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1. Introduction

In this article, as a sequel of [51], we prove a conjectural refinement of the global
Gan-Gross-Prasad conjecture [7] for unitary groups under some local conditions.
This refinement is modeled on the pioneering work of Waldspurger [40] on toric
periods and the central values of L-functions on GL2. In an influential paper [23],
Ichino and Ikeda first formulated the refinement for orthogonal groups. After the
Ichino-Ikeda formulation, R. N. Harris considered the case of unitary groups in his
Ph.D. thesis at the University of California, San Diego [21].
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1.1. The conjecture of Ichino-Ikeda and R. N. Harris. We now recall the
conjectural refinement. Let E/F be a quadratic extension of number fields with
adeles denoted by A = AF and AE , respectively. Let V be a Hermitian space of
dimension n + 1 and W a (nondegenerate) subspace of codimension one. Denote
the unitary groups by U(V ) and U(W ), respectively. Let G = U(W ) × U(V ) be
the product and H the diagonal embedding of U(W ) into G. Let π = πn ⊗ πn+1

be a cuspidal automorphic representation of G(A) and let πi,E be the base change
of πi to GLi(AE), i = n, n+1. Denote by L(s, πE) the Rankin-Selberg convolution
L-function L(s, πn,E × πn+1,E) due to Jacquet–Piatetskii-Shapiro–Shalika [27]. It
is known to be the same as the one defined by the Langlands-Shahidi method. The
reader may consult the introduction of [11] for an overview of the study of the
central value L(1/2, πn,E × πn+1,E). We also consider the adjoint L-function of π
(cf. [7, §7],[21, Remark 1.4]),

L(s, π, Ad) = L(s, πn, Ad)L(s, πn+1, Ad).

We refer to Remark 7 for the definition of the adjoint L-function at bad places (also
cf. Remark 1 after Conjecture 1.1 below).

Denote the constant

Δn+1 =
n+1∏
i=1

L(i, ηi) = L(1, η)L(2, 1F )L(3, η) · · ·L(n+ 1, ηn+1),

where η is the quadratic character of F×\A× associated to E/F by class field
theory. Note that here Δn+1 = L(M∨(1)) where M∨ is the motive dual to the
motive M associated to the quasi-split reductive group U(n+ 1) defined by Gross
[15]. We will be interested in the following combination of L-functions:

L (s, π) = Δn+1
L(s, πE)

L(s+ 1/2, π, Ad)
.(1.1)

We also write L (s, πv) for the local factor at v.
Let [H] denote the quotient H(F )\H(A) and similarly for G. We endow H(A)

(G(A), resp.) with their Tamagawa measures1 and [H] ([G], resp.) with the quotient
measure by the counting measure on H(F ) [G(F )]; cf. §2. In [7], Gan, Gross, and
Prasad propose to study an automorphic period integral

P(φ) = PH(φ) :=

∫
[H]

φ(h) dh, φ ∈ π.

They conjecture that the nonvanishing of the linear functional P on π [possibly by
varying the Hermitian spaces (W,V ) and switching to another member in the Vogan
L-packet2 of π] is equivalent to the nonvanishing of the central value L(1/2, πE)
of the Rankin-Selberg L-function. This conjectural equivalence is proved for π
satisfying some local conditions in our previous paper [51]. One direction of the
equivalence had also been proved by Ginzburg-Jiang-Rallis (cf. [11], [12]).

For arithmetic application, it is necessary to have a more precise relation between
the automorphic period integral P and the L-value L (1/2, πE). To state the

1Since the unitary group H has a nontrivial central torus, we need to introduce a convergence
factor: dh = L(1, η)−1

∏
v L(1, ηv)|ω|v for a nonzero invariant differential ω of top degree on H.

Similarly for G.
2For the term “Vogan L-packet,” cf. [7, §9-11].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 543

precise refinement of the Gan-Gross-Prasad conjecture, we need to introduce more
notations. Let 〈·, ·〉Pet be the Peterson inner product

〈φ, ϕ〉Pet =
∫
[G]

φ(g)ϕ(g) dg, φ, ϕ ∈ π.(1.2)

Fix a decomposition as a product

〈·, ·〉Pet =
∏
v

〈·, ·〉v

under the decomposition π = ⊗πv. In this way we fix an invariant inner product on
πv. Ichino and Ikeda first consider the following integration of the matrix coefficient:
for φv, ϕv ∈ πv, we define when πv is tempered,

αv(φv, ϕv) =

∫
Hv

〈πv(h)φv, ϕv〉v dh, Hv = H(Fv).(1.3)

It has the following nice properties for tempered πv:

(1) It converges absolutely, and it is positive definite: αv(φv, φv) ≥ 0.
(2) When πv is unramified,3 and the vectors φv, ϕv are fixed by Kv such that

〈φv, ϕv〉v = 1, we have

αv(φv, ϕv) = L

(
1

2
, πv

)
· vol(H(Ov)).

(3) If HomH(Fv)(πv,C) �= 0, then the form αv does not vanish identically.

The first two were proved by Ichino and Ikeda (R. N. Harris in the unitary group
case). The third property was conjectured by them and proved by Sakellaridis
and Venkatesh [36, §6.4] in a more general setting. Waldspurger also proved the
third property in the p-adic orthogonal case. Because of the second property, we
normalize the form αv as follows:

α�
v(φv, ϕv) =

1

L (1/2, πv)

∫
Hv

〈πv(h)φv, ϕv〉v dh.(1.4)

Clearly α�
v is invariant under Hv × Hv, and we may call it the “local canonical

invariant form.”
We are now ready to state the conjecture of Ichino-Ikeda and R. N. Harris

(cf. [23], [21, Conjecture 1.3]) that refines the global Gan-Gross-Prasad conjec-
ture for unitary groups. Assume that the measure on H(A) defining P and the
measures on H(Fv) defining αv satisfy

dh =
∏
v

dhv.

Conjecture 1.1. Assume that π is tempered; i.e., πv is tempered for all v. For
any decomposable vector φ = ⊗φv ∈ π = ⊗πv, we have

(1.5)
|P(φ)|2
〈φ, φ〉Pet

=
1

|Sπ|
L

(
1

2
, π

)∏
v

α�
v(φv, φv)

〈φv, φv〉v
,

where Sπ is a finite elementary 2-group: the component group associated to the
L-parameter of π = πn ⊗ πn+1.

3For a non-Archimedean place v we say that πv is unramified if the quadratic extension E/F
is unramified at v, the group G(Fv) has a hyperspecial subgroup Kv = G(Ov), and πv has a
nonzero Kv-fixed vector.
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Remark 1. The right hand side of the conjectural formula is insensitive to the
definition of local L-factors at the finitely many bad places, as long as we choose
the same definition in L (s, πv) and in the local canonical invariant form α�

v.

The conjectural formula of this kind goes back to the celebrated work of Wald-
spurger [40] for the central values of L-functions of GL(2) [more or less equivalent
to the case U(1) × U(2) in the unitary setting]. An arithmetic geometric version
generalizing the formula of Gross-Zagier and S. Zhang [16],[44] is also formulated
in [7, §27], [49], and [50, §3.2]. More explicit formulae were obtained by Gross [14],
S. Zhang [48], and many others. The formula of Waldspurger and the formula of
Gross-Zagier and S. Zhang [16], [46],[47],[44] play an important role in the spec-
tacular development in application to the Birch and Swinnerton-Dyer conjecture
for elliptic curves in the past 30 years. More recently, Tian [39] applies both for-
mulae together to a classical Diophantine question and proves the infinitudes of
square-free congruent numbers with an arbitrary number of prime factors.

The refined global conjecture for SO(3)× SO(4), concerning “the triple product
L-function,” was established after the work by Garrett [9], Piatetski-Shapiro–Rallis,
Harris-Kudla [19], Gross-Kudla, Watson [43], and Ichino [22]. Recently Gan and
Ichino [8] established some new cases for SO(4)× SO(5) [for endoscopic L-packets
on SO(5)]. All of the known cases utilize the theta correspondence in an ingenious
way.

The Waldspurger formula was also reproved by Jacquet and Jacquet-Chen [4]
using relative trace formulae.

1.2. Main results. We now state our main result. Throughout this paper, we will
assume two hypothesis, denoted by RH(I) and RH(II).

The first one is about some expected properties of the (global and local) L-
packets of unitary groups (for all Hermitian spaces W,V ), analogous to the work
of Arthur on orthogonal groups (cf. [34], [42] for the progress toward the unitary
group case).

RH(I): Let E/F be a quadratic extension of number fields. For i = 1, 2,
let Vi be a Hermitian space of dimension N , U(Vi) the unitary group, and
πi an irreducible cuspidal automorphic representation of U(Vi). We further
assume that at one place v0 split in E/F , and the representation πi,v0

(i = 1, 2) is supercuspidal. Then we have
(i) The (weak) base change πi,E to ResE/FGL(N) exists, and πi,E is cuspi-

dal with a unitary central character, while the Asai L-function L(s, πE,

As(−1)N−1

) (cf. Remark 6) has a simple pole at s = 1.
(ii) The multiplicity of πi in L2([U(Vi)]) is one.
(iii) Assume that π1 and π2 are nearly equivalent (i.e., π1,v � π2,v with

respect to fixed isomorphisms V1,v � V2,v, for all but finitely many
places v of F ). Then for every place v of F , π1,v and π2,v are in the
same local Vogan L-packet, and this local Vogan L-packet is generic.

The second one is a part of the local Gan-Gross-Prasad conjecture in the unitary
group case.

RH(II): Let E/F be a quadratic extension of local fields, and (W0, V0) a
pair of Hermitian spaces of dimension n and n+1. Then in a generic local
Vogan L-packet Πψ of U(W0)×U(V0), there is at most one representation
π of a relevant pure inner form G = U(W ) × U(V ) that admits a nonzero
invariant linear form, i.e.,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 545

HomH(π,C) �= 0.

We refer to [7, Conj. 17.1] and [7, §9] for the detailed description. A proof (of an
even stronger version) for tempered L-packets for p-adic fields is recently posted
by Beuzart-Plessis [2, Theorem 1]; the local conjecture in the orthogonal case for
p-adic fields has earlier been proved by Waldspurger.

We need the fundamental lemma for the Jacquet-Rallis relative trace formu-
lae. In [45] and its appendix, this fundamental lemma is proved when the residue
characteristic p ≥ c(n) for a constant c(n) depending only on n (cf. Theorem 4.1).

Theorem 1.2. Let π be a tempered (i.e., πv is tempered for every place v) cuspidal
automorphic representation of G(A). Assume that the running hypothesis RH(I)
and RH(II) holds. Denote by Σ the finite set of nonsplit places v of F where πv

is not unramified. Assume that

(i) There exists a split place v0 such that the local component πv0 is supercus-
pidal.

(ii) If v ∈ Σ, then either Hv is compact or πv is supercuspidal.
(iii) The set Σ contains all nonsplit v whose residue characteristic is smaller

than the constant c(n).

Then we have the following two cases:

(1) (the totally split case) when every Archimedean place v of F is split in the
extension E/F [i.e., GF∞ � (GLn ×GLn+1)F∞ ], we have

|P(φ)|2
〈φ, φ〉Pet

= 2−2L

(
1

2
, π

)∏
v

α�
v(φv, φv)

〈φv, φv〉v
.

(2) (the totally definite case) if G(F∞) is compact where F∞ =
∏

v|∞ Fv, then

there is a nonzero constant cπ∞ depending only on the Archimedean com-
ponent π∞ of π such that

|P(φ)|2
〈φ, φ〉Pet

= cπ∞2−2L

(
1

2
, π

)∏
v

α�
v(φv, φv)

〈φv, φv〉v
.

Remark 2. Under our assumptions (i), the base change of πE of π to the general
linear group is cuspidal, and hence

|Sπ| = |Sπn
| · |Sπn+1

| = 4.

Remark 3. The condition (i) is due to the fact that currently we do not have a
complete spectral decomposition of the Jacquet-Rallis relative trace formulae. The
condition (ii) seems to be only a technical restriction for our approach and will be
discussed in §9. We have the restriction for the Archimedean place because (1) we
have not proved the existence of smooth transfer at Archimedean places (cf. §5),
and (2) it is probably a more technical problem to evaluate the constant cπ∞ .

Remark 4. For a non-Archimedean place v, the unitary group Hv is possibly com-
pact only when n ≤ 2. When n = 1, Hv is always compact for a nonsplit v. In this
case, our proof is essentially the same as the one in [4].

We also make a local conjecture (Conjecture 4.4) for each place v. Together with
a suitable spectral decomposition of the relative trace formulae, this conjecture
would imply Conjecture 1.1 for those π with cuspidal base change πE .
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1.3. Some applications. We have the following application to the positivity of
some central L-values. The positivity is also predicted by the grand Riemann
hypothesis. Lapid has obtained a more general result for Rankin-Selberg central
L-values by a different method ([32]; cf. also [31] for the positivity of the central
value of the L-function of symplectic type).

Theorem 1.3. Assume that π satisfies the conditions of Theorem 1.2 and E/F is
split at all Archimedean places. Then we have

L

(
1

2
, πE

)
≥ 0.

Proof. It suffices to show this when L( 12 , πE) �= 0. Then by [51], there exists π′

in the same Vogan L-packet of π such that the period P on π′ does not vanish.
By replacing π by π′, we may assume that the space HomU(W )(Fv)(πv,C) does not
vanish for every v. Then the local terms α′

v do not vanish. Now the positivity
follows from the fact that the α′

v are all positive definite, and the other L-values
appearing in L (1/2, πE) except L(

1
2 , πE) are all positive. �

Remark 5. As another application, M. Harris showed that Conjecture 1.1 would
imply the algebraicity of the L-value L (1/2, π) up to some simple constant when
G(F∞) is compact and α∞ �= 0 (cf. [20, §4.1]).

1.4. Outline of proof. We now sketch the main ideas of the proof, following the
strategy of Jacquet and Rallis [28]. First of all, by the multiplicity one result [1],[38],
we know a priori that there is a constant denoted by Cπ depending on π such that
for all decomposable φ, ϕ ∈ π,

P(φ)P(ϕ) = Cπ

∏
v

α�
v(φv, ϕv).(1.6)

Instead of working with an individual φ ∈ π as in the conjecture, we switch our
point of view to a distribution attached to π.

Definition 1.4. We define the (global) spherical character Jπ associated to a cus-
pidal automorphic representation π as the distribution

Jπ(f) :=
∑
φ

P(π(f)φ)P(φ), f ∈ C ∞
c (G(A)),(1.7)

where the sum of φ is over an orthonormal basis of π (with respect to the Petersson
inner product).

The name “spherical character” is suggested by many early analogous distribu-
tions (cf. [35], etc.). We also have a local counterpart as follows.

Definition 1.5. We define the (local) spherical character J�
πv

associated to πv as
the distribution,

J�
πv
(fv) :=

∑
φv

α�
v(πv(fv)φv, φv), fv ∈ C ∞

c (G(Fv)),(1.8)

where the sum of φv is over an orthonormal basis of πv. Similarly we define an
unnormalized one Jπv

,

Jπv
(fv) :=

∑
φv

αv(πv(fv)φv, φv).(1.9)
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By (1.6), we clearly have for decomposable f =
⊗

v fv

Jπ(f) = Cπ

∏
v

J�
πv
(fv),(1.10)

where in the product in the right hand side, for a given π and f , the local term
J�
πv
(fv) = 1 for all but finitely many v. Then we have the following consequence of

Conjecture 1.1.

Conjecture 1.6. Assume that π is a tempered cuspidal automorphic representa-
tion. For all f =

⊗
v fv ∈ C ∞

c (G(A)), we have

Jπ(f) =
1

|Sπ|
L

(
1

2
, π

)∏
v

J�
πv
(fv).

Lemma 1.7. The Conjecture 1.6 is equivalent to Conjecture 1.1.

Proof. It suffices to show that Conjecture 1.6 implies Conjecture 1.1. To see this,
we note that the following are equivalent: (1) HomH(Fv)(πv,C) �= 0, (2) αv �= 0,

(3) the distribution J�
πv

does not vanish.4 Hence, Conjecture 1.1 holds if for some
v the linear form αv vanishes. Now assume that for all v, the linear forms αv do
not vanish. Then the distributions Jπv

do not vanish. Then by Conjecture 1.6, the
constant Cπ must be 1

|Sπ|L (1/2, π), which implies Conjecture 1.1. �

Note that there is a parallel question for the general linear group. This question
can essentially be reduced to the celebrated theory of “Rankin-Selberg convolution”
due to Jacquet–Piatetskii-Shapiro–Shalika [27]. The idea of Jacquet and Rallis is
to transfer the question from the unitary group to the general linear group via
(quadratic) base change. They [28] introduced two relative trace formulae (RTF),
one on the unitary group and the other on the general linear group. This is the
main tool of this paper and the previous one [51].

In the general linear group case, there is a decomposition of a global spherical
character into a product of the local ones, analogous to Conjecture 1.6. But this
time one may prove it without too much difficulty. Hence, to deduce Conjecture
1.6, it suffices to compare the two local spherical characters. Moreover, since we
only need to find the constant Cπ, we may just choose some special test functions
f , as long as the local spherical character on the unitary group does not vanish for
our choice. Therefore the main innovation of this paper is a formula for the local
spherical character evaluated at some special test functions. The formula can be
viewed as a truncated local expansion of the local spherical character, analogous to
the local expansion of a character due to Harish-Chandra. The result may be of
independent interest in view of local harmonic analysis in the relative setting.

For comparison, let us recall briefly a result of Harish-Chandra. Let F be a
p-adic field. We temporarily use the notation G for the F -points of a connected
reductive group, and g the Lie algebra of G. Let N be the nilpotent cone of g and
N/G the set of G-conjugacy classes in N . The set N/G is finite. Let μO be the
nilpotent orbital integral associated to O ∈ N/G for a suitable choice of measure.
The exponential map defines a homeomorphism exp : ω → Ω where ω (Ω resp.) is
some neighborhood of 0 in g (1 in G, resp.). Let π be an irreducible admissible
representation of G. Then Harish-Chandra showed that there are constants cO(π)

4It is clear that (2) is equivalent to (3). The equivalence of (1) and (2) follows from the third
property of αv listed earlier.
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indexed by O ∈ N/G such that when Ω is sufficiently small, for all f supported
in Ω,

tr(π(f)) =
∑

O∈N/G

cO(π)μO(f̂�).(1.11)

Here f� is the function on ω via the homeomorphism exp, and f̂� is its Fourier trans-
form. The constants cO(π) contain important information about π. For example,
there is a distinguished nilpotent conjugacy class, namely the class of 0 ∈ N . If π
is a discrete series representation, the constant c{0}(π) is equal to the formal degree
of π for a suitable choice of Haar measure on G.

Now we return to our relative setting. We consider the local spherical character
on the general linear group. Let G′ := ResE/F (GLn × GLn+1), and let Π be
an irreducible unitary generic representation of G′(F ). Then the local spherical
character IΠ [cf. (3.31)] defines a distribution on G′(F ) with a certain invariance
property. These distributions are related to distributions on the F -vector space,

sn+1 = {X ∈ Mn+1(E)|X +X = 0}.

Here X �→ X denotes the Galois involution (entrywise). The group GLn+1(F ) acts
on sn+1 by conjugation. We will be interested in the restriction of this action to
the subgroup GLn(F ) [as a factor of the Levi of the parabolic of the (n, 1)-type].
We let ω be a small neighborhood of 0 in the F -vector space sn+1. Then we have
a natural way to pull back a function f ′ on a small neighborhood of 1 in G′ to a
function denoted by f ′

� on ω (cf. §8 for the precise definition). It is tempting to

guess that there exists an analogous expansion of IΠ in terms of the [relative to
GLn(F ) action] unipotent orbital integrals on sn+1.

5 However, so far there are some
difficulties. For example, when n ≥ 2 there are infinitely many GLn(F )-nilpotent
orbits in sn+1, and these nilpotent orbital integrals often need to be regularized.
We then restrict ourselves to a subspace of admissible functions (cf. Definition 8.1)
supported on a small ω. The precise definition is very technical. We expect that
admissible functions have vanishing nilpotent orbital integrals (however, generally
not even defined so far), except for one of the two regular unipotent orbits denoted
by ξ−. An expansion such as (1.11) of IΠ(f) would then tell us that there should
be only one term left, corresponding to the regular unipotent orbit ξ−. Though it
seems challenging to prove something such as (1.11) in our setting, we nevertheless
manage to establish a truncated version (see Theorem 8.5 for the detail).

Theorem 1.8. Let Π be an irreducible unitary generic representation of G′(F ).
Then for any small neighborhood ω of 0 in sn+1, there exists an admissible function
f ′ ∈ C ∞

c (G′(F )) such that f ′
� is supported in ω and

IΠ(f
′) = (∗)μξ−(f̂

′
�) �= 0,

where (∗) is an explicit nonzero constant depending only on the central character
of Π.

We have a similar result for a local spherical character Jπ on the unitary group
when either π is a supercuspidal representation or the group U(W ) is compact. See

5Relative to the GLn(F )-action, an X ∈ sn+1 is “nilpotent” if the closure of its GLn(F )-orbit
contains zero.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 549

§9 for more details (Theorem 9.7). Then our main Theorem 1.2 follows from the
local comparison of the two spherical characters (cf. §4 Conjecture 4.4).

The proof for the unitary group case seems to be harder and needs the full
strength of our previous results in the companion paper [51]. Namely we have to
make use of the following results (cf. §9):

(1) The existence of smooth transfer.
(2) Compatibility of smooth transfer with Fourier transform.
(3) Local (relative) trace formula on “Lie algebra.”

Note that the proof in [51] of these ingredients is in the reverse order listed here.

1.5. Structure of this paper. After fixing some notations in §2, we review several
global periods involving the general linear group in §3 and deduce the decomposition
analogous to Conjecture 1.6. Then in §4 we recall the Jacquet-Rallis RTF and
reduce the question to a comparison of local spherical characters. Then we give the
proof of Theorem 1.2 assuming a local result (Theorem 4.6). In §5 we deal with the
totally definite case (i.e., G(R) compact). In §6 we prepare some (relative) harmonic
analysis on Lie algebras. In §7 and §8, we prove the local character expansion for the
general linear group. The two key ingredients are Lemma 7.6 and Lemma 8.8. In §9
we show the local character expansion for the unitary group under some conditions,
and we complete the proof via the comparison of both spherical characters.

Finally, we warn the reader of the change of measures: Only in the introduc-
tion do we use the Tamagawa measures associated to a differential form ω on H
normalized by

dh = L(1, η)−1
∏
v

L(1, ηv)|ω|v.

To have a natural local decomposition, below we will immediately switch to

dh =
∏
v

dhv, dhv =
∏
v

L(1, ηv)|ω|v.

Another change comes when we move to the local setting (cf. the paragraph before
Lemma 4.7): there we consider the unnormalized local measure

dhv = |ω|v.
A similar warning applies to other groups such as G and the general linear group.

Part 1. Global theory

2. Measures and notations

We always endow discrete groups with the counting measure.

2.1. Measures and notations related to the general linear group. We first
list the main notations and conventions throughout this paper. We denote Hn =
GLn, its standard Borel Bn with the diagonal torus An, the unipotent radical Nn

of Bn. We denote by Bn,− the opposite Borel subgroup, and Nn,− its unipotent
radical, and an open subvariety H ′

n = NnAnNn− of Hn (essentially the open cell of
Bruhat decomposition). Their Lie algebras are denoted by hn, nn, etc. We denote
by Mn,m(F ) the F -vector space of all n×m matrices with coefficients in F ; and if
n = m we write it as Mn(F ). Then we have a natural embedding Hn ⊂ Mn. We
denote

en = (0, 0, . . . , 0, 1) ∈ M1,n(F ),
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and let e∗n ∈ Mn,1(F ) be the transpose of en. The letter u (v, resp.) usually denotes
an upper (lower, resp.) triangular unipotent matrix or a column (row, resp.) vector.

We usually understand Hn−1 as a subgroup of Hn via the block-diagonal
embedding

Hn−1 � h �→
(
h

1

)
∈ Hn.

We thus have a sequence of embeddings . . . ⊂ Hn−2 ⊂ Hn−1 ⊂ Hn. Similarly we
have a sequence of embeddings for the diagonal torus An, the unipotent Nn, etc.

For a quadratic extension E/F (local or global), we assume that

E = F [τ ],

where τ =
√
δ, δ ∈ F×. We write E± the F -vector space where the nontrivial

Galois automorphism in Gal(E/F ) acts by ±1, and E+ = F .
Now let F be a local field. We will fix an additive character ψ = ψF of F and

then define a character ψE of E by

ψE(z) = ψ

(
1

2
trE/F z

)
for the trace map trE/F : E → F . In particular, we have the compatibility ψE |F =
ψ. We also say that ψ is unramified if F is non-Archimedean and the largest
fractional ideal of F over which ψ is trivial is OF , and similarly for ψE . On Mn(E)
there is a bi-E-linear pairing valued in E given by

〈X,Y 〉 := tr(XY ).(2.1)

We then have a Fourier transform for φ ∈ C ∞
c (Mn(E)),

φ̂(X) :=

∫
Mn(E)

φ(Y )ψE(〈X,Y 〉) dY.

Here we use the self-dual measure on Mn(E), i.e., the unique Haar measure char-
acterized by ̂̂

φ(X) = φ(−X).(2.2)

Note that this is also the same measure obtained by identifying Mn(E) with En2

and using the self-dual measure on E = M1(E). We now view both Mn(F ) and
Mn(E

−) as F -vector subspaces of Mn(E). Then the restriction of the pairing 〈·, ·〉
to each of them is nondegenerate F -valued pairing. In this way we may define
the Fourier transform of f ∈ C ∞

c (Mn(E
±)) and we normalize the Haar measure

on Mn(E
±) as the self-dual one characterized by the analogous equation to (2.2).

Set n = 1 and we have a measure for F = E+ and E−. Note that if we use the
isomorphism F � E− by x �→

√
δx, then the measure on E− is |δ|1/2F dx for the

self-dual measure dx on F . Here our absolute values on F and E are normalized
such that

d(ax) = |a|F dx, a ∈ F,

and similarly for E.
On F× we denote the normalized Tamagawa measure associated to the differen-

tial form x−1dx,

d×x = ζF (1)
dx

|x|F
,
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and the unnormalized one,

d∗x =
dx

|x|F
,

and similarly for E×. On Hn(F ) we will take the Haar measure

dg = ζF (1)

∏
ij dxij

| det(g)|nF
, g = (xij),

and similarly for Hn(E) [where we replace ζF (1) by ζE(1)]. Sometimes we also
shorten | det(g)| by |g| if no confusion arises.

We will assign the measure on Nn(F ) the additive self-dual measure,

du =
∏

1≤i<j≤n

duij , u = (uij) ∈ Nn(F ).

We denote the modular character by

δn(a) = det(Ad(a) : nn) =
n∏

i=1

an+1−2i
i ,

where a = diag[a1, a2, . . . , an] ∈ An(F ) acts on n by Ad(a)X = aXa−1. Similarly,
we have δn,E if we replace F by E. For x ∈ Mn,m(F ), we define

‖x‖ = max{|xij |F }1≤i≤n,1≤j≤m.

Now let F be a number field and let ψ =
∏

v ψv be a nontrivial character of
F\A. We denote by A1 the subgroup of A× consisting of x = (xv)v ∈ A× with
|x| =

∏
v |xv|v = 1. We endow the group Hn(A) with the product measure

dg =
∏
v

dgv.

We denote by Zn the center of Hn, and the measure is determined by the measure
on A×

F ,

d×x =
∏
v

d×xv.

Note that under our measure, if ψv is unramified, the volume of the maximal
compact subgroup of Hn(Fv) is given by

vol(Hn(OFv
)) = ζv(2)

−1ζv(3)
−1 · · · ζv(n)−1.

If E is a quadratic extension of F , we take similar conventions for Hn(AE),
Zn(AE) et al.

2.2. Measures and notations related to unitary groups. In this paper, W ⊂
V will denote an embedding of Hermitian spaces of dimension n and n+1, respec-
tively, U(W ) and U(V ) the corresponding unitary group, G = U(W ) × U(V ) and
its subgroup H being the diagonal embedding of U(W ).

Our method involves the comparison of orbital integrals between the unitary and
general linear group cases, and between their Lie algebras, respectively. We thus
need to choose compatible measures on them. Let θ be a nonsingular Hermitian
matrix of size n+1. Then we may and will view the group U(θ)(F ) as the subgroup
of GLn+1(E) consisting of g ∈ GLn+1(E) such that

gt · θgθ−1 = 1.
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We may and will view the Lie algebra u(θ) of U(θ) as the subspace of Mn+1(E)
consisting of X ∈ Mn+1(E) such that

X
t
+ θXθ−1 = 0.

We denote by u(θ)† a companion space where the last equality is replaced by

X
t
= θXθ−1.

For any number τ ∈ E such that τ = −τ �= 0, we have an isomorphism (as F -vector
spaces) from u(θ) to u(θ)† mapping X to τ−1X.

We will need to consider the symmetric space Sn+1(F ) � Hn+1(F )\Hn+1(E).
We identify Sn+1 with the subspace of GLn+1(E) consisting of g ∈ GLn+1(E) such
that

gg = 1.(2.3)

We have its tangent space s = sn+1 at 1 ∈ Sn+1, which we call the Lie algebra
of Sn+1(F ). Viewed as a subspace of Mn+1(E), the vector space s consists of
X ∈ Mn+1(E) such that

X +X = 0.(2.4)

Its companion is the spaceMn+1(F ) [or gln+1(F )] viewed as a subspace ofMn+1(E),
namely consisting of X ∈ Mn+1(E) such that

X = X.

For any number τ ∈ E such that τ = −τ �= 0, we have an isomorphism (as F -vector
spaces) from s(F ) to Mn+1(F ) mapping X to τ−1X.

We consider both s and u as F -vector subspaces of Mn+1(E). The restrictions
of the bilinear form 〈·, ·〉 [cf. (2.1)] on Mn+1(E) to s and u = u(θ) take values
in F and are nondegenerate. The additive characters ψ and ψE then determine
self-dual measures on Mn+1(AE), u(A), s(A), and the local analogues. Moreover,
if we change the Hermitian matrix θ defining u to an equivalent one, the subspace
u changes to its conjugate by an element in GLn+1(E). Hence the measures are
compatible with the change of θ. These measures can also be treated as Tamagawa
measures associated to top degree invariant differential forms. Let ω0 be a differ-
ential form on u so that |ω0|v defines the self-dual measure for every place v. We
also use the form ω0 to normalize the differential form ω that defines the measure
on U(θ)(Fv) as follows. We consider the Cayley map

c(X) := (1 +X)(1−X)−1.(2.5)

It defines a birational map between u and U(θ), and it is defined at X = 0. We
normalize the invariant differential form ω on U(θ) by requiring that the pullback
c∗ω evaluating at 0 is the same as ω0 evaluated at 0. It follows that, when v is
non-Archimedean, under the Cayley map, the restriction of the self-dual measure to
a small neighborhood of 0 in u is compatible with the restriction of the Tamagawa
measure |ω|v to a small neighborhood of 1 in U(θ)(Fv). In this way we choose the
measure on U(θ)(A), globally and locally, as follows:

dh =
∏
v

L(1, ηv)|ω|v.
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Our global measure is therefore not the Tamagawa measure, which should be
L(1, η)−1dh. In particular, under our choice of measure, the volume of [U(1)] =
U(1)(F )\U(1)(A) is given by

vol([U(1)]) = 2L(1, η).(2.6)

This is due to the fact that the Tamagawa number for U(1) � SO(2) is equal to 2.

3. Explicit local factorization of some periods

In this section, we decompose several global linear forms on the general linear
group into explicit products of local invariant linear forms. Nothing is original in
this section, but we need to determine all constants in order to prove the main
result of this paper.

3.1. Invariant inner product. Let Π = Πn be a cuspidal automorphic represen-
tation of Hn(AE) with unitary central character ωΠ. We recall some basic facts
on the Whittaker model of Π = ⊗wΠw. We extend the additive character ψE to a
character of Nn(E) by

ψE(u) = ψE

(
n−1∑
i=1

ui,i+1

)
, u = (ui,j) ∈ Nn(E).

Similar convention applies to the other unipotent matrices in Nn(F ) et al. We
denote by C ∞(Nn(AE)\Hn(AE), ψE) the space of smooth functions f on Hn(AE)
such that

f(ug) = ψ(u)f(g), u ∈ Nn(AE), g ∈ Hn(AE).

Similarly we have the local counterpart C∞(Nn(Ew)\Hn(Ew), ψw) for each place
w of E. The Fourier coefficient of φ ∈ Π is defined as

Wφ(g) =

∫
N(E)\N(AE)

φ(ug)ψE(u) du.

Then we haveWφ ∈ C ∞(Nn(AE)\Hn(AE), ψE). The map φ �→ Wφ realizes an equi-
variant embedding Π ↪→ C ∞(Nn(AE)\Hn(AE), ψE). The image, the Whittaker
model of Π, is denoted by W(Π, ψE). For φ ∈ Π = ⊗wΠw, we assume that Wφ is
decomposable

Wφ(g) =
∏
w

Wφ,w(gw), Wφ,w ∈ C∞(Nn(Ew)\Hn(Ew), ψE,w),(3.1)

where w runs over all places of E, and Ww(1) = 1 for almost all places w.
We need to compare the unitary structure in the decomposition

Π �
⊗
w

W(Πw, ψE,w).

On Π we have the Petersson inner product, for φ, φ′ ∈ Π,

〈φ, φ′〉Pet =
∫
Zn(AE)Hn(E)\Hn(AE)

φ(g)φ′(g) dg.

On W(Πw, ψE,w) we have an invariant inner product defined by

ϑw(Ww,W
′
w) =

∫
Nn−1(Ew)\Hn−1(Ew)

Ww

(
h

1

)
W

′
w

(
h

1

)
dh.(3.2)
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The integral ϑw converges absolutely if Πw is generic unitary. When Πw and ψE,w

are unramified, the vectors Ww = W ′
w are fixed by Kn,w := Hn(OE,w) and normal-

ized by Ww(1) = 1, we have

ϑw = vol(Kn,w)L(1,Πw × Π̃w).(3.3)

This can be deduced from [29, Prop. 2.3] [also a consequence of the proof of Prop.
3.1, particularly (3.8) and (3.9)]. Therefore we define a normalized invariant inner
product

ϑ�
w(Ww,W

′
w) =

ϑv(Ww,W
′
w)

L(1,Πw × Π̃w)
.(3.4)

Then the product
∏

w ϑ�
w converges and defines an invariant inner product on

W(Π, ψE). It is a natural question to compare it with the Petersson inner product.
We now recall a result of Jacquet-Shalika (implicitly in [29, §4]; cf. [5, p.265]).

Proposition 3.1. We have the following decomposition of the Petersson inner
product in terms of the local inner product ϑ�

w:

〈φ, φ′〉Pet =
n · Ress=1L(s,Π× Π̃)

vol(E×\A1
E)

∏
v

ϑ�
w(Wφ,w,Wφ′,w),(3.5)

where Wφ = ⊗wWφ,w and Wφ′ = ⊗wWφ′,w.

Proof. Up to a constant this is proved by [29, §4]. We thus recall their proof in
order to determine this constant, and the same idea of proof will also be used
below to decompose the Flicker-Rallis period. We consider an Eisenstein series
associated to a Schwartz-Bruhat function Φ on An

E . We consider the action of
Hn(E) on the row vector space En from right multiplication. Then the stabilizer
of en = (0, 0, . . . , 1) ∈ En is the mirabolic subgroup Pn of Hn. Set

f(g, s) = |g|s
∫
A

×
E

Φ(enag)|a|ns d×a, Re(s) >> 0.

Consider the Epstein-Eisenstein series

E(g,Φ, s) :=
∑

γ∈ZP (E)\Hn(E)

f(γg, s),(3.6)

which is absolutely convergent when Re(s) > 1. Equivalently, we have

E(g,Φ, s) = |g|s
∫
E×\A×

E

∑
ξ∈En−{0}

Φ(ξag)|a|ns d×a.

(Note: this corresponds to the case η = 1 in [29, §4].) It has meromorphic contin-
uation to C and has a simple pole at s = 1 with residue [29, Lemma 4.2]

vol(E×\A1
E)

n
Φ̂(0).

Note that the only nonexplicit constant denoted by c in [29, Lemma 4.2] is the
volume of E×\A1

E . Now consider the zeta integral

I(s,Φ, φ, φ′) =

∫
Zn(AE)Hn(E)\Hn(AE)

E(g,Φ, s)φ(g)φ′(g) dg.
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On the one hand, it has a pole at s = 1 with residue

vol(E×\A1
E)

n
Φ̂(0)〈φ, φ′〉Pet.

On the other hand, when Re(s) is large, it is also equal to the following integral:

Ψ(s,Φ,Wφ,Wφ′) =

∫
Nn(AE)\Hn(AE)

Φ(eg)Wφ(g)Wφ′(g)| det(g)|s dg.(3.7)

This is equal to the product∏
w

Ψ(s,Φw,Wφ,w,Wφ′,w),

where the local integral is defined as

Ψ(s,Φw,Wφ,w,Wφ′,w) =

∫
Nn(Ew)\Hn(Ew)

Φw(eg)Wφ,w(g)Wφ′,w(g)| det(g)|s dg.

By [29, Prop. 2.3], we have, for unramified data of (Φw,Ww,W
′
w) and ψE,w at a

place w, normalized such that W (1) = W (1) = Φw(0) = 1,

Ψ(s,Φ,Ww,W
′
w) = vol(Kn,w)L(s,Πw × Π̃w).(3.8)

[Note: for our measure on Nn(Ew), we have vol(Nn(Ew)∩Kw) = 1.] From this we
may deduce that

Ψ(s,Φ,Wφ,Wφ′) = L(s,Π× Π̃)
∏
w

Ψ(s,Φw,Wφ,w,Wφ′,w)

L(s,Πw × Π̃w)
,

where the local factors are entire functions of s and for almost all w they are equal to
one. Moreover, all local factors converge absolutely in the half plane Re(s) > 1− ε
for some ε > 0 [29]. From this we deduce that its residue at s = 1 is given by
another formula,

Ress=1L(s,Π× Π̃)
∏
w

Ψ(1,Φw,Wφ,w,Wφ′,w)

L(1,Πw × Π̃w)
.

From the two formulae of the residue, we will first deduce that ϑw(Wφ,w,Wφ′,w) is
Hn(Ew) invariant and second that

Ψ(1,Φw,Wφ,w,Wφ′,w) = Φ̂w(0)ϑw(Wφ,w,Wφ′,w).(3.9)

To see this, letNn,1,+(Ew) be the unipotent part of the mirabolic Pn andNn,1,−(Ew)
the transpose ofNn,1,+(Ew). We consider the open dense subsetNn,1,+Hn−1Nn,1,−Zn

= PnNn,1,−Zn. We may decompose the measure on Hn (or more precisely its re-
striction to the open subset)

dg = | det(h)|−1 dn+ dh dn− d∗a,

where

g = n+hn−a, h ∈ Hn−1, n± ∈ Nn,1,±, a ∈ Zn.
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Note also that the embedding Hn−1 ↪→ Pn induces an isomorphism Nn\Pn �
Nn−1\Hn−1. For an integrable function f on Nn\Hn, we may write∫

Nn(Ew)\Hn(Ew)

f(g)dg

=

∫
ZnNn,1,−(Ew)

(∫
Nn−1(Ew)\Hn−1(Ew)

f(hn−a)| det(h)|−1dh

)
dn− d∗a.

We now apply this formula to the integral Ψ(1,Φw,Wφ,w,Wφ′,w). For simplicity we
write Ww = Wφ,w, and W ′

w = Wφ′,w. Clearly ϑw is Pn(Ew) invariant. Therefore
we may write

Ψ(1,Φw,Wφ,w,Wφ′,w)

=

∫
ZnNn,1,−(Ew)

Φ(ean−)ϑw(Πw(an−)Ww,Πw(an−)W
′
w)|a|n d∗a dn−.

For X ∈ En
w (with last entry nonzero), let n−(X) be the element in ZnNn,1,−(Ew)

with the last row equal to X. We consider

Γ(X) := ϑw(Πw(n−(X))Ww,Πw(n−(X))W ′
w),

whenever it is defined. A suitable substitution yields

Ψ(1,Φw,Wφ,w,Wφ′,w) =

∫
En

w

Φw(X)Γ(X) dX.

Since by the other residue formula, we also know that this is equal to a constant

multiple times Φ̂w(0) times an invariant inner product on W(Πw, ψE,w), for all Φw

and Ww,W
′
w. We deduce that Γ(X) is a constant function (whenever it is defined).

Therefore Γ(X) = ϑw(Ww,W
′
w) and ϑw is Hn(Ew) invariant. Moreover, we now

have

Ψ(1,Φw,Wφ,w,Wφ′,w) = ϑw(Ww,W
′
w)

∫
En

w

Φ(X) dX = ϑw(Ww,W
′
w)Φ̂w(0).

This completes the proof. We also note that if we use the Hn(Ew) invariance
of ϑw, which can be proved independently, then the proposition can be deduced
immediately from the two residue formulae. �

For later use, as we will be dealing with the case of a quadratic extension E/F ,
we will consider Hn,E as an algebraic group over the base field F . Therefore we
rewrite the result as

〈φ, φ′〉Pet =
n · Ress=1L(s,Π× Π̃)

vol(E×\A1
E)

∏
v

ϑ�
v(Wv,W

′
v),(3.10)

where ϑv =
∏

w|v ϑw for all (one or two) places w above v.

3.2. Flicker-Rallis period. Now let E/F be a quadratic extension of number
fields and Π = Πn a cuspidal automorphic representation of Hn(AE). Assume that
its central character satisfies

ωΠ|A× = 1.

We would like to decompose the Flicker-Rallis period [6],[10] explicitly. It can be
viewed as a twisted version of the Petersson inner product (it indeed gives the
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Petersson inner product if we allow E = F × F to be split globally). Therefore it
is natural that the method is similar as well.

We first assume that n is odd. Then we have the global Flicker-Rallis period, an
Hn(A)-invariant linear form on Π:

β(φ) = βn(φ) :=

∫
Zn(A)Hn(F )\Hn(A)

φ(h) dh, φ ∈ Π.(3.11)

The global period β is related to the Asai L-function L(s,Π,As+) (for the definition
of As±; cf. [7, §7]). We set

ε̃n = diag(τn−1, τn−2, . . . , 1) ∈ Hn(E)(3.12)

and

εn−1 = τ · diag(τn−2, τn−3, . . . , 1) = τ ε̃n−1 ∈ Hn−1(E).(3.13)

(Note: τ ∈ E−.) Indeed, we may choose any ε̃n = diag(a1, . . . , an−1, an) such that
ai/ai+1 ∈ E− for i = 1, . . . , n− 1 and an = 1. We again use the Whittaker model
of Π. We will again consider Hn,E as an algebraic group over F . In particular, we
consider Πv as a representation of Hn(Ev) where Ev = E⊗F Fv is a semisimple Fv

algebra of rank two. For a place v of F , we define the local Flicker-Rallis period βv

as follows: for Wv ∈ W(Πv, ψEv
)

βv(Wv) =

∫
Nn−1(Fv)\Hn−1(Fv)

Wv

(
εn−1h

1

)
dh.(3.14)

The integral βv converges absolutely if Πv is generic unitary. It depends on the
choice of τ =

√
δ. For unramified data with normalization Wv(1) = 1, we have

βv(Wv) = vol(Kn,v)L(1,Πv,As+).(3.15)

We thus define a normalized linear form

(3.16) β�
v(Wv) =

β(Wv)

L(1,Πv,As+)
.

Remark 6. For bad places v, we may define the local factor L(s,Πv,As+) as the
greatest common divisor (GCD) of the local zeta integral in (3.19). Then the local
factor L(s,Πv,As+) has no pole or zero when at s = 1 for a unitary generic Πv.

Proposition 3.2. We have an explicit decomposition

(3.17) β(φ) =
n · Ress=1L(s,Π,As+)

vol(F×\A1)

∏
v

β�
v(Wv),

where W = Wφ = ⊗vWv ∈ W(Π, ψE).

Proof. For a Schwartz-Bruhat function Φ on An, we consider the Epstein-Eisenstein
series E(g,Φ, s) [cf. (3.6)] replacing the field E by F . Then we define

I(s,Φ, φ) :=

∫
Z(A)Hn(F )\Hn(A)

E(g,Φ, s)φ(g) dg.

We then have [6, p.303]

(3.18) I(s, φ,Φ) = Ψ(s,Wφ,Φ),

where

Ψ(s,Wφ,Φ) =

∫
Nn(A)\Hn(A)

Wφ(ε̃nh)Φ(enh)|h|s dh.
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(Note that we use a different choice of the additive character ψE .) Indeed, we have

I(s,Φ, φ) =

∫
Pn(F )\Hn(A)

Φ(eng)φ(g)|g|s dg

=

∫
Pn(F )Nn(A)\Hn(A)

Φ(eng)

(∫
Nn(F )\Nn(A)

φ(ng) dn

)
|g|s dg.

We have a Fourier expansion

φ(g) =
∑

γ∈Nn(E)\Pn(E)

Wφ(γg).

Only those γ such that ψE(γnγ
−1) = 1 for all n ∈ Nn(A) contribute nontrivially.

Therefore we may replace the sum by γ ∈ ε̃nPn(F ):

I(s,Φ, φ) =

∫
Pn(F )Nn(A)\Hn(A)

Φ(eng)

⎛⎝ ∑
γ∈Nn(F )\Pn(F )

Wφ(ε̃nγg)

⎞⎠ |g|s dg

=

∫
Nn(A)\Hn(A)

Φ(eng)Wφ(ε̃ng)|g|s dg

= Ψ(s,Wφ,Φ).

[Note that vol(Nn(F )\Nn(A)) = 1.] We define for each place v of F ,

Ψ(s,Wv,Φv) =

∫
Nn(Fv)\Hn(Fv)

Wv(ε̃nh)Φv(enh)|h|s dh.(3.19)

For unramified data, we have

Ψ(s,Wv,Φv) = vol(Kn(OFv
))L(s,Πv,As+).

And we have [10, p.185]

Ψ(1,Wv,Φv) = βv(Wv)Φ̂v(0).

Alternatively we may prove this using (3.18), analogous to the proof of Prop. 3.1.
Again, analogous to the proof of Prop. 3.1, we may take the residue of (3.18) to
obtain

vol(F×\A1)

n
Φ̂(0)β(φ) = Ress=1L(s,Π,As+)Φ̂(0)

∏
v

β�
v(Wv).

This completes the proof. �

When n is even, we insert the character η in the definition of β,

β(φ) = βn(φ) :=

∫
Zn(A)Hn(F )\Hn(A)

φ(h)η(h) dh, φ ∈ Π,(3.20)

where, for simplicity, we denote η(h) = η(det(h)).
The Asai L-function is then replaced by L(s,Π,As−), or we may write it as

L(s,Π,As(−1)n−1

). We also modify the definition

βv(Wv) =

∫
Nn−1(Fv)\Hn−1(Fv)

Wv

(
εn−1h

1

)
ηv(h) dh.(3.21)

The same argument shows that (3.17) still holds.
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3.3. Rankin-Selberg period. We now follow [27]. Let Π = Πn ⊗ Πn+1 and Πi

be a cuspidal automorphic representation of Hi(AE), i = n, n + 1. We define the
global Rankin-Selberg period as

λ(φ) =

∫
Hn(E)\Hn(AE)

φ(h) dh, φ ∈ Π,(3.22)

where Hn embeds diagonally into Hn × Hn+1. To decompose it, we need the
Whittaker model W(Πn, ψE) (W(Πn+1, ψE), resp.) of Πn (Πn+1, resp.) with
respect to the additive character ψE (ψE , resp.). We define a local Rankin-Selberg
period on the local Whittaker model which associates with Ww ∈ W(Πn, ψE) ⊗
W(Πn+1, ψE),

λw(s,Ww) =

∫
Nn(Ew)\Hn(Ew)

Ww(h)| det(h)|s dh, s ∈ C,(3.23)

and a normalized one using the local Rankin-Selberg L-function L(s,Πn,w×Πn+1,w)
(cf. [27]),

λ�
w(s,Ww) =

λw(Ww)

L(s+ 1/2,Πn,w ×Πn+1,w)
.(3.24)

When Πw is generic, the integral λw(s, ·) is absolutely convergent when Re(s) is
large enough and extends to a meromorphic function in s ∈ C. The normalized
λ�
w(s, ·) extends to an entire function in s ∈ C. Moreover, there exists Ww such

that λ�
w(s,Ww) = 1 (cf. [25, Theorem 2.1, 2.6] for Archimedean places). Therefore

we will define

λ�
w(Ww) = λ�

w(0,Ww).(3.25)

In particular, λ�
w defines a nonzero element of the (one-dimensional) space

HomHn(Ew)(Πw,C) for generic Πw.
If Πw is tempered, then the integral λw(s, ·) is absolutely convergent when

Re(s) > −1/2 (cf. [25, Lemma 5.3] for Archimedean places). Therefore in this
case we may even define λw(Ww) = λ(0,Ww) directly.

When Πw and ψE,w are unramified, the vector Ww is fixed by Kn,w × Kn+1,w

and normalized by Ww(1) = 1, we have [30, p. 781]

λw(s,Ww) = vol(Kn,w)L(s+ 1/2,Πn,w ×Πn+1,w),(3.26)

and therefore
λ�
w(Ww) = vol(Kn,w).

We also form the global (complete) Rankin-Selberg L-function

L(s,Πn ×Πn+1) =
∏
w

L(s,Πn,w ×Πn+1,w).

It is an entire function in s ∈ C.

Proposition 3.3. We have the following decomposition if Π is cuspidal unitary,
and φ ∈ Π

(3.27) λ(φ) = L

(
1

2
,Πn ×Πn+1

)∏
w

λ�
w(Ww),

where Wφ =
∏

w Wφ,w is as before.

Proof. This is due to Jacquet, Piatetskii-Shapiro, and Shalika [27]. �
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For generic unitary Π, we need to use the completed L-function. Indeed, the
local L-factor may have poles at s = 1/2 since we do not know the temperedness
of each Πw.

3.4. Decomposing the spherical character on the general linear group.
We now denote

G′ = ResE/F (GLn ×GLn+1)(3.28)

viewed as an F -algebraic group. We consider its two subgroups: H ′
1 is the diagonal

embedding of ResE/FGLn (where GLn is embedded into GLn+1 by g �→ diag[g, 1])
and H ′

2 is GLn,F ×GLn+1,F embedded into G′ in the obvious way.
Now we consider a cuspidal automorphic representation Π = Πn⊗Πn+1 of G

′(A).
Denote by β = βn⊗βn+1 the (product of) Flicker-Rallis period on Π = Πn⊗Πn+1.

Definition 3.4. We define the global spherical character IΠ as the following dis-
tribution on H(A): for f ′ ∈ C ∞

c (G′(A)),

IΠ(f
′) =

∑
φ

λ(Π(f ′)φ)β(φ)

〈φ, φ〉Pet
,(3.29)

where the sum runs over an orthogonal basis of Π. Equivalently,

IΠ(f
′) =

∑
φ

λ(Π(f ′)φ)β(φ),

where the sum runs over an orthonormal basis of Π for the Petersson inner product.

Note that the definition of Π(f ′) involves a choice of the measure on G′(A) to
define the Petersson inner product. We could choose any one as long as then we
use the same measure [quotient by the counting measure on G′(F )].

By definition of As±, we have for i = n, n+ 1

L(s,Πi ×Πσ
i ) = L(s,Πi,As+)L(s,Πi,As−).

Now recall that in the Introduction we have a product of unitary groups G =
U(W ) × U(V ) for Hermitian spaces W ⊂ V with dimW = n, dimV = n + 1.
Assume that Π = πE is the base change of a cuspidal automorphic representation
π = πn ⊗ πn+1 of G(A). By [7, Prop. 7.4] we also have

L(s,Πi,As(−1)i) = L(s, πi, Ad).

Remark 7. For bad places v, we may define the local factor L(s, πi, Ad) by this
formula. But note that for our purpose, it only matters to know the local L-factors
at unramified places.

Since such Π must be conjugate self-dual—Π̃ � Πσ where σ is the nontrivial

element in Gal(E/F )—we deduce that L(s,Πi× Π̃i) has a simple pole at s = 1. By

our running hypothesis RH(I)(i), the Asial L(s,Πi,As(−1)i−1

) has a simple pole.

We conclude that L(s,Πi,As(−1)i) = L(s, πi, Ad) is regular at s = 1 and

Ress=1L(1,Πi × Π̃i)

Ress=1L(s,Πi,As(−1)i−1)
= L(1,Πi,As(−1)i) = L(1, πi, Ad).(3.30)

We denote by W(Π, ψ) the Whittaker model W(Πn, ψ)⊗W(Πn+1, ψ). Let Π =
⊗vΠv. Let λ�

v, β
�
v be the local Rankin-Selberg period (3.25) and the local Flicker-

Rallis period (3.16). Let ϑ�
v be the normalized local invariant inner product (3.4).
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Definition 3.5. We define the normalized local spherical character I�Πv
associated

to a unitary generic representation Πv,

I�Πv
(f ′

v) =
∑
Wv

λ�
v(Πv(f

′
v)Wv)β

�
v(Wv)

ϑ�
v(Wv,Wv)

,(3.31)

where the sum runs over an orthogonal basis Wv ∈ W(Πv, ψv). We also define an
unnormalized local spherical character IΠv,s as the meromorphic function in s ∈ C,

IΠv,s(f
′
v) =

∑
Wv

λv(s,Πv(f
′
v)Wv)βv(Wv)

ϑv(Wv,Wv)
.(3.32)

We will write IΠv
(f ′

v) for its value IΠv,0(f
′
v) at s = 0.

We now summarize to arrive at an analogue of the decomposition in Conjec-
ture 1.6.

Proposition 3.6. Assume that the cuspidal automorphic representation Π of G′(A)
is the base change πE of a cuspidal automorphic representation π of G(A). Then
we have

(3.33) IΠ(f
′) = L(1, η)2

L(1/2,Π)

L(1, π, Ad)

∏
v

I�Πv
(f ′

v).

Proof. By the assumption, Π is unitary generic. Note that

vol(E×\A1
E)

vol(F×\A1
F )

= L(1, η).

Then the result follows from Prop. 3.1, 3.2, 3.3 and the relation (3.30). �
Remark 8. Note that we do not need to assume the temperedness of π at this
moment.

4. Relative trace formulae of Jacquet and Rallis

4.1. The construction of Jacquet and Rallis. We recall the Jacquet-Rallis
relative trace formulae [28], and we refer to [51] for more details.

First we recall the construction of the RTF of Jacquet-Rallis in the unitary group
case. For f ∈ C∞

c (G(A)) we consider a kernel function

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy),

and a distribution

J(f) :=

∫
H(F )\H(A)

∫
H(F )\H(A)

Kf (x, y) dx dy.

The integral converges when the test function f is nice in the sense of [51, §2.3]
(the precise definition will not be used in this paper). Associated to the RTF we
have two objects:

• the global spherical character Jπ associated to a cuspidal automorphic rep-
resentation π of G(A) (Definition 1.4 in the Introduction), and

• the (relative) orbital integral associated to a regular semisimple element6

δ ∈ G(F ): for f ∈ C∞
c (G(A)), we define its orbital integral

6See [50, §2.1] for the definition, where “regular” corresponds to “regular semisimple” in this
paper.
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O(δ, f) :=

∫
H(A)×H(A)

f(x−1δy) dx dy.(4.1)

We have a local counterpart associated to a regular semisimple element δ ∈ G(Fv):
for fv ∈ C∞

c (G(Fv)) we define

O(δ, fv) =

∫
H(Fv)×H(Fv)

fv(x
−1δy) dx dy.(4.2)

We now recall the RTF in the general linear group case. Recall that G′ =
ResE/F (GLn ×GLn+1) as an F -algebraic group. We consider its two subgroups:

• H ′
1 is the diagonal embedding of ResE/FGLn (where GLn is embedded into

GLn+1 by g �→ diag[g, 1]), and
• H ′

2 = GLn,F ×GLn+1,F embedded into G′ in the obvious way.

For f ′ ∈ C ∞
c (G′(A)), we define a kernel function

Kf ′(x, y) =

∫
ZH′

2
(A)

∑
γ∈G′(F )

f ′(x−1γzy)dz.

We then consider a distribution on G′(A),

I(f ′) =

∫
H′

1(F )\H′
1(A)

∫
ZH′

2
(A)H′

2(F )\H′
2(A)

Kf ′(h1, h2)η(h2) dh1 dh2,

where η(h2) := ηn−1(gn)η
n(gn+1) if h2 = (gn, gn+1) ∈ Hn(A)×Hn+1(A). The inte-

gral converges when the test function f is nice in the sense of [51, §2.2]. Associated
to the RTF we have two objects:

• the global spherical character IΠ (cf. [50, §2]) associated to a cuspidal
automorphic representation Π of G′(A) (Definition 3.29), and

• the (relative) orbital integral associated to a regular semisimple element
(cf. [50, §2]) γ ∈ G′(F ): for f ′ ∈ C∞

c (G′(A)), we define its orbital integral:

(4.3) O(γ, f ′) :=

∫
H′

1(A)

∫
H′

2(A)

f ′(h−1
1 γh2)η(h2) dh1 dh2.

Similarly we have a local counterpart: a regular semisimple element γ ∈ G′(Fv):
for f ′

v ∈ C∞
c (G′(Fv)) we define

O(γ, f ′
v) =

∫
H′

1(Fv)

∫
H′

2(Fv)

f ′
v(h

−1
1 γh2)η(h2) dh1 dh2.(4.4)

We now recall the comparison of the orbits (cf. [50, §2]). Denote by
(H ′

1(F )\G′(F )/H ′
2(F ))rs the set of regular semisimple (H ′

1×H ′
2)(F )-orbits inG′(F )

and (H(F )\G(F )/H(F ))rs the set of regular semisimple (H×H)(F )-orbits inG(F ).
We need to vary the pair W ⊂ V of Hermitian spaces of dimension n and n + 1
modulo the equivalence relation: (W,V ) is equivalent to (W ′, V ′) if there is a con-
stant κ ∈ F× such that κW � W ′ and κV � V ′ (here κW means that we multiply
the Hermitian form by the constant κ). Without loss of generality, we may and will
assume that V is an orthogonal sum of W and a one-dimensional Hermitian space
Ee with a norm one vector,

V = W ⊕ Ee, 〈e, e〉 = 1.(4.5)
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In particular, V is determined by W so that we only need to vary the Hermitian
space W .7 To indicate the dependence on the Hermitian spaces W , we will write
GW for G and HW for H. Then there is a natural bijection [50, Lemma 2.3]

(H1(F )\G′(F )/H2(F ))rs �
∐
W

(HW (F )\GW (F )/HW (F ))rs,(4.6)

where on the right hand side the disjoint union runs over all Hermitian space W
of dimension n. Moreover, the same holds if we replace F by Fv for every place v
of F . When v is non-Archimedean, there are precisely two isomorphism classes of
Hermitian spaces Wv.

In [51, §2.4] we defined an explicit transfer factor {Ωv}v on the regular semisimple
locus of G′(Fv) for any place v. It satisfies the following properties:

• If γ ∈ G′(F ) is regular semisimple, then we have a product formula∏
v Ωv(γ) = 1.

• For any hi ∈ H ′
i(Fv) and γ ∈ G′(Fv), we have Ω(h1γh2) = η(h2)Ωv(γ).

The construction is as follows. It depends on an auxiliary character η′,

η′ : E×\A×
E → C×(4.7)

(not necessarily quadratic) such that its restriction η′|A× = η. Let Sn+1 be the
subvariety of ResE/FGLn+1 defined by the equation ss̄ = 1. By Hilbert Satz-90,
we have an isomorphism of two affine varieties

ResE/FGLn+1/GLn+1,F � Sn+1,

induced by the following morphism ν between F varieties,

ν : ResE/FGLn+1 → Sn+1(4.8)

g �→ gḡ−1,(4.9)

and in the level of F -points,

GLn+1(E)/GLn+1(F ) � Sn+1(F ).(4.10)

Write γ = (γ1, γ2) ∈ G′(Fv) and s = ν(γ−1
1 γ2). We define for a regular semisimple

s ∈ Sn+1(Fv)

Ωv(s) := η′v(det(s)
−[(n+1)/2] det(e, es, . . . , esn)).(4.11)

Here e = en+1 = (0, . . . , 0, 1) and (e, es, . . . , esn) ∈ Mn+1 is the matrix whose ith
row is esi−1. If n is odd, we define

Ωv(γ) := η′v(det(γ
−1
1 γ2))Ωv(s),(4.12)

and if n is even, we simply define

Ωv(γ) := Ωv(s).(4.13)

For a place v of F , we say that the function f ′ ∈ C∞
c (G′(Fv)) and the tu-

ple (fW )W , fW ∈ C∞
c (GW (Fv)), indexed by the set of all equivalence classes of

Hermitian spaces W over Ev = E ⊗ Fv, are smooth transfers of each other or
match if

Ωv(γ)O(γ, f ′) = O(δ, fW ),(4.14)

whenever a regular semisimple γ ∈ G′(Fv) matches δ ∈ GW (Fv) via (4.6). One of
the main local results in [51] is the existence of a smooth transfer at

7In terms of [7, §2], we only consider Hermitian pairs (W,V ) that are relevant to each other.
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non-Archimedean nonsplit places (cf. [51, Theorem 2.6]) and arbitrary split places
(cf. [51, Prop. 2.5]).

In this paper, we usually need to consider a fixed W , and we say that f ′ and
fW ∈ C ∞

c (GW (Fv)) match if there exist some fW ′ for each equivalence class W ′ �=
W such that f ′ matches the completed tuple fW , fW ′ .

Moreover, the fundamental lemma of Jacquet-Rallis predicts a specific case of
matching functions.

Theorem 4.1 ([45]). Assume that the quadratic extension Ev/Fv is unramified.
Denote by {Wv,W

′
v} the two isomorphism classes of Hermitian spaces of dimen-

sion n where Wv contains a self-dual (with respect to the Hermitian form) OEv

lattice. Set8

fWv
=

1

vol(HWv
(Ov))2

1GWv (Ov), fW ′
v
= 0, f ′

v =
1

vol(H ′
1(Ov))vol(H ′

2(Ov))
1G′(Ov).

(4.15)

Then there is a constant c(n) depending only on n such that, when the characteristic
of the residue field of Fv is larger than c(n), the function f ′

v matches the pair
(fWv

, fW ′
v
).

We need some simplification of orbital integrals [51, §2.1]. Identify H ′
1\G′ with

ResE/FGLn+1. Now we write F for Fv for a fixed place v. We may integrate f ′

over H ′
1(F ) to get a function on ResE/FGLn+1(F ),

f̃ ′(g) :=

∫
H′

1(F )

f ′(h1(1, g)) dh1, g ∈ ResE/FGLn+1(F ).(4.16)

Using the fiber integral of ν [cf. (2.3) and (4.10)] we define˜̃
f ′(s) :=

∫
Hn+1(F )

f̃ ′(gh) dh, ν(g) = s,(4.17)

if n is even, and ˜̃
f ′(s) :=

∫
Hn+1(F )

f̃ ′(gh)η′(gh) dh, ν(g) = s,(4.18)

when n is odd (then this depends on the auxiliary character η′). Then
˜̃
f ′ ∈

C∞
c (Sn+1(F )) and all functions in C∞

c (Sn+1(F )) arise in this way.
Now it is easy to see that for γ = (γ1, γ2)

O(γ, f ′) = η′(det(γ−1
1 γ2))

∫
Hn(F )

˜̃
f ′(h−1sh)η(h) dh, s = ν(γ−1

1 γ2),(4.19)

if n is odd, and

O(γ, f ′) =

∫
Hn(F )

˜̃
f ′

v(h
−1sh)η(h) dh, s = ν(γ−1

1 γ2),(4.20)

if n is even. Up to a sign, the integral on the right hand side depends only on the
orbit of s under the conjugation by Hn(F ). Therefore, we define the orbital integral
associated to a regular semisimple element s ∈ Sn+1(F ),

O(s,
˜̃
f ′) :=

∫
Hn(F )

˜̃
f ′(h−1sh)η(h) dh,

˜̃
f ′ ∈ C ∞

c (Sn+1(F )).(4.21)

8Note that the measures in the fundamental lemma proved in [45] are different from ours.
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Then we always have, for regular semisimple γ = (γ1, γ2) ∈ G′(Fv) [cf. (4.11)],

Ω(γ)O(γ, f ′) = Ω(s)O(s,
˜̃
f ′), s = ν(γ−1

1 γ2).(4.22)

4.2. A trace formula identity. We are led to a comparison of the two RTFs and
the two spherical characters IΠ and Jπ when Π = πE is the base change of π.

Conjecture 4.2. Let π be an irreducible cuspidal automorphic representation on
G(A) that admits the invariant linear functional,

HomH(A)(π,C) �= 0.

Let πE be the base change of π and assume that πE is cuspidal. Then, for every
f ∈ C∞

c (G(A)) and a smooth transfer f ′ ∈ C∞
c (G′(A)) of f , we have

2−2L(1, η)−2IπE
(f ′) = Jπ(f).

Remark 9. Note that we do not need to assume that π is tempered.

Theorem 4.3. Assume the following:

(1) At a split place v1, πv1 is supercuspidal.
(2) The test functions f and f ′ are nice and f ′ is a smooth transfer of f .

Then Conjecture 4.2 holds for such π and the test functions f, f ′.

Proof. We would like to apply the result from [51]. But we need to compare the
difference on the normalization of the Petersson inner product in the unitary group
case (caused by the presence of the center). There implicitly we use a different
Petersson inner product

〈φ, φ′〉′ =
∫
Z(A)G(F )\G(A)

φ(g)φ′(g) dg = vol(Z(F )\Z(A))−1〈φ, φ′〉.

Note that the center Z of G is isomorphic to U(1) × U(1). Hence the volume for
our choice of measure is [cf. (2.6)]

vol(Z(F )\Z(A)) = (2L(1, η))2.

Now taking into account this correction, we apply the trace formula identity [51,
Prop. 2.11]: if a nice function f ′ matches a tuple (fW ) indexed by equivalence
classes of W , we have

IπE
(f ′) = (2L(1, η))2

∑
W

∑
πW

JπW
(fW ),

where the sum is over all equivalence classes of W and all cuspidal automorphic
representations πW of GW (A) that are nearly equivalent to π and at v1 all πW,v1 are
isomorphic to πv1 . We denote by (W0, V0) the Hermitian spaces we started with,
πW0

= π, and by fW0
= f the function in the assumption of the theorem.

By our running hypothesis RH(I), we have

(1) the multiplicity of each cuspidal πW in L2([GW ]) is one. Namely, for a fixed
W , all πW occurring in the sum are nonisomorphic.

(2) Note that for all W , all πW occurring in the sum are in the same nearly
equivalent class and πW,v1 are supercuspidal (so πE is cuspidal and partic-
ularly πE,v is generic for every v). Hence for every v, the πW,v’s are in the
same Vogan L-packet, and this L-packet is generic.
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Now by our running hypothesis RH(II), there exists at most one πW and W in
the sum such that HomHW (A)(πW ,C) �= 0. By our assumption HomH(A)(π,C) �= 0.
Hence the sum reduces to one term contributed by the π we started with,

IπE
(f ′) = (2L(1, η))2Jπ(f). �

Remark 10. If πE is not cuspidal, then we may reformulate the conjecture at least
for tempered representation π. We also need to regularize the definition of IπE

in the above equality, and the constant 22 should be replaced by |Sπ|. Then the
analogous conjecture should ultimately follow from the full spectral decomposition
of the Jacquet-Rallis relative trace formulae.

4.3. Reduction to a local question. Our main ingredient is an identity between
the two local distributions IΠv

[cf. (3.31)] and Jπv
[cf. (1.8)]. Note that the

distribution Jπv
does not depend on the choice of the inner product on πv. Denote

dn =
(
n
3

)
, which satisfies

τdn = δn−1(εn−1) = det(Ad(εn−1) : Nn−1(E)).(4.23)

We have a local conjecture.

Conjecture 4.4. Let πv = πn,v ⊗ πn+1,v be an irreducible tempered unitary repre-
sentation of G(Fv) with αv �= 0. Assume that the base change Πv = Πn,v⊗Πn+1,v of
πv is generic unitary (so that IΠv

is well-defined). If the functions fv ∈ C ∞
c (G(Fv))

and f ′
v ∈ C ∞

c (G′(Fv)) match, then we have

IΠv
(f ′

v) = κvL(1, ηv)
−1Jπv

(fv),(4.24)

where the constant κv is given by

κv = κv(η
′, τ, n, ψ)

= |τ |(dn+dn+1)/2
E,v (ε(1/2, ηv, ψv)/η

′(τ ))n(n+1)/2ηv(disc(W ))ωΠn,v
(τ ).

Here ωΠn,v
is the central character of Πn,v, and disc(W ) ∈ F×/NE× is the dis-

criminant of the Hermitian space W , IΠv
(Jπv

, resp.) is defined by ( 3.32) (( 1.9),
resp.).

Proposition 4.5. Let π be a tempered cuspidal automorphic representation of G(A)
with cuspidal base change Π = πE. Assume that there exists a test function f = ⊗fv
and a smooth transfer f ′ = ⊗f ′

v such that for every place v

J�
πv
(fv) �= 0.

Assume that

• Conjecture 4.2 holds for π, f, f ′.
• For every v, Conjecture 4.4 holds for πv, fv, f

′
v.

Then Conjecture 1.6 and 1.1 holds for π.

Proof. By Conjecture 4.2 and Prop. 3.6 we have

Jπ(f) = 2−2L(1, η)−2IΠ(f
′) = 2−2 L(1/2, πE)

L(1, π, Ad)

∏
v

I�Πv
(f ′

v).

Conjecture 4.4 is equivalent to the identity between the normalized distributions

I�Πv
(f ′

v) = κvL(1, ηv)
−1Δn+1,vJ

�
πv
(fv).
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Since ∏
v

ε

(
1

2
, ηv, ψv

)
= ε

(
1

2
, η

)
= 1,

we have ∏
v

κv = 1.

Note that the product
∏

v L(1, ηv)
−1Δn+1,v converges absolutely to L(1, η)−1Δn+1.

We thus obtain

Jπ(f) = 2−2L(1, η)−1Δn+1
L(1/2, πE)

L(1, π, Ad)

∏
v

J�
πv
(fv).

Note that the global measure on H and G in the Introduction are normalized by
L(1, η)−1 and L(1, η)−2, respectively. The correction of measures yields Conjec-
ture 1.6 for the choice of test function f . Since J�

πv
(fv) �= 0 for all v (and equal

to one for almost all v), it follows that Conjecture 1.6 holds for all test func-
tions f ∈ C ∞

c (G(A)). We have shown in Lemma 1.7 that Conjecture 1.6 implies
Conjecture 1.1. �

We have the following evidence of Conjecture 4.4.

Theorem 4.6. Let v be a place of F and let πv be a tempered representation as in
Conjecture 4.4.

(1) Conjecture 4.4 holds if the place v is split in E/F .
(2) If v is a non-Archimedean place nonsplit in E/F , then under any one of

the following conditions, there exists fv and a smooth transfer f ′
v, such that

the equality ( 4.24) holds and Jπv
(fv) �= 0:

(i) The representation πv is unramified and the residue characteristic p ≥
c(n).

(ii) The group H(Fv) is compact.
(iii) The representation πv is supercuspidal.

Below we first prove Theorem 4.6 when πv is unramified [case (1)] or v is split in
Corollary 4.11 [case (2)-(i)]. We postpone the proof of the cases (2)-(ii) and (2)-(iii)
to the last part of §9.

We now give the proof of the first part of Theorem 1.2 assuming Theorem 4.6.

Proof of Theorem 1.2: Case (1). We may assume that HomH(Fv)(πv,C) �= 0 for all
v (otherwise the formula holds trivially). This implies that the linear form α′

v does
not vanish for all v. We then construct nice test functions f = ⊗fv on G(A) and
f ′ = ⊗f ′

v as follows:

• at each inert v with residue characteristic p ≥ c(n), fv, f
′
v are given by the

fundamental lemma (Theorem 4.1).
• at each v ∈ Σ, we choose fv, f

′
v as in (2)-(ii) or (2)-(iii) of Theorem 4.6.

• at almost every split place, we choose the unit element in the spherical
Hecke algebra.

• at the remaining finitely many split places including v0 and the Archimedean
ones, we choose suitable functions so that f, f ′ are nice and such that
Jπv

(fv) �= 0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

568 WEI ZHANG

Apply Theorem 4.3 to π and f, f ′ to obtain

2−2L(1, η)−2IπE
(f ′) = Jπ(f).

Now Theorem 1.2 case (1) follows from Prop. 4.5. �

4.4. Proof of Theorem 4.6: The Case of πv Unramified and p ≥ c(n).
Then we may assume that

(1) The quadratic extension E/F is unramified at v.
(2) The number τ is a v-adic unit.
(3) The character ψ is unramified and hence so is ψE .

Indeed, it is easy to see how IΠv
depends on τ : only the local period βv involves

the choice of τ , and we see that |τ |−(dn+dn+1)/2
E,v η′(τ )n(n+1)/2IΠv

is independent of

the choice of τ . If we twist ψ by a ∈ F×
v , it amounts to change τ by aτ .

We need to utilize the fundamental lemma: by Theorem 4.1, we have a matching
pair,

fv =
1

vol(H(Ov))2
1G(Ov), f ′

v =
1

vol(H ′
1(Ov))vol(H ′

2(Ov))
1G′(Ov).

LetW0 ∈ W(Πv, ψE) be the unique spherical element normalized such thatW0(1) =
1. Then we have

Πv(f
′
v)W0 =

vol(G′(Ov))

vol(H ′
1(Ov))vol(H ′

2(Ov))
W0

and

IΠv
(f ′

v) =
λ(Πv(f

′
v)W0)β(W0)

ϑv(W0,W0)
=

vol(G′(Ov))

vol(H ′
1(Ov))vol(H ′

2(Ov))

λ(W0)β(W0)

ϑv(W0,W0)
.

Note that by (3.26)

λ(W0) = L(1/2,Πv) · vol(H ′
1(Ov))

and by (3.3) and (3.15)

β(W0)

ϑv(W0,W0)
= L(1, πv, Ad)−1 vol(H ′

2(Ov))

vol(Hn(OE,v))vol(Hn+1(OE,v))
.

We obtain

IΠv
(f ′

v) =
L(1/2,Πv)

L(1, πv, Ad)
· vol(G′(Ov))

vol(H ′
1(Ov))vol(H ′

2(Ov))
· vol(H ′

1(Ov))vol(H
′
2(Ov))

vol(Hn(OE,v))vol(Hn+1(OE,v))
.

In summary we have

IΠv
(f ′

v) =
L(1/2,Πv)

L(1, πv, Ad)
.(4.25)

In the unitary group case, we take φ0 ∈ πKv
v normalized by 〈φ0, φ0〉 = 1,

πv(fv)φ0 =
vol(G(Ov))

vol(H(Ov))2
φ0.

Therefore we have

Jπv
(fv) = αv(πv(fv)φ0, φ0) =

vol(G(Ov))

vol(H(Ov))2
αv(φ0, φ0).
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By the unramified computation in [21]

αv(φ0, φ0) = vol(H(Ov))Δn+1,v
L(1/2,Πv)

L(1, πv, Ad)
.

We thus obtain

Jπv
(fv) =

vol(G(Ov))

vol(H(Ov))
Δn+1,v

L(1/2,Πv)

L(1, πv, Ad)
.

Note that vol(G(Ov))
vol(H(Ov))

is equal to the volume of the hyperspecial compact open of

U(V )(Fv), which is equal to L(1, η)Δ−1
n+1,v. Therefore we obtain that

Jπ(f) = L(1, ηv)
L(1/2,Πv)

L(1, πv, Ad)
.(4.26)

By (4.25) and (4.26), we have

IΠv
(f ′

v) = L(1, ηv)
−1Jπv

(fv).(4.27)

This completes the proof of case (i) of Theorem 4.6.
Change of measures. From now on, all measures will be the unnormalized

[namely, without the convergence factor ζv(1), L(1, ηv) etc.] Tamagawa measures
with the natural invariant differential forms on the general linear groups, their
subgroups, and Lie algebras.

Lemma 4.7. When using the unnormalized measures, the identity in Conjec-
ture 4.4 becomes

IΠv
(f ′

v) = κvJπv
(fv),(4.28)

for matching functions fv and f ′
v (also under the unnormalized measures).

Proof. The old distribution IΠv
is the new one times

ζE,v(1)
2 ζE,v(1)ζF,v(1)

2

ζE,v(1)2
,

where the first term comes from the measure on G′ involving the definition of
Πv(f

′
v), and the fraction comes from the measures in λv, βv, and ϑv. Similarly, the

old distribution Jπv
is the new one times

L(1, ηv)
2 · L(1, ηv),

where the first term comes from the measure on G involving the definition of πv(fv),
and the second from the measure on H(Fv) in the definition of αv. Moreover,
the change of measures on H ′

1(Fv), H
′
2(Fv), and H(Fv) also changes the require-

ment of smooth matching: if fv and f ′
v match for the normalized measures, then

ζE,v(1)ζF,v(1)
2fv and L(1, ηv)

2f ′
v match for the unnormalized measures. Therefore,

when using the unnormalized measures, the identity in Conjecture 4.4 becomes the
asserted one (4.28). �

4.5. Proof of Theorem 4.6: The Case of a Split Place v. Assume that F =
Fv is split. Let π = πn ⊗ πn+1 be an irreducible unitary generic representation of
G(F ). We may identify Hn(E) with GLn(F )×GLn(F ) and identify U(W )(Fv) with
a subgroup consisting of elements of the form (g,t g−1), g ∈ GLn(F ) and tg is the
transpose of g. Let p1, p2 be the two isomorphisms between U(W )(F ) with GLn(F )
induced by the two projections from GLn(F ) × GLn(F ) to GLn(F ). If πn is an
irreducible generic representation of U(W )(Fv), the representation Πn = BC(πn)
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can be identified with p∗1πv ⊗ p∗2πv of Hn(E) where p∗i πv is a representation of
GLn(F ) obtained by the isomorphism pi. For simplicity, we will write Πn = πn⊗π̃n,
and similarly for πn+1,Πn+1. We fix a Whittaker model W(πi), i = n, n+ 1 using
the additive character ψ at v. We define an auxiliary element α′ ∈ Hom(π⊗π̃,C) by

α′(W,W ′) = λ(W )λ(W ′), W,W ′ ∈ W(π).(4.29)

Again we have identified π̃ with π. Here we require that the invariant inner product
on W(π) is the one defined by ϑ [cf. (3.2)]. Then we define a variant of the local
spherical character,

J ′
π(f) =

∑
W

α′(π(f)W,W ), f ∈ C∞
c (G(F )),(4.30)

where the sum of W runs over an orthonormal basis of W(π). Similarly we have a

normalized one J
′�
π (f).

Lemma 4.8. Let f ′ = f1 ⊗ f2 ∈ C ∞
c (G′(F )) and f = f1 ∗ f∗

2 ∈ C ∞
c (G(F ))

[f∗
2 (x) = f2(x

−1)] matching f ′. Then we have

IΠv
(f ′) = κvJ

′
π(f).(4.31)

Proof. We identify Πn with πn ⊗ π̃n = πn ⊗ πn. Then we have for W,W ′ ∈ W(πn)

βn(W ⊗W ′) =

∫
Nn−1(F )\Hn−1(F )

W

(
εn−1h

1

)
W ′

(
εn−1h

1

)
dh.

This yields

βn(W ⊗W ′) = |τ |dn/2ϑn(W,W ′),

and similarly for βn+1. Then the desired equality follows by the definition of IΠ
in terms of the linear functional λ, β, and ϑ (note that δ = τ2 is indeed a square
in F ). �

Now it remains to identify the distribution J ′
π with Jπ, or equivalently, to prove

that α′ = α. The key ingredient is from [33]; in the non-Archimedean case, we
could also use [41, §3.5].

Note that we may write α in terms of the Whittaker model W(π),

α(W,W ′) =

∫
Hn(F )

〈π(h)W,W ′〉 dh, 〈W,W ′〉 = ϑ(W,W ′).

We temporarily denote N− = Nn−(F ) and N = Nn(F ). Let N◦ = [N,N ] be the
commutator subgroup of N , Nab = N◦\N the maximal Abelian quotient of N , and

N̂ab the group of characters of Nab. The diagonal subgroup An of Hn acts on N

(by conjugation), on Nab, and hence on N̂ab. Moreover, An acts transitively on the

subset N̂ab
reg of N̂ab consisting of regular characters (i.e., with minimal stabilizer

under the action of An). The character ψ on N is regular, and we denote by ψt the
character of N (equivalently, of Nab) defined by

ψt(u) = ψ(tut−1).

For Wn,W
′
n ∈ W(πn, ψ), we denote by ΦWn,W ′

n
the matrix coefficient

ΦWn,W ′
n
(g) = 〈πn(g)Wn,W

′
n〉.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 571

Lemma 4.9. Assume that πn is tempered.

(i) The integral

FWn,W ′
n
(u) :=

∫
N◦

ΦWn,W ′
n
(vu)dv(4.32)

is absolutely convergent and defines a square integrable function FWn,W ′
n
∈

L2(Nab). Its Fourier transform F̂Wn,W ′
n
∈ L2(N̂ab) is smooth on the open

subset N̂ab
reg of N̂ab.

(ii) For all t ∈ An, and Wn,W
′
n ∈ W(πn, ψ), we have

F̂Wn,W ′
n
(ψt) = |δn(t)|−1Wn(t)W ′

n(t).(4.33)

Here the left hand side denotes the value of the Fourier transform at the

character ψt ∈ N̂ab
reg.

Proof. The first part of (i) follows from [33, Corollary 2.8]. The second part of
(i) follows from [33, Lemma 3.2] for a special class of Wn and W ′

n. The general
case follows from this special case together with the Dixmier-Malliavin theorem (cf.
[33, Remark 3.3]). The assertion in (ii) for t = 1 is [33, Prop. 3.4]. The general
case of t ∈ An follows easily from this. �

Proposition 4.10. Assume that π = πn ⊗ πn+1 is tempered. Then we have, for
all W,W ′ ∈ W(πn, ψ)⊗W(πn+1, ψ),

α(W,W ′) = λ(W )λ(W ′).

Namely, α = α′ as nonzero elements in Hom(π ⊗ π̃,C).

Proof. The right hand side does not vanish by the nonvanishing of the local Rankin-
Selberg integral [27], [25]. By the multiplicity one theorem for generic representa-
tions, dimHomHn(F )(π,C) = 1, the left hand side is a constant multiple of the right
hand side for all W,W ′. Hence it suffices to prove the identity for some choice of
W,W ′ so that λ(W )λ(W ′) �= 0.

Let W = Wn ⊗ Wn+1,W
′ = W ′

n ⊗ W ′
n+1. We choose Wn+1,W

′
n+1 as follows.

Let ϕ be in C ∞
c (B−). Then there is a unique element in W(πn+1, ψ), denoted by

Wϕ, such that the restriction Wϕ|Hn
is supported in NB− and

Wϕ

(
ub

1

)
= ψ(u)ϕ(b), u ∈ N, b ∈ B−.

Similarly we choose ϕ′ ∈ C ∞
c (B−) and define Wϕ′ ∈ W(πn+1, ψ).

We may and will consider the action of C ∞
c (B−) on W(πn, ψ) by

πn(ϕ)W (g) =

∫
B−

W (gb)ϕ(b)db,(4.34)

where db is the right invariant measure on B− normalized so that the measure on
Hn decomposes as dg = du db where g = ub, u ∈ N, b ∈ B−.

Let c ∈ R+ and consider the subsetNc ofN consisting of elements u = (uij)1≤i,j≤n

such that

|ui,i+1| ≤ c, 1 ≤ i ≤ n− 1.
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We denote by Nab
c the image of Nc in the Abelian quotient Nab. Let us consider

the integral parameterized by t ∈ An,

Ic(W,W ′;ψt) :=

∫
B−

∫
B−

∫
Nc

ΦWn,W ′
n
(b′−1ub)ψt(u)Wϕ(b)Wϕ′(b′) du db db′.

(4.35)

This is the same as

Ic(W,W ′;ψt) =

∫
B−

∫
B−

∫
Nc

Φπn(b)Wn,πn(b′)W ′
n
(u)ψt(u)ϕ(b)ϕ′(b′) du db db′.

We claim that the triple integral (4.35) converges absolutely. Since supp(ϕ) and
supp(ϕ′) are compact, by [3, Theorem 2] and [37, Theorem 1.2], there exists a
constant C such that, for all b ∈ supp(ϕ), b′ ∈ supp(ϕ′), the matrix coefficients are
bounded in terms of the Harish-Chandra spherical function Ξ (cf. [37])

|Φπn(b)Wn,πn(b′)W ′
n
(g)| ≤ C · Ξ(g), g ∈ Hn.

Hence the triple integral Ic is bounded above by

C

∫
B−

|ϕ(b)| db
∫
B−

|ϕ′(b′)| db′
∫
Nc

Ξ(u) du.

It suffices to prove that
∫
Nc

Ξ(u) du is finite. We may write it as∫
Nc

Ξ(u) du =

∫
Nab

c

(∫
N◦

Ξ(vu) dv

)
du.(4.36)

Since Ξ is also a matrix coefficient of a tempered representation, the function u ∈
Nab �→

∫
N◦ Ξ(vu) dv is in L2(Nab) by Lemma 4.9 (or rather directly, [33, Lemma

2.7]). Now the integral (4.36) is finite since Nab
c is compact. This proves the claim.

For ϕ ∈ C ∞
c (B−) and t ∈ An, we define ϕt ∈ C∞

c (B−) by ϕt(b) = ϕ(t−1b). For
simplicity we denote Wt = Wn ⊗Wϕt

and W ′
t = W ′

n ⊗Wϕ′
t
. Then we have

πn(ϕ)Wn(t) =

∫
B−

Wn(tb)ϕ(b)db = |δn(t)|
∫
B−

Wn(b)ϕ(t
−1b)db = |δn(t)|λ(Wt).

(4.37)

We now study the integral Ic as c → ∞. We first substitute u �→ t−1ut in (4.35),

Ic(W,W ′;ψt)

= |δn(t)|−1

∫
B−

∫
B−

∫
Nc,t

ΦWn,W ′
n
((tb′)−1utb)ψ(u)Wϕ(b)Wϕ′(b′) du db db′,

where Nc,t := tNct
−1. Substitute b �→ t−1b and b′ �→ t−1b′,

Ic(W,W ′;ψt)

= |δn(t)|
∫
B−

∫
B−

∫
Nc,t

ΦWn,W ′
n
(b′−1ub)ψ(u)Wϕ(t

−1b)Wϕ′(t−1b′) du db db′

= |δn(t)|
∫
B−

∫
B−

∫
Nc,t

ΦWn,W ′
n
(b′−1ub)ψ(u)Wϕt

(b)Wϕ′
t
(b′) du db db′.

Since the triple integral is absolutely convergent and ψ(u)Wϕt
(b) = Wϕt

(ub), we
could rewrite it by Fubini’s theorem as

Ic(W,W ′;ψt) = |δn(t)|
∫
B−

∫
Nc,tB−

ΦWn,W ′
n
(b′−1g)Wϕt

(g)Wϕ′
t
(b′) dg db′.
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Now we make a substitution g �→ b′g and then interchange the order of integration,

Ic(W,W ′;ψt) = |δn(t)|
∫
B−

∫
b′−1Nc,tB−

ΦWn,W ′
n
(g)Wϕt

(b′g)Wϕ′
t
(b′) dg db′

= |δn(t)|
∫
B−Nc,tB−

ΦWn,W ′
n
(g)

(∫
B−

Wϕt
(b′g)Wϕ′

t
(b′) db′

)
dg

= |δn(t)|
∫
B−Nc,tB−

ΦWn,W ′
n
(g)ΦWϕt ,Wϕ′

t
(g) dg.

Since the integral

α(Wt,W
′
t) =

∫
Hn(F )

ΦWn,W ′
n
(g)ΦWϕt ,Wϕ′

t
(g) dg

converges absolutely and Hn \
⋃

c→∞ B−Nc,tB− is of measure zero, we conclude
that for all t ∈ An, the limit limc→∞ Ic(W,W ′;ψt) exists and is given by

lim
c→∞

Ic(W,W ′;ψt) = |δn(t)|α(Wt,W
′
t).(4.38)

There is another way to evaluate the limit. We first interchange the order of
integration in (4.35) and rewrite it as

Ic(W,W ′;ψt) =

∫
Nc

Φπn(ϕ)Wn,πn(ϕ′)W ′
n
(u)ψt(u) du.(4.39)

This integral is the same as [cf. (4.32)]

Ic(W,W ′;ψt) =

∫
Nab

c

Fπn(ϕ)Wn,πn(ϕ′)W ′
n
(u)ψt(u) du.(4.40)

Note that Fπn(ϕ)Wn,πn(ϕ′)W ′
n
∈ L2(Nab) by Lemma 4.9 (i). We now view Ic(W,W ′; ·)

as a function of ψt ∈ N̂ab. It follows that limc→∞ Ic(W,W ′; ·) converges in L2(N̂ab)

to F̂πn(ϕ)Wn,πn(ϕ′)W ′
n
. But we have proved that limc→∞ Ic(W,W ′; ·) converges

pointwise (for regular characters) almost everywhere. Therefore, for almost all
(i.e., except a measure zero set) t ∈ An, the pointwise limit is the same as the
Fourier transform (cf. [13, Theorem 1.1.11]),

lim
c→∞

Ic(W,W ′;ψt) = F̂πn(ϕ)Wn,πn(ϕ′)W ′
n
(ψt).

By (ii) of Lemma 4.9, the right hand side is equal to

|δ(t)|−1πn(ϕ)Wn(t)πn(ϕ′)W ′
n(t) = |δn(t)|λ(Wt)λ(W ′

t),(4.41)

where the equality follows from (4.37). Therefore we have for almost all t ∈ An

lim
c→∞

Ic(W,W ′;ψt) = |δn(t)|λ(Wt)λ(W ′
t).(4.42)

Comparing (4.42) with (4.38), we have for almost all t ∈ An

α(Wt,W
′
t) = λ(Wt)λ(W ′

t).(4.43)

In particular, in any small open neighborhood of 1 in An, there exists t so that the
equality (4.43) holds.

Finally, it remains to verify that for some choice of Wn,W
′
n and ϕ, ϕ′, the local

period λ(Wt)λ(W ′
t) does not vanish for t in a small open neighborhood of 1 in An.
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We choose Wn,W
′
n such that Wn(1) �= 0,W ′

n(1) �= 0. Since Wn|B− is a continuous
function, there exists ϕ ∈ C ∞

c (B−) so that∫
B−

Wn(b)ϕ(b)db �= 0.

It is easy to see that t �→
∫
B−

Wn(b)ϕ(tb)db is continuous. Hence for t in a small

open neighborhood of 1 in An, the integral
∫
B−

Wn(b)ϕ(tb)db �= 0, or equivalently,

by (4.37), λ(Wt) �= 0 for Wt = Wn ⊗Wϕt
. Similarly we may achieve λ(W ′

t) �= 0 for
t in a small open neighborhood of 1. This completes the proof. �
Corollary 4.11. The case (1) (i.e., for a split v) of Theorem 4.6 holds.

Proof. This follows from Lemma 4.8 and Prop. 4.10. �

5. The totally definite case

We now prove part (2) of Theorem 1.2, assuming Theorem 4.6. We hence assume
that G(F∞) is compact. Equivalently, F is a totally real field, E is a CM extension
and the Hermitian spaces W,V are positive definite at every Archimedean place
v of F . As in the proof of part (1) of Theorem 1.2, we may assume that the
local invariant form αv �= 0 for all v. We may further assume that the global
period P �= 0 so that the global spherical character Jπ does not vanish (otherwise
L (1/2, π) = 0 and the result holds trivially). We then have

Jπ(f) = Cπ

∏
v

J�
πv
(fv)(5.1)

for a nonzero constant Cπ.
Let us recall that in the disjoint union of (4.6) we take all isomorphism classes

of n-dimensional Hermitian spaces Wv. When Fv � R is non-Archimedean and
Ev � C, the isomorphism classes of such Wv are indexed by the signature (p, q)
of Wv. We denote them by W(p,q),v. Then the two definite (positive or negative)
spaces correspond to (p, q) = (n, 0), (0, n). Only when Wv = W(n,0),v is the positive
definite one, is the space Vv also positive definite [by (4.5)], or equivalently the
group GWv

(Fv) is compact. Let G′(Fv)rs,(n,0) be the open subset of the regular
semisimple locus G′(Fv)rs corresponding to the positive definite one GW(n,0),v

(Fv)rs
in the disjoint union (4.6). In our case, our G(Fv) is isomorphic to GW(n,0),v

(Fv)

for all v|∞.
For every v|∞, we now choose a test function fv supported in the regular

semisimple locus GW(n,0),v
(Fv)rs. Then there exists a smooth transfer f ′

v supported

in G′(Fv)rs,(n,0). Since the representation πv must be finite dimensional and we are

assuming that αv �= 0, our choice of fv can be made so that J�
πv
(fv) �= 0.

For non-Archimedean places v, we choose fv and its smooth transfer f ′
v as in

the proof of case (1). Particularly, J�
πv
(fv) �= 0 for all non-Archimedean v. Then

for such test functions f = ⊗fv and f ′ = ⊗f ′
v, we again have, by Theorem 4.3,

Jπ(f) = 2−2L(1, η)−2IπE
(f ′).

By Prop. 3.6, the right hand side is equal to

c · L (1/2, π)
∏
v

I�πE,v
(f ′

v),

for some constant c independent of π. Now fix an arbitrary v0|∞, and we further
assume that J�

πv
(fv) �= 0 for v �= v0. By comparison with (5.1), there exists a
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constant bπv0
�= 0, such that for all fv0 with regular semisimple support and its

smooth transfer f ′
v0 supported in G′(Fv0)rs,(n,0), we have

IΠv0
(f ′

v0) = bπv0
Jπv0

(fv0).

Now we do not know how to evaluate bπv
for v|∞. Nevertheless, the same

argument as the proof of Prop. 4.5 shows that

|P(φ)|2
〈φ, φ〉Pet

= cπ∞2−2L

(
1

2
, π

)∏
v

α�
v(φv, φv)

〈φv, φv〉v
,

where the constant cπ∞ =
∏

v|∞ cπv
and

cπv
= bπv

κ−1
v L(1, ηv),

where κv is the constant in Conjecture 4.4.

Part 2. Local theory

In the rest of the paper, we prove the remaining parts of Theorem 4.6.

6. Harmonic analysis on Lie algebra

We establish some basic results to prove the identity between local characters,
Theorem 4.6 for a nonsplit non-Archimedean place v.

6.1. Relative regular nilpotent elements in Mn+1. Let F be any field. The
group Hn, viewed as a subgroup of Hn+1, acts on Mn+1 by conjugation. Write

X =

(
A u
v w

)
∈ Mn+1.

The ring of invariants for this action is freely generated by either

(−1)i−1tr ∧i X, en+1X
je∗n+1, 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n,(6.1)

or

(−1)i−1tr ∧i A, vAju, w, 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1.(6.2)

We define a matrix

δ+(X) := (An−1u,An−2u, . . . , u) ∈ Mn(F )(6.3)

and its determinant

Δ+(X) = det(δ+(X)).(6.4)

Similarly, we define

δ−(X) := (v, vA, . . . , vAn−1) ∈ Mn(F ), Δ−(X) = det(δ−(X)),

and

Δ := Δ+Δ−.

Clearly we have for X ∈ Mn+1(F ) and h ∈ GLn(F )

δ+(hXh−1) = hδ+(X), δ−(hXh−1) = δ−(X)h−1.(6.5)
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The Hn-nilpotent cone N is defined to be the zeros of all of the above invariant
functions on Mn+1. An element in Mn+1 is called Hn-regular (or regular if no
confusion arises) if its stabilizer is trivial. Denote

ξn+1,+ =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 · · · 0 1
0 · · · 0 0

⎞⎟⎟⎠ ∈ Mn+1(F ),(6.6)

and ξn+1,− its transpose. If no confusion arises, we simply denote them by ξ±.
Clearly ξ± are regular nilpotent.

Lemma 6.1. Let X ∈ N . The following statements are equivalent:

(1) X is regular nilpotent.
(2) ξ is Hn-equivalent to ξ+ or ξ−.
(3) Δ+(X) �= 0 or Δ−(X) �= 0.

In particular, the orbit of ξ+ is open in N .

Proof. Let X =

(
A u
v 0

)
be an Hn-nilpotent element. We then have An = 0 and

vAiu = 0, for i = 0, 1, . . . , n − 1. It follows that vAiu = 0 for all i ∈ Z≥0.
Let r be the dimension of subspace of the (n × 1) column vectors spanned by
Aiu, i = 0, 1, . . . , n− 1, and similarly r′ the dimension of the subspace spanned by
vAi, i = 0, 1, . . . , n− 1. Clearly, we have an inequality r + r′ ≤ n.

1 ⇒ 2. It suffices to show that, if X is regular unipotent, then either r or r′ is
equal to n. Indeed, for example, if r = n, then r′ = 0 (i.e., v = 0) and the column
vectors Aiu, i = 0, 1, . . . , n − 1 form a basis of the n-dimensional space of column
vectors. Then {e∗, Xe∗, . . . , Xn−1e∗} form a basis of the (n + 1)-dimensional
column vectors [recall that e∗ is the transpose of e = (0, . . . , 0, 1) ∈ M1,n+1(F )]. In
terms of this new basis we see that X becomes ξ+.

Now suppose that r, r′ < n. Clearly if r = r′ = 0, X must have a positive
dimensional stabilizer, hence is nonregular. We now assume that 0 < r < n. Let L
be the subspace spanned by Aiu, i = 0, 1, . . . , r− 1. It is easy to see that this is the
same as the space spanned by Aiu, i = 0, 1, . . . , n− 1. We write the column vector
spaces Fn = L ⊕ L′ for a subspace L′. Then in terms of the basis of L given by
Aiu, i = 0, 1, . . . , r − 1, we may write u as (0, 0, . . . , 1, 0, 0, . . . , 0)t where only the
rth entry is nonzero and may be assumed to be equal to one, and

A =

(
Y B
0 Z

)
, Y =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 · · · 0 1
0 · · · 0 0

⎞⎟⎟⎠ ∈ Mr(F ).

Then Aiu = (0, 0, . . . , 1, 0, 0, . . . , 0)t where only the (r − i)th entry is one, i =
0, 1, . . . , r − 1. Hence the conditions vAiu = 0 (0 ≤ i ≤ n − 1) imply that v is of
the form (0, 0, . . . , 0, ∗, . . . , ∗) where the first r entries are all zero.

Now we consider

h =

(
1r Q
0 1n−r

)
∈ GLn(F ).

Clearly the matrix h−1Xh is an element of the same form with B replaced by
B + Y Q−QZ. Hence the stabilizer of X at least contains all h with Q satisfying
Y Q − QZ = 0. Define ϕ ∈ End(Mr,n−r(F )) by Q �→ Y Q − QZ. We claim that
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the dimension of the kernel Ker(ϕ) is positive. Clearly the dimension of Ker(ϕ)
depends only on the conjugacy class of Z in Mn−r(F ). Since A is nilpotent, so is
Z. We thus can assume that Z is a Jordan canonical form. The endomorphism ϕ
cannot be surjective since Mr,n−r(F ) �= 0 (0 < r < n) and every Y Q − QZ must
have zero as its lower left entry. This proves the claim, and hence the stabilizer of
such X cannot be trivial.

2 ⇒ 3. This is clear since we have δ+(hXh−1) = hδ+(X) and δ−(hXh−1) =
δ−(X)h−1 by (6.5).

3 ⇒ 1. Note that Δ+(X) �= 0 is equivalent to δ+(X) ∈ GLn(F ). The latter
property implies that the stabilizer (under the Hn action) of any X ∈ Mn+1,+ must
be trivial. Indeed, if hXh−1 = X, we have δ+(X) = δ+(hXh−1) = hδ+(X); hence
h = 1 and similarly for Δ−(X) �= 0. �
6.2. A regular section. Denote

Mn+1,+ := {X ∈ Mn+1|Δ+(X) �= 0}.
Note that every element in Mn+1,+ is regular (cf. the proof of “3 ⇒ 1” of
Lemma 6.1). We shall write X = An × An+1,9 the affine space of dimension
2n+1. Then the second set of generators (6.2) defines a morphism that is constant
on Hn orbits

π : Mn+1 −→ X = An × An+1,(
A u
v w

)
�→ (a, b),

where a = (a1, . . . , an), b = (b0, . . . , bn), ai = (−1)i−1tr ∧i A, b0 = w, and bi =
vAi−1u for 1 ≤ i ≤ n. We say that x ∈ X is regular semisimple if one element
(and hence all) in π−1(x) is Hn-regular semisimple.

Now we define a section of the morphism π : Mn+1 → X ,

σ : X −→ Mn+1

(a, b) �→

⎛⎜⎜⎜⎜⎝
a1 1 0 0 0
a2 0 1 0 0
· · · 0 0 1 0
an 0 0 0 1
bn · · · · · · b1 b0

⎞⎟⎟⎟⎟⎠ .

We note that ξ+ is precisely the image of 0 ∈ X under σ.

Mn+1

π

��
X = Mn+1//Hn

σ

��

Lemma 6.2. The morphism σ is a section of π, i.e.,

σ ◦ π = id.

The image of σ lies in Mn+1,+ (in particular, σ is a regular section, in the sense
that the image σ(a, b) is always Hn-regular).

9We use A in this section only to denote the affine line.
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Proof. It is easy to check that

det

⎛⎜⎜⎝T · 1n +

⎛⎜⎜⎝
a1 1 0 0
a2 0 1 0
· · · 0 0 1
an 0 0 0

⎞⎟⎟⎠
⎞⎟⎟⎠ = Tn + a1T

n−1 − a2T
n−2 + · · ·+ (−1)n−1an,

and the b invariants of σ(a, b) are (b0, b1, b2, . . . , bn). This shows that σ is a section
of π. To see that the image of σ lies in Mn+1,+, we note that for any (a, b) ∈ X
we have

δ+(σ(a, b)) = 1n.(6.7) �

Proposition 6.3. We have an Hn-equivariant morphism

ι : GLn × X → Mn+1,+

(h, (a, b)) �→ hσ(a, b)h−1,

where the group Hn acts on the left hand side by a left translation on the first factor,
and trivially on the second factor. Moreover, the morphism ι is an isomorphism
with its inverse given by (δ+, π|Mn+1,+

).

Proof. It suffices to prove that (δ+, π) ◦ ι = id and ι ◦ (δ+, π) = id. To show the
first identity we note that the invariants of hσ(a, b)h−1 [being the same as σ(a, b)]
are (a, b). Hence it is enough to show that δ+(ι(h, (a, b)) = h. This follows from
the fact that δ+(σ(a, b)) = 1n [cf. (6.7)] and δ+(hXh−1) = hδ+(X) by (6.5).

Now we show the second identity. Let X =

(
A u
v w

)
∈ Mn+1,+. Let (a, b) = π(X)

and h = δ+(X) = (An−1u,An−2u, . . . , u) ∈ Hn. Denote ι ◦ (δ+, π)(X) =

(
A′ u′

v′ w′

)
.

Clearly w = w′. By the first identity, the elements ι ◦ (δ+, π)(X) and X have the
same invariants. In particular,

det(T · 1n +A) = Tn +
n∑

i=1

(−1)i−1aiT
n−i,

and therefore

An =

n∑
i=1

aiA
n−i.

This implies that

Aδ+(X) = (Anu,An−1u, . . . , Au) = δ+(X)

⎛⎜⎜⎝
a1 1 0 0
a2 0 1 0
· · · 0 0 1
an 0 0 0

⎞⎟⎟⎠ .

Since δ+(X) = h is invertible, we obtain

A = h

⎛⎜⎜⎝
a1 1 0 0
a2 0 1 0
· · · 0 0 1
an 0 0 0

⎞⎟⎟⎠h−1 = A′.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 579

Obviously we have u = δ+(X)e∗n = he∗n = u′ [e∗n = (0, 0, . . . , 0, 1)t]. Finally since
bi = vAi−1u, (bn, bn−1, . . . , b1) = vδ+(X), we have

v = (bn, bn−1, . . . , b1)δ+(X)−1 = (bn, bn−1, . . . , b1)h
−1 = v′.

This completes the proof of the second identity. �

Similarly we define a variant σ′ : X = An × An+1 → Mn+1 by

σ′(a, b) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

an an−1 · · · a1 1
bn bn−1 · · · b1 b0

⎞⎟⎟⎟⎟⎟⎠ .(6.8)

To facilitate the exposition, we introduce the following.

Definition 6.4. Consider a morphism between two affine spaces:

φ : Am = SpecF [x1, . . . , xm] −→ Am = SpecF [y1, . . . , ym]

with induced morphism φ∗ : F [y1, . . . , ym] −→ F [x1, . . . , xm]. We say that φ is
triangular if we have, possibly after reordering the coordinates,

φ∗(yi) = ±xi + ϕi(x1, . . . , xi−1), 1 ≤ i ≤ m,

where ϕi(x1, . . . , xi−1) ∈ F [x1, . . . , xi−1] is a polynomial of x1, . . . , xi−1.

It is easy to see that if φ is triangular, then it is an isomorphism and its inverse
is triangular, too. Moreover, the Jacobian factor of a triangular morphism is equal
to ±1.

Corollary 6.5. The following morphism is an isomorphism:

ι′ : Hn × X → Mn+1,+

(h, (a, b)) �→ hσ′(a, b)h−1.

Moreover, the induced morphism π ◦ σ′ : X → X is triangular, and in particular
an isomorphism.

Proof. The proof of the first part follows the same line as the previous one: it

suffices to show that for an arbitrarily X =

(
A u
v w

)
∈ Mn+1,+, we may solve for (a, b)

and h uniquely in terms of the polynomials of the entries of X,

hσ′(a, b)h−1 = X.(6.9)

We proceed in three steps.

Step 1. For the a component of σ′(a, b), we have ai = (−1)i−1tr ∧i A.

Step 2. By (6.5), we have δ+(X) = hδ+(σ
′(a, b)). Note that the matrix δ+(σ

′(a, b))
lies in Nn,−, and it depends only on a (but not on b). Combined with Step 1, we
see that it can be expressed in terms of X,

h = δ+(X)δ+(σ
′(a, b))−1.(6.10)

Step 3. In (6.9), the last row of σ′(a, b), i.e., (bn, . . . , b1, b0), is equal to (vh, w).
Combining with Step 2 we complete the proof.
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To show the second part, by Step 1 we may write π ◦ σ′(a, b′) = (a, b). By
computing the b invariants of σ′(a, b′), we say that b0 = b′0, and for each i ≥ 1,
bi − b′i is a polynomial of a, b′1, . . . , b

′
i−1. This also shows that bi is a polynomial of

a, b′1, . . . , b
′
i−1. Therefore π ◦ σ′ : X → X is a triangular morphism. �

We will need to consider the restriction of ι′ to some closed subvarieties. We
denote by W the subvariety of Mn+1 consisting of matrices X of the following
form:

X =

⎛⎜⎜⎜⎜⎝
∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎠ ∈ Mn+1.(6.11)

Denote by V the subvariety of W consisting of X of the same form but with the
last row identically zero. Then we have a natural projection p : W → V .

Lemma 6.6. (1) The variety W is a subvariety of Mn+1,+ and the preimage
of W under ι′ is the product Nn,− × X .

(2) For every (a, b) ∈ X , we define a morphism ν(a,b) : Nn,− −→ W by

ν(a,b)(u) = uσ′(a, b)u−1, u ∈ Nn,−.(6.12)

Then the composition ν′(a,b) := p ◦ ν(a.b) : Nn,− −→ V is an isomorphism

with Jacobian equal to ±1.

Proof. Let X =

(
A u
v w

)
be in W . It is easy to verify the following properties about

δ+(X):

(i) δ+(X) ∈ Nn,−.
(ii) δ+(X) depends only on the last n − 1 columns of A, but not on the first

column.
(iii) For each i, 0 ≤ i ≤ n − 1, the (n − i)th column of δ+(X) is equal to the

sum of the (n − i + 1)th column of A plus a column vector whose entries
are polynomials depending only on the last (i− 1) columns of A.

By (i), such X lies in Mn+1,+, and hence W ⊂ Mn+1. Setting X = σ′(a, b) shows
that δ+(σ

′(a, b)) lies in Nn,− and depends only on a. Let (h, (a, b)) be the preimage
ι′−1(X). By (6.10) in the proof of Prop. 6.3, we have

h = δ+(X)δ+(σ
′(a, b))−1 ∈ Nn,−.

Hence the preimage of W is contained in Nn,− × X . Since W is preserved under
the conjugation by Nn,− and contains the image of σ, it follows that the preimage
of W is exactly Nn,− × X . This proves part (1) of the lemma. Alternatively, we
may identify W with the variety consisting of X ∈ Mn+1 such that δ+(X) ∈ Nn,−.

To show part (2), we denote by W(a,b) the image of Nn,− × {(a, b)} under ι′.
Consider an auxiliary subvariety V ′ ofW with the first column and the last row both
being zero. Let p′ : W → V be the natural projection. By the property (iii) above,
the composition p′ ◦ ν : Nn,− → V ′ is a triangular morphism. Thus the restriction
of the projection p′ to W(a,b) induces an isomorphism p′(a,b) : W(a,b) → V ′. To

prove part (2), it remains to show that the morphism p|W(a,b)
◦ (p′(a,b))−1 : V ′ → V

is triangular.
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Now we let X =

(
A u
v w

)
∈ W(a,b) with

A =

⎛⎜⎜⎜⎜⎝
α1 1 0 0 0
α2 ∗ 1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 1

αn = βn βn−1 ∗ ∗ β1

⎞⎟⎟⎟⎟⎠ ∈ Mn.

We denote by Ã the square matrix obtained by deleting the first and the last
row/column of A. By computing the coefficients of the characteristic polynomial
of A, we have the following:

(♠) For each i, 1 ≤ i ≤ n, the sum αi + βi is a polynomial of α1, . . . , αi−1,

β1, . . . , βi−1, a1, . . . , ai and the entries of Ã.
By induction on i, αi is a polynomial of β1, . . . , βi, a1, . . . , ai and the entries

of Ã. The same statement holds if we replace α by β everywhere. Note that the
last row of X ∈ W(a,b) is also determined by the entries α1, . . . , αn, a1, . . . , an and

Ã. It follows that the morphism p|W(a,b)
◦ (p′(a,b))

−1 : V ′ → V is triangular. This

completes the proof. �

A by-product of the proof is the following corollary.

Corollary 6.7. Let X =

(
A u
v w

)
∈ W. Then every entry of the last row of A is

a polynomial of the first n − 1 rows of A and the coefficients of the characteristic
polynomial of A.

Proof. In the proof of the previous Lemma 6.6, the βi’s are polynomials of the first
n− 1 rows of A, and the coefficient ai’s of the characteristic polynomial of A. �

We also have an easier statement about the upper unipotentNn acting on ξn+1,+.

Lemma 6.8. Denote by V+ the subvariety of Mn+1 consisting of X of the following
form:

X =

⎛⎜⎜⎝
0 1 ∗ ∗
0 0 1 ∗
· · · · · · 0 1
0 · · · 0 0

⎞⎟⎟⎠ ∈ Mn+1.

Define a morphism

ν+ : Nn → V+

u �→ uξn+1,+u
−1.

Then ν+ is triangular.

Proof. Similar to the previous one. We omit the detail. �

For later use in §8, we take the transpose of the morphism σ′ and denote it by �,

�(a, b) = σ′(a, b)t.(6.13)
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6.3. Regular nilpotent orbital integral. We now assume that F is a p-adic
local field. We now define the (Hn, η)-orbital integral of a regular nilpotent orbit.
Since the orbits of ξ± are not closed, we need to regularize the orbital integral. We
consider the following integral for s ∈ C, X ∈ Mn+1(F ):

O(X, f, s) =

∫
Hn(F )

f(Xh)η(h)| det(h)|s dh, f ∈ C ∞
c (Mn+1(F )).(6.14)

It is absolutely convergent for all s ∈ C if X is regular semisimple in which case we
denote

O(X, f) = O(X, f, 0).(6.15)

Lemma 6.9. The integral O(ξ±, f, s) converges absolutely when Re(s) > 1− 1
n and

extends to a meromorphic function in s ∈ C with at most simple poles at

s = 1− 1

�
+

2πi

log q
Z,

for even integers � with 1 < � ≤ n. Here q is the cardinality of the residue field
OF /(�).

Proof. We use the Iwasawa decomposition of Hn(F ) = KAN . Define

fK(X) =

∫
K

f(kXk−1) dk.

By Iwasawa decomposition on Hn(F ), we have∫
A(F )

∫
N(F )

fK(auξ+u
−1a−1)η(a)|a|s|δ(a)| du da,

where δ is the modular character

δ(a) = an−1
1 an−3

2 · · · a−(n−1)
n , a = diag[a1, . . . , an].

By Lemma 6.8, this is∫
A(F )

∫
V+(F )

fK(axa−1)η(a)|a|s dx da.

Replacing x�j by x�jaja
−1
� , 1 ≤ � ≤ j − 2 ≤ (n+ 1)− 2, and setting an+1 = 1, we

may partially cancel the factor |δ(a)|,

∫
A(F )

∫
V+(F )

fK

⎛⎜⎜⎜⎜⎝
0 a1

a2
x13 x14 ∗

0 0 a2

a3
∗ ∗

0 0 0 · · · · · ·
· · · · · · 0 0 an

an+1

0 · · · 0 0 0

⎞⎟⎟⎟⎟⎠ η(a)|a|s|a2a3 · · · an|−1 dx da.

Substitute b� := a�/a�+1, 1 ≤ � ≤ n,

∫
A(F )

∫
V+(F )

fK

⎛⎜⎜⎜⎜⎝
0 b1 x13 x14 ∗
0 0 b2 ∗ ∗
0 0 0 · · · · · ·
· · · · · · 0 0 bn
0 · · · 0 0 0

⎞⎟⎟⎟⎟⎠ η(b1b3 · · · )|
n∏

�=1

b��|−1+s
n∏

�=1

db� dx.

(Note db� is the additive Haar measure; cf. §2.) Now it is clear that the integral
converges absolutely if Re(�(−1 + s)) > −1 for all � = 1, 2, . . . , n, or equivalently
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Re(s) > 1− 1
n . By Tate’s local zeta integral, the integral extends meromorphically

to s ∈ C with at most simple poles at those s modulo 2πi
log qZ satisfying one of the

following:
�(−1 + s) = −1, � = 2, 4, . . . , 2[n/2].

Namely s = 1− 1
� +

2πi
log qZ, for even � with 1 < � ≤ n. �

Definition 6.10. For f ∈ C ∞
c (Mn+1(F )), we define the regular nilpotent orbital

integral O(ξ±, f), also denoted by μξ±(f), as

μξ±(f) = O(ξ±, f) := O(ξ±, f, 0).

This defines an (Hn, η)-invariant distribution on Mn+1(F ).

The two propositions below will not be used later on. They are interesting in
their own right and provide heuristics for the admissible functions in the remaining
sections of this paper.

Proposition 6.11. The intersection Mn+1,+(F ) ∩ N is equal to the Hn orbit of
ξ+. In particular, for a function f ∈ C ∞

c (Mn+1(F )) supported on Mn+1,+(F ), any
distribution on Mn+1(F ) supported in the closed subset N \ (Hn · ξ+) of Mn+1(F )
vanishes on f .

Proof. Since ξ+ is precisely the image of 0 ∈ X under σ, the Hn orbit of ξ+ is then
the image of Hn × {0} under ι. We also have Mn+1,+ ∩ N = (π|Mn+1,+

)−1(0), the

fiber of 0 ∈ X under π|Mn+1,+
. By Proposition 6.3, the fiber (π|Mn+1,+

)−1(0) is
precisely the image of Hn × {0} under ι. This proves the first assertion. The “In
particular” part is clear from the definition of the support of a distribution. �
Proposition 6.12. For any f ∈ C ∞

c (Mn+1,+(F )) ⊂ C∞
c (Mn+1(F )), the orbital

integral
φf (x) := O(σ(x), f)

defined for regular semisimple x ∈ X [cf. ( 6.15)] extends to a locally constant
function with compact support on X [i.e., φf ∈ C ∞

c (X )]. Conversely, given any
function φ in C ∞

c (X ), there exists f ∈ C∞
c (Mn+1,+(F )) such that O(σ(x), f) =

φ(x) for all regular semisimple x.

Proof. The orbital integral (6.15) is given by

O(σ(x), f) =

∫
Hn

f(hσ(x)h−1)η(h) dh.

By the Hn-equivariant isomorphism ι : Hn(F )×X (F ) → Mn+1,+(F ), correspond-
ing to f we have an element denoted by f ′ in C∞

c (Hn × X ), defined by

f ′(h, x) = f(hσ(x)h−1), h ∈ Hn, x ∈ X ,

with the property that

O(σ(x), f) =

∫
Hn

f ′(h, x)η(h) dh.

The integral on the right hand side is clearly absolutely convergent for all x ∈ X
and defines an element in C∞

c (X ). The converse is clearly now by the isomor-
phism ι. �
Remark 11. The proof also shows that if f is supported on Mn+1,+(F ), the integral
O(ξ+, f, s) [cf. (6.14)] converges absolutely for all s ∈ C.
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6.4. Orbital integrals on sn+1. We will need to consider the induced Hn action
on the tangent space sn+1 at 1 of the symmetric space Sn+1,

sn+1(F ) = {X ∈ Mn+1(E)|X +X = 0}.
Fixing a choice of nonzero τ ∈ E−, we have an isomorphism

Mn+1(F ) � sn+1(F ),(6.16)

defined by X �→ τX. In particular, we will abuse the notation ξ± to denote τξ±
if we want to consider the regular unipotent orbit on sn+1. We may extend the
definitions of σ, � and the orbital integrals to the setting of sn+1 via the isomorphism
(6.16). Then it is clear how to extend the results from the setting of Mn+1(F ) to
the setting of sn+1.

7. Smoothing local periods

7.1. Convolutions. We introduce some abstract notions for the use of this and
the next section. Let F be a p-adic local field and G the F -points of some reductive
group. We consider the space of C ∞

c (G) with an (anti-)involution ∗ defined by

f∗(g) := f(g−1), f ∈ C ∞
c (G).(7.1)

We will also use the other (anti-)involution defined by

f∨(g) = f(g−1).(7.2)

Let dg be a Haar measure on G. Let H be a unimodular (closed) subgroup of G
and dh a Haar measure H. We define a left and a right action of C ∞

c (H) on C ∞
c (G)

as follows: for f ∈ C ∞
c (G) and φ ∈ C∞

c (H), we define convolutions f ∗ φ and φ ∗ f
both in C ∞

c (G),

(f ∗ φ)(g) =
∫
H

f(gh−1)φ(h) dh(7.3)

and

(φ ∗ f)(g) =
∫
H

φ(h)f(h−1g) dh =

∫
H

φ(h−1)f(hg) dh.

This also applies to the case H = G. Then we have

(f ∗ φ)∗ = φ∗ ∗ f∗, (φ ∗ f)∗ = f∗ ∗ φ∗.

If we have two closed unimodular subgroups H1, H2, we could iterate the definition:
for example, for f ∈ C ∞

c (G) and φi ∈ C∞
c (Hi), we define

φ1 ∗ φ2 ∗ f := φ1 ∗ (φ2 ∗ f) ∈ C ∞
c (G).

Now if we have a smooth representation π of G (hence its restriction to H is a
smooth representation as well), as usual we define π(f) and π(φ) to be the endo-
morphisms of π,

π(f) =

∫
G

f(g)π(g) dg, π(φ) =

∫
H

φ(h)π(h) dh.

Then we have π(f ∗ φ) = π(f)π(φ) ∈ End(π) and so on. If π has a G-invariant
inner product 〈·, ·〉, we then have

〈π(f)u, u′〉 = 〈u, π(f∗)u′〉, u, u′ ∈ π.
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The questions addressed in this section can be abstracted as follows (cf. [26, §2]).
Let π be a smooth admissible representation of G. The algebraic dual space π∗ :=
Hom(π,C) is usually much larger than the congragredient π̃ (the subspace of π∗

consisting of smooth linear functional, i.e., K-finite vectors in π∗ for some open
compact K). Very often we will be interested in some distinguished element called
� in π∗ \ π̃ (the set of nonsmooth linear functionals). Then the question is to find
some φ ∈ C ∞

c (H), for suitable subgroup H (smaller than G in order to be useful),
such that π∗(φ)� is nonzero and smooth (i.e., in π̃). In this section we will study
this question for the local Flicker-Rallis period and the local Rankin-Selberg period.

7.2. A compactness lemma. Now we return to our setting. Let E/F be a qua-
dratic extension of non-Archimedean local fields of characteristic zero with residue
characteristic p. We denote by η the quadratic character associated to E/F , and set

ηn = ηn−1.(7.4)

Let ϕn−1 ∈ C ∞
c (Hn−1(E)) and φn−1 ∈ C∞

c (Mn−1,1(E)). We consider the Fourier
transform of φn−1 as a function on M1,n−1(E) by

φ̂n−1(X) =

∫
M1,n−1(E)

φn−1(Y )ψE(tr(XY )) dY.

With the pair (ϕn−1, φn−1) we associate a new function on Hn−1(E) by

W̃ϕn−1,φn−1
(g) := φ̂n−1(−en−1g)

∫ ∫
ϕn−1(g

−1uεn−1h)ψE(u)ηn(h) du dh,(7.5)

where u ∈ Nn−1(E), h ∈ Nn−1(F )\Hn−1(F ), and the integral is iterated. Note
that the integral converges absolutely. Clearly we have

Wϕn−1,φn−1
(ug) = ψE(u)Wϕn−1,φn−1

(g)

for u ∈ Nn−1(E).
We would like to obtain a function with compact support modulo Nn−1(E) by

imposing suitable conditions on (ϕn−1, φn−1). To simplify the notation, we will
denote, when p > 2,

Λ = OE .

It decomposes as Λ = Λ+⊕Λ− where Λ± = OE± . If p = 2, in the rest of the paper
we define OE as OE+ ⊕ OE− , which may be a nonmaximal order of E. Then the
Fourier transform of 1Λ ∈ C ∞

c (E) is a nonzero multiple of 1Λ∗ for a lattice (i.e., an
OE module) Λ∗ ⊂ E (depending on ψ). Let � be a uniformizer of F . For an integer
m > 0, we naturally view C[�mΛ/�2mΛ] as the subspace of C ∞

c (E) consisting of
functions supported in �mΛ and invariant by �2mΛ.

Definition 7.1. We define a dagger space of level m, denoted by C[�mΛ/�2mΛ]†

or C∞
c (E)†m, as the subspace of C[�mΛ/�2mΛ] spanned by functions θ = θ+ ⊗

θ−, θ± ∈ C∞
c (E±), satisfying the following:

• θ+ is a multiple of 1mΛ+ .

• The Fourier transform θ̂ ∈ C[�−2mΛ∗/�−mΛ∗] is supported in �−2mΛ∗−
�−2m+1Λ∗. With the condition on θ+, this is equivalent to that the func-

tion θ̂− is supported in �−2mΛ−∗ −�−2m+1Λ−∗ where Λ−∗ = Λ∗ ∩ E−.
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In particular, every element in C[�mΛ/�2mΛ]† is invariant under multiplication
by 1 + �mOE . Heuristically, such θ has a constant real part θ+ but a highly
oscillating imaginary part θ−.

Definition 7.2. We denote by C ∞
c (Mn−1,1(E))†m the space spanned by functions

on Mn−1,1(E) of the form φn−1 =
⊗

1≤i≤n−1 φ
(i) in the way that φn−1(x) =∏

i φ
(i)(xi) if x = (x1, . . . , xn−1)

t ∈ Mn−1,1(E), satisfying

• When 1 ≤ i ≤ n − 2, φ(i) is the characteristic function of �mΛ; φ(n−1) is
an element of C[�mΛ/�2mΛ]†.

Definition 7.3. We denote by C∞
c (Hn−1(E))†m the space spanned by functions

on Hn−1(E) of the form ϕn−1 =
⊗

1≤i,j≤n−1 ϕ
(ij) in the way that ϕn−1(g) =∏

i,j ϕ
(ij)(gij) if g = (gij), satisfying

• When 1 ≤ j < i ≤ n− 1, ϕ(ij) is the characteristic function of �mOE .
• When 1 ≤ i = j ≤ n− 1, ϕ(ij) is the characteristic function of 1 +�mOE .
• When 1 ≤ i < j ≤ n − 1, j − i �= 1, ϕ(ij) is the characteristic function of
�mΛ.

• When 1 ≤ i = j − 1 ≤ n− 2, ϕ(ij) is an element of C[�mΛ/�2mΛ]†.

Remark 12. A function ϕn−1 ∈ C ∞
c (Hn−1(E))†m has the following property:

ϕn−1(un−2 · · ·u1av1 · · · vn−2) = ϕn−1(uσ′(n−2) · · ·uσ′(1)avσ′(1) · · · vσ′(n−2)),

where a ∈ An−1, ui ∈ Nn−1 (vi ∈ Nn−1,−, resp.), ui − 1 (vi − 1, resp.) has nonzero
entries only in the (i+ 1)th column (row, resp.), and σ, σ′ are any permutations.

Definition 7.4. We say that the pair (ϕn−1, φn−1) is m-admissible if φn−1 ∈
C∞
c (Mn−1,1(E))†m, and ϕn−1 ∈ C∞

c (Hn−1(E))†m.

Remark 13. The pair (ϕn−1, φn−1) defines a function denoted by ϕn−1 ⊗ φn−1 on
the mirabolic subgroup Pn of Hn(E),

ϕn−1 ⊗ φn−1

[(
x

1

)(
1n−1 u

1

)]
= ϕn−1(x)φn−1(u).

For m-admissible (ϕn−1, φn−1) as above, we define recursively ϕi, φi, φ
′
i+1 for

i = n− 2, . . . , 1, such that

ϕi+1 = ϕi ⊗ φi ⊗ φ′
i+1,(7.6)

where

ϕi ∈ C∞
c (Mi(E)), φi ∈ C ∞

c (Mi,1(E)), φ′
i+1 ∈ C∞

c (M1,i+1(E)).

Here the function ϕi is viewed as a function on Mi(E) [though it is supported in
Hi(E)]. The tensor product is understood as

ϕi+1(Xi+1) = ϕi(Xi)φi(ui)φ
′
i+1(vi+1),
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where Xi+1 =
(
Xi ui

vi+1

)
∈ Mi+1(E), Xi ∈ Mi(E), ui ∈ Mi,1(E), vi+1 ∈

M1,i+1(E). Set φ′
1 = ϕ1 so that we have the following decomposition of ϕn−1⊗φn−1:

φ
′

1 φ1 φ2 · · · φn−1

φ
′

2
...
φ′
n−1

To facilitate the exposition, we list the properties of admissible functions that will
be used later in our proof.

Proposition 7.5. Let (ϕn−1, φn−1) be m-admissible (Definition 7.4), and we de-
compose it according to ( 7.6). Then we have the following properties:

(i) The function φ′
i is the characteristic function of (0, . . . , 0, 1)+�mM1,i(OE),

and φi ∈ C∞
c (Mi,1(E))†m.

(ii) The function ϕn−1 is left and right invariant under Nn−1,−(�
mOE) =

1 +�mnn−1,−(OE).
(iii) With respect to the decomposition Mn−1(E) = Mn−1(F )⊕Mn−1(E

−), the
function ϕn−1 = ϕ+

n−1 ⊗ ϕ−
n−1 is decomposable and the “real” part ϕ+

n−1 is
a multiple of the characteristic function of 1 +�mMn−1(OF ).

(iv) The function ϕn−1 is left and right invariant under the compact open sub-
group 1 +�mMn−1(OF ) (i.e., the support of the real part ϕ+

n−1 of ϕn−1).

Proof. They all follow from Definitions 7.2, 7.3, and 7.4. �

Property (iii) and (iv) of admissible functions will not be used until the next
section. Our key result of this section is the following compactness lemma.

Lemma 7.6. Assume that (ϕn−1, φn−1) is m-admissible for some m > 0 and we
have the derived functions φi, φ

′
i as above.

(1) Then the support of the function W̃ϕn−1,φn−1
is compact modulo Nn−1(E);

i.e., it defines an element in

C ∞
c (Nn−1(E)\Hn−1(E), ψE).

Furthermore, W̃ϕn−1,φn−1
(εn−1g) is nonzero only when

g ∈ H ′
n−1(E) = Nn−1(E)An−1(E)Nn−1,−(E).

(2) View φ′ := ⊗n−1
i=1 φ

′
i as a function on Bn−1,−(E) or its Lie algebra bn−1,1(E)

(this is possible due to the special feature of the function φ′). Denote by
dn =

(
n
3

)
so that

τdn = δn−1(εn−1) = det(Ad(εn−1) : Nn−1(E)).

Then the value of W̃ϕn−1,φn−1
(εn−1g) at g = yv ∈ An−1Nn−1,−(F ),

y =

⎛⎜⎜⎜⎝
y1y2 · · · yn−1

. . .

y1y2
y1

⎞⎟⎟⎟⎠ ∈ An−1(F ),
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and

v =
n−2∏
i=1

(
1i
vi 1

)
∈ Nn−1,−(F ), vi ∈ M1,i(F ),

is given by the product of the constant

|τ |dn

E

∫
Bn−1,−(F )

φ′(b) db(7.7)

and

ηn(y)|δn−1(y)|F
n−1∏
i=1

φ̂n−i(−yi(vn−i−1, 1)τ ).(7.8)

Here the measure db on Bn−1,−(F ) is either the left or the right invariant one;
they give the same value to the integral since the support of φ′ is contained in
1 +�bn−1,−(OE).

Proof. It suffices to consider the following absolutely convergent integral:

w(g) =

∫
Bn−1,−(F )

∫
Nn−1(E)

ϕn−1(g
−1uh)ψτ (u)ηn(h) du dh,(7.9)

where we have replaced Nn−1(F )\Hn−1(F ) by Bn−1,− (with the right invariant
measure) and

ψτ (u) = ψE,τ (u) = ψE(εn−1uε
−1
n−1).

Indeed, by a suitable substitution we have

W̃ϕn−1,φn−1
(εn−1g) = |τ |dn

E φ̂n−1(−en−1τg)w(g).

By the condition on the support of φ̂n−1, we know that φ̂n−1(en−1g) is zero unless
the (n− 1, n− 1)th entry of g ∈ Hn−1(E) is nonzero. Up to the left translation by
Nn−1(E), such g ∈ Hn−1(E) is of the form

g = y1

(
xn−2

1

)(
1n−2

vn−2 1

)
, y1 ∈ E×, xn−2 ∈ Hn−2(E), vn−2 ∈ M1,n−2(E).

By the support condition on φ̂n−1 [noting that φn−1 ∈ C∞
c (Mn−1,1(E))†m; cf.

Definition 7.2], for w(g) in (7.9) to be nonzero, y1 must lie in a compact set of
E× and vn−2 ∈ �mM1,n−2(OE). By the property (ii) in Prop. 7.5, the function

ϕn−1 is invariant under left multiplication by such
(
1n−2

vn−2 1

)
. Hence we have

W̃ϕn−1,φn−1
(εn−1g) = |τ |dn

E φ̂n−1(τy1(vn−2, 1))w

[
y1

(
xn−2

1

)]
.(7.10)

Therefore it is enough to consider w(g) when g = y1

(
xn−2

1

)
for xn−2 ∈

Hn−2(E).
We write h ∈ Bn−1,−(F ) = An−1(F )Nn−1,−(F ) as

h = b1

(
an−2

1

)(
1n−2

cn−2 1

)
,

where b1 ∈ F×, an−2 ∈ Bn−2,−(F ), cn−2 ∈ M1,n−2(F ). The measure can be
chosen as

|an−2|−1|b1|−1 db1 dcn−2 dan−2,
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where dan−2 is the right invariant measure on Bn−2,−(F ). For the integration over
u ∈ Nn−1(E), we write

u =

(
1n−2 u′

n−2

1

)(
un−2

1

)
∈ Nn−1(E).

Then the product g−1uh is equal to

b1y
−1
1

(
x−1
n−2

1

)(
1n−2 u′

n−2

1

)(
un−2

1

)(
an−2

1

)(
1n−2

cn−2 1

)
.(7.11)

Then the last row of the product (7.11) is equal to y−1
1 b1(cn−2, 1) ∈ M1,n−1(E).

By the condition on the support of φ′
n−1 [cf. Property (i) of Prop. 7.5], we can

assume that

cn−2 ∈ �mM1,n−2(OE),

so that ϕn−1 is invariant under the right translation by such
(
1n−2

cn−2 1

)
[cf. Property

(ii) of Prop. 7.5]. The product of the first four matrices in (7.11) is then equal to

y−1
1 b1

(
x−1
n−2un−2an−2 x−1

n−2u
′
n−2

1

)
.

The integrations on cn−2 and u′
n−2 yield, respectively,∫

Mn−2,1(F )

φ′
n−1(y

−1
1 b1(cn−2, 1)) dcn−2,∫

Mn−2,1(E)

φn−2(b1y
−1
1 x−1

n−2u
′
n−2)ψτ (u

′
n−2) du

′
n−2

= |b−1
1 y1|n−2

E |xn−2|Eφ̂n−2(−en−2τy1b
−1
1 xn−2).

(Here we note that the Fourier transform of φn−2 is defined by the character ψE .)
Therefore w(g) is equal to the integration of the function of b1 ∈ F× given by the
product of the above two terms and∫
Bn−2,−(F )

∫
Nn−2(E)

ϕn−2(y
−1
1 b1x

−1
n−2un−2an−2)ψτ (un−2)|an−2|−1ηn(h) dun−2 dan−2

with respect to the measure |b1|n−2db1. We may repeat the process and hence may
assume that the function on Hn−2(E) defined by

gn−2 �→ φ̂n−2(−en−2gn−2)

∫
Bn−2,−(F )

∫
Nn−2(E)

ϕn−2(g
−1
n−2un−2an−2)

×ψτ (un−2)|an−2|−1ηn(an−2) dun−2 dan−2

is zero unless g2 ∈ H ′
n−2(E) and its support is compact modulo Nn−2(E). By the

support condition of φ′
n−1 [cf. Property (i) of Prop. 7.5], we know that y−1

1 b1 ∈
1 +�mOE . Since y1 is in a compact region of E×, the integration of b1 must also
be in a compact region. This implies that w(g) �= 0 only when xn−2 ∈ H ′

n−2(E)
and in a region compact modulo Nn−2(E). By the boundedness of vn−2 as shown
in Eq. (7.10), we complete the proof of part (1).

To show part (2), we need to keep track of the computation above. Since we are
now assuming that g ∈ Hn−1(F ), we have y1 ∈ F×, and hence we may substitute
b1 �→ b1y1. Then for φ′

n−1(b1(cn−2, 1)) to be nonzero, we must have b1 ∈ 1+�mOF
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[cf. Property (i) of Prop. 7.5]. Note that φ̂n−2 and ϕn−2 are invariant under
multiplication by scalars in 1+�mOF . We see that w(g) is given by the product of

ηn(y
n−1
1 )

∫
Mn−1,1(F )

φ′
n−1(b1(cn−2, 1))dcn−2η(b

n−1
1 )|b1|−1 db1,

|xn−2|Eφ̂n−2(−en−2τxn−2),

and∫
Bn−2,−(F )

∫
Nn−2(E)

ϕn−2(x
−1
n−2un−2an−2)ψτ (un−2)|an−2|−1ηn(an−2) dun−2 dan−2.

When y = y1 · diag(xn−2, 1), xn−2 ∈ Bn−2,−(F ), we have

δn−1(y) = δn−2(xn−2) det(xn−2).(7.12)

Note that
|xn−2|E = |xn−2|2F .

Now we may repeat this process to complete the proof. �

For admissible ϕn−1⊗φn−1 ∈ C∞
c (Hn−1(E)×Mn,1(E)), the function W̃ϕn−1,φn−1

lies in C ∞
c (Nn−1(E)\Hn−1(E), ψE) and therefore determines a unique element in

W , denoted by Wϕn−1,φn−1
, characterized by

Wϕn−1,φn−1

(
g

1

)
= W̃ϕn−1,φn−1

(g), g ∈ Hn−1(E).(7.13)

7.3. Smoothing local Flicker-Rallis period βn. Let Πn be an irreducible uni-
tary generic representation of Hn(E). We now consider the local period Flicker-
Rallis βn [cf. §3, (3.11), (3.20)]. We let W = W(Πn, ψE) be the Whittaker model
of Πn with respect to the complex conjugate of ψE for later convenience. As earlier
we have endowed W with a nondegenerate positive definite invariant Hermitian
structure [cf. (3.2)],

〈W,W ′〉 = ϑ(W,W ′) =

∫
Nn−1(E)\Hn−1(E)

W

(
g

1

)
W ′

(
g

1

)
dg.

We also consider its Kirillov model denoted by K = K(Πn, ψE), which is a certain
subspace of smooth functions C ∞(Nn−1(E)\Hn−1(E), ψE). Moreover, it is well-
known that the Kirillov model always contains the subspace C ∞

c (Nn−1(E)\Hn−1(E),
ψE) of smooth compactly supported functions.

Let W∗ be the (conjugate) algebraic dual space of W and H be the Hilbert space
underlying the unitary representation Πn. Then W is the space of smooth vectors
in H and we have inclusions,

W ⊂ H ⊂ W∗.

The Hermitian pairing on W × W extends to H × H and W × W∗. A similar
discussion also appears in [25, §2.1]. We still denote by Πn the representation of
Hn(E) on W∗ so for any W ∈ W ,W ′ ∈ W∗,

〈Πn(g)W,W ′〉 = 〈W,Πn(g
−1)W ′〉.

Then the local Flicker-Rallis period βn is an element in W∗ defined by (3.11). To
ease notation, we write this as

βn(W ) =

∫
Nn−1(F )\Hn−1(F )

W (εn−1h) ηn(h) dh,(7.14)
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where ηn is as in (7.4). We also write this as

βn(W ) = 〈W,βn〉.
It is (Hn(F ), ηn) invariant [10],

βn ∈ HomHn(F )(W ,Cηn
).

We would like to smoothen the local period βn by applying some sort of
“mollifier.”

Proposition 7.7. Let Πn be an irreducible unitary generic representation ofHn(E).
Assume that the pair ϕn−1 ∈ C∞

c (Hn−1(E)), φn−1 ∈ C ∞
c (Mn,1(E)) is m-admissible

for m > 0. Let Wϕn−1,φn−1
∈ W be the element determined by ( 7.13). Then for

every W ∈ W (Πn, ψE), we have

〈Πn(ϕ
∗
n−1)Πn(φ

∗
n−1)W,βn〉 = 〈W,Wϕn−1,φn−1

〉.
In other words, the linear functional Πn(φn−1)Πn(ϕn−1)βn, a priori only in W∗,
is indeed a smooth vector and is represented by Wϕn−1,φn−1

∈ W(Πn, ψE).

Proof. The left hand side is given by∫
Nn−1(F )\Hn−1(F )

∫
Hn−1(E)

Πn(φ
∗
n−1)W (εn−1hgn−1)ϕn−1(g

−1
n−1)dgn−1ηn(h) dh.

Substitute gn−1 �→ h−1ε−1
n−1gn−1,∫

Nn−1(F )\Hn−1(F )

∫
Hn−1(E)

Πn(φ
∗
n−1)W (gn−1)ϕn−1(g

−1
n−1εn−1h)dgn−1ηn(h) dh.

Since W (ugn−1) = ψE(u)W (gn−1) for u ∈ Nn−1(E), we may rewrite the integral as∫
Πn(φ

∗
n−1)W (gn−1)

(∫
Nn−1(E)

ϕn−1(g
−1
n−1u

−1εn−1h)ψE(u)du

)
ηn(h) dh dgn−1,

where the outer integral is over

h ∈ Nn−1(F )\Hn−1(F ), gn−1 ∈ Nn−1(E)\Hn−1(E).

Now we also note that

Πn(φ
∗
n−1)W (gn−1) =

∫
Mn−1,1(E)

W

[
gn−1

(
1n−1 u

1

)]
φ∗
n−1(u) du

= W (gn−1)

∫
Mn−1,1(E)

φn−1(−u)ψE(e
∗
n−1gn−1u) du

= W (gn−1) φ̂n−1(−e∗n−1gn−1).

This completes the proof. �

7.4. Smoothing local Rankin-Selberg period λ. Now let Π = Πn ⊗ Πn+1

be an irreducible unitary generic representation of G′(F ) = Hn(E) × Hn+1(E).
We now need another compactness lemma. For an integer m′ > 0, we consider

φn ∈ C∞
c (Mn,1(E))†m′ (cf. Definition 7.2). Note that by definition, the Fourier

transform φ̂n is supported in the domain

{(x1, . . . , xn) ∈ M1,n(E)||xi/xn| ≤ |�|m′
, i = 1, 2, . . . , n− 1}.(7.15)
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Lemma 7.8. Let φn ∈ C ∞
c (Mn,1(E))†m′. Let W ∈ W(Πn, ψE) be such that its

restriction to Hn−1(E) has support compact modulo Nn−1(E). If m′ is sufficiently
large (depending on the vector W ), the map

Hn(E) � g �→ φ̂n(eng)W (g)

defines an element in C∞
c (Nn(E)\Hn(E), ψE).

Proof. Clearly φ̂n(eng) is Nn(E) invariant and smooth. Hence the product defines
an element in C ∞(Nn(E)\Hn(E), ψE). It remains to show that the product has

support compact modulo Nn(E). By the support condition of φ̂n(eng) [cf. (7.15)],
we may assume that the lower right entry of g is nonzero. Therefore we may write

g = xu

(
h

1

)(
1n−1

v 1

)
where h ∈ Hn−1(E), u ∈ Nn(E), v ∈ M1,n−1(E), and x ∈

E×. Again by the assumption on φ̂n, we may assume that ||v|| < |�|m′
[otherwise

φ̂n(eng) vanishes]. We may choose m′ sufficiently large so that W is invariant under

right multiplication by 1 +�m′
Mn(OE) (such m′ exists since W ∈ W is smooth).

We now have

φ̂n(eng)W (g) = ψE(u)φ̂n(x(v, 1))W

[
x

(
h

1

)]
= ψE(u)ωΠn

(x)φ̂n(x(v, 1))W

[(
h

1

)]
,

where ωΠn
is the central character of Πn. Since the last factor has support com-

pact modulo Nn−1(E), and x lies in a compact region, the desired compactness
follows. �

Since the Kirillow model K(Πn+1, ψE) contains C ∞
c (Nn(E)\Hn(E), ψE) as a

subspace, we may view the product φ̂n(eng)W (g) as an element in K(Πn+1, ψE).
This determines uniquely an element in the Whittaker model W(Πn+1, ψE), de-
noted by Wφn

. In other words, with each W ∈ W(Πn, ψE) whose restriction to

Hn−1(E) lies in C ∞
c (Nn−1(E)\Hn−1(E), ψE) and a φn ∈ C∞

c (Mn,1(E))†m′ for m′

sufficiently large, we associate an element Wφn
∈ W(Πn+1, ψE) characterized by

Wφn

(
g

1

)
= φ̂n(eng)W (g), g ∈ Hn(E).(7.16)

Its complex conjugate Wφn
defines an element in W(Πn+1, ψE).

Now we recall that the local Rankin-Selberg period is defined by [cf. (3.23)]

λ(s,W ⊗W ′) =

∫
Nn(E)\Hn(E)

W (g)W ′
(
g

1

)
|g|s dg,

where W ∈ W(Πn, ψE),W
′ ∈ W(Πn+1, ψE). It has a meromorphic continuation

to s ∈ C [with possible poles at those poles of the local Rankin-Selberg L-factor
L(s+ 1/2,Πv)]. For φn ∈ C ∞

c (Mn,1(E)), we have an action on W(Πn+1, ψE) by

Πn+1(φn)W
′(g) =

∫
Mn−1,1(E)

W ′
[
g

(
1n−1 u

1

)]
φn(u) du, g ∈ Hn+1(E).

Proposition 7.9. Let Π = Πn ⊗ Πn+1 be an irreducible unitary generic repre-
sentation of Hn(E) × Hn+1(E). Assume that the restriction of W ∈ W(Πn, ψE)

to Hn−1(E) lies in C∞
c (Nn−1(E)\Hn−1(E), ψE) and that φ̂n ∈ C ∞

c (Mn,1(E))†m′
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for m′ sufficiently large (depending on W ). Then for every W ′ ∈ W(Πn+1, ψE),
λ(s,W ⊗Πn+1(φn)W

′) is an entire function in s ∈ C and we have

λ(0,W ⊗Πn+1(φn)W
′) = 〈W ′,Wφn

〉.

Proof. For g ∈ Hn(E), we have

Πn+1(φn)W
′
(
g

1

)
=

∫
Mn−1,1(E)

W ′
[(

g
1

)(
1n−1 u

1

)]
φn(u) du

=

∫
Mn−1,1(E)

W ′
[(

g
1

)]
ψE(engu)φ(u) du

= φ̂n(eng)W
′
[(

g
1

)]
.

Return to the local Rankin-Selberg period, and

λ(s,W ⊗Πn+1(φn)W
′) =

∫
Nn(E)\Hn(E)

W (g)φ̂n(eng)W
′
(
g

1

)
|g|s dg.(7.17)

By Lemma 7.8, W (g)φ̂n(eng) has compact support modulo Nn(E). It follows that
the last integral converges absolutely for all s ∈ C and hence defines an entire
function in s ∈ C. Moreover the value at s = 0 is given by (cf. 7.16)

λ(0,W ⊗Πn+1(φn)W
′) = 〈W ′,Wφn

〉.

This completes the proof. �

8. Local character expansion in the general linear group case

In this section we prove a “limit” formula for the (local) spherical character in
the general linear group case. We will choose a subspace of test functions supported
in a small neighborhood of the origin of the symmetric space Sn+1. Then we may
treat them as functions on the “Lie algebra” sn+1 of Sn+1, the tangent space at the
origin. The key property for these functions is that their Fourier transforms have
vanishing unipotent orbital integrals except for the regular unipotent element. The
intermediate steps are messy and somehow ugly; but the final outcome seems to be
miraculously neat.

8.1. A “limit” formula for the spherical character IΠ(f). Now let Π =
Πn ⊗ Πn+1 be an irreducible unitary generic representation of Hn(E)×Hn+1(E).
Assume that the central characters of both Πn and Πn+1 are trivial on F×. Let
IΠ,s(f) be the (unnormalized) local spherical character defined by (3.32). We now
combine Prop. 7.7 and 7.9 to obtain a formula of IΠ,s(f) for a special class of test
functions f .

Consider fn ∈ C ∞
c (Hn(E)) and fn+1 ∈ C ∞

c (Hn+1(E)). Let φn ∈ C ∞
c (Mn,1(E)).

We consider a perturbation of fn+1 by φn

fφn

n+1(g) =

∫
Mn,1(E)

fn+1

[(
1n u

1

)
g

]
φn(u) du, g ∈ Hn+1(E).

This is the same as φn ∗ fn+1—the convolution introduced in §7.1, (7.3)—where
we view Mn,1(E) as a subgroup of Hn+1(E). Similarly, for ϕn−1 ∈ C ∞

c (Hn−1(E)),
φn−1 ∈ C∞

c (Mn−1,1(E)), we define a perturbation of fn: for g ∈ Hn(E),
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fϕn−1,φn−1
n (g)

:=

∫
Mn−1,1(E)

∫
Hn−1(E)

fn

[
g

(
x−1

1

)(
1 −u

1

)]
ϕn−1(x)φn−1(u) dx du.

Equivalently
fϕn−1,φn−1
n = fn ∗ φn−1 ∗ ϕn−1 ∈ C ∞

c (Hn(E)).

We will consider functions of the following form:

f = fϕn−1,φn−1
n ⊗ fφn

n+1 ∈ C ∞
c (Hn(E)×Hn+1(E)).

Definition 8.1. Fix Π. Let (m,m′, r) be positive integers with r > m′ > m > 0.

We say that f = f
ϕn−1,φn−1
n ⊗ fφn

n+1 is (m,m′, r)-admissible or admissible for Π if it
satisfies the following:

• The function ϕn−1⊗φn−1 is m-admissible. Hence it determines an element

W̃ϕn−1,φn−1
∈ C ∞

c (Nn−1\Hn−1(E), ψE) (cf. Lemma 7.6) andWϕn−1,φn−1
∈

W(Πn, ψE).

• The function φn ∈ C∞
c (Mn,1(E))†m′ for sufficiently large m′ (depending

on Πn, ϕn−1 ⊗ φn−1, and hence on the integer m). More precisely, m′

is large enough such that Lemma 7.8 holds for W = Wϕn−1,φn−1
. Let

Wϕn−1,φn−1,φn
∈ W(Πn+1, ψE) be the function characterized by the equa-

tion (7.16) for the choice W = Wϕn−1,φn−1
.

• The function fn (fn+1, resp.) is a multiple of the characteristic function of
1 +�rMn(OE) (of 1 +�rMn+1(OE)). We normalize fn, fn+1 by∫

Hn(E)

fn(g) dg =

∫
Hn+1(E)

fn+1(g) dg = 1.(8.1)

We require that r is sufficiently large (depending on Π, ϕn−1, φn−1, φn, and
hence on m,m′) so that

Πn(fn)Wϕn−1,φn−1
= Wϕn−1,φn−1

and
Πn+1(fn+1)Wϕn−1,φn−1,φn

= Wϕn−1,φn−1,φn
.

Proposition 8.2. Fix Π and assume that f = f
ϕn−1,φn−1
n ⊗ fφn

n+1 is (m,m′, r)-
admissible for Π. Then we have

IΠ,s(f) = βn+1(Wϕn−1,φn−1,φn
).

In particular, it is independent of s ∈ C.

Proof. First we have

IΠ,s(fn ⊗ fn+1) =
∑
W,W ′

λ(s,Πn(fn)W ⊗Πn+1(fn+1)W
′)βn(W ) · βn+1(W ′)

=
∑
W,W ′

λ(s,W ⊗ Πn+1(fn+1)W
′)βn(Πn(f∗

n)W ) · βn+1(W ′),

where the sum of W (W ′, resp.) runs over an orthonormal basis of Πn (Πn+1,
resp.).

For simplicity, we write φ for φn−1 and ϕ for ϕn−1. Now we replace fn by
fϕ,φ
n = f ∗ φ ∗ ϕ. Note that

Πn((f
ϕ,φ
n )∗) = Πn(ϕ

∗)Πn(φ
∗)Πn(f

∗).
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By Prop. 7.7, we have for all W ∈ W(Πn, ψE)

βn(Πn((f
ϕ,φ
n )∗)W ) = 〈Πn(f

∗
n)W,Wϕ,φ〉 = 〈W,Πn(fn)Wϕ,φ〉.

For any W0 ∈ W(Πn, ψE), we have an orthonormal expansion

W0 =
∑
W

〈W0,W 〉W,

where the sum of W runs over an orthonormal basis of Πn. Hence we may fold the
sum over W to obtain

IΠ,s(f
ϕ,φ
n ⊗ fn+1) =

∑
W ′

λ(s,Πn(fn)Wϕ,φ ⊗Πn+1(fn+1)W
′)βn+1(W ′).

Now we further replace fn+1 by fφn

n+1 = φn ∗fn+1 and assume that f = fϕ,φ
n ⊗fφn

n+1

is admissible. By the admissibility, fn and fn+1 have small support so that we have

Πn(fn)Wϕ,φ = Wϕ,φ

and
Πn+1(f

∗
n+1)Wϕ,φ,φn

= Wϕ,φ,φn
.

Now note that the function Wϕ,φ(g)φ̂n(eng) is supported in Nn(E)Hn(OE). Hence
in (7.17), we have |g|s = 1 independent of s ∈ C. Now by Prop. 7.9 and∫
Hn(E)

fn(g)dg =
∫
Hn+1(E)

fn+1(g)dg = 1, we have for all W ′ ∈ W(Πn+1, ψE)

λ(s,Πn(fn)Wϕ,φ ⊗Πn+1(f
φn

n+1)W
′) = 〈Πn+1(fn+1)W

′,Wϕ,φ,φn
〉

= 〈W ′,Πn+1(f
∗
n+1)Wϕ,φ,φn

〉
= 〈W ′,Wϕ,φ,φn

〉.
Then we may fold the sum over W ′ to obtain

IΠ,s(f
ϕ,φ
n ⊗ fφn

n+1) = βn+1(Wϕ,φ,φn
) = βn+1(Wϕ,φ,φn

).

This completes the proof. �

We need to simplify the formula. Define for a ∈ An(F )

δn(a) := det(Ad(a) : nn))/ det(Ad(a) : nn−1).(8.2)

To simplify the exposition from now on we redefine fφn

n+1 as φ∨
n ∗ fn+1.

Proposition 8.3. Fix Π and assume that f = f
ϕn−1,φn−1
n ⊗ fφn

n+1 is (m,m′, r)-
admissible for Π. Use notations as in Lemma 7.6. Then we have

IΠ,s(f) = ωΠn
(τ )|τ |dn

E

(∫
Bn−1,−(F )

φ′(b) db

)
∫ n−1∏

i=0

φ̂n−i(−yi(vn−i−1, 1)τ )|δn(y)|−1η(y) d∗y dv,

where the integral of d∗ydv is over y ∈ An(F ), v ∈ Nn,−(F ),

y =

⎛⎜⎜⎜⎝
y0y1y2 · · · yn−1

. . .

y0y1
y0

⎞⎟⎟⎟⎠ ∈ An(F ),(8.3)
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and

v =

n−1∏
i=1

(
1i
vi 1

)
∈ Nn,−(F ), vi ∈ M1,i(F ).(8.4)

Proof. By (7.16), we have [cf. (7.14), and note to replace φn by φ∨
n ]

βn+1(Wϕ,φ,φn
) =

∫
Nn(F )\Hn(F )

Wϕ,φ(εnh)φ̂n(−enεnh)ηn+1(h) dh.

Let h = yv where

y = y0

(
y′

1

)
∈ An(F ), y′ ∈ An−1(F ),

and

v =

(
v′

1

)(
1n−1

vn−1 1

)
, v′ ∈ Nn−1,−(F ).

Then we may replace the integral on the quotient Nn(F )\Hn(F ) by the integral
over y, v as in (8.3) and (8.4) for the measure

|δn(y)|−1
n−1∏
i=0

d∗yi

n−1∏
j=1

dvj .

Since we have δn(y) = δn−1(y
′) det(y′) = δn−1(y

′)δn(y
′) [cf. (7.12), (8.2)], we may

also write this as a product(
|δn−1(y

′)|−1|y′|−1 d∗y′ dv′
)
d∗y0 dvn−1,

where d∗y′ =
∏n−2

i=0 d∗yi and dv′ =
∏n−2

j=1 dvj . Since the central character of Πn is

trivial on F×, we have
Wϕ,φ(εny0h) = Wϕ,φ(εnh).

By the admissibility, the value φ̂n(−enεnh) = φ̂n(−y0(vn−1, 1)τ ) is nonzero only if

‖vn−1‖ ≤ |�m′ | is very small so that
(
1n−1

vn−1 1

)
acts trivially on Wϕ,φ. This allows

us to write the integral as the product of∫
φ̂n(−y0(vn−1, 1)τ )ηn+1(y

n
0 ) d

∗y0 dvn−1

and

ωΠn
(τ )

∫
An−1(F )

∫
Nn−1,−(F )

Wϕ,φ

(
εn−1y

′v′

1

)
|δn−1(y

′)|−1|y′|−1ηn+1(y
′) d∗y′ dv′,

where we have used the equality

εn = τ

(
εn−1

1

)
.

By definition Wϕ,φ

(
εn−1y

′v′

1

)
= W̃ϕ,φ

(
εn−1y

′v′) [cf. (7.13)], we may apply the

formula of the latter by Lemma 7.6,

Wϕ,φ

(
εn−1y

′v′

1

)
= |τ |dn

E

(∫
Bn−1,−(F )

φ′(b) db

)
ηn(y

′)|δn−1(y
′)|F

n−1∏
i=1

φ̂n−i(yi(vn−i−1, 1)τ ).
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Finally we note ηnηn+1 = η and ηn+1(y
n
0 ) = η(yn

2

0 ) = η(yn0 ) [cf. (7.4)]. This
completes the proof. �

8.2. Truncated local expansion of the spherical character IΠ. We are now
ready to deduce a truncated local expansion of IΠ around the origin. As we have
alluded to in the Introduction, this expansion is the relative version of a theorem
of Harish-Chandra. His result is a local expansion of the character of an admissible
representation of a p-adic reductive group in terms of the Fourier transform of
nilpotent orbital integrals. Here we obtain a truncated expansion that only involves
the regular unipotent element.

First we need to associate with f ∈ C ∞
c (Hn(E)×Hn+1(E)) with small support

around 1 a function on the Lie algebra s with small support around 0. To f = fn⊗
fn+1 ∈ C ∞

c (Hn(E)×Hn+1(E)) we have associated a function f̃ ∈ C ∞
c (Hn+1(E)) by

(4.16) and
˜̃
f ∈ C ∞

c (Sn+1(F )) by (4.17), (4.18). It is easy to see that f̃ = f∨
n ∗ fn+1

[cf. (7.2)]. The Cayley map [cf. (2.5)] defines a local homeomorphism near a
neighborhood of 0 ∈ s

c = cn+1 : s → Sn+1

X �→ (1 +X)(1−X)−1,

and its inverse is given by

c−1(x) = −(1− x)(1 + x)−1.

In particular, for a function Φ ∈ C ∞
c (Sn) (φ ∈ C ∞

c (s), resp.) with support in a
small neighborhood of 1 ∈ Sn+1 (0 ∈ s, resp.), we may consider it as a function on
s (Sn+1, resp.) denoted by c−1(Φ) (c(φ), resp.). We also have a morphism,

ι = ιn+1 : s → Hn+1(E),

X �→ 1 +X,

such that, wherever they are all defined, we have ν ◦ ι = c,

Hn+1(E)

ν

��
s

ι

������������ c �� Sn+1

where ν is as in (4.8).

Definition 8.4. We associate with f ∈ C∞
c (Hn(E) × Hn+1(E)) a function on s

denoted by f�,

f�(X) :=

∫
Hn(F )

f̃((1 +X)h) dh, X ∈ s,(8.5)

if n is even, and

f�(X) :=

∫
Hn(F )

f̃((1 +X)h)η′((1 +X)h) dh, X ∈ s,(8.6)

if n is odd, where f̃ is defined by (4.16).
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Then we have when det(1−X) �= 0

c
−1(

˜̃
f)(X) = f�(X), X ∈ s.

From now on, all the test functions at hand will be supported in suitable neighbor-
hoods of the obvious distinguished points of Hn(E)×Hn+1(E), Sn+1(F ) and s(F )
so that c is well-defined. In particular, we have f� ∈ C ∞

c (s).
We then consider s(F ) as a subspace of Mn+1(E). On Mn+1(E) we have a

bilinear pairing 〈X,Y 〉 := tr(XY ), under which the decomposition Mn+1(E) =
Mn+1(F )⊕ s(F ) is orthogonal. We then define the Fourier transform on s(F ) with
respect to the restriction of the above pairing,

f̂�(X) :=

∫
s

f�(Y )ψ(tr(XY )) dY.

Here the measure is normalized so that
̂̂
f�(X) = f�(−X) [cf. §2 (2.2)]. We will

consider the orbital integral (Definition 6.10) of the regular unipotent element

ξ− = ξn+1,− = τ

⎛⎜⎜⎝
0 0 · · · 0
1 0 0 · · ·
· · · 1 0 0
0 · · · 1 0

⎞⎟⎟⎠ ∈ s(F ).(8.7)

Theorem 8.5. Let Π be an irreducible unitary generic representation. Then for
any small neighborhood Ω of 1 ∈ G′(F ), there exists admissible f ∈ C∞

c (Ω) such
that for all s ∈ C

IΠ,s(f) = |τ |(dn+dn+1)/2
E ωΠn

(τ ) · μξ−(f̂�),

where ωΠn
is the central character of Πn, the constant dn =

(
n
3

)
is as in ( 4.23).

Remark 14. Note that μξ−(f̂�) depends on the choice of τ , but η′(Δ−(ξ−))μξ−(f̂�)
does not.

The proof will occupy the rest of this section by several steps.

8.3. Determine f�. We consider admissible functions of the form f
ϕn−1,φn−1
n ⊗

f
φ∨
n

n+1—note the change to φ∨
n to simplify our later exposition [cf. ( 7.2)]. Let P—not

to be confused with the mirabolic Pn—be the subgroup P of Hn+1(E) consisting
of elements ⎛⎜⎜⎝

∗ ∗ ∗ ∗
∗ · · · ∗ ∗
0 0 1 ∗
0 0 0 1

⎞⎟⎟⎠ ∈ Hn+1(E) ⊂ Mn+1(E).

The triple (ϕn−1, φn−1, φn) then defines a function Ψ on P by

Ψ

⎡⎣⎛⎝ x u
1

u′

1

⎞⎠⎤⎦ := ϕn−1(x)φn−1(u)φn(u
′),(8.8)

where x ∈ Hn−1(E), u ∈ Mn−1,1(E), u′ ∈ Mn,1(E). For simplicity, we write

fΨ = fϕn−1,φn−1
n ⊗ f

φ∨
n

n+1.(8.9)
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We also consider the Lie algebra p of P , consisting of⎛⎜⎜⎝
∗ ∗ ∗ ∗
∗ · · · ∗ ∗
0 0 0 ∗
0 0 0 0

⎞⎟⎟⎠ ∈ Mn+1(E).

Both p and P are considered as subsets of Mn+1(E). The map p �→ 1 + p from p

to P defines a local homeomorphism from �p(OE) to its image. The function Ψ is
supported in the subgroup of P (E),

P (�O)⊕ p(�O−
E) = 1 + p(�OE).

Note that 1+p(�OE) is a compact subgroup of Mn+1(E) and hence is unimodular.
So both the left and the right invariant measures on P (E) are restricted to a Haar
measure on it. Let (ϕn−1, φn−1, φn) be (m,m′)-admissible. We may write φi = φ+⊗
φ−
i (i = n − 1, n) according to the decomposition Mi,1(E) = Mi,1(F ) ⊕Mi,1(E

−)
and similarly for ϕn−1 viewed as a function on Mn−1(E). Write p = p+ ⊕ p− for
p± = p ∩Mn+1(E

±). Then we define Ψ+ and Ψ− as functions on 1 + p+(OF ) and
p−, respectively,

Ψ? = ϕ?
n−1 ⊗ φ?

n−1 ⊗ φ?
n, ? = ±,

as follows:

Ψ+

⎡⎣⎛⎝ x u
1

u′

1

⎞⎠⎤⎦ := ϕ+
n−1(x)φ

+
n−1(u)φ

+
n (u

′),(8.10)

where x ∈ Hn−1(F ), u ∈ Mn−1,1(F ), u′ ∈ Mn,1(F ), and

Ψ−

⎡⎣⎛⎝ x u
0

u′

0

⎞⎠⎤⎦ := ϕ−
n−1(x)φ

−
n−1(u)φ

−
n (u

′),(8.11)

where x ∈ Hn−1(E
−), u ∈ Mn−1,1(E

−), u′ ∈ Mn,1(E
−). We have

Ψ(p+ + p−) = Ψ+(p+)Ψ
−(p−), p+ ∈ 1 + p+, p− ∈ p−.(8.12)

Lemma 8.6. Assume that fΨ = f
ϕn−1,φn−1
n ⊗f

φ∨
n

n+1 is admissible. Then the function
Ψ− has the following invariance property:

Ψ−(p+p−) = Ψ−(p−)(8.13)

whenever p+ ∈ supp(Ψ+).

Proof. By the admissibility (8.1), we may and will assume that Ψ+ is a multiple of
the characteristic function of the subset of 1 + p+(OF ) consisting of the matrices

(xij) where xij ≡ δij(mod�m) when j ≤ n and xi,n+1 ≡ δi,n+1(mod�m′
). Any

p+ ∈ supp(Ψ+) is of the form⎛⎝ x u
1

u′

1

⎞⎠ , x ∈ 1 +�mMn−1(OF ), u ∈ �mMn−1,1(OF ).

To show (8.13), we may assume that p− ∈ supp(Ψ−). Now we note that

p+p− =

⎛⎝ x u
1

u′

1

⎞⎠⎛⎝x− u− v−
0 v′−

0

⎞⎠ =

⎛⎝xx− xu− xv− + uv′−
0 v′−

0

⎞⎠ .
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Now the invariance follows from Definition 7.2 (for φn), and Properties (iii), (iv) of
ϕn−1 ⊗ φn−1 in Prop. 7.5. �

Lemma 8.7. Fix Π and assume that fΨ = f
ϕn−1,φn−1
n ⊗ f

φ∨
n

n+1 is admissible for Π.
Then we have

fΨ
� (X) = c(Ψ+)

∫
p−

f�(X + p)Ψ−(p) dp,

where f� is the function on s associated to fn ⊗ fn+1 and

c(Ψ+) =

∫
1+p+(O)

Ψ+(p) dp(8.14)

is a constant.

Proof. We consider the case when n is odd; the case n even is similar and only
requires us to change notations in several places. By definition we have

f̃Ψ = (fn ∗ φn−1 ∗ ϕn−1)
∨ ∗ fφ∨

n
n+1 = ϕ∨

n−1 ∗ φ∨
n−1 ∗ f∨

n ∗ fφ∨
n

n+1.

Since fi (i = n, n+ 1) is a multiple of 11+r
EMi(OE) for some and

∫
f(g)dg = 1, we

may assume that f∨
n ∗ fφn

n+1 is the same as fφn

n+1,

f̃Ψ = ϕ∨
n−1 ∗ φ∨

n−1 ∗ f
φ∨
n

n+1 = ϕ∨
n−1 ∗ φ∨

n−1 ∗ φ∨
n ∗ fn+1.

Explicitly, this reads

f̃Ψ(g) =

∫
ϕn−1(x)φn−1(u)f

φ∨
n

n+1(uxg) dx du =

∫
P

Ψ(p)fn+1(pg) dp.

Let us denote the right hand side by fΨ
n+1(g). Our choice of fn+1 also implies that

fn+1 is conjugate invariant under 1 +�Mn+1(OE),

fn+1(hgh
−1) = fn+1(g), h ∈ 1 +�Mn+1(OE).(8.15)

By the support condition, fΨ
� (X) vanishes unless X ∈ s(OF ). We thus assume that

X ∈ s(OF ). Then by definition and the support condition of Ψ, we have

fΨ
� (X) =

∫
Hn+1(F )

∫
P (E)

Ψ(p)fn+1(p(1 +X)h) dp dh

=

∫
Hn+1(F )

∫
p−

∫
P (F )

Ψ(p+(1 + p−))fn+1(p+(1 + p−)(1 +X)h) dp+ dp− dh.

Note that Ψ(p+(1+p−)) = Ψ+(p+)Ψ
−(p+p−) [cf. (8.12)] and Ψ−(p+p−) = Ψ−(p−)

[cf. (8.13)]. Together with the conjugate invariance (8.15), we have

fΨ
� (X) =

∫
Hn+1(F )

∫
p−

∫
P (F )

Ψ+(p+)Ψ
−(p−)fn+1((1 + p−)(1 +X)hp+) dp+ dp− dh

=

∫
Hn+1(F )

∫
p−

∫
P (F )

Ψ+(p+)Ψ
−(p−)fn+1((1 + p−)(1 +X)h) dp+ dp− dh

= c(Ψ+)

∫
Hn+1(F )

∫
p−

Ψ−(p−)fn+1((1 + p−)(1 +X)h) dp− dh.

Note that

(1 + p−)(1 +X) = (1 + p−X)(1 + (1 + p−X)−1(p− +X))



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 601

and (1 + p−X) ∈ 1 +�Mn+1(OF ) ⊂ Hn+1(F ). We have∫
Hn+1(F )

∫
p−

Ψ−(p−)fn+1((1 + p−)(1 +X)h) dp− dh

=

∫
Hn+1(F )

∫
p−

Ψ−(p−)fn+1((1 + (1 + p−X)−1(p− +X))h) dp− dh.

Compared to the definition of f� for f = fn ⊗ fn+1, we obtain

fΨ
� (X) = c(Ψ+)

∫
p−

Ψ−(p−)f�((1 + p−X)−1(p− +X)) dp−.

Finally note that f�(X) is a multiple of 1rs(OF ) for some r > 1. It follows that

f�(X) = f�(hX) for any h ∈ 1 +�Mn(OF ). Since p− ∈ supp(Ψ−) ⊂ p−(�O) and
X ∈ s(O), we therefore obtain

fΨ
� (X) = c(Ψ+)

∫
p−

Ψ−(p−)f�(p− +X) dp−.

This completes the proof. �

8.4. Local constancy of the orbital integral and a formula for the regular
nilpotent orbital integral. To compare with the unitary group case in the next

section, we need to understand the orbital integral of f̂Ψ
� in Lemma 8.7, at least

around zero. We show that the orbital integral is locally constant around zero.
This constant is essentially given by the regular unipotent orbital integral [for ξ−

defined by (8.7)] of Fourier transform f̂Ψ
� of fΨ

� on s.

Lemma 8.8. Fix any m admissible function (ϕn−1, φn−1).

(1) For an arbitrarily large compact neighborhood Z of 0 ∈ s, there exists large

enough (m,m′, r) and an (m,m′, r)-admissible function fΨ = f
ϕn−1,φn−1
n ⊗

f
φ∨
n

n+1, such that the orbital integral η′(Δ−(X))O(X, f̂Ψ
� ) is a (nonzero) con-

stant for regular semisimple X ∈ Z and this constant is equal to

η′(Δ−(ξ−))μξ−(f̂
Ψ
� ).

(2) Let fΨ be as in (1). Then the regular unipotent orbital integral μξ−(f̂
Ψ
� ) is

equal to

c(Ψ+)|δn,E(εn)|−1/2
n−1∏
i=1

φ
′−
i (0)

×
∫
An(F )Nn,−(F )

n∏
i=1

φ̂−
i (−ai(vi−1, 1)τ )|δn(a)|−1η(a) d∗a dv,

where vi ∈ Mi,1(F ), and δn(a) is defined by ( 8.2).

Proof. Without loss of generality we may assume c(Ψ+) = 1. Assume that fΨ is
(m,m′, r)-admissible. By Lemma 8.7, when r is large enough, the function fΨ

� on

sn+1 is of the form Ψ− ⊗ φ
′−
n ⊗ φ−

n+1 corresponding to the decomposition

sn+1 = p
− ⊕M1,n(E

−)⊕M1,n+1(E
−).

More precisely we may write the function on s defined by

X �→ fΨ
� (−X)
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in the following form:

φ
′−
1 φ−

1 φ−
2 · · · φ−

n

φ
′−
2

...

...
. . .

φ
′−
n+1

We also write fΨ
� as the tensor product

ϕ−
n ⊗ φ−

n ⊗ φ
′−
n+1,

where ϕ−
n ∈ C ∞

c (sn). We recall their key properties for our computation below:

(i) For i = 1, . . . , n−1, φ
′−
i is a nonzero multiple of the characteristic function

of �mOE− ; each of φ
′−
n and φ

′−
n+1 is a nonzero multiple of the characteristic

function of �rOE− , normalized so that φ̂
′−
n (0) = ̂φ

′−
n+1(0) = 1.

(ii) For i = 1, . . . , n− 1, φi is in C ∞
c (Mi,1(E))†m; φn is in C∞

c (Mi,1(E))†m′.

(iii) The function ϕ̂−
n on sn is invariant under left and right multiplication by

1 +�mMn−1(OF ) [as a subgroup of Hn−1(F ), and hence of Hn(F )].

Back to the orbital integral, we may fix an arbitrarily large compact neighbor-
hood Z of 0 in the quotient of sn+1 by Hn. We use the following regular elements
[cf. §6, (6.13)]:

�(x, y) = τ

⎛⎜⎜⎜⎜⎝
0 · · · 0 xn yn
1 0 · · · xn−1 yn−1

0 1 0 · · · yn−2

· · · 0 1 x1 · · ·
0 · · · 0 1 y0

⎞⎟⎟⎟⎟⎠ ∈ sn+1,(8.16)

where (x, y) ∈ F 2n+1 and we may assume that Z is a compact neighborhood of 0
in F 2n+1. We also denote

�(x) = τ

⎛⎜⎜⎜⎜⎜⎝
0 · · · 0 xn

1 0
... xn−1

0 1 0
...

... 0 1 x1

⎞⎟⎟⎟⎟⎟⎠ ∈ sn.(8.17)

It suffices to show that, when we increase m,m′, r suitably, the orbital integral of
�(x, y) is a constant when (x, y) lies in the fixed compact set Z . We proceed in
three steps.

Step 1. To ease notation, we denote

f ′ = f̂Ψ
� .

By definition we have

O(�(x, y), f̂Ψ
� ) =

∫
Hn(F )

f̂Ψ
� (h−1�(x, y)h)η(h) dh =

∫
Hn(F )

f ′(h−1�(x, y)h)η(h) dh.

(8.18)
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We may write h ∈ H ′
n(F ) as

h = ankv, k ∈ NnHn−1, v =

(
1n−1

vn−1 1

)
, an ∈ F×.

Then the last row of h−1ξ−h is of the form

(an(vn−1, 1), y0)τ.

For the integrand f ′(h−1�(x, y)h) to be nonzero, an(vn−1, 1) must be in the support

of φ̂−
n . Since φn ∈ C ∞

c (Mn,1(E))†m′), we may assume that [cf. (7.15)]

‖vn−1‖ ≤ |�m′ |.

Now we claim that if h−1�(x)h lies in the support of ϕ̂−
n , then the last column

of h−1�(x)h ∈ sn is bounded by a polynomial of the norms of xi (1 ≤ i ≤ n) and
|�|−m, independent of r. To show this, suppose that g = h−1�(x)h lies in the

support of ϕ̂−
n . The same argument as in the previous paragraph shows that we

may find v =

(
1n−2

vn−2 1

)
∈ Nn−1,− ∈ Nn,− with ‖vn−2‖ ≤ |�|m, such that v−1gv is of

the form ⎛⎜⎜⎜⎜⎝
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 αn−1 ∗

⎞⎟⎟⎟⎟⎠ .

Since ϕ̂−
n is invariant under both left and right multiplication by 1+�mMn−1(OF ),

the above v−1gv again lies in the support of ϕ̂−
n . Continuing this process, we may

find an element v ofNn−1,−(F ) ⊂ Nn(F ) whose off-diagonal entries all lie in�mOF ,
such that v−1gv is of the form⎛⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
α1 ∗ ∗ ∗ ∗
0 α2 ∗ ∗ ∗

0 0
. . . ∗ ∗

0 0 0 αn−1 ∗

⎞⎟⎟⎟⎟⎟⎠
and remains in the support of ϕ̂−

n . Since the functions φi, 1 ≤ i ≤ n − 1, lie in
C∞
c (Mi,1(E))†m, all |αi| (1 ≤ i ≤ n − 1) are equal to some constant multiple of

|�|−2m. Note that the xi’s are the coefficients of the characteristic polynomial of g
and hence of v−1gv. Now by Corollary 6.7 (taking transpose), it is easy to see that
each entry of the last column of v−1gv is a polynomial of the first n− 1 columns of
v−1gv, αi, α

−1
i ’s and the xi’s. This shows that the claim holds for the last column

of v−1gv and hence also for g itself since the off-diagonal entries of v are bounded
by |�|m. This proves the claim.

Now by the claim, there exists large enough m′
0 and r0 such that once m′ ≥ m′

0

and r ≥ r0, we have the following invariance property when (x, y) ∈ Z :

f ′(h−1�(x, y)h) = ϕ̂−
n (−k−1�(x)k)φ̂−

n (−an(vn−1, 1)τ )
̂φ
′−
n+1(h

−1yτ )(8.19)

if the left hand side is not zero [i.e., at least h−1�(x, y)h lies in the support of f ′].
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Step 2. We now may repeat the process and utilize the property (iii) [i.e., the

invariance of ϕ̂−
n under 1 +�mMn−1(OF )]. We write

h = uav, a =

⎛⎜⎝a1a2 · · · an
. . .

an

⎞⎟⎠ , u ∈ Nn(F ),

and write v ∈ Nn−(F ) as the product of
(
1n−i

vn−i 1

)
∈ Nn−i+1,−(F ) ⊂ Nn−(F ) for

1 ≤ i ≤ n− 1. In Step 1 we have seen that ‖vn−1‖ ≤ |�|m′. Since the functions φi,
1 ≤ i ≤ n− 1, lie in C ∞

c (Mi,1(E))†m, and by the property (iii), we may inductively
show that

‖vi‖ ≤ |�|m, 1 ≤ i ≤ n− 2.

We now view
⊗n+1

i=1 φ̂
′−
i as a function on the set of upper triangular elements

and then consider it as a function on sn+1 via the natural projection from sn+1

to the upper triangular elements. Then, when (x, y) ∈ Z , the orbital integral

O(�(x, y), f̂Ψ
� ) is equal to [cf. (8.18)]

∫ (n+1⊗
i=1

φ̂
′−
i

)
(−(ua)−1�(x, y)ua) du

n∏
i=1

φ̂−
i (−ai(vi−1, 1)τ )|δn(a)|−1η(a) d∗a dv,

(8.20)

where u ∈ Nn(F ), v ∈ Nn,−(F ).

Step 3. Note that u−1�(x, y)u is of the form

u−1�(x, y)u = τ

⎛⎜⎜⎜⎜⎝
∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗

⎞⎟⎟⎟⎟⎠ .

By Lemma 6.6, we may make a substitution to replace the integral over u in (8.20)
by an integral over u′ of elements of the form

u′ =

⎛⎜⎜⎝
∗ ∗ ∗ 0
1 ∗ ∗ 0
0 1 ∗ 0
0 0 1 0

⎞⎟⎟⎠ ∈ Hn(F ),(8.21)

and the measure du′ is induced by du,∫ (n+1⊗
i=1

φ̂
′−
i

)
((ua)−1�(x, y)ua) du =

∫ (n+1⊗
i=1

φ̂
′−
i

)⎛⎝a−1

⎛⎝u′ ∗ ∗
1 ∗ ∗
0 1 ∗

⎞⎠ aτ

⎞⎠ du′,

where the last two columns are polynomials of entries of u′, xi, yj , and n, by Lemma
6.6 (taking transpose). Now we may increase r suitably (i.e., increase the support

of φ̂
′−
n and ̂φ

′−
n+1) so that the constraints of the last columns on u′ are superfluous.

In particular, there exists r1 > r0 large enough (depending on m,m′, and Z ) such



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUTOMORPHIC PERIOD, THE RANKIN–SELBERG L-FUNCTION 605

that when r > r1 we have∫ (n+1⊗
i=1

φ̂
′−
i

)
((ua)−1�(x, y)ua) du = ̂φ

′−
n+1(0)φ̂

′−
n (0)

∫ (n−1⊗
i=1

φ̂
′−
i

)(
a−1u′aτ

)
du′.

This is independent of (x, y) ∈ Z . By (8.20), we conclude that the orbital integral

O(�(x, y), f̂Ψ
� ) is a constant and the constant is equal to the regular unipotent

orbital integral O(�(0, 0), f̂Ψ
� ) = μξ−(f̂

Ψ
� ). This finishes the proof of the first part

of the lemma.

To prove the second part of the lemma, it remains to evaluate the regular unipo-

tent orbital integral μξ−(f̂
Ψ
� ). First we note that φ̂

′−
n (0) = ̂φ

′−
n+1(0) = 1 by our

normalization. We make the substitution u′ �→ au′a−1 = Ad(a)u′ (equivalently,
u′
ij �→ u′

ij

∏
i<�≤j a� for 1 ≤ i ≤ n− 1). This yields∫ (n−1⊗

i=1

φ̂
′−
i

)
(a−1u′aτ ) du′ = det(Ad(a) : nn−1)

∫ (n−1⊗
i=1

φ̂
′−
i

)
(u′τ ) du′

= det(Ad(a) : nn−1)|τ |−(1+2+···+(n−2))/2
E

n−1∏
i=1

φ
′−
i (0).

[Or more explicitly det(Ad(a) : nn−1) =
∏n−1

i=1 |ai|(i−1)(n−i).] Here the factor

|τ |(1+2+···+(n−2))/2
E = |δn,E(εn)|1/2

is caused by the difference between the measures on Fτ and E−. We thus proved

that μO0
(f̂�) is equal to

|δn,E(εn)|−1/2
n−1∏
i=1

φ
′−
i (0)

∫
An(F )Nn,−(F )

n∏
i=1

φ̂−
i (−ai(vi−1, 1)τ )|δn(a)|−1η(a) d∗a dv.

[Or more explicitly, δn(a) = det(Ad(a) : nn))/ det(Ad(a) : nn−1) =
∏n−1

i=1 |ai|n−i.]
�

8.5. Proof of Theorem 8.5. We choose an admissible function fΨ = f
ϕn−1,φn−1
n ⊗

f
φ∨
n

n+1 for Π so that it also verifies the conditions Lemma 8.8. We decompose
ϕn−1, φn−1 as in Lemma 7.6 and similarly φn. Note that∫ n−1∏

i=0

φ̂n−i(−yi(vn−i−1, 1)τ )|δn(y)|−1η(y) d∗y dv,

=

(
n−1∏
i=0

φ̂+
n−i(0)

)∫ n−1∏
i=0

φ̂−
n−i(−yi(vn−i−1, 1)τ )|δn(y)|−1η(y) d∗y dv,

=

(
n∏

i=1

∫
Mi,1(F )

φ+
i (xi) dxi

)∫ n−1∏
i=0

φ̂−
n−i(−yi(vn−i−1, 1)τ )|δn(y)|−1η(y) d∗y dv,

where y ∈ An(F ), v ∈ Nn,−(F ) are as in (8.3) and (8.4). Moreover,∫
Bn−1,−(F )

φ′(b) db =
n−1∏
i=1

φ
′−
i (0)

n−1∏
i=1

∫
M1,i(F )

φ
′+
i (bi) dbi.
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It is clear that the constant in (8.14) is given by

c(Ψ+) =
n∏

i=1

∫
Mi,1(F )

φ+
i (xi) dxi

n−1∏
i=1

∫
M1,i(F )

φ
′+
i (bi) dbi.

Note that

|τ |(dn+dn+1)/2
E = |δn−1,E(εn−1)|1/2|δn,E(εn)|1/2 = |δn−1,E(εn−1)||δn,E(εn)|1/2.

Then the identity in Theorem 8.5 follows by comparing Prop. 8.3 with Lemma 8.8.
Moreover, we may choose such an admissible function with arbitrarily small support
by increasing (m,m′, r) and such that μξ−(f

Ψ
� ) �= 0.

9. Local character expansion in the unitary group case

9.1. Three ingredients from [51]. Let F be a non-Archimedean local field of
characteristic zero. We need to recall the main local results of [51]. There are
two isomorphism classes of Hermitian spaces W1,W2 of dimension n. Denote by
HWi

= U(Wi) the unitary group. We let Vi = Wi ⊕ Ee be the orthogonal sum of
Wi and a one-dimensional space Ee with norm 〈e, e〉 = 1. Denote by ui the Lie
algebra of U(Vi). We have a bijection of regular semisimple orbits (cf. (4.6) and
[51, §3.1])

Hn(F )\s(F )rs � HW1
(F )\u1(F )rs

∐
HW2

(F )\u2(F )rs.

A regular semisimple X ∈ s matches some Y ∈ ui if and only if

η(Δ(X/τ )) = η(disc(Wi)),(9.1)

where disc(Wi) ∈ F×/NE× is the discriminant of Wi. For an f ′ ∈ C ∞
c (s) and

a pair (f1, f2), fi ∈ C∞
c (ui), we say that f ′ matches (f1, f2), if for all matching

regular semisimple X ∈ s, Y ∈ ui, we have [cf. (6.14)]

η′(Δ+(X))O(X, f ′) = O(Y, fi),(9.2)

where η′ is a fixed choice of character E× → C× with restriction η′|F× = η.
Let W ∈ {W1,W2}. Analogous to the general linear group case (cf. Defini-

tion 8.4), with a function in a small neighborhood of 1 ∈ G = U(W ) × U(V ), we
associate a function on the Lie algebra u of U(V ). For f = fn ⊗ fn+1 ∈ C ∞

c (G),

we let f̃ be the function on U(V ) defined by

f̃(g) :=

∫
U(W )

fn(h)fn+1(hg) dh, g ∈ U(V ).

If f is supported in a small neighborhood Ω of 1 in G, then f̃ is supported in a

small neighborhood Ω̃ of 1 in U(V ). Since the Cayley map c : u → U(V ) is a local

homeomorphism around 0 ∈ u, we may denote ω = c−1(Ω̃) � Ω̃ and with f̃ we

associate a function denoted by f� = c−1(f̃) on u supported in ω. To connect the
smooth transfer on the groups to the one on Lie algebras, we need the following.

Lemma 9.1. Let f ′ ∈ C∞
c (G′(F )) and fi ∈ C∞

c (U(Wi) × U(Vi)) (i = 1, 2) be
matching functions [in the sense of §4, ( 4.14)] with support in a neighborhood of
the identity where the Cayley map is well-defined. Then the functions f ′

� ∈ C ∞
c (s)

and fi,� ∈ C∞
c (ui) (i = 1, 2) match.
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Proof. The support condition ensures that the associated functions f ′
�, fi,� are well-

defined. Then it remains to show the transfer factors are compatible,

η′(Δ+(X))O(X, f ′
�) = Ω(g)O(g, f ′),

where ν(g) = c(X) ∈ Sn+1(F ). This follows from the proof of [51, Lemma 3.5]. �

Now we consider only one Hermitian space W ∈ {W1,W2}, with the correspond-
ing groups U(W ), U(V ), and the Lie algebra u. We say that f ∈ C∞

c (u) and
f ′ ∈ C ∞

c (s) match if the equality (9.2) holds for all regular semisimple X matching
Y ∈ u.

In [51, Theorem 2.6] the following result is proved.

Theorem 9.2. For any f ∈ C ∞
c (u) there exists a matching f ′ ∈ C ∞

c (s) and
conversely.

Moreover, we have [51, Theorem 4.17].

Theorem 9.3. If the functions f and f ′ match, then so do ε(1/2, η, ψ)n(1+n)/2f̂

and f̂ ′.

An important ingredient of the proof of both theorems above is a local relative
trace formula on Lie algebra [51, Theorem 4.6]. Now we only need the one in the
unitary group case.

Theorem 9.4. For f1, f2 ∈ C∞
c (u), we have∫

u

f1(X)O(X, f̂2) dX =

∫
u

O(X, f̂1)f2(X) dX,

where the integrals are absolutely convergent.

9.2. A Hypothesis. We now return to the local spherical character in the unitary
group case. Let π be an irreducible admissible representation of G = U(V )×U(W ).
We use the measure on U(V ) determined by the self-dual measure on u via the
Cayley map. We call a subset Ω ⊂ G a U(W ) × U(W )-domain (associated to ω)
if there is an open and closed subset ω in the F points (H\u)(F ) of categorical
quotient H\u10 such that

• the Cayley map is defined on the preimage of ω in u and takes the preimage
of ω to Ω′ ⊂ U(V ).

• Ω is the preimage of Ω′ under the contraction map U(W )×U(V ) → U(V )
[given by (gn, gn+1) �→ gngn+1].

In particular, Ω is U(W )× U(W )-invariant, open and closed.
We consider the following:
Hypothesis (�) for π: there exist a neighborhood Ω ⊂ G of 1 ∈ G that is a

U(W )× U(W )-domain, and a function Φ ∈ C∞
c (u), such that

Φ(0) = 1,(9.3)

and for all f ∈ C ∞
c (Ω) ⊂ C ∞

c (G),

Jπ(f) =

∫
u

f�(X)O(X,Φ) dX.

10In our case, the categorical quotient H\u := SpecOH
u is an affine space, and the natural

morphism u → H\u induces a continuous map on the F -points: u(F ) → (H\u)(F ).
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Theorem 9.5. Assume that π is tempered and HomH(π,C) �= 0. Let φ be a matrix
coefficient of π such that ∫

H

φ(h) dh = 1.

Then the distribution Jπ is represented by the orbital integral of φ, as a function
on G,

G � g �→ O(g, φ).

Moreover, the orbital integral g �→ O(g, φ) is a bi-H-invariant function that is locally
L1 on G.

Proof. When π is tempered and HomH(π,C) �= 0, we have α �= 0 [cf. Property
(iii) after (1.3)]. Hence there exists φ such that

∫
H
φ(h)dh �= 0. Up to a scalar

multiplication, we may assume that
∫
H
φ(h)dh = 1. Then the theorem is proved

in [24]. �

Proposition 9.6. Assume that HomH(π,C) �= 0. If the group H = U(W ) is
compact or π is supercuspidal, then π verifies Hypothesis (�).

Proof. Assume first that π is supercuspidal. We choose an open and closed neigh-
borhood ω of 0 in the categorical quotient of u. Clearly we may choose such ω so
that the Cayley map is defined on the preimage of ω in u. Then the associated
U(W ) × U(W )-domain Ω is an open and closed neighborhood of 1 ∈ G. Let φ
be a matrix coefficient as in Theorem 9.5. We consider φΩ = φ · 1Ω where 1Ω is
the characteristic function of Ω. Since φ ∈ C∞

c (G) and Ω is open and closed, the

function φΩ also lies in C ∞
c (G). We now consider the function φ̃Ω which lies in

C∞
c (U(V )) and let Φ = φΩ,� ∈ C∞

c (u) be the corresponding function on u via the
Cayley map. It is important to note that we still have

Φ(0) = 1.(9.4)

Moreover, the measure on u is transferred to the measure on U(V ). Then Φ ∈
C∞
c (u) and for all functions f ∈ C ∞

c (G) with small support around 1,

Jπ(f) =

∫
g

f�(X)O(X,Φ) dX.

If H is compact (so that dimW ≤ 2 or E/F = C/R), then there is a nonzero
vector φ0 ∈ π fixed by H. Then for all f , we have

Jπ(f) = vol(H)

∫
G

f(g)〈π(g)φ0, φ0〉 dg

for a norm one φ0 ∈ πH . Set Φ(g) = vol(H)−1〈π(g)φ0, φ0〉. Then the same trunca-
tion as above completes the proof. �

We say that f is admissible if there is an admissible f ′ matching f .

Theorem 9.7. Assume that π verifies Hypothesis (�). Then there exist an ad-
missible functions f ∈ C ∞

c (G(F )) and a matching function f ′ ∈ C ∞
c (G′(F )) such

that

Jπ(f) = (η′(τ )/ε(1/2, η, ψ))n(n+1)/2η(disc(W ))μ̂ξ−(f
′
�) �= 0.
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Proof. Suppose that in Hypothesis (∗) we have a U(W )× U(W )-domain Ω associ-
ated to ω in the categorical quotient of u. Since the categorical quotient of s and
that of u are isomorphic, we also view ω as an open and closed set in the quotient
of s. Let f ′ ∈ C ∞

c (G′) be an (m,m′, r) admissible function and f ∈ C ∞
c (G) be a

matching function. We claim that we may choose an f supported in Ω. Indeed,
we may choose (m,m′, r) very large so that the support of f ′ is very small, say, so
that the image of the support of f ′

� in the categorical quotient of s is contained in

ω. Now we choose any f0 that matches f ′. Then we set f = f0 · 1Ω. Clearly the
function f has the same orbital integral as f0 and is supported in Ω. This proves
the claim.

Now we apply the local trace formula (Theorem 9.4)∫
u

f�(Y )O(Y,Φ) dY =

∫
u

O(Y, f̂�)Φ̌(Y ) dY,

where Φ̌ is the inverse of the Fourier transform. By the compatibility between the
Fourier transform and the smooth transfer (Theorem 9.3) and (9.2), we have

ε(1/2, η, ψ)n(n+1)/2O(Y, f̂�) = η′(Δ+(X))O(X, f̂ ′
�)(9.5)

for matching regular semisimple X and Y . Since Φ̌ has compact support, we
may choose a compact neighborhood Z of 0 ∈ s so that the image of Z in the
quotient Hn\s(F ) � H\u(F ) contains the image of supp(Φ̌). By Lemma 8.8, we

may choose an admissible function f ′ such that η′(Δ−(X))O(X, f̂ ′
�) is equal to a

nonzero constant η′(Δ−(ξ−))O(ξ−, f̂ ′
�) when X ∈ Z . Thus for regular semisimple

Y ∈ supp(Φ̌) we have

O(Y, f̂�) = ε(1/2, η, ψ)−n(n+1)/2η′(Δ+(X)/Δ−(X))η′(Δ−(ξ−))μξ−(f̂
′
�) �= 0.

By comparison with (9.1), we know that

η(Δ+(X)/Δ−(X)) = η(Δ+(X/τ )/Δ−(X/τ )) = η(Δ(X/τ )) = η(disc(W )).

We note that η′(Δ−(ξ−)) = η′(τ )n(n+1)/2. Therefore for all regular semisimple
Y ∈ supp(Φ̌), we have

O(Y, f̂�) = (η′(τ )/ε(1/2, η, ψ))n(n+1)/2η(disc(W ))μξ−(f̂
′
�) �= 0.

We obtain

Jπ(f) =

∫
u

O(X, f̂�)Φ̌(X) dX

= (η′(τ )/ε(1/2, η, ψ))n(n+1)/2η(disc(W ))μξ−(f̂
′
�) ·

∫
u

Φ̌(X) dX

= (η′(τ )/ε(1/2, η, ψ))n(n+1)/2η(disc(W ))μξ−(f̂
′
�) · Φ(0).

By Hypothesis (�) we have

Φ(0) = 1.

The theorem now follows. �

9.3. Completion of the Proof of Theorem 4.6: Cases (2)-(ii) and (2)-(iii).
It remains to prove cases (2)-(ii) and (2)-(iii), i.e., when v is nonsplit. If we choose
a suitable admissible function f ′ and a smooth transfer f , then the equality holds
for f, f ′ by Theorem 8.5, Prop. 9.6, and Theorem 9.7.
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9.4. Concluding remarks. Note that we only deal with πv which appears as a
local component of a global π. But we expect Conjecture 4.4 to hold in general (as
long as Πv is generic in order to define IΠv

).
We conclude with the following.

Conjecture 9.8. The spherical characters IΠ and Jπ are representable by a locally
L1 function which is smooth (locally constant in the non-Archimedean case) on an
open subset.

There should be a more complete analogue of the Harish-Chandra local charac-
ter expansion in our relative setting. Moreover, it seems that the spherical charac-
ter (if nonzero) should contain as much information as the usual character of the
representation.
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[26] Hervé Jacquet, Distinction by the quasi-split unitary group, Israel J. Math. 178 (2010),
269–324, DOI 10.1007/s11856-010-0066-1. MR2733072 (2011k:11073)

[27] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J.
Math. 105 (1983), no. 2, 367–464, DOI 10.2307/2374264. MR701565 (85g:11044)
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