
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-017-2999-2
Commun. Math. Phys. 359, 347–373 (2018) Communications in

Mathematical
Physics

Lyapunov Exponents and Correlation Decay for Random
Perturbations of Some Prototypical 2D Maps

Alex Blumenthal1 , Jinxin Xue2, Lai-Sang Young3

1 Department of Mathematics, University of Maryland, College Park, MD, USA.
E-mail: alexb123@math.umd.edu

2 Department of Mathematics, University of Chicago, Chicago, IL, USA.
E-mail: jxue@math.uchicago.edu

3 Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
E-mail: lsy@cims.nyu.edu

Received: 4 March 2017 / Accepted: 1 August 2017
Published online: 12 October 2017 – © Springer-Verlag GmbH Germany 2017

Abstract: To illustrate the more tractable properties of random dynamical systems, we
consider a class of 2Dmaps with strong expansion on large—but non-invariant—subsets
of their phase spaces. In the deterministic case, such maps are not precluded from having
sinks, as derivative growth on disjoint time intervals can be cancelled when stable and
unstable directions are reversed. Our main result is that when randomly perturbed, these
maps possess positive Lyapunov exponents commensurate with the amount of expansion
in the system. We show also that initial conditions converge exponentially fast to the
stationary state, equivalently time correlations decay exponentially fast. These properties
depend only on finite-time dynamics, and do not involve parameter selections, which
are necessary for deterministic maps with nonuniform derivative growth.

Two signatures of chaotic behavior in dynamical systems are the positivity of Lyapunov
exponents and fast decay of time correlations. For deterministic maps that are not uni-
formly expanding or hyperbolic, these properties can be difficult to prove even when the
underlying geometry suggests a strong likelihood of chaotic behavior. Ourmainmessage
is that the situation for random maps is different, and one of the aims of this paper is
to propose a systematic way to establish the positivity of Lyapunov exponents for such
maps. For a prototypical class of 2D maps with certain requisite geometry, we recover,
under small perturbations, Lyapunov exponents that correctly reflect that geometry. We
prove also that the time correlations of such maps decay exponentially fast.

We begin with a discussion of the underlying issues before proceeding to a more
detailed discussion of our results.
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The situation vis a vis deterministic maps
Proving rigorously the chaotic behavior of a deterministicmap F entails the following

challenges: Even if ‖dF‖ � 1 on a large part of the phase space, if F does not possess
a continuous family of invariant cones, i.e., if its expanding and contracting directions
are not well separated, then the sequence ‖dFn

x (v)‖, n = 1, 2, . . . , for a typical point
x and vector v can oscillate with n, and whether its cumulative growth rate is positive
or negative can be a delicate cancellation problem. These cancellations are real; see
e.g. [5,6,10]. The challenge of estimating the asymptotic growth rates of ‖dFn

x (v)‖
is exemplified by the Chirikov standard map [8], for which it is not known whether a
positive Lyapunov exponent exists on a positive Lebesguemeasure set of x for arbitrarily
large expansion constants; see e.g. [11].

If F is not volume-preserving, and one is interested in physically relevant observa-
tions, then additionally one will have to prove the existence of an SRB measure. (These
issues are discussed in the review article [29], Sect. 5.) As for the rate of mixing, current
techniques require properties considerably more stringent than just positive Lyapunov
exponents; see e.g. [7,17,28].

An example that embodies these challenges is the family of 1D maps fa : [−1, 1] �
given by fa(x) = 1 − ax2, a ∈ [0, 2]. For this family, it has been proved that there is
an open and dense set of parameters A such that for a ∈ A, the orbit of Lebesgue-a.e.
x tends to a sink under fa [12,18]; at the same time there is a positive measure set B
of parameters such that for a ∈ B, fa has an invariant density with respect to which
it has a positive Lyapunov exponent [14] and exponential decay of time correlations
[27]. Moreover, it has been shown thatA and B together comprise a set of full Lebesgue
measure in parameter space [19]. Given the complicated geometric relationship between
A and B, for a randomly picked parameter a, then, to determine for certain that it is in
B (and not in A) will require that we know the infinite-time dynamics of fa to infinite
precision.

Though less complete, the dynamical picture above has been shown to carry over to
2D, as exemplified in Newhouse’s infinitely many sinks [21] and “strange attractors” for
Hénon-like families [2,3,24]. See also [10,11,25,26]. These results suggest that away
from systems with certain uniform properties, the dynamical landscape can be complex,
with different regimes—some chaotic some not—coexisting in close proximity. In such
situations, elaborate schemes of parameter selection are needed to identify maps with
chaotic behavior.

For more references on the positivity of Lyapunov exponents, see the Introduction
of [4].

Random maps
For randomly perturbed dynamical systems, especially those for which transition

probabilities have densities, there are no issues with invariant measures. One can also
hope that through the averaging effects of randomization, Lyapunov exponents become
more stable and therefore easier to control. This and other ideas have been used a number
of times in the past to prove continuity properties and simplicity of Lyapunov exponents
in the settings of (i) random compositions of matrices and (ii) linear skew products over
hyperbolic and partially hyperbolic systems; see [4] for references.

A stronger conjecture is that the Lyapunov exponents of a randomly perturbed sys-
tem with expansion should more closely reflect the amount of expansion in the maps
(in addition to being just positive), and a similar statement should hold for statistical
quantities such as rate of mixing. General results of this type remain to be proved. The
present paper is a step in that direction; two related results are [4,16].
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Results of this paper
The maps considered here are dissipative versions of those in [4]. We consider small

random perturbations of a class of (dissipative) deterministic 2D maps which have large
regions G in their phase spaces with the property that the map is strongly uniformly
hyperbolic for as long as an orbit remains in this region. The sets G are not invariant,
however, and when an orbit returns to G after an excursion, its previously stable and
unstable directions can be switched, resulting in cancellation of the type discussed above.
Two results are proved: In Theorems 1 and 3, we prove the positivity of Lyapunov
exponents with desirable bounds, and in Theorems 2 and 4, we prove the exponential
decay of correlations, connecting the rate of decay to the system’s Lyapunov exponents.

A salient difference between area-preserving and dissipativemaps is that the latter can
develop sinks, which even in the random setting are clear obstructions to both positive
Lyapunov exponents and fast mixing. Elliptic islands in conservative systems slow down
derivative growth as well, but the obstructions they impose are less severe because orbits
can move away more easily. Another difference is that one has no a priori control on the
statistics of random compositions of dissipative maps, whereas the statistics of random
compositions of volume preserving maps are, tautologically, governed by the preserved
volume.

Two simple facts used in our proof of positive Lyapunov exponents are (i) we assume
perturbation size is large enough to ensure escape from the bad region, so that most
orbits spend a large fraction of time in G, and (ii) our randomization affects not only
positions of x but also vector angles, so that cancellations of the type discussed above
occur only with low probability. Less obvious is the crucial observation that one can
achieve this control in a finite number of steps, and that the result can be shown to be
uniform among initial locations x and vectors v. This is what enabled us to deduce, from
finite-time dynamics alone, a lower bound for Lyapunov exponents as we have done in
Theorems 1 and 3. For the reasons explained above, the proofs of these results are quite
different from those in [4].

While noise alone can cause exponential decay in random dynamical systems: such
decay rates are guaranteed only to be commensurate with the size of the noise. We
prove in the setting above that for random perturbations of size O(L−1), where L is the
expansion constant, correlation decays at rate O(L−σ ) for some σ > 0. Aswewill show,
once an initial condition is sufficiently randomized by the noise to acquire a density on a
local scale, expanding properties of the map will, in a finite number of steps, spread this
density from a local to global scale. Coupling time is related to the number of steps this
takes, and that in turn is related to the Lyapunov exponent of the random maps system.

Finally, though we have chosen to illustrate our ideas in the simpler setting of 2D
maps, our methods are not inherently dimension dependent, and we expect that similar
ideas are valid in higher dimensions.

1. Setting and Statement of Results

Deterministic maps from which to perturb
This paper is about small random perturbations of a class of deterministic 2D-maps

which we now describe. Let S1 = R/Z be the unit circle. We assume throughout that
ψ : S1 → R is a C3 function for which the following generic conditions hold:

(H1) C ′
ψ = {x̂ ∈ S

1 : ψ ′(x̂) = 0} and C ′′
ψ = {ẑ ∈ S

1 : ψ ′′(ẑ) = 0} have finite
cardinality.

(H2) minx̂∈C ′
ψ

|ψ ′′(x̂)| > 0 and minẑ∈C ′′
ψ

|ψ ′′′(ẑ)| > 0.
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Abusing notation slightly, we will identify S1 with the half-open interval [0, 1), and
write “x mod 1” for π(x), where π : R → S

1 is the usual projection.
For L > 1 and a ∈ [0, 1), we define f = fL ,a : S1 → R by f (x) = Lψ(x) + a.

The deterministic map to be perturbed is F = FL ,a,b : C → C, where C := S
1 × [0, b],

b ∈ (0, 1], and
F(x, y) =

(
f (x) − y mod 1

bx

)
. (1)

Notice that det(dF) ≡ b. For b = 1, F can be seen as a diffeomorphism of the 2-torus
S
1 × S

1 onto itself. For b < 1, F is discontinuous at D = {x = 0}; it can be seen as an
embedding F̄ of the rectangle [0, 1]×[0, b] into S1×[0, b]with F̄({x = 0}) ⊂ {y = 0}
and F̄({x = 1}) ⊂ {y = b}.

For simplicity we will assume throughout that 0 /∈ C ′
ψ .

Some examples of much studied systems that have a similar flavor to the setup above
are (i) the Hénon maps [2,3,13], which correspond to the case ψ(x) = x(1 − x) and
a = 0, (ii) annulus maps such as those arising from kicked oscillators [25,26], with
ψ(x) = sin(2πx), and (iii) the standard map [4,8], with b = 1 and ψ(x) = sin(2πx).

Random perturbations

We consider random compositions

Fn
ω = Fωn ◦ · · · ◦ Fω1 for n = 1, 2, . . . ,

where Fω = F ◦ Sω and Sω is of the form

Sω(x, y) = (x + ωmod 1, y).

Hereω = (ω1, ω2, . . . ), whereωi ∈ [−ε, ε] are chosen i.i.d.with respect to the uniform
distribution νε on [−ε, ε]. Thus our sample space can be written as � = [−ε, ε]N,
equipped with the probability

(
νε

)⊗N.
The random maps system above {Fn

ω}n≥1 can also be seen as a time-homogeneous
Markov chain {(Xn,Yn)} given by

(Xn,Yn) = Fn
ω(X0,Y0) = Fωn (Xn−1,Yn−1).

That is to say, for fixed ε, the transition probability starting from (x, y) ∈ C is

P((x, y), A) = Pε((x, y), A) = νε{ω ∈ [−ε, ε] : Fω(x, y) ∈ A}

for Borel sets A ⊂ C. For k ≥ 1, we write Pk for the corresponding k-step transition
probability, and for an initial distribution μ, μPk is the distribution given by

μPk(A) =
∫

Pk((x, y), A)dμ((x, y)).

Results
Let “Leb” denote Lebesgue measure on C. We view b ∈ (0, 1] and ψ as fixed, and

allow implicitly all constants to depend on them.
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Theorem 1. Given δ > 0 and α < 1, there exists L1 = L1(δ, α), L1 → ∞ as δ → 0
or α → 1, such that the following holds for all a ∈ [0, 1), L ≥ L1 and ε ≥ L−1+δ: For
every (x, y) ∈ C,

λε
1 := lim

n→∞
1

n
log ‖

(
dFn

ω

)
(x,y)

‖ ≥ α log L for a.e. ω. (2)

In particular, the limit exists and is constant for all the (x, y) and ω above.

As ‖dF‖ = O(L), the lower bound on λε
1 in Theorem 1 is effectively as large as

can be. This result requires no parameter deletion, i.e., it applies to all a, in sharp
contrast to the situation for deterministic maps of a similar type (as in [2,3,14,26]).
Fixing b ∈ (0, 1) and considering all sufficiently large L , our minimum perturbation
size ε is, at this level of generality, optimal; see the discussion in Sect. 2.1 C.

Our next result is about the rate of correlation decay for theMarkov chain {(Xn,Yn)}.
Theorem 2. Given δ ∈ (0, 1), there exist constants σ1 = σ1(δ) > 0, K1 = K1(δ) ∈ Z

+

and L2 = L2(δ) > 1 such that the following holds for all a ∈ [0, 1), L ≥ L2 and
ε ≥ L−1+δ: If φ : C → R is a bounded measurable function and μ1, μ2 are Borel
probability measures on C, then∣∣∣∣

∫
φ d(μ1P

n) −
∫

φ d(μ2P
n)

∣∣∣∣ ≤ ‖φ‖∞ L−σ1(n−K1) for all n ≥ K1.

Next we assume some minimal, easily checkable, condition on the first iterates of F ,
and show that the results above continue to hold for a significantly smaller ε. For c > 0,
let Nc(C ′

ψ) denote the c-neighborhood of C ′
ψ in S1.

(H3)c For any x̂, x̂ ′ ∈ C ′
ψ , we have that f x̂ − bx̂ ′ (mod 1) �∈ Nc(C ′

ψ).

The meaning of this condition is explained in Sect. 2.1. Theorems 3 and 4 are analogs
of Theorems 1 and 2.

Theorem 3. Fix arbitrary c0 > 0. Then given δ > 0 and α < 1, there exists L3 =
L3(c0, δ) such that for all L ≥ L3 and ε ≥ L−2+δ , the conclusion of Theorem 1 holds
for all a ∈ [0, 1) for which f = fL ,a satisfies (H3)c0 .

Theorem 4. Fix arbitrary c0 > 0. Given δ ∈ (0, 1), there are constants σ2 = σ2(δ) > 0,
K2 = K2(δ) ∈ Z

+ and L4 = L4(c0, δ) such that for all L ≥ L4, ε ≥ L−2+δ and a with
f = fL ,a satisfying (H3)c0 , the conclusion of Theorem 2 holds with σ2 and K2 in the
place of σ1 and K1 respectively.

Not surprisingly, the results above are simpler for larger ε, though for technical
reasons some of the proofs have to be written differently. We assume in all of the proofs
below that ε ≤ 1

2 ; the case of ε > 1
2 is left to the reader.

2. Preliminaries

The random maps we study are small perturbations of deterministic maps F of a partic-
ular form. In Sect. 2.1, we identify some geometric properties of F that will be relevant.
We will also explain the relation between ε, the minimum perturbation size we require,
and L , the approximate normof dF . Stationarymeasures of theMarkov chain {(Xn ,Yn)}
are discussed in Sect. 2.2.
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2.1. Geometry of the deterministic map F.

A. Hyperbolicity The most salient characteristics of F are that (a) it is strongly hyper-
bolic on an open set that occupies a large fraction of the phase space and (b) this set is not
invariant, and the hyperbolicity cannot be extended to all of C. For F as defined in Sect. 1,
consider cone fields in tangent spaces of the form S = {v = (vx , vy) : |vy/vx | ≤ 1

5 }.
For (x, y) �∈ {| f ′| < 10}, one checks easily that dF(x,y) maps S into S, and expands
vectors in these cones uniformly. By (H1) and (H2), the region {| f ′| < 10} is comprised
of a finite number of vertical strips in C, the widths of which tend to 0 as L → ∞, yet
the cone preservation property above cannot be extended across these strips. Indeed it is
not hard to convince oneself that there can be no continuous family of cones preserved
by dF on all of C, so F is not uniformly hyperbolic.

Equally important is how hyperbolicity deteriorates as one approaches the “bad set”
C ′

ψ × [0, b]. Let D1 > 0 be such that

|ψ ′(x)| ≥ 2D−1
1 d(x,C ′

ψ) ;
that such a D1 exists follows from (H1), (H2) in Sect. 1. The following easy estimate is
used many times:

Lemma 5. For any η ∈ (0, 1) and any L > 1,

d
(
x,C ′

ψ

)
> D1L

−1+η �⇒ | f ′(x)| ≥ 2Lη.

Lemma 5 has motivated us to work with sets of the form

Bη =
{
(x, y) ∈ C : d

(
x,C ′

ψ

)
≤ D1L

−1+η
}

(3)

outside of which the dynamics are hyperbolic.
Finally, we observe that because we assumed that 0 /∈ C ′

ψ in Sect. 1, we have that
the discontinuity line D is disjoint from C ′

ψ × [0, b]. Although it is perhaps technically
unnecessary to assume this, we do so for the sake of clarity in our arguments.

B. Growth of horizontal curves Let us call a connected C1 curve γ ⊂ C a horizontal
curve if locally it is the graph of a map h : I → [0, b] where I ⊂ S

1 is an interval
and h satisfies |h′| ≤ 1/5. We define the “length” of γ , denoted |γ |, to be the length
of its projection to S

1 counted with multiplicity, and say γ wraps around C if |γ | ≥ 1.
It follows immediately from Paragraph A that if γ is a horizontal curve defined on
I ⊂ {| f ′| ≥ 10}\D, then F(γ ) is again a horizontal curve, and if γ is a horizontal curve
disjoint from Bη ∪ D, η ∈ (0, 1), then by Lemma 5,

|F(γ )| ≥ Lη · |γ |. (4)

The next lemma gives some flavor of how horizontal curves grow in length until a
component wraps around C. More refined versions of this result will be proved later.

Lemma 6. Given δ ∈ (0, 1), there exist L0 = L0(δ) such that for any L ≥ L0 and any
horizontal curve γ with |γ | ≥ L−1+δ , Fn(γ ) contains a horizontal curve that wraps
around C for all n ≥ log(4/δ)

log 2 .



Lyapunov Exponents and Correlation Decay 353

Proof. Assuming L is large enough, we observe first that if |γ | > L−49/100, then Fn(γ )

contains a horizontal curvewhichwraps aroundC for alln ≥ 1.This is becauseγ \(B1/2∪
D) has a component γ̂ of length≥ 1

3 L
−49/100, so by (4), |F(γ̂ )| > L1/2 · 13 L−49/100 � 2.

Suppose now that |γ | < L−49/100. Observe that γ �⊂ B 3
4 δ since |γ | ≥ L−1+δ �

2D1L−1+ 3
4 δ , and γ \(B 3

4 δ ∪ D) has at most two connected components since |γ | <

L−49/100. Let γ̂ be the longer of these components. If F(γ̂ ) wraps around C, we are
done. If not, we let γ1 = F(γ̂ ), and repeat the argument above with γ1 in the place of γ .

More precisely, the longer component γ̂ has length |γ̂ | ≥ 1
2 (L

−1+δ−2D1L−1+3δ/4) ≥
1
3 L

−1+δ , and so by (4), |γ1| > 1
3 L

−1+ 7
4 δ > L−1+ 3

2 δ . If |γ1| > L−49/100, then we finish. If
not, we let γ̂1 be the longer component of γ1\(B 5

4 δ
∪D), and conclude that F(γ̂1) = γ2

has length ≥ 1
3 L

−1+( 32 +
5
4 )δ ≥ L−1+ 5

2 δ .
Inductively, assume that we have produced curves γ3, γ4, . . . , γk following the above

procedure, and that L−1+δk ≤ |γk | ≤ L−49/100, where δk := 1
2 (1 + 2

k)δ. We set γ̂k to be
the longer of the two components of γk\(D ∪ Bδk− 1

4 δ). Noting that |γ̂k | ≥ 1
3 L

−1+δk , it

follows by (4) that |γk+1| = |F(γ̂k)| ≥ Lδk−δ/4 · 1
3 L

−1+δk ≥ 1
3 L

−1+ δ
4 +δk+1 ≥ L−1+δk+1 ,

since δk+1 = 2δk − δ/2.
In particular, we are ensured that |γk | ≥ L−49/100 if k ≥ log(2/δ)

log 2 , andmay now appeal

to the argument for |γ | ≥ L−49/100 as above. ��

C. Sinks and minimum sizes of perturbations Since we have not imposed conditions
on F to rule out the possibility of a sink, to obtain positive Lyapunov exponents, our
perturbation must be large enough to enable orbits to leave the sink’s basin. Below we
consider the worst possible case, when F has a sink (x̂, ŷ) onC ′

ψ ×[0, b], and determine
the size of the immediate basin for such a sink.

All norms in the next lemma refer to the max norm, i.e.

dmax((x1, y1), (x2, y2)) := max{|x1 − x2|, |y1 − y2|}.
Let B((x, y), r) = {(x ′, y′) ∈ C : dmax((x, y), (x ′, y′)) < r}.
Lemma 7. Assume that b < 1. Let L be sufficiently large, and assume that F(x̂, ŷ) =
(x̂, ŷ) with x̂ ∈ C ′

ψ . Then,

dmax
(
F2(x, y), (x̂, ŷ)

) ≤ 1 + b

2
dmax

(
(x, y), (x̂, ŷ)

)
for all (x, y) ∈ B(rL) ,

where B(·) = B((x̂, ŷ), ·) and rL := (L‖ψ ′′‖C0)−1 · min{ 1
10 ,

1−b
6 }.

Proof. As 0 /∈ C ′
ψ , we may assume L is sufficiently large thatB(2rL) ∩ D = ∅.

Observe that if (x, y) ∈ B(rL), then | f ′(x)| ≤ L‖ψ ′′‖C0 |x − x̂ | ≤ κ where κ =
min{ 1

10 ,
1−b
6 }. As one can check, for such (x, y) we have

‖dF(x,y)‖max ≤ max{| f ′(x)| + 1, b} ≤ 1 + κ ,

guaranteeing F(B(rL)) ⊂ B((1 + κ)rL) ⊂ B(2rL). Here, ‖ · ‖max refers to the matrix
norm induced by the max norm on R

2.
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We now estimate ‖dF2
(x,y)‖max for (x, y) ∈ B(rL). Let (x ′, y′) = F(x, y). Then

dF2
(x,y) =

(
f ′(x ′) −1
b 0

)(
f ′(x) −1
b 0

)
=

(
f ′(x) f ′(x ′) − b − f ′(x ′)

b f ′(x) −b

)
,

from which we obtain

‖dF2
(x,y)‖max ≤ max{| f ′(x) f ′(x ′)| + b + | f ′(x ′)|, b| f ′(x)| + b}

≤ 2κ2 + 2κ + b ,

having used | f ′(x ′)| ≤ 2κ . Since κ ≤ 1/10, we have 2κ2 ≤ κ , and so ‖dF2
(x,y)‖max ≤

3κ + b ≤ 1
2 (1 + b). The desired contraction estimate follows. ��

Thus without knowing detailed properties of F , a difference between horizontal
curves of length O(L−1) and those of length � L−1+δ, δ > 0, is that the latter will
always grow long under iterations of F (Lemma 6) whereas the first may not. This is
a motivation for the size of ε in Theorem 1, which is, in the above sense, sharp. On
the other hand, having a positive probability of escaping from a sink is a necessary but
not sufficient condition. Whether or not λε

1 ≈ log L depends strongly on the asymptotic
distribution of mass.

We remark that the sharpness of our lower estimate on ε is in the sense of fixing b
and asking for a minimum perturbation size ε = ε(L) for which the results hold for all
large enough L . If we covary b and L , the picture may be quite different. For example,
if b = b(L) → 1 sufficiently fast as L → ∞, then the ε needed is likely much smaller,
as the results of [4] suggest.

D. Sizes of perturbations in Theorems 3 and 4 If the basins of sinks give a hint on
the size of perturbation needed to achieve positivity of Lyapunov exponents, one may
expect that ε can be shrunk if one requires, for example, that F(C ′

ψ ×[0, b]) stays away
from itself. There is validity to this idea, except that the condition cannot always be met
for b large: the image of a vertical line {x} × [0, b] is a horizontal line of length b. In
Theorems 3 and 4, we assert that in the case of random maps, to reduce the size of ε

it suffices to impose the condition that no orbit can stay close to C ′
ψ × [0, b] for three

consecutive iterates. That is to say, suppose F(xi , yi ) = (xi+1, yi+1), i = 1, 2, . . . . If
xi , xi+1 ∈ C ′

ψ , then xi+2 must stay away from C ′
ψ . This is the meaning of (H3). Such a

condition is both realizable and checkable, as it involves only a finite number of iterates
for a finite set of points.

Theorems 3 and 4 suggest that it may be possible to decrease ε further if one imposes
conditions on more iterates of f or F . We will not pursue that here, but this line of
thinking is consistent with earlier ideas used in, e.g., [1,2,14,26] for proving nonuniform
hyperbolicity for certain deterministic maps.

2.2. Stationary distributions. For the Markov chain {(Xn,Yn)} introduced in Sect. 1, a
Borel probability measure μ on C is called stationary if for any Borel set A ⊂ C,

μ(A) =
∫
C
P((x, y), A) dμ(x, y).
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Lemma 8. For any L , ε > 0, there exists a stationary probability measure for the
Markov chain {(Xn,Yn)}. Any such stationary probability is absolutely continuous with
respect to Lebesgue measure.

Proof. Since S1 × [0, b] is compact, to prove the existence stationary probability mea-
sures it suffices to check that P((x, y), ·) varies continuously with (x, y) ∈ C in the
weak* topology of Borel probability measures on C. That is easily done.

That any stationary measure is absolutely continuous follows from the fact that
P2((x, y), ·) � Leb for every (x, y) ∈ C. One can check this directly, but given the
special form of our map F a quick proof is that

Fω2 ◦ Fω1(x, y) = F ◦ F ′ ◦ S′
ω1,−ω2

(x, y) , (5)

where S′
ω,ω′(x, y) = (

x + ωmod 1, y + ω′) and F ′ is the extension of F in (1) to

S
1 × [−ε, b + ε]. ��
Given that the densities of all stationary distributions are supported on sets with

Lebesgue measure greater than constant·ε2, there can be at most a finite number of
ergodic probability measures. From the Multiplicative Ergodic Theorem for random
systems [15], we have that with respect to any stationary measure, the limit in λε

1 as
defined in (2) exists a.e. and is constant on each ergodic component.

Theorems 1 and 2 will be proved as follows: We will show in Sect. 3 that for any
stationary measure μ, λε

1 ≥ α log L for μ-a.e. (x, y). Theorem 2 is proved in Sect. 4.
From Theorem 2, it follows easily that (i) there can be at most one stationary measure
μ, and (ii) for every (X0,Y0) ∈ C,

P(X0,Y0)[(Xn,Yn) ∈ supp(μ) for some n] = 1. (6)

Lemma 8, (i) and (ii) above, together with the Lyapunov exponent estimate in Sect. 3
complete the proof of Theorem 1. Theorems 3 and 4 are proved analogously; the proofs
are given in Sect. 5.

3. Estimation of Lyapunov Exponents

In this section we consider an arbitrary stationarymeasureμ and prove that λε
1 ≥ α log L

for μ-a.e. (x, y). We will refer to this result as the “μ-a.e. version Theorem 1”. As with
ψ and b, we assume a is fixed throughout. For technical reasons, we consider only
δ ∈ (0, 1), and let K = K (δ) be the smallest integer for which 2K δ > 4. This number
has the connotation of a renewal time and will appear in many of our proofs. Notice that
it is independent of L .

3.1. Reductions. Below, we use the notation uθ = (cos θ, sin θ) for θ ∈ [0, 2π). Given
an initial condition (X0,Y0) ∈ C, an “angle” θ0 ∈ [0, 2π), and a sequence of perturba-
tions ω1, . . . , ωn ∈ [−ε, ε], we write (Xk,Yk) = Fωk (Xk−1,Yk−1), k = 1, . . . , n, and
let θk ∈ [0, 2π) be defined by

uθk = (dFωk )(Xk−1,Yk−1)uθk−1

‖(dFωk )(Xk−1,Yk−1)uθk−1‖
.

Our first reduction is to an integral that involves only finite-time dynamics.
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Proposition 9. Given α < 1 and δ ∈ (0, 1), the following holds for all L sufficiently
large and all ε ∈ [L−1+δ, 1

2 ]: for any (X0,Y0) ∈ C and θ0 ∈ [0, 2π), we have the
uniform bound∫

log ‖(dFωK+3)(XK+2,YK+2)uθK+2‖ (dνε)⊗(K+3)(ω1, . . . , ωK+3) ≥ α log L , (7)

where K is as defined at the beginning of this section.

The idea behind Proposition 9 is that starting from any (X0,Y0) and θ0, after K + 2
steps, the distributions of (XK+2,YK+2) and θK+2 are sufficiently well distributed that
the average growth of uθK+2 under dFωK+3 is large.

Proof of μ-a.e. version of Theorem 1 assuming Proposition 9. For μ-a.e. (X0,Y0), the
convergence in (2) holds for a.e. ω. It therefore converges in L1 by the Bounded Con-
vergence Theorem. That is,

λε
1 = lim

n→∞
1

n

∫
�

log ‖(dFn
ω)(X0,Y0)‖dP(ω).

Fix an arbitrary θ0 ∈ [0, 2π), and let {θn} be as defined above. Then

λε
1 = lim

n→∞
1

n

∫
�

log ‖(dFn
ω)(X0,Y0)‖dP(ω) ≥ lim

n→∞
1

n

∫
�

log ‖(dFn
ω)(X0,Y0)uθ0‖dP(ω)

= lim
n→∞

1

n

n−1∑
i=0

∫
�

log ‖(dFωi+1)(Xi ,Yi )uθi ‖dP(ω). (8)

For n � K and K + 2 ≤ i ≤ n − 1, the i-th summand above is equal to
∫ ( ∫

log ‖(dFωi+1)(Xi ,Yi )uθi ‖(dνε)⊗(K+3)(ωi−K−1, . . . , ωi+1)

)

(dνε)⊗(i−K−2)(ω1, . . . , ωi−K−2).

Observe that for each fixed ω1, . . . , ωi−K−2, the parenthetical term has the same form
as the LHS of (7) with the replacements (X0,Y0) �→ (Xi−K−2,Yi−K−2) and θ0 �→
θi−K−2. It is therefore ≥ α log L by Proposition 9, completing the proof of
Theorem 1. ��

A second reduction is given in Proposition 10 below. It asserts that to obtain the
bound in Proposition 9, it is sufficient to leverage the randomness in only two time steps.

Proposition 10 (Main Proposition). The assumptions are as in Proposition 9. Let (X0,

Y0) ∈ C and θ0 ∈ [0, 2π), and fix arbitrary ω2, . . ., ωK , ωK+2, ωK+3 ∈ [−ε, ε]. Then∫
log ‖(dFωK+3)(XK+2,YK+2)uθK+2‖ d(νε ⊗ νε)(ω1, ωK+1) ≥ α log L . (9)

In Sect. 3.2, we will show that randomizing ω1 alone will lead to favorable distribu-
tions ofmass on C. The control of angles, or slopes of tangent vectors, is the other crucial
ingredient in the estimation of Lyapunov exponents for maps in dimensions greater than
one. This control is achieved by varying both ω1 and ωK+1. The argument is carried out
in Sect. 3.3, where the proof is completed.
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3.2. Distribution of mass via a one-step randomization. The aim of this subsection is to
show that by randomizingω1, the distribution of XK given any (X0,Y0) andω2, . . . , ωK
has certain desirable characteristics.

The idea is as follows: Randomization of ω1 produces a horizontal line segment,
which we iterate forward using Fωi ◦ · · · ◦ Fω2 ◦ Fω for i = 2, 3, . . . , K . As explained
in Sect. 2.1A, on a large part of the phase space (which we will call “good”), cones of
tangent vectors that are roughly horizontal are preserved and the lengths of the vectors
are expanded by the derivatives of the maps. We will show that under our conditions
on L and ε, a large fraction of the horizontal segment above will remain in this “good”
region in the first K iterates and has a nice distribution at the end.

The idea of iterating densities on curves or submanifolds whose tangent vectors lie
in unstable cones has been used many times in uniformly hyperbolic and other systems
with globally defined invariant cones (including billiards); see e.g. [22,23], and also [9]
where the concept of what is now called “standard pair” originated. Our situation is
different in that our maps do not admit globally defined invariant cone families. In that
respect our construction is closer to that in [2,26], where curves that are aligned with
certain favorable conditions are pushed forward and those parts that are hard to control
are deleted—the situation here being much simpler due to the large size of L and the
fact that we need only to iterate a finite number of times. We mention also that the use
of random perturbations to create segments or surfaces “in favorable directions” to be
pushed forward was used in [20] to treat certain PDEs that are randomly forced in their
low modes.

Let I ⊂ S
1 be an interval. We say a horizontal curve in C crosses I × [0, b] if its

graphing function is defined on I .

Proposition 11. Given any δ ∈ (0, 1), there exist L∗ = L∗(δ) ≥ 1 and C = C(δ) ≥ 1
such that the following hold for all L ≥ L∗ and ε ∈ [L−1+δ, 1

2 ]: For every (X0,Y0) ∈ C
and arbitrary ω2, . . . , ωK ∈ [−ε, ε], there exists a set R ⊂ [−ε, ε] such that

(a) νε([−ε, ε]\R) ≤ CL−δ/4, and
(b) on R there is a partition W = {W } into intervals with the following properties:
(i) the set {(XK , YK ) = FωK ◦ · · · ◦ Fω2 ◦ Fω(X0,Y0) : ω ∈ W } is a horizontal curve

crossing (0, 1) × [0, b]; and
(ii) viewing XK as a function of ω ∈ W, we have that for ω,ω′ ∈ W,

∣∣∣∣
∂

∂ω
XK (ω)

∂
∂ω

XK (ω′)

∣∣∣∣ ≤ C. (10)

To obtain distortion estimates, it will be necessary to control the second derivatives of
horizontal curves. Let D̂ = ‖ψ ′′‖C0 , and letH denote the set of all connected C2 curves
γ in C that are finite unions of curves γ̂ of the form γ̂ =graph(h) where h : I → [0, b],
I ⊂ S

1 is an interval, |h′| ≤ 1
5 and |h′′| ≤ D̂L .

Lemma 12. Let γ ∈ H be such that γ ⊂ {| f ′| ≥ 10} and γ ∩D = ∅. Then F(γ ) ∈ H.

This lemma will be used implicitly many times in the proofs below; its proof is straight-
forward and left to the reader.

In the proof of Proposition 11 and related proofs to follow, we will call a horizontal

curve γ short if |γ | ≤ L− 1
2 +δ/4, and long otherwise.
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Proof of Proposition 11. Let δ ∈ (0, 1) be fixed; the magnitude of L may be increased
a finite number of times as we go along. Fix arbitrary (X0,Y0) ∈ C and ω2, . . . , ωK ∈
[−ε, ε]. We divide the proof into three parts.

(A) Inductive construction of R and W . For k = 0, 1, . . . , K , we define a collection
�k of horizontal curves inductively as follows. Let �0 = {γ0}, where γ0 := [X0 −
ε, X0 + ε] × {Y0}. We identify, via a procedure to be specified, a collection Rγ0 of
subsegments of γ0 and let �1 = {F(γ̂ ) : γ̂ ∈ Rγ0}. For k ≥ 1, to obtain �k+1 from �k ,
we identify for each γ ∈ �k a disjoint collection Rγ of subsegments γ̂ ⊂ γ , and let
�k+1 := {Fωk+1(γ̂ ) : γ̂ ∈ Rγ , γ ∈ �k}. Observe that each γ ∈ �k so defined has the
form

γ = {Fωk ◦ · · · ◦ Fω2 ◦ Fω(X0,Y0) : ω ∈ W }

for an intervalW ⊂ [−ε, ε]. Moreover, if we letWk denote the set ofW associated with
γ ∈ �k , and let Rk = ∪W∈WkW , then it follows from our construction that

[−ε, ε] =: R0 ⊃ R1 ⊃ · · · ⊃ RK .

The set R in Proposition 11 is RK , and W = WK .
To specify Rγ for γ ∈ �k involves deleting some parts of γ and partitioning the

rest into subsegments. Our choices below are aimed at achieving the following: the
fractions deleted must be small, and the partition must result in segments short enough
for distortion control, yet expanded enough to reach full length in at most K iterations.

Consider first the case γ = γ0 :

Case 1. γ is short. We let δγ > 0 be given by |γ | = L−1+δγ +δ/4. First we delete
γ ∩ (Bδγ ∪ D) (see Sect. 2.1 for the definition of Bη). Then we put into Rγ connected
subsegments γ̂ such that γ̂ ∩ B 1

2
= ∅ and F(γ̂ ) crosses (0, 1) × [0, b]. From what

remains of γ , we discard those components that have length< L−1+δγ , partition the rest
into connected subsegments of length between L−1+δγ and 2L−1+δγ and put them into
Rγ .

Case 2. γ is long. We delete γ ∩ (B1/2 ∪D), and put intoRγ any connected subsegment
γ̂ that remains for which F(γ̂ ) crosses (0, 1) × [0, b].

For γ ∈ �k, k ≥ 1, the procedure is a small modification of that above to ac-
commodate the use of Fωk+1 in the place of F . That is, when γ is short, we delete
γ ∩ (

(Bδγ ∪D)− (ωk+1, 0)
)
, and put intoRγ any connected subsegment γ̂ that remains

for which Fωk+1(γ̂ ) crosses (0, 1) × [0, b]; the rest of the construction of �k+1 proceeds
exactly as before. The case where γ is long is treated analogously.

This completes the construction.
In the rest of (A) we argue that all the curves in �K cross (0, 1) × [0, b]. This

along with Lemma 12 will prove (b)(i) in Proposition 11. Observe that once γ ∈ �k
is long, then all of its descendants, i.e. curves of the form Fωk+1(γ̂ ), γ̂ ∈ Rγ , cross
(0, 1) × [0, b], as will the descendants of Fωk+1(γ̂ ). Suppose γ0, γ1, γ2, . . . are such
that for all k, γk ∈ �k , γk+1 descends from γk , and all are short. We will show that δγk

grows exponentially: First, since L−1+δ ≤ ε = 1
2 L

−1+δγ0+δ/4, we may assume L is large
enough that δγ0 ≥ 1

2δ. Suppose γ1 = F(γ̂ ). By construction, |γ̂ | ≥ L−1+δγ0 , and by
Lemma 5, | f ′| > 2Lδγ0 on γ̂ . So |γ1| ≥ |γ̂ | · Lδγ0 ≥ L−1+2δγ0 by (4). As δγ1 is defined
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by L−1+δγ1+δ/4 = |γ1| ≥ L−1+2δγ0 , it follows that δγ1 ≥ 2δγ0 − 1
4δ ≥ 3

4δ. Repeating this
argument, we obtain inductively that

δγk+1 ≥ 2δγk − 1

4
δ ≥ 1

4
(2k+1 + 1)δ.

Since2K δ > 4byour choice of K (beginningofSect. 3), it follows that L−1+ 1
4 (2K−1+1)δ >

L− 1
2 +δ/4, i.e., all γ ∈ �K−1 are either long, or their FωK -image crosses (0, 1) × [0, b].

(B)Controlling distortion. Fix arbitraryW ⊂ W .We let γ̌0 = {(X0+ω,Y0) : ω ∈ W },
γ̌k = (Fωk ◦ · · · ◦ Fω2 ◦ F)(γ̌0) for 1 ≤ k ≤ K , and let γk ∈ �k be such that γ̌k ⊂ γk .
We assume γ̌k = graph(hk) for hk : Ik → [0, b], and let π1 : C → (0, 1) be projection
onto the first coordinate. Then defining

F̌1 : I0 → I1 by F̌1(x) = π1F(x, h0(x)) ,

and F̌k : Ik−1 → Ik by F̌k(x) = π1Fωk (x, hk−1(x)) for k > 1 ,

we have that for ω ∈ W , Xk(ω) = F̌k(X0 +ω) where F̌k := F̌k ◦ · · · ◦ F̌1. We estimate
the distortion of F̌k on I0 as follows: For x1, x2 ∈ I0,

(F̌k)′(x1)
(F̌k)′(x2)

=
k∏

i=1

(F̌i )′
(
F̌ i−1x1

)

(F̌i )′
(
F̌ i−1x2

) . (11)

If γi−1 is long, then inf z∈Ii−1 |F̌ ′
i (z)| ≥ L

1
2 (by (4) andLemmas 5, 12),while |Ii−1|·L 1

2 ≤
|Ii | ≤ 1, implying |Ii−1| ≤ L− 1

2 . Thus

∣∣∣∣∣∣log
(F̌i )′

(
F̌ i−1x1

)

(F̌i )′
(
F̌ i−1x2

)
∣∣∣∣∣∣ ≤ supz∈Ii−1

|F̌ ′′
i (z)|

inf z∈Ii−1 |F̌ ′
i (z)|

· |Ii−1| ≤ 2D̂L

L
1
2

· L− 1
2 = 2D̂. (12)

If γi−1 is short, the same estimate holds if Fωi (γi−1) crosses (0, 1) × [0, b]. Otherwise
∣∣∣∣∣log

(F̌i )′(F̌ i−1x1)

(F̌i )′(F̌ i−1x2)

∣∣∣∣∣ ≤ supz∈Ii−1
|F̌ ′′

i (z)|
inf z∈Ii−1 |F̌ ′

i (z)|
· |Ii−1|

≤ 2D̂L

Lδγi−1
· 2L−1+δγi−1 = 4D̂. (13)

We have shown that the left side of (11) is ≤ e4k D̂ , completing the proof of (b)(ii) in
Proposition 11.

(C) Estimating νε(R). Noting that K is independent of L , it suffices to estimate the
fraction of mass deleted as we go from Rk to Rk+1 for each k < K . To do that, we
consider one W ∈ Wk at a time, beginning with γ0. Let γ ∈ �k be associated with W .
If γ is short, then for L large enough, γ can meet at most one of the following: D, or a
component B of Bδγ − (ωk+1, 0). Let γ̄ be the union of those subsegments of γ whose
images cross (0, 1)×[0, b]. Then γ \(D∪ B ∪ γ̄ ) has at most 4 connected components.
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The total length deleted is ≤ 2D1L−1+δγ + 4L−1+δγ . Since |γ | = L−1+δγ +δ/4, pulling
back to W and using the distortion bound in (B), we have

νε
(
W\ ∪W ′∈Wk+1 W

′)
νε(W )

≤ e4k D̂(2D1 + 4)L−δ/4.

If γ is long, i.e., |γ | > L− 1
2 +δ/4, then it can meet any number of the #C ′

ψ components
of B := B 1

2
− (ωk+1, 0), hence there are at most #C ′

ψ + 1 connected components γ ′

of γ \(D ∪ B). The Fωk+1 -image of each such γ ′ consists of a disjoint union of curves
crossing (0, 1) × [0, b] and at most two additional curves of length < 1 to be deleted.

If γ ′′ ⊂ γ ′ is such that Fωk+1(γ
′′) is one of the curves of length < 1, then |γ ′′| < L− 1

2 .
Altogether, we obtain

νε
(
W\ ∪W ′∈Wk+1 W

′)
νε(W )

≤ e4k D̂
(
1 + #C ′

ψ

)
(2D1 + 2)L−δ/4.

With L taken sufficiently large, the proof of part (a) of the Proposition is complete.
��

3.3. Proof of main proposition (Proposition 10). We use the notation in Sect. 3.1, and
assume the hypotheses of Proposition 10. In particular, throughout this subsection δ and
α are fixed, as are (X0,Y0) and ω2, . . . , ωK , ωK+2, ωK+3, leaving ω1 and ωK+1 to be
varied.

We introduce the following notation: For c∗ > 0, let B1
c∗ := {x ∈ S

1 : d(x,C ′
ψ) ≤

D1c∗} where D1 is as in Sect. 2.1, so that |ψ ′| ≥ 2c∗ outside of B1
c∗ . Similarly, by (H1)

and (H2), there is a constant D2 > 0 for which |ψ ′′(x)| ≥ D−1
2 d(x,C ′′

ψ) for all x ∈ S
1.

Let B2
c∗ = {x ∈ S

1 : d(x,C ′′
ψ) ≤ D2c∗}, so that outside of B2

c∗ , |ψ ′′| ≥ c∗.

(A) Varying ω1 (for fixed ωK+1). Let p > 0 be small enough to be specified at the end
of the proof, and let R be as in Proposition 11 with respect to the ω2, . . . , ωK specified.
We assume L is large enough that νε(R) > 1 − p. For each ωK+1, we define

G1(ωK+1) =
{
ω1 ∈ R : XK + ωK+1, XK+1 + ωK+2, XK+2 + ωK+3 �∈ B1

c∗ ,

and XK + ωK+1 /∈ B2
c∗

}
,

and let

G1 = {(ω1, ωK+1) ∈ [−ε, ε] × [−ε, ε] : ω1 ∈ G1(ωK+1)}.
This is a “good set”, constructed to help us gain control of the integrand in Proposition
10.

We claim that for small enough c∗ = c∗(p) and large enough L depending on c∗ and
p, νε(G1(ωK+1)) > 1−2p, the values of c∗ and L required being independent of ωK+1.
Since |γ | = 1 for all γ ∈ �K , both FωK+1(γ ) and FωK+2FωK+1(γ ) wrap around C many
times, and so the portions of γ + (ωK+1, 0), FωK+1(γ ) + (ωK+2, 0), FωK+2FωK+1(γ ) +
(ωK+3, 0) that fall into B1

c∗ tend to 0 as c∗ → 0. The same comment applies to the
portion of γ + (ωK+1, 0) that falls into B2

c∗ . Pulling back to ω1 where the deletion takes
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place, we need a distortion bound not explicitly depending on c∗. This is possible as the
quantity in (12) with i = K + 1 or K + 2 is ≤ (2D̂L)/(Lc∗)2 � 2D̂.

(B) Varying ωK+1 (for fixed ω1). Our “good set” here is the Borel set

G2 = {(ω1, ωK+1) ∈ [−ε, ε] × [−ε, ε] : ωK+1 ∈ G2(ω1)} ,

where G2(ω1) =
{
ωK+1 ∈ [−ε, ε] : XK + ωK+1 /∈ B2

c∗ and | tan θK+1|
≤ L1−σ

}
.

Above, σ > 0 is a parameter to be specified shortly. As we will see, it is the condition
on θK+1 that is of interest; the one on XK + ωK+1 is used in the estimation of θK+1.

Letting Gc
2(ω1) = [−ε, ε]\G2(ω1), we write Gc

2(ω1) = Gc
2,1(ω1)∪Gc

2,1(ω1)where

Gc
2,1(ω1) =

{
ωK+1 ∈ [−ε, ε] : XK + ωK+1 ∈ B2

c∗
}

and Gc
2,2(ω1) =

{
ωK+1 ∈ [−ε, ε] : XK + ωK+1 /∈ B2

c∗ and | tan θK+1| L1−σ
}

.

We do not estimate the measure of Gc
2,1(ω1), as the pairs (ω1, ωK+1) with ωK+1 ∈

Gc
2,1(ω1) are already excluded in the definition ofG1.Wewill show that νε(Gc

2,2(ω1)) <

p for large enough L independently of ω1.
The tangent term in Gc

2,2(ω1) is estimated using the formula

tan θK+1 = b

f ′ (XK + ωK+1) − tan θK
, (14)

which follows directly from the definition of dF . Rephrasing, we have that

Gc
2,2(ω1) =

{
ω ∈ [−ε, ε] : XK + ω /∈ B2

c∗ and | f ′(XK + ω)

− tan θK | < bL−1+σ
}

=
{
ω ∈ [−ε, ε] : XK + ω /∈ B2

c∗ and |ψ ′(XK + ω)

− 1

L

(
tan θK − a

)| < bL−2+σ

}
.

The set of ω for which XK +ω /∈ B2
c∗ consists of at most #C ′′

ψ intervals; on each interval,
ω �→ ψ ′(Xk + ω) is monotonic with |ψ ′′(Xk + ω)| ≥ c∗. Thus independently of the
value of 1

L

(
tan θK − a),

νε
(
Gc

2,2(ω1)
)

< #C ′′
ψ · 1

2ε

2bL−2+σ

c∗ ≤ #C ′′
ψ · b

c∗ L
−1+σ−δ , (15)

using ε ≥ L−1+δ . Taking σ ≤ 1, this bound is < p for L sufficiently large.

(C) Putting it all together. At last we form the “good set” G = G1 ∩G2, and note that
(νε ⊗ νε)(G) > 1 − 3p. To estimate (9), we decompose into

∫
G +

∫
Gc .
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For (ω1, ωK+1) ∈ G, we use

‖(dFωK+3)(XK+2,YK+2)uθK+2‖ ≥ | cos θK+2| · | f ′(XK+2 + ωK+3) − tan θK+2|. (16)

To bound the cosine factor, we have that

| tan θK+2| ≤ b

| f ′(XK+1 + ωK+2)| − | tan θK+1| ≤ b

c∗L − L1−σ
, (17)

the second inequality following from the definitions of G1 and G2. A generous bound is
therefore | cos θK+2| ≥ 1/2. To estimate the second factor on the right side of (16), we
have | f ′(XK+2 + ωK+3)| ≥ c∗L (property of G1), and | tan θK+2| = O(L−1) by (17).
Altogether, this gives, for (ω1, ωK+1) ∈ G,

‖(dFωK+3)(XK+2,YK+2)uθK+2‖ ≥ c∗

4
L .

For (ω1, ωK+1) ∈ Gc, we bound the integrand with the ‘worst’ possible estimate

‖(dFωK+3)(XK+2,YK+2)uθK+2‖ ≥ b

2L‖ψ ′‖C0
.

Collecting our estimates,

( ∫
(ω1,ωK+1)∈G

+
∫

(ω1,ωK+1)∈Gc

)

× log ‖(dFωK+3)(XK+2,YK+2)uθK+2‖d(νε ⊗ νε)(ω1, ωK+1)

≥ (1 − 3p) log L + log

(
c∗

4

)
+ 3p log

b

2L‖ψ ′‖C0
.

To finish, we choose p small enough depending on α, then c∗ depending on p. The
bound in (9) follows on taking L sufficiently large.

The proof of Proposition 10 is now complete.

4. Proof of Theorem 2

In this section we view our randomly perturbed dynamical system as the Markov chain
(Xn,Yn) defined in Sect. 1, and recall that Pk((X,Y ), ·) is the k-step transition proba-
bility starting from (X,Y ). Let K = K (δ) be as defined at the beginning of Sect. 3, and
let ‖ · ‖tv denote the total variation norm of a signed measure.

4.1. Reductions and coupling procedure. Our main proposition is the following.

Proposition 13. Let δ ∈ (0, 1). Then there is a constant C0 = C0(δ) > 0 such that the
following holds for all L sufficiently large and ε ∈ [L−1+δ, 1

2 ]: for any (X0,Y0), (X ′
0,

Y ′
0) ∈ C,

‖PK+4((X0,Y0), ·) − PK+4((X ′
0,Y

′
0), ·)‖tv ≤ C0L

−δ/4. (18)
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From (18), it follows easily that for any two Borel probability measures μ1 and μ2
on C,

‖μ1P
K+4 − μ2P

K+4‖tv ≤ 1

2
C0L

−δ/4‖μ1 − μ2‖tv ,

from which the assertion of Theorem 2 follows with K1 = K + 4 and σ = δ/(8K1).
The rest of Sect. 4.1 contains a proof of Proposition 13 modulo two technical esti-

mates, the proofs of which we postpone to the next subsection.
The reason behind the rapid correlation decay is that the maps Fω have strong ex-

pansion in the x-direction, spreading mass around quickly. To highlight this expansion,
we put normalized Lebesgue measure �0 on γ0 = [X0 − ε, X0 + ε] × {Y0}, and for
fixed ω2, ω3, . . . , let �k = Fk∗�0 be the measure obtained by transporting �0 forward by
Fk := Fωk ◦ · · · ◦ Fω2 ◦ F . Likewise define �′

k using (X ′
0,Y

′
0) in the place of (X0,Y0)

for the same sequence ω2, ω3, . . . . We would like to compare �k to �′
k . In general, these

measures are supported on disjoint sets of curves. The next lemma gives conditions
under which they can be coupled.

Lemma 14. For any (x, y) and (x, y′) ∈ C with |y − y′| < L−1+ 1
2 δ ,

‖P2((x, y), ·) − P2((x, y′), ·)‖tv < L− 1
2 δ.

Proof. This follows immediately from (5) together with ε ≥ L−1+δ . ��
The next three lemmas seek to put as large a fraction of the pushed-forward measures

�k and �′
k as possible into coupling position. The terminology of a horizontal curve

crossing a rectangle U of the form U = I × [0, b] ⊂ C is as defined at the beginning
of Sect. 3.2. Below we let F̃ : [0, 1) × [0, b] → R × [0, b] be the lift of F , i.e., it is
defined as in (1) but without the “mod 1” in the first coordinate.

Lemma 15. Fix η ∈ (0, 1
2 ], and let U be a connected component of C\(D∪ B1−η). Then

there is an interval J = [a−, a+] ⊂ R with |J | ≥ Const. · L for which the following
holds: Let γ, γ ′ be horizontal curves crossingU, and let h : I → [0, b], h′ : I ′ → [0, b],
denote the graphing functions of F̃(γ ), F̃(γ ′), respectively. Then

J = [a−, a+] ⊂ I, I ′ ⊂ [a− − 1, a+ + 1] ,

and on J ,

‖h − h′‖C0 < L−1+η.

With obvious modifications, Lemma 15 is valid if F̃ is replaced by F̃ω for fixed
ω ∈ [−ε, ε]. Recall that π1 denotes projection to the first coordinate.

Proof of Lemma 15. First observe that F̃ maps each of the two horizontal boundaries
of U , I × {0} and I × {b}, to a horizontal curve of length const · L , and it maps each
of the two vertical boundaries of U to horizontal segments of length b. Let [a−, a+] =
π1 F̃(I × {0}) ∩ π1 F̃(I × {b}). Since any horizontal curve γ crossing U connects its
vertical boundaries, it follows that π1 F̃(γ ) ⊃ [a−, a+] and is contained [a− −1, a+ +1].

The last assertion in the lemma follows once we check that any vertical line segment
connecting F̃(J ×{0}) and F̃(J ×{b}) is expanded by a factor≥ L1−η under F̃−1. This
is a simple exercise. ��
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The next lemma is similar to Proposition 11, with an improved distortion bound.

Lemma 16. The hypotheses and notation are as inProposition 11, but we fixωK+1, ωK+2

in addition to ω2, . . . , ωK . Then there exists a constant Ĉ = Ĉ(δ) > 0 and a set
R̂ ⊂ [−ε, ε] such that

(a) νε([−ε, ε]\R̂) ≤ Ĉ L−δ/4, and
(b) on R̂ there is a partition Ŵ = {Ŵ } into intervals with the following properties:
(i) the set {(XK+1,YK+1) = FωK+1 ◦ · · · ◦ Fω2 ◦ Fω(X0,Y0) : ω ∈ Ŵ } is a horizontal

curve crossing (−ωK+2, 1 − ωK+2) × [0, b]; and
(ii) viewing XK+1 as a function of ω ∈ Ŵ , we have that for ω,ω′ ∈ Ŵ ,

∣∣∣∣
∂

∂ω
XK+1(ω)

∂
∂ω

XK+1(ω′)

∣∣∣∣ ≤ 1 + Ĉ L−1/2. (19)

Given (X0,Y0), we let �0 be as above, and writeFK+1 = FωK+1 ◦ · · · ◦ Fω2 ◦ F . Then

�̂K+1 := FK+1∗
(
�0|(X0+R̂)×{Y0}

)

is supported on a finite number of horizontal curves, each one of which crosses (−ωK+2,

1−ωK+2)×[0, b]. Analogous objects using the same sequenceω2, . . . , ωK+1 are defined
for (X ′

0,Y
′
0), and are denoted by the same letter with a prime (′).

From here on we use C as a generic constant that is allowed to depend only on ψ

and on δ; its value may differ from statement to statement but will be increased at most
a finite number of times.

Lemma 17. Given (X0,Y0) and (X ′
0,Y

′
0), we fix ω2, . . . , ωK+2, and let U be a compo-

nent of C\((D ∪ B1−η) − (ωK+2, 0)) for some η ∈ (0, 1/2]. Define

ρK+2,U = (
π1 ◦ F̃ωK+2

)
∗
(
�̂K+1|U

)
,

and let ρ′
K+2,U be defined analogously. Then

‖ρK+2,U − ρ′
K+2,U‖tv ≤ CL

−min
{
1
2 ,1−2η, δ

4

}
. (20)

We first complete the proof of Proposition 13, postponing the proofs of Lemmas 16
and 17 to the next subsection so as not to disrupt the flow of ideas.

Proof of Proposition 13 assuming Lemmas 16 and 17. Fixing arbitraryω2, . . . , ωK+2 ∈
[−ε, ε], we compare the conditional probabilities

PK+4(((X0,Y0), ·)|ω2, . . . , ωK+2) and

PK+4 (((
X ′
0,Y

′
0

)
, ·) |ω2, . . . , ωK+2

)
as follows:

Let �k, k ≤ K + 2, be as above; the measures �′
k are defined similarly for (X ′

0,Y
′
0).

Lemma 16 says that omitting a fraction≤ CL−δ/4 of �K+1 and �′
K+1, we obtain �̂K+1

and �̂′
K+1, each supported on a collection of horizontal curves that cross (−ωK+2, 1 −

ωK+2) × [0, b], with nearly constant densities (in the sense of (19)) on each curve. We
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retain only those parts of �̂K+1 and �̂′
K+1 that lie outside of B1−η − (ωK+2, 0) (for some

η to be determined), thereby discarding another fraction of total mass ≤ CL−η.
LetU be a component of C\((D∪ B1−η)− (ωK+2, 0)), and let �̂K+1,U and �̂′

K+1,U be

the restrictions of �̂K+1 and �̂′
K+1 toU . ApplyingLemmas 15 and 17,we deduce that there

are parts �̌K+2,U and �̌′
K+2,U of (F̃ωK+2)∗(�̂K+1,U ) and (F̃ωK+2)∗(�̂′

K+1,U ) respectively
with the following properties:

(i) (π1)∗�̌K+2,U = (π1)∗�̌′
K+2,U ;

(ii) restricted to any vertical line, the support of �̌K+2,U ∪ �̌′
K+2,U is contained in an

interval of length < L−1+η; and

(iii) the total mass of (F̃ωK+2)∗(�̂K+1,U ) − �̌K+2,U is ≤ CL−min{ 12 ,1−2η,δ/4}, with the
analogous estimate for �̌′

K+2,U .

Choosing η < δ
2 , we have, by Lemma 14, that the measures �̌K+2 and �̌′

K+2 are in

coupling position. That is to say, in the next 2 steps, a fraction of ≥ 1 − L− 1
2 δ of them

will coincide.
Finally, the total mass that remains uncoupled after K + 4 steps is

≤ CL−min{δ/4,η,1−2η,1/2}.

Assuming η ≤ 1
3 and δ < 1, this is < CL−δ/4, concluding the proof of Proposition

13. ��

4.2. Technical estimates. Lemma 16 is an extension of Proposition 11, and we follow
the notation there.

Proof of Lemma 16. We define Ŵ and R̂ on one W ∈ W at a time, where W is as in
Proposition 11. Let γ be the image of W under ω �→ (XK (ω), YK (ω)). Mirroring the
proof of Proposition 11, we let R̂γ be the collection of subsegments γ̂ of γ \(B3/4 ∪D)

with the property that FωK+1(γ̂ ) crosses (−ωK+2, 1 − ωK+2) × [0, b]. The pullbacks of
elements of R̂γ to W are elements of Ŵ and their union is W ∩ R̂.

The additional deletion in this last step can be estimated as follows: Let W and γ be
as in the last paragraph. From γ , we culled #C ′

ψ subsegments due to B 3
4
, and at most

2(#C ′
ψ +1) subsegments due to the failure of their images to cross (−ωK+2, 1−ωK+2)×

[0, b]. This leads to a deletion from γ of total length

≤ #C ′
ψ · 2D1L

− 1
4 + 2

(
#C ′

ψ + 1
)

· L− 3
4

which when pulled back to W amounts to a fraction ≤ Const. · L− 1
4 of W .

Next we estimate the distortion of XK+1 on Ŵ , where Ŵ ⊂ W are as above. In the
notation of the proof of Proposition 11, we will check the distortion of

F̌i : Îi−1 → Îi , where Îi = π1F i
((

X0 + Ŵ
)

× {Y0}
)

,

for 1 ≤ i ≤ K + 1.
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Consider first 1 ≤ i ≤ K . Let {Ii }1≤i≤K be as in Proposition 11. Then F̌K ◦ · · · F̌i+1
maps Ii onto IK and Îi onto ÎK ; moreover, its distortion is bounded by a constant inde-
pendent of L (by Proposition 11). Since ÎK ∩ B3/4 = ∅ and | ÎK+1| = 1 by construction,
we have | ÎK | ≤ L−3/4, and the distortion bound above gives

| Îi |
|Ii | ≤ Const.

| ÎK |
|IK | ≤ Const. L−3/4.

Applying this to either of the estimates (12) or (13) (depending on the length of γi−1
and Fωi (γi−1); see the proof of Proposition 11), it immediately follows that

∣∣∣∣ log (F̌i )′(x1)
(F̌i )′(x2)

∣∣∣∣ ≤ Const. L−3/4

for any x1, x2 ∈ Îi−1.
For the case i = K + 1, applying our estimate for | ÎK | yields

∣∣∣∣ log (F̌K+1)
′(x1)

(F̌K+1)′(x2)

∣∣∣∣ ≤ supz∈ ÎK |F̌ ′′
K+1(z)|

inf z∈ ÎK |F̌ ′
K+1(z)|

· | ÎK | ≤ 2D̂L

(L
3
4 )2

≤ Const. L−1/2

for any x1, x2 ∈ ÎK . This completes the distortion bound. ��
The following comments may help motivate our proof of Lemma 17 below. The

measure (F̃ωK+2)∗(�̂K+1|U ) is supported on a collection �U of horizontal curves of
length O(L), and (F̃ωK+2)∗(�̂′

K+1|U ) is supported on a collection �′
U . As these curves

are quite close in vertical distance, one might consider coupling the measure on each
γ̌ ∈ �U to that on some γ̌ ′ ∈ �′

U as in Lemma 14. This does not work well, because
the weights carried by individual curves vary. That is why we compare only the π1-
projections of the measures (F̃ωK+2)∗(�̂K+1|U ) and (F̃ωK+2)∗(�̂′

K+1|U ). A second point
is that the pushforward density on each γ̌ (or γ̌ ′) is nowhere close to being constant
along the entire length of the curve, as ∂x F̃ωK+2 varies considerably over the length of
its pre-image.

Proof of Lemma 17. Let U be fixed, and let J = [a−, a+] be given by Lemma 15.
Let γ be a horizontal curve of the form ω �→ (XK+1(ω), YK+1(ω)), ω ∈ Ŵ for some
Ŵ ∈ Ŵ , where Ŵ is as in Lemma 16. We fix x̄ ∈ J , and estimate the density of (π1 ◦
F̃ωK+2)∗(�̂K+1|γ∩U ) at x̄ as follows. Let (x1, y1) ∈ γ ∩U be such thatπ1 F̃ωK+2(x1, y1) =
x̄ . Using the line {y = b} as a reference, we let (x, b) ∈ U be such that π1 F̃ωK+2(x, b) =
x̄ . Let ∂1 and ∂2 denote unit vectors in the x- and y-directions, and suppose ∂1 + s∂2 is
tangent to γ at (x1, y1). We claim that∣∣∣∣∣

π1(d F̃ωK+2)(x1,y1)(∂1 + s∂2)

π1(d F̃ωK+2)(x,b)∂1
− 1

∣∣∣∣∣ < CL−1+2η (21)

for some C independent of γ .
The assertion in Lemma 17 can be deduced from (21) as follows. First,

π1(d F̃ωK+2)(x,b)∂1 = f ′(x + ωK+2) ,



Lyapunov Exponents and Correlation Decay 367

and the density of (π1)∗(�̂K+1|γ∩U ) is cγ (1 ± CL− 1
2 ) on π1(U ) where cγ = �̂K+1(γ )

(Lemma 16). These together with (21) imply that the density of (π1◦ F̃ωK+2)∗(�̂K+1|γ∩U )

at x̄ is, up to a multiplicative factor of (1±CL−min{ 12 ,1−2η}), equal to cγ /| f ′(x+ωK+2)|.
Summing over all γ from Ŵ ∈ Ŵ and recalling that

∑
cγ = �̂K+1(C) > 1 − CL−δ/4

(Lemma 16), it follows that up to a multiplicative factor of (1±CL−min{ 12 ,1−2η, δ
4 }), the

density of (π1 ◦ F̃ωK+2)∗(�̂K+1|U ) at x̄ is 1/| f ′(x+ωK+2)|. An analogous estimate holds
for (π1 ◦ F̃ωK+2)∗(�̂′

K+1|U ). Thus the density of the signed measure ρK+2,U − ρ′
K+2,U at

x̄ has absolute value ≤ CL−min{ 12 ,1−2η, δ
4 }/| f ′(x + ωK+2)|. Integrating over x̄ ∈ J and

pulling the integral back to ( f −1(J + b) ∩ π1(U )) − ωK+2 along the map x �→ x̄ =
f (x + ωK+2) − b, the desired conclusion follows.

It remains to prove (21). From the definition of F , and the fact that (x + ωK+2, b) �∈
B1−η, the left side of (21) is

≤ L−1+η · (| f ′(x1 + ωK+2) − f ′(x + ωK+2)| + |s|) (22)

It is easy to check that (F̃ωK+2 |U )−1({x̄} × [0, b]) is a vertical curve, i.e., it is the graph
of a function g from [0, b] in the y-axis to the x-axis with |g′| ≤ L−1+η. This implies
|x1 − x| ≤ L−1+η, so

| f ′(x1 + ωK+2) − f ′(x + ωK+2)| ≤ ‖ψ ′′‖C0L · L−1+η = ‖ψ ′′‖C0Lη.

Finally, |s| < 1 since γ is a horizontal curve, and (21) is proved. ��

5. Proof of Theorems 3 and 4

The proofs of Theorems 3 and 4 shadow those of Theorems 1 and 2 closely with a few
differences. In both proofs, the main work is in showing that the additional assumption
(H3) permits us to “grow” a horizontal curve of length∼ L−2+δ to one of length∼ L−1+δ .
This is discussed in Sect. 5.1. Once this is achieved, earlier techniques can be brought
to bear. Theorem 3 is proved in Sect. 5.2, and Theorem 4 is proved in Sect. 5.3.

Throughout this section, α and δ are fixed, and we assume (H1), (H2) and (H3)c0
for some fixed c0 > 0 (see Sect. 1). We assume further that L is sufficiently large, and
consider ε ∈ [L−2+δ, L−3/4], appealing to Theorems 1 and 2 for ε > L−3/4. Let K be
as defined at the beginning of Sect. 3.

5.1. Growing horizontal curves of length L−2+δ . We have shown in Sect. 3 that any
horizontal curve of length ≥ L−1+δ will, in K steps, wrap around C many times under
FK

ω for any ω. Here, since randomization produces only segments of length 2L−2+δ , we

seek to grow these short segments to length≥ L−1+δ . We will show that this can be done
in a few steps, provided we randomize “at the right times”.

First we state a lemma that is a direct consequence of (H3). Let c = cψ � c0 where
c0 is as in (H3); how small c has to be will become clear as we go along. Following the
notation just before the statement of Theorem 3, we consider the following subdivision
of S1:

B = N√
c
L

(
C ′

ψ

)
, I = Nc

(
C ′

ψ

)
\B, and G = S

1\(B ∪ I).
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Lemma 18. Let (X0,Y0) be such that X0 ∈ B ∪ I, and assume X1 ∈ B. Then X2 ∈ G.
Proof. Let X1 = f (X0 + ω1) − Y0 (mod 1), X2 = f (X1 + ω2) − Y1 (mod 1), and let

x̂0, x̂1 ∈ C ′
ψ (possibly x̂0 = x̂1) be such that |X0 − x̂0| < c and |X1 − x̂1| <

√
c
L .

Observe that for L large, we have

| f (X1 + ω2) − f (x̂1)| <
1

2
L‖ψ ′′‖

(√
c

L
+ L−3/4

)2

< ‖ψ ′′‖c ,

and |Y1 − bx̂0| = |b(X0 + ω1) − bx̂0| < 2c. Thus

|( f (x̂1) − bx̂0) − ( f (X1 + ω2) − Y1)| < (2 + ‖ψ ′′‖)c.
Since by (H3), f (x̂1) − bx̂0 �∈ Nc0(C

′
ψ), it follows that X2 �∈ N 1

2 c0
(C ′

ψ). ��

The following notationwill be useful: Given any function τ : C×[−ε, ε]N → Z
+, we

define for each (X0,Y0) ∈ C and ω ∈ [−ε, ε]N a sequence of sets ζk = ζk((X0,Y0), ω)

for k = 1, 2, . . . as follows:

For k < τ , ζk = {Fk
ω((X0,Y0))} = {(Xk,Yk)}.

For k = τ , ζk = F([Xk−1 − ε, Xk−1 + ε] × {Yk−1}).
For k > τ , ζk = Fωk (ζk−1).

That is to say, for k < τ , ζk is the image of (X0,Y0) under Fk
ω. At time τ , we randomize,

and for k ≥ τ , ζk is a curve, or a disjoint union of continuous curves, which can be
thought of as parametrized by ω ∈ [−ε, ε]. Abusing notation slightly, we will write this
parametrization as ω �→ ζk(ω).

Let m ≤ 1 be such that

for all x ∈ [0, 1)\N 9
10 c

(
C ′

ψ

)
, | f ′(x)| > mL

and for all x ∈ [0, 1)\N 9
10

√
c
L

(
C ′

ψ

)
, | f ′(x)| > mL− 1

2 .

Since 1
10

√
c
L � L−3/4 ≥ ε, we may view [x − ε, x + ε] as essentially contained in I

for x ∈ I, and similarly for x ∈ G. Recall that F is discontinuous at D = {x = 0}. We
may assume I is away from 0.

Lemma 19. There exist stopping times τ0 ≤ τ1 with 1 ≤ τ0, τ1 ≤ 4 such that for each
(X0,Y0) and ω, if ζk is constructed as above using τ = τ0, then

(i) ζτ1 is the union of at most two horizontal curves, and
(ii) its total length is ≥ 2m2L−1+δ .

Proof. Let (X0,Y0) and ω be given.

Case 1. X0 ∈ G. Letting τ0 = τ1 = 1, we have |ζ1| > mL(2ε) ≥ 2mL−1+δ; ζ1 may
have one or two components depending on whether (X0 − ε, X0 + ε) ∩ {0} = ∅.
Case 2. X0 ∈ I. Here if ζ̃1 = F([X0 − ε, X0 + ε] × {Y0}), then we are guaranteed only
|̃ζ1| > 2mL− 3

2 +δ . We divide into the following subcases depending on properties of ζ̃1.

Case 2a. |̃ζ1| ≥ L−1+δ . In this case, we may take τ0 = τ1 = 1.
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Case 2b. |̃ζ1|<L−1+δ and ζ̃1 ∩ (I ∪G) �= ∅. Here τ0=1 and τ1=2 gives the result that
ζ2 = Fω2 (̃ζ1) is a horizontal curve of length > 2m2L−1+δ .

Case 2c. |̃ζ1|<L−1+δ and ζ̃1 ⊂ B. Then X1 ∈ B, and by Lemma 18, X2 ∈ G. We are
thus in the situation of Case 1, and τ0 = τ1 = 3 gives the desired result.

Case 3. X0 ∈ B. Here if X1 ∈ G or in I, we do as in Cases 1 or 2, with (X1,Y1) playing
the role of (X0,Y0), resulting in 2 ≤ τ0, τ1 ≤ 4. If X1 ∈ B, then by Lemma 18 we again
have X2 ∈ G and τ0 = τ1 = 3 works. ��

Observe that τ0 and τ1 are bona fide stopping times: For (X0,Y0) with X0 ∈ G ∪ I,
τ0 and τ1 depend only on (X0,Y0); while for X0 ∈ B, τ0, τ1 ≥ 2 and depend on (X0,Y0)
and ω1. Observe also that all cases reduce to Cases 1, 2a or 2b after suitable time delays,
and Xτ0 ∈ (I ∪ G) in all cases.

Next we prove the analog of Proposition 11.

Proposition 20. Given any δ > 0, there exist L∗ = L∗(δ) ≥ 1 and C = C(δ) ≥ 1 such
that the following hold for all L ≥ L∗ and ε ∈ [L−2+δ, L−3/4]. Fix (X0,Y0) ∈ C and
ωi ∈ [−ε, ε], i = 1, 2, . . . , K + 4. Let τ0 be the stopping time given by Proposition 19.
Randomizing at step τ0, we let ω �→ ζk(ω) = (Xk(ω), Yk(ω)) be the parametrization
defined earlier for k ≥ τ0. Then there exists a set R ⊂ [−ε, ε] such that

(a) νε([−ε, ε]\R) ≤ CL−δ/4, and
(b) on R there is a partition W = {W } into intervals with the following properties:

(i) the set {ζK+4(ω), ω ∈ W } is a horizontal curve that crosses C; and
(ii) for ω,ω′ ∈ W, ∣∣∣∣

∂
∂ω

XK+4(ω)

∂
∂ω

XK+4(ω′)

∣∣∣∣ ≤ C. (23)

Proof. Let (X0,Y0) and ω be given. We follow the steps in the proof of Proposition 11.
(A)We start the construction in Proposition 11with elements of�τ1 playing the role of γ0,
where�τ1 is defined as follows: If ζτ0 is connected,which is true except possibly inCase 1
of Lemma 19, we let�τ0 = {ζτ0}. In Case 1, we keep only those components of [Xτ0−1−
ε, Xτ0−1 + ε] × {Yτ0−1}\D that have length > 1

m L−δ/4 · 2ε, and put their F-images into
�τ0 . This completes the definition of �τ1 = �τ0 in Cases 1 and 2a. In Case 2b, we let
�τ1 = {ζτ1}. Observe that�τ1 so constructed consists of one or two horizontal curves, the

length of each being≥ min(2L−1+ 3δ
4 , 2m2L−1+δ). Assuming L is large enough to absorb

the factor m2, one checks that the construction of �τ1+1, �τ1+2, . . . , �K+4 can proceed
exactly as before, with all the curves in �K+4 horizontal and crossing (0, 1) × [0, b].
(B) One needs only to be concerned with distortion in the first steps. For illustration,
consider Case 2b in Lemma 19. Here τ1 = τ0 + 1. We let

Iτ0−1 = [
Xτ0−1 − ε, Xτ0−1 + ε

]
, Iτ0 = π1(ζτ0) and Iτ1 = π1(ζτ1).

Observe that Iτ0−1, Iτ0 ⊂ (I ∪ G), and |Iτ0−1|, |Iτ0 | < L−1+δ . This implies that for
i = τ0, τ1 and x1, x2 ∈ Ii−1, (12) becomes∣∣∣∣∣log

(F̌i )′(x1)
(F̌i )′(x2)

∣∣∣∣∣ ≤ supz∈Ii−1
|F̌ ′′

i (z)|
inf z∈Ii−1 |F̌ ′

i (z)|
· |Ii−1| ≤ 2D̂L

1
2mL

1
2

· 2L−1+δ = o(1). (24)

The main change in (C) is the deletion at step τ0 in Case 1. The fraction deleted is
≤ 1

m L−δ/4, which is allowed. ��
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5.2. Estimation of Lyapunov exponents.

Proposition 21. Assume the hypothesis of Theorem 3, and let K̄ = K + 4. Then given
δ > 0, there exists L∗ such that for all L > L∗ and ε ∈ [L−2+δ, L−3/4], the estimate∫

log ‖(dFωK̄+3
)(XK̄+2,YK̄+2)

uθK̄+2
‖ (dνε)⊗5(ω1, ω2, ω3, ω4, ωK̄+1) ≥ α log L

(25)

holds for any (X0,Y0) ∈ C, θ0 ∈ [0, 2π), and any given ω5, . . . , ωK̄ , ωK̄+2, ωK̄+3 ∈
[−ε, ε].

The proof follows closely that of Proposition 10. We focus on the modifications.

Proof. Given (X0,Y0) and ωi ∈ [−ε, ε], 5 ≤ i ≤ K̄ , we let �4 = ∪4
�=1�4,� where

�4,� = {(ω1, . . . , ω4) : τ0((X0,Y0), ω1, . . . , ω�−1) = � and ω� ∈ R}
where R is the set of “good ω” given by part (a) in Proposition 20. It follows from
Proposition 20 that (νε)⊗4(�4) > 1 − p for L large enough. For each ωK̄+1, we define

G1(ωK̄+1) =
{
(ω1, . . . , ω4) ∈ �4 : XK̄ + ωK̄+1, XK̄+1 + ωK̄+2, XK̄+2

+ωK̄+3 �∈ B1
c∗ and XK̄ + ωK̄+1 �∈ B2

c∗
}

.

The same argument as before gives (νε)⊗4(G1(ωK̄+1)) > 1 − 2p.
The sets G1 and G2 are defined analogously as in Proposition 10, and the measure

of Gc
2(ω1, . . . , ω4) is estimated similarly. The only difference occurs in the analog of

(15), where assuming only ε ≥ L−2+δ , we can guarantee only

νε
(
Gc

2(ω1, . . . , ω4)
)

<
b

c∗ L
σ−δ ,

requiring that we take σ < δ.
With these modifications, the proof in Sect. 3.3 goes through. ��

5.3. Proof of Theorem 4. Let K̄ = K + 4, where K is as in the beginning of Sect. 3. It
suffices to show the following.

Proposition 22. Let c0 > 0 be fixed. Then given δ ∈ (0, 1), there is a constant C =
C(δ) > 0 such that the following holds for all L , ε and a satisfying the conditions in
Theorem 4: For any (X0,Y0), (X ′

0,Y
′
0) ∈ C,

‖PK̄+5 ((X0,Y0) , ·) − PK̄+5 ((
X ′
0,Y

′
0

)
, ·) ‖tv ≤ CL−δ/4.

The proof of this proposition parallels that of Proposition 13. As in the previous
subsection, we focus on the more substantive differences, of which there are two.

(1) Adapting to variable randomization times
Instead of conditioning on ω2, . . . , ωK+2 as was done in Proposition 13, here we

compare the conditional probabilities

PK̄+5 (
((X0,Y0), ·) |g(X0,Y0) (ω̄1, ω̄2, ω̄3) , ω5, . . . , ωK̄+3

)
and PK̄+5

(((
X ′
0,Y

′
0

)
, ·) |g(X ′

0,Y
′
0)

(ω̄1, ω̄2, ω̄3) , ω5, . . . , ωK̄+3

)
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for each sequence (ω̄1, ω̄2, ω̄3;ω5, . . . , ωK̄+3)where g(X0,Y0)(· · · ) is defined as follows:
From Sect. 5.1, there exists � ≤ 4 such that

τ0((X0,Y0), ω̄1, . . . , ω̄�−1) = �.

We define g(X0,Y0)(ω̄1, ω̄2, ω̄3) to be the triple (ωi )1≤i≤4,i �=� where

ωi = ω̄i for i < � and ωi = ω̄i−1 for i > � ;
that is, we condition on ωi , i = 1, . . . , 4, i �= �, in addition to ω5, . . . , ωK̄+3. Quantities
for (X ′

0,Y
′
0) are defined similarly.

Definitions of the measures �k, �
′
k are modified accordingly: We let �τ0−1 be the

uniform distribution on [Xτ0−1 − ε, Xτ0−1 + ε] × {Yτ0−1}, define �τ0 = F∗�τ0−1, and
for k > τ0, let

�k = (Fωk ◦ · · · ◦ Fωτ0+1
)∗�τ0 .

An argument similar to that of Lemma 16 extends Proposition 20 to give a “good set”
R̂ with the property that if

�̂K̄+1 :=
(
FωK̄+1

◦ · · · ◦ Fωτ0+1
◦ F

)
∗

(
�τ0−1|({Xτ0−1}+R̂

)
×{Yτ0−1}

)
,

then

(i) �̂K̄+1(C) > 1 − CL−δ/4,
(ii) �̂K̄+1 is supported on a finite union of horizontal curves γ , each one of which crosses

(−ω̄K̄+2, 1 − ω̄K̄+2), and
(iii) for each such γ , the density of (π1)∗(�̂K̄+1|γ ) is cγ (1 ± CL−1/2), where cγ =

�̂K̄+1(γ ).

The same construction applies to (X ′
0,Y

′
0), yielding �̂′

K̄+1
with the same properties.

(2) Adapting to smaller ε

Next we fix a component U of C\((D ∪ B1−η) − (ωK̄+2, 0)), and seek to compare
(FωK̄+2

)∗(�̂K̄+1|U ) and (FωK̄+2
)∗(�̂′

K̄+1
|U ). Here we encounter the second major differ-

ence: The analog of Lemma 14 in the setting of Theorem 4 is

Lemma 23. For any (x, y), (x, y′) ∈ C with |y − y′| < L−2+δ/2, we have

‖P2((x, y), ·) − P2((x, y′), ·)‖tv ≤ L−δ/2.

The supports of (FωK̄+2
)∗(�̂K̄+1|U ) and (FωK̄+2

)∗(�̂′
K̄+1

|U ) are guaranteed, by Lemma

15, to be < L−1+δ/2 in vertical distance, not enough to apply Lemma 23. To bring these
measures into coupling position, we iterate one more time, using FωK̄+3

(the last ω in the
sequence on which we condition at the beginning of the proof). To fix some notation,
we lift B1−η andD toR×[0, b], letting B̃1−η = B1−η + (Z, 0) and D̃ = D + (Z, 0). We
also extend the domain of definition of F̃ toR×[0, b], by letting F̃(x, y) = F̃(x +1, y).
The following is the replacement of Lemma 15.
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Lemma 24. Let U and J be as in Lemma 15, and let Ũ be a component of (R ×
[0, b])\(B̃1−η ∪ D̃) contained in J × [0, b]. Then there exists J̃ = [̃a−, ã+] ⊂ R with
| J̃ | ≥ const · L for which the following hold: Let γ, γ ′ be horizontal curves crossing U,
so that F̃(F̃(γ |U )|Ũ ) and F̃(F̃(γ ′|U )|Ũ ) are horizontal curves with graphing functions
h̃ : Ĩ → [0, b] and h̃′ : Ĩ ′ → [0, b] respectively. Then

J̃ = [̃a−, ã+] ⊂ Ĩ , Ĩ ′ ⊂ [̃a− − 1, ã+ + 1],
and on J̃ ,

‖h̃ − h̃′‖C0 < 2L−2+2η.

Only the last assertion is new, and it follows from a simple computation. To complete
the proof of Proposition 22, we need the following replacement of Lemma 17:

Lemma 25. LetωK̄+2, ωK̄+3 be given, and let �K̄+1 and �′
K̄+1

be as above. Forη ∈ (0, 1
2 ],

let U be a component of C\((D ∪ B1−η) − (ωK̄+2, 0)), J as in Lemma 15, and let Ũ be
a component of (D̃ ∪ B̃1−η) − (ωK̄+3, 0)) contained in J × [0, b]. Define

ρ̃K̄+3,U,Ũ = (
π1 ◦ F̃ωK̄+3

)
∗
((

F̃ωK̄+2

)
∗
(
�̂K̄+1|U

)
|Ũ

)
,

and let ρ̃′
K̄+3,U,Ũ

be defined analogously with �̂′
K̄+1

in the place of �̂K̄+1. Then summing

over all possible pairs (U, Ũ ) satisfying the conditions above, we obtain

∑
(U,Ũ )

‖ρ̃K̄+3,U,Ũ − ρ̃′
K̄+3,U,Ũ

‖tv ≤ CL
−min

{
1
2 ,1−3η,δ/4

}
. (26)

Proof. The proof follows closely that of Lemma 17, with F̃ωK̄+3
◦ F̃ωK̄+2

playing the
role of F̃ωK+2 . For fixed U and Ũ , let J̃ be as in Lemma 24 for the Ũ chosen. We
consider x̄ ∈ J̃ , and let (x, b) ∈ U be such that π1 F̃ωK̄+3

◦ F̃ωK̄+2
(x, b) = x̄ . Then an

argument similar to that in Lemma 17 shows that the density of ρ̃K̄+3,U,Ũ at x̄ is, up to

(1 ± CL−min{ 12 ,1−3η,δ/4}), equal to 1/|d(F̃ωK̄+3
◦ F̃ωK̄+2

)(x,b)∂1|. ��
A fraction > 1−CL−η of �̂K̄+1, respectively �̂′

K̄+1
, is mapped under F̃ωK̄+2

and then

F̃ωK̄+3
to sets of the formU and Ũ . The (F̃ωK̄+3

◦ F̃ωK̄+2
)-images of these parts of �̂K̄+1 and

�̂′
K̄+1

– let us call them �̌K̄+3 and �̌′
K̄+3

– are in coupling position. The fractions of �̌K̄+3

and �̌′
K̄+3

that cannot be coupled due to unequal weights locally is given by (26). The
rest of the estimates are as in the proof of Theorem 2, on choosing η < min{δ/4, 1/3}.
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