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Abstract For the Hamilton–Jacobi equation H(x, ∂x u+c) = α(c) with x ∈ T
2, it is shown

in this paper that, for all c ∈ α−1(E) with E > min α, the elementary weak KAM solutions
can be parameterized so that they are 1

3 -Hölder continuous in C0-topology.

Mathematics Subject Classification 37J50

1 Introduction

In this paper, we study the weak KAM solutions of the Hamilton–Jacobi equation

H(x, ∂x u) = E, x ∈ T
2 (1.1)

where H is a Tonelli Hamiltonian (see below), E is larger than the minimum of the α-function
determined by H (see below).

1.1 Preliminaries on Mather theory

Let M be a closed manifold. A Hamiltonian H ∈ C2(T ∗M × T, R) is called Tonelli if the
Hessian matrix ∂2

yy H is positive definite everywhere, H/‖y‖ → ∞ as ‖y‖ → ∞ and the
Hamiltonian flow is complete. For autonomous Hamiltonian, the completeness is automati-
cally satisfied, since each orbit entirely stays in certain compact energy level set. A Tonelli
Hamiltonian is uniquely related to a Tonelli Lagrangian by the Legendre transformation
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L(x, ẋ, t) = max
y

{〈ẋ, y〉 − H(x, y, t)}.

The Mather theory is established for Tonelli Lagrangian, see [15–17].
We next define the minimal measure. We notice that, ∀ C1 curve γ : R → M with period

k, there is a unique probability measure μγ on T M × T so that the following holds
∫

T M×T

f dμγ = 1

k

∫ k

0
f (dγ (s), s) ds

for each f ∈ C0(T M × T, R), where we use the notation dγ = (γ, γ̇ ). Let

H∗ = {μγ | γ ∈ C1(R, M) is periodic of k ∈ Z
+}.

The set H of holonomic probability measures is the closure of H∗ in the vector space of
continuous linear functionals. Given a cohomology class c ∈ H1(M, R), the Lagrange
action Ac(μ) over each μ ∈ H is defined as follows

Ac(μ) =
∫

(L − ηc)dμ

where ηc(x, ẋ) = 〈ηc(x), ẋ〉 stands for a Lagrange multiplier, while 〈ηc(x), dx〉 denotes a
closed 1-form so that [〈ηc(x), dx〉] = c.

It is proved in [15,17] that for each class c there exists at least one probability measure
μc minimizing the action over H

Ac(μc) = inf
μ∈H

∫
(L − ηc)dμ,

which is invariant for the Lagrange flow φt
L , called c-minimal measure. The α-function is

defined as α(c) = −Ac(μc) : H1(M, R) → R. It is convex, finite everywhere with super-
linear growth. Its Legendre dual β : H1(M, R) → R is called β-function

β(ω) = max
c

{〈ω, c〉 − α(c)}.
It is also convex, finite everywhere with super-linear growth. The Fenchel–Legendre trans-
formation Lβ : H1(M, R) → H1(M, R) is defined as follows

c ∈ Lβ(ω) ⇐⇒ α(c) + β(ω) = 〈c, ω〉.
Let Hc ⊂ H be the set of c-minimal measures, the Mather set is defined as

M̃(c) =
⋃

μc∈Hc

suppμc.

Let LL : T M × T → T ∗M × T be the map such that (x, ẋ, t) → (x, y = ∂ẋ L(x, ẋ, t), t).
We also call the set LL (M̃(c)) the Mather set for c. For autonomous system, we skip the
component of time t , namely, LL(M̃(c)) ⊂ T ∗M .

The Hamilton–Jacobi equation

H(x, ∂x u + c) = α(c) (1.2)

was studied in [12] where the existence of viscosity solutions was established for continuous
Hamiltonians periodic in x and coercive in p. When the Hamiltonian is Tonelli, the connection
of the viscosity solution theory to the Aubry–Mather theory was shown in [7,8]. For each
c ∈ H1(M, R), the equation admits viscosity solutions u+

c , u−
c : M → R. They are Lipschitz

function and determine asymptotic orbit in the following sense. If u± is differentiable at x ,
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the initial condition (x, ∂u±
c (x)) determines an orbit (x(t), y(t)) of the Hamiltonian flow that

approaches the Mather set as t → ±∞. In other words, the weak KAM solution u±
c defines

the stable (unstable) set of the Mather set

W s
c =

⋃
x∈M

{
x,

∂u+
c (x)

∂x

}
, W u

c =
⋃

x∈M

{
x,

∂u−
c (x)

∂x

}
.

Up to a constant, there is a unique pair of weak KAM solutions if there exists only one Aubry
class to be defined next. To define the Aubry set for the class c, let

[Ac(γ )|[t,t ′]] =
∫ t ′

t

(
L(dγ (t), t) − ηc(dγ (t))

)
dt + α(c)(t ′ − t),

if γ : [t, t ′] → M is an absolutely continuous curve. For time-T -periodic Lagrangian we say
that (x, t) ∈ A(c) the Aubry set if there exists a sequence of closed curveγki : [t, t+ki T ] → M
such that γki (t) = γki (t + ki T ) = x and [Ac(γki )] → 0 as Z � ki → ∞. For autonomous
system one skips the time component. Curves in the Aubry setA(c) are called c-static curves.

To define Aubry class, let

hc((x, τ ), (x ′, τ ′)) = inf
ξ∈C1,ξ(τ )=x

ξ(τ ′)=x ′
[Ac(ξ)|[τ,τ ′]],

and for time-T -periodic Lagrangian one defines

h∞
c ((x, t), (x ′, t ′)) = lim inf

τ=t mod T
τ ′=t ′ mod T

τ ′−τ→∞

hc((x, τ ), (x ′, τ ′)).

If the Lagrangian is autonomous, one has

h∞
c (x, x ′) = lim

τ ′−τ→∞
hc((x, τ ), (x ′, τ ′)).

With h∞
c Mather introduced a pseudo metric on the Aubry set

dc((x, t), (x ′, t ′)) = h∞
c ((x, t), (x ′, t ′)) + h∞

c ((x ′, t ′), (x, t)).

Two points (x, t) and (x ′, t ′) are said to be in one Aubry class if dc((x, t), (x ′, t ′)) = 0.

1.2 Elementary weak KAM solutions

If two or more Aubry classes exist, there are infinitely many weak KAM solutions, among
which we are interested in so-called elementary weak KAM solution, obtained from the
function h∞

c . Indeed, treated as the function of (x, t), the function h∞
c ((x, t), (x ′, t ′)) is a

weak KAM solution that determines orbits approaching the Aubry set as the time approaches
infinity, treated as the function of (x ′, t ′), the function h∞

c ((x, t), (x ′, t ′)) is a weak KAM
solution that determines orbits approaching the Aubry set as the time approaches minus
infinity. Let (x, t) range over an Aubry class, denoted by Ac,i one has a decomposition

h∞
c ((x, t), (x ′, t ′)) = u−

c,i (x ′, t ′) − u+
c,i (x, t), ∀ (x ′, t ′) ∈ M × T,

where u+
c,i is a constant, and u−

c,i is called elementary weak KAM solution with respect to
Ac,i . Similarly, let (x ′, t ′) range over an Aubry class, one obtains an elementary weak KAM
solution u−

c,i . Again, for autonomous system, one skips the time component.

In this paper, we study the special case M = T
2. We next define the globally elementary

weak KAM solutions on R
2, the universal covering space of T

2. The well-definedness of
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these objects will be shown in Sect. 2. For c ∈ α−1(E) with E > min α, we shall show
later in Lemma 2.2 that if ω1, ω2 ∈ L −1

β (c), then ∃ ν > 0 such that ω1 = νω2. So we are

only concerned about the direction of rotation vectors. A rotation vector ω ∈ R
2 is called

irrational if there does not exist real number ν �= 0 such that νω ∈ Z
2.

Definition 1.1 For each rotation vector ω ∈ L −1
β (α−1(E)),

(1) if Lβ(ω) ∩ α−1(E) is a singleton {c}, then we define globally elementary weak KAM
solution on R

2

U±
c (x) = ū±

c (x) + 〈c, x〉,
where ū±

c (x) is the lift of the elementary weak KAM solution u±
c (x) to R

2 satisfying
ū±

c (0) = 0. This includes all the cases of irrational ω.
(2) If Lβ(ω)∩ α−1(E) is a line segment with endpoints cl and cr , for c ∈ {cl , cr }, the weak

KAM solution u±
c is uniquely determined if we normalize u±

c (0) = 0. We define

U±
cl (x) := u±

cl (x) + 〈cl , x〉, U±
cr (x) := u±

cr (x) + 〈cr , x〉.
Remark 1.1 For E > min α, the set {c : α(c) ≤ E} is a convex set containing 0 if we
assume α(0) = min α by adding a closed 1-form to the Lagrangian. In this case, each point
c ∈ α−1(E) can be identified as a point c

‖c‖ on the unit circle on S
1, and the line segment

in case (2) above can be identified as an interval on S
1. The superscripts “l” and “r” means

“left” and “right” for an observer at the center.

1.3 The main result

We are going to establish certain modulus of continuity of elementary weak KAM solution
defined on the universal covering space, instead of the original manifold. The main result is
the following

Theorem 1.1 Let EE be the set of extremal points of the convex set ∪E ′≤E {α−1(E ′)}, E >

min α. For given bounded domain � ⊂ R
2, there exists a constant C(�, H) depending only

on � and the Tonelli Hamiltonian H, and a one-to-one parametrization of the elementary
weak KAM solutions of cohomology classes in EE by a number σ ∈ � ⊂ [0, 1], such that
we have the following Hölder regularity: ∀ σ ∈ �,∀ c ∈ c(�) = EE ,

‖U±
c(σ ) − U±

c(σ ′)‖C0(�) ≤ C(�, H)(‖c(σ ) − c(σ ′)‖ + |σ − σ ′| 1
3 ),

where C is a constant depending only on the Tonelli Hamiltonian H.

The modulus continuity of elementary weak KAM solution plays a key role in the study
of global dynamics. By applying the modulus continuity of Peierls’s barrier in [13], Mather
proved that for a twist map an invariant circle with Liouville rotation number can be destructed
by arbitrarily C∞-small perturbation [14]. Another case is about Arnold diffusion in a priori
unstable system. With the modulus of continuity of barrier function one obtains the genericity
of diffusion orbits [4,5,20].

It is natural to ask if similar Hölder regularity results hold in higher dimensional cases.
The proof of the main theorem relies crucially on the order property (Proposition 4.3) coming
from the low dimensionality. We consider our result as an early step in understanding the
regularity problem of all weak KAM solutions on arbitrary manifold M . However, to study
manifolds with dimension greater than 2, some new ideas are needed. In the presence of the
normally hyperbolic invariant manifold, some partial result can be obtained. See Sect. 6.

The paper is organized as follows.
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• In Sect. 2, we study globally elementary weak KAM solutions on R
2.

• In Sect. 3, we use method of viscosity solutions to study the structure of the zero set of
the difference of two globally elementary weak KAM solutions.

• In Sect. 4, we study the order property of the globally elementary weak KAM solutions.
• In Sect. 5, we prove the main theorem.
• In Sect. 6, we generalize the regularity result in the main theorem to the higher dimen-

sional case, with the help of the normally hyperbolic invariant manifold structure.
• In “Appendix A”, we prove a technical lemma used in Sect. 3.
• In “Appendix B”, we give further structure of the weak KAM solutions in the rational

case.

2 Elementary weak KAM on universal covering space

In this section we study the relation of the weak KAM solutions on a manifold M , a finite
covering space M̄ and its universal covering space. Let A(c, M̄) denote the Aubry set and
let Ā(c, M) denote the lift of A(c, M) to the covering space, then

Lemma 2.1 Ā(c, M) = A(c, M̄).

Proof For each point x ∈ A(c, M), by definition, there exists a sequence of closed curves
γk : [0, Tk] → M such that γk(0) = γk(Tk) = x and [Ac(γk)] → 0 as Tk → ∞. If the lift
of γk consists of several curves γ̄k,1, . . . , γ̄k, j , either each curve is still a closed curve or the
conjunction γ̄k,1∗· · ·∗γ̄k, j is a closed curve. Clearly, [Ac(γ̄k,1∗· · ·∗γ̄k, j )] = j[Ac(γk)] → 0
as Tk → ∞. This proves Ā(c, M) ⊆ A(c, M̄).

Given a point x̄ ∈ A(c, M̄), there exists a sequence of closed curves {γ̄k : [0, Tk] → M̄}
such that γ̄k(0) = γ̄k(Tk) = x̄ and [Ac(γ̄k)] → 0 as Tk → ∞. Let γk be the projection of γ̄k

to M , one has [Ac(γ̄k)] = [Ac(γk)]. It implies Ā(c, M) ⊇ A(c, M̄). ��
Let us focus on 2-torus T

2.

Lemma 2.2 For c ∈ α−1(E) with E > min α, the Fenchel-Legendre dual ω(c) = L −1
β (c)

is either a non-zero vector or a radial line segment which does not contain 0.

Proof It is known that L −1
β (c) is a convex set. Suppose that ω(c) contains two extremal

points ω1 �= ω2, because of the special topology of T
2, certain nonzero number ξ ∈ R exists

so that ω1 = ξω2. Otherwise, there would be two intersecting c-minimal curves, which
violates Mather’s graph theorem. ��

To study the elementary weak KAM in the universal covering space, let us consider a
finite covering space π̄k : kT

2 = {x ∈ R
2 : xi mod ki } → T

2 where k = (k1, k2) ∈ Z
2

with k1, k2 > 0. Let u±
c,k denote the elementary weak KAM solution if the covering space

kT
2 is treated as the configuration manifold, and u±

c,k is treated as a function defined on R
2,

ki -periodic in xi for i = 1, 2. For the configuration manifold kT
2 with min{k1, k2} → ∞, the

number of ergodic minimal measures may increase, depending on whether ω(c) is irrational.
By definition of the elementary weak KAM solutions in Sect. 1.2, the elementary weak KAM
solutions for the covering spaces can be defined explicitly as follows. Given an Aubry class
A(c, kT), we have the associated elementary weak KAM solution

uc,k(x) = inf
ξ,t<0

{∫ 0

t
L(ξ̇ (t), ξ(t)) + 〈c, ξ̇ (t)〉 dt | ξ(0) = x, ξ(t) ∈ x0 + kZ

2
}
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where x0 is any point in A(c, kT).
In the following two subsections, we show that the globally elementary weak KAM solu-

tions on R
2 in Definition 1.1 are well-defined. Note that instead of defining the globally

elementary weak KAM solutions directly on R
2, we define them by lifting the weak KAM

solutions on T
2.

2.1 Uniqueness of elementary weak KAM solutions: the irrational case

Proposition 2.3 For c ∈ H1(T2, R) with irrational rotation vector ω(c), there is a unique
ergodic c-minimal measure with respect to kT

2, k ∈ Z
2 with k = (k1, k2) and k1 > 0, k2 > 0.

For different covering manifolds kT
2, k′T2, if we think the elementary weak KAM solutions

u±
c,k, u±

c,k′ as functions defined on R
2, then one has u±

c,k = u±
c,k′ up to an additive constant.

Proof By definition, each curve in the lift of a c-static curve to the finite covering manifold
is obviously c-static. Let γ be a curve lying in A(c, T

2), and γ̄k be a curve in the lift of γ .
Then one has

u±
c (γ (t ′)) − u±

c (γ (t)) = u±
c,k(γ̄k(t

′)) − u±
c,k(γ̄k(t)), ∀ t ′ ≥ t. (2.1)

It follows that, restricted on the Aubry set, one has u±
c,k = u±

c,k′ .

Let x ∈ T
2 where u−

c is differentiable, there exists a unique curve γ−
x : (−∞, 0] → T

2

such that γ−
x (0) = x and

u−
c (x) = u−

c (γ−
x (−t)) + [Ac(γ

−
x |[−t,0])], ∀ t ∈ [0,∞).

Let x̄ ∈ kT
2 be a point in the lift of x , u−

c,k also determines a minimal curve γ̄x̄,k such that
γ̄x̄,k(0) = x̄ and

u−
c,k(x̄) = u−

c,k(γ̄x̄,k(−t)) + [Ac(γ̄x̄,k |[−t,0])], ∀ t ∈ [0,∞).

We claim that π̄k γ̄x̄,k = γ−
x . Indeed, let γ̄−

x be the lift of γ−
x to kT

2 such that γ̄−
x (0) =

x̄ , then there exist two sequences of times {t�, t ′�} such that |γ̄−
x (−t�) − γ̄−

x̄,k(−t ′�)| → 0

when t�, t ′� → ∞, because there is only one ergodic minimal measure. If π̄k γ̄
−
x̄,k �= γ−

x ,

one would have [Ac(γ̄
−
x̄,k |[−t ′�,0])] > [Ac(γ̄

−
x |[−t�,0])] for large �. It follows from (2.1) that

u−
c (γ−

x (−t�)) > u−
c,k(γ̄

−
x̄,k(−t ′�)) for large �, but it is absurd because, regarded as a function

defined on R
2, we have u−

c = u−
c,k when they are restricted on the lift of the Aubry set. ��

2.2 Uniqueness of elementary weak KAM solutions: the rational case

Assume that ω ∈ Lβ(α−1(E)) is rational. Then there are two cases, eitherL −1
β (ω)∩α−1(E)

contains a single point or an interval Iω. The first case occurs if and only if the torus is foliated
by periodic orbits with the rotation vector ω. Up to a coordinate transformation on T

2, we
assume ω = (0, ω̂).

Lemma 2.4 Suppose ω is rational. Let c be L −1
β (ω) when L −1

β (ω) is a single point, or be

either end point when L −1
β (ω) is an interval. In either case, there is only one Aubry class,

each connected component of the set T
2\(A(c)+ δ) is contractible, where A(c)+ δ = {x ∈

T
2 : dist(x,A(c)) < δ} and δ > 0 can be arbitrarily small.

Proof In this case, the Mather set consists of periodic curves {γω,λ} sharing the same homol-
ogy type (0, 1), and remains the same for all c ∈ Iω. Next, we consider the weak KAM
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Fig. 1 The blue curve is in A(c)
for c at one end point of Iω , the
red curve is in A(c′) for c′ at
another end point of Iω

solution for the class c an end point of Iω. In this case, the Aubry set properly contains the
Mather set as well as some static curve approaching periodic curves when t → ±∞. Indeed,
the complementary part of the Mather set is made up of annuli, each annulus is crossed by
at least one static curve (Fig. 1). ��

Lemma 2.5 Assume c ∈ ∂ Iω and ω is rational. Let π̄k: kT
2 → T

2 is a covering space, let
x̄, x̄ ′ ∈ kT

2 be the points such that π̄k x̄ = π̄k x̄ ′ = x ∈ M(c). Then h∞
c (x̄, x̄ ′) = 0.

Proof For c ∈ Iω, there is a periodic curve η which entirely lies in the Mather set for c.
If the lemma does not hold, there would be some D > 0 such that for any closed curve ξ :
[0, T ] → T

2 with [ξ ] �= �ω ∀ � ∈ Z, one has [Ac(ξ)] ≥ D, where

[Ac(ξ)] =
∫ T

0
(L(ξ̇ (s), ξ(s)) − 〈c, ξ̇ 〉 + α(c))ds.

For c′ ∈ α−1(E)\Iω with irrational rotation vector, we pick up a curve lying in A(c′). This
curve γ intersects the the curve η infinitely many times. Let · · · < ti < ti+1 < · · · be a
sequence of time when the curve γ intersects the curve η. Let γi = γ |[ti ,ti+1] be a segment
of γ , ηi be a segment of η that connects γ (ti+1) to γ (ti ). Since the curve ηi ∗ γi is closed
and [ηi ∗ γi ] �= �ω ∀ � ∈ Z one has

[Ac(γi )] + [Ac(ηi )] ≥ D.

Since the curve c′ lies in the Mather set for c′, there exists some large integer K such that
γ (tK ) is sufficiently close to γ (t0). Let γ̄ the the lift of γ to the universal covering space R

2,
we have

K−1∑
i=0

(
[Ac′(γi )] + [Ac(ηi )]

)
=

K−1∑
i=0

(
[Ac(γi )] + [Ac(ηi )] + 〈c′ − c, γ̄ (ti+1) − γ̄ (ti )〉

)

≥ K (D − |〈c′ − c, γ̄ (ti+1) − γ̄ (ti )〉|).
By the construction, both |∑K−1

i=0 [Ac′(γi )]| and |∑K−1
i=0 [Ac(ηi )]| are sufficiently small and

the term D − |〈c′ − c, γ̄ (ti+1) − γ̄ (ti )〉| ≥ D
2 if c′ is sufficiently close to c. Therefore, the

absurdity of above inequality implies the lemma. ��
Therefore, similar to Proposition 2.3, one has the following proposition.

Proposition 2.6 Assume c ∈ ∂ Iω with rational rotation vector ω where Iω = Lβ(ω) is a
line segment. For different covering manifolds kT

2, k′T2, if we think the elementary weak
KAM solutions u±

c,k, u±
c,k′ as the functions defined on R

2, then u±
c,k = u±

c,k′ up to an additive
constant.
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Proof Since ω is rational, the minimal measure is supported on periodic orbits. Pick up such
a circle γ and consider its lift to kT

2, denoted by {γ̄i } with i modulo some i0 ∈ N. Let
Ai be an annulus bounded by γ̄i and γ̄i+1 and no other γ̄ j lying inside of Ai . Once u±

c,k
is well defined on some Ai , one obtain its value on its other copies in the covering space.
Indeed, for any x̄ ∈ A j , let x̄ ′ ∈ Ai such that π̄k x̄ = π̄k x̄ ′. Because of Lemma 2.5, one has
u±

c,k(x̄) = u±
c,k(x̄ ′). ��

3 Topology of level set of weak KAM solutions

The parameter σ in Theorem 1.1 is introduced to indicate “volume” bounded by the graph of
the weak KAM solution and the graph of a prescribed weak KAM solution. The introduction
of this parameter relies on a good understanding of the topology of level set of weak KAM
solutions. Given two globally elementary weak KAM solutions U and U ′, we denote the
level set of U − U ′ by

ZU,U ′ = {x ∈ R
2 : U (x) − U ′(x) = 0},

and let

�U,U ′ = {x ∈ R
2 : U (x) > U ′(x)}.

3.1 Topology of the sets ZU,U ′ , �U,U ′ and �U ′,U

Theorem 3.1 Let U and U ′ be two globally elementary backward (forward) weak KAM
solutions of the Hamilton–Jacobi equation (1.1) on the universal covering space R

2, corre-
sponding to cohomology classes c and c′ respectively. Then

(1) If α(c) > α(c′) then �U ′,U is connected and unbounded, the set �U,U ′ may not be
connected but contains only one unbounded connected component;

(2) If α(c) = α(c′) = E > min α, with c, c′ ∈ EE and c �= c′, then both �U,U ′ and �U ′,U
are simply connected and unbounded.

In both cases, the level set ZU,U ′ has empty interior unless L −1
β (c′) = L −1

β (c) and the
Mather set M(c) = M(c′) contains interior points.

Proof To prove the theorem, we introduce a lemma for the Hamiltonian satisfying the hypoth-
esis:

(H1) There exists a constant C such that

|H(y, p) − H(x, q)| ≤ C(‖x − y‖ + ‖p − q‖), ∀ x, y ∈ �, p, q ∈ R
n .

We note that this extra assumption (H1) is not needed in Theorem 3.1. Indeed, by the
Tonelli condition, the weak KAM solutions are uniformly Lipschitz, so they do not depend
on the behavior of H(x, p) for ‖p‖ large. Therefore, we can modify H such that H(x, p) =
A‖p‖ for ‖p‖ > K for some constants K > 0 and A > 0. In this case, the extra assumption
(H1) is satisfied automatically.

The definition of viscosity solutions is provided in Definition A.1 in the “Appendix”.

Lemma 3.1 (a) Let � be an open subset of R
n and f ∈ C(�) satisfy f (x) < 0 for x ∈ �.

Let u ∈ C(�̄) be a viscosity subsolution of H(x, Du) = f (x), and v ∈ C(�̄) be a viscosity
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supersolution of H(x, Dv) = 0 in � where H satisfies (H1). If ∂� �= ∅, u ≤ v on ∂�, and
both u and v are bounded in �, then u ≤ v on �.

(b) Let u ∈ C(�̄) be a viscosity subsolution of H(x, Du) = 0 and v ∈ C(�̄) be a
viscosity supersolution of H(x, Dv) = 0 in �. If we assume further that

(1) there is a function φ ∈ C1(�) ∩ C(�̄) such that φ ≤ u on � and

sup{H(x, Dφ(x)) : x ∈ ω, u ∈ R} < 0 ∀ ω ⊂⊂ �;
(2) the function p → H(x, p) is convex on R

n for each x ∈ �,

then u ≤ v on � provided that u − v is bounded in � and u ≤ v on ∂� with ∂� �= ∅.

We postpone the proof of the lemma to the “Appendix”, and return to the proof of the theorem.
If U, U ′ are the elementary weak KAM solution on universal covering space, they are the
viscosity solution of the Hamilton–Jacobi equation

H(x, ∂x u) = E, x ∈ R
2.

For each connected component � of �U ′,U or �U,U ′ , ∃ a function g defined on ∂� such
that Uc|∂� = Uc′ |∂� = g. Thus, both Uc and Uc′ are the viscosity solution of the Dirichlet
problem {

H(x, ∂x u) = α, in �,

u = g, on ∂�

where α is valued as α(c) and α(c′) respectively. Note, ∂� �= ∅ and � is not necessary
bounded.

Since each elementary weak KAM solution admits a decomposition into a periodic func-
tion and a linear function, the difference of U and U ′ also admits such a decomposition:
U − U ′ = �u + 〈c − c′, x〉. The level set ZU,U ′ is restricted a strip {|〈c − c′, x〉| ≤ D} for
certain positive number D > 0, i.e. both �U ′,U and �U,U ′ contain a unbounded connected
component if c �= c′.

In the case that α(c) > α(c′), the set �U ′,U = {x : U ′(x) > U (x)} is connected.
Otherwise it would contain a connected component C in the strip {|〈c − c′, x〉| ≤ D}, since
each of the two connected components of the complement of the strip lies in a connected
component of �U ′,U or �U,U ′ . On the connected component C, we have that U ′ − U is
bounded, and U = U ′ on ∂C, thus by Lemma 3.1, we have U ′(x) ≤ U (x) on C. This is a
contradiction to the definition of C.

For the case that α(c) = α(c′) > min α, if ω(c) �= ω(c′), then ∃ 0 < λ < 1 such that

α(c∗) < α(c), where c∗ = λc + (1 − λ)c′.

By the result in [2,9], we know that there exists a C1,1 global sub-solution of the equation
H(x, ∂u + c∗) = α(c∗), i.e. there exists C1,1-function φ̃: T

n → R, such that φ(x) =
φ̃(x) + 〈c∗, x〉 satisfies the condition

H(x, ∂φ) − α(c) < H(x, ∂φ) − α(c∗) ≤ 0.

Since

U − φ = �u + (1 − λ)〈c − c′, x〉,
and

U ′ − φ = �u′ − λ〈c − c′, x〉,
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where both �u and �u′ are periodic, thus U − φ as well as U ′ − φ can be set positive in the
strip {|〈c−c′, x〉| ≤ D} by adding a suitable constant to φ. Since H is assumed convex in the
action variable, by applying the second part of Lemma 3.1 we find that if there is a connected
component C of �U,U ′ contained entirely in the strip, then we have U = U ′ on C. This
contradicts the fact that C ⊂ �U,U ′ . Similarly there is no connected component of �U ′,U
lying entirely in the strip. This implies that both �U,U ′ and �U ′,U are simply connected and
unbounded.

Finally, we show that the set ZU,U ′ contains no interior if the Mather sets M(c) �=
M(c′). Otherwise there exists a differentiable point x0 ∈ ZU,U ′ of both U and U ′ and
DU (x0) = DU ′(x0). The initial condition (x0, DU (x0)) = (x0, DU ′(x0)) determines a
backward (forward) semi-static curve γ whose α (ω)-limit set lies in both M(c) and M(c′).
This is impossible provided the Mather setsM(c) andM(c′) are assumed to be different. The
set ZU±

cl ,U
±
cr

does not contain interior points, if the Mather set does not contain interior points.

To see this, we suppose ω = (0, ω̂) up to a linear coordinate change. For any differentiable
point x not in the Mather set, the initial values (x, ∂U±

cl (x)) and (x, ∂U±
cr (x))produce different

minimal orbits, one moves towards the left, the other moves towards the right. This completes
the proof of the theorem. ��
3.2 Normal direction of the set ZU,U ′

The set ZU,U ′ is described in Theorem 3.1. However, the description is not clear enough for
later proof. For instance, even though ZU,U ′ contains no interior, it does not imply that ZU,U ′
is a curve. In this section, we will introduce a notion of normal direction of the set ZU,U ′ for
later purpose.

For a convex function one define its sub-derivative.

Definition 3.1 The set of sub-derivative of a convex function ψ at x is defined as

D−ψ(x) = {y ∈ R
n : ψ(x ′) − ψ(x) ≥ 〈y, x ′ − x〉, ∀ x ′ ∈ R

n}.
It is known that D−ψ(x) is a convex set.

Since each backward weak KAM solution u− has a decomposition u− = φ −ψ where φ

is smooth and ψ is convex, we define the sup-derivative of the backward weak KAM solution
u− as

D+u−(x) = {Dφ(x) − y : y is a sub-derivative of ψ at x}. (3.1)

Definition 3.2 (Calibrated curves).

(1) A curve γ ; (−∞, 0] → M is called (u, Lc)-calibrated if

u(γ (t ′)) − u(γ (t)) =
∫ t ′

t
Lc(γ (s), γ̇ (s))ds + (t ′ − t)α(c)

holds for each −∞ < t ≤ t ′ ≤ 0.
(2) We say that (x, v) determines a (u−

c , Lc)-calibrated curve γ : (−∞, 0] → M if γ (0) = x
and γ̇ (0) = v.

(3) We say that v ∈ V u−
c (x) ⊂ R

n , if (x, v) determines certain (u−
c , Lc)-calibrated curve

γ : (−∞, 0] → M .

Definition 3.3 Let u: A → R be locally Lipschitz. A vector p is called a reachable gradient
of u at x ∈ A if a sequence {xk} ⊂ A\{x} exists such that u is differentiable at xk for each
k ∈ N and
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lim
k→∞ xk = x, lim

k→∞ Du(xk) = p.

The set of all reachable gradient of u at x is denoted by D∗u(x).

If u is a semi-concave function then it is proved in Theorem 3.3.6 of [3] that

D+u(x) = coD∗u(x). (3.2)

Since we have H(x, c+p) = α(c), for all p ∈ D∗u−
c (x), the next lemma follows immediately

from the strict convexity of H .

Lemma 3.2 For each point x, the set of reachable gradients D∗u−
c (x) coincides with the

set of extremal points of D+u−
c (x).

Theorem 3.2 Let u−
c be a backward weak KAM and γc: (−∞, 0] → M be (u−

c , Lc)-
calibrated curve. Then, we have

∂L

∂ ẋ
(x, V u−

c (x)) = D∗u−
c (x), x ∈ M.

In particular, this implies that y is an extremal point of D+u−
c (x) only when there exists a

calibrated curve γ such that y = ∂Lc
∂ ẋ (γc(0), γ̇c(0)).

Proof First, since u−
c is differentiable along a calibrated curve, it is clear that

∂L

∂ ẋ
(x, V u−

c (x)) ⊂ D∗u−
c (x).

Second, suppose u−
c is differentiable at x0, then there exists a backward calibrated curve

γ : (∞, 0] → M with γ (0) = x0 and Du−
c (x0) = ∂Lc

∂ ẋ (x0, γ̇ (0)). Next, by the upper-semi-
continuity of V u−

c , we get

D∗u−
c (x) ⊂ ∂L

∂ ẋ
(x, V u−

c (x)).

The proof is now complete. ��

Definition 3.4 Given two globally elementary weak KAM solutions U and U ′, the derivative
set of U − U ′ at the point x is defined by

DU,U ′,x = {y − y′ : y ∈ D+U (x), y′ ∈ D+U ′(x)}. (3.3)

Clearly, DU,U ′,x is closed and convex.
We define

S+,δ
U,U ′,x = {

v ∈ R
n : 〈y, v〉 > δ‖v‖ · ‖y‖, ∀ y ∈ DU,U ′,x

}
,

S−,δ
U,U ′,x = {

v ∈ R
n : 〈y, v〉 < −δ‖v‖ · ‖y‖, ∀ y ∈ DU,U ′,x

}
. (3.4)

If 0 /∈ DU,U ′,x , neither of the two sets is empty provided δ > 0 is suitably small.

For a C1 function, it is well-known that its gradient is perpendicular to the level set. Here
DU,U ′,x can be considered as the gradient of the level set ZU,U ′ , and S±,δ

U,U ′,x are cones
containing ±DU,U ′,x . We naturally have the following.
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Lemma 3.3 Let U and U ′ be two globally elementary weak KAM solutions. For each x,
there exists a suitably small ε > 0 such that

U (x1) − U ′(x1) > 0, ∀ x1 − x ∈ S+,δ
U,U ′,x ∩ (Bε(0) \ {0}), x ∈ ZU,U ′ , (3.5)

and

U (x1) − U ′(x1) < 0, ∀ x1 − x ∈ S−,δ
U,U ′,x ∩ (Bε(0) \ {0}), x ∈ ZU,U ′ , (3.6)

where Bε(0) is a ball in R
n, centered at 0 with radius ε.

Proof Note each backward weak KAM solution U has decomposition into a smooth function
φ minus a convex function ψ , i.e. U = φ −ψ . By definition, for x1 = x + te with t > 0 we
have by Proposition 4.11.1 of [8]

U (x1) − U (x) = 〈ye, x1 − x〉 + O(‖x1 − x‖2),

≤ 〈y, x1 − x〉 + O(‖x1 − x‖2), ∀ y ∈ D+U (x) (3.7)

where ye = ∂φ(x) − yψ,e. Similarly, we have

U ′(x1) − U ′(x) = 〈y′e, x1 − x〉 + O(‖x1 − x‖2),

≤ 〈y′, x1 − x〉 + O(‖x1 − x‖2), ∀ y′ ∈ D+U ′(x) (3.8)

where y′e = ∂φ′(x)− yψ ′,e. Therefore, if x ∈ ZU,U ′ and x1 − x ∈ S+,δ
U,U ′,x , we subtract (3.8)

from (3.7) and obtain

U (x1) − U ′(x1) ≥ 〈ye − y′, x1 − x〉 − O(‖x1 − x‖2)

≥ δ‖x1 − x‖ · ‖ye − y′‖ − O(‖x1 − x‖2).

This proves (3.5). The proof of (3.6) is similar. ��

4 The order property of the derivative sets

We consider the level set of α-function α−1(E) which is a closed and convex curve provided
E > min α. By adding a closed 1-form to the Lagrangian, we assume that the α-function
reaches its minimum at zero cohomology. In this case, α−1(E) encircles the origin.

4.1 Crossing properties of minimal curves

For Hamiltonian systems with two degrees of freedom, the dynamics on energy level set
resembles very much the dynamics of twist map.

Definition 4.1 We say a curve γ : (−∞, 0] is backward c-minimal or backward c-semi-static
if

[Ac(γ )|[t,t ′]] = inf
ξ
[Ac(ξ)|[τ,τ ′]],

where the inf is taken among ξ ∈ C1, ξ(τ ) = γ (t) and ξ(τ ′) = γ (t ′). Similarly, we define
forward c-minimal or forward c-semi-static curves defined on [0,∞).
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Proposition 4.1 Assume that γ and ξ are forward (backward) c-minimal and c′-minimal
curves respectively with c �= c′ and α(c) = α(c′) = E > min α. Let γ̄ and ξ̄ denote their
lifts to the universal covering space, if γ̄ and ξ̄ are not tangent at a point, then γ̄ crosses ξ̄

at most once.

Proof We consider forward minimal case only, i.e. they are defined on [0,∞). The backward
case is the same. If γ̄ and ξ̄ are tangent at a point, then they coincide for all the future time.

Let us assume that they cross twice, i.e. ∃ t1 �= t2 and s1 �= s2 such that γ̄ (ti ) = ξ̄ (si )

for i = 1, 2. Clearly, θi = γ̇ (ti ) − ξ̇ (si ) �= 0. Without loss of generality, we assume
t1 �= 0, s1 �= 0. Otherwise, we extend the orbit backward to get an orbit defined on [r,∞)

for some r < 0. By the lemma of Mather on page 186 of [15], we obtain that some ε > 0
and C > 0 exist depending on the Lagrangian only such that

A(γ |[ti−ε,ti+ε]) + A(ξ |[si−ε,si+ε]) − A(ai ) − A(bi ) ≥ Cε‖θi‖2,

where ai : [−ε, ε] → R
2 is a minimal curve of L joining ξ̄ (s1 − ε) to γ̄ (ti + ε), i.e. ai (−ε) =

ξ̄ (s1 − ε), ai (ε) = γ̄ (ti + ε) and

A(ai ) =
∫ ε

−ε

L(a(t), ȧ(t))dt = inf
ζ(−ε)=a(−ε)

ζ(ε)=a(ε)

∫ ε

−ε

L(ζ(t), ζ̇ (t))dt,

bi : [−ε, ε] → R
2 is a minimal curve of L joining γ̄ (s1 − ε) to ξ̄ (ti + ε) and A(bi ) is defined

in the same way as for A(ai ). Let �s = s2 − s1, �t = t2 − t1, we define two curves

γ ′(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ (t), t ∈ [0, t1 − ε],
b1(t − t1), t − t1 ∈ [−ε, ε],
ξ(t − t1), t − t1 ∈ [s1 + ε, s2 − ε],
a2(t − t1 + �s), t − t1 + �s ∈ [−ε, ε],
γ (t − t1 + �s), t − t1 + �s ∈ [t2 + ε,∞),

and

ξ ′(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ(t), t ∈ [0, s1 − ε],
a1(t − s1), t − s1 ∈ [−ε, ε],
γ (t − s1), t − s1 ∈ [t1 + ε, t2 − ε],
b2(t − s1 + �t), t − s1 + �t ∈ [−ε, ε],
ξ(t − s1 + �t), t − s1 + �t ∈ [s2 + ε,∞).

By the construction, we have γ (t1 − ε) = γ ′(t1 − ε), γ (t2 + ε) = γ ′(t1 + �s + ε),
ξ(s1 − ε) = ξ ′(s1 − ε), ξ(s2 + ε) = ξ ′(s1 + �t + ε) and

[Ac(γ |[t1−ε,t2+ε])] + [Ac′(ξ |[s1−ε,s2+ε])] − [Ac(γ
′|[t1−ε,t1+�s+ε])]

− [Ac′(ξ
′|[s1−ε,s1+�t+ε])]

= A(γ |[t1−ε,t1+ε]) + A(ξ |[s1−ε,s1+ε]) − A(a1) − A(b1)

+ A(γ |[t2−ε,t2+ε]) + A(ξ |[s2−ε,s2+ε]) − A(a2) − A(b2)

≥ Cε(‖θ1‖2 + ‖θ2‖2).

Note that the c-dependences are all canceled. This contradicts that fact that γ and ξ are c-
and c′-minimal curves respectively. The absurdity verifies the fact that γ̄ crosses ξ̄ at most
once. ��
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Corollary 4.1 Assume that both γ and ξ are forward (backward) c-minimal curves, dγ and
dξ share the same ω (α)-limit set. Let γ̄ and ξ̄ denote their lift to the universal covering
space, then they do not cross anywhere.

This corollary follows from the same argument as the Aubry’s asymptotic crossing lemma
(see Lemma 3.9 of [1]).

Lemma 4.2 Assume the autonomous Lagrangian is defined on T T
2. For each c ∈ α−1(E)

with E > min α, the rotation vectors of all orbits in M̃(c) have the same direction, i.e. if
dγ1, dγ2 ∈ M̃(c), then

〈ω(γ1), ω(γ2)〉 = ‖ω(γ2)‖ · ‖ω(γ2)‖ > 0.

Proof Since the system is defined on T T
2, the minimal measure is uniquely ergodic if the

rotation vector is irrational. Therefore, for each orbit dγ lying in the Mather set with irrational
rotation vector, its rotation vector ω(γ ) is well defined by ergodic theorem. Next we consider
only the case of rational rotation vector, in which case orbits in the Mather sets are periodic.

We claim that for each orbit dγ : T
2 → T M in M̃(c), we have 〈c − c∗, [γ ]〉 �= 0, where

c∗ is the minimum point of the α-function, which is defaulted to be zero here. The convexity
of the α function implies that

α(0) ≥ α(c) − 〈ω, c〉, ∀ω ∈ ∂α(c).

By assumption, we have α(c) > α(0) so we get 〈ω, c〉 > 0. In the rational case, the rotation
vector ω(γ ) is positively proportional to [γ ]. The inequality 〈ω, c〉 > 0 implies that all the
rotation vectors in ∂α(c) are positively proportional to each other. ��
4.2 Order property

Each energy level has a natural fiberation over T
2. The fiber over a point x is denoted by

Yx,E = {y : (x, y) ∈ H−1(E)}.
If E > min α, Yx,E is a smooth, convex and closed curve for each x ∈ M . Next, let

Vx,E = {v = ∂y H(x, y) : y ∈ Yx,E },
which is also a smooth, convex and closed curve in R

2 encircling the origin. The two curves
Yx,E and Vx,E are related by Legendre transform.

Definition 4.2 (Circle order). Given three vectors v1, v2, v3 ∈ R
2, we say that they are in

clock-wise order, denoted by v1 ≺ v2 ≺ v3 if the points v1‖v1‖ ,
v2‖v2‖ ,

v3‖v3‖ are in clock-wise
order on the unit circle.

Via the one-to-one correspondence v → y = ∂ẋ L(x, v), v1, v2, v3 in Vx,E uniquely deter-
mine three points y1, y2, y3 in Yx,E . As L is strictly positive definite in the speed, we have
y1 − yx ≺ y2 − yx ≺ y3 − yx where yx is the minimal point of H(x, y) with fixed x .

Proposition 4.3 (Order property). Consider three cohomology classes c1, c2, c3 ∈ EE with
E > min α satisfying c1 ≺ c2 ≺ c3.

(1) Suppose γi : (−∞, 0] → T
2 is a backward ci -semi-static curve with γi (0) = x,

i = 1, 2, 3, then one has

γ̇1(0) ≺ γ̇2(0) ≺ γ̇3(0).
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Fig. 2 The order of rotation
vectors implies the order of
minimal curves

Denote by yi = ∂ẋ L(x, γ̇−
i (0)), then one has that

y1 − yx ≺ y2 − yx ≺ y3 − yx .

(2) Denote by U−
i the globally elementary weak KAM solutions associated to the cohomology

classes ci , i = 1, 2, 3. Then the order relation

y1 − yx ≺ y2 − yx ≺ y3 − yx

holds for each yi ∈ D+U−
i (x), i = 1, 2, 3. So the following order property is well-

defined

D+U−
1 (x) − yx ≺ D+U−

2 (x) − yx ≺ D+U−
3 (x) − yx .

Moreover, the order relation is independent of the base point x.

Proof For fixed x , the Legendre transform ∂ẋ L(x, ·) : R
2 → R

2 is defined by L(x, v) =
maxy〈y, v〉 − H(x, y) where v is sent to y attaining the max. The sublevel set {H(x, y) ≤
E} for each fixed x is a convex set. It turns out that the Legendre transform of the set
{H(x, y) ≤ E} is also a convex set and it sends the boundary to boundary(Theorem 26.5 of
[19]). Moreover, the Legendre transform is a diffeomorphism whose Jacobian det ∂2

ẋ ẋ L > 0,
so the diffeomorphism ∂ẋ L(x, ·) preserves orientation on the boundary. By the positive-
definiteness of ∂2

ẋ ẋ L , it is enough for us to prove γ̇1(0) ≺ γ̇2(0) ≺ γ̇3(0). Suppose the circle
order is violated and without loss of generality suppose we have γ̇1(0) ≺ γ̇3(0) ≺ γ̇2(0).

Let γ̄i (·) denote the lift of the curves γi (·), i = 1, 2, 3, to the universal covering space
R

2 respectively such that γ̄1(0) = γ̄2(0) = γ̄3(0). The order relation c1 ≺ c2 ≺ c3 induces
the order relation ω1 ≺ ω2 ≺ ω3 for rotation vectors. Indeed, restricted to each energy
level, we can reduce the Hamiltonian system into a twist map, for which the order relation
of cohomology classes agrees with that of the rotation numbers.

In this case, γ̄2 either crosses γ̄1(·) or crosses γ̄3(·) at another point, because of the order
c1 ≺ c2 ≺ c3, see Fig. 2. (It may happen that two of the three vectors ω1, ω2, ω3 coincide,
say ω1 = ω2, in which case we have that γ̄1 and γ̄2 approaches two neighboring lifts of
periodic orbits in the Mather set M̃(c1) = M̃(c2). The crossing will also occur if the order
γ̇1(0) ≺ γ̇2(0) ≺ γ̇3(0) is violated.) But this violates the property that all these three curves
are backward semi-static by Proposition 4.1. This contradiction verifies our claim.

***
Next, we consider part (2). Given x ∈ T

2, there might be two backward c-semi-static
curve originating from this point, denoted by γc and γ ′

c with v = γ̇c(0) �= v′ = γ̇ ′
c(0). In

this case, the elementary weak KAM solution U−
c is not differentiable at this point, there

are at least two points yc, y′c ∈ Y−
x,E such that yc = ∂ẋ L(v, x) and y′c = ∂ẋ L(v′, x), and

yc, y′c ∈ ∂(D+U−
c (x)).

Lemma 4.4 Let c, c′ ∈ EE and c �= c′. Then we have

Int(D+U−
c (x)) ∩ D+U−

c′ (x) = ∅ and D+U−
c (x) ∩ Int(D+U−

c′ (x)) = ∅.
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Proof of Lemma 4.4 Suppose without loss of generality that D+U−
c (x)∩ Int(D+U−

c′ (x)) �=
∅. Denote by yl

c′ and yr
c′ the extremal points of D+U−

c′ (x) and by yc is the extremal point of
D+U−

c (x) such that

yr
c′ − yx ≺ yc − yx ≺ yl

c′ − yx .

The three points yc, yr
c′ , yl

c′ are distinct and are all reachable gradients by Lemma 3.2. Denote
by γc, γ

r
c′ and γ l

c′ the calibrated curves terminated at x determined by the three points respec-
tively. We get the order relation after Legendre transform

γ̇ r
c′(0) ≺ γ̇c(0) ≺ γ̇ l

c′(0).

We also know that γ̇ r
c′(0), γ̇c(0), γ̇ l

c′(0) are distinct since ∂ẋ L(x, ·) is a diffeomorphism.
We next pick c∗ satisfying c∗ ≺ c ≺ c′ and a c∗-calibrated curve γc∗ with γc∗(0) = x .

By part (1) of the lemma, we get γ̇c∗(0) ≺ γ̇c(0) ≺ γ̇ l
c′(0) and γ̇c∗(0) ≺ γ̇c(0) ≺ γ̇ r

c′(0). By
the same argument as in the proof of part (1), we see that γc would intersect γ l

c′ or γ r
c′ at a

second point, which contradicts Proposition 4.1. ��

Part (3) follows directly from the above lemma. ��
For each y ∈ Yx,E , there is a unique smooth curve γ (t, x, y): R → M such that

γ (0, x, y) = x , ∂ẋ L(x, γ̇ (0, x, y)) = y. Indeed, (γ (t), γ̇ (t)) is a trajectory of the Lagrange
flow. However, it is not necessary that each of these curve is semi-static.

Definition 4.3 Let

Y−
x,E = {y ∈ Yx,E : γ (·, x, y)|t∈R− = γ−

c (·, x) for some c ∈ α−1(E)},
namely, each point y ∈ Y−

x,E determines a backward semi-static curve γ (·, x, y) for cer-
tain cohomology class c such that γ (0, x, y) = x and ∂ẋ L(γ (0, x, y), γ̇ (0, x, y)) = y. It
approaches to certain Aubry set in the following sense

α(dγ (·, x, y)) ⊆ Ã(c).

Since the configuration space is two-dimensional, each orbit in α(dγ (·, x, y))∩ Ã(c) has
the same rotation vector, denoted by ω(x, y). Because of upper semi-continuity of backward
semi-static curves on cohomology classes, the set Y−

x,E is closed in Yx,E .
By Lemma 3.2, we get that

Y−
x,E = ∪c∈EE D∗U−

c (x).

Since the complementary set Yx,E\Y−
x,E is composed of open intervals in Yx,E , an equiv-

alence relation ∼ in Y−
x,E is introduced such that y ∼ y′ if y and y′ are the two boundary

points of an open interval in Yx,E\Y−
x,E .

Proposition 4.5 If E > min α, y ∼ y′ in Y−
x,E , then ω(x, y) and ω(x, y′) have the same

direction, i.e.

〈ω(x, y), ω(x, y′)〉 = ‖ω(x, y)‖ · ‖ω(x, y′)‖.
If c and c′ are the cohomlogy classes such that γ (·, x, y), γ (·, x, y′) are the c-, c′-semi static
respectively, then they stay in the same flat of the α-function.
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Proof Let us assume the contrary, i.e. the direction of ω(x, y) is different from that of
ω(x, y′). Under such assumption, the curves γ (·, x, y)|t∈R− and γ (·, x, y′)|t∈R− can not be
semi-static for the same cohomology class, which is guaranteed by Lemma 4.2.

Denoted by c and c′ the cohomology classes such that γ (·, x, y)|t∈R− is c-semi-static
and γ (·, x, y′)|t∈R− is c′-semi-static. We claim that c and c′ are not contained in one flat of
the α-function under the assumption that the direction of ω(x, y) is different from that of
ω(x, y′). Indeed, by Proposition 6 of [18], A(c1) = A(c2) whenever both c1 and c2 are in
the relative interior of the flat, A(c1) ⊃ A(c2) if c1 is on the boundary of the flat while c2 is
in the relative interior. Suppose c and c′ are contained in the same flat. Choose c∗ from the
relative interior of the flat where c, c′ are, then we have A(c) ⊇ A(c∗) and A(c′) ⊇ A(c∗).
But this places us in a dilemma: if the direction of the rotation vector for Ã(c∗) is the same
as that for Ã(c), then it is different from that for Ã(c′), and vise versa.

Next, we have the following lemma since the level set α−1(E), E > min α, is a C1 curve.

Lemma 4.6 If an autonomous Lagrangian is defined on T T
2, then, any flat of the α-function

is disjoint from any other flat.

By this lemma, we can choose c1, c2 ∈ α−1(E) with

c1 ≺ c ≺ c2 ≺ c′ ≺ c1,

such that no flat contains any two of the four cohomology classes.
By choosing suitable c1 and c2, we assume that any two of these rotation vectors are

not colinear. Notice there exists a backward ci -semi static curve γ−
i (i = 1, 2) such that

γ−
i (0) = x . Then by Proposition 4.3, we have

y1 − yx ≺ y − yx ≺ y2 − yx ≺ y′ − yx ≺ y1 − yx .

However, this contradicts the assumption that y ∼ y′. The contradiction implies that ω(x, y)

and ω(x, y′) are in the same direction. Consequently, c and c′ are in one flat of the α-function.
��

5 The modulus of continuity of weak KAM solutions

In this section, we give the proof of Theorem 1.1.
Consider cohomology classes c1, c2, c3 ∈ EE with c1 ≺ c2 ≺ c3, and the corresponding

elementary weak KAM solutions U−
1 , U−

2 and U−
3 respectively. By Proposition 4.3 (3), one

has
D+U−

i (x) − yx ≺ D+U−
j (x) − yx ≺ D+U−

k (x) − yx (5.1)

and the relation is independent of x .
By choosing suitable constants we assume that U−

i (x0) = 0 for each i and for any gien
point x0. Denoted by

Z−
i, j = {x ∈ R

2 : U−
j (x) − U−

i (x) = 0}.
Since these rotation directions are all different, any two of the cohomology classes are not in
the same flat. In virtue of Theorem 3.1, each set Z−

i, j is a connected set without interior. Indeed,

because both functions admit a decomposition of periodic and linear functions U−
i (x) =

u−
i (x) + 〈ci , x〉 and U−

j (x) = u−
j (x) + 〈c j , x〉, the level set Z−

i, j is a curve without self-

intersection, remaining in a strip {x ∈ R
2 : |〈ci − c j , x〉| < di, j } for some di, j > 0 and

extending to infinity in both directions.
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Lemma 5.1 Let the cohomology classes ci , c j , ck satisfy that α(ci ) = α(c j ) = α(ck) =
E > min α, then Z−

i, j intersects Z−
i,k only at x = x0.

We postpone the proof of the lemma and complete the proof of the main theorem by
assuming the lemma. We next show that the order property (5.1) induces an order property
on the sets Z−

i, j .

Definition 5.1 Given level sets Z−
j�,i�

, � = 1, 2, . . ., we say they are in the order

Z−
j1,i1

≺ Z−
j2,i2

≺ Z−
j3,i3

≺ · · · ,

if they intersect each other only at x0, and at x0 the “gradient” of U−
j�
−U−

i�
are in the order

DU−
j1

,U−
i1

,x0
≺ DU−

j2
,U−

i2
,x0

≺ DU−
j3

,U−
i3

,x0
≺ · · · .

Given two points y�, yk ∈ Y−
x0,E , we choose other two points y0, y1 ∈ Y−

x0,E such that
they are in the order y0 ≺ y� ≺ yk ≺ y1. We assume that all these four points determine
backward semi-static curves which approach the Aubry sets with different rotation direction.
One has the order (see the figure below):

y� − y0 ≺ yk − y0 ≺ yk − y� ≺ y1 − y� ≺ y1 − yk .

By applying Lemma 5.1 to the order y� − y0 ≺ yk − y0 ≺ yk − y� as well as to the order
yk − y� ≺ y1 − y� ≺ y1 − yk , one sees that the following order property holds by (5.1),
Definition 5.1 and Definition 3.4

Z−
�,0 ≺ Z−

k,0 ≺ Z−
k,� ≺ Z−

1,� ≺ Z−
1,k .

Geometrically, the set Z−
k,� lies in the sector-shaped region bounded by the sets Z−

�,0 and Z−
1,k

containing the sets Z−
k,0 and Z−

1,�, see the figure followed.

By the same argument, for any two points yi , y j ∈ Y−
x0,E between y� and yk in the

following sense
y0 ≺ y� ≺ yi ≺ y j ≺ yk ≺ y1,

we have
Z−

�,0 ≺ Z−
i,0 ≺ Z−

j,i ≺ Z−
1, j ≺ Z−

1,k .

Therefore, Z−
j,i lies in the sector-shaped region bounded by the lines Z−

�,0 and Z−
1,k , containing

the curve Z−
k,�.

The straight line {〈c0−c�, x−x0〉 = 0} is not parallel to the line {〈ck−c1, x−x0〉 = 0}. The
curves Z−

�,0 and Z−
1,k lie in the strips {|〈c0−c�, x−x0〉| < d�,0} and {|〈ck−c1, x−x0〉| < dl,k}

respectively.
Let us normalize {U−

c } by the condition U−
c (0) = 0, c ∈ EE . Given any bounded domain

�, choosing m ∈ Z
2 properly and making the translation x  → x +m, we can guarantee that

� falls into the sector-shaped bounded by the curves Z−
�,0 and Z−

1,k , but not containing the

curve Z−
k,�. It implies that Z−

j,i ∩� = ∅ if the relation (5) holds. Without loss of generality,
we assume � is a disk. Otherwise, we replace � by a disk containing �.

Let U−
0 , U−

� , U−
k , U−

1 be the global elementary weak KAM solution for the cohomology
classes c0, c�, ck, c1 respectively. It follows from the above argument that the global elemen-
tary weak KAM solutions for all cohomology classes {c : c0 ≺ c� ≺ c ≺ ck ≺ c1} are
totally ordered on the set � (Fig. 3). For any two functions U−

c +〈c, m〉 and U−
c′ +〈c′, m〉 for

different classes c and c′ in this set we have either U−
c (x)−U−

c′ (x)+ 〈c − c′, m〉 > 0 for or
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alternatively, U−
c (x)−U−

c′ (x)+ 〈c − c′, m〉 < 0 for all x ∈ �. Therefore, these elementary
weak KAM solutions can be parameterized by the “volume” in the following way. Fix any
c = c(0), we introduce the parametrization σ such that

σ =
∫

�

(U−
c(σ ) − U−

c(0))dx +
∫

�

〈c(σ ) − c(0), m〉 dx,

where the second term is caused by the m-translation. The order property guarantees that the
map σ → c is well-defined.

Suppose the cohomology classes of the elementary weak KAM solutions under consider-
ation is bounded by M . Denote by L the Lipschitz constant for all the weak KAM solutions
u−

c . It is known that L depends only on the Tonelli Hamiltonian H . So we get that

max
x∈�,c

|U−
c − U−

c′ + 〈c − c′, m〉| = max
x∈�,c

|u−
c − u−

c′ + 〈c − c′, x + m〉| ≤ (M + L)(‖m‖ + 1).

We fix a number d ≥ L + M such that

min
a∈�

Area(� ∩ Br (a)) ≥ 1

4
Area(Br (a)),

where Br (a) is a disk centered at a ∈ � with radius r ≤ (M + L)(‖m‖ + 1)/d .
We next show that in the parameter σ , the weak KAM solution is 1

3 -Hölder continuous in
C0-topology. Indeed, given U−

c(σ ) + 〈c(σ ), m〉 > U−
c(σ ′) + 〈c(σ ′), m〉, the region

Dσ,σ ′ = {(x, z) ∈ � × R : U−
c(σ )(x) + 〈c(σ ), m〉 ≤ z ≤ U−

c(σ ′)(x) + 〈c(σ ′), m〉}
contains at least two cones (Fig. 4). The height of each is

h := 1

2
‖U−

c(σ ) − U−
c(σ ′) + 〈c(σ ) − c(σ ′), m〉‖C0(�),

Fig. 3 The graphs of the weak KAM solutions are ordered above �

Fig. 4 Inserting cones between
the graphs of two weak KAM
solutions
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and the radius of its bottom disc is h
d , so the volume is πh3

3d2 . By the choice of d , we have

|σ − σ ′| =
∣∣∣∣
∫

�

(U−
c(σ ) − U−

c(σ ′)) dx +
∫

�

〈c(σ ) − c(σ ′), m〉 dx

∣∣∣∣ ≥ 1

4

πh3

3d2 ,

from which one obtains the 1
3 -Hölder regularity immediately

‖U−
c(σ ) − U−

c(σ ′)‖C0(�) ≤ 2h + ‖c(σ ) − c(σ ′)‖ · ‖m‖ ≤ C(�, H)
(
|σ − σ ′|1/3 + ‖c(σ ) − c(σ ′)‖

)
.

As Y−
x0,E can be covered by finitely many such arcs, and each global elementary weak KAM

solition admits a decomposition of periodic and linear functions, we complete the proof of
the main theorem. ��

Proof of Lemma 5.1 By Theorem 3.2, the vertex of D+U−
i (x) must be on Y−

x,E . Thus, by
Proposition 4.3(3) one deduces from the assumption ωi �= ω j �= ωk �= ωi that the derivative
sets (see Definition 3.4) DU−

i ,U−
j ,x , DU−

i ,U−
k ,x and DU−

j ,U−
k ,x are disjoint from each other for

each x ∈ T
2. If ci ≺ c j ≺ ck , then y j − yi ≺ yk − yi ≺ yk − y j , namely

DU−
i ,U−

j ,x ≺ DU−
i ,U−

k ,x ≺ DU−
j ,U−

k ,x . (5.2)

We claim that each intersection point of Z−
i, j with Z−

i,k is isolated. To see it, let us note

that 0 /∈ coDU−
i ,U−

j ,x holds for any x ∈ T
2 and i �= j . If Z−

i, j intersects Z−
i,k at some point

x , then U−
i (x) = U−

j (x) = U−
k (x). Let x ′ ∈ Z−

i, j be a point close to x , we obtain from
Lemma 3.3 that x ′−x is almost orthogonal to certain vector y ∈ DU−

i ,U−
j ,x , i.e. the inequality

|〈x ′ − x, y〉| ≤ δ‖x ′ − x‖‖y‖ holds for sufficiently small δ > 0 and some y ∈ DU−
i ,U−

j ,x .

Therefore, we obtain from (5.2) that

Z−
i, j ∩ Bε(x) ⊂ Bε(x)\(S+,δ

U−
i ,U−

j ,x
∪ S−,δ

U−
i ,U−

j ,x
),

Z−
i,k ∩ Bε(x) ⊂ S+,δ

U−
i ,U−

j ,x
∪ S−,δ

U−
i ,U−

j ,x

provided δ > 0 is sufficiently small. It implies that x is the only point in Bε(x) where Z−
i, j

intersects Z−
i,k and the intersection is topologically transversal.

Therefore, given an intersection point x of Z−
i, j with Z−

i,k , it makes sense to find another
intersection point x ′ next to x when there are more than one intersection point. In this case,
Z−

j,k also passes through the points x and x ′. Note that the intersection of these sets is always
topologically transversal. If the derivative sets of these curves at x are in clock-wise order

DU−
i ,U−

j ,x ≺ DU−
i ,U−

k ,x ≺ DU−
j ,U−

k ,x ,

then at x ′ they would be in anti clock-wise order (see Fig. 5)

DU−
i ,U−

j ,x ′ ! DU−
i ,U−

k ,x ′ ! DU−
j ,U−

k ,x ′ .

However, the order property (5.1) is independent of x by Proposition 4.3(3). The contra-
diction verifies the fact: they intersect each other only at x = x0. ��
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Fig. 5 The order property is
violated if the level curves
intersect twice

6 Extension of weak KAM solution by normal hyperbolicity

In this section, we consider a special case where the main theorem admits a higher dimensional
generalization. This is the case when the Hamiltonian system admits a normally hyperbolic
invariant manifold diffeomorphic to T ∗

T
2. This structure exists widely in nearly integrable

Hamiltonian systems.
If such modulus continuity is established on certain normally hyperbolic invariant mani-

fold (NHIM), we can extend it to the stable and unstable fibers. We first recall the definition
of a NHIM. The theory of NHIM can be found in [10].

Definition 6.1 Let f : M → M be a Cr -diffeomorphism on a smooth manifold M with
r > 1. Let N ⊂ M be a submanifold (probably with boundary) invariant under f , f (N ) = N .
We say that N is a normally hyperbolic invariant manifold if there exist a constant C ≥ 1,
rates 0 < λ < μ−1 < 1 and an invariant splitting for every x ∈ N

Tx M = Tx N ⊕ Es
x ⊕ Eu

x

in such a way that

v ∈ Tx N ⇔ |D f k(x)v| ≤ Cμk |v|, k ∈ Z,

v ∈ Es
x ⇔ |D f k(x)v| ≤ Cλk |v|, k ≥ 0,

v ∈ Eu
x ⇔ |D f k(x)v| ≤ Cλ|k||v|, k ≤ 0.

We denote � = min{ | ln λ|
| ln μ| , r}where r is the regularity of the time-1 map of the Hamiltonian

flow.

Theorem 6.1 Let T
k×R

k(⊂ T
n×R

n), k < n, be a normally hyperbolic invariant manifold
for the Hamiltonian flow with � ≥ 2 and let u±

c(σ ) be elementary weak KAMs defined on T
n

for c(·) : � → H1(Tk, R) continuous and one-to-one, where � is a compact subset of R
k .

If ū±
c(σ ) := ū±

c(σ )|Tk is ν-Hölder continuous in σ , then the weak KAM solutions u±
c(σ ) satisfy

the following estimate

‖u±
c(σ ) − u±

c(σ ′)‖C0(Tn) ≤ C(‖σ − σ ′‖ν + ‖c(σ ) − c(σ ′)‖).
for some constant C.

Proof In this setting of normal hyperbolicity, the unstable (stable respectively) manifold W u

(W s respectively) of an Aubry set A(c) ⊂ T
k ×R

k is given by the graph of the (x, ∂u−
c (x))

((x, ∂u+
c (x)) respectively) where u±

c are the elementary weak KAM solutions determined
by the Aubry set A(c). By the NHIM theorem, we know that for any point z̄ ∈ T

k × R
k , in

its neighborhood W u
z̄ is the image of Eu

z̄ under the exponential map which is near identity
if the neighborhood is small enough. Moreover, the unstable manifold W u

z̄ is C� in z̄. So we
get that in a small neighborhood U of T

k , the weak KAM solutions u−
c(σ )’s are ν-Hölder in

σ as ū−
c(σ )’s are.
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Next, we show how to extend the estimate from a neighborhood of T
k to the whole T

n as
stated in the theorem. The argument can be found in [5] Lemma 6.4. For each x ∈ T

n \ U
there exists xc ∈ U and kc ∈ R such that

u−
c (x) = u−

c (xc) + hc((xc, kc), (x, 0)),

where the notation hc((xc, kc), (x, 0)) was given in Sect. 1.1. Here the number |kc| are
uniformly bounded for all x ∈ T

n \ U and all c ∈ c(�), and the upper bound depends only
on the size of U . We denote by K the upper bound (Fig. 8).

Next, let γc : [kc, 0] → T
n the curve with γc(kc) = xc and γc(0) = x and attaining the

quantity

hc((xc, kc), (x, 0)) =
∫ 0

kc

L(dγc(t)) − 〈c, γ̇c(t)〉 + α(c) dt.

It is clear that we have

u−
c′ (x) ≤

∫ 0

kc

L(dγc(t)) − 〈c′, γ̇c(t)〉 + α(c′) dt + u−
c′ (xc).

This gives ∣∣∣∣hc((xc, kc), (x, 0)) −
∫ 0

kc

L(dγc(t)) − 〈c′, γ̇c(t)〉 + α(c′) dt

∣∣∣∣
≤

∣∣∣∣
∫ 0

kc

〈c − c′, γ̇c(t)〉 + α(c) − α(c′) dt

∣∣∣∣
≤ |γ̃c(0) − γ̃c(kc)‖ · |c′ − c‖ + |kc| · |α(c) − α(c′)|

where γ̃c denotes the lift of γc to R
n . By the convexity of α and the compactness of the set

�, we have that |α(c)− α(c′)| ≤ C‖c − c′‖ for some constant C . We also have the uniform
bound |γ̃c(0) − γ̃c(kc)| ≤ C K for all c ∈ c(�) due to the uniform bound on |kc|. Now we
get

|u−
c′ (x) − u−

c (x)| ≤
∣∣∣∣hc((xc, kc), (x, 0)) −

∫ 0

kc

L(dγc(t)) − 〈c′, γ̇c(t)〉 + α(c′) dt

∣∣∣∣
+ |u−

c (xc) − u−
c′ (xc)| ≤ (C K + C)‖c − c′‖ + C‖σ − σ ′‖ν .

This completes the proof. ��
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Appendix A: Proof of Lemma 3.1

In this appendix, we prove Lemma 3.1. We first introduce the definition of viscosity solutions.

Definition A.1 (viscosity solution). Let U (⊂ M) be an open set and H : T ∗M → R

continuous.
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We say a function u : U → R to be a viscosity subsolution of the Hamilton–Jacobi
equation H(q, dqu(q)) = a, if for any C1 function ψ , and any q0 ∈ U such that u − ψ has
a max at q0, then we have H(q0, dqψ(q0)) ≤ a;

We say a function u : U → R to be a viscosity supersolution of the Hamilton–Jacobi
equation H(q, dqu(q)) = a, if for any C1 function ψ , and any q0 ∈ U such that u − ψ has
a min at q0, then we have H(q0, dqψ(q0)) ≥ a;

We say a function u : U → R is a viscosity solution, if it is both a viscosity subsolution
and a viscosity supersolution on U .

To prove Lemma 3.1, we use the same method used to prove Lemma 1 and Theorem 1 in
[11] and Theorem 2.1 in [6].

We choose a smooth function β such that 0 ≤ β ≤ 1, β(0) = 1 and β(x) = 0 whenever
‖x‖ ≥ 1. Let βε(x) = β(x/ε).

To prove the first part of the lemma, we assume the contrary, i.e. ∃ x0 ∈ � such that
u(x0) − v(x0) > 0. Let M = max{‖u‖C0 , ‖v‖C0} and introduce �: � × � → R be given
by

�(x, x ′) = u(x) − v(x ′) + 3Mβε(x − x ′).

As u − v ≤ 0 on ∂� and � ≤ 2M if ‖x − x ′‖ ≥ ε, one deduces that

�(x0, x0) = u(x0) − v(x0) + 3Mβε(0) > 3M,

and

�∂(�×�) < �(x0, x0) if ε > 0 is sufficiently small.

Choose δ > 0 very small and then (x1, x ′1) so that

�(x1, x ′1) > sup
�×�

�(x, x ′) − δ.

We choose a smooth function ζ : �×� → R such that 0 ≤ ζ ≤ 1, ζ(x1, x ′1) = 1, ζ(x, x ′) = 0
whenever ‖x − x1‖2 + ‖x ′ − x ′1‖ > 1 and |Dζ | ≤ 2 in � × �. Finally, we set

�(x, x ′) = �(x, x ′) + 2δζ(x, x ′).

Clearly, � has a global maximum point (x̄, x̄ ′) ∈ � × �. Indeed,

�(x1, x ′1) = �(x1, x ′1) + 2δ > sup
�×�

� + δ

whereas

lim sup
‖x‖+‖x ′‖→∞

�(x, x ′) ≤ sup
�×�

�

and

�(x, x ′)|∂(�×�) < sup
�×�

� + δ if δ and ε are sufficiently small.

Obviously, we have

‖x̄ − x̄ ′‖ < ε.

Now x̄ is a maximum point of x  → u(x) − (v(x̄ ′) − 3Mβε(x − x̄ ′) − 2δζ(x, x̄ ′)) and thus,
by assumption

H(x̄,−3M∂βε(x̄ − x̄ ′) − 2δ∂xζ(x, x̄ ′)) ≤ f (x̄). (A.1)
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Similarly, x̄ ′ is a minimum point of x ′  → v(x ′)− (u(x̄)+ 3Mβε(x − x̄ ′)+ 2δζ(x, x̄ ′)) and
so

H(x̄ ′,−3M∂βε(x̄ − x̄ ′) + 2δ∂x ′ζ(x, x̄ ′)) ≥ 0. (A.2)

Since f (x̄) < 0 and δ can be chosen arbitrarily small, (A.1) contradicts to (A.2). This
contradiction implies that u ≤ v on �. This completes the proof of the first part.

For the second part of the statement, we set

uθ (x) = θu(x) + (1 − θ)φ(x) for x ∈ �̄,

where θ ∈ (0, 1). By the assumptions, we are able to choose function f ∈ C(�̄) such that
H(x, ∂φ(x)) ≤ f (x) < 0. Thus, we see that uθ ≤ u on � and uθ ∈ C(�̄) since φ ≤ u.
Note that p → H(·, p) is convex, a formal calculation reveals that

H(x, ∂uθ ) ≤ θ H(x, ∂u) + (1 − θ)H(x, ∂φ) ≤ (1 − θ) f.

Applying the first part of the lemma we get uθ ≤ v. Noting that θ can be arbitrarily close to
1, we complete the proof for the second part.

Appendix B: Further structure of the weak KAM solutions in the rational
case

In Sect. 2, we have considered the globally weak KAM solutions when the rotation vector is
irrational, and in the rational case assuming c = Lβ(ω) when Lβ(ω) is a point and c is an
endpoint of Lβ(ω) when it is an interval. In this appendix, we consider a cohomology class
c in the interior of Iω = Lβ(ω). The result in this appendix will not be used in the proof of
the main theorem. We include it since it gives us some new information of the weak KAM
solutions.

We fix a periodic curve γω,λ, denote by u±
c,λ the corresponding elementary weak KAM

solution. Without loss of generality, we assume the rotation vector has the form ω = (0, ω̂).
In the covering space kT

2 with k = (k1, k2) and k1 > 1, denote by γ ∗
ω,λ the curve in the

lift of γω,λ which passes through the interval {x ∈ R
2 : x1 ∈ [0, 1), x2 = 0}. Any other curve

in the lift is obtained by certain Deck transformation. Denoted by u±
c,λ,k the elementary weak

KAM solution determined by γ ∗
ω,λ. Treating it as the k-periodic function defined on R

2, one
has

Proposition B.1 Assume c ∈ int Iω where Iω = Lβ(ω) is a line segment for ω = (0, ω̂) for
some ω̂ ∈ R. For any bounded domain � ⊂ R

2, there is a positive number k(�) such that
for any k, k′ ∈ Z

2 with k1, k′1 ≥ k(�) and k2, k′2 ≥ 1, one has

u±
c,λ,k |� = u±

c,λ,k′ |�.

Proof Clearly, u±
c,λ,k is always 1-periodic in x1. To study how this function is valued, let us

consider the quantity hc(g) for g ∈ H1(T
2, Z) defined as follows

hc(g) = min
x∈T2

lim inf
T→∞ inf

ξ(0)=ξ(T )=x
[ξ ]=g

[Ac(ξ)].

Since the system is autonomous, the limit infimum is indeed a limit. Clearly, hc(g) = 0 if
g = [γω,λ]. Notice that H1(T

2, γω,λ, Z) is generated by {e,−e} where e = (1, 0) and γω,λ

is codimension 1, one has hc(±me) = mhc(±e) for m ∈ N. If ∪λγω,λ does not make up a
2-torus, one has hc(e) + hc(−e) > 0, both hc(e) > 0 and hc(−e) > 0 if c ∈ int Iω.
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For the rotation vector ω(c) = (0, ω̂) and c ∈ int Iω, we consider the elementary weak
KAM determined by γ ∗

ω,λ in the covering space kT
2, denoted by u±

c,λ,k . For k1 ≥ 4, the shifts
of γ ∗

ω,λ,

γ
∗,−
ω,λ = γ ∗

ω,λ − (1, 0) and γ
∗,+
ω,λ = γ ∗

ω,λ + (1, 0)

cut the torus into two annuli. Let us study how u±
c,λ,k is valued when it is restricted on the

annulus which contains the curve γ ∗
ω,λ, denoted by A = A

− ∪ A
+, where A

− is bounded

by the curves γ
∗,−
ω,λ and γ ∗

ω,λ, A
+ is bounded by the curves γ ∗

ω,λ and γ
∗,+
ω,λ . Let x̄ ∈ γ ∗

ω,λ and
x̄ ′ ∈ A

+ ∪ A
−, one obtains from the definition that

u−
c,λ,k(x̄ ′) − u−

c,λ,k(x̄) = lim
T→∞ inf

ξT (0)=x̄
ξT (T )=x̄ ′

[Ac(ξT )].

Notice c ∈ int Iω. For sufficiently large k1 and T , the minimal curve ξT falls into the annulus
A
+ ∪ A

−, it does not cross the annulus kT
2\(A+ ∪ A

−). Otherwise the quantity [Ac(ξT )]
shall approach infinity as k1 → ∞, guaranteed by hc(e) > 0 and hc(−e) > 0. For the same
reason, the minimal curve for u+

c,λ,k also stays in A
+∪A

−. Therefore, the restriction of u±
c,λ,k

on A
+ ∪ A

− is independent of k1 provided it is suitably large.
In the covering space, each curve in the lift of γω,λ takes the form of γ ∗

ω,λ + ( j, 0) with
j = 1, . . . , k1, mod k1. Let Am denote the annulus bounded by the curves γ ∗

ω,λ + (m, 0) and
γ ∗
ω,λ + (m + 1, 0), we claim that, for a positive integer m, there exists k∗1 = k∗1(m) such that

for any k1 ≥ k∗1 ,

u±
c,λ,k(x̄) = u±

c,λ,k(x̄ − (m, 0)) + mhc(∓e), x̄ ∈ Am;
u±

c,λ,k(x̄) = u±
c,λ,k(x̄ + (m − 1, 0)) + (m − 1)hc(±e), x̄ ∈ A−m .

(B.1)

To verify, let ξ : [−T, 0] → kT
2 be the minimal curve connecting x̄0 ∈ γ ∗

ω,λ to x̄ such that
ξ(−T ) = x̄0 and ξ(0) = x̄ . Because hc(∓e) > 0, the curve ξ will cross the annulus A j

with j = 1, . . . , m − 1 if m > 0 is suitably smaller than k1 as Ac(ξ) > Ac(ζ ) holds for
any curve ζ : [−T, 0] → kT

2 which connects x̄0 to x̄ but does not cross the annulus A j

with j = 1, . . . , m − 1. Denoted by t j the time when ξ(t j ) = γ ∗
ω,λ(t j )+ ( j, 0), then one has

|ξ̇ (t j ) − γ̇ ∗
ω,λ(t j )| → 0 as T → ∞. Therefore, there exists a point x̄m ∈ Am on the curve ξ

such that |x̄m − (m, 0) − x̄0| → 0 when T → ∞. Note tm ∈ [−T, 0], T + tm → ∞ and
−tm → ∞ as T → ∞, one obtains from the definition that

h∞
c (x̄0, x̄) ← hT

c (x̄0, x̄) = hT+tm
c (x̄0, x̄m) + h−tm

c (x̄m, x̄),

namely, u−
c,λ,k(x̄) = u−

c,λ,k(x̄ − (m, 0)) + mhc(e). Other formulae can be proved in the

similar way. Therefore, for any domain � ⊂ R
2, some positive number k(�) exists such that

u±
c,λ,k |� = u±

c,λ,k′ |� provided k1, k′1 ≥ k(�). ��
B.1 An example

To illustrate what the lemma means, let us consider the weak KAM solution of

H(x, ∂x u + c) = 1

2
(∂x u + c)2 − (1 − cos x)

for c = 0. The figures (Fig. 6, Fig. 7, Fig. 8) below are the graphs of the weak KAM solutions
when they are lifted to the universal covering space. They are equal for x ∈ [−π, π]. The
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Fig. 6 The graph of u−0 , by treating {x ∈ R : x mod 2π} as the configuration space

Fig. 7 The graph of u−0 with respect to the Aubry class {x = 0}, by treating {x ∈ R : x mod 4π} as the
configuration space

Fig. 8 The graph of u−0 with respect to the Aubry class {x = 0}, by treating {x ∈ R : x mod 12π} as the
configuration space

functions for {x ∈ R : x mod 4π} and for {x ∈ R : x mod 12π} are equal when they are
restricted on [−2π, 2π ].
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