INTRODUCTION TO CYCLIC COVERS IN ALGEBRAIC GEOMETRY

YI ZHANG

CONTENTS

1. Main result 1
2. Preliminary on commutative Algebra 3
3. Proof of Theorem 1.1 8
References 13

1. MAIN RESULT

For any integer $n \geq 1$, let $G_n = \langle \sigma \rangle$ be the cyclic group of order n and let $\xi_n \in \mu_n := \{x \in \mathbb{C} | x^n = 1\}$ be a primitive n-th root of unity. Then G_n is isomorphic to the multiplicative group μ_n by $\sigma \mapsto \xi_n$ for any integer $n \geq 1$.

For any non-singular complex variety Y with an invertible sheaf L and an effective divisor $D = \sum_{j=1}^{r} \nu_j D_j$ satisfying $L^n = \mathcal{O}_Y(D)$ for a positive integer n, we obtain a cyclic cover $\pi: Z \rightarrow Y$ by taking the n-th root out of D as follows: Let

$$\mathcal{F} := \mathcal{O}_Y \oplus L^{-1} \oplus L^{-2} \oplus \cdots \oplus L^{-(n-1)}$$

and let s be a section of L^n defining the divisor D. The \mathcal{F} becomes an \mathcal{O}_Y-algebra generated by L^{-1} due to the following laws:

- $L^{-a} \otimes L^{-b} = L^{-(a+b)}$;

1The author is supported in part by the NSFC Grant NSFC Grant(#11271070) and LNMS of Fudan University.

Date: May 2012.
• for any positive integer \(m \) expressed as \(m = ln + k, 0 \leq k \leq n - 1 \), one fixes an \(\mathcal{O}_X \)-homomorphism \(L^{-m} \to L^{-k} h \mapsto hs^j \).

Then we get a finite and flat morphism \(p : \text{Spec}(\mathcal{F}) \to Y \) of degree \(n \) ramified at \(D \). The composite morphism \(\pi := p \circ \text{Nor} \) of the morphism \(p \) and the normalization \(\text{Nor} : Z \to \text{Spec}(\mathcal{F}) \) is called the cyclic cover over \(Y \) obtained by taking the \(n \)-th root out of \(D \).

There is a well-known result as follows.

Theorem 1.1 (see [EV], [K85]). Let \(X \) be a non-singular complex variety, let \(D = \sum_{j=1}^r \nu_jD_j \) be an effective divisor and let \(L \) be an invertible sheaf with \(L^{N_0} = \mathcal{O}_X(D) \) for a positive integer \(N_0 \).

Let \(\pi : Z \to X \) be the cyclic cover obtained by taking the \(N_0 \)-th root out of \(D \) and let \(G \) be the cyclic group \(< \sigma > \) of order \(N_0 \).

We have:

1. \begin{equation}
\pi_*\mathcal{O}_Z = \bigoplus_{k=0}^{N_0-1} L^{(k)-1} \text{ for } L^{(k)} := L^k \otimes \mathcal{O}_X(-\lfloor \frac{kD}{N_0} \rfloor)
\end{equation}

where \(\lfloor \frac{kD}{N_0} \rfloor \) denotes the integral part of the \(\mathbb{Q} \)-divisor \(\frac{kD}{N_0} \). So that the cover \(\pi \) is a finite and flat morphism.

2. \(Z \) is normal, the singularities of \(Z \) are lying over the singularities of \(D_{\text{red}} \).

3. The cyclic group \(G \) acts on \(Z \). One can choose a primitive \(N_0 \)-th root of unit \(\xi \) such that the sheaf \(L^{(k)} \) in 1) is the sheaf of eigenvectors for \(\sigma \) in \(\pi_*\mathcal{O}_Z \) with eigenvalue \(\xi^k \).

4. \(X \) is irreducible if \(L^{(k)} \neq \mathcal{O}_X \) for \(k = 1, \cdots, N_0 - 1 \). In particular this holds true if the common factor of the integers \(N_0, \nu_1, \cdots, \nu_r \) has \(\gcd(N_0, \nu_1, \cdots, \nu_r) = 1 \).

5. Assume that \(D = \sum_{j=1}^r \nu_jD_j \) is an effective normal crossing divisor. Define

\[
D^{(j)} := \{ \lfloor \frac{jD}{N_0} \rfloor_{\text{red}} = \sum_{\lfloor \frac{\nu_j}{N_0} \rfloor \neq 0} D_j 0 \leq i \leq N_0 - 1,
\]

where \(\{ \lfloor \frac{kD}{N_0} \rfloor \} := \frac{kD}{N_0} - \lfloor \frac{kD}{N_0} \rfloor \) is the fractional part of \(\frac{kD}{N_0} \). For any \(p \geq 0 \), there is

\begin{equation}
\pi_*\Omega^p_Z \simeq \bigoplus_{i=0}^{N_0-1} \Omega^p_X(\log D^{(i)}) \otimes L^{-i}
\end{equation}

where \(\Omega^p_Z \) is the reflexive hull of \(\Omega^p_Z \). In particular, \(\Omega^p_X = (\pi_*\Omega^p_Z)^G \).
6. Assume that X is a proper scheme and that $D = \sum_{j=1}^{r} D_j$ is an effective normal crossing reduced divisor. There is

(1.1.3) \[(\pi_* T_Z)^G = T_X(-\log D).\]

2. Preliminary on commutative Algebra

As beginning, we investigate the local structure of cyclic cover. Let R be both a finitely generated \mathbb{C}-algebra and an integral normal ring, let K be the fraction field of R.

Lemma 2.1. Let $n \geq 1$ be an integer. Let f be an arbitrary nonzero element in R. We have:

a) Any irreducible factor of $T^n - f$ in $K[T]$ with coefficient 1 of the first term is of form $T^{n'} - f' \in R[T]$ satisfying $n'|n$ and $f = (f')^{n/n'}$.

b) Let $d | n$ be the maximal positive integer such that $T^d - f$ has a root in K, say g. Then $T^{n/d} - g$ is irreducible in $K[T]$ and $g \in R$.

c) Assume that $f = uf_1^{\nu_1} \cdots f_m^{\nu_m}$ is an element in R where f_i's are prime elements in R and ν_i's are positive integers. Let d be an integer. Then $T^d - f$ has a root in K if and only if $d | \gcd(\nu_1, \cdots, \nu_m)$ and there is a unit $u_0 \in R$ satisfying $u_0^d = u$.

Proof. a) Let $\phi(T) = T^n + a_{m-1}T^{n-1} + a_{m-2}T^{n-2} + \cdots + a_0 \in K[T]$ be an irreducible factor of $T^n - f$. Since R is \mathbb{C}-algebra, $\phi(T)$ is separable and it has m different roots $\alpha_1, \cdots, \alpha_m$ in an algebraic closure \overline{K}. Because every root of $\phi(T)$ is a root of $T^n - f$, all α_i's are integral over R, so that the coefficients of $\phi(T)$ are integral over R. Since R is integrally closed, we have $\phi(T) \in R[T]$.

Let $y = \alpha_1$ be a root of $g(T)$. We have

$T^n - f = (T - y)(T - \xi y) \cdots (T - \xi^{n-1} y) = (T - y_0)(T - y_1) \cdots (T - y_{n-1})$

where ξ is a primitive n-th root of unity. Then $\phi(T)$ is the minimal polynomial $\min(K, y)$ of y in $K[T]$, we write as

$\phi(T) = \prod_{j=1}^{m} (T - y_j)$ with $y_1 = y$.

Thus $a_0 = y^m \xi^l$ for some integer l, then $f' := y^m \in R$. Hence $\phi(T)|T^m - y^m$ in $K[T]$, we must have $\phi(T) = T^m - f'$.
For any $\sigma \in \mu_n = \{x \in \mathbb{C} \mid x^n = 1\}$, we define $\phi^\sigma(T) := \prod_{j=1}^{m}(T - \sigma y_{i_j})$. We have that each

$$\phi^\sigma(T) = \prod_{j=1}^{m}(T - \sigma y_{i_j}) = T^m + \sigma a_{m-1}T^{m-1} + \sigma^2 a_{m-2}T^{m-2} + \cdots + \sigma^m a_0$$

is also an irreducible factor of $T^n - f$ in $K[T]$ of degree m, so that $\phi^\sigma(T) \in R[T]$ is the minimal polynomial $\min(K, \sigma y)$ of σy in $K[T]$, and we have either $\phi(T) = \phi^\sigma(T)$ or that $\phi(T)$ has no common factor with $\phi^\sigma(T)$ in $\overline{K}[T]$. We list all different elements in $\{\phi^\sigma(T) \mid \sigma \in \mu_n\}$ as $\phi_1(T) = \phi(T), \phi_2(T), \cdots, \phi_k(T)$. Hence, we have

$$T^n - f = \phi_1(T)\phi_2(T) \cdots \phi_k(T),$$

so that $n = mk$. Therefore, we must have $\phi(T) = T^m - f'$ with $(f')^{n/m} = f$.

b) It is a consequence of (a).

c) If $d|\gcd(\nu_1, \cdots, \nu_m)$ and $u_0^d = u$ for some unit $u_0 \in R$, then $T^d - f \in R[T]$ has a root $u_0\nu_1/d \cdots \nu_m/d \in R$.

Suppose that there is $g \in K$ with $g^d = f$. The $T - g$ is an irreducible factor of $T^d - f$ in $K[T]$, thus $g \in R$ by (a). We write $g_0 := g$. Then we have

$$g_0^d = u_0\nu_1/d \cdots \nu_m/d \in (f_1).$$

We then have $g_0 = f_1g_1$, and get $f_1^dg_1^d = u_0\nu_1/d \cdots \nu_m/d$. Since f_1 is a prime element, it is impossible that $d > \nu_1$. So that $\nu_1 - d \geq 0$ and we have $g_1^d = u_0\nu_1/d \cdots \nu_m/d$. If $\nu_1 - d \geq 1$, we have $g_1^d = u_0\nu_1/d \cdots \nu_m/d \in (f_1)$. We deal with g_1 similarly like g_0, and so on. We finally get that $\nu_1 = dk$ for some integer k. By symmetry, we have $d|\nu_i$ for other ν_i’s. Then we get $d|\nu_1, \cdots, \nu_m$ and $(\nu_1/d, \cdots, \nu_m/d)^d = u$. Again by (a), we have $u_0 := u_0\nu_1/d \cdots \nu_m/d \nu_i/d$ is a unit in R.

\[\square \]

Corollary 2.2. Let $T^n - f$ be a polynomial in $R[T]$. We have:

a) The $T^n - f$ is irreducible in $K[T]$ if and only if it is irreducible in $R[T]$.

b) If $T^n - f$ is irreducible in $R[T]$ then it is a prime element in $R[T]$.

For a polynomial $T^n - f(n \geq 1)$ with nonzero $f \in R$, let $d|n$ be the maximal positive integer satisfying $T^d - f$ has a root $g \in K$, we have $T^n - f = \prod_{i=-1}^{d-1}(T^{n'} - \zeta_d^i g)$ where ζ_d is a primitive d-th root of unit and each $T^{n'} - \zeta_d^i g$ is a prime element in $R[T]$ for $n' := n/d$; the quotient ring $K[T]/(T^n - f)$ can be regarded as a finite K-linear space

$$K[T]/(T^n - f) = \bigoplus_{i=0}^{n-1} Kt^i$$
where $t := T \mod (T^n - f)$ can be regarded as a root of $T^n - f$ in \overline{K}, that t is also integral over R and the ring $R[T] / (T^n - f)$ is integral if and only if $T^n - f$ is irreducible, the group $G_d = < \sigma >$ has a natural action on $K[T] / (T^n - f)$ by $\sigma : T \mapsto \zeta_n T$ and $\sigma|_K = \text{id}_K$, the μ_n-invariant part of $K[T] / (T^n - f)$ is K.

Lemma 2.3. Let f be an nonzero element in the domain R. Let η be a positive integer and $\eta \not| n$ the maximal positive integer such that $T^\eta - f$ has a root in K and $n' := n/d$. For any $\zeta \in \mu_d := \{ x \in \mathbb{C} \mid x^n = 1 \}$, define a polynomial

$$P_\zeta = \frac{1}{\prod_{\zeta' \in \mu_d} (\zeta' - \zeta)} \frac{T^n - f}{T^{n'} - \zeta}$$

where $g \in K$ is a root of $T^d - f$.

1. In the quotient ring $\frac{K[T]}{(T^n - f)}$, these P_ζ’s are idempotent, i.e. $P_\zeta \cdot P_\zeta' = 0 \neq \zeta' = P_\zeta \cdot P_\zeta$, with $\sum_{\zeta \in \mu_d} P_\zeta = 1$. Moreover, the cyclic group $G_n = < \sigma >$ acts transitively on the set $\{ P_\zeta \}_{\zeta \in \mu_d}$ with $(P_\zeta)^\sigma = P_{\zeta^{-n'}} \forall \zeta \in \mu_d$.

2. Let K_ζ be the field $\frac{K[T]}{(T^n - \zeta)}$ for each $\zeta \in \mu_d$. Any $\zeta \in \mu_n$ defines an isomorphism $K_\zeta \xrightarrow{\cong} K_{\zeta'}$ of fields by sending T to ζT. Moreover, there is a natural G_n-action on the algebra $\prod_{\zeta \in \mu_n} K_\zeta$.

3. There is a G_n-equivariant isomorphism of K-algebras

$$P : \prod_{\zeta \in \mu_d} \frac{K[T]}{(T^{n'} - \zeta)} \cong \frac{K[T]}{(T^n - f)} : (\alpha_\zeta) \mapsto \sum_{\zeta} \alpha_\zeta P_\zeta.$$

Corollary 2.4. Let $T^n - f$ be a polynomial in $R[T]$ with degree $n \geq 1$. Let $A = R[T] / (T^n - f)$ be a ring and $S := \{ a \in A \mid a$ is not zero divisor $\}$ a multiplicative system in A. Then $S^{-1}A = K[T] / (T^n - f)$.

Proof. Let $h(T) \in R[T]$ such that it’s image \overline{h} is not a zero-divisor in A. Consider the K-isomorphism 2.3.1, we get that $P^{-1}(\overline{h}) = (\alpha_\zeta)$ with $\alpha_\zeta := h(T) \mod (T - \zeta g)$ in $K[T] \forall \zeta \in \mu_d$. Thus that \overline{h} is not a zero-divisor in R if and only if for each $\zeta \in \mu_d$ there is a $\eta_\zeta(T) \in K[T]$ such that $\eta_\zeta(T)h(T) = 1 \mod (T^{n'} - \zeta g)$ in $K[T]$. We get $\overline{\eta h} = 1$ in $K[T] / (T^n - f)$, where $\overline{\eta}$ is the projection image of the polynomial $\eta(T) := \sum_{\zeta \in \mu_d} \eta_\zeta P_\zeta$. Thus, we have that any non zero divisor in A is an unit in $K[T] / (T^n - f)$. Hence,

$$S^{-1}A = S^{-1}(\frac{K[T]}{(T^n - f)}) = \frac{K[T]}{(T^n - f)}.$$

Consider the ring homomorphism $R \rightarrow K[T] / (T^n - f)$ for a polynomial $T^n - f \in R[T]$ of degree $n \geq 1$. Let \overline{R} be the integral closure of R in $K[T] / (T^n - f)$.
Lemma 2.5. Let f be an arbitrary nonzero element in R. If a polynomial $T^n - f \in R[T]$ with degree $n \geq 1$ is irreducible in $R[T]$ then \tilde{R} is the normalization of the domain $\frac{R[T]}{(T^n - f)}$ in the field extension $\frac{K[T]}{(T^n - f)}$ of K.

Therefore, by Corollary 2.4 the \tilde{R} is also the normalization of $\frac{R[T]}{(T^n - f)}$ even though $T^n - f$ is not irreducible since R is a normal integral ring.

Lemma 2.6. Let g be a nontrivial prime element in R. Then the principal prime ideal (g) is of height one.

Proof. We claim that any nonzero prime ideal \mathfrak{p} of R has an irreducible element: Suppose the claim is not true. Let a_0 be any nonzero element in \mathfrak{p}. Then $a = bc$ such that both b and c are not unit. Then one of b, c is in \mathfrak{p}, say a_1. The a_1 is also irreducible and $(a_0) \subsetneq (a_1) \subsetneq \mathfrak{p}$. We do same steps for a_1 as dealing with a_0 and so on. Thus we have an strictly increasing sequence of ideals

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq \cdots \subsetneq \mathfrak{p},$$

which contradicts that R is a Noetherian ring.

Let \mathfrak{p} be any nontrivial prime ideal of R such that $0 \subsetneq \mathfrak{p} \subset (g)$. Let $a \in \mathfrak{p}$ be an irreducible element. We have $a = gc$ due to $a \in (g)$, but c is a unit since a is irreducible. Hence $\mathfrak{p} = (g)$.

For any height one prime idea \mathfrak{p} of R, the local ring $R_\mathfrak{p}$ is a DVR, thus we can define $\text{div}(x)$ for any $x \in K$.

Theorem 2.7. Assume a finitely generated \mathbb{C}-algebra R is integral and normal. Let K be the fraction field of R. Let $f = u f_1^{\nu_1} \cdots f_l^{\nu_l} (\forall \nu_i \geq 1)$ be an element in R such that f_i’s are different prime elements in R and u is a unit in R. Let $n \geq 1$ be an integer and $d | n$ the maximal positive integer such that $T^d - f$ has a root in K, say g, and denote by $n' := n/d$.

1. With respect to the injective ring homomorphism $R \to \frac{K[T]}{(T^n - f)}$, the integral closure of R is

$$\tilde{R} = \bigoplus_{i=0}^{n-1} t^i f_1^{[-\frac{n'}{d}]} \cdots f_l^{[-\frac{n'}{d}]} R$$

where $t := T \mod (T^n - f)$. Moreover, the cyclic group $\mathbb{Z}_n = \langle \sigma \rangle$ has a natural action on \tilde{R} by defining $\sigma : t \mapsto \xi_n t, \sigma|_R = \text{id}_R$, and the G_n-invariant part of \tilde{R} is

$$\tilde{R}^{G_n} = R.$$

2. Let \tilde{R}_ζ be normalization of an integral ring $R_\zeta := \frac{R[T]}{(T^n - \zeta g)}$ in $\frac{K[T]}{(T^n - \zeta g)}$ for each $\zeta \in \mu_d$. Then

$$\tilde{R}_\zeta = \bigoplus_{i=0}^{n'-1} t^i f_1^{[-\frac{n'}{d}]} \cdots f_l^{[-\frac{n'}{d}]} R$$
where \(t_{\zeta} := T \mod (T^n - \zeta g) \). Moreover, \(R \to \bar{R}_{\zeta} \) is Galois, with Galois group \(\mathbb{Z}_n' \).

3. The group \(\mathbb{Z}_n \) has a natural action on the product \(R \)-algebra \(\prod_{\zeta \in \mu_d} \bar{R}_{\zeta} \). The group permutes the factors of the decomposition, and there is a \(G_n \)-equivariant isomorphism of \(R \)-algebras

\[
\prod_{\zeta \in \mu_d} \bar{R}_{\zeta} \longrightarrow \bar{R}, \quad (\alpha_{\zeta})_{\zeta} \mapsto \sum_{\zeta} \alpha_{\zeta} P_{\zeta}.
\]

Proof. For any \(x \in K \), it is easy to verify the following conditions are equivalent:

i. \(x^n f_i \in R \),

ii. \(n \text{div}(x) + \sum_{j=1}^l i\nu_j \text{div}(f_j) \geq 0 \) (we use \(\text{div}(u) = 0 \)).

iii. \(\text{div}(x f_1^{\frac{\nu_1}{n}} \cdots f_l^{\frac{\nu_l}{n}}) + \sum_{j=1}^l \left(\frac{\nu_j}{n} - \frac{[\nu_j]}{n} \right) [f_j] \geq 0 \) (we use that \((f_i)'s \) are prime ideal of height one and so that \(\text{div}(f_j) \) is the Weil divisor \([f_j] := \text{Zero}(f_j) \)),

iv. \(\text{div}(x f_1^{\frac{\nu_1}{n}} \cdots f_l^{\frac{\nu_l}{n}}) \geq 0 \) (we use that \(\text{div}(x f_1^{\frac{\nu_1}{n}} \cdots f_l^{\frac{\nu_l}{n}}) \) has integral coefficients and \(f_i's \) are prime elements),

v. \(x f_1^{\frac{\nu_1}{n}} \cdots f_l^{\frac{\nu_l}{n}} \in R \).

1. Thus there is

\[
\{ x \in K; x^n f_i \in R \} = f_1^{-\frac{\nu_1}{n}} \cdots f_l^{-\frac{\nu_l}{n}} R.
\]

We now show

\[
\bar{R} = \bigoplus_{i=0}^{n-1} \{ x \in K; x^n f_i \in R \} t^i.
\]

Let \(\alpha = \sum_{i=0}^{n-1} x_i t^i \) \((x_i \in K)\) be an element in \(\frac{K[T]}{(T^n - f)} \). We claim that \(\alpha \in \bar{R} \) if and only if \(x_i t^i \in \bar{R} \) for every \(i \). Suppose \(\alpha \in \bar{R} \). We have \(\alpha^\zeta = \sum_{i=0}^{n-1} \zeta^i x_i t^i \in \bar{R} \), for every \(\zeta \in \mu_n \). Let \(\mu_n = \{ \zeta_1, \zeta_2, \ldots, \zeta_n \} \). The Vandermonde determinant

\[
\begin{vmatrix}
\zeta_1^0 & \zeta_1^1 & \cdots & \zeta_1^{n-1} \\
\zeta_2^0 & \zeta_2^1 & \cdots & \zeta_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
\zeta_n^0 & \zeta_n^1 & \cdots & \zeta_n^{n-1}
\end{vmatrix} = \prod_{1 \leq i < j \leq n} (\zeta_j - \zeta_i)
\]

is a unit in \(R \), so that each \(x_i t^i \) is a combination of the \(\alpha^\zeta \)'s with coefficients in \(R \) by Cramer’s rule. Therefore \(x_i t^i \in \bar{R} \). The converse is obvious.
Let $x \in K$ and $0 \leq i < n$. We claim that $xt^i \in \bar{R}$ if and only if $x^n f^i \in R$. Indeed, we have that $xt^i \in \bar{R}$ if and only if $y = (xt^i)^n \in \bar{R}$. Due to

$$y = (xt^i)^n = x^n(t^n)^i = x^n f^i \in K,$$

We have that $y \in \bar{R}$ and only if $y \in K \cap \bar{R} = R$ since R is integrally closed in K.

2. By the statement (1), the integral closure of R in $\frac{K[T]}{(T^n - \zeta g)}$ is the integrally closed domain $\tilde{R}_\zeta = \bigoplus_{j=0}^{n' - 1} \{x \in K; x^n(\zeta g)^j \in R\} t^j_\zeta$. Since R is integrally closed in K, $x^n(\zeta g)^j \in R$ if and only if $(x^n(\zeta g)^j)^d \in R$. That is $x^n f^j \in R$. Therefore

$$\tilde{R}_\zeta = \bigoplus_{j=0}^{n' - 1} \{x \in K; x^n f^j \in R\} t^j_\zeta.$$

3. In the ring $\frac{K[T]}{(T^n - \zeta g)}$, we have that $f(\sum \zeta \alpha_i P_\zeta) = \sum \zeta f(\alpha_i)P_\zeta$ for any polynomial $f \in R[T]$. Hence $\sum \zeta \alpha_i P_\zeta$ is integral over R if and only if each $\alpha_i \in \frac{K[T]}{(T^n - \zeta g)}$ is integral over $\frac{R[T]}{(T^n - \zeta g)}$. The product decomposition of Lemma 2.3 induces an isomorphism of R-algebras $\prod_{\zeta \in \mu_d} \tilde{R}_\zeta \cong \bar{R}$.

3. **Proof of Theorem 1.1**

Now we investigate the local structure of cyclic cover.

Lemma 3.1. Let $U := \text{Spec} R$ be an irreducible complex normal affine variety of dimension m and $f = u f_1^{\nu_1} \cdots f_e^{\nu_e}$ ($\forall \nu_i \geq 0$) an element in R such that f_i’s are prime elements in R and u is a unit in R. Let $D = \sum_{i=1}^e \nu_i D_i$ is zero locus of f, i.e., $D_i = \text{Zero}(f_i) \forall i$.

Denote by $U[\sqrt{n}] := \{(p, y) \in U \times \mathbb{A}^1 \mid y^n = f(p)\}$ for an integer $n \geq 2$.

- **a)** Let p_0 be a smooth closed point of U. Then $U[\sqrt{n}]$ is singular at a point $(p_0, *)$ if and only if $p_0 \in \text{Sing}(D)$. Moreover, $U[\sqrt{n}]$ is smooth if and only if U is smooth and D is reduced with only one smooth component.

- **b)** Assume that U is smooth. If $D = \nu_1 D_1$ and $f = u f_1^{\nu_1}$ ($\nu_1 \geq 1$) then the normalization $\bar{U}[\sqrt{n}]$ of $U[\sqrt{n}]$ has only singularities over $\text{Sing}(D_1)$.

Proof. The proof of (a) is directly follows from Jacobi’s criterion: Let (Z_1, \cdots, Z_m) be an regular parameter near an open neighborhood V of p_0. Let $F(Z_0, Z_1, \cdots, Z_m) = Z_0^n - f(Z_1, \cdots, Z_m)$.
The point \(q := (p_0, y_0) \) in \(U[\sqrt[\nu]{f}] \) is singular if and only if the \(F \) satisfies

\[
\frac{\partial F}{\partial Z_0}(q) = \frac{\partial F}{\partial Z_1}(q) = \cdots = \frac{\partial F}{\partial Z_m}(q) = 0.
\]

Thus we prove the (a).

Now \(R = A(U) \) is an regular algebra. The problem (b) is now reduced to show that the \(\overline{U}\left[\sqrt[\nu]{f}\right] \) is smooth if the \(D_1 \) is a smooth divisor. In case of \(\nu = 0,1 \) the (b) is obvious by (a.) With lost of generality, we assume that \(\gcd(n, \nu) = 1 \). Let \(R \) be the ring corresponding to the \(U \). By Theorem 2.7, We get \(\overline{U}\left[\sqrt[\nu]{f}\right] = \text{Spec}(\overline{R}) \) such that

\[
\overline{R} = \bigoplus_{i=0}^{n-1} t^i f_1^{-\left[\frac{\nu_1}{n}\right]} R
\]

where \(t := T \mod (T^n - uf_1^{\nu_1}) \).

Since \(\gcd(n, \nu) = 1 \), we have an ring-isomorphism \(\frac{\mathbb{Z}}{n\mathbb{Z}} \xrightarrow{\nu_1} \mathbb{Z} \), and so we can get \(a \in \{0, \ldots, n-1\} \) with \(av_1 = 1 + ln \) for some \(l \in \mathbb{Z} \). Denote by \(g = t^a f_1^{-\left[\frac{\nu_1}{n}\right]} \). We get that

\[
g^n = u^a f_1 \quad \text{and} \quad t = u^{-l} g^{\nu_1}.
\]

Thus

\[
\bigoplus_{i=0}^{n-1} g^i R \cong \frac{R[W]}{(W^n - u^a f_1)}
\]

is an \(R \)-subalgebra of \(\overline{R} \). Moreover, we have a tower of inclusions of \(R \)-algebras

\[
R \subset \frac{R[T]}{(T^n - uf_1^{\nu_1})} \subset \bigoplus_{i=0}^{n-1} g^i R \subset \overline{R}.
\]

such that the integral domains \(\frac{R[T]}{(T^n - uf_1^{\nu_1})} \), \(\bigoplus_{i=0}^{n-1} g^i R \) and \(\overline{R} \) all have same quotient field.

Since the algebra \(\frac{R[W]}{(W^n - u^a f_1)} \) is regular by (a) and the algebra \(\overline{R} \) is normal, we have to get

\[
\overline{R} \cong \frac{R[W]}{(W^n - u^a f_1)}.
\]

Therefore the \(\overline{U}\left[\sqrt[\nu]{f}\right] \) is smooth. \(\square \)

We only need to prove the statements 5) and 6) of Theorem 1.1.
Let \(d = \dim \mathbb{C} X \) and let \(\xi \) be a primitive root of \(x^{N_0} - 1 \). Since \(\pi \) is étale outside of \(D \), there is

\[
\pi_! \Omega^p_2|_{X - D} \cong (\Omega^p_X \otimes \pi_* \mathcal{O}_Z)|_{X - D}
\]

and the isomorphism 1.1.2 holds over \(X - D \). On the other hand, the \(\pi_* \Omega^p_2 \) is a reflexive sheaf on \(X \) by the following lemma 3.2, thus it is sufficient to check the assertion 1.1.2 only in codimension one on \(X \).

Lemma 3.2 ([H80]). Let \(\mathcal{F} \) be a coherent sheaf on a normal integral scheme \(X \). The following two conditions are equivalent:

i. \(\mathcal{F} \) is reflexive;

ii. \(\mathcal{F} \) is torsion-free, and is normal, i.e., for every open set \(U \subset X \) and every closed subset \(B \subset U \) of codimension 2, the restriction map \(\mathcal{F}(U) \to \mathcal{F}(U - Y) \) bijective.

Without lost of generality, we may assume that the \(D_{\text{red}} \) is smooth, moreover there is a local regular parameter \((x_1, \cdots, x_d) \) of \(X \) such that

\[
X = \text{Spec}(\mathbb{C}[x_1, \cdots, x_d]), \quad D = (x_i^0).
\]

Then \(X' = \text{Spec}(\mathbb{C}[x_1, \cdots, x_d, t]/(T^{N_0} - ux_i^0)) \) where \(u \) is a unit in the domain \(\mathbb{C}[x_1, \cdots, x_d] \) and \(Z \) is normalization of \(X' \).

Let \(R := \mathbb{C}[x_1, x_2, \cdots, x_d] \) a normal integral ring. Let \(A := \frac{R[T]}{(T^{N_0} - ux^0_i)} \) and \(B \) the normalization of \(A \). As \(\Omega^1_B \) is generated as a \(B \)-module, by the image \(d : B \to \Omega^1_B \).

We know as that

\[
\wedge^p \Omega^1_B \equiv \{ b_0 db_1 \wedge db_2 \cdots \wedge db_p \mid b_i \in B i = 1, \cdots, N_0 - 1 \}.
\]

Let \(t := T \mod (T^{N_0} - ux^0_i) \). By Proposition 2.7 we have that \(B = \bigoplus_{i=0}^{N_0-1} q_i R \) as an \(R \)-module and that the group \(G = < \sigma > \) has a natural action on \(\wedge^p \Omega^1_B \), where \(q_i := t^i x_1^{-\frac{a^i}{N_0}} \), \(0 \leq i \leq N_0 - 1 \). Since

\[
q_i q_j = q_i := i + j x_1^{-\frac{a(i+j)}{N_0}} x_1^{-\frac{a(i+j)}{N_0}} x_1^{-\frac{a(j)}{N_0}} \forall i, j \geq 0,
\]

we have that \(q_i q_j \in q_{i+j} R \) if \(i + j < N_0 \) and that \(q_i q_j \in q_{i+j-n} R \) if \(i + j \geq N_0 \). Let \(\xi \) be the primitive \(N_0 \)-th root of unit as we choose in the statement 2). We then have an decomposition of \(\wedge^p \Omega^1_B = \bigoplus_{i=1}^{N_0-1} Q_i \) such that each \(Q_i \) is the \(R \)-submodule of eigenvectors for \(\sigma \) in \(\wedge^p \Omega^1_B \) with eigenvalue \(\xi^i \). We now find out these \(Q_i \)'s. We have that

\[
\frac{dt}{t} = \frac{a dx_1}{N_0 x_1},
\]

\[
dq_i = \left\{ \frac{ai}{N_0} \right\} q_i \frac{dx_1}{x_1}.
\]
On the other hand, each $b \in B$ can be written uniquely as $b = \sum_{i=1}^{N_0-1} q_i r_i$ with each $r_i \in R$ and so $db = \sum_{i=1}^{N_0-1} (q_i dr_i + r_i dq_i)$. For each $0 \leq i \leq N_0 - 1$, the elements

$$t^i x_1^{-N_0/n_0} dy_{e_1} \wedge \cdots \wedge dy_{e_p}, \quad e_1 < e_2 < \cdots < e_p < d \quad \text{for} \quad e_1 \neq 1,$$

becomes an R-basic of the module Q_i. In particular, G-invariant submodule of $\wedge^p \Omega^1_B$ has $Q_0 = \wedge^p \Omega^1_B$. Therefore, we get the formula 1.1.2 and $\Omega^1_Z = (\pi_* \Omega^1_B)^G$.

Now we are going to prove the statement 6). For the normal varieties X and Z, by definition, the tangent sheaf

$$\mathcal{T}_Z := \mathcal{H}om_{\mathcal{O}_Z}(\Omega^1_Z, \mathcal{O}_Z)$$

is a reflexive sheaf which is composed of derivations from \mathcal{O}_Z to \mathcal{O}_Z, and $\mathcal{T}_X(-\log D^{(1)})$ is the subsheaf of \mathcal{T}_X of consisting of derivations which send the ideal sheaf \mathcal{I} of $D^{(1)}$ into itself. Since X is smooth, we get (see [D72]) that

$$\mathcal{T}_X(-\log D^{(1)}) = \mathcal{H}om_{\mathcal{O}_X}(\Omega^1_X(\log D^{(1)}), \mathcal{O}_X).$$

Suppose X is proper and D is reduced. Then $D = D^{(i)}$ for all $1 \leq i \leq N_0 - 1$ and by 1) Z is also a proper scheme. Thus the dualizing sheaf $\omega_Z = \pi^* \omega_X$ has a natural \mathcal{O}_Z-module (see Proposition 5.68. [KM]). Because π is an affine morphism, we can define an equivalent functor \sim of categories between the category of quasi-coherent $\pi_* \mathcal{O}_Z$-modules and the category of quasi-coherent \mathcal{O}_Z-module (see Ex. II. 5.17(e) [Hart]). Since $\pi_* \mathcal{O}_Z$ is locally free, we have

$$\pi^! \omega_X := \mathcal{H}om_{\mathcal{O}_X}(\pi_* \mathcal{O}_Z, \omega_X)^\sim = (\mathcal{H}om_{\mathcal{O}_X}(\pi_* \mathcal{O}_Z, \mathcal{O}_X) \otimes_{\mathcal{O}_X} \omega_X)^\sim = \pi^! \mathcal{O}_X \otimes_{\mathcal{O}_Z} \pi^* \omega_X.$$

Thus the relative dualizing sheaf $\omega_{Z/X} = \pi^! \mathcal{O}_X$.

We claim that

$$\omega_{Z/X} = \pi^* L^{(N_0-1)} = \pi^*(L^{N_0-1}).$$

We can take a local regular parameter (x_1, \cdots, x_d) of X such that

$$X = \text{Spec}(\mathbb{C}[x_1, \cdots, x_d]), \quad D = (x_1 \cdots x_k).$$

Thus we get that

$$X' = \text{Spec}(\mathbb{C}[x_1, \cdots, x_d, t]/(T^{N_0} - x_1 \cdots x_k))$$
and Z is the normalization of X'. Let
\[R := \mathbb{C}[x_1, x_2, \ldots, x_d] \quad \text{and} \quad A := \frac{R[T]}{(T^{N_0} - x_1 \cdots x_k)}, \]
and let B be the normalization of A. By Proposition 2.7 we have that
\[B = \bigoplus_{i=0}^{N_0-1} p_i R \]
as an R-module where $\{p_i := t^i\}_{i=0 \ldots N_0-1}$ is an R-basis of B. Let
\[\eta_i \in B^* := \text{Hom}_R(B, R) \]
be dual of q_i, i.e., $\eta_i(p_i) = 1$, $\eta_i(p_j) = 0 \forall j \neq i$. The B-module structure of $\text{Hom}_R(B, R)$ is clear: $b \cdot \phi := \phi_b$ where $\phi_b \in \text{Hom}_R(B, R)$ is given by $\phi_b(b_1) := \phi(bb_1) \forall b_1 \in B$. We observe that
\[p_ip_j = q_{i+j} \text{ if } i + j < N_0 \quad \text{and} \quad p_ip_j \in p_{i+j-n}R \text{ if } i + j \geq N_0. \]
So that
\[p_i \cdot \eta_{N_0-1-i} = \eta_{N_0-1-i} \]
for all $i = 0, \ldots, N_0-1$. As an B-module, the $\text{Hom}_R(B, R)$ must be a module of rank one generated by η_{N_0-1}. Hence $\pi^*\mathcal{O}_X = \pi^*(L^{(N_0-1)})$.

Let $\text{Sing}(D)$ be singularities of D and $X_0 := X \setminus \text{Sing}(D)$. We know codimension of $\text{Sing}(D)$ in X is more than two and $\pi^{-1}(X_0)$ is smooth open sub-scheme of Z. Using the duality theory for finite morphism(cf. Theorem 5.67 [KM]), on X_0 we get
\[\pi_* \mathcal{T}_Z = \pi_* \mathcal{H}om_{\mathcal{O}_X}(\Omega^1_Z, \mathcal{O}_Z) \]
\[= \pi_* \mathcal{H}om_{\mathcal{O}_X}(\omega_{Z/X} \otimes_{\mathcal{O}_X} \Omega^1_Z, \omega_{Z/X}) \]
\[= \pi_* \mathcal{H}om_{\mathcal{O}_X}(\pi^*(L^{(N_0-1)}) \otimes_{\mathcal{O}_X} \Omega^1_Z, \pi^*\mathcal{O}_X) \]
\[= \mathcal{H}om_{\mathcal{O}_X}(L^{(N_0-1)} \otimes_{\mathcal{O}_X} \pi_* \Omega^1_Z, \mathcal{O}_X) \]
\[= \mathcal{H}om_{\mathcal{O}_X}(L^{(N_0-1)} \otimes_{\mathcal{O}_X} (\bigoplus_{i=0}^{N_0-1} \Omega^1_X((\log D)^{i}) \otimes L^{-i}), \mathcal{O}_X) \]
\[= (L^{-(N_0-1)} \otimes_{\mathcal{O}_X} \mathcal{T}_X) \oplus \bigoplus_{i=1}^{N_0-1} (L^{(i-N_0+1)} \otimes_{\mathcal{O}_X} \mathcal{T}_X(-\log D)). \]

Since both $\pi_* \mathcal{T}_Z$ and $L^{-(N_0-1)} \otimes_{\mathcal{O}_X} \mathcal{T}_X \oplus \bigoplus_{i=1}^{N_0-1} (L^{(i-N_0+1)} \otimes_{\mathcal{O}_X} \mathcal{T}_X(-\log D))$ are reflexive sheaves on X, there is
\[\pi_* \mathcal{T}_Z = L^{-(N_0-1)} \otimes_{\mathcal{O}_X} \mathcal{T}_X \oplus \bigoplus_{i=1}^{N_0-1} (L^{(i-N_0+1)} \otimes_{\mathcal{O}_X} \mathcal{T}_X(-\log D)) \text{ on } X. \]
Hence $(\pi_* \mathcal{T}_Z)^G = \mathcal{T}_X(-\log D)$ on X.
REFERENCES

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

E-mail address: zhangyi.math@fudan.edu.cn