(é4,¢3))).
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Next, we compute

d N 0
%G4(P(8(e47 ls3))) =dG4dGdL 8763

:X2(dG4w1)T1. <d1L £3>+O(X) (6.21)

2
=a<w>%+0<x>,

where il-(dLa/aﬁg) is calculated in Step 1, dG4w=0 and dG4w;=1. This derivative
calculation holds, provided AG and AL are satisfied, so that we can apply Lemmas 3.1
and 3.2.

For the collisional orbit, its bouncing back orbit will intersect the section {xfu =—2}
at a point that is within O(u) distance from the initial point. To see this, we apply to
(A.5) the estimate of the difference of G4 for two orbits in Lemma 6.12, and the O(u)
estimate of angle of asymptotes and oscillations of L3, G5 and g3 in Lemma 2.11 (b).

So, we consider the image of an ¢ interval centered at 05 under the map
G4(P(S(e4, -)))-

By increasing e from zero, we see that the assumptions AG and AL are all satisfied,
provided the returning orbit has |z [<Cj on the section {a:f;” =—2}. Thus, we always
have the estimate (6.21), and we can keep increasing e until the inequality [z [<Cj is
violated.

Thus, it follows from the strong expansion of the map G4(P(S(éy,-))) and Sub-
lemma 6.14 that an R-neighborhood of G}* (corresponding to e}*) is covered if ¢5 varies
in an (Rp/éx?)-neighborhood of {5. Then, we use the intermediate-value theorem to find
{3 such that 7., P(S(&4,¢3))=ej*. This completes the proof. O

7. The variational equation and its solution

In this section, we first derive a formula for estimating the derivatives of (I), (IIT) and (V).
This formula will reduce the derivative computation to the fundamental solution of the
variational equation and two boundary terms, where the latter takes care of the issue
that different orbits might take different time to travel between two consecutive sections.
The rest of this section is devoted to estimating the variational equations and their
fundamental solutions. This will give the estimates of N1, N5 and M in Proposition 5.2.

Let us first recall the notation. We use V=(V5; V1;V4)=(Ls, {3, G3, g3; x1,v1; G4, ga)
to denote the Delaunay coordinates. We use X=(X3; X1; Xy)=(x3,v3;21,v1;%4,04) tO
denote the Cartesian coordinates. We use F=(F3, F1, F4) to denote the right-hand side
of the Hamiltonian equation in Delaunay coordinates, i.e. dV/dly=F.
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7.1. Derivation of the formula for the boundary contribution

Suppose that we want to compute the derivative of the Poincaré map between the sections
St and Sf. We use V' to denote the values of variables V restricted to the initial section
St while Vf means values of V on the final section St. ¢} means the initial time and ¢§
means the final time. We want to compute the derivative D of the Poincaré map along the
orbit starting from (Vi, 1) and ending at (Vf, ). We have D=dF; dF; dF;, where I} is
the Poincaré map between S' and {£4=/1}, F; is the flow map between the times £, and
/£, and Fj is the Poincaré map between {{,=/¢'} and Sf. We have I} =®(Vi, £,(V'), 1)),

where ®(V, a,b) denotes the flow map starting from V at time a and ending at time b.

Since 0 .
@(V*vg*vg*)zld and %:—f
we have .
i\ D
dFy=1d-F(£))® DI

Inverting the time we get

DUENT!
dF3=<1d—f(££)® Z“) .

DVt
Finally,
DV(4L)
dFy=——7%
©DV(A)
is just the fundamental solution of the variational equation between the times ¢! and /£ .
Thus, we get
DN DY) .. D¢
D=(Id-F(H)®—= 12 1d —F (4 L. 7.1
To invert ;
D¢
Id—F()e D—;‘f,
we need y
D, £
‘va Fly)] < 1.

Suppose this inequality is satisfied. Indeed for all the cases that we encounter in this

paper, the inner product is at most O(u). We use

DN 1 DIt
(Id —f(ffl)@DV‘*f) =Id +Tf(€f‘)®ﬁ;‘ (7.2)

Definition 7.1. We call the two terms dF; and dFj5 the boundary contributions.
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7.2. Estimates of the variational equation

Recall u(?4),v(f4) defined in Lemmas 6.3 and 6.5 respectively and define further

rR_ 1L H rR_ 1L H rR_ 1L H

_7—’_77 \ _7+77 W= —
X3 [P +1 X2 [P +1 X |lalP+1
1 1 1
UL:—S7 VL:727 WL:i'
X X X

When the superscripts R and L are omitted, we use u, v and w to represent either the
right or left case depending on the context.

The lemmas in this and the next two sections will be under the standard assumption
AG. For the same reason as Corollary 6.10, we can use all the conclusions of Lemma 6.5,
since its assumptions are implied by AG due to Lemmas 6.7 and 6.6.

We start with the following auxiliary estimate. We use the notation 9 to denote the
partial derivative with respect to the twelve Delaunay variables, and by Vy, the covariant
derivative with respect to the ten variables V, where L4 is solved for on the zero-energy

level. In particular, we have

0 0

VV:W—FTLAL

®VyLy.

Note that, for the covariant derivative, we think of ¢4 as time, and do not take derivatives

with respect to it.

LEMMA 7.2. Assume AG. Then, we have the following estimates:
(a)

1 1
V\/[/4: (1701X9)+O<,u7 u, u, u; IR 73,/% lu;vav>;
X=X X

dt 1 1

1
— ) =-3L3(1,0 @) R R A -
Vv<d£4> 3( ) 1><9)+ (M7u7u7ua’uX2>X37/'L7X7W7W>7

(¢) Corollary 6.10 can be simplified as
1 1
F= (0; _1701><S)+O(UHU/7 u, us i, Ha NG 3;V,V> .
X X2 x

Proof. We use the same argument as in the proof of Lemma 6.5 to estimate the
angles among the vectors x4, x1, Ox4/0Gy, etc. Part (a) follows directly from equation
(6.1). That is, for each of the ten variables V, we apply Vy to both sides of equation
(6.1), and then apply the above formula for Vy, to Vy,(E;+U). This results in a term
with Vy, Ly on the right side of the equation, so we bring that term to the left side and
solve for Vy Ly. Part (b) follows from equations (6.2) and (6.1).



NON-COLLISION SINGULARITIES IN A PLANAR 4-BODY PROBLEM 317

Part (a) and (b) differ only in their G4 and g4 components. The estimates of the G4
and g4 components in part (a) is the same as that of Lemma 6.5. However, for part (b),
we have a OU/JL4 term in (6.2). As a result, we do not have the almost orthogonality
of 0x4/0G4 with x1, as we did in the proof of Lemma 6.5. O

We also need to figure out the order of magnitude of each entry of the right-hand
side of the variational equation.

LEMMA 7.3. Assume AG. Then,
(a)

u u u u u/x u/x Ju u/x u u
I u u u o[ X o /x| w w
u u u u u/x u/x pu o ou/x u u
u u u u u/x u/x ju u/x u u
1 upupup | LXE /Xt o w @ x | opw o pw

Vv F S
pw/x up/x oup/xooup/x | 1/XE ow/xtowP/x omo | pw/x o pw/x

Upx u/x u/x u/x [/ X 1XE 13| 1XE 1/
/x> ux ou/xou/x | Uext Uwd w/xXE ow/x3 ] X3 1/
w u u u w/x  w/x  pw o w/y w w

w u u u w/x  w/x  opw  w/x w w

(b) In addition, setting £=|x4|/x, we have in the right case
L*sign(vy,))

S ) | £ I3
1 ¢ G?+L? [T )
VorFll=——> o=+ ,
VI T (1—¢)3 A L* sign(vq)) (X |Q4?
(G*+L?)? G*+L?
and in the left case
1 ¢ L? sign(vq)) L3 } ]
VyrFy=—— ’ +0(5).
Vi x (1-¢)3 —L —L?sign(vy,)|) (X>

Proof. The proof is organized as follows. We start with a formal computation which
gives the formula for estimating each block of the matrices. Next, we work on the
estimate of each block. In the left case, a near collision may occur. Since we treat ¢4 as
the new time, we do not take derivatives with respect to ¢4 when deriving the variational
equation, so in the Hamiltonian equations, as well as the variational equation, we need
only C° dependence on ¢4, which is always true (see (A.3) and (A.4)) even when we have
a collision between ()1 and Q4. In the estimate of the rows related to G4 and g4 in the
left case, we will need Lemma A.1.
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e A formal computation

Using our notation, the two matrices are dF/dV. They are the coefficient matrices of

the variational equations

d dF
TR V= v ov.

We split each of the two matrices into nine blocks corresponding to 0F;/0V;, where
i,j=3,1,4.
We have dF/dV=VyF. Notice that

dt _OH
F=a"av

where J is the standard symplectic matrix. Then we get the formal expression to calculate

the two matrices

0H dt dt 0H

Note that Vydt/dl, is done in Lemma 7.2, and J;0H /9V; is done in Corollary 6.10,
the term dt/dl4=0O(1) and the new term we need to consider is Vy,.J;0H/dV;. For
1,7=3,1,4, we have

OH o0 _0H 0 _O0H

ijjiaivi :TVJJZITWJFTMLTVZ‘@VWLAL
0% 0 (L 010X D (00 0%
oV; 0X; \""0X; 9V, oL, \""0X; 9V,

:%J- 0’H 3Xi+ o0H 0?X;
aV; "t OX;0X; 0V, ' OX; 0V;0V;
<8X4 _ 0’H 0X; n OH 02X,

OLy " 0X40X; 0V; ' 0X; OL4OV;

>®ijL47

where J; is the standard symplectic matrix in the ¢ component. We know by Lemma 6.6

that
o0X;

0X3 0Xy 00Xy

—=0(1 —=Id d —/—,—=

gv, ~ O gy =i and GrL G
according to Lemma A.3. Moreover, 0H /0X; and 9*H /0X;0X; are done in Lemma 6.3,
32Xj/5‘Vi8Vj and 82Xj/8L48Vj are done in Lemma A.6 and, finally, L, /dV; is done in

Lemma 7.2. Now every term in (7.3) and (7.4) is already estimated. What we need to

O(la),

do below is to find the leading term for each matrix entry among all the terms above.
In the following we analyze the two matrices blockwise. We will handle the left and

right cases simultaneously.
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[ J V\;3.'F3

For this block, the (2,1) entry is special. All the remaining entries are done together.
Using the Hamiltonian equations (6.3), we see that the (2,1) entry is

dt m3k:§ oU
vLB(d@( L3 +6L3)>

2k oU oU
—_ 2142 My spp2 ) s 3 L hot. ).
VLS(W 3( + 3<2m1 o ) TOV s ) T hegr, g, T

2
2 (v R
VL3L3 (2m1 |.Z‘1> O(M)v

since

m1:O<i), L;=0(1), v;=0(1) and [z1|=0(x).

All the other subleading terms involve derivatives of U, which are at most w coming from
V5,0U/JOLy. This completes the estimate of the (2,1) entry. The other three entries in
the second row are estimated by u mainly contributed by 0U/dz3 (Lemma 6.3).

For the first, third and fourth rows, we use formula (7.3). The first summand in
(7.3) contributes (u,u,u)®(u,1,u,u) to the three rows. The second summand is given
by (7.4). The first and second terms after the third equal sign in (7.4) have the same
estimates,

O3’ a3 ™

as we get in Lemma 6.3, since

OXs O%X;
T%»Wg:(?(l) and  Vy,Ly=0(1),

using Lemma 7.2. The summand

OH 2,
30X OL,0V5

®Vy,Ls =0,

since 92X3/0L40V3=0. The third term in (7.4) is estimated as p/(|¢4|3+1) in the right
case and u/x> in the left case using the estimate 0?U/dx30z4 in Lemma 6.3 and the
fact that 0X,/0Ly=0({y). So, in summary, all the entries in the three rows are bounded
by u.



320 J. XUE

[ Vvl .’F3

The first summand in (7.3) gives

1 1 n
U,l,U,U ®(,,/L,>.
( ) px? XX

The second summand in (7.3) is now reduced to

0?U Oxg Oxg O?U  Ozxs

————+—J3—————®Vy, L
390105 Vs | 0Ly Owads V5 ¥V
since oX 0% X 0% X.
ZZl—1d and 2 = 5 —o.
% oV10Vs  0L40Vs
The two terms are estimated using
2
U1
Ox10x3 ~ x4
given by Lemma 6.3,
1 1 "
VV L S <7 3 M >
T

by Lemma 7.2 and

2
O ; O°U Ows))
8L4 81‘48.1‘3 8V3

since we have 90X, /0L4=0(¥4), and
0’H < M
0X10X; ~ 13+1

in the right case and

0’H < M
8X48X3 ~ X4
in the left case using Lemma 6.3. Therefore, the estimate of the block is given by the
max of
1 1 I 1
u, L,u,u)® (, —, It ) and —.
( ) XX x x*
L V\/’4-7:'3

The second row is handled in a similar manner to the Vy, 53 block. Thus,

dt m3k§ 3U 2 2 ’U% kl 2
= —))=- 14302 L — L
VV4 <d€4 < Lg + aLS Vw m3k3 +3 3 2m1 |x1‘ +3U 3

6 U 120U
30Ly ' 30Ls

—L +L +h.0.t.>
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oUu oUu
=— L2—LS——+L3—+h.o.t.
VV4(3U 3 38L4+ 38L3+ o) )
The leading term is given by
oUu o0x, . 0°U
_— _— — <
VV4 3L4 <8L4 4 89@% VV4J$4> ~ W,

using Lemma 6.3.
Next, the first summand in (7.3) gives the estimate (u,u,u)®(w,w) for the first,
third and fourth row. This is smaller than what we have stated in the lemma. It remains

to consider (7.4), which is reduced to

83:4 82U 81‘3 8334 82U 6l‘3

gy Y UM TP YT U8 I
Vs 2 023005 OV T 0Ly Dradins Vs © ¥ Va4

since

Oz _ 0w _

OVy 0Ly
The first summand has the estimate p/(¢3+1) in the right case and u/x? in the left case,
since we have the estimate 0x4/0Vs=0({4) and

0’H < M
0X,0X3 ~ 15+1

in the right case and
2
_OH
3X4(9X3 ~ X4
in the left case in Lemma 6.3. So, we use u to bound this first summand as stated in the
lemma. For the second summand in (7.4), we estimate Vy, Ly as (v,v) using Lemma 7.2,

and
Oz ; O°U g
3L4 4 81‘48173 6V3

has the same estimate as the first summand. So, the second summand is much smaller

than the first summand.
For the next three blocks Vv, F1, j=3,1,4, using 0X,/0V1=1d, (7.4) is reduced to

an 82H 61'4 82H

ij IW—FTIML 1m®ijL4. (7.5)



322 J. XUE

[ ] Vvs.":l
The first summand in (7.3) gives
w1 1 >
By =5~ "3 (29 1,U,U,U .
< X x? X ( :
The first summand in (7.5) has the same estimate as

0’H

PH U _ 1 B
X47 32(381)1 B

8x35‘x1 - 8$38$1

S

using Lemma 6.3, whose contribution to the current block is

i

Next, we consider the second summand in (7.5). We have Vy,, L4 <(1,u,u,u) using
Lemma 7.2. Next, we consider
8334 82H
—
8L4 3:64(9)(1

This is a vector of four entries whose first two entries are

FH _ou _g
8L46@1 o 8L4 o

and whose last two entries are bounded by 1/x?, since we have

81‘4 -
87114 - 0(64)5

and

using Lemma 6.3. So, we use (i, p/x)®(1,u,u,u) as the estimate for the first two rows

and use the max of

1 1 1 1 1
—, — | ®(1, (u)1x3), () and (,)@ 1,u,u,u
(ux2 X‘3> (W) {5 d e )& )

as the estimate for the last two rows.



NON-COLLISION SINGULARITIES IN A PLANAR 4-BODY PROBLEM 323

[ J V\;l.'Fl

The first summand in (7.3) gives

/’Laiaiai 7a7fa,uﬂ* .
X ux? 3 px? x3 " x

The first summand in (7.5) is

O2H  0%H )
61}181}1 6’0181)1 0 mil Id

O2H 92H = 3k1$1®$1ik1 Id 0 ’
022 Om0u 72 ? [ ?

where 92H /dx? is given by 8% /03 . We compare the two matrices using x1=0(x, 1)
1

e
to get the first three rows. Finally we consider the second summand in (7.5). We notice

that
1 1 n
vVl-[/ﬁl 5 (27 NER M, ) .
X=X X

(9.7;4 82H 1 1
_ = < -
(8L4 Jl 8.1‘46.)(1 ) ~ (0’ 07 X2 ’ X2)

as in the previous paragraph. This gives us the last row.

The term

[ ] Vv4.'F1

The first summand in (7.3) gives

(12— o)

XX 3

using Lemma 7.2 and Corollary 6.10. This gives the first two rows in both matrices. The
first two rows of (7.5) are zero because §*H /0x40v; =0. For the last two rows in (7.5),

we first have

6I4 62U 1 6I4 82U 1
= < = I
<av4> (‘]1 83@48961) S W G e

as in the previous paragraph, so the tensor part is O(v/x?). Thus, for the last two rows,
we use the estimate 1/x?.
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[ ] Vvs.":‘l

The first summand in (7.3) gives (w,w)®(1,u,u,u). The first summand in (7.4) is given
by

Oxs 92U \ Oxy4
Ny JS ) S u,
8V3 8I481‘3 8V4
using Lemma 6.3. This gives the second, third and fourth columns of the block.
Next, the second summand in (7.4) vanishes, since 92x,/9V30V,=0.
It remains to consider the third summand in (7.4). We have Vy, Ls<(1, (u)1x3)-

Next,
ou 8334 1 1%
L2 <ot <
D03 D0V 4<X2 +£3+1) S

using Lemmas 6.3 and A.6. Next,

6I4 <J 82U >6£C4 <

(97[/4 461‘461‘4 (971)4 ~ W

So, the third summand in (7.4) has the estimates (w)1x2®(1, (u)1x3) and contributes to
the first column of the block along with the the first summand of (7.3).

[ ] Vvl .7:4

The first summand in (7.3) gives
1 1 u)
W, W (29 5 g M — |-
(v ) (ux2 X3 x
The first summand in (7.4) is given by
02U \oXxy _ 1
Jis )9 2
04071 ) OV4 ™ X2
using Lemma 6.3. The second summand in (7.4) vanishes, since 9%x4/0V;0V,=0. Fi-
nally, we consider the third summand in (7.4). We have
1 1 o
VV L4§ <77 ,)'
' e X

The estimate of
Oxy 02U Oxy OU  Oxy
T (i) S Ta <w
8L4 81‘481‘4 8V4 8334 8L48V4

was done in the previous block.

So the estimate of this block is to take the larger between

1 1 1
<2> and (W7W)®(2735H7H)-
X" Jax4 wx= X X
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[ ] Vv4.'F4

The leading contribution is given by the first and second summands in (7.4),

Oy OPU Oy ) OU Pws
6V4 46.1348%‘4 8V4 48334 6V48V4N ’

using Lemma 6.3. We next show the other summands are small. The first summand
in (7.3) gives (w,w)®(w,w). Next, we consider the second summand in (7.4). We have
Vv, La<(v,v). Next,

Oy U\ dxy U\ 0%y
i B el e — <
8L4 <J4 8.1‘46.2?4) 8V4 + <J4 8$4> 8L46V4 ~W

is estimated as before. Therefore, the first and third summands in (7.4) are much smaller

than w.

Part (a) is complete now. Finally, we show part (b)

According to the last bullet point, the leading terms in Vy, F4 come from

x4 OU
di (0% () H NOXy o OH X \ (9 9\ | O Do
des \ OV, \ 7 0X,0%, ) 9V, Tt ox, 0v0v, ) T\ 0G, dgs Oy OU

0Gy Oz

Let us now look at U in (4.3). Only those terms in U containing both z4 and z;
can be as large as O(1/x), according to Lemma 6.3. So, we only need to consider the

following three terms in U%:

1 n 1 n 1
Iz x1+Lx4+Lm3 x1—|—Lx4—Lx3 xl—ﬂm
1+2u 14+p 1+2pu I+p 1+2u

When we take two derivatives with respect to z4, a u? factor will multiply the first two
terms, so that the first two terms would be O(u), compared to the third term. So, the
leading contribution to 9?UT /922 is given by

9? -1
2
Oxy o 14+p 4
1+2u




326 J. XUE

The same analysis for UL in (4.6) shows the leading contribution to 92U*% /922 is given
by

R

o0x3 I 1+p ’ '

xr1+ T3+-——"2y

14+p 14+2p

Consider the (9,9) entry. The main contribution to this entry comes from

0 (O0xy OUY\ 0 [ (024/094)- (x4—(1+0(u)z1))
Liaa;(m'm)‘“w(“ma@( 22— (L+O()z) P )

(7.6)

The numerator on the right-hand side equals

825(}4 .
6G4ag4 b

(1+0(u))Li(;)&1(gi-w4> (0L

The first term is O(x) due to Lemma A.3 (c), so the main contribution comes from the
second term, which is O(x?) using Lemma A.6. We use the same argument for the other

entries to get

821y 1 &%y 1
0GOg |ra—z1? 8¢ |za—mz1)3
VVR}'f”:—Lg g |z4—m1] 9% |T4—a1] +O(u MB) (7.7)
B 821‘4 1 (921‘4 1 X |:Z:4‘

C0G? Jr—am P0Gy faa—wf?
Using Lemma A.6, we see that the (9,9) entry equals
L3 sinh u
o i xsinhu (“+”3>-
VI3 G [ra—21| X |zl

Recall that Ly=L4(140(1)) (due to (6.1)) and sinh u=sign(u)|l4|Ls/+/LI+G? (due to
(A.4)). Since Lemma 6.6 implies that |z4|=|l4|/L3(140(1)), we get that the O(1/x)-term
in (9,9) is asymptotic to

L¥sign(u) x|z
L>+G? (x—|za])®

Since u and vy have opposite signs, we obtain the asymptotics of the O(1/x)-term

claimed in part (b) of Lemma 7.3 for the (9,9) entry. The analysis of other entries of
va}'f is similar.

Next, we consider the left case. The argument is the same except for the following
differences. First, the error term in (7.6) is now O(u/x), since p/|z4|® should be replaced
by 1/x3, as usual. Next, UL is roughly 1/|z4+x1], up to some y error, which differs from
U by a “minus” sign. Then, we have that the asymptotic expression of (7.7) follows
directly from Lemma A.6 (c). O
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7.3. Estimates of the solution of the variational equations

In this section, we give the proof of the estimates of matrices N1, N3, N5 and the (I)44,
(I1I) 44, (V)44 blocks in Proposition 5.2.

From one Poincaré section to the next, it takes time of order O(). The main body
of the proof is to show that the fundamental solutions of the variational equations are

estimated by three steps of Picard iterations.

7.3.1. The asymptotics of the (N1)44, (N3)44, (N5)44 blocks in
Proposition 5.2 (b)

The blocks are obtained by integrating the leading terms in the estimates of Vy,Fy in
part (b) of Lemma 7.3. After a rescaling of time, the problem is reduced to finding the
fundamental solution of a linear ordinary differential equation (ODE) system defined by

constant 2 x 2 matrices.

7.3.2. The matrix N3 for the piece (III)

Let us first explain how to get the matrix Ns. Since the right matrix of Lemma 7.3
has constant entries, which we denote by K temporarily, N3 can be estimated by the
fundamental solution of the ODE X’'=K-X, that is, by

o0
1
K P
X(x)=ef=2 " —(Kx)"
n=0
Note that K has positive entries. We claim that in fact

efX—1d1g = O(Kx+3(Ex)*+(Kx)*). (7.8)

Indeed, a brute force calculation shows that (Kx)*<Cs(Kx+(Kx)?+(Kx)?). This al-

lows us to get inductively that
(KX)" < Cp(Kx+(Kx)*+(Kx)?) where C,, =C3(1+C3)" % (7.9)

Summing the series for eXX, we obtain (7.8). All entry except (6,5) and (7,8) appear in
Kx+(Kx)~

We remark that the computation can be done either by computer or by hand. Note
that the 1st, 3rd and 4th rows, the 9th and 10th rows, the 2nd, 3rd and 4th columns
and the 9th and 10th columns are the same, respectively, so we can reduce the size of
the matrices from 10x10 to 7x 7.
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7.3.3. The matrices N; and Ny

We first explain the strategy of reducing the estimate of the fundamental solution to

three steps of Picard iterations.
Step 1. (The strategy.)
Denote the ODE by dY /dt=A(t)Y with the initial condition Y (0)=Id;. Using the

Picard iteration, the solution is

t t t s
Y(t):IdJr/ AY(s) d5:1d+/ Adt+/ A(/ A(7) dT) ds+...
0 0 0 0 (7.10)
c=1d 4L () + I (t)+...,
where I; is the ith iterated integral. We will show that
Z(t) :Id —|—81[1 (t)—i—CQIQ(LL)—F—‘rCnIn(t),
with properly chosen ¢, =c¢,_1=...=c3>ca>c1>1, satisfies the inequality Z'>A(¢)Z(t),
or equivalently
t
Id4ei () +...+e L, () =Z(t) > Id+/ A(s)Z(s)ds
0

>1d+1 (t)+6112(t)+Cg[3(t)+...+cnln+1 (t),

cnlnt1 (t) < (01 - 1)]1 (t)+ (CQ —01)12 (t) + (03 —Cz)[g(t). (711)
Then, by the Gronwall inequality, we get that Y (¢)<Z(¢).
Step 2. (Checking (7.11).)

We next show how to compute the matrix products. The following observations
allow us to reduce (7.11) to computing products of constant matrices, which simplifies
the calculation significantly. In u, v and w, we replace u/(¢3+1) by u/|¢4|> with €4
lying between 1 and O(y). Recall that 11/[¢4|? is the correct bound of terms of the form
plxs|/|z4]? in Lemma 6.6, while p1/(£3+1) was used to show that the denominator cannot
be zero.

For Ni, we pick a small constant ¢y which is independent of x4 and x, so that

0 +eo
H HEo 2
—dly=——=+40(cp),
A L
where ¢}, =0(1)#0 is the initial £4. Inequality (7.11) holds for £, €[¢}, £} +&0] for g9 small
enough. For £4>/}+¢(, we have
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as f4—o00 and p—0. So, we replace all the integrals fé“ (u/s%)ds by p in the sense of
“~”. After integration in (7.11), there are no terms of the form 1/¢%, k>0.

Notice that we can decompose right matrix in Lemma 7.3 as K+puB/¢3, where K
and B do not depend on ¢4, and K is exactly the same as in (7.8). We have

I (0y) SO K+uB,

Iy(0y) SCK?* 4 puly KB+ puBK + 1> B,

I3(0y) SEK3 4wl K*B+ by K BK + 120, K B?
+ulnl,BK*+*(BKB+B?K)+1°B3.

To simplify the the proof, we note that I3(¢4) is bounded by

BK3

43' +ely (€4)+812(€4),

where € can be chosen to be arbitrarily small, provided p and 1/x are small enough. So,
I,(¢4) is bounded by

4 74

4
: MK
/ (K -+ 5 BY (P K3 ey (0)+ea(t)) dt < 2+ pla BE® e (£) + T L),
1 .

It turns out that we have uyBK3 < x*K*, so we get

14¢

T63K4+512(£4)+513(z4).

I4(4y) <
Inductively, we have
In(€4) < CnEZKn+€In—2(€4)+SIn—1 (£4)a

where (), satisfies

1 €
Co1<| — Ch.
i <n+1+n—2>

We can bound C,, <C(1+2¢)"/n!. Moreover, by x*K4<Cx3K?3, we get
XnKn < Cm_SX?’Kg,

where C' is independent of p or x. So, we get

(C(142¢))"

p K3 4el, _o(x)+eln_1(x). (7.12)

L,(x)<C
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By applying (7.12) recursively, we can bound

(C(1+2e))

L,(x)<C —

X K2 +0(e)x* K2 +0(e) 11 (x) +0(e) L2 (x),

where the Os depend on n but not on y, x. We choose n (independent of 1 and ) so that
C(C(1+2¢))"/n! is smaller than 15. We then choose p, without changing n, so that all
the O(e)s are smaller than ﬁ. We can replace x*K?3 by I3(), because %X3K3<I3(X).
Then, we see that (7.11) is satisfied if we choose ¢; =2, co=3 and c3=4.

For N5, we integrate ¢4 from O(x) to O(1), using only 1/x in w({4) when doing
integration since its integral dominates the other term. Again, we can decompose the
right matrix in Lemma 7.3 as K+uB/f3, whose integration for ¢4 from %X to 1 is
~(3x—{4)K+uB/l3. We have

L) S (x—t)E+ 5 B,
4

) 2
Ir(la) S (X—€4)2K2+ﬁKB+M(X _ 4)BK+’L432,
4y % o

Y 2
I(0) S (x—a)° K3+ pln = K?B+p (;‘ —log 54) KBE+L kp?
X 4

0

—0,)? 2 0 3

Ol pre B prepy X lipeg W,
51 4 £ 54

+h

We next prove that three steps of Picard iterations give the correct estimate of the
fundamental solution. It can be verified that

(x—04)3K?3 n (x—04)?

Lalt) S = Fp

BE?+e(I1(£y)+15(Ly)).

In other words, the new contributions from I3 come mainly from K3 and BK?2. Moreover,

we have -
B 4
1% - +#X 4
% N

KBK<s<(x—£4)K+“B+(X—e4)2K2). (7.13)

1
This inequality allows us to remove higher powers of B and to keep only the K7 and
BK7 terms.

Next, by splitting the integral into integrals over [1, %X] and [%X,X], we have, for
te(L,xl,

X _ n
/ (x S,f) ds <100-27¢F+1 (— )"
t

for n>1 and k=2,3,4,5.
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Let us now consider Iy:

I,(4y)
X 3173 2
0 (x—t)°K (x—t) 2
< Lad
\/& (K+t3B>( s Th - BEPe(L()+ () ) dt
_ 3 _ 2
< l(x—64)4K4+100-23LMMBK3+1OO-QQMMKBK2
4! 3! % Uy
100-22,2 X0 pogen g
+100-2%p 7 +e(I2(ls)+13(£4))
1 1 —,)3
< E(X—64)4}(4+100-23§N%BK3+5(12(64)+13(£4))
! ! 2

—0 —0y)?
+100-235<(X—£4)2K2+(X—e4)3K3+(X—£4)4K4+u(X[Z 4)BK+M(X 424) BK2>,
4 4

where, in the last <, we use (7.13). Inductively, we get

cr cr (x—t)"

1
nren n—1
I,(y) < g (x—L€4)" K"+ (n—l)!u z BK" ' +e(ln o))+ 1 _1(4y))

n—2

Z(X&)jKj),

Jj=1

n

+eC™ ( Z(X£4)jKj) +(Ce)”2ug <

Jj=1

where (Ce)"~2 appears since each application of (7.13) gives rise to a multiple of Ce.

Further argument is similar to the Ny case. O

8. Estimates of the boundary contribution

In this section, we work on all the boundary contributions (see Definition 7.1 and equation
(7.1)) for the maps (I), (III) and (V).

8.1. Boundary contribution for (I)

Computation of matriz (1) in Proposition 5.2. By (7.1), (I) is a product of three
matrices (7.1) and we already know the matrix Ny, i.e. the solution of the variational
equation. It remains to work out the two matrices for boundary contributions. The

expression for xfu is the following (see Appendix A):

xfEH = —(cos g4) L3 (coshug —e4)+(sin g4) L4Gy sinh uy. (8.1)
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For fixed fo:*%X or 175“:72, we can solve ¢4 as a function of Ly, G4 and g4. The
bounds for Ly and G4 have been obtained in Lemma 6.4, 6.6 (a) and 6.7. So, we get the

following using the implicit function theorem and Lemma A.3:

Oy Oy Oy (Oray\ ' (Oway Dray Dy
OLy 0G4  dgs)  \ 0l 0Ly 0G4’ 0gs )’

oty Oy ae4>R -

ar > a0 o ~ alal 9 .
(52 2 o oy S0 52)
O ot N

8L4’ 804’ (994 ~ATT '

R ___
Ty =—2

Note that ¢4 depends on all other variables including L4, so, using Corollary 6.10 and

Lemma 7.2, we obtain, for the section J:f'” =-2,

o \*
oV

1 1 I
S(l,/,é,/.l/,/,[,;2737/1,;1,1> )
—2 1x10

el = X=X X (8.3)
po1 1 r '
]:R‘ Ro=— 5 </,L,1,,LL7/1/;,LL7,,;,LL,M) ’
H=2 X X3 10
and, for the section xfu =—1y
ot \* 1 1 1 1
<a])> 5 Xaigaigaig;ivﬁvu)ﬁ/u‘alvl ]
ol =—x/2 X° XT XT HX 1x10 (8.4)
1 1 1 1 1 1 1Y
]:R A S(a]wf)f;:uaaa;a) 9
|-r4,H x/2 3 VX3 AR AR 10

where the two entries in bold font are estimates in the sense of ~ rather than O. The 1

entry in F&| r —_y/2 is already established in Corollary 6.10. To get the x entry in

1=
(5)
i “’f\\:*X/z’

we use the (1,1) and (1,2) entries in D from (A.7). The result is

Oway (Omay N 2 x
oL, \ o0, ) ST, I

where the last equality is obtained by setting Q| :—%X in (A.5). In this case u>0 and
£4<0. Denote
11 1 1 1 w11
l::<177.77u7;7> 9
° 2X°TTXTX X ixao

(1 1 w1 1 1 1Y
w=\ =1 =, =~ 35 3 :
1x10
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Then, (8.4) gives

R
1<8£4> <l and FE Su (8.6)
X )% IﬁH:—X/Q ) H:_X/2
Define
i i 8€4 4
ul_}_lef,u:_Q’ 12((’9)/) I8 ’
Tt =—2
f R f_1 321H X (57)
A= 000WF g5 B=2(G3) | s
TanT—

where the inequalities follow from (8.6) and (8.4). Then,

o Ry—1 o
1) = (Id f%(mj) ) Ny (Id —ul @),

as claimed in Proposition 5.2. To invert

o0 \?
d-FRe ==
F ®(av>’

we use (7.2) and verify that

So, we get (I) as claimed in Proposition 5.2.

Finally, we show the (3 rotation of the section {x£‘|:—27v£“>0} to the section
{(Rot(—B)-x4)|1f:—2, fo >0}, after applying R in Definition 2.6 is negligible. Instead
of (8.1), we need to use the expression (cos ﬂ)mfl‘ —(sin B)zf’, =—2, and convert x4 into
Delaunay variables. Since we have ¢f=0(1) here, and 3=0(p/x) since z1 €S,6, we get
a correction of order O(u/x)-(04s/OV)T to (9¢4/0V)® in (8.3), which is negligible. [

8.2. Boundary contribution for (III)

Computation of matriz (111) in Proposition 5.2. For the matrix (IIT), the solution
for the variational equation is given by N3. We only need to work out the two boundary
terms on the sections {zj", =—5x, v} <0} and {xiuzéx,vi”>0}. In (7.1), the vari-
ables V! and V! should carry superscript L for matrix (III), since we did not compose
a coordinate change between the left and right variables in (7.1). However, the section
{axi”:—g,vf” <0} is defined using variables with superscript R, so we first need to
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express it using left variables. We use the matrix R-L~! to get X®=R-L~'X*. This

implies
ot =2k —|—LxL
N N
1 . .
:me +m((COSg4)LZ(COSh u4—e4)—(smg4)L4G4 sinh U4) = —%.

So, we get the following using the implicit function theorem and Lemma A.3 from the

appendix:

Oy Oy 0Ly Oy ' (0L (Oxyy Oy Oxy —(1+p)
8L4 ) 8G47 894 ) Hw )

0Ly 0G4’ Dgs’ Dy | 0ty
8.8
Ay Oy Oty Ay (85)
ar IRy S(X,17171)
8L4 8G4 694 a’El,H IEHZ—X/Q
Using Corollary 6.10 and Lemma 7.2, we obtain
9ty \" 11 1 1
((94> 5<X3232a2;1727/1'X7NJ;171> )
1% ol =—x/2 X° XT X X 1x10 (8.9)
. .
1 1 1 w11 1 1
‘FL ok =— 5 <7175;/u‘7aa;a) )
o =2 D G GAMD TP G G i

where 1 and x are estimates in the sense of ~, having the same values as that in (8.4).

1 1 1 1 1 w11
l/:: (1a3’373;737H’3;7> ’ (810)
X7 X7 X7 X X X X X/ix1o

which is different from [ in its fifth entry. Then (8.9) becomes

1(oty
x \ 9V

For the section {xf ||:%X,vfu>0}, the estimate is exactly the same as the case

Denote

<I' and .7-"L|IZHZ_X/2§u. (8.11)
o =—x/2

{mﬁl‘:féx,viu<0} in (I), i.e. uf and If, and we get the same result as (8.7):
1[0ty \
uf=F ey Su and 1= (64) <L (8.12)
’ X V Tf H:X/2

However, we note that the x entries in

oY
oV
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have the same expression —2¢4/L4, by the same calculation as in §8.1. So we get that
the former is actually —y, while the latter is y. This proves the sign differences of I} and
If in Proposition 5.2 (a.2).

We obtain the matrix (III)=(Id +xul®I{)N3(Id —xui®I%) in Proposition 5.2, by

defining
.= l % -
37\ oy

where the inequalities follow from (8.11). O

SUoand uy=FYr _ pSu, (8.13)
R __ 41
Tt = x/2

8.3. Boundary contribution for (V)

Computation of matriz (V) in Proposition 5.2. For the matrix (V), the solution of
the variational equation is given by N5. We only need to get two boundary contributions.
Notice that the section {:Ci”:%x,viu >0} is defined using left variables. However, we
need to express the boundary contributions in (7.1). The estimate is exactly the same
as that for the section {mﬁllz—%x,vfu <0} of (III), i.e. u} and [}, though this time we
need to use Xr=L-R~1X%. We get the same result as (8.13):

i._]:R| < d li._l %R <[
U’5 T ZiH:% NU’ an 5 X av P ~ (814)
4,72
For the section {xin =—2}, the estimate is exactly the same as the estimate in the
{z4=—2} case of (I), i.e. uj and [} in (8.7). Defining
BN
ug::]:R‘rf;H:*Q and lg:: (8V> . (8.15)

4.

we get
(V) = (Id +xul @15 N5 (Id —ul ®1),

as claimed in Proposition 5.2. The signs of IL and I are analyzed in the same way as the
cases (I) and (III). O

9. Estimates of the matrices (II) and (IV) for switching foci

In this section, we study the matrices (II) and (IV) in Proposition 5.2.
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9.1. A simplifying computation

We start with a formal calculation, which liberates us from calculating the V3 part. Both

R-L7! are L-R~! can be represented as

[1(14X4 o]
0 T,

for a 8 x8 matrix 7,,. We need to multiply OVL /XL on the left and 0X/9VT on the
right to get (II)=0VL/oVT as follows:

ovr _,0xf
ot LR GyR
B 8V3 0 L % 0 "
_ 87‘)(3 |:Id4><4 0] aVS
A2 TR 2Y) 0 Tulioxie | 90X, X)) O0(X1, Xy) (9.1)
L O(X1, Xa) 1 1ox10 Vs OV, Va) 119510
_ L R
1, vy ] e e x
L 8()(1,2(4) 10x12 gtz Vs 8(V1,V4) 12x10
We have the same calculation for
ovE  gpR oxt
V) = — Lt )
(V) ovL aXRR oL

In the following, we only need to figure out the matrices

(X1, Xy) and oV1, Vy)
0(V3, V1, Va) (X, Xy)

9.2. From Delaunay to Cartesian coordinates

In this section, we compute

0(X1; Xy) O(x1,v1,T4,v4)

O(V3,V1,Vs)  9(Ls,l3,G3,93,21,v1,Ga,94)

This computation is restricted to the section {24’ =—5x} for matrix (II), and to the
section {zj | =1x} for matrix (IV). The key observation to obtain the tensor structure

of the following sublemma is explained in Remark A.4 (2).
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SUBLEMMA 9.1. Assume AG. Then, the following holds.
(a) On the section {fo:féx}, the matriz O(Xy, Xy)®/OVE in (9.1) is an 8x 10

matriz of the form

O4xa  Tdaxs ‘ O4x1 O4x1
8(IE1,U1,IE4,U4)R ®l 4 81X4 81X4 001 Ool
— v QL
a(LS;E?nG3vg3a$17U1;G4ag4)R Xt ! 1><V4 1 ( ) ( ) ’
li O(1/x) O(1/x)
O1xa  Orxs 0 0 8% 10
(9.2)

where we have the estimates

Ui = I1X5y 5 95797 )
2miki’ " X Jixs

y 11 1 1 1 p
lig(l.?)alh) ’
X/1x8

l‘_( Gakamy O(l) O(l i u LL)._ kamy _k’4m4>R
‘ Ly(GI+L3) x* 1><37 px? x3 " x ) GIHLY La 1x10

and l; converges to 1 defined in Lemma 3.2 as 1/x<<u—0.
(b) On the section {xil\:%X}’ the matriz O(X1, X4)®JOVE for (IV) has the same

form with the same w;, and I; is replaced by

k4m4 k4m4 1 1 1 1 onoou 1
li’:(olx&_LQv_ I )+0| -, 1 ;7377»*;*@*3,0 .
1 4 X \X"/Jixz #X° X° X X° X 1%10

Proof. We trivially have

ox, \r ax, P
_9M )\ 0 and (ZH) —1a
(a(vg,w)) o (avl 4

since the variables X3 =(z1,v1) are not transformed to Delaunay variables and they are
independent of Vs 4. It remains to obtain 0Xy/0V.

Step 1. (Formal derivations.)

In the following calculation, we use (8.8). The formal calculation works for both
cases, left and right, so we omit the superscripts. As before, we use 9 to denote the
partial derivative with respect to all twelve variables, and V to denote the covariant
derivative with respect to the ten variables, with Ly and ¢4 eliminated. Since we are
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restricted to the section x4 ::téx, we will solve ¢4 as functions of Ly, G4 and g4, and
we use 004 /0Ly4, 604/6G4 and 644 /0g4 for the corresponding partial derivatives. We have

Vy Xy
3X4 8X4
T4 Li b -4
O(Ly, ty) Vo(ls fa)+ <O4X8 8(G4,g4))
oX, X, Vvls oX, OX,
0Ly 9ty %v Lt (0 20 9 08 | 5Gy Dgs
4 4 5L, YV 1><875G 59 94
0X, 00y 0Xy 00X, 0y 4, oX, 0X,
_ L b
(8L4 5L, 864) VvLat g ®(0“8’5G 59 >+<04X8 8G4’8g4>
8%‘4 H
(92’(4 8L4 8-/1(4 1 3X4 8%‘4 I 81‘4 I
= _ L = . ) 5
8L4 8.’1}4 ” 8[4 ®VV 4 83}4’” 8£4® 01><87 8G4’ 894
8@4 ((%4
0 00Xy 0X,
4x8 6G4 694 (93)
Oxy Og || a55'4,“ ax‘lvH
0X, Ly % QVyLi+]0 %_ 0G4 % %_ 894 %
0Ly a:c4 Dy 9y VRS TES 0G, T Oxay 0L, gy Oy Oy
5%4 864
G4L4£4 k4m4 G4k4m4 T
(07 m4]€4 G2—|—L2) +O( )7 Li ’L4(G3+Li)> ®VV 4
0 0
Li€4/m4/€4 LZ‘€4
A TN L o1) =100
+ | 0axs 1 1
X X
kg _ kamy
Gi+Li Ly 4x10

where, in the last step, we use Lemma A.3, and choose the sign o=sign(u) to be “+” for
both part (a) and (b) of the lemma. Actually, the terms

8.734’“
8(L4, (;47 g4) 6X4
a$4’“ 8764
04y

are small compared to the corresponding OXy/0(L4, G4, g4), due to the smallness of
6(x47l, 1]4)/844 in (A7)



NON-COLLISION SINGULARITIES IN A PLANAR 4-BODY PROBLEM 339

It is easy to see from the above calculation that the first row is zero, since the first
entry of Xy is z4;. This also follows from the fact that we are restricted on the sections
{xf‘z”:féx} and {xiuz%x}, so that x4 is a constant. We already have the tensor
structure in the first summand of the last line of (9.3). Next, in the second summand
of (9.3), the two non-trivial columns are nearly parallel. The reason is that in equation

(A.7) the two vectors
x4, 1 Ovyg 1
and

8(L4,G4,94) a(L47G4ag4)

(the second and fourth rows in (A.7)) are parallel with ratio of modulus L3ly/m3k3, if

we discard the O(1) terms in the former (see Remark A.4). The two terms

8x47” (91‘47H
0G4 0Xy O0g, 0X4

_ Ita d — Ot
Oz Ol at Oz Ol
04y 0ly

are obviously parallel.
Step 2. (The case O(Xy, X;)F/OVE on the section {zfﬁ:’”:*%){})

Orbit parameters in this step should carry a superscript R which we omit for sim-
plicity. We define the last row of the above calculation (9.3) as the vector [;. That

is,

Gi+L7 Ly

l:— ( Gakymy

k4m4 k4m4
) Vi Ly+ (018 — .
e mz) AL U )

(9.4)

We get the estimate of [; stated in the lemma using Lemma 7.2 for the section
{xf” :féx}. Moreover, since the first entry in Vy Ly is Vi, Ly=14+0(u) and the last

two entries are O(1/x?), we see that li—ﬁ defined in Lemma 3.2 when we take limit
1/x<pu—0.
Then, the second row of the last line of (9.3) is

(_%—I—O(l))li‘i‘wlxs; 0(1),0(1)).

2
miki

For the third row, we define a vector

y (11 1 1 1 1 u)
P — 777777;7777/'677 9
XT3 X X s

as the first eight entries of I;, so the third row is (I;;1/x,1/X)1x10-
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Finally, we define

L 1Y
U; = <0a05070;07242707> ’
2maki X /ixs

which, after removing the first four zeros, is almost parallel to the last two columns in
the last row of (9.3), where we used (A.5) to get that L3¢,~—3, when restricted to the
section {xfu :—%X}- This completes the proof of part (a).

Step 3. (The case of O(Xy, Xy)Y/OVE on the section {xfl‘ =1x})

This case follows from the same formal calculation (9.3). However, since the vari-
ables are to the left of the section miu =3, we have Gf=0(1/x) in (9.4) according to

Lemma 6.11 (b). Thus, we get an improved l; in place of I;, by applying Lemma 7.2 to
(9.4). We also have L3(—{4)~$x using (A.6) for u>0 and £4<0 to the left of the section

a:f I Z%X- So, u; in the left case has the same expression as in the right case. This proves
part (b). O

9.3. From Cartesian to Delaunay coordinates

In this section we compute

0(V1; Vs) _ O(x1,v1,Ga, ga)

a(XhX‘l) a(mlvvlvmélvvél) '

The key observation to get the tensor structure is explained in Remark A.4 (3).

SUBLEMMA 9.2. Assume AG. Then, the following holds.
(a) On the section {xﬁl‘:—%x}, the matriz O(V1; Va)L/0(X, X)E in (9.1) is a

6 X8 matriz of the following form:

)L Id4><4 ‘ 04><1 O4><1 04><1 04><1
= X5 Dligi+ | O1xa 0 0 0 0 ,
o(1/x*) o@/x*) o@) o@) |, .

0(z1,v1, G4, 04

a(xla V1, T4, ’U4)L
014

where we have estimates

1 1\Y
Ujiq = Oa0a070a177+0 2 )
Ly X 1x6

— . 1 _m4k4 1 1
lzzz_<01X4’O<X2>’ XLa ’O<X)7 2)1><8.

(b) On the section {miH:%X} the matriz O(Vy;V4)/0(Xy, X4)E for (IV) has the
same form with w;; replaced by

T
(55 s Uy Uy Uy 7G3+Li 1X67

and l;;; replaced by Lz =—1l;.
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Proof. The only non-trivial part of this matrix is (G4, g4)/0(24,v4). We consider
first part (a), to the left of the section {xf“l:f%x}, where the variables should carry
superscript L that we omit. It follows from Lemma A.5 (b) that

dgs Ly 3G4+(111)
O(za,va)  Gi+L3 0(xa,v4) X2 x0T )

This implies that the two rows in 9(Gy, g4)*/0(x4,v4)" are almost parallel up to the O
term. Therefore, we have the tensor structure in the lemma.

Next, we define

Ly Y 1 1\
WUji5 = (01x4; 1, M) = <01x4§ 1, [14+O(><2>) )

1 0G4 1 myky 1 1
lii=—\01x4; 57— | = | 0x; O — |, — O\~ )i—5 )
x( a<x47v4>> ( <x> XL4 <x> 2>

where the entry —myky/x Ly is obtained using the following formulas:

PJ? 2
96 =P (by Lemma A.5), E;= u—ﬂ _ maky
0Q 1

C2mg [Q 0 2L
This gives the matrix stated in the sublemma. In part (a), all the Cartesian and Delaunay

|P|:\P’H| and P <0.

variables are immediately to the left of the section {xfu :—%X}, so we have GY=0(1/x),
using Lemma 6.11 and xf I z%x. Next, we consider part (b). It follows from Lemma A.5
that, to the right of the section {xfuzéx} the matrix d(Vy; Vy)/0(X1, Xy)T has the

same estimates as in the left case with
. L4 T
Uy = 01x4,1,m ;

Lijir == O1x4; 57— | = | 01xs; 0| 5 |, —O0( = |, 5 |
X( P 9w, va) b x%2)" xLa X/ 2

We see that /;; gets a “minus” sign compared to l;;;, since both P and QH get “minus”

signs. O

With the two sublemmas, we can complete the computation of the matrices (IT)
and (IV).

Computation of matrices (1) and (IV) in Proposition 5.2. To be compatible with
the formal derivation in (9.1), we add four zeros to u; as the new first four entries. We
still denote the new vector of twelve components by u;, as stated in Proposition 5.2. We

also define a 12 x 10 matrix

C:

?

|:Id4><4 04x6]

*
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where # is the O(1) matrix in Sublemma 9.1.

Then, consider Sublemma 9.2. To be compatible with the formal derivation in (9.1),
we enlarge u;;; and u;- by adding four zeros as the new first four entries to get vectors
in R, We define a 10 x 12 matrix

A |:Id4><4 04><8:| ’
O6 x4 *

where x is the O(1) matrix of Sublemma 9.2.

Fitting these manipulations into (9.1) gives

(I1) = (xuiii ®lisi+ A)R- L (xu; ®1;+O),
(IV) = (xwiir ®lisir + A) LR~ (xu; @1y +C). O

10. The local map

The section {|gs—qu|=p"} (3 <r<3) cuts the orbit for the local map into three pieces:

{2 = -2} — {ls—qal ="},
{les—aa|=p"} — {las—qa| = 1"},
{lgs—qal ="} — {=ff = -2}

We define three maps L=, L? and L* corresponding to the three pieces, respectively, and

we have

L=L*cLO%L".

Notation 10.1. e« We use the superscript + (or —) to denote the value of the orbit
parameters exiting (or entering) the circle |g3—qq|=p".

e Also recall the coordinates ¢_ and p_ for the relative motion, and ¢, and p, for the
motion of the center of mass of Q3 and Q4 in (4.10), i.e. qi:%(qgi%) and pL=p3+tp4.

e We introduce the notation q=(g;, ¢1) and p=(p4, p1) to handle the center of mass

and the remote body simultaneously.

The Hamiltonian for L.* is the following given in Lemma 4.7:

_( U% k‘1R)_m3Rk32,R m4RkiR H +Vout (10.1)

"\ 2mig |z 2L3 207 |ws/(1+p)—a24

where
Vous ( ) o(+“+1>
out{x3,T1,T4)= Hr—T—=),
t R
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and the coordinates are Delaunay coordinates from (2.3), and the Hamiltonian for L° is
given in Lemma 4.8:

1420\ (1420 , 2 1, u
H(q1,p13q-,p—; 0+, =(up2— >+( pi—— )+ (70— 50— )+ Vi,
( #P+) bopla] 4 77 ail ) \4TT 2lg |
10.2)

where

3geq)* e l® {a,94) 1
Vin(q1, 01545 44, 01) = p{p1, ps ) — 2|+q+|5 RPN |q1‘3+ +0 \mlﬁw ,

and the coordinates are the relative motion and center of mass coordinates (4.10).

10.1. ¥° control of the local map: proof of Lemma 2.10

In this section, we obtain the ¢° estimate of the local map, based on which we prove
Lemma 2.10.
Suppose the assumption AL for the local map is satisfied. Then, the orbit parame-
ters
x* = (z1,v1; L3, £3, G3, g3; La, la, Ga, g2) "

evaluated on the section {xﬁu =—2, :l:vffu <0}, satisfy |z1]|>x and all the other variables
are O(1), as 1/x<u—0.

First, it is clear that the time interval defining the maps L.* is O(1). After integrat-
ing the Hamiltonian equations obtained from the Hamiltonian (10.1), we see that Vi
gives only a perturbation of order O(u+p/x*+1/x?) to the Kepler motion. Next, the

contribution of the term
1

- ws/(14p) =4
to the Hamiltonian equation is estimated as

I
|3/ (14 p) =4 ?

and, after integration its perturbation to the Kepler motion is estimated as

K

nw
[

—o [t
since relative velocity is non-zero, and the orbit approaches close encounter nearly linearly
in t. So the orbit parameters are Kepler motions with o(1) perturbations as 1/y < u—0.
In particular, except for the two variables ¢3 and /¢4, all the other orbit parameters
undergo only a O(u!~%)(< u~) perturbation.
Next, we study the dynamics inside {|g3 —q4|=p"}. The next lemma shows that the

map LY is close to elastic collision.
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LEMMA 10.2. Suppose the initial orbit parameters on the section {xfu =-2, vf‘H <0}
satisfy AL. Then, the following holds.
(a) We have the following equations for orbits crossing the section {|qz—qs|=p"},

1 1 .
5<Kk<3, as p—0:

pi =3 Rot(@)(p3 —py)+3 (03 +p3) +O (20 4p3n= 1),
pi =—2Rot(a)(p3 —ps)+35(p; +p5)+O (A% 4851y,
(a*,p")=(a",p ) +0(u"), (10.3)
g3 —ay | = p",
g5 —ai| = p",
where
Rot(a) = [ cosa — sina}
sina cosa |
and
C;(in 1 2
a=m+2 arctan(ﬂﬁin) where —4£i2n = p4_ — 2|/;7| and Gin=2p_Xxq_. (10.4)

(b) We have 1/c<Lin<c for some constant ¢>1. If « is bounded away from zero

and 7 by an angle independent of p, then Gin=0(u), and the closest distance between
g3 and qq is bounded away from zero by p/c and from above by puc.

(¢) If «is bounded away from zero and 7 by an angle independent of p, then, when
measured on the boundary of the circle |q_|=2u", the angle between q_ and p_ is

O(u'™").
(d) The time interval during which the orbit stays in the circle |gs—qa|=p" is

At=0(u").

Proof. From (10.2), we decompose the Hamiltonian as H=H,¢+h(q, p), where the

Hamiltonian H,e governs the relative motion consisting of all the terms containing g_
or p_ in (10.2), as

2 2 2
o le P 3{qy,q-) < 36 1 )
L +O( P — ), 105

ATAr g P 20qlp e (10.5)

where )
ol B
402 47 2lg-|
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is in Delaunay coordinates and L_=puL;,.

Fix a small number §;. Below we derive several estimates valid for the first §; units
of time the orbit spends in the set [¢_|<$p*. We then show that At<d;. It will be
convenient to measure time from when the orbit enters the set [g_|<$u*.

Note that H is preserved and h=0O(1), which implies that L/u is O(1), and moreover
that this ratio does not change much for t€[0, §;]. Using the identity

wopr

402 4 2q|
we see that initially L/ is uniformly bounded from below for the orbits by Lemma 2.10.

Thus, there is a constant d2 such that, for t€[0, d1], we have

dop < L(t) < n
02

From (6.6), we obtain
L2
O(/ﬁ):|q,|:7(ecoshu—l)7 (10.6)

with ¢ and u related by u—esinhu=/¢. This gives

(=0(p"h). (10.7)
Next,

_OH _ P OHadq @ oo 1o
oL " e g or - o T =TT 00T (108)

‘
Since the leading term here is at least §3/2u, while /=0(u"~1!), we obtain part (d) of
the lemma. In particular, the estimates derived above are valid for the time the orbit

spends in |q,|<% w*. Next, without using any control on G, using the inequality

de|_1G/L_1
0G| L e L’
we have
__9Hdq _ (w1
-~ 0q_ o0 ’
OH 0q_ 9 o
—_——— — _ = 1 .
e a5 =Olla-[)=0(:™) (109)
;= OH da- _

e =0(u")O(u* ) =0(p>).



346 J. XUE

Integrating over time At=0(u"), we get that the oscillation of g and arctan(G/L) are
O(p®~1). We are now ready to derive the first two equations of (10.3). It is enough to
show that

pt = R(a)p-+0(u =) 431,

where a=2arctan(G/L) is the angle formed by the two asymptotes of the Kepler hyper-
bolic motion. We first have |p*|=|pZ|+O(p"), using the total energy conservation. It

remains to show the expression of . Let us denote ¢=arctan(G/L) and

sinh u uG  coshu

_ — _K _H= -
p-=(p1p2), (p1,p2)R(g)< L1-ecoshu’ L2 1—ecoshu>’ (10.10)

using (A.3). We have by (10.7) that el*/~f~ <=1, Thus,

G G
f'u—coshucosgfﬁsinhusing —+ttang
P2 _ L2 L _ L +e—2|uE( g u)
WG = a ' 95
P %2 coshusing—%sinhucosg il—ftang L (10.11)

=tan(g£¢)+O(u>1="),

where the sign =+ is taken as sign(u) and E is a O(1) function as |u|—oco. Since arctan
is globally Lipschitz, this completes the proof of part (a) by choosing a=2¢.

From the Hamiltonian equations for q, we obtain
qa =q +0(u"). (10.12)

We also have ¢"=¢~+O(p*), due to to the definition of the sections {|¢*|=34}. This
proves the last two equation in (10.3). Plugging (10.12) into the Hamiltonian equation
for p, we see that p*=p~+O(u"). This completes the proof of part (a).

The first claim of part (b) has already been established. The estimate of G follows
from the formula for . The estimate of the closest distance follows from the fact that, if
a is bounded away from zero and 7, then the g_(¢) orbit is a small perturbation of Kepler
motion, and for Kepler motion the closest distance is of order G. We integrate the G
equation (10.9) over time O(u”) to get that the total variation AG is at most p3*, which
is much smaller than u. So, G is bounded away from zero by a quantity of order O(u).

Finally, we get part (c) from the fact that
G=p"v-|sinL(p-,q-) =O0(n). O

We are now ready to prove Lemma 2.10.
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Proof of Lemma 2.10. Since we assume that the outgoing asymptote 6 is close to
7, we get that the orbit under consideration has to intersect the section |gs—q4|=p",
and also achieve |g3—¢g4|=0(p) by Lemma 10.2 (b). Indeed, it is enough to show that

pT xp~ is bounded away from zero for both collisions. For the first collision,
4(1+e0e1)(pZ xpT) =8v/5+2e0e1 —3(e1—£0) > 8V5—3.
For the second collision,
e2(p- xpt)=2(co+e1)(1+V2) > 2(1+V2).

With the same initial Fs, ez, g3 and e4, we determine a solution of the Gerver map.
We have shown at the beginning of the section that the orbit parameters (Es, es, g3, €4)
have an oscillation of order O(u'~*), and the f3 variable is solved from the implicit
function |gs—qq|=p". We get that the P34 and g3 4 at collision in Gerver’s case is close
to those values measured on the section |g3—q4|=p" in the p>0 case. Here, we note that
the coordinate change between Cartesian and Delaunay outside the section |g3 —qq|=p"
is not singular. Letting ;=0 in the first two equations of (10.3), we obtain the equations
of elastic collisions. Namely, both the kinetic energy and momentum conservation hold:
|2

lps P+ pi > =Ip5 *+Ips|* and pi+pi=p;+p;.

On the other hand, the Gerver map G in Lemma 2.10 is also defined through elastic
collisions. If we could show that the rotation angle « in the 11>0 case is close to Gerver’s
case, we then could show that the outgoing information p§’4 and q§’4 are close in both
cases. We then complete the proof using the fact that the orbit outside |gs—qa4|=p" is
an O(p!~") small perturbation of the Kepler motion after running the orbit up to the
section {z4=-2}. By converting p; and ¢ into Delaunay coordinates, we can express
the outgoing asymptote 6 as a function of pj and ¢, therefore a function of «, p3 4 and
q3,4 using (10.3), where =0 corresponds to Gerver’s case. To compare the angle «, it is
enough to show that the outgoing asymptote #* as a function of o has non-degenerate
derivative, so that we can apply the implicit function theorem to solve « as a function
of #* and the initial conditions. In fact, we have d*=cl (c#0), and from Corollary 10.4
we have 9/0a=u, and hence df* /da=cl-u, which is non-vanishing, due to Lemma 3.4.
Here, the vectors 1 and u are in Lemmas 3.1 and 3.2 with subscripts omitted. So, the

assumption |#* —7| <@ implies that o in (10.3) is f-close to its value in Gerver’s case. [J

10.2. € control of the local map: proof of Lemma 3.1

To study the € estimate of the local map, we first show that ¥ and L.~ are negligible
and we then focus on L°.
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LeMMA 10.3. Consider the maps L* under the assumption of Lemma 3.1. Then,
the vectors 1; and 1;, j=1,2, are almost left-invariant by dL* and span{ug_;,G3_;} is

almost right-invariant by dIL~ in the following sense: as 1/x< u—0,

dLL; -span{iiy, ty } =span{d, uy }+o(1),
dIL] dR-span{tiz, Gz} = dR-span{tia, Ua } +0(1),
1-dL! =1;+0(1),1;-dL} =1;+0(1),

dG-span{fiy, iy} = span{fy, Tz} +0(1).

Proof. The proof is again to use (7.1) to reduce the proof into two boundary terms
and the fundamental solution of the variational equation. We use the Hamiltonian (10.1).

The potential
1
T3
I+p

— x4

contributes a term of order

I

3
L3

14+p

— X4

to the variational equation and its contribution to the fundamental solution is estimated

as the integral

K

Iz
/ Ldt:O(ul—Qn)

2 [t

since the relative velocity is of order 1 approaching close encounter. Moreover, the terms
of Vous, all of which are also in U%, contribute only O(u) to the fundamental solution.
(If we let x go to infinity and set £4,=0(1), then all the entries in the matrix in the
statement of Lemma 7.3 (a) become u, u? or zero.) So, the fundamental solution is
estimated as Id+ceg 1 +O(u'~2%), where es; is the matrix whose (2,1) entry is 1 and 0
otherwise, and ¢ is a constant. For the boundary terms in (7.1), the estimate F of the

1724), given in §10.1 for {|gs—qa|=p"} as

Hamiltonian equations is (0, —1,01xs)+O(u
well as Corollary 6.10 for the section {xfu =—2}. It remains to estimate the term Vy{y
in (7.1). This estimate on the section {xf‘|:—2} is given in §8.1 and §8.3 as equation

(8.3). We next show the estimate of V¢4 on the section {|gs—qs|=p"}. We have

1
VV&,L:_ a‘QB—CJ4| VV|(]3_Q4|:—(qS_Q4).VV(q?)__q4). (1013)
9ty (g5 —qq)- 2B=00)

0l
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By Lemma 10.2 (c), we know that the angle formed by gz —qs4 and p3—p4 is O(u'=").
Thus, in (10.13), we can replace g3 —q4 by p3—ps4 making an error of O(u!~*). Hence,

(p3—p4)-Vy(q3—qa)

Vyly =
v (p3—p4)-0qs/0ly

+0(p'™").

Note that 9q4/044 is parallel to py. Using the information about vz and vy from Appen-
dix B.1, we see that (vs, v4)#(v4, v4). Therefore, the denominator in (10.13) is bounded
away from zero, and so

Vyly=0(1,1,1,1; ", =% = = 1,1,
We also need to make sure the second component V¢, is not close to —1, so that
Id —F®Vyl,
is invertible on the section |gs—q4|=p" . In fact, we have

(ps—p4)-p3

V[3€4 — —
b3 —P4)'p4

as u—0. The fact that Vg ¢, is not close to —1 is then verified using the information in
Appendix B.1.

For the derivative d@, the fundamental solution is estimated as Id+4ces 1 +0(1), and
the two boundary terms are both given by the estimates (8.3) and Corollary 6.10 on the
section {xf;H =—2}. Now, the statement of the lemma can be checked with this explicit

information. O

This lemma shows that we can replace G by L™ oGoL", and the bound of Lemma 3.2
still holds. So, in the following it is enough to study LL° instead of L to prove Lemma 3.1.

Proof of Lemma 3.1. As before, we use the formula (7.1). We need to consider the
integration of the variational equations and also the boundary contribution.

Recall that the subscripts — and + mean relative motion and center of mass motion,
respectively, and the superscripts — and + mean incoming and outgoing, respectively. In
the following, we are most interested in the relative motion, so we drop the subscript —
of q—, p—, L_, G_ and g_ for simplicity without leading to confusion. Note that, in
the following discussion, the symbol q1 has two different meanings, but it is always clear
from context. If q1 and qo both appear in an equation, then they mean the horizontal
and vertical components respectively of q_. If q1 appears in q or with p1 without go,

then it means Q1 —Q2, the position of body 1.
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Step 1. (The Hamiltonian equations, the variational equations and the boundary

contributions.)

It is convenient to use the variable £L=L/u. Lemma 10.2 says that 1/c<L<¢ and
u/c<G<ep for some ¢>1, if the rotation angle « is bounded away from zero and 7. We
also have ¢g,q, p,p=0(1) and ¢=0O(u"). From the Hamiltonian (4.10), we have

p 1
f=_— 2k—1
o +O(™"7)
(see (10.8)). Using ¢ as the time variable, we get from (4.10) that the equations of motion
take the following form (recall that £=0(u"~1) due to (10.7)):

dg, dt <1+2u N )
T P+THpL | ~ [
% - Lt OH e e~ de 2
a0~ M oarar T czp+ B

2
qud ( 2;@_1_ )) ~ 1
dG  dtOH ., lg+ |

AT dtag TH dq1 (1

(10.14)

+ ~
dg dtom S HP1L um) p

@~ atac T dp _ dt (1420, (1)) 1
pla? X3 X%’
d

ar
(a0 =0(w).

In the first three equations, the main contribution to H comes from |¢|? and |g, -¢|?, both
of which are O(u?~). We have the estimate

and we have

g 0 0 0 B . vl K
‘(Maaeaac:,ag>q‘0(ﬂ y oy [ y )a

using (10.6) for ¢=(¢1,¢2), up to a rotation by g. In fact, the 9/9¢ amounts to dividing
by the scale of ¢, i.e. u~1%. The derivatives 9/0L and 9/dg do not change the order of
magnitude. Finally, since G=0(u), the 9/0G amounts to dividing by p.

Next, we analyze the variational equations. The same rules as those used to obtain
(10.14) apply here. We have

oL ‘ulJrn ,LLK ILL1+/€ NlJrn 0 oL

J 0G ILL1+21<5 'u2/<a M1+2/{ ’u1+2/€ 0 0G

@ 59 =0 Iu2:<; M2n71 M2n ’u2n 0 59 (10’15)
5q U 2Kk 'u2n+1 u2n+1 U 6q
5p " p2e et 7 0 5p
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1

We need to integrate this equation over time p”~". Thus, we compare the solution to

the variational equation with a constant linear ODE of the form X'=AX. Its solution

has the form

e rk—1\n
X(Mn—l)zz (A:u ) .
We will show that (Au*~1)3<C5((Ap"~1)+(Au"~1)?). Then, we have
(Ap" " < Cp((Ap™ Y +(Ap1?) and C, =C3(1+C3)".

Hence, X (p* 1) <Id+C((Ap"~1)+(Au"~1)?). We next integrate the variational equa-

tions over time O(u"~1) to get the estimate of its fundamental solution

/J/QK IU/Z;@—I M2f€ M2f€ M3f$
3K Iu3l~e—1 HSA u3n M4I{
Idll +0 ,u3n71 ILL3H/72 /113571 uBHfl ,LL4571 . (1016)
K MSn—l M.?)K 2K M/-c
’un 'ul31<a71 ‘u3n Hli ‘u2m

Next, we compute the boundary contribution using the formula (7.1). In terms of

the Delaunay variables inside the circle |q|:% 1™, we have

ot 6|q)‘1 dlgl 1 2
_F (44l 9 (oY), 0(4572),0,0,0).  (10.17
(L, G,g,q,p) ( ot ) 9(L,G,g,q,p) (O™, 06™) ) )

Indeed, due to (10.6), we have
gl _, Ola| _ ANal _ ANal _ 1, w1
Combining this with (10.14), we get
g 8£ _ 1+k 142k 2K k—1 K—2
(M(ﬁ,G,g,q,p))®6(57G,g’q7p> =0 " T g™, ) @0, 1 %,0,0,0).

(10.18)
Step 2. (The analysis of the relative motion part.)

The structure of dILy comes mainly from the relative motion part, on which we now

focus. We neglect the q and p part, and will study it in the last step.
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Substep 2.1. (The strategy.)
Using (7.1), we obtain the derivative matrix

-1

/"LQK 2k—1 0
(L, G, g)"
( ) ag) _ Id3 10 ’u3n MSH—l 0
a(E’G7 ) MSH—I M35—2 0
M2n Iu2fc—l MQK,
X Idg +0 MBK, MBK—l M3K,
MBx—l M35—2 3k—1
M2/{ M2/{71 (1019)
X Id3 -0 M?m H}’mfl
HJS/{fl u3n72

— Id3 +O MSH M?m—l M?)I'i

= Id3 —|—P

For the position variables ¢, we are only interested in the angle ©:=arctan(g2/q1), since
the length [(g1,g2)|=3p" is fixed when restricted to the circle. We split the derivative
matrix as follows:

90O,p)" _ 9(©,p)" I(L,G,9)" O(L,G,g)”
9(O,p)- O(L,G,9)" O(L,G,g9)~ 0(©,p)”
__00©.p)" OL.Gg)”  0O.p)" ,IL G g) (10.20)
L, G,g9)" 0©,p)- 9LG,g9)" 9(O,p)
=:I+IL
Now, we prove the following claim.
CLAIM.
1 0G~
I=—-0(1)1x3® 7=———+0(1),
1 9(©.p) (10.21)
[ AR P} oG~ 3k—1 .
H—MO(H )1x3®7a(@’p),+0(ﬂ )-

We will give the expressions of O(1) terms explicitly.
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Substep 2.2. (The estimate of I in the splitting (10.20).)

Using equations (10.6) and (10.10), we obtain

1 pt o1
9O,p)" _ .
AL C.g)" =01 pu 11. (10.22)
1 pt o1

Next, we consider the first term in (10.20),

et oc- )t aa- 9O oy
=0 %36 o “aen oy “oep 10

Using the expressions

1 _p2 " . . .
12 19 and G=pxq=p|-|q|sin£(p,q),
we see that - a6~
—  —0(1 and ——=(0 F",O ). 10.24
Sog =0 md St =(0(x),0() (10.24

It only remains to get the estimate of dg~/9(©,p)~. We claim that

We use equation (10.11) to get

G G
g= arctan(pz—e_m“E(, g, u)) —sign(u) arctan() as |u] = oco.
p1 pL pL

‘We have ) )
1 G G

—2\u|N7 il ~ el 2(1—k) p4

(14 (i) )~ (4 () o

using (10.6) and (A.4), and E(-, -, -) has O(1) derivatives as |u|—o0. Thus, we get

g o—2lul :aarctan(pg/pl) darctan(G/uL) o—2lul oL
o3y 10t = Sl (ST ot ) g
darctan(G/uLl e 2lul oG o—2lul

(e o(5) e gy o™,

proving (10.25).
Plugging (10.22), (10.24) and (10.25) back into (10.23), we get the estimate of I in
(10.21). More explicitly,
1 0G~
I=-Up-—~" B,
po o 0O,p)”
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where
_0(©,p)"  Odarctan(G~ /uL™) 9(0,p)* 1—r
9(0,p)" oL~
B= ®
oL —9(O,p)” (10.26)
n a(e,p)* @ O arctan(p, /py) n darctan(G~ /ulL™) 0L
dg* 9(0,p)" oL- 9(0,p)”
+O(u'™").

Substep 2.3. (The estimate of II in the splitting (10.20).)

Now we study the second term in (10.20):

1 ILL71 1 2K 2k—1 2K
. . 8 £7G7 B
=0 1 ,LLil 1 .0 u&l{ ‘u‘infl u?)l{ (a(@‘)q)
1ot 3Rl BRe? 3k—1 P
3k—1 3k—2 3r—1
v o H -
=0 3k—1 3k—2 3k—1 9(L,G,9) 1o
1 H d(©,p)"
MSH—l M3I€—2 3r—1
oL oG~ g~
=it o@ o - Tow! a0, Ou 9©,p)"
W ( )1X3®a(@,p)7+ (M )1><3®8(®7p),+ ( )1X3®a(@’p)— ’

where we use that p?*<p3"~1 and p?*~1<p®=2 since I€<%. The first summand in
(10.27) is O(u3*~1). Applying (10.25), we get the estimate of II in (10.21). We then

obtain

oG~
—+B+O0(u* 7).

1 )
I+1I= = (U+0(1** 1))@ —
u( W) 2(©,p)

Substep 2.4. (Going from O to q.)

We use the variable © for the relative position ¢ and we have

oG~ . I PN _
W—O(M )7 (J—2M (COS@,SIH@)—(%?J),

© = arctan <y> , 1¢ld® =—(sin©) dx+(cos ©) dy.
x

So, we have the estimate

oq* 00t
(L,G 9"
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To get 9-/0q~, we transform polar coordinates to Cartesian,

9. 9. 0(r,e)
0g~  0(r,©)" g~
where r=|q~|=2p". Therefore, we have
or- 0- 2 0 . _
ﬁ_o and %—Eﬁ(—sm@ ,c0807).

So, we have the estimate 0G~/dq¢~=0(1), and

oL~ oL

—=—=0
dq~ 00~ ’
since in the expression
1 P p
4£2 4 2lq/

the angle © plays no role. Finally, we have

i arctan (]32) =0.
dq~ P

Applying these estimates to (10.26) and (10.27), we get

dg,p)" 1

Step 3. (The contribution from the motion of the center of mass.)
Substep 3.1. (The decomposition.)

Consider the following decomposition:

p..2O.pap)"  90O.pap)” ILGgap)”
2(©,p,q,p)~ I(L,G,g;q,p)* I(L,G,g:q,p) ()
(L, G, g;q,p)(") (L, G, g;q,p) (') O(L,G, g;9,p)~

9(L,G,g;q,p)(¢") I(L,G,g;q,p) 0(O,p;q,p)~

__[M OHA OHC DHA’ OHN O}
10 Wds]|B Ids||E F||B 1dg|l0 Idg

{ MACA'N+MADB'N MAD]
(BC+E)A'N+(BD+F)B'N BD+F |

Each of the above matrices is 11 x11.

= ;(0(u“)1x2, O(1)1x2)®(0(1)1x2, O(1") 1x2) + O(1)axa.

355

(10.28)

(10.29)
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Substep 3.2. (The estimate of each block.)

The matrix 5(0.p)"
P
M:
9(L,G,g)*
is given by (10.22) and
_9(L,G.g)"
9(©,p)"
by (10.24) and (10.25):
O(1)1x3
1wt o1 oG~
M=0|1 put 1 and N= (0, p)~
1 pt o1 1\ oG~
O - | z7——+001
() e +ow

The matrices C, D, E and F form the matrix (10.16), the fundamental solution of the

variational equation,
3&)

2Kk MZK_l MZK (u2n)lx4 (:U/ 1x4
MBK MBK_l MSK (u3n)1X4 (M4H)1X4
C D 3rk—1 3k—2 3rk—1 3rk—1 4rk—1
Z F =1Idy; +0 o u u (p Jixa (M )1x4
()axt (B3 Va3 )axa | (02 )axa (W) axa
() axt (B3 Dasr (13 )axa | (1) axa (12 ) axa

The matrices A, B, A’ and B’ are given by (10.18), boundary contributions,

Al o Al o ]
:Id +O 1+n’ 1-i-2/*€7 2/1; ®O 5—17 m—2’0;0 )
[ 51 ] { B 10y 11 FO0( 7 T, T ) O (" 1x8)

Substep 3.3. (The estimate of the first block MACA'N+MADB’'N in D.)

By (10.19),
/J/QH M2K,—1 /J/QH
ACA' = Ids +P =1d3 +O M3l€ ’u?m—l u3,~g
M?m,—l M3R—2 u?m—l

(recall that (10.19) is the part of (L, G, g)*/I(L, G, g)~ without considering the motion
of the center of mass), and by (10.21) and (10.26),

oG~

1
MACA'N =M (Ids +P)N = ;(U+0(p3“*1))®w+B+0(u3'<*1). (10.30)
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Indeed, using the notation of (10.20), we have I=M N and II=M PN. The estimates of
I and IT are given in (10.21).

Next, we claim that

oG~

MADB'N =03 %) ———
( )8(@,19)*

+O(u* 1) (10.31)

0 it can be absorbed into the error terms of (10.30). To this end, we split N=N;+ Ny
and A=Id + Ay, where Ao=0(p' ™", 25 12*)@0(u~~1, u*=2,0) and

O1x3
9G- O(1)1x3
Ny = 2(0,p)- and No= [ 0143
O<1> oG~ 0(1)1><3
1) 9(0,p)”

Thus, MADB'N=MDB'N+MA;DB'N. Let us work on the first term. A direct

computation shows that

HSI{ 'u3n71 0

DB'=0 | p*  p*=t 0| and MDB'=0(uz53" 15577, 03x1)-

'u4n—l M4I<,—2 0

Now, it is easy to see that M DB’N;y can be absorbed into the first term in (10.31) and
MDB’Ny can be absorbed into the second term. The key is that N7 has rank 1 and
the second row of N is zero. The analysis of M A, DB’'N is even easier, since a direct
computation shows that DB’ dominates As DB’ componentwise. This proves (10.31) and
shows that M ACA'N+MADB’N has the same asymptotics as (10.30).

Substep 3.4. (Estimate of the remaining blocks in D.)
The following estimates are obtained by a direct computation:

(12" 1x4 (13%) 14
BD+F=0(uxs)@0p" ', 172,000 | (1*)1xa (1) 1x4
(3 Yiwa ()14

2K K
+Idg+0<(” )axd (M2 )4x4>
(1%)axa  (H¥%)axa

=1Idg +O(p")gxs-



358 J. XUE

and

BO+E=0(nixs)@0(p "1 p72,0)0 [yt pdx=t e

+(()sx 1, (175 Dsxr, (B3F)sx1)
=O((1)sx1, (1) gxt, (1 Hgx1).

Accordingly, using (10.24) and (10.25) for N, and arguing the same way as in Substep 3.3,
we get
0G~

—+0(u")

/ 'N = l ® Ao =
(BC+E)A'N+(BD+F)B'N = M[O(u )]1x8®a(@7p)7 ’ (10.32)

MAD=[0(p*"")]axs.

Substep 3.5. (Completing the asymptotics of D.)

Substeps 3.1-3.4 above can be summarized as follows:

1 G~ B| o0
D=—(U+0(**1);0(1")1x ®<;0X >+( )+o ey,
#( (L”"77); O(1")1xs) (0. 1 0 1 Tds (")

(10.33)
Finally, when we use the coordinates (¢_, p_) instead of (©_,p_), as we did in Substep 2.4,
it follows from (10.28) that we get

g ,p,q,p)" 1
= = —O0(pf 2, Lix2; 1T x8) @O (L1x2, Ty 2; 01x8) +O(1).
B pqup) O e L) SO i D)
This is the structure of dLL stated in the lemma. O

It remains to obtain explicit asymptotics of the leading terms in Lemma 3.1. Be-
low, we use the Delaunay variables (Ls, £3, G3, g3; x1,v1; G4, g4)™ as the orbit parameters
outside the circle |g_|=2u", and add a subscript “in” to the Delaunay variables inside
the circle. We relate C° estimates of Lemma 10.2 to the C! estimates obtained above.
Namely, consider the following equation which is obtained by discarding the o(1) errors
in (10.3):

¢ =0, p"=R(a)p-, q"=q and p'=p, (10.34)

where « is given by (10.4). We have the following corollary saying that dIL can be
obtained by taking the derivative directly in (10.34).
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COROLLARY 10.4. The vectors i; and ij in Lemma 3.1 can be computed directly
from (10.3) evaluated at the j-th Gerver collision point j=1,2 as follows:

. o_ovr, _oVT X" 9(g-,p-,9,p)"

U; = h= h,
7T da 0X* 9(q-,p-,q,p)* dax (10.35)
[ 0Gu _ 8Gi  9(q-,p-,q,p)” X~ '
7oV 9(g-,p-.q,p)” 0X~ oV’

where

foJe! e
h=1i ——— =2Jvg—wy|sin?( = ).
Ji]%”aam [vs —val sin (2)
Here, vs and vy are the velocities of bodies 3 and 4 at the j-th Gerver collision point

(see Appendiz B), where |vs—uv4| is the same before and after the elastic collision. See
Notation 2.3 for the use of V and X.

Proof. We begin by computing the rank-1 terms in the expression for D. To get
(10.35), we need to multiply the vector by

5(113,43, G'3, 93541, D15 G4,g4)Jr a(QS,pB; q1,P1; Q4,]94)+
0(q3, P35 1, P15 G4, Pa) " dq-,p-,q,p)"

and the linear functional by

d(q-,p-,q,p)” 9(q3,p3; 91,013 G4, Pa)”
0(q3,p35q1,p15q4,p4)~ (L3, l3,G3,935q1,p1; G4, ga)~

For the map (10.34), we have

M:Id a(cb P)+ . a(q,,p,)*’
oap)”

which agrees with the corresponding blocks in (10.33), up to an o(1) error as u—0.

0 and d(q,p)*  0Gi,
dg-,p-)~ O(a,p)” ojet d(q,p)”

207

It remains to compare
g-,p-)"
9(g-,p-)"

Now, the expression for 1; follows from (10.30). Differentiating (10.34) we get

9g,p)" _ ( 0pf>.

e 0 Ba

Thus, to get the expression of u in (10.35), it is enough to show (cf. (10.26)) that, for
the map (10.34), we have

Opt [ da \ _ 8pf+8arctan(G‘/uE‘)8pf
da \0Gy, ] \ oG+ oG~ dg™

) . Gin=G". (10.36)
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Write p=V(G*, uL, g"), where G* and g* depend on G~ as follows. First, GT=G".
Second, (A.3) gives

+ Gj: + _
arctan (%) ~ gi —arctan <> and arctan (pi) ~ arctan (pg_) +a,
P1 pL P1 Py

where ~ means that the difference between the left- and the right-hand side is O(e~2%).
Thus, g ~g~ +a, and so

gpf OV 9V 9g" 9V +87V Oa

OG- 0G*  9gt 0G- OGt  dgt G’
proving (10.36). O

The next corollary says that the small remainders in (10.3) are also C! small, if the

derivative is taken along the direction with small change of G .

COROLLARY 10.5. Let y(s): (—¢,e)—=R19 be a C' curve such that

d(Gi,°7)(0)

I'=+'(0 T'=1 d
(), [TI=1 and SZn

=dG;, - T=0(p).
Then, when taking the derivative with respect to s in the equations

Ip3 12+ |pi1? = [p3 2+ |ps > +0o(1),
p'=p +o(1),
q"=q +o(1),

obtained from equation (10.3), the error terms are also o(1) as u—0, after taking the

directional derivative along the direction T.

Proof. For the motion of the mass center, it follows from Corollary 10.4 and (10.33)
that

d(q,p)" _109(q,p)"
dq-,p-qp)” pn Oa

da e
G, d(q-,p-,q,p)~

Here, 0a/0G;,=0(1). We already obtained in equation (10.33) that d(q,p)"/da=

O(u™), so our assumption

@1+ (0gx 4, Idg)+0(1), where 1=

(G O) _ e
ds - dGin I'= O(lj‘)
implies that
iMTZO(I)denTzO(M), (10.37)

ov-
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which suppresses the 1/u term. Here,

0(q-,p-,q,p)”

P =0,

by Lemma A.3. This proves the last two identities of the corollary.
To derive the first equation, it is enough to show that

(I P—lp=P) =o(),

since we already have the required estimate for the velocity of the center of mass. We use
the fact that the right-hand side of (10.2) is the same in incoming and outgoing variables
(superscripts + and —, respectively) by the total energy conservation. In (10.2), the
terms involving only q and p are handled using the result of the previous paragraph.
The term —p/|q-| vanishes when taking the derivative since |¢_|=4u" is constant. All
the remaining terms have ¢_ to the power 2 or higher. We have dq~/ds=0(1), due to
IT|I=1, and dq*/ds=0(1), due to (10.37). Therefore, after taking the derivative with
respect to s, any term involving ¢_ is of order O(u”). This completes the proof of the

energy conservation part. O

10.3. Proof of Lemma 3.4 (c)
In this section, we work out the O(1/u) term in the local map and prove Lemma 3.4 (c).
Proof. e Before collision, i:VV*an'

In this calculation, every variable should carry a superscript “—”, and we omit it
for simplicity. To verify ii~w3,ﬁé0 and L-{E#O for i=1,2 in Lemma 3.4 (c), noting that

w=(0,1,01xs) and w=(01xs, *, *), it is enough to work out the three entries
Vlg. Gina VG4 Gin and vg4 Gin

in 1. According to Corollary 10.4, we can differentiate the asymptotic expression of
Lemma 10.2. We have

(VG4Gin7 Vg<;CYVin)

o 0 0
——1=p)% (5 a1 (GE4) (Ve 00,080+ 004),

where O(u") comes from

(et
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and dominates
944
OL4

Indeed, we have 0q4/0L4=0(1) and

‘Vay,g.La=0(p).

H — M :Ml—ﬁ
w3/ (1+p) =24 lgz—aqul

)

and using (4.8) with H=0, the leading contribution to Vg, 4, L4 is given by

Voun (o L) oW

Jza|  |zatpas/(1+p)]

where we use Newton—Leibniz

1 1 B /1 ratiprs/(1+p) a3
lzal  [zatpws/(1+p)] o |Tattpws/(1+p)* 1+p

and Lemma A.3 for Vg, 4,24=0(1).

We next eliminate ¢4 using the relation |g3—gqq|=p":

9lg3 gl )1 Ka|q3—q4| 8|q3_q4|>+8|q3_Q4| (Vai,g:La)

(VG4€47 v94£4) = ( 864 6G4 9 894 8[/4
(g3—q4)-(0qs /0G4, 0qa/Dga)
=— +0
(q3—q4)-0qa /0ty W)
(p3—pa)-(0qa/ 0G4, 0q4/094) 1—
- _ +0 ).
(P3—pa)-0qa/00y (")

Here, we replaced g3 —q4 by p3—p4, using the fact that the two vectors form an angle of
order O(u!=") by Lemma 10.2 (c). Therefore,

o 0
(V6 Gin, Vg, Gin) = —(p3—pa) ¥ (8G4’ 8g4>q4

[ ((p3 —p4)+(0q4/ 0G4, 0q4/09g4)
0y (p3—pa)-0qa /0Ly

+(p3—pa) X >+0(u“+u””)-

Similarly, we get

(p3_p4)'aQB/a£3
(p3—pa)-0qa/0ly

15] 0
Vi, Gin = (p3—pa) X 872+(P3 —Pa) X TZ (

) +O(MH+M172K)~

We use the software MATHEMATICA to work out the three entries and check directly that
ii'U}3_i7éO and L--{IJ#O for i=1,2 using Lemma 3.2.
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o After collision, u=0V"/da.

In equation (10.3), we let u—0. Applying the implicit function theorem to (10.3)
with y=0, we obtain

%(st,p%; a1, p15 41, 0h)
1 T T -
=3 <0, O,R<2+a) (p3 —p4);0,0,0,0;0,0, R<2+a> (p3 p4)>
1 T T 9
=5 <0, 0, R<2> (p3 —11);0,0,0,0;0,0, —R<2) (p3 —M)) ,

where

T dR(«)
R — =
( 2 —|—a> da
and Vy+ £, is given by (10.13). Again, we use MATHEMATICA to work out OV /da, and
check directly that 1;-1;#0 for i=1,2, using Lemma 3.2.
To obtain a symbolic sequence with any order of symbols 3 and 4 as claimed in the
main theorem, we notice that the only difference is that the outgoing relative velocity

changes sign (p3 —py)——(ps —pi). So, we only need to send u— —u. O

10.4. Proof of Lemma 3.4 (a) and (b)

In this section, we prove Lemma 3.4 (a) and (b). Since we have already obtained 1 and u
in dL and 1, i u and u in dG, one way to prove Lemma 3.4 is to work out the matrix B
explicitly using an argument similar to that in Corollary 10.4. In that case, the current
section is not necessary. However, in this section, we use a different approach, which
simplifies the computation and has clear physical and geometrical meaning. We first
abbreviate dL in Lemma 3.1 (a) as

1
dL(x) = ;uj,u @1+ Bj
using the subscript p to absorb the u-depending o(1)’s. Similarly, we write
dG = x*u;,, @1, +4x10,,, @1, +O ().

LEMMA 10.6. Consider x,€U;(9), j=1,2, and 0; —n|<6 as in Lemma 3.1. Sup-

pose the vector

F]vli S span{ﬁg_j, 1=13_j} C TwMUj (5)
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for 7=2, and
fj# € span{dRﬁg_j, dRI:lg_j} - Tmu U]((s)
for j=1, satisfies
Ij(dLFj7M) =0 and HFJ',M”OO =1.

Then, we have

(@) Lju(L,)=0(p) as p—=0; ~ B

(b) the limits lim,, ,oT';, and lim, ,odLT;, exist, and lim, ,oT;, is continuous
in & (see Lemma 3.1) and lim, o dej,u is continuous in T and 0;

(¢) 1;(limg g_,qlim,, 0 dLT; ,)=0.

Proof. For simplicity, we give the proof in the case j=2 without needing the renor-

malization. The other case j=1 is completely analogous. Denote
Fl&u =1, (T1,) 01— 12,4 (V1 )01, € Kerly

and let v, be a vector in span(Q;, 1) such that v, —v as p—0 and 1 ;,(v,)=1. Suppose
that fgy,L:anqubHF’Q’H. Then

=~ a
dL(T,) = flg,u(u#)uz,ﬁauBz,#(uﬂ)+b#32,#r;#. (10.38)

So, Ig(d]L(fg,#)):O implies that

L bula(Ba,ul's,,)
127M(UH)12 (1127M) —|—,u12327“(1]u)

(10.39)

a, =

The denominator is not zero, since 1y, (v,)=1 and lz(uz,)#0 using Lemma 3.4 (c).
The1r~efore7 a,=O0(u) and b, =0(1) using ||T's,,||cc=1. Hence, fgﬁM:bMF'QM-i-O(u) and
15 ,(I'2 ,)=0(p). The continuous dependence on variables in part (b) follows from part
(a) of Lemmas 3.1 and 3.2. Now, the remaining statements of the lemma follow from
equations (10.38) and (10.39). O

To check the non-degeneracy condition, it is enough to know the following.

LEMMA 10.7. Let @, €U;(5) and |0 —n|<O<1 be as in Lemma 3.1. If we take the

directional derivative at x, of the local map along a direction
[ €span{tis_;, U3, } C Tz, U;(6)

for j=2 and
F]# S span{dRﬁg_j, de=l3_j} C Ta’u Uj(d)
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for j=1, such that 1;-(dLT'; ,)=0, j=1,2, then

OE3
im
1/x<p—0 Ol

is a continuous function of both x and 0f, where EJ (resp. ) is the energy of Q3

(resp. the outgoing asymptote of Qi) after the close encounter with Q4. If we take
further limits 6—0 and 6—0, we have

OE}

lim lim 3

5,60 1/x<p—0 8Fj,u

£0, j=1,2.

Now, we can check the non-degeneracy condition.

Proof of Lemma 3.4 (a) and (b). We prove (bl) and (b2). The proofs of (al) and

(a2) are similar and are left to the reader. To check (b2), dey, we differentiate

to get

1 /Gy G?
dey = - (LZ dG4—L—§ dL4>.

Thus, Lemma 3.2 gives dejw=G4/L37#0 as claimed.

Next, we check (b1l) which is equivalent to the following condition

det (

where T =1y (@)w; —la(w; )@. We have I'y#0, due to Lemma 3.4 (c).
Let T'; be a vector satisfying Tg~(d]LI‘2):O and chosen as follows: dILI's is a vector

bt [[> e | >

2(Tiy) Tp(Bal'p)
N 0, 10.40
2(12) 12(]3211/2))7’é ( )

in span{u,, §2F/2}, so it can be represented as dIL'x=bu> +b/§2F’2. Thus, we can take
b:712~§2f’2 and b'=I,(1iz) to ensure that dLI';€Kerl,. Note that we have b'#0 by
Lemma 3.4 (c). Hence,
det( 2(U2) }2(]§2F'2)) :1det<}2(ﬁz) Ip(dLT)

: 2

1 K —1,(dLTy),
IQ(UQ) lg(ﬁg) IQ(d]LFQ)) ( )

1>

where the last equality holds since ig (dLI'3)=0. By Lemma 3.2, 1;=(1,01x9). Therefore,

OB
ar,

and so (b2) follows from Lemma 10.7. O

Lo(dLTs) =
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It remains to prove Lemma 10.7. It is more convenient for us to work with polar

coordinates. We need the following quantities.

Definition 10.8. We denote by v the polar angle, related to u by

() =y ()

for an ellipse. We choose the positive y axis as the axis »=0. We let E denote the

energy, e the eccentricity, G the angular momentum and g the argument of apapsis.

Recall the formula
G2
r=—-
l1—ecosy
for conic sections in which the periapsis lies on the axis ¥==. In our case, we have, as

1/x<pu—0,

L (G ,
P 1—ef singwgwgf) B (10.41)
= (Gi +o(1).

4T 1—essin(yi —g7)

LEMMA 10.9. Under the assumptions of Corollary 10.5, we have

dr;  dry dwt  dr d; o
o), o =gy to), =g o), gr =gk ro(l).

dry _dry
ds ~ ds

Moreover, in (10.41) the o(1) terms are also C' small when taking the derivative with
respect to s.

Proof. To prove the statement about (10.41), we use the Hamiltonian (4.8). We have
seen in the beginning of the proof of Lemma 10.3 that —u/|q3—qa| gives an O(u!=2r)
perturbation to the variational equations. This shows that the perturbation to the Kepler
motion is C! small.

Next, we consider the derivatives drj ,/ds. We consider first the case of “—

9

. From

the condition |73 —74|=p", for the Poincaré section we get

d

(Fg—ﬂ)-%(ﬁ;—ﬁ;) =0,
and hence d
(Fa—7y) L g(ﬁ,—ﬁ).

We also know the angular momentum for the relative motion is
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which implies that 7% —7y is almost parallel to 73—y, by Lemma 10.2 (c), and hence
d(7s—74) /ds is almost perpendicular to 73—7. The condition

dGy,

reads
(i(%ﬁ)) X (73 — )+ (3 —T4) X (i(ﬁgm) =0(p).

Since the first term is O(u"*) due to our choice of the Poincaré section, we see that

(5 —7y) X (i(@ﬂ)) =o(1).

Since d(75—74)/ds is almost perpendicular to (7._"3—7%'4) by the analysis above, we get

%(7%77?4) = O(l)

Taking the radial and angular part of this vector identity, and using that r4=r3+o0(1)
and ¥y =13+0(1), we get the “—” part of the lemma.
To repeat the above argument for “+” variables, we first need to establish that
dG{ /ds=O(p). Indeed, using equations (10.19) and (10.29), we get
aG;; _ aG;; a(ﬁ,Gm,g,q, p)7

0s 8(57 Gin7 9,9, p)7 0s
=0, 1, 1%, 15 4, 15%4) O, 1,1, 11, Liwa) = O ().

It remains to show that d(73—7")/ds=0(1) in the “4+” case. Since we know it is
true in the “—” case, the “+” case follows, because the directional derivative of the local

map dILI" is bounded, due to our choice of I'. O

We are now ready to describe the computation of Lemma 10.7. We will use the

following set of equations which follows from (10.34):

Ei+E; =E;+E;, (10.42)

G3+G; =G5 +Gy, (10.43)
21 cos(1hs + +)+£ cos(vy —gy ) = L3 cos(v3 + ’)+£ cos(vy —g1) (10.44)
Gi 371793 Gi 4 —94)= G 3 T93 G, 4 =94 ) .

1—ed sin(¢3 +g7) h 1—e; sin(y; +g5)’
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G (@ s

1—ej sin(yf+g5) 1—ejsin(y)—g;)’ (10.46)

G2 (@) o

1—e3 sin(y3 +93) B 1—ey sin(vy —g;)’ (1047)

V3 =y, Uy =vy, Ui=v3, x{=x7, v =v;. (10.48)

In the above equations, we have dropped o(1) terms for brevity. We would like
to emphasize that the above approximations hold not only in the C° sense but also
in the C'! sense when we take the derivatives along directions satisfying the conditions
of Corollary 10.5. Equation (10.42) is the approximate conservation of energy, (10.43)
is the approximate conservation of angular momentum and (10.44) follows from the
approximate conservation of momentum as follows. Represent the position vector as

7=ré,. Then, the velocity is 7"=7¢,+r1éy. Conservation of momentum gives

Taking the radial component and using the polar representation of the ellipse

a2
we get
. G? .2 a
r= (1fesin(¢+g))26COS(w+g)w = %e (:os(z/J—f—g)r2 = é cos(v+g).

The possibility of differentiating these equations is justified in Corollary 10.5. The
remaining equations reflect the fact that Q3 and Qj are all close to each other. The
possibility of differentiating these equations is justified by Lemma 10.9. We set the total
energy to be zero. So, we get Ey =—Fj3. This eliminates E;. Then, we also eliminate

Y7 by setting them equal to 3.

Proof of the Lemma 10.7. Lemma 10.6 and Corollary 10.4 show that the assumption
of Lemma 10.7 implies that the direction I' along which we take the directional deriva-
tive satisfies 0Gin /0T =0(u). So, we can directly take derivatives in equations (10.42)—
(10.47). Recall that we need to compute dE3 (dLT"), where I'eKerl;Nspan{ws_;, w}.
Lemma 3.2 tells us that in Delaunay coordinates we have
Ly

@=(0,1,01x5) and w=(O1xs,1,a) where =77 frmry

an(2) =/ ()

(10.49)

The formula
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which relates ¢ to ¢ through u shows that (10.49) also holds if we use

(L3, 3, G, 933 01,015 Gy, 94)

as coordinates. Hence, I" has the form (0,1, 01xg, ¢, ca). To find the constant ¢, we use
(10.47).

Using (10.48), we can replace ¢3 =5 =1, =, by ¢, and get rid of z1 and v;. Let
L denote the projection of L to the variables (Fs,Gs,gs,G4,94), and let T' denote the
projection of I' to the variables (Es, v, Gs, g3, G4, g4). Thus, we need to find dE; (dLT").
To this end, we write the remaining equations (10.43)—(10.46) formally as F(Z*, Z~)=0,
where Z*=(E3,GY,94,G4,94) and Z-=(E5,v,G5,95,G4,9,). We have

OF OF

LT+—TI'=0.
gz T +57-T=0

However, OF /0Z™ is not invertible, since F involves only four equations while Z* has five

variables. To resolve this problem, we notice that, by definition of T, we have 1.dLT'=0,
1= <GZ/LZ 0,0 _ 1)
NG (LE)PH(GP LY )
by Lemma 3.2. Thus, we get

where

1 0 177 0
OF dLT =— | HF - and dLT'=-| gF OF .
0zZ+ 0z~ oz+ o7~

We only need to show that the entry dE3 dLT is non-vanishing to prove Lemma 10.7.
It turns out this number is 0.376322 for the first collision and —1.86463 for the second

collision. O

Appendix A. Delaunay coordinates
A.1. Elliptic motion

The material of this section could be found in [F] and [W]. Consider the 2-body problem

with Hamiltonian

H(P,Q)=———, (P,Q)cR"

This system is integrable in the Liouville-~Arnold sense when H <0. So, we can introduce

the action-angle variables (L, ¢, G, g) in which the Hamiltonian can be written as

mk?

H(Lavavg> = _ﬁ7

(L,¢,G,g)€T*T%
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The Hamiltonian equations are

. . mk2

We introduce the following notations: FE is the energy, M the angular momentum, e the
eccentricity, a the semimajor axis, b the semiminor axis.
Then, we have the following relations which explain the physical and geometrical
meaning of the Delaunay coordinates:
L? LG k GY
a=— b:%, E:f%, —-M=G, e= 1<L) .
Moreover, g is the argument of apapsis, ¢ is called the mean anomaly, and ¢ can be

related to the polar angle i through the equations

tan(§>:\/g-tan<;> and wu—esinu=/.

We also have Kepler’s law

ad 1
™ (2n)”
which relates the semimajor axis a and the period T of the ellipse.
Denoting the particle’s position by Q@=(q1,¢2) and its momentum by P=(p1,p2),
we have the following formulas in the case g=0:
L? G? LG .
qL = o <cosu— 1—L2>, Qo = o sin u,
_ mk sinu _mk G cosu
ML i@ Peosu’ T P 1\ /I-GP R cosu’

where u and £ are related by u—esinu=/. Here, g does not appear because the argument

(A1)

of apapsis is chosen to be zero. In the general case, we need to rotate the (¢1,¢2) and
(p1,p2) using the matrix

cosg —sing

[ sing cosg } '

Notice that the equation (A.1) describes an ellipse with one focus at the origin and
the other focus on the negative z-axis. We want to be consistent with [G2], i.e. we want
gz%w to correspond to the “vertical” ellipse with one focus at the origin and the other
focus on the positive y-axis. Therefore, we rotate the picture clockwise. So, we use the

Delaunay coordinates which are related to the Cartesian ones through the equations

2
Q”:L L?( cosu— 17G— cos g+ LG(sinu)sing |,
mk L2
(A.2)
QL= ! L*( 1 S +LG(sinu)
L= Cos U 72 ) sing sinu)cosg |.

This is an ellipse focused at the origin with its other focus lying on the positive y-axis.
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A.2. Hyperbolic motion

The above formulas can also be used to describe hyperbolic motion, where we need to
replace “sin” by “sinh” and “cos” by “cosh”, and change signs properly (cf. [F], [W]).
Namely, we have a=L?/mk, b=LG/mk, E=k/2a, —M =G and e=+/1+(G/L)2. Also,

= L cosh 1+G2 _L sinh
=— —\/14+— = —sin
D=k " L2 )’ Bk “

A.
__mk sinh u __mk G coshu (A-3)
n L 1—-\/1+G?/L2coshu’ b2 L? 1—\/1+G?/L? coshu
where v and £ are related by
O\
u—esinhu=/¢, wheree=4/1+ <L> . (A4)

This hyperbola is symmetric with respect to the z-axis, opens to the right, and the
particle moves counterclockwise on it when wu increases (¢ decreases) in the case when
minus the angular momentum G=PxQ<0. The angle g is defined to be the angle
measured from the positive z-axis to the symmetric axis. There are two such angles
that differ by m depending on the orientation of the symmetric axis. This 7 difference
disappears after taking tan, or in the symplectic form and the Hamiltonian equation after
taking derivative, so it does not matter which angle we choose.

When the particle moves to the right of the sections {xZH =—1x} and {xiu =1x}
(Definition 4.3 and Figure 3), we have a hyperbola opening to the left and the particle
moves counterclockwise. To achieve this, we rotate (A.3) by an angle 7+g. In this case,
we choose g to be the angle measured from the positive z-axis to the symmetric axis
pointing to the perigee:

1
Q= — (—(cos g) L*(cosh u—e)+(sin g) LG sinh u),

QL= % (—(sin g)L?(cosh u—e) —(cos g) LG sinh u).

mk

(A.5)

1, . G, .
= {"ecosha (L(smh u) cos g— ﬁ(sm g) coshu,

1
7 (sinhu) sin g+ % (cos g) cosh u> .

We see from (A.4), when |u| is large, that we have sign(u)=—sign(¢). We have three
different choices of g in this paper:

(a) When the particle Q4 is moving to the right of the sections {xﬁuz—%x} and
{xf” =2x}, and if the incoming asymptote is horizontal, (see the arrows in Figures 1
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and 2 for “incoming” and “outgoing”), then the particle comes from the left, and as u
tends to —oo, the y-coordinate is bounded and the z-coordinate is negative. In this case,
we have tan g=G/L, g€ (*%ﬂ', O). We use u<0 to refer to this piece of orbit.

(b) When the particle Q4 is moving to the right of the sections {fo:*%X} and
{Iil\ zéx}, and if the outgoing asymptote is horizontal, then the particle escapes to the
left, and as u tends to oo, the y-coordinate is bounded and the xz-coordinate is negative.
In this case, we have tan g=—G/L, g€ (0, 7). We use u>0 to refer to this piece of orbit.
The above two cases can be unified as

G
tang=— sign(u)f, with G <0,L>0.

(¢) When the particle Q4 is moving to the left of the sections {xf”:—g} and
{xi 1= 3}, we treat the motion as hyperbolic motion focused at ;. We move the origin
to Q1. The hyperbola opens to the right. The particle Q4 moves on the hyperbola
counterclockwise with negative angular momentum G, we then rotate by angle g, and
g is the angle measured from the positive z-axis to the symmetric axis pointing to the
opening of the hyperbola. The orbit has the following parametrization:

1
Q= — ((cos g)L?(cosh u—e) —(sin g) LG sinh u, (sin g) L?(cosh u—e) 4 (cos g) LG sinh u),
m

k 1
P= 1—:ch (_L (sinhu) cos g+ %(sin g) coshu,

- %(sinh u)sin g— % (cos g) cosh u> . (A.6)

We note that the Delaunay coordinates have some singular behavior near double
collision. When we set e=1 in (A.4), we find /=u3+h.o.t. Hence, u as a function £ in a
neighborhood of zero is only C° but not C'. One can verify that, for G=0 and £#0, the
hyperbolic Delaunay coordinates still give a symplectic transformation, so we only have
singular behavior when G and /¢ are both close to zero. To control this singular behavior,

we need the following estimates in Lemma 7.3.

LEMMA A.1. (Lemma A.1 of [DX]) In the hyperbolic Delaunay coordinates, as G—0,

u—0 and L being close to 1, we have the following estimates of the first-order derivatives

ou ou
oG and ’8L’ 1G]
and the second-order derivatives
0Q 0*u 0Q 8%u 9 0Q 0*u
= <4, |=—|<4 d |= <A4|G.
du OG? u o1z | SAG° ad 5 56ar| S 4G
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We next cite Lemma A.2 of [DX] to simplify our calculation. The lemma implies

that we can replace +u by In(F¢/e) when taking first- and second-order derivatives.

LEMMA A.2. (Lemma A.2 of [DX]) Let u be the function of ¢, G and L given by
(A.4), and let o=sign(u) when |u| is large. Then, we can approximate u by In(—ol/e)

in the following sense:

—ol _(Inl|/| ou o 1
““‘lne—o(e) a£_£+0(e2>’

(5 2 )uromr=0( 1), (L ) uwrome=o( )

The estimates above are uniform, as long as |G|<C, 1/C<L<LC and (>4, for some
constant C>1 and the implied constants in O(-) depend only on C and {y.

A.3. The derivative of Cartesian with respect to Delaunay

Next, we calculate the first-order derivatives of the Cartesian variables with respect to

the Delaunay variables. The assumption of the next lemma is met by Lemma 6.11.

LEMMA A.3. Assume that |G|<C and 1/C<L<LC for some C>1.
(a) Assume further in the right case g=—o arctan(G/L)+e, where o=sign(u) and

W 1
=0\ 51T )
(|E4|2+1 X>

Then, we have the following estimate of the derivative of Cartesian coordinates with

respect to the Delaunay coordinates, as £—oo:

8(Q|,QL,P|,PL)_D_i_e[Rot(éw) 0l ):|.,D+{O(1)2><4]+O(62)3D7 (A7)

(L, ¢, G, g) 0 Rot 2x4
where
2B B )
Umk Umk
GL2¢ 0 L3¢ L%
p_ | mE(GZHI?) mk(G2+12) " mk
km km
T Ie 0 0
Gkm 0 _ km B k7m
L(GZ+L2) G2+12) L |

(b) In the left case, if we assume g,G=0(1/x) and L=0(1), then the estimates of
the derivative are obtained by setting G=0(1/x) in the above matriz.
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oQ oQ

(c) We have
Q) _ _ 99 H_ 9Q H_
|00 |5igs|-00. G2a=0 wi 52-0-0cuwano.

Proof. First we drop e in (A.5), since it will contribute a O(1) term in (A.7).

To obtain the leading term we just need to calculate

2(Qy,Q1, Py, PL) o
8(Lag7G’g) <L,£) G; —0 arctan<L>>7

where Q refers to the right-hand side of (A.5) with the e term discarded. This derivative
is obtained by a straightforward calculation using the formulas (A.5) and (A.6) with the
help of Lemma A.2. The calculations of 8@/ 0G and 8@/ OL are presented in detail in

Lemma A.3 of [DX], and the other derivatives are similar. To get the first correction

I 1
ol —F -
<|€4|2+1 +X>

part, let go==arctan(G/L) and e=g—go. We use the relations

term, i.e. the

(@Hvéla -PHaPJ_)(Lﬂ& G7g) :ROt(g)(@HvéLa -PH»PJ_)(Lﬂ& Gv 0)7

and
Rot(go+¢) =Rot(go)+e Rot(37) Rot(g0) +O(£),

and notice that rotation by 7 has the effect of interchanging the roles of || and L. This
gives parts (a) and (b) of the lemma.

Part (c) follows by direct calculation from (A.5) and Lemma A.2 (see Lemma A.3 (a)
of [DX]). O

Remark A.4. (1) Part (c¢) of Lemma A.3 means 0Q /g is almost parallel to 0Q/0G.
This plays an important role in our proof of Lemma 6.5, as well as in [DX]. In fact, in
(A.7) the matrix has determinant 1, since it is symplectic. We look at the D term in
(A.7). The discussion remains true when the other terms are included. In D, the first,
second and fourth columns have no obvious linear relations. However, the first and
fourth columns have modulus O(¢), when |¢| is large. So, the third column must be
almost parallel to either the first or fourth column to get determinant 1.

(2) The second and fourth rows of D are almost parallel for similar reasons. This
fact plays an important role in the proof of Sublemma 9.1.

(3) The same argument can be applied to the inverse of the left-hand side of (A.7).
We will see in Lemma A.5 below that the two rows dg/0(Q, P) and 0G/9(Q, P) are
almost parallel, which is used in the proof of Sublemma 9.2 to get the tensor structure.



NON-COLLISION SINGULARITIES IN A PLANAR 4-BODY PROBLEM 375

A.4. The derivative of Delaunay with respect to Cartesian

We could have inverted the matrix (A.7) to get the result of this section. However,
though the matrix (A.7) is non-singular, it is close to be singular, since we have some
large entries of O(x). Therefore, we calculate the derivatives 9(L, G, g)/0(Q, P) directly

using known identities.

LEMMA A.5. We have the following estimates about the derivatives of Delaunay

variables with respect to the Cartesian variables:

oL L} (kQ P oG
3(Q,P)__mk2(|Q3’m>7 m_(_PLaP|\aQL7_QH)7
and
dg 1 . L oG G OL 1
0.7 = 00 P0G g - s ) O @)
as [¢|—oo.
Proof. From the relation
mk* _P? k-
22 2m Q|
we get
oL B L3 [ kQ B
oQ,P)  mk2\|QP m)’
We also have 5c
=P =(—-P,, P — .
G XQ and a(Q,P) ( 1, H7QJ_7 QH)

To get the derivative dg/9(Q, P), we take the quotient Py /P in (A.5) and (A.6), then

apply the formula

tan attan g3
t +)=—"—
an(a5) 1Ftan atan g8

to get that, as |u|— o0,

P
g= arctan(PL) —sign(u) arctan(i) —6_2“|E<§,g, u) +o(e~2)  (mod =), (A.8)
Il

where E is a smooth function. Hence,

oy PIOPL=PLORy _  LOG-GOL (1
TR BTG e

1 ) LOG—GOL 1
=00 —PLPM—SIgn(u)GuLz*O()’ -
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A.5. Second-order derivatives

The following estimates of the second-order derivatives are used in integrating the vari-

ational equation.

LEMMA A.6. (Lemma A.5 of [DX]) Assume that |G|<C and 1/C<L<LC for some
constant C'>1.
(a) We have, as |[€]— o0,

’Q 9%Q o 9\ [0IQF\ _
e (G ] ( 99 >_(0’O)’
>Q >’Q >’Q
aG? =0(), AL =0(), OLOG =0().
(b) Under the conditions of Lemma A.3(a), we have
0’°Q

8G2 2 +G2)3/2 (L coshu, 2G sinh u)+0O(1),

L?sinhu
agaG ( — >+O()
< GLblnhu )

—2v/L?24+G2coshu

+0(1),

698L VIZ+ G2

(LG coshu, (L?+3G?) sinhu)+O(1).

8G8L (L2+G2)3/2
(c) Under the conditions of Lemma A.3 (b), we have

aQQ:—coshu(l,O)—FO(l)’ )

= —Lsinhu(1,0)+0(1),

G2 dg0G
aQQ ) 82Q
0901 Lsinhu(0,2)4+0(1), 5CHL= coshu(0,1)+0(1).

Appendix B. Gerver’s mechanism
B.1. Gerver’s result in [G2]

We summarize the result of [G2] in Table 1. Recall that the Gerver scenario deals with
the limiting case xy—oo and pu—0. Accordingly, ()1 disappears at infinity and there
is no interaction between (3 and Q4. Hence, both particles perform Kepler motions.
The shape of each Kepler orbit is characterized by energy, angular momentum and the
argument of apapsis. In Gerver’s scenario, the incoming and outgoing asymptotes of the
hyperbola are always horizontal and the semimajor axis of the ellipse is always vertical.

So, we only need to describe on the energy and angular momentum.
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1st collision | @(—¢epe1,e0+€1) | 2nd collision @(ed,0)
Q3 Q4 Q3 Q4
ener 1 1 1 —— i TN
8y 2 2 2" 22 2" 22
angular momentum E1>—¢o p1—r—p2 —£&0 e0V2
eccentricity E0€1 €1+>€0
eV €3
semimajor 1 -1 1r—>(—0) 1r—>——;
&1 €0
&2
semiminor £1H>€0 p1>p2 £0 ) €0 ﬂHsl ﬂ
€1

Table 1. Summary of the result of [G2].

Here,

—Y+/Y2+4(X+R)
2 b)

P12=
R=vX?+Y? and (X,Y) stands for the point where collision occurs (the parenthesis
after @ in the table). We will call the two points the Gerver collision points. In the

above table ¢ is a free parameter and £1=1+/1—¢3. At the collision points, the velocities

of the particles are the following. For the first collision,

- g2 €0 (4 Yy 1

=\ y , U SRR S K

3 E()€1+]. E(]E1+]. 4 Rp1 Rp1
_ €2 €1

0 - vi= 1_~_L L
o 5051+17€0€1+1 ’ 4 sz’ Rps .

For the second collision,

(%

Wl



378 J. XUE

Appendix C. €' control of the global map: proof of Lemma 3.2

In this appendix, we derive Lemma 3.2 from Proposition 5.2. We split the proof into six

steps.

Step 0. (Preparations: definitions of auxiliary vectors and simplification of the five

matrices.)

We define some new auxiliary vectors. Recall that in the paragraph before Proposi-
tion 5.2, we introduced a convention to use bold font to indicate that the estimate of the
corresponding entry is actually ~, not only <. Below, we use the following notational

convention to make it easier for the reader to keep track of the computations.

Notation C.1. A vector with “tilde”, “hat” and “bar” means a O(1/x), O(u) and

O(1) perturbation to the vector, respectively.

Definition C.2. We define the following list of vectors:
1 1 1 1 u 1 poppV
° ﬂ‘N3uu+O<X) /S <><2717272;Na7272;7) 5
- 1 11 1 1 1 11
imNa=1+0(1) £ (150 T i g i1 )

o U:=Nsu=u+O0(u) < (u, =1, 1, s 1, % % i;u,u>,

f:=lN1=l+O(u)§(Lu,u,u;u,u,u,u;u,u);
X X X
1 1Y
o Su:=AL-R 'u; ~AR-L 'uy < (0,0,0,0;O,M,Q;O, > =0(p);
X X
11 1 1 11 11
(sl::liiiL'R_lchiii/R'L_lcS(747474;277”7/1’;7)20(/'6);
X X X X XX X X X
1 T
b azzz:umz—"_&us (0707070;05111/70’;171) ’
X
- 11 1 1 1
lZ:ll—f—(;lS(]., = a5 7/~L7M;171)7
1 T
b aii’i' :Um"f'(suf, <07030a0;o>u703 e 171) )
X
- 11 1 1 11
li/I:li/+5l<(,, — "5 — H,M,l,l),
X X
and the following matrices:

Sy:=AL-R™'C and S,;:=AR-L7'C.
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Note that S3,5,<S, where

Idsxa Oax1 Oax1 Oax1 04x1 O4x2
0 O1x3 14+0(u) 0 0 0 O1x2
0 O1x3 0 1+0(p) 0 0 O(1)1x2
=1 00) 00/ | 0Wmd) O/ud) 140() Ow/x) | OL/x)1xs
0 O1x3 0 0 0 14+0(u) O1x2
0 O1x3 0 0 0 0 01x2
| 140(p) O(1/x*)1xs | O(1/ux®)  O(/x*)  Ow)  O(w) | O(1/x)1x2 |

SUBLEMMA C.3. (1)

(2)
14+0(p) 1+0(w)

X

lZ”LRil’U,Z: and liii/~R~L71ui/ = —

Proof. All of these estimates come from straightforward calculations using Proposi-
tion 5.2 and Definition C.2. Item (2) is exact. It uses Proposition 5.2 (b2). O

Using Definition C.2 and Sublemma C.3, we simplify the five matrices into sums as
follows. Notice that the factors (Idio +ui®I}) in (I) and Id;o +uf®If in (V) are both

O(1), so we do not include them in the following calculation until the final step for

simplicity. We shall write (I) and (V) for the modified matrices. We have
(I1I) < (Id1o +xu®l)N3(Id1o +xuel’)

= (Id1o +xu®!)(N3+xNsu®!l')

= (Id10 +xu®!)(N3+xa®l)
= (N3+xu®l')+xul(Ns+xul’)
~ N3+ xa®l +xu®l,

(I1) = (xwiisi @Lizi+A)L- R (xu; @1;+C) (C.1)
=X @l L- R u; @1+ x Su®@1; 4 X3 01+ S
~ X @1 — X Su@bl+S,

(IV) ~ x5 @y — x Su@8l+ S,

(1) < (Id1o +xu®I) Ny = N1+ xu®IN; = Ny +xul,

(\_/) < N5(Idgg +XU®ZI) = N5+N5XU®ZI = Nj +Xﬂ®l,,
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where, for (IIT), we used that
I(N3+xa®!l’) §Z+il’~l~,
by Definition C.2 (first bullet point) and Sublemma C.3 (1).
Step 1. (Decomposing (IV)(IIT)(II) into three summands.)
We start with an auxillary estimate.

SUBLEMMA C.4. We have the following estimates as 1/x << u—0:

(1)

T
1 1 11
III{’\L'LZlSJ( al,,;ﬂnuvva]-,l) :O]-v
(I11) EREE A N (1)
1 1 1 11
l/1115(1777;75u7u7171)_017
z( ) X2 X2 X2 ' x ()

CorOLLARY C.5. (1) dI(IIT)a;:,; <1/ x,

(2) I (A)6u<1/x.

Proof. All of these are done by straightforward calculation using the information
obtained in Proposition 5.2 together with the calculation of (IIT) in (C.1). The 1 entries
in item (1) are actually (N3)a4(w:ii(9), ui35(10)) and (1;7(9), 1+ (10))(N3)44, up to a O(u)
error. Item (2) is in fact (1;7(9), Lir (10))(N3)44 (wiii(9), 244;(10)), up to a O(u) error. These
terms can be calculated explicitly using part (b1)—(b3) of Proposition 5.2. O

Then, we consider

(IV)(IID)(11)
~ (X @i —x Su@dl+S) (A1) (x@is; @1 — x Su®61+S) ©2)
+ (Xtizi @1y ) (AL (— x Su@l+8) + (=X du®@dl+S) (1) (—x Su®81+S).
Define
v =1y (IID)(—x 6u®dl+S) and v = (—x Su@dl+S) (A1)
Both are of order 1, by Corollary C.5 and Sublemma C.4(1). From Sublemma C.4 (2),

we get

(C.2) ~ xPigir Qi + XV @i+ X iz Qv+ (x Su@l—S) (1) (x Su@l—S)
1 ~ 1
=2 (dmf + XU’) ® (ZH_XU) —v' @u+(x ou®dl—S)(II) (x u®dl—S)  (C.3)

=Xy ®l:i—v'®v+(x Su®dl—S)(I1I) (x du®dl—S),
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where we have defined
< 1, PY 1
Wiz = Ui +Ou+—v  and  I; =1;+6l4+—w.
X X

It is important to stress that the coefficient of the x? term is non-zero.
Next, we consider
(V)AV)IIDAD)I) = (V)(C.3)(T).
In the following, we are going to show that x2(V)iw ®1;(1) gives rise to the x> part
of the main lemma (Lemma 3.2). The (V)v'®@v(I) part will be absorbed into O(ux) part.

The last summand in (C.3) will give rise to the O(x) part together with a perturbation
of order O(uy), where the O(x) part comes from (V)S(IIT)S(I).

Step 2. (The first summand in (C.3) gives the O(x?) contribution in Lemma 3.2.)
The following sublemma is needed for this step.

SUBLEMMA C.6. (1)

A 1
Uitz S— and l;-us &
(2)
U v’,sﬁ and v~u,§ﬁ.
X X

We first consider the term (V)(x2@isir ®l:z)(f) We keep in mind that Ny, Ns=O(ux).
Define

(V)i = Nathgzgr + xR i = (Nstigiar + O () +a(xl - tuizer +1'')
N5tz +O(1)a+0(), (C.4)

—/
u

I lAl(I) = ZiNl —‘erAi -’LL®ZAZ ([ZNI +O(,u))+(xlAZ -u+v~u)lA: ZiNl +O<M)

We will analyze 4’ and [’ in more detail in the final step.
Step 3. (The second summand v'®@v in (C.3) gives (V)v'@v(1)=0(ux).)
The following sublemma is needed in this step.

SUBLEMMA C.7. We have the following estimates:

(1)
1111y
N56u§<ua7uau7u 525;a> :O(:U/)7
X X X X X XX X X
1 1 1 11
OINT S (’M H7H 7’/1”'”;7):0(“),
2
X X X X X° X X X X
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(2)

1
VbuS— and SluS -
X X

Before considering (V)v'®uv(I), we perform the following calculation:

(V)x du®dl = (N5 +xa®1")x 6u®6l = x (Nsdu+ a1 - 6u) @51 = Xou®dl,
X 0u@6l(T) = x Su@8L(N; +xu®l) = x du® (6LNy +x 81-u®l) := x Ju@dl.

We use Sublemma C.7 to conclude that du, 51=0(p).

Next, we consider (V)v'®@v(I):
(V)v' @v(I)
= (V) (=X 6u®8l48) (I11 )itz @y (II1) (—x Su@8l+S)(I)
= (—x0u®81+(V)S) (1) dty5; © 1 (1) (— x Su®3i+S(1))
— x26u@bl (1) @ s (11)]6u@ bl — xdu@ 81 (1 ) ilg5; @ Iy (11)] S (T
—x(V)S[(II) a5 @ Ly (1) Su@81+ (V) S[AI) by @1y (1T1)) S (1)
< Su@dl+du®ly (IS @) + (V) S (I ity @1+ (V) S (1) ity @1 (1) S (1),

(D
I

where, in the last step, we use Corollary C.5. The first term above is O(u?). To study the

remaining three terms, we continue the calculation in Sublemma C.4 to get the following.

SUBLEMMA C.8. We have the following estimates:

(1)
1 1 1 11 11
Ly IIIS§<1, — 5y — M [ ,)O 1),
(D X2 X2 X x x X' X )
» 11
Ly (TD) SNy S (Lu%u; -, ,u,u;u,u> =0(1),
XX
(2)
1 1 1 11 1
S(III aiii§<715a;,u7,uva;07 =0 1)
() X2 X% X X' x x) S

A 11
N5 St S <u, L, ph 5 s ” X;u,u) =0(1).

COROLLARY C.9.

==
==
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Using Sublemma C.8 and Corollary C.9, we get

1y (TN S (T) = Iy (TT1) S Ny + xli (TT1) S -u@l = O(1),
(V)S(II) 55 = N5 STt + x @1’ - ST tis3; = O(1).

Accordingly, the fourth term in (C.6) is O(1), and the other terms are even smaller.

Hence,
(V)v'@v(I) =0(1) < O(uy).

Step 4. (The last summand in (C.3) gives the O(x) contribution in Lemma 3.2 and
a O(ux) perturbation.)
To proceed, the following calculation is needed.

SUBLEMMA C.10. We have the following estimates:

(1)
11 1 1 111 1\
(111)5u<<3,,3,3;“%2’;7> =0(n),
XX X x
11 1 1 11 11
6Z(III)§<ﬂ3a3a3;2,7M,M;’>:O(M)7
XT3 T T x x
(2)
11 1 1 11
51(111)55(,3,3,3;2,,“,%7#):0(”)’
b% X33 X2 x x X
11
6l<III)SN1§<’MaM7’u;277MaM7M7M>ZO(:u’)a
X xTxTx? x x X
(3)
11 1 1 11
S(III)éuSJ(y,S’S;“,M’Q’;07“)20('“)7
PP D G G G G G
N5S(IT) 6u S (“ twppp 1 1o M):O(m_
~ ’ ’ b Y 27 bl )
XXX X x T x

CoroLLARY C.11. (1) SI(IID)duSp/x,
(2)

1 p
SIS u < 2 and I'-S(II)éu < &
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We are now ready to consider the last summand in (C.3). Using (C.5), we get

(V) (=x u®@6l+S)(IIT) (—x Su®sl+S)(T)
= (—x du®dl+(V)S)(IIT) (—x su®sl+S(I)) (C.7)
= 25u®dl(I11) Su®dl — xSu@ sl (111 S (1) — x (V) S(IIL) suwsl+ (V) S (1) S ().

The first term in the right-hand side of (C.7) is O(u3Y), using Corollary C.11 (1). Next,
SI(IIT) S (T) = 61(II1) SNy +xSL(II) Su®l = O(1).

This implies that the second term in the right-hand side of (C.7) is O(ux). To consider
the third term in the right-hand side of (C.7), we note that

(V)S(I1D)du = N5 S(I)su+xa®!" - SA)du = O ().
So, the third term is also O(ux). Thus, we get
(C.7) = (V)SAI)S(I)+O(x)-

We need the following calculations.

SUBLEMMA C.12. We have the following estimates, as 1/x << u—0:
(1) USN1,I'N3SNy, I'SN3 SNy =(1, 01x0) +O () —1;:

(2) N3Su, NsN3Su, N5sSN3Su=(0,1,01x8)" +O0(u) —w;

(3) I'Su,l'St,I'SN3Su<p/x and 1Su=0(1/x?);

(4) N5SN3SN1=0(px).

Proof. Ttems (1) and (2) can be obtained by taking the limit lim, ,o 0o using
MATHEMATICA. In item (4), we use MATHEMATICA to get

N5SN3SN-

lim MZO. 0
pn—0 X

XHOO

To understand (1) and (2) heuristically, we notice that all the entries of I are small
except the first one, so multiplying I’ by a matrix corresponds to picking out the first row.
Though N; and N3 have some large entries of order O(uy), the corresponding entries
of I’ are small enough to suppress them. The first rows of the matrices S, N3 and N;
all have a similar structure to I’. Therefore, we may think of I’ as a left eigenvector of
the matrices. The same heuristic argument applies to u. To see where (4) comes from,
we may think of S as the identity. The big entries of O(uy) in Ny, N3 and Nj are
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off-diagonal. It is not hard to keep track of these O(ux) entries to see that we do not
get terms greater than O(uy).

Next, we multiply (V)S(III)S(I) to get

[N5+xa®U']S[Ns+xa@l +xu@I|S[N1 +xu®!]

= [Ns+xa®l'][SN3+xSa@l +xSuI|[SNy +xSu®i]

= [N5SN3+ N5 (xSu®l +xSu®l)+xa@1'SN3+O0(ux) i@l +0(u))
X (SN1+xSu®l) (C.8)

= N5SN3SN, +xN5Su®l' SNy 4 x N5 Su@IS Ny +xiu@l SN3 SN,
+O0(ux)a®l' SN +xN5SN3Su®i+ N5 (xSael +xSul) (xSu®l)
+ (xa@l")SN3(xSu®l)+O0(ux3)ae!l - Su®l+0(ux),

where, in the second equality, we use I'Su~U'Sa<p/x, by Sublemma C.12(3), and

I=I'+0(1/x), by their definitions in Definition C.2 and Proposition 5.2 (a.2).
The first term in (C.8) is O(uy), by Sublemma C.12(4). The ninth term

el -Suel=0(u?y),
since I'-Su=0(u/x) by Sublemma C.12(3). The seventh term
Ns(xSa®l' +xSuel)(xSuel) = O(uy),
using that 4=u+0O(1/x) and Sublemma C.12 (3). The fifth term has the estimate
pxa@l'SNy = O(ux),
by Sublemma C.12(1). The eighth term
(xa®!')SN3(xSu®l) = O(ux),

since I’SN3Su<pu/x by Sublemma C.12 (3).
We are left with four terms, the second, third, fourth and sixth terms, written

together as
X[N5Sa®1' SNy 4+ N5 Su®ISN, +a@1' SN3 SNy + N5 SN Su®l]. (C.9)

We first use the fact that
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and Ny, Ns=0(uy) to reduce the four terms to
X[2(N5Su+O0(p))@ (' SN1+O0(u)) +0@1’SN3 SNy + N5 SN3Su (I’ +O0(u))].

Using parts (1) and (2) of Sublemma C.12, we find that each term in expression
(C.9) has the form of

X(u+0(p) @ I'+0(1) = xul'+0(px).

Up to now, we have successfully separated the O(x?), O(x) and O(px) parts in the global

map.
Step 5. (Completing the proof.)

Remember we have dropped the two O(1) matrices (1+u} ®1}) in (I) and (1+uf®1L)

in (V) in Step 0. We summarize the results of Steps 2 and 4 as follows:
dG = (Idyo +uf @15 (P U +xu@l' +0(1x)) (Id o +u) @13).

To complete the proof of the lemma, it is enough to define

a= (Idyo +uf@iD)a’, = (Idio +ul@if)u,
o o _ o (C.10)

=T (Id +ui @1), 1=1'(Idgo +ui ®1).
We obtain the structure of dG stated in Lemma 3.2. It remains to work out the vectors
u, u, 1and 1. We have

G=u+0(u) = (0,1,0148)7 and T=0+0(u)— (1,01x0)

as 1/x<u—0, using Sublemma C.12 for u and I, and Proposition 5.2 for u} and If.
According to (C.4) in Step 2, we have 4'=N5i;;;» +O(1)% and I'=[;N;. We neglect the
term O(1)@, since it is enough to consider span{ N5, 4}, and 4=u+O(p) is already
provided by the O(x) part of dG. Using 1, in Definition C.2 and N; in Proposition 5.2,
we find that in @’ we have N5i;;r —(0,0(1),01x6,0(1),0(1)) as 1/x< 1—0, where the

last two O(1) entries are

) e (IO = (wrr (9). s (10N — Ly
(N5)44-(uzzz (9)7 (x5 (10)) ( 110 (9)7 114 (10)) <1a f/i+éi>’ (Cll)

((wsii(9), usis (10)) is an eigenvector of (N5)44 with eigenvalue 1), and in I we have
. G 1 1
liNl —)hmh = (~~4~70]_><7, — == _~> .
Ly(L3+G?) L2+G%2 Ly
It is easy to see that u—, using the definition of u in Proposition 5.2. We substitute
these calculations back to (C.10) to get i— u;; +cu for some constant c.
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