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Abstract. We define the Heegner–Drinfeld cycle on the moduli stack of Drinfeld Shtukas of
rank two with r-modifications for an even integer r. We prove an identity between

(1) The r-th central derivative of the quadratic base change L-function associated to an

everywhere unramified cuspidal automorphic representation π of PGL2;

(2) The self-intersection number of the π-isotypic component of the Heegner–Drinfeld cycle.
This identity can be viewed as a function-field analog of the Waldspurger and Gross–Zagier

formula for higher derivatives of L-functions.
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1. Introduction

In this paper we prove a formula for the arbitrary order central derivative of a certain class of
L-functions over a function field F = k(X), for a curve X over a finite field k. The L-function
under consideration is associated to a cuspidal automorphic representation of PGL2,F , or rather,
its base change to a quadratic field extension of F . The r-th central derivative of our L-function
is expressed in terms of the intersection number of the “Heegner–Drinfeld cycle” on a moduli
stack denoted by ShtrG in the introduction, where G = PGL2. The moduli stack ShtrG is closely
related to the moduli stack of Drinfeld Shtukas of rank two with r-modifications. One important
feature of this stack is that it admits a natural fibration over the r-fold self-product Xr of the
curve X over Spec k
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The very existence of such moduli stacks presents a striking difference between a function field
and a number field. In the number field case, the analogous spaces only exist (at least for the
time being) when r ≤ 1. When r = 0, the moduli stack Sht0

G is the constant groupoid over k

BunG(k) ' G(F )\ (G(A)/K) , (1.1)

where A is the ring of adèles, and K a maximal compact open subgroup of G(A). The double
coset in the RHS of (1.1) remains meaningful for a number field F (except that one cannot
demand the archimedean component of K to be open). When r = 1 the analogous space in
the case F = Q is the moduli stack of elliptic curves, which lives over SpecZ. From such
perspectives, our formula can be viewed as a simultaneous generalization (for function fields) of
the Waldspurger formula [24] (in the case of r = 0) and the Gross–Zagier formula [12] (in the
case of r = 1).

Another noteworthy feature of our work is that we need not restrict ourselves to the leading
coefficient in the Taylor expansion of the L-functions: our formula is about the r-th Taylor
coefficient of the L-function regardless whether r is the central vanishing order or not. This
leads us to speculate that, contrary to the usual belief, central derivatives of arbitrary order of
motivic L-functions (for instance, those associated to elliptic curves) should bear some geometric
meaning in the number field case. However, due to the lack of the analog of ShtrG for arbitrary
r in the number field case, we could not formulate a precise conjecture.

Finally we note that, in the current paper, we restrict ourselves to everywhere unramified
cuspidal automorphic representations. One consequence is that we only need to consider the
even r case. Ramifications, particularly the odd r case, will be considered in subsequent work.

Now we give more details of our main theorems.

1.1. Some notation. Throughout the paper, let k = Fq be a finite field of characteristic p.
Let X be a geometrically connected smooth proper curve over k. Let ν : X ′ → X be a finite
étale cover of degree 2 such that X ′ is also geometrically connected. Let σ ∈ Gal(X ′/X) be the
nontrivial involution. Let F = k(X) and F ′ = k(X ′) be their function fields. Let g and g′ be
the genera of X and X ′, then g′ = 2g − 1.

We denote the set of closed points (places) of X by |X|. For x ∈ |X|, let Ox be the completed
local ring of X at x and let Fx be its fraction field. Let A =

∏′
x∈|X| Fx be the ring of adèles,

and O =
∏
x∈|X|Ox the ring of integers inside A. Similar notation applies to X ′. Let

ηF ′/F : F×\A×/O× // {±1}

be the character corresponding to the étale double cover X ′ via class field theory.
Let G = PGL2. Let K =

∏
x∈|X|Kx where Kx = G(Ox). The (spherical) Hecke algebra

H is the Q-algebra of bi-K-invariant functions C∞c (G(A)//K,Q) with the product given by
convolution.

1.2. L-functions. Let A = C∞c (G(F )\G(A)/K,Q) be the space of everywhere unramified Q-
valued automorphic functions for G. Then A is an H -module. By an everywhere unramified
cuspidal automorphic representation π of G(AF ) we mean an H -submodule Aπ ⊂ A that is
irreducible over Q.

For every such π, EndH (Aπ) is a number field Eπ, which we call the coefficient field of
π. Then by the commutativity of H , Aπ is a one-dimensional Eπ-vector space. If we extend
scalars to C, Aπ splits into one-dimensional HC-modules Aπ ⊗Eπ,ι C, one for each embedding
ι : Eπ ↪→ C, and each Aπ ⊗Eπ,ι C ⊂ AC is the unramified vectors of an everywhere unramified
cuspidal automorphic representation in the usual sense.

The standard (complete) L-function L(π, s) is a polynomial of degree 4(g−1) in q−s−1/2 with
coefficients in the ring of integers OEπ . Let πF ′ be the base change to F ′, and let L(πF ′ , s) be
the standard L-function of πF ′ . This L-function is a product of two L-functions associated to
cuspidal automorphic representations of G over F :

L(πF ′ , s) = L(π, s)L(π ⊗ ηF ′/F , s).
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Therefore L(πF ′ , s) is a polynomial of degree 8(g − 1) in q−s−1/2 with coefficients in Eπ. It
satisfies a functional equation

L(πF ′ , s) = ε(πF ′ , s)L(πF ′ , 1− s),
where the epsilon factor takes a simple form

ε(πF ′ , s) = q−8(g−1)(s−1/2).

Let L(π,Ad, s) be the adjoint L-function of π. Denote

L (πF ′ , s) = ε(πF ′ , s)
−1/2 L(πF ′ , s)

L(π,Ad, 1)
, (1.2)

where the the square root is understood as

ε(πF ′ , s)
−1/2 := q4(g−1)(s−1/2).

In particular, we have a functional equation:

L (πF ′ , s) = L (πF ′ , 1− s).
Consider the Taylor expansion at the central point s = 1/2:

L (πF ′ , s) =
∑
r≥0

L (r)(πF ′ , 1/2)
(s− 1/2)r

r!
,

i.e.,

L (r)(πF ′ , 1/2) =
dr

dsr

∣∣∣
s=0

(
ε(πF ′ , s)

−1/2 L(πF ′ , s)

L(π,Ad, 1)

)
.

If r is odd, by the functional equation we have

L (r)(πF ′ , 1/2) = 0.

Since L(π,Ad, 1) ∈ Eπ, we have L (πF ′ , s) ∈ Eπ[q−s−1/2, qs−1/2]. It follows that

L (r)(πF ′ , 1/2) ∈ Eπ · (log q)r.

The main result of this paper is to relate each even degree Taylor coefficient to the self-intersection
numbers of a certain algebraic cycle on the moduli stack of Shtukas. We give two formulations
of our main results, one using certain subquotient of the rational Chow group, and the other
using `-adic cohomology.

1.3. The Heegner–Drinfeld cycles. From now on, we let r be an even integer. In §5.2, we will
introduce moduli stack ShtrG of Drinfeld Shtukas with r-modifications for the group G = PGL2.
The stack ShtrG is a Deligne–Mumford stack over Xr and the natural morphism

πG : ShtrG // Xr

is smooth of relative dimension r, and locally of finite type. Let T = (ResF ′/F Gm)/Gm be the
non-split torus associated to the double cover X ′ of X.In §5.4, we will introduce the moduli stack
ShtµT of T -Shtukas, depending on the choice of an r-tuple of signs µ ∈ {±}r satisfying certain
balance conditions in §5.1.2. Then we have a similar map

πµT : ShtµT
// X ′r

which is a torsor under the finite Picard stack PicX′(k)/PicX(k). In particular, ShtµT is a proper
smooth Deligne–Mumford stack over Spec k.

There is a natural finite morphism of stacks over Xr

ShtµT
// ShtrG .

It induces a finite morphism

θµ : ShtµT
// Sht′rG := ShtrG ×Xr X ′r .

This defines a class in the Chow group

θµ∗ [ShtµT ] ∈ Chc,r(Sht′rG)Q.
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Here Chc,r(−)Q means the Chow group of proper cycles of dimension r, tensored over Q. See
§A.1 for details. In analogy to the classical Heegner cycles [12], we will call θµ∗ [ShtµT ] the Heegner–
Drinfeld cycle in our setting.

1.4. Main results: cycle-theoretic version. The Hecke algebra H acts on the Chow group

Chc,r(Sht′rG)Q as correspondences. Let W̃ ⊂ Chc,r(Sht′rG)Q be the sub H -module generated by
the Heegner–Drinfeld cycle θµ∗ [ShtµT ]. There is a bilinear and symmetric intersection pairing 1

〈·, ·〉Sht′rG
: W̃ × W̃ // Q. (1.3)

Let W̃0 be the kernel of the pairing, i.e.,

W̃0 =
{
z ∈ W̃

∣∣ (z, z′) = 0, for all z′ ∈ W̃ .
}

The pairing 〈·, ·〉Sht′rG
then induces a non-degenerate pairing on the quotient W := W̃/W̃0

(·, ·) : W ×W // Q . (1.4)

The Hecke algebra H acts on W . For any ideal I ⊂H , let

W [I] =
{
w ∈W

∣∣ I · w = 0
}
.

Let π be an everywhere unramified cuspidal automorphic representation of G with coefficient
field Eπ, and let λπ : H → Eπ be the associated character, whose kernel mπ is a maximal ideal
of H . Let

Wπ = W [mπ] ⊂W
be the λπ-eigenspace of W . This is an Eπ-vector space. Let IEis ⊂ H be the Eisenstein ideal
as defined in Definition 4.1 and define

WEis = W [IEis].

Theorem 1.1. We have an orthogonal decomposition of H -modules

W = WEis ⊕

(⊕
π

Wπ

)
, (1.5)

where π runs over the finite set of everywhere unramified cuspidal automorphic representation
of G, and Wπ is an Eπ-vector space of dimension at most one.

The proof will be given in §9.3.1. In fact one can also show that WEis is a free rank one
module over Q[PicX(k)]ιPic (for notation see §4.1.2), but we shall omit the proof of this fact.

The Q-bilinear pairing (·, ·) on Wπ can be lifted to an Eπ-bilinear symmetric pairing

(·, ·)π : Wπ ×Wπ
// Eπ (1.6)

where for w,w′ ∈ Wπ, (w,w′)π is the unique element in Eπ such that TrEπ/Q(e · (w,w′)π) =
(ew,w′).

We now present the cycle-theoretic version of our main result.

Theorem 1.2. Let π be an everywhere unramified cuspidal automorphic representation of G

with coefficient field Eπ. Let [ShtµT ]π ∈ Wπ be the projection of the image of θµ∗ [ShtµT ] ∈ W̃ in
W to the direct summand Wπ under the decomposition (1.5). Then we have an equality in Eπ

1

2(log q)r
|ωX |L (r) (πF ′ , 1/2) =

(
[ShtµT ]π, [ShtµT ]π

)
π
,

where ωX is the canonical divisor of X, and |ωX | = q− degωX .

The proof will be completed in §9.3.2.

1In this paper, the intersection pairing on the Chow groups will be denoted by 〈·, ·〉, and other pairings (the

ones on the quotient of the Chow groups, and the cup product pairing on cohomology) will be denoted by (·, ·).
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Remark 1.3. Assume that r = 0. Then our formula is equivalent to the Waldspurger formula
[24] for an everywhere unramified cuspidal automorphic representation π. More precisely, for
any nonzero φ ∈ πK , the Waldspurger formula is the identity

1

2
|ωX |L (πF ′ , 1/2) =

∣∣∣∫T (F )\T (A)
φ(t) dt

∣∣∣2
〈φ, φ〉Pet

,

where 〈φ, φ〉Pet is the Petersson inner product (4.10), and the measure on G(A) (resp. T (A)) is
chosen such that vol(K) = 1 (resp. vol(T (O)) = 1).

Remark 1.4. Our Eπ-valued intersection paring is similar to the Néron–Tate height pairing
with coefficients in [25, §1.2.4].

1.5. Main results: cohomological version. Let ` be a prime number different from p. Con-
sider the middle degree cohomology with compact support

V ′Q` = H2r
c ((Sht′rG)⊗k k,Q`)(r).

In the main body of the paper, we simply denote this by V ′. This vector space is endowed with
the cup product

(·, ·) : V ′Q` × V
′
Q`

// Q` .

Then for any maximal ideal m ⊂HQ` , we define the generalized eigenspace of V ′Q` with respect
to m by

V ′Q`,m = ∪i>0V
′
Q` [m

i].

We also define the Eisenstein part of V ′Q` by

V ′Q`,Eis = ∪i>0V
′
Q` [I

i
Eis].

We remark that in the cycle-theoretic version (cf. §1.4), the generalized eigenspace coincides
with the eigenspace because the space W is a cyclic module over the Hecke algebra.

Theorem 1.5 (see Theorem 7.16 for a more precise statement). We have an orthogonal decom-
position of HQ`-modules

V ′Q` = V ′Q`,Eis ⊕

(⊕
m

V ′Q`,m

)
, (1.7)

where m runs over a finite set of maximal ideals of HQ` whose residue fields Em := HQ`/m are
finite extensions of Q`, and each V ′Q`,m is an HQ`-module of finite dimension over Q` supported
at the maximal ideal m.

The action of HQ` on V ′Q`,m factors through the completion ĤQ`,m with residue field Em.

Since Em is finite étale over Q`, and ĤQ`,m is a complete local (hence henselian) Q`-algebra

with residue field Em, Hensel’s lemma implies that there is a unique section Em → ĤQ`,m (the

minimal polynomial of every element h ∈ Em over Q` has a unique root h ∈ ĤQ`,m whose

reduction is h). Hence each V ′Q`,m is also an Em-vector space in a canonical way. As in the

case of Wπ, using the Em-action on V ′Q`,m, the Q`-bilinear pairing on V ′Q`,m may be lifted to an
Em-bilinear symmetric pairing

(·, ·)m : V ′Q`,m × V
′
Q`,m

// Em .

Note that, unlike (1.5), in the decomposition (1.7) we can not be sure whether all m are auto-
morphic (i.e., the homomorphism H → Em is the character by which H acts on the unramified
line of an irreducible automorphic representation). However, for an everywhere unramified cus-
pidal automorphic representation π of G with coefficient field Eπ, we may extend λπ : H → Eπ
to Q` to get

λπ ⊗Q` : HQ`
// Eπ ⊗Q` ∼=

∏
λ|`Eπ,λ

where λ runs over places of Eπ above `. Let mπ,λ be the maximal ideal of HQ` obtained as the
kernel of the λ-component of the above map HQ` → Eπ,λ.
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To alleviate notation, we denote V ′Q`,mπ,λ simply by V ′π,λ, and denote the Eπ,λ-bilinear pairing

(·, ·)mπ,λ on V ′π,λ by

(·, ·)π,λ : V ′π,λ × V ′π,λ // Eπ,λ.

We now present the cohomological version of our main result.

Theorem 1.6. Let π be an everywhere unramified cuspidal automorphic representation of G
with coefficient field Eπ. Let λ be a place of Eπ above `. Let [ShtµT ]π,λ ∈ V ′π,λ be the projection

of the cycle class cl(θµ∗ [ShtµT ]) ∈ V ′Q` to the direct summand V ′π,λ under the decomposition (1.7).
Then we have an equality in Eπ,λ

1

2(log q)r
|ωX |L (r) (πF ′ , 1/2) =

(
[ShtµT ]π,λ, [ShtµT ]π,λ

)
π,λ
.

In particular, the RHS also lies in Eπ.

The proof will be completed in in §9.2.

1.6. Two other results. We have the following positivity result. This may be seen as an
evidence of the Hodge standard conjecture (on the positivity of intersection pairing) for a sub-
quotient of the Chow group of middle dimensional cycles on Sht′rG.

Theorem 1.7. Let Wcusp be the orthogonal complement of WEis in W (cf. (1.5)). Then the

restriction to Wcusp of the intersection pairing (·, ·) in (1.4) is positive definite.

Proof. The assertion is equivalent to the positivity for the restriction to Wπ of the intersection
pairing, for all π in (1.5). Fix such a π. Then the coefficient field Eπ is a totally real number
field because the Hecke operators H act on the positive definite inner product space A ⊗Q R
(under the Petersson inner product) by self-adjoint operators. For an embedding ι : Eπ → R,
we define

Wπ,ι := Wπ ⊗Eπ,ι R.
Extending scalars from Eπ to R via ι, the pairing (1.6) induces an R-bilinear symmetric pairing

(·, ·)π,ι : Wπ,ι ×Wπ,ι
// R.

It suffices to show that, for every embedding ι : Eπ → R, the pairing (·, ·)π,ι is positive definite.
The R-vector space Wπ,ι is at most one-dimensional, with a generator given by [ShtµT ]π,ι =
[ShtµT ]π ⊗ 1. The embedding ι gives an irreducible cuspidal automorphic representation πι with
R-coefficient. Then Theorem 1.2 implies that

1

2(log q)r
|ωX |L (r) (πι,F ′ , 1/2) =

(
[ShtµT ]π,ι, [ShtµT ]π,ι

)
π,ι
∈ R.

It is easy to see that L(πι,Ad, 1) > 0. By Theorem B.2, we have

L (r) (πι,F ′ , 1/2) ≥ 0.

It follows that (
[ShtµT ]π,ι, [ShtµT ]π,ι

)
π,ι
≥ 0.

This completes the proof. �

Another result is a “Kronecker limit formula” for function fields. Let L(η, s) be the (complete)
L-function associated to the Hecke character η.

Theorem 1.8. When r > 0 is even, we have

〈θµ∗ [ShtµT ], θµ∗ [ShtµT ]〉Sht′rG
=

2r+2

(log q)r
L(r)(η, 0).

The proof will be given in §9.1.1. For the case r = 0, see Remark 9.3.

Remark 1.9. To obtain a similar formula for the odd order derivatives L(r)(η, 0), we need
moduli spaces analogous to ShtµT and Sht′rG for odd r. We will return this in future work.

1.7. Outline of the proof of the main theorems.
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1.7.1. Basic strategy. The basic strategy is to compare two relative trace formulae. A relative
trace formula (abbreviated as RTF) is an equality between a spectral expansion and an orbital
integral expansion. We have two RTFs, an “analytic” one for the L-functions, and a “geometric”
one for the intersection numbers, corresponding to the two sides of the desired equality in
Theorem 1.6.

We may summarize the strategy of the proof into the following diagram

Analytic:
∑
u∈P1(F )−{1} Jr(u, f)

§2

∼Th 8.1 ⇒

Jr(f)
§4

Th 9.2 ⇒

∑
π Jr(π, f)

⇒Th 1.6

Geometric:
∑
u∈P1(F )−{1} Ir(u, f)

§6
Ir(f)

§7 ∑
m Ir(m, f)

(1.8)

The vertical lines mean equalities after dividing the first row by (log q)r.

1.7.2. The analytic side. We start with the analytic RTF. To an f ∈ HQ (or more generally,
C∞c (G(A))), one first associates an automorphic kernel function Kf on G(A) × G(A) and then
a regularized integral:

J(f, s) =

∫ reg

[A]×[A]

Kf (h1, h2)|h1h2|sη(h2) dh1 dh2.

Here A is the diagonal torus of G, and [A] = A(F )\A(A). We refer to §2.2 for the definition of
the weighted factors, and the regularization. Informally, we may view this integral as a weighted
(naive) intersection number on the constant groupoid BunG(k) (the moduli stack of Shtukas
with r = 0 modifications) between BunA(k) and its Hecke translation under f of BunA(k).

The resulting J(f, s) belongs to Q[q−s, qs]. For an f in the Eisenstein ideal IEis (cf. §4.1),
the spectral decomposition of J(f, s) takes a simple form: it is the sum of

Jπ(f, s) =
1

2
|ωX |L (πF ′ , s+ 1/2)λπ(f)

where π runs over all everywhere unramified cuspidal automorphic representations π of G with
Q`-coefficients (cf. Prop. 4.5). We define Jr(f) to be the r-th derivative

Jr(f) :=

(
d

ds

)r ∣∣∣
s=0

J(f, s).

We point out that in the case of r = 0, the relative trace formula in question was first
introduced by Jacquet [13], in his reproof of Waldspurger’s formula. In the case of r = 1, a
variant was first considered in [29] (for number fields).

1.7.3. The geometric side. Next we consider the geometric RTF. We consider the Heegner–
Drinfeld cycle θµ∗ [ShtµT ] and its translation by the Hecke correspondence given by f ∈ H , both
being cycles on the ambient stack Sht′rG. We define Ir(f) to be their intersection number

Ir(f) := 〈θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉Sht′rG
∈ Q, f ∈HQ.

To decompose this spectrally according to the Hecke action, we have two perspectives, one view-
ing the Heegner–Drinfeld cycle as an element in the Chow group modulo numerical equivalence,
the other considering the cycle class of the Heegner–Drinfeld cycle in the `-adic cohomology. In
either case, when f is in a certain power of IEis, the spectral decomposition (§7, or Theorem
1.5) expresses Ir(f) as a sum of

Ir(π, f) = λπ(f)
(

[ShtµT ]π, [ShtµT ]π

)
where π runs over all everywhere unramified cuspidal automorphic representations π of G with
Q`-coefficients. We remark that the method of the proof of the spectral decomposition in Theo-
rem 1.5 can potentially be applied to moduli of Shtukas for more general groups G, which should
lead to a better understanding of the cohomology of these moduli spaces.

We point out that here we use the same way as in [29] to set up the geometric RTF, although
in [29] only the case of r = 1 was considered. In the case r = 0, Jacquet used an integration of
kernel function to set up an RTF for the T -period integral, which is equivalent to our geometric
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RTF because in this case ShtµT and ShtrG become discrete stacks BunT (k) and BunG(k). Our
geometric formulation treats all values of r uniformly.

1.7.4. The key identity. In view of the spectral decompositions of both Ir(f) and Jr(f), to prove
the main Theorem 1.6 for all π simultaneously, it suffices to establish the following key identity
(cf. Theorem 9.2)

Ir(f) = (log q)−rJr(f) ∈ Q, for all f ∈HQ. (1.9)

This key identity also allows us to deduce Theorem 1.1 on the spectral decomposition of the
space W of cycles from the spectral decomposition of Jr. Theorems 1.2 then follows easily from
Theorem 1.6.

Since half of the paper is devoted to the proof of the key identity (1.9), we comment on its proof
in more detail. The spectral decompositions allow us to reduce to proving (1.9) for sufficiently
many functions f ∈ HQ, indexed by effective divisors on X with large degree compared to the
genus of X (cf. Theorem 8.1). Most of the algebro-geometric part of this paper is devoted to
the proof of the key identity (1.9) for those Hecke functions.

In §3, we interpret the orbital integral expansion of Jr(f) (the northwestern sum in (1.8))
as a certain weighted counting of effective divisors on the curve X. The geometric ideas used
in the part are close to those in the proof of various fundamental lemmas by Ngô [19] and by
the first-named author [26], although the situation is much simpler in the current paper. In
§6, we interpret the intersection number Ir(f) as the trace of a correspondence acting on the
cohomology of a certain variety. This section involves new geometric ideas that did not appear
in the treatment of the fundamental lemma type problems. This is also the most technical part
of the paper, making use of the general machinery on intersection theory reviewed or improved
in Appendix A.

After the preparations in §3 and §6, our situation can be summarized as follows. For an
integer d ≥ 0, we have fibrations

fN : Nd =
⊔
d

Nd −→ Ad, fM :Md −→ Ad,

where d runs over all quadruples (d11, d12, d21, d22) ∈ Z4
≥0 such that d11 + d22 = d = d12 + d21.

We need to show that the direct image complexes RfM,∗Q` and RfN ,∗Ld are isomorphic to
each other, where Ld is a local system of rank one coming from the double cover X ′/X. When d
is sufficiently large, we show that both complexes are shifted perverse sheaves, and are obtained
by middle extension from a dense open subset of Ad over which both can be explicitly calculated
(cf. Prop 8.2 and 8.5). The isomorphism between the two complexes over the entire base Ad
then follows by the functoriality of the middle extension. The strategy used here is the perverse
continuation principle coined by Ngô, which has already played a key role in all known geometric
proofs of fundamental lemmas, see [19] and [26].

Remark 1.10. One feature of our proof of the key identity (1.9) is that it is entirely global, in
the sense that we do not reduce to the comparison of local orbital integral identities, as opposed
to what one usually does when comparing two trace formulae. Therefore our proof is different
from Jacquet’s in the case r = 0 in that his proof is essentially local (this is inevitable because
he also considers the number field case).

Another remark is that our proof of (1.9) in fact gives a term-by-term identity of the orbital
expansion of both Jr(f) and Ir(f), as indicated in the left column of (1.8), although this is not
logically needed for our main results. However, such more refined identities (for more general G)
will be needed in the proof of the arithmetic fundamental lemma for function fields, a project
to be completed in near future [27].

1.8. A guide for readers. Since this paper uses a mixture of tools from automorphic repre-
sentation theory, algebraic geometry and sheaf theory, we think it might help orient the readers
by providing a brief summary of the contents and the background knowledge required for each
section.

First we give the Leitfaden.
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§2

�� ��

§5

�� ��

§4

��

§3

��

§6

��

§7

��

§8

��

§9

Section 2 sets up the relative trace formula following Jacquet’s approach [13] to the Wald-
spurger formula. This section is purely representation-theoretic.

Section 3 gives a geometric interpretation of the orbital integrals involved in the relative trace
formula introduced in §2. We express these orbital integrals as the trace of Frobenius on the
cohomology of certain varieties, in the similar spirit of the proof of various fundamental lemmas
([19], [26]). This section involves both orbital integrals and some algebraic geometry but not yet
perverse sheaves.

Section 4 relates the spectral side of the relative trace formula in §2 to automorphic L-
functions. Again this section is purely representation-theoretic.

Section 5 introduces the geometric players in our main theorem: moduli stacks ShtrG of
Drinfeld Shtukas, and Heegner–Drinfeld cycles on them. We give self-contained definitions of
these moduli stacks, so no prior knowledge of Shtukas is assumed, although some experience
with the moduli stack of bundles will help.

Section 6 is the technical heart of the paper, aiming to prove Theorem 6.5. The proof involves
studying several auxiliary moduli stacks and uses heavily the intersection-theoretic tools reviewed
and developed in Appendix A. The first-time readers may skip the proof and only read the
statement of Theorem 6.5.

Section 7 gives a decomposition of the cohomology of ShtrG under the action of the Hecke alge-
bra, generalizing the classical spectral decomposition for the space automorphic forms. The idea
is to remove the analytic ingredients from the classical treatment of spectral decomposition, and
to use solely commutative algebra (in particular, we crucially use the Eisenstein ideal introduced
in §4). For first-time readers, we suggest read §7.1, then jump directly to Definition 7.12 and
continue from there. What he/she will miss in doing this is the study of the geometry of ShtrG
near infinity (horocycles), which requires some familiarity with the moduli stack of bundles, and
the formalism of `-adic sheaves.

Section 8 combines the geometric formula for orbital integrals established in §3 and the alter-
native formula for the intersection numbers established in §6 to prove the key identity (1.9) for
most Hecke functions. The proofs in this section involve perverse sheaves.

Section 9 finishes the proofs of our main results. Assuming results from the previous sections,
most argument in this section only involves commutative algebra.

Both appendices can be read independently of the rest of the paper.
Appendix A reviews the intersection theory on algebraic stacks following Kresch [15], with two

key results that are used in §6 for the calculation of the intersection number of Heegner–Drinfeld
cycles. The first result, called the Octahedron Lemma (Theorem A.10), is an elaborated version
of the following simple principle: in calculating the intersection product of several cycles, one
can combine terms and change the orders arbitrarily. The second result is a Lefschetz fixed point
formula for certain correspondences, building on results of Varshavsky [22].

Appendix B proves a positivity result for central derivatives of automorphic L-functions,
assuming the generalized Riemann hypothesis in the case of number fields. The main body of
the paper only considers L-functions for function fields, for which the positivity result can be
proved in an elementary way (see Remark B.4).
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1.9. Further notation.

1.9.1. Function field notation. For x ∈ |X|, let $x be a uniformizer of Ox, kx be the residue
field of x, dx = [kx : k], and qx = #kx = qdx .The valuation map is a homomorphism

val : A× // Z

such that val($x) = dx. The normalized absolute value on A× is defined as

| · | : A× // Q×>0 ⊂ R×

a � // q−val(a)

.

Denote the kernel of the absolute value by

A1 = Ker(| · |).
We have the global and local zeta function

ζF (s) =
∏
x∈|X|

ζx(s), ζx(s) =
1

1− q−sx
.

Denote by Div(X) ∼= A×/O× the group of divisors on X.

1.9.2. Group-theoretic notation. Let G be an algebraic group over k. We will view it as an
algebraic group over F by extension of scalar. We will abbreviate [G] = G(F )\G(A). Unless
otherwise stated, the Haar measure on the group G(A) will be chosen such that the natural
maximal compact open subgroup G(O) has volume equal to one. For example, the measure on
A×, resp. G(A) is such that vol (O×) = 1, resp. vol(K) = 1.

1.9.3. Algebro-geometric notation. In the main body of the paper, all geometric objects are
algebraic stacks over the finite field k = Fq. For such a stack S, let FrS : S → S be the absolute
q-Frobenius endomorphism that raises functions to their q-th powers.

For an algebraic stack S over k, we write H∗(S ⊗k k) (resp. H∗c(S ⊗k k)) for the étale co-
homology (resp. étale cohomology with compact support) of the base change S ⊗k k with

Q`-coefficients. The `-adic homology H∗(S ⊗k k) and Borel-Moore homology HBM
∗ (S ⊗k k) are

defined as the graded dual of H∗(S ⊗k k) and H∗c(S ⊗k k) respectively. We use Db
c(S) to denote

the derived category of Q`-complexes for the étale topology of S, as defined in [18]. We use DS
to denote the dualizing complex of S with Q`-coefficients.

Acknowledgement. We thank Akshay Venkatesh for a key conversation that inspired our use
of the Eisenstein ideal, Dorian Goldfeld and Peter Sarnak for their help on Appendix B. We
thank Benedict Gross for his comments, Michael Rapoport for communicating us comments
from participants of ARGOS in Bonn, and Shouwu Zhang for carefully reading the first draft of
the paper and providing many useful suggestions.

Part 1. The analytic side

2. The relative trace formula

In this section we set up the relative trace formula following Jacquet’s approach [13] to the
Waldspurger formula.

2.1. Orbits. In this subsection F is allowed to be an arbitrary field. Let F ′ be a semisimple
quadratic F -algebra, i.e., it is either the split algebra F ⊕F or a quadratic field extension of F .
Denote by Nm : F ′ → F the norm map.

Denote G = PGL2,F and A the subgroup of diagonal matrices in G. We consider the action

of A×A on G where (h1, h2) ∈ A×A acts by (h1, h2)g = h−1
1 gh2. We define an A×A-invariant

morphism:

inv : G // P1
F − {1}

γ
� // bc

ad

(2.1)
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where

[
a b
c d

]
∈ GL2 is a lifting of γ. We say that γ ∈ G is A×A-regular semisimple if

inv(γ) ∈ P1
F − {0, 1,∞},

or equivalently all a, b, c, d are invertible in terms of the lifting of γ. Let Grs be the open
subscheme of A× A-regular semisimple locus. A section of the restriction of the morphism inv
to Grs is given by

γ : P1
F − {0, 1,∞} // G

u � // γ(u) =

[
1 u
1 1

]
. (2.2)

Now we consider the induced map on the F -points inv : G(F )→ P1(F )−{1}, and the action
of A(F ) × A(F ) on G(F ). Denote by Ors(G) = A(F )\Grs(F )/A(F ) the set of orbits in Grs(F )
under the action of A(F ) × A(F ). They will be called the regular semisimple orbits. It is easy
to see that the map inv : Grs(F )→ P1(F )− {0, 1,∞} induces a bijection

inv : Ors(G) −→ P1(F )− {0, 1,∞}.

A convenient set of representative of Ors(G) is given by

Ors(G) '
{
γ(u) =

[
1 u
1 1

] ∣∣∣∣ u ∈ P1(F )− {0, 1,∞}
}
.

There are six non-regular-semisimple orbits in G(F ), represented respectively by

1 =

[
1

1

]
, n+ =

[
1 1

1

]
, n− =

[
1
1 1

]
,

w =

[
1

1

]
, wn+ =

[
1

1 1

]
, wn− =

[
1 1
1

]
,

where the first three (the last three, resp.) have inv = 0 (∞, resp.)

2.2. Jacquet’s RTF. Now we return to the setting of the introduction. In particular, we have
η = ηF ′/F . In [13] Jacquet constructs an RTF to study the central value of L-functions of the
same type as ours (mainly in the number field case). Here we modify his RTF to study higher
derivatives.

For f ∈ C∞c (G(A)), we consider the automorphic kernel function

Kf (g1, g2) =
∑

γ∈G(F )

f(g−1
1 γg2), g1, g2 ∈ G(A). (2.3)

We will define a distribution, given by a regularized integral

J(f, s) =

∫ reg

[A]×[A]

Kf (h1, h2)|h1h2|sη(h2) dh1 dh2.

Here we recall that [A] = A(F )\A(A), and for h =

[
a

d

]
∈ A(A) we write for simplicity∣∣h∣∣ =

∣∣a/d∣∣, η(h) = η(a/d).

The integral is not always convergent but can be regularized in a way analogous to [13]. For an
integer n, consider the “annulus”

A×n :=

{
x ∈ A×

∣∣∣∣ val(x) = n

}
.

This is a torsor under the group A1 = A×0 . Let A(A)n be the subset of A(A) defined by

A(A)n =

{[
a

d

]
∈ A(A)

∣∣∣∣ a/d ∈ A×n
}
.
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Then we define, for (n1, n2) ∈ Z2,

Jn1,n2
(f, s) =

∫
[A]n1

×[A]n2

Kf (h1, h2)|h1h2|sη(h2) dh1 dh2. (2.4)

The integral (2.4) is clearly absolutely convergent and equal to a Laurent polynomial in qs.

Proposition 2.1. The integral Jn1,n2
(f, s) vanishes when |n1|+ |n2| is sufficiently large.

Granting this proposition, we then define

J(f, s) :=
∑

(n1,n2)∈Z2

Jn1,n2(f, s). (2.5)

This is a Laurent polynomial in qs.
The proof of Proposition 2.1 will occupy §2.3-2.5.

2.3. A finiteness lemma. For an (A×A)(F )-orbit of γ, we define

Kf,γ(h1, h2) =
∑

δ∈A(F )γA(F )

f(h−1
1 δh2), h1, h2 ∈ A(A). (2.6)

Then we have

Kf (h1, h2) =
∑

γ∈A(F )\G(F )/A(F )

Kf,γ(h1, h2). (2.7)

Lemma 2.2. The sum in (2.7) has only finitely many non-zero terms.

Proof. Denote by G(F )u the fiber of u under the (surjective) map (2.1)

inv : G(F ) −→ P1(F )− {1}.

We then have a decomposition of G(F ) as a disjoint union

G(F ) =
∐

u∈P1(F )−{1}

G(F )u.

There is exactly one (three, resp.) (A×A)(F )-orbit in G(F )a when u ∈ P1(F )−{0, 1,∞} (when
u ∈ {0,∞}, resp.). It suffices to show that for all but finitely many u ∈ P1(F ) − {0, 1,∞}, the
kernel function Kf,γ(u)(h1, h2) vanishes identically on A(A)×A(A).

Consider the map

τ :=
inv

1− inv
: G(A) −→ A.

The map τ is continuous and takes constant values on A(A)× A(A)-orbits. For Kf,γ(u)(h1, h2)
to be nonzero, the invariant τ(γ(u)) = u

1−u must be in the image of supp(f), the support of the

function f . Since supp(f) is compact, so is its image under τ . On the other hand, the invariant
τ(γ(u)) = u

1−u belongs to F . Since the intersection of a compact set supp(f) with a discrete

set F in A must have finite cardinality, the kernel function Kf,γ(u)(h1, h2) is nonzero for only
finitely many u. �

For γ ∈ A(F )\G(F )/A(F ), we define

Jn1,n2(γ, f, s) =

∫
[A]n1×[A]n2

Kf,γ(h1, h2)|h1h2|sη(h2) dh1 dh2. (2.8)

Then we have

Jn1,n2(f, s) =
∑

γ∈A(F )\G(F )/A(F )

Jn1,n2(γ, f, s).

By the previous lemma, the above sum has only finitely many nonzero terms. Therefore, to
show Prop. 2.1, it suffices to show

Proposition 2.3. For any γ ∈ G(F ), the integral Jn1,n2
(γ, f, s) vanishes when |n1| + |n2| is

sufficiently large.
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Granting this proposition, we may define the (weighted) orbital integral

J(γ, f, s) :=
∑

(n1,n2)∈Z2

Jn1,n2
(γ, f, s). (2.9)

To show Prop. 2.3, we distinguish two cases according to whether γ is regular semisimple.

2.4. Proof of Proposition 2.3: regular semisimple orbits. For u ∈ P1(F )−{0, 1,∞}, the
fiber G(F )u = inv−1(u) is a single A(F )×A(F )-orbit of γ(u), and the stabilizer of γ(u) is trivial.
We may rewrite (2.8) as

Jn1,n2
(γ(u), f, s) =

∫
A(A)n1

×A(A)n2

f(h−1
1 γ(u)h2)|h1h2|sη(h2) dh1 dh2. (2.10)

For the regular semisimple γ = γ(u), the map

ιγ : (A×A)(A) −→ G(A)

(h1, h2) 7−→ h−1
1 γh2

is a closed embedding. It follows that the function f ◦ ιγ has compact support, hence belongs to
C∞c ((A× A)(A)). Therefore, the integrand in (2.10) vanishes when |n1|+ |n2| � 0 (depending
on f and γ(u)).

2.5. Proof of Proposition 2.3: non-regular-semisimple orbits. Let u ∈ {0,∞}. We only
consider the case u = 0 since the other case is completely analogous. There are three orbit
representatives {1, n+, n−}.

It is easy to see that for γ = 1, we have for all (n1, n2) ∈ Z2,

Jn1,n2
(γ, f, s) = 0,

because η|A1 is a nontrivial character.
Now we consider the case γ = n+; the remaining case γ = n− is similar. Define a function

φ(x, y) = f

([
x y

1

])
, (x, y) ∈ A× × A. (2.11)

Then we have φ ∈ C∞c (A× × A). The integral Jn1,n2
(n+, f, s) is given by∫

A×n1
×A×n2

φ
(
x−1y, x−1

)
η(y)|xy|s d×x d×y, (2.12)

where we use the multiplicative measure d×x on A×. We substitute y by xy, and then x by x−1:∫
Z(n1,n2)

φ (y, x) η(xy)|x|−2s|y|s d×x d×y,

where
Z(n1, n2) =

{
(x, y) | x ∈ A(A)−n1

, x−1y ∈ A(A)n2

}
.

Since C∞c (A× × A) ' C∞c (A×) ⊗ C∞c (A), we may reduce to the case φ(x, y) = φ1(x)φ2(y)
where φ1 ∈ C∞c (A×), φ2 ∈ C∞c (A). Moreover, by writing φ1 as a finite linear combination, each
supported on a single A×n , we may even assume that supp(φ1) is contained in A×n , for some
n ∈ Z. The last integral is equal to(∫

A×n
φ1 (y) η(y)|y|s d×y

)(∫
A×−n1

∩A×−n2+n

φ2 (x) η(x)|x|−2s d×x

)
.

Finally we recall that, from Tate’s thesis, for any ϕ ∈ C∞c (A), the integral on an annulus∫
A×n

ϕ (x) η(x)|x|2s d×x,

vanishes when |n| � 0. We briefly recall how this is proved. It is clear if n � 0. Now assume
that n� 0. We rewrite the integral as∫

F×\A×n

∑
α∈F×

ϕ (αx) η(x)|x|2s d×x,
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The Fourier transform of ϕ, denoted by ϕ̂, still lies in C∞c (A). By the Poisson summation
formula, we have ∑

α∈F×
ϕ(αx) = −ϕ(0) + |x|−1ϕ̂(0) + |x|−1

∑
α∈F×

ϕ̂(α/x), (2.13)

By the boundedness of the support of ϕ̂, the sum over F× on the RHS vanishes when val(x) =
n � 0. Finally we note that the the integral of the remaining two terms on the RHS of (2.13)
vanishes because η is nontrivial on F×\A1.

This completes the proof of Prop. 2.3, and Prop. 2.1.

2.6. The distribution J. Now J(f, s) is a Laurent polynomial in qs. Consider the r-th deriva-
tive

Jr(f) :=

(
d

ds

)r ∣∣∣
s=0

J(f, s).

For γ ∈ A(F )\G(F )/A(F ), we define

Jr(γ, f) :=

(
d

ds

)r ∣∣∣
s=0

J(γ, f, s).

We then have an expansion (cf.(2.5))

J(f, s) =
∑

γ∈A(F )\G(F )/A(F )

J(γ, f, s),

and (cf. (2.9))

Jr(f) =
∑

γ∈A(F )\G(F )/A(F )

Jr(γ, f). (2.14)

We define

J(u, f, s) =
∑

γ∈A(F )\G(F )u/A(F )

J(γ, f, s), u ∈ P1(F )− {1}. (2.15)

and

Jr(u, f) =
∑

γ∈A(F )\G(F )u/A(F )

Jr(γ, f), u ∈ P1(F )− {1}. (2.16)

Then we have a slightly coarser decomposition than (2.14)

Jr(f) =
∑

u∈P1(F )−{1}

Jr(u, f). (2.17)

2.7. A special test function f = 1K .

Proposition 2.4. For the test function

f = 1K ,

we have

J(u,1K , s) =


L(η, 2s) + L(η,−2s) if u ∈ {0,∞},
1 if u ∈ k − {0, 1},
0 otherwise.

(2.18)

Proof. We first consider the case u ∈ P1(F )− {0, 1,∞}. In this case, we have

J(u,1K , s) =

∫
A××A×

1K

([
x−1 0

0 1

] [
1 u
1 1

] [
y 0
0 1

])
|xy|sη(y) d×x d×y

=
∑

x,y∈A×/O×
1K

([
x−1y x−1u
y 1

])
|xy|sη(y).
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The integrand is nonzero if and only if g =

[
x−1y x−1u
y 1

]
∈ K. This is equivalent to the

condition that g2
ij/ det(g) ∈ O, where {gij}1≤i,j≤2 are the entries of g. We have det(g) =

x−1y(1− u), therefore g ∈ K is equivalent to

x−1y(1− u)−1 ∈ O, x−1y−1u2(1− u)−1 ∈ O, xy(1− u)−1 ∈ O, and xy−1(1− u)−1 ∈ O. (2.19)

Multiplying the first and last condition we get (1− u)−1 ∈ O. Therefore 1− u ∈ F× must be a
constant function, i.e., u ∈ k − {0, 1}. This shows that J(u,1K , s) = 0 when u ∈ F − k.

When u ∈ k − {0, 1}, the conditions (2.19) become

x−1y ∈ O, x−1y−1 ∈ O, xy ∈ O, and xy−1 ∈ O.

These together imply that x, y ∈ O×. Therefore the integrand is nonzero only when both x and
y are in the unit coset of A×/O×, and the integrand is equal to 1 when this happens. This
proves J(u,1K , s) = 1 when u ∈ k − {0, 1}.

Next we consider the case u = 0. For f = 1K and γ = n+, we have in (2.11) φ = φ1 ⊗ φ2

where

φ1 = 1O× , φ2 = 1O.

Therefore we have

J(n+,1K , s) =

∫
A×

φ2(x)η(x)|x|−2s d×x = L(η,−2s).

Similarly we have

J(n−,1K , s) = L(η, 2s).

This proves the equality (2.18) for u = 0. The case for u =∞ is analogous. �

Corollary 2.5. We have

Jr(1K) =


4L(η, 0) + q − 2 = 4# JacX′ (k)

# JacX(k) + q − 2 r = 0;

2r+2
(
d
ds

)r ∣∣∣
s=0

L(η, s) r > 0 even;

0 r > 0 odd.

3. Geometric interpretation of orbital integrals

In this section, we will give a geometric interpretation the orbital integrals J(γ, f, s) (cf. (2.9))
as a certain weighted counting of effective divisors on the curve X, when f is in the unramified
Hecke algebra.

3.1. A basis for the Hecke algebra. Let x ∈ |X|. In the case G = PGL2, the local unramified
Hecke algebra Hx is the polynomial algebra Q[hx] where hx is the characteristic function of the

G(Ox)-double coset of

[
$x 0
0 1

]
, and $x ∈ Ox is a uniformizer. For each integer n ≥ 0,

consider the set Mat2(Ox)vx(det)=n of matrices A ∈ Mat2(Ox) such that vx(det(A)) = n. Let
Mx,n be the image of Mat2(Ox)vx(det)=n in G(Fx). Then Mx,n is a union of G(Ox)-double cosets.
We define hnx to be the characteristic function

hnx = 1Mx,n
. (3.1)

Then {hnx}n≥0 is a Q-basis for Hx.
Now consider the global unramified Hecke algebra H = ⊗x∈|X|Hx, which is a polynomial

ring over Q with infinitely generators hx. For each effective divisor D =
∑
x∈|X| nx · x, we can

define an element hD ∈H using

hD = ⊗x∈|X|hnxx (3.2)

where hnxx is defined in (3.1). It is easy to see that the set {hD|D effective divisor on X} is a
Q-basis for H .

The goal of the next few subsections is to give a geometric interpretation the orbital integral
J(γ, hD, s). We begin by defining certain moduli spaces.

3.2. Global moduli space for orbital integrals.
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3.2.1. For d ∈ Z, we consider the Picard stack PicdX of lines bundles over X of degree d. Note

that PicdX is a Gm-gerbe over its coarse moduli space. Let X̂d → PicdX be the universal family

of sections of line bundles, i.e., an S-point of X̂d is a pair (L, s), where L is a line bundle over
X × S such that degL|X×{t} = d for all geometric points t of S, and s ∈ H0(X × S,L).

When d < 0, X̂d
∼= PicdX since all global sections of all line bundles L ∈ PicdX vanish. When

d ≥ 0, let Xd = Xd//Sd be the d-th symmetric power of X. Then there is an open embedding

Xd ↪→ X̂d as the open locus of nonzero sections, with complement isomorphic to PicdX .
For d1, d2 ∈ Z, we have a morphism

âddd1,d2 : X̂d1 × X̂d2 −→ X̂d1+d2

sending ((L1, s1), (L2, s2)) to (L1 ⊗ L2, s1 ⊗ s2). The restriction of âddd1,d2 to the open subset
Xd1 ×Xd2 becomes the addition map for divisors addd1,d2 : Xd1 ×Xd2 → Xd1+d2 .

3.2.2. The moduli space Nd. Let d ≥ 0 be an integer. Let Σd be the set of quadruple of non-
negative integers d = (dij)i,j∈{1,2} satisfying d11 + d22 = d12 + d21 = d.

For d ∈ Σd, we consider the moduli functor Ñd classifying (K1,K2,K′1,K′2, ϕ) where

• Ki,K′i ∈ PicX with degK′i − degKj = dij .

• ϕ : K1 ⊕K2 → K′1 ⊕K′2 is an OX -linear map. We express it as a matrix

ϕ =

[
ϕ11 ϕ12

ϕ21 ϕ22

]
where ϕij : Kj → K′i.

• If d11 < d22, then ϕ11 6= 0 otherwise ϕ22 6= 0. If d12 < d21 then ϕ12 6= 0 otherwise ϕ21 6= 0.
Moreover, at most one of the four maps ϕij , i, j ∈ {1, 2} can be zero.

The Picard stack PicX acts on Ñd by tensoring each Ki and K′j with the same line bundle. Let

Nd be the quotient stack Ñd/PicX , which will turn out to be representable by a scheme over k.
We remark that the artificial-looking last condition in the definition of Nd is to guarantee that
Nd is separated.

3.2.3. The base Ad. Let Ad be the moduli stack of triples (∆, a, b) where ∆ ∈ PicdX , a and b are
sections of ∆ with the open condition that a and b are not simultaneously zero. Then we have
an isomorphism

Ad ∼= X̂d ×PicdX
X̂d − Zd (3.3)

where Zd ∼= PicdX is the image of the diagonal zero sections (0, 0) : PicdX ↪→ X̂d ×PicdX
X̂d.

We claim that Ad is a scheme. In fact, A is covered by two opens V = X̂d ×PicdX
Xd and

V ′ = Xd ×PicdX
X̂d. Both V and V ′ are schemes because the map X̂d → PicdX is schematic.

We have a map

δ : Ad −→ X̂d

given by (∆, a, b) 7→ (∆, a− b).

3.2.4. The open part A♥d . Later we will consider the open subscheme A♥d ⊂ Ad defined by the

condition a 6= b, i.e., the preimage of Xd under the map δ : Ad → X̂d.

3.2.5. To a point (K1,K2,K′1,K′2, ϕ) ∈ Ñd we attach the following maps

• a := ϕ11 ⊗ ϕ22 : K1 ⊗K2 → K′1 ⊗K′2;

• b := ϕ12 ⊗ ϕ21 : K1 ⊗K2 → K′2 ⊗K′1 ∼= K′1 ⊗K′2.

Both a and b can be viewed as sections of the line bundle ∆ = K′1 ⊗ K′2 ⊗ K−1
1 ⊗ K−1

2 ∈ PicdX .
Clearly this assignment (K1,K2,K′1,K′2, ϕ) 7→ (∆, a, b) is invariant under the action of PicX on

Ñd. Therefore we get a map

fNd : Nd −→ Ad.

The composition δ ◦ fNd : Nd → X̂d takes (K1,K2,K′1,K′2, ϕ) to det(ϕ) as a section of ∆ =

K′1 ⊗K′2 ⊗K−1
1 ⊗K−1

2 .
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3.2.6. Geometry of Nd. Fix d = (dij) ∈ Σd. For i, j ∈ {1, 2}, we have a morphism ij : Nd →
X̂dij sending (K1, · · · ,K′2, ϕ) to the section ϕij of the line bundle Lij := K′i ⊗K

−1
j ∈ Pic

dij
X . We

have canonical isomorphisms L11⊗L22
∼= L12⊗L21

∼= ∆ = K′1⊗K′2⊗K−1
1 ⊗K

−1
2 . Thus we get

a morphism

d = (ij)i,j : Nd −→ (X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21). (3.4)

Here the fiber product on the right side is formed using the maps X̂d11×X̂d22 → Picd11X ×Picd22X
⊗−→

PicdX and X̂d12 × X̂d21 → Picd12X ×Picd21X
⊗−→ PicdX .

Proposition 3.1. Let d ∈ Σd.

(1) The morphism d is an open embedding, and Nd is a geometrically connected scheme over
k.

(2) If d ≥ 2g′ − 1 = 4g − 3, Nd is smooth over k of dimension 2d− g + 1.

(3) We have a commutative diagram

Nd �
� d

//

fNd

��

(X̂d11 × X̂d22)×PicdX
(X̂d12 × X̂d21)

âddd11,d22×âddd12,d21
��

Ad �
�

// X̂d ×PicdX
X̂d

(3.5)

Moreover, the map fNd is proper.

Proof. (1) We abbreviate PicdX by P d. Let Zd ⊂ (X̂d11× X̂d22)×PicdX
(X̂d12× X̂d21) be the closed

substack consisting of ((Lij , sij) ∈ X̂dij )1≤i,j≤2 such that

• Either two of {sij}1≤i,j≤2 are zero;

• Or s11 = 0 if d11 < d22;

• Or s22 = 0 if d11 ≥ d22;

• Or s12 = 0 if d12 < d21;

• Or s21 = 0 if d12 ≥ d21.

By the definition of Nd, we have a Cartesian diagram

Nd
d
//

λ

��

(X̂d11 × X̂d22)×Pd (X̂d12 × X̂d21)− Zd

��

P d11−d12 × P d11 × P d21
ρ

// (P d11 × P d22)×Pd (P d12 × P d21)

Here λ sends (K1, · · · ,K′2, ϕ) to (X2 = K2 ⊗K−1
1 ,X ′1 = K′1 ⊗K−1

1 ,X ′2 = K′2 ⊗K−1
1 ), and ρ sends

(X2,X ′1,X ′2) to (X ′1,X ′2 ⊗ X−1
2 ,X ′1 ⊗ X−1

2 ,X ′2). Note that ρ is an isomorphism. Therefore d is

an isomorphism. Since the geometric fibers of λ are connected, and P d11−d12 × P d11 × P d21 is
geometrically connected, so is Nd.

The stack Nd is covered by four open substacks Uij , i, j ∈ {1, 2} where Uij is the locus where
only ϕij is allow to be zero. Each Uij is a scheme over k. In fact, for example, U11 is an open

substack of (X̂d11 × Xd22) ×Pd (Xd12 × Xd21), and the latter is a scheme since the morphism

X̂d11 → P d11 is schematic.
(2) We first show that Nd is smooth when d ≥ 2g′−1 = 4g−3. For this we only need to show

that Uij is smooth (see the proof of part (1) for the definition of Uij). By the definition of Nd,
ϕij is allowed to be zero only when dij ≥ d/2, which implies that dij ≥ 2g − 1. Therefore, we
need Uij to cover Nd only when dij ≥ 2g−1; otherwise ϕij is never zero and the rest of the Ui′,j′

still cover Nd. Therefore, we only need to prove the smoothness of Uij under the assumption
that dij ≥ d/2. Without loss of generality we argue for i = j = 1. Then d11 ≥ 2g − 1 implies
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that the Abel-Jacobi map AJd11 : X̂d11 → P d11 is smooth of relative dimension d11 − g + 1. We
have a Cartesian diagram

U11
//

��

X̂d11

AJd11
��

Xd22 ×Xd12 ×Xd21
// P d11

where the bottom horizontal map is given by (L22, s22,L12, s12,L21, s21) 7→ L12 ⊗ L21 ⊗ L−1
22 .

Therefore U11 is smooth over Xd22 ×Xd12 ×Xd21 with relative dimension d11 − g + 1, and U11

is itself smooth over k of dimension 2d− g + 1.
(3) The commutativity of the diagram (3.5) is clear from the definition of d. Finally we show

that fNd : Nd → Ad is proper. Note that Ad is covered by open subschemes V = X̂d×PdXd and

V ′ = Xd×Pd X̂d whose preimages under fNd are U11∪U22 and U12∪U21 respectively. Therefore
it suffices to show that fV : U11 ∪ U22 → V and fV ′ : U12 ∪ U21 → V ′ are both proper.

We argue for the properness of fV . There are two cases: either d11 ≥ d22 or d11 < d22.
When d11 ≥ d22, by the last condition in the definition of Nd, ϕ22 is never zero, hence

U11 ∪ U22 = U11. By part (2), the map fV becomes

(X̂d11 ×Xd22)×Pd (Xd12 ×Xd21) −→ X̂d ×Pd Xd.

Therefore it suffices to show that the restriction of the addition map

α = âddd11,d22 |X̂d11×Xd22 : X̂d11 ×Xd22 −→ X̂d

is proper. We may factor α as the composition of the closed embedding X̂d11×Xd22 → X̂d×Xd22

sending (L11, s11, D22) to (L11(D22), s11, D22) and the projection X̂d × Xd22 → X̂d, and the
properness of α follows.

The case d11 < d22 is argued in the same way. The properness of fV ′ is also proved in the
similar way. This finishes the proof of the properness of fNd . �

3.3. Relation with orbital integrals. In this subsection we relate the derivative orbital inte-
gral J(γ, hD, s) to the cohomology of fibers of fNd .

3.3.1. The local system Ld. Recall that ν : X ′ → X is a geometrically connected étale double
cover with the nontrivial involution σ ∈ Gal(X ′/X). Let L = (ν∗Q`)σ=−1. This is a rank one
local system on X with L⊗2 ∼= Q`. Since we have a canonical isomorphism H1(X,Z/2Z) ∼=
H1(PicnX ,Z/2Z), each PicnX carries a rank one local system Ln corresponding to L. By abuse of

notation, we also denote the pullback of Ln to X̂n by Ln. Note that the pullback of Ln to Xn

via the Abel-Jacobi map Xn → PicnX is the descent of L�n along the natural map Xn → Xn.
Using the map d (3.4), we define the following local system Ld on Nd:

Ld := ∗d(Ld11 �Q` � Ld12 �Q`).

3.3.2. Fix D ∈ Xd(k). Let AD ⊂ Ad be the fiber of Ad over D under the map δ : Ad → X̂d.
Then AD classifies triples (OX(D), a, b) in Ad with the condition that a − b is the tautological
section 1 ∈ Γ(X,OX(D)). Such a triple is determined uniquely by the section a ∈ Γ(X,OX(D)).
Therefore we get canonical isomorphisms (viewing the RHS as an affine spaces over k)

AD ∼= Γ(X,OX(D)). (3.6)

On the level of k-points, we have an injective map

invD : AD(k) ∼= Γ(X,OX(D)) ↪→ P1(F )− {1}
(OX(D), a, a− 1)↔ a 7−→ (a− 1)/a = 1− a−1.

Proposition 3.2. Let D ∈ Xd(k) and consider the test function hD defined in (3.2). Let
u ∈ P1(F )− {1}.
(1) If u is not in the image of invD, then J(γ, hD, s) = 0 for any γ ∈ A(F )\G(F )/A(F ) with

inv(γ) = u;
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(2) If u = invD(a) for some a ∈ AD(k) = Γ(X,OX(D)), and u /∈ {0, 1,∞} (i.e., a /∈ {0, 1}),
then

J(γ(u), hD, s) =
∑
d∈Σd

q(2d12−d)s Tr
(

Froba,
(
RfNd,∗Ld

)
a

)
.

(3) Assume d ≥ 2g′− 1 = 4g− 3. If u = 0 then it corresponds to a = 1 ∈ AD(k); if u =∞ then
it corresponds to a = 0 ∈ AD(k). In both cases we have∑

inv(γ)=u

J(γ, hD, s) =
∑
d∈Σd

q(2d12−d)s Tr
(

Froba,
(
RfNd,∗Ld

)
a

)
. (3.7)

Here the sum on the LHS is over the three irregular double cosets γ ∈ {1, n+, n−} if u = 0,
and over γ ∈ {w,wn+, wn−} if u =∞.

Proof. We first make some general construction. Let Ã ⊂ GL2 be the diagonal torus and let

γ̃ ∈ GL2(F ) − (Ã(F ) ∪ wÃ(F )) with image γ ∈ G(F ). Let α : Ã → Gm be the simple root[
a

d

]
7→ a/d. Let Z ∼= Gm ⊂ Ã be the center of GL2. We may rewrite J(γ, hD, s) as an

orbital integral on Ã(A)-double cosets on GL2(A) (cf. (2.10), (2.11), (2.12))

J(γ, hD, s) =

∫
∆(Z(A))\(Ã×Ã)(A)

h̃D(t′−1γ̃t)|α(t)α(t′)|sη(α(t)) dt dt′. (3.8)

Here for D =
∑
x nxx, h̃D = ⊗xh̃nxx is an element in the global unramified Hecke algebra for

GL2, where h̃nxx is the characteristic function of Mat2(Ox)vx(det)=nx , cf. §3.1.

Using the isomorphism Ã(A)/
∏
x∈|X| Ã(Ox) ∼= (A×/O×)2 ∼= Div(X)2 given by taking the

divisors of the two diagonal entries, we may further write the RHS of (3.8) as a sum over

divisors E1, E2, E
′
1, E

′
2 ∈ Div(X), up to simultaneous translation by Div(X). Suppose t ∈ Ã(A)

gives the pair (E1, E2) and t′ ∈ Ã(A) gives the pair (E′1, E
′
2), then the integrand h̃D(t′−1γ̃t)

takes value 1 if and only if the rational map γ̃ : O2
X 99K O2

X given by the matrix γ̃ fits into a
commutative diagram

O2
X

γ̃
// O2

X

OX(−E1)⊕OX(−E2)
ϕγ̃
//

?�

OO

OX(−E′1)⊕OX(−E′2)
?�

OO
(3.9)

Here the vertical maps are the natural inclusions, and ϕγ̃ is an injective map of OX -modules

such that det(ϕγ̃) has divisor D. The integrand h̃D(t′−1γ̃t) is zero otherwise.

Let ÑD,γ̃ ⊂ Div(X)4 be the set of quadruples of divisors (E1, E2, E
′
1, E

′
2) such that γ̃ fits into

a diagram (3.9) and det(ϕγ̃) has divisor D. Let ND,γ̃ = ÑD,γ̃/Div(X) where Div(X) acts by
simultaneous translation on the divisors E1, E2, E

′
1 and E′2.

We have |α(t)α(t′)|s = q− deg(E1−E2+E′1−E
′
2)s. Viewing η as a character on the idèle class

group F×\A×F /
∏
x∈|X|O×x ∼= PicX(k), we have η(α(t)) = η(E1)η(E2) = η(E1 −E′1)η(E2 −E′1).

Therefore

J(γ, hD, s) =
∑

(E1,E2,E′1,E
′
2)∈ND,γ̃

q− deg(E1−E2+E′1−E
′
2)sη(E1 − E′1)η(E2 − E′1). (3.10)

(1) Since u = 0 and ∞ are in the image of invD, we may assume that u /∈ {0, 1,∞}. For

γ ∈ G(F ) with invariant u, any lifting γ̃ of γ in GL2(F ) does not lie in Ã or wÃ. Therefore
the previous discussion applies to γ̃. Suppose J(γ, hD, s) 6= 0, then ND,γ̃ 6= ∅. Take a point
(E1, E2, E

′
1, E

′
2) ∈ ND,γ̃ , the map det(ϕγ̃) gives an isomorphism OX(−E′1 − E′2) ∼= OX(−E1 −

E2 +D). Taking a = ϕγ̃,11ϕγ̃,22 : OX(−E1 −E2)→ OX(−E′1 −E′2), then a can be viewed as a
section of OX(D) satisfying 1 − a−1 = inv(γ). Therefore u = inv(γ) = invD(a) is in the image
of invD.



20 ZHIWEI YUN AND WEI ZHANG

(2) When u /∈ {0, 1,∞}, recall γ(u) is the image of γ̃(u) =

[
1 u
1 1

]
. Let Nd,a be the fiber

of Nd over a ∈ AD(k). Let Na =
∐
d∈Σd

Nd,a. We have a map

νu : ND,γ̃(u) −→ Na(k)

(E1, E2, E
′
1, E

′
2) 7−→ (OX(−E1),OX(−E2),OX(−E′1),OX(−E′2), ϕγ̃(u)).

We show that this map is bijective by constructing an inverse. For (K1,K2,K′1,K′2, ϕij) ∈
Nd,a(k), we may assume K1 = OX (since we mod out by the action of PicX in the end).
Let S = |div(a)| ∪ |div(a − 1)| ∪ |D| be a finite collection of places of X. Then each ϕij is
an isomorphism over U = X − S. In particular, we get isomorphisms ϕ11 : OU ∼= K′1|U ,
ϕ21 : OU ∼= K′2|U and ϕ−1

22 ϕ21 : OU ∼= K2|U . Let E′1, E
′
2 and E2 be the negative of the divisors of

the isomorphisms ϕ11, ϕ21 and ϕ−1
22 ϕ21, viewed as rational maps between line bundles on X. Set

E1 = 0. Then we have Ki = OX(−Ei) and K′i = OX(−E′i) for i = 1, 2. The map ϕ guarantees
that the quadruple (E1 = 0, E2, E

′
1, E

′
2) ∈ ND,γ̃(u). This gives a map Na(k) → ND,γ̃(u), which

is easily seen to be inverse to νu.
By the Lefschetz trace formula, we have∑

d∈Σd

q(2d12−d)s Tr
(
Froba,

(
RfNd,∗Ld)a

))
=

∑
(K1,K2,K′1,K′2,ϕ)∈Na(k)

q(2d12−d)sη(D11)η(D12)

whereDij is the divisor of ϕij . Moreover, under the isomorphism νu, the term q− deg(E1−E2+E′1−E
′
2)s

corresponds to q(2d12−d)s where d12 = deg(D12). Therefore Part (2) follows from the bijectivity
of νu and (3.10).

(3) We treat the case u = 0 (i.e., a = 1), and the case u = ∞ is similar. Let N′D,n+
be the

set of triples of effective divisors (D11, D12, D22) such that D11 + D22 = D. Then we have a
bijection

ND,n+

∼−→ N′D,n+

(E1, E2, E
′
1, E

′
2) 7−→ (E1 − E′1, E2 − E′1, E2 − E′2).

Using this bijection, we may rewrite (3.10) as

J(n+, hD, s) =
∑

(D11,D12,D22)∈N′D,n+

q(2 deg(D12)−d)sη(D11)η(D12)

= q−ds
∑
D12≥0

q2s deg(D12)η(D12) ·
∑

D11+D22=D
D11,D22≥0

η(D11)

= q−dsL(−2s, η)
∑

0≤D11≤D

η(D11) (3.11)

Similarly, let N′D,n− be the set of triples of effective divisors (D11, D21, D22) such thatD11+D22 =

D. Then we have a bijection ND,n− ↔ N′D,n− and an identity

J(n−, hD, s) =
∑

(D11,D21,D22)∈N′D,n−

q(d−2 deg(D21))sη(D21)η(D22)

= qdsL(2s, η)
∑

0≤D22≤D

η(D22). (3.12)

We now introduce a subset N♥D,n+
⊂ N′D,n+

consisting of those (D11, D12, D22) such that

deg(D12) < d/2; similarly we introduce N♥D,n− ⊂ N′D,n− consisting of those (D11, D21, D22)

such that deg(D21) ≤ d/2. Then the same argument as Part (2) gives a bijection

νn± : N♥D,n+

∐
N♥D,n−

∼−→ Na(k) :=
∐
d∈Σd

Nd,a(k).
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Here the degree constraints deg(D12) < d/2 or deg(D21) ≤ d/2 come from the last condition in
the definition of Nd in §3.2.2.

Using the Lefschetz trace formula, we get∑
d∈Σd

q(2d12−d)s Tr
(
Froba,H

∗
c(Nd,a ⊗k k, Ld)

)
=

∑
(D11,D12,D22)∈N♥D,n+

q(2 deg(D12)−d)sη(D11)η(D12)

+
∑

(D11,D21,D22)∈N♥D,n−

q(d−2 deg(D21))sη(D21)η(D22)

= q−ds
∑

D12≥0,deg(D12)<d/2

q2 deg(D12)sη(D12)
∑

0≤D11≤D

η(D11) (3.13)

+qds
∑

D21≥0,deg(D21)≤d/2

q−2 deg(D21)sη(D21)
∑

0≤D22≤D

η(D22). (3.14)

The only difference between the term in (3.13) and the RHS of (3.11) is that we have restricted
the range of the summation to effective divisors D12 satisfying deg(D12) < d/2. However, since
η is a nontrivial idèle class character, the Dirichlet L-function L(s, η) =

∑
E≥0 q

− deg(E)sη(E) is

a polynomial in q−s of degree 2g − 2 < d/2. Therefore(3.13) is the same as (3.11). Similarly,
(3.14) is the same as (3.12). We conclude that∑

d∈Σd

q(2d12−d)s Tr
(
Froba,H

∗
c(Nd,a ⊗k k, Ld)

)
= J(n+, hD, s) + J(n−, hD, s). (3.15)

Finally, observe that
J(1, hD, s) = 0 (3.16)

because η restricts nontrivially to the centralizer of γ = 1. Putting together (3.15) and the
vanishing (3.16), we get (3.7). �

Corollary 3.3. For D ∈ Xd(k) and u ∈ P1(F )− {1}, we have

Jr(u, hD) =

{
(log q)r

∑
d∈Σd

(2d12 − d)r Tr
(

Froba,
(
RfNd,∗Ld

)
a

)
if u = invD(a), a ∈ AD(k);

0 otherwise.

4. Analytic spectral decomposition

In this section we express the spectral side of the relative trace formula in §2 in terms of
automorphic L-functions.

4.1. The Eisenstein ideal. Consider the Hecke algebra H = ⊗x∈|X|Hx. We also consider
the Hecke algebra HA for the diagonal torus A = Gm of G. Then HA = ⊗x∈|X|HA,x with

HA,x = Q[F×x /O×x ] = Q[tx, t
−1
x ], and tx stands for the characteristic function of $−1

x O×x , where
$x is a uniformizer of Fx.

Recall we have a basis {hD} for H indexed by effective divisors D on X. For fixed x ∈ |X|,
hx ∈Hx and Hx

∼= Q[hx] is a polynomial algebra with generator hx.

4.1.1. The Satake transform. To avoid introducing
√
q, we normalize the Satake transform in

the following way

Satx : Hx −→ HA,x

hx 7−→ tx + qxt
−1
x

where qx = #kx. Consider the involution ιx on HA,x sending tx to qxt
−1
x . Then Satx identifies

Hx with the subring of ιx-invariants of HA,x. This normalization of the Satake transform is
designed to make it compatible with constant term operators, see Lemma 7.8. Let

Sat : H −→HA

be the tensor product of all Satx.
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4.1.2. We have natural homomorphisms between abelian groups:

A×/O×

��

' // Div(X)

��

F×\A×/O× ' // PicX(k).

In particular, the top row above gives a canonical isomorphism HA = Q[A×/O×] ∼= Q[Div(X)],
the group algebra of Div(X).

Define an involution ιPic on Q[PicX(k)] by

ιPic(1L) = qdegL1L−1 .

Here 1L ∈ Q[PicX(k)] is the characteristic function of the point L ∈ PicX(k). Since the action
of ⊗xιx on HA

∼= Q[Div(X)] is compatible with the involution ιPic on Q[PicX(k)] under the
projection Q[Div(X)]→ Q[PicX(k)], we see that the image of the composition

H
Sat−−→HA

∼= Q[Div(X)]� Q[PicX(k)]

lies in the ιPic-invariants. Therefore the above composition gives a ring homomorphism

aEis : H −→ Q[PicX(k)]ιPic =: HEis. (4.1)

Definition 4.1. We define the Eisenstein ideal IEis ⊂ H to be the kernel of the ring homo-
morphism aEis in (4.1).

The ideal IEis is the analog of the Eisenstein ideal of Mazur in the function field setting.
Taking the spectra we get a morphism of affine schemes

Spec(aEis) : ZEis := SpecQ[PicX(k)]ιPic −→ Spec H .

Lemma 4.2. (1) For any x ∈ |X|, under the ring homomorphism aEis, Q[PicX(k)]ιPic is finitely
generated as an Hx-module.

(2) The map aEis is surjective, hence Spec(aEis) is a closed embedding. 2

Proof. (1) We have an exact sequence 0 → JacX(k) → PicX(k) → Z → 0 with JacX(k) finite.
Let x ∈ |X|, then the map Z→ PicX(k) sending n 7→ OX(nx) has finite cokernel since JacX(k)
is finite. Therefore Q[PicX(k)] is finitely generated as a HA,x

∼= Q[tx, t
−1
x ]-module. On the other

hand, via Satx, HA,x is a finitely generated Hx-module (in fact a free module of rank two over
Hx). Therefore Q[PicX(k)] is a finitely generated module over the noetherian ring Hx, hence
so is its submodule Q[PicX(k)]ιPic .

(2) For proving surjectivity we may base change the situation to Q`. Let ZEis = SpecQ`[PicX(k)]ιPic ,
and we still use Spec(aEis) to denote ZEis → Spec HQ` . We first check that Spec(aEis) is injec-

tive on Q`-points. Identifying PicX(k) with the abelianized Weil group W (X)ab via class field

theory, the set ZEis(Q`) are in natural bijection with Galois characters χ : W (X) → Q×` up
to the equivalence relation χ ∼ χ−1(−1) (where (−1) means Tate twist). Suppose χ1 and χ2

are two such characters that pullback to the same homomorphism H → Q`[PicX(k)]
χi−→ Q`,

then χ1(aEis(hx)) = χ1(Frobx) + qxχ1(Frob−1
x ) = χ2(Frobx) + qxχ2(Frob−1

x ) = χ2(aEis(hx))
for all x. Consider the two-dimensional representation ρi = χi ⊕ χ−1

i (−1) of W (X). Then
Tr(ρ1(Frobx)) = Tr(ρ2(Frobx)) for all x. By Chebotarev density, this implies that ρ1 and ρ2

are isomorphic to each other (since they are already semisimple). Therefore either χ1 = χ2 or
χ1 = χ−1

2 (−1). In any case χ1 and χ2 define the same Q`-point of ZEis. We are done.

Next, we show that Spec(aEis) is injective on tangent spaces at Q`-points. Let Z̃Eis =

SpecQ`[PicX(k)]. Then Z̃Eis is a disjoint union of components indexed by characters χ0 :

JacX(k) → Q×` , and each component is a torsor under Gm. The scheme ZEis is the quotient

Z̃Eis // 〈ιPic〉. For a character χ : PicX(k) → Q×` with restriction χ0 to JacX(k), we may

identify its component Z̃χ0 with Gm in such a way that s ∈ Gm corresponds to the character

2This result is not used in an essential way in the rest of paper.
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χ · sdeg : PicX(k) → Q×` ,L 7→ χ(L)sdegL. The map Spec(aEis) pulled back to Z̃χ0
then gives a

morphism

b : Gm ∼= Z̃χ0
−→ ZEis −→ Spec HQ`

∼= A|X|

given by the formula

Gm 3 s 7−→
(
χ(tx)sdx + qxχ(t−1

x )s−dx
)
x∈|X| (4.2)

where dx = [kx : k]. The derivative db
ds at s = 1 is then the vector (dx(χ(tx) − qxχ(t−1

x )))x∈|X|.

This is identically zero only when χ(tx) = ±q1/2
x for all x, hence if and only if χ2 = qdeg = Q`(−1).

Therefore when χ2 6= Q`(−1), we have proved that the tangent map of b at s = 1 is nonzero,
hence a fortiori the tangent map of Spec(aEis) at the image of χ is nonzero. If χ2 = Q`(−1), χ

is a fixed point under ιPic. The component Z̃χ0 is then stable under ιPic which acts by s 7→ s−1,
and its image Zχ0

⊂ ZEis is a component isomorphic to A1 with affine coordinate z = s + s−1.
Therefore we may factor b into two steps

b : Z̃χ0
∼= Gm

s 7−→z=s+s−1

−−−−−−−−−→ A1 ∼= Zχ0

c−→ Spec HQ`
∼= A|X|

where c is the restriction of Spec(aEis) to Zχ0
. By chain rule we have dc

dz
dz
ds = db

ds . Using this we

see that the derivative dc
dz at z = s+ s−1 is the vector(

dxχ(tx)
sdx − s−dx
s− s−1

)
x∈|X|

(using that χ(tx) = qxχ(t−1
x )). Evaluating at s = 1 we get the vector (χ(tx)d2

x)x∈|X|, which is
nonzero. We have checked that the tangent map of Spec(aEis) is also injective at the image of

those points χ ∈ Z̃Eis(Q`) such that χ2 = Q`(−1). Therefore the tangent map of Spec(aEis) is
injective at all Q`-points. Combining the two injectivity results we conclude that Spec(aEis) is
a closed immersion and hence aEis is surjective. �

4.2. Spectral decomposition of the kernel function. Recall that we have defined the au-
tomorphic kernel function by (2.3). For a cuspidal automorphic representation π (in the usual
sense, i.e., an irreducible sub-representation of the C-values automorphic functions), we define
the π-component of the kernel function as (cf. [13, §7.1(1)])

Kf,π(x, y) =
∑
φ

π(f)φ(x)φ(y), (4.3)

where the sum runs over an orthonormal basis {φ} of π. The cuspidal kernel function is defined
as

Kf,cusp =
∑
π

Kf,π, (4.4)

where the sum runs over all cuspidal automorphic representations π of G. Note that this is a
finite sum.

Similarly, we define the special (residual) kernel function (cf. [13, §7.4])

Kf,sp(x, y) :=
∑
χ

π(f)χ(x)χ(y),

where the sum runs over all one-dimensional automorphic representations π = χ, indeed solely
characters of order two:

χ : G(A) // F×\A×/(A×)2 // {±1}.

Theorem 4.3. Let f ∈ IEis be in the Eisenstein ideal IEis ⊂H . Then we have

Kf = Kf,cusp + Kf,sp.

Proof. To show this, we need to recall the Eisenstein series (cf. [13, §8.4]). We fix an α ∈ A×
with valuation one and we then have a direct product

A× = A1 × αZ.
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For a character χ : F×\A1 → C×, we extend it as a character of F×\A×, by demanding χ(α) = 1.
Moreover, we define a character for any u ∈ C

χu : A× // C×

a
� // χ(a)|a|u

.

We also define

δB : B(A) // A×[
a b

d

]
� // a/d

, and
χ : B(A) // C×

b � // χ(a/d)
.

For u ∈ C, the (induced) representation ρχ,u of G(A) = PGL2(A) is defined to be the right
translation on the space Vχ,u of smooth functions

φ : G(A) −→ C

such that

φ (bg) = χ (b) |δB(b)|u+ 1
2φ(g), b ∈ B(A), g ∈ G(A).

Note that we have ρχ,u = ρχ,u+ 2πi
log q

. By restriction to K, the space Vχ,u is canonically identified

with the space of smooth functions

Vχ : =

{
φ : K −→ C, smooth

∣∣∣∣ φ (bk) = χ (b)φ(k), b ∈ K ∩B(A)

}
.

This space is endowed with a natural inner product

(φ, φ′) =

∫
K

φ(k)φ′(k)dk. (4.5)

Let φ ∈ Vχ, we denote by φ(g, u, χ) the corresponding function in Vχ,u, i.e.,

φ(g, u, χ) = χ (b)
∣∣∣δB(b)

∣∣∣u+ 1
2

φ(k)

if we write g = bk where b ∈ B(A), k ∈ K.
For φ ∈ Vχ, the Eisenstein series is defined as (the analytic continuation of)

E(g, φ, u, χ) =
∑

γ∈B(F )\G(F )

φ(γg, u, χ).

Let {φi}i be an orthonormal basis of the Hermitian space Vχ. We define

Kf,Eis,χ(x, y) :=
log q

2πi

∑
i,j

∫ 2πi
log q

0

(ρχ,u(f)φi, φj)E(x, φi, u, χ)E(y, φj , u, χ) du, (4.6)

where the inner product is given by (4.5) via the identification Vχ,u ' Vχ. We set (cf., [13, §8.4])

Kf,Eis :=
∑
χ

Kf,Eis,χ (4.7)

where the sum runs over all characters χ of F×\A1. Since our test function f is in the spherical
Hecke algebra H , for Kf,Eis,χ to be nonzero, the character χ is necessarily unramified every-
where. Therefore the sum over χ is in fact finite.

By [13, §7.1(4)], we have a spectral decomposition of the automorphic kernel function Kf
defined by (2.3)

Kf = Kf,cusp + Kf,sp + Kf,Eis. (4.8)

Therefore it remains to show that Kf,Eis vanishes if f lies in the Eisenstein ideal IEis.
We may assume that χ is unramified. Then we have

Kf,Eis,χ(x, y) =
log q

2πi

∫ 2πi
log q

0

(ρχ,u(f)φ, φ)E(x, φ, u, χ)E(y, φ, u, χ) du, (4.9)

where φ = 1K ∈ Vχ (we are taking the Haar measure on G(A) such that vol(K) = 1).
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Recall that the Satake transform Sat has the property that, for all unramified characters χ,
and all u ∈ C, we have

tr ρχ,u(f) = χu+1/2(Sat(f)),

where we extend χu+1/2 to a homomorphism HA,C ' C[Div(X)]→ C. Since χu : A(A)/(A(A)∩
K) ' Div(X)→ C× factors through PicX(k), we have

tr ρχ,u(f) = χu+1/2(aEis(f)),

Then we may rewrite (4.9) as

Kf,Eis,χ(x, y) =
log q

2πi

∫ 2πi
log q

0

χu+1/2(aEis(f))E(x, φ, u, χ)E(y, φ, u, χ) du.

In particular, if f lies in the Eisenstein ideal, then aEis(f) = 0, and hence the integrand vanishes.
This completes the proof. �

4.3. The cuspidal kernel. Let π be a cuspidal automorphic representation of G(A), endowed
with the natural Hermitian form given by the Petersson inner product:

〈φ, φ′〉Pet :=

∫
[G]

φ(g)φ′(g)dg, φ, φ′ ∈ π. (4.10)

We abbreviate the notation to 〈φ, φ′〉. For a character χ : F×\A× → C×, the (A,χ)−period
integral for φ ∈ π is defined as

Pχ(φ, s) :=

∫
[A]

φ(h)χ(h)
∣∣h∣∣s dh. (4.11)

We simply write P(φ, s) if χ = 1 is trivial. This is absolutely convergent for all s ∈ C.
The spherical character (relative to (A×A, 1× η)) associated to π is a distribution on G(A)

defined by

Jπ(f, s) =
∑
φ

P(π(f)φ, s)Pη(φ, s)

〈φ, φ〉
, f ∈ C∞c (G(A)), (4.12)

where the sum runs over an orthogonal basis {φ} of π. This is a finite sum, and the result is
independent of the choice of the basis.

Lemma 4.4. Let f be a function in the Eisenstein ideal IEis ⊂H . Then we have

J(f, s) =
∑
π

Jπ(f, s),

where the sum runs over all (everywhere unramified) cuspidal automorphic representations π of
G(A).

Proof. For ∗ = cusp, sp or π, we define J∗(f, s) by replacing Kf by Kf,∗ in both (2.4) and (2.5).
To make sense of this, we need to show the analogous statements to Proposition 2.1. When
∗ = sp, we note that, for any character χ : A× → C×, one of χ and χη must be nontrivial on
A1. It follows that for any (n1, n2) ∈ Z2 we have∫

[A]n1×[A]n2

χ(h1)χ−1(h2)|h1h2|sη(h2) dh1 dh2 = 0.

Consequently we have
Jsp(f, s) = 0.

When ∗ = π, we need to show that, for any φ ∈ π, the following integral vanishes if |n| � 0∫
[A]n

φ(h)χ(h)
∣∣h∣∣s dh.

But this follows from the fact that φ is cuspidal, particularly φ(h) = 0 if h ∈ [A]n and |n| � 0.
This also shows that this definition of Jπ(f, s) coincides with (4.12). The case ∗ = cusp follows
from the case for ∗ = π and the finite sum decomposition (4.4). We then have

Jcusp(f, s) =
∑
π

Jπ(f, s).
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The proof is complete, noting that, by Theorem 4.3, we have

J(f, s) = Jcusp(f, s) + Jsp(f, s).

�

Proposition 4.5. Let π be a cuspidal automorphic representation of G(A), unramified every-
where. Let λπ : H → C be the homomorphism associated to π. Then we have

Jπ(f, s) =
1

2
|ωX |L (πF ′ , s+ 1/2)λπ(f).

Proof. Write π = ⊗x∈|X|πx and let φ be a nonzero vector in the one-dimensional space πK .
Since f ∈H is bi-K-invariant, the sum in (4.12) is reduced to one term

Jπ(f, s) =
P(φ, s)Pη(φ, s)

〈φ, φ〉Pet
λπ(f) vol(K), (4.13)

where we may choose any measure on G(A), and then define the Petersson inner product using
the same measure. We will choose the Tamagawa measure on G(A) in this proof. To decompose
the Tamagawa measure into local measures, we fix a nontrivial additive character associated to
a nonzero meromorphic differential form c on X:

ψ : A // C× .

We note that the character ψ is defined by ψ(a) = ψFp

(∑
x∈|X| Trkx/Fp (Resx(ca))

)
where ψFp

is a fixed nontrivial character Fp → C×.
We decompose ψ =

∏
x∈|X| ψx where ψx is a character of Fx. This gives us a self-dual

measure dt = dtψx on Fx, a measure d×t = ζx(1) dt|t| on F×x , and the product measure on

A×. We then choose the Haar measure dgx = ζx(1)|det(gx)|−2
∏

1≤i,j≤2 dgij on GL2(Fx) where

gx = (gij) ∈ GL2(Fx). The measure on G(Fx) is then the quotient measure, and the Tamagawa
measure on G(A) decomposes dg =

∏
x∈|X| dgx. Note that under such a choice of measures, we

have

vol(O×) = vol(O) = |ωX |1/2, (4.14)

vol(K) = ζF (2)−1 vol(O)3 = ζF (2)−1|ωX |3/2. (4.15)

To compute the period integrals, we use the Whittaker models with respect to the character
ψ. Denote the Whittaker model of πx by Wψx . Write the ψ-Whittaker coefficient Wφ as a
product ⊗x∈|X|Wx, where Wx ∈Wψx .

Let L(πx× π̃x, s), resp. L(π× π̃, s) denote the local, resp. global Rankin–Selberg L-functions.
By [30, Prop. 3.1] there are invariant inner products θ\x on the Whittaker models Wψx

θ\x(Wx,W
′
x) :=

1

L(πx × π̃x, 1)

∫
F×x

Wx

([
a

1

])
W ′x

([
a

1

])
d×a,

such that

〈φ, φ〉Pet = 2
Ress=1 L(π × π̃, s)

vol(F×\A1)

∏
x∈|X|

θ\x(Wx,Wx).

Note that

Ress=1 L(π × π̃, s) = L(π,Ad, 1) Ress=1 ζF (s) = L(π,Ad, 1) vol(F×\A1).

Hence we have

〈φ, φ〉Pet = 2L(π,Ad, 1)
∏
x∈|X|

θ\x(Wx,Wx).

Moreover, when ψx is unramified, we have θ\x(Wx,Wx) = vol(Kx) = ζx(2)−1 (cf. loc. cit.).
In [30, Prop. 3.3] there are linear functionals λ\x on the Whittaker models Wψx

λ\x(Wx, χx, s) :=
1

L(πx ⊗ χx, s+ 1/2)

∫
F×x

Wx

([
a

1

])
χx(a)|a|s d×a
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such that
Pχ(φ, s) = L(π ⊗ χ, s+ 1/2)

∏
x∈|X|

λ\x(Wx, χx, s).

While in loc. cit. we only treated the case s = 0, the same argument goes through. Moreover,
when ψx and χx are unramified, we have λ\x = 1.

We now have

P(φ, s)Pη(φ, s)

〈φ, φ〉Pet
= |ωX |−1 L(πF ′ , s+ 1/2)

2L(π,Ad, 1)

∏
x∈|X|

ξx,ψx(Wx, ηx, s), (4.16)

where the constant |ωX |−1 is caused by the choice of measures (cf. (4.14)), and the local term
at a place x is

ξx,ψx(Wx, ηx, s) :=
λ\x(Wx,1x, s)λ

\
x(W x, ηx, s)

θ\x(Wx,Wx)
. (4.17)

Note that the local term ξx,ψx is now independent of the choice of the nonzero vector Wx in the

one-dimensional space WKx
ψx

. We thus simply write it as

ξx,ψx(ηx, s) := ξx,ψx(Wx, ηx, s).

When ψx is unramified, we have

ξx,ψx(ηx, s) = ζx(2).

We want to know how ξx,ψx depends on ψx. Let cx ∈ F×x , and denote by ψx,cx the twist
ψx,cx(t) = ψx(cxt).

Lemma 4.6. For any unramified character χx of F×x , we have

ξx,ψx,cx (χx, s) = χ−1(cx)|cx|−2s+1/2ξx,ψx(χx, s).

Proof. The self-dual measure on Fx changes according to the following rule

dtψx,cx = |cx|1/2 dtψx .

Then the multiplicative measure on F×x changes by the same multiple. Now we compare ξx,ψx
and ξx,ψx,cx using the same measure on F×x to define the integrals.

There is a natural isomorphism between the Whittaker models Wψx 'Wψx,cx
, preserving the

natural inner product θ\x. We write λ\ψx to indicate the dependence on ψx. Then we have for

any character χx : F×x → C×:

λ\ψx,cx
(Wx, χx, s) = χ−1(cx)|cx|−sλ\ψx(Wx, χx, s).

This completes the proof of Lemma 4.6. �

Let ψx have conductor c−1
x Ox. Then the idèle class of (cx)x∈|X| in PicX(k) is the class of

div(c) and hence the class of ωX . Hence we have∏
x∈|X|

|cx| = |ωX | = q− degωX = q−(2g−2).

This shows that the product in (4.16) is equal to∏
x∈|X|

ξx,ψx(ηx, s) = η(ωX)
∏
x∈|X|

ζx(2)|cx|−2s+1/2

= η(ωX)|ωX |1/2 ζF (2) q4(g−1)s.

We claim that
η(ωX) = 1.

In fact, this follows from

η(ωX) =
∏
x∈|X|

ε(ηx, 1/2, ψx) = ε(η, 1/2) = 1,

where ε(η, s) is in the functional equation (of the complete L-function) L(η, s) = ε(η, s)L(η, 1−s).
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We thus have

P(φ, s)Pη(φ, s)

〈φ, φ〉Pet
=

1

2
|ωX |−1/2 ζF (2) L (πF ′ , s+ 1/2).

Together with (4.13) and (4.15), the proof of Proposition 4.5 is complete. �

4.4. Change of coefficients. Let E be algebraic closed field containing Q. We consider the
space of E-valued automorphic functions AE = C∞c (G(F )\G(A)/K,E), and its subspace AE,0
of cuspidal automorphic functions. For an irreducible HE-module π in AE,0, let λπ : H → E
be the associated homomorphism. The L-function L (πF ′ , s + 1/2) is a well-defined element in
E[q−s, qs]. Recall that f ∈H , the distribution J(f, s) defines an element in Q[q−s, qs] (cf. §2).

Theorem 4.7. Let f be a function in the Eisenstein ideal IEis ⊂H . Then we have an equality
in E[q−s, qs]:

J(f, s) =
1

2
|ωX |

∑
π

L (πF ′ , s+ 1/2)λπ(f),

where the sum runs over all irreducible HE-module π in the E-vector space AE,0.

Proof. It suffices to show this when E = Q, and we fix an embedding Q ↪→ C. For f ∈ IEis,
then Theorem 4.3 on the kernel functions remains valid if we understand the sum in (4.4) over
π as HE-submodule. In fact, to prove Theorem 4.3, we are allowed to extend E = Q to C.

Since a cuspidal φ has compact support, the integral Pχ(φ, s) defined by (4.11) for χ ∈ {1, η}
reduces to a finite sum. In particular, it defines an element in E[q−s, qs]. Therefore the equalities
in Lemma 4.4 and Proposition 4.5 hold, when both sides are viewed as elements in E[q−s, qs],
and λπ as an E = Q-valued homomorphism. This completes the proof. �

Part 2. The geometric side

5. Moduli spaces of Shtukas

The notion of rank n Shtukas (or F -sheaves) with one upper and one lower modifications was
introduced by Drinfeld [6]. It was generalized to an arbitrary reductive group G and arbitrary
number and type of modifications by Varshavsky [21]. In this section, we will review the definition
of rank n Shtukas, and then specialize to the case of G = PGL2 and the case of T a nonsplit
torus. Then we define Heegner–Drinfeld cycles to set up notation for the geometric side of the
main theorem.

5.1. The moduli of rank n Shtukas.

5.1.1. We fix the following data.

• r ≥ 0 is an integer;

• µ = (µ1, ..., µr) is an ordered sequence of dominant coweights for GLn, where each µi is either
equal to µ+ = (1, 0, ..., 0) or equal to µ− = (0, ..., 0,−1).

To such a tuple µ we assign an r-tuple of signs

sgn(µ) = (sgn(µ1), · · · , sgn(µr)) ∈ {±1}r

where sgn(µ±) = ±1.

5.1.2. Parity condition. At certain places we will impose the following conditions on the data
(r, µ) above:

• r is even;

• Exactly half of µi are µ+, and the other half are µ−. Equivalently
∑r
i=1 sgn(µi) = 0.
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5.1.3. The Hecke stack. We denote by Bunn the moduli stack of rank n vector bundles on X.
By definition, for any k-scheme S, Bunn(S) is the groupoid of vector bundles over X×S of rank
n. It is well-known that Bunn is a smooth algebraic stack over k of dimension n2(g − 1).

Definition 5.1. Let µ be as in §5.1.1. The Hecke stack Hkµn is the stack whose S-points Hkµn(S)
is the groupoid of the following data:

(1) A sequence of vector bundles (E0, E1, · · · , Er) of rank n on X × S;

(2) Morphisms xi : S → X for i = 1, · · · , r, with graphs Γxi ⊂ X × S;

(3) Isomorphisms of vector bundles

fi : Ei−1|X×S−Γxi

∼−→ Ei|X×S−Γxi
, i = 1, 2, ..., r,

such that
• If µi = µ+, then fi extends to an injective map Ei−1 → Ei whose cokernel is an invertible

sheaf on the graph Γxi ;

• If µi = µ−, then f−1
i extends to an injective map Ei → Ei−1 whose cokernel is an invertible

sheaf on the graph Γxi .

For each i = 0, · · · , r, we have a map

pi : Hkµn −→ Bunn

sending (E0, · · · , Er, x1, · · · , xr, f1, · · · , fr) to Ei. We also have a map

pX : Hkµn −→ Xr

recording the points (x1, ..., xr) ∈ Xr.

Remark 5.2. The morphism (p0, pX) : Hkµn → Bunn×Xr is representable, proper and smooth
of relative dimension r(n − 1). Its fibers are iterated Pn−1-bundles. In particular, Hkµn is a
smooth algebraic stack over k because Bunn is.

5.1.4. The moduli stack of rank n Shtukas.

Definition 5.3. Let µ satisfy the conditions in §5.1.2. The moduli stack Shtµn of GLn-Shtukas
of type µ is the fiber product

Shtµn //

��

Hkµn

(p0,pr)

��

Bunn
(id,Fr)

// Bunn × Bunn

(5.1)

By definition, we have a morphism

πµn : Shtµn −→ Hkµn
pX−−→ Xr.

5.1.5. Let S be a scheme over k. For a vector bundle E on X × S, we denote

τE := (idX × FrS)∗E .

An object in the groupoid Shtµn(S) is called a Shtuka of type µ over S. Concretely, a Shtuka of
type µ over S is the following data:

(1) (E0, E1, · · · , Er;x1, · · · , xr; f1, · · · , fr) as in Definition 5.1;

(2) An isomorphism ι : Er ' τE0.

The basic geometric properties of Shtµn are summarized in the following theorem.

Theorem 5.4 (Drinfeld [6] for r = 2 ; Varshavsky [22, Prop 2.16, Thm 2.20] in general).

(1) The stack Shtµn is a Deligne–Mumford stack locally of finite type.

(2) The morphism πµn : Shtµn → Xr is separated and smooth of relative dimension r(n− 1).
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We briefly comment on the proof of the separatedness of πµn. Pick a place x ∈ |X|, and consider
the restriction of πµn to (X − {x})r. By [22, Prop 2.16(a)], Shtµn|(X−{x})r is an increasing union
of open substacks X1 ⊂ X2 ⊂ · · · where each Xi ∼= [Vi/Gi] is the quotient of a quasi-projective
scheme Vi over k by a finite discrete group Gi. These Vi are obtained as moduli of Shtukas
with level structures at x and then truncated using stability conditions. Therefore each map
Xi → (X −{x})r is separated, hence so is πµn|(X−{x})r . Since Xr is covered by open subschemes
of the form (X − {x})r, the map πµn is separated.

5.1.6. The Picard stack PicX of line bundles on X acts on Bunn and on Hkµn by tensoring on
the vector bundles.

Similarly, the groupoid PicX(k) of line bundles over X acts on Shtµn. For a line bundle L over
X and (Ei;xi; fi; ι) ∈ Shtµn(S), we define L · (Ei;xi; fi; ι) to be (Ei ⊗OX L;xi; fi ⊗ idL; ι′) where
ι′ is the isomorphism

Er ⊗OX L
ι⊗idL−−−−→ ((idX × FrS)∗E0)⊗OX L ∼= (idX × FrS)∗(E0 ⊗OX L) =

τ
(E0 ⊗OX L).

5.2. Moduli of Shtukas for G = PGL2. Now we move on to G-Shtukas where G = PGL2.
Let BunG be the moduli stack of G-torsors over X, then BunG = Bun2/PicX .

For each µ as in §5.1.1, we define

HkµG := Hkµ2/PicX .

For µ satisfying §5.1.2, we define

ShtµG := Shtµ2/PicX(k).

The actions of PicX and PicX(k) are those introduced in §5.1.6. The maps pi : Hkµ2 → Bun2

are PicX -equivariant, and induce maps

pi : HkµG −→ BunG, 0 ≤ i ≤ r. (5.2)

Lemma 5.5. For different choices µ and µ′ as in §5.1.1, there are canonical isomorphisms

Hkµ2
∼= Hkµ

′

2 and HkµG
∼= Hkµ

′

G . Moreover, these isomorphisms respect the maps pi in (5.2).

Proof. For µr+ := (µ+, · · · , µ+), we denote the corresponding Hecke stack by Hkr2. The S-points
of Hkr2 classify a sequence of rank two vector bundles on X × S together with embeddings

E0
f1−→ E1

f2−→ · · · fr−→ Er
such that the cokernel of fi is an invertible sheaf supported on the graph of a morphism xi :
S → X.

We construct a morphism
φµ : Hkµ2 −→ Hkr2.

Consider a point (Ei;xi; fi) ∈ Hkµ2 (S). For i = 1, · · · , r, we define a divisor on X × S

Di :=
∑

1≤j≤i,µj=µ−

Γxj .

Then we define
E ′i = Ei(Di).

If µi = µ+, then Di−1 = Di, the map fi induces an embedding f ′i : E ′i−1 = Ei−1(Di−1) →
Ei(Di−1) = E ′i . If µi = µ−, then Di = Di−1 + Γxi , and the map fi : Ei → Ei−1 induces an
embedding Ei−1 → Ei(Γxi), and hence an embedding f ′i : E ′i−1 = Ei−1(Di−1)→ Ei(Di−1 +Γxi) =
E ′i . The map φµ sends (Ei;xi; fi) to (E ′i ;xi; f ′i).

We also have a morphism

ψµ : Hkr2 −→ Hkµ2
(E ′i ;xi; f ′i) 7−→ (E ′i(−Di);xi; fi).

It is easy to check that φµ and ψµ are inverse to each other. This way we get a canonical
isomorphism Hkµ2

∼= Hkr2, which is clearly PicX -equivariant. Therefore all HkµG are also canoni-
cally isomorphic to each other. In the construction of φµ, the vector bundles Ei only change by
tensoring with line bundles, therefore the image of Ei in BunG remain unchanged. This shows
that the canonical isomorphisms between the HkµG respect the maps pi in (5.2). �
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Lemma 5.6. There is a canonical Cartesian diagram

ShtµG

��

// HkµG

(p0,pr)

��

BunG
(id,Fr)

// BunG × BunG

(5.3)

In particular, for different choices of µ satisfying the conditions in §5.1.2, the stacks ShtµG are
canonically isomorphic to each other.

Proof. This follows from the Cartesian diagram (5.1) divided termwisely by the Cartesian dia-
gram

PicX(k) //

��

PicX

∆

��

PicX
(id,Fr)

// PicX ×PicX

�

By the above lemmas, we may unambiguously use the notation

ShtrG; HkrG (5.4)

for ShtµG and HkµG with any choice of µ. If r is fixed from the context, we may also drop r from
the notation and write simply ShtG. The morphism πµ2 : Shtµ2 → Xr is invariant under the
action of PicX(k) and induces a morphism

πG : ShtrG −→ Xr.

Theorem 5.4 has the following immediate consequence.

Corollary 5.7. (1) The stack ShtrG is a Deligne–Mumford stack locally of finite type.

(2) The morphism πG : ShtrG → Xr is separated and smooth of relative dimension r.

5.3. Hecke correspondences. We define the rational Chow group of proper cycles Chc,i(ShtrG)Q
as in §A.1. As in §A.1.6, we also have a Q-algebra cCh2r(ShtrG×ShtrG)Q that acts on Chc,i(ShtrG)Q.
The goal of this subsection is to define a ring homomorphism from the unramified Hecke algebra
H = Cc(K\G(A)/K,Q) to cCh2r(ShtrG × ShtrG)Q.

5.3.1. The stack ShtrG(hD). Recall from §3.1 that we have a basis hD of H indexed by effective
divisors D on X. For each effective divisor D =

∑
x∈|X| nxx we shall define a self-correspondence

ShtrG(hD) of ShtrG over Xr:

ShtrG(hD)
←−p

yy

−→p

%%

ShtrG

%%

ShtrG

yy

Xr

For this, we first fix a µ as in §5.1.2. We introduce a self-correspondence Shtµ2 (hD) of Shtµ2 whose
S-points is the groupoid classifying the data

(1) Two objects (Ei;xi; fi; ι) and (E ′i ;xi; f ′i ; ι′) of Shtµ2 (S) with the same collection of points
x1, · · · , xr in X(S);

(2) For each i = 0, · · · , r, an embedding of coherent sheaves φi : Ei ↪→ E ′i such that det(φi) :
det Ei ↪→ det E ′i has divisor D × S ⊂ X × S.
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(3) The following diagram is commutative

E0
f1 //

φ0

��

E1
f2 //

φ1

��

· · ·
fr // Er

φr

��

ι // τE0
τφ0

��

E ′0
f ′1 // E ′1

f ′2 // · · ·
f ′r // E ′r

ι′ // τE ′0

(5.5)

There is a natural action of PicX(k) on Shtµ2 (hD) by tensoring on each Ei and E ′i . We define

ShtrG(hD) := Shtµ2 (hD)/PicX(k).

Using Lemma 5.5, it is easy to check that ShtrG(hD) is canonically independent of the choice of
µ. The two maps ←−p ,−→p : ShtrG(hD) → ShtrG send the data above to the image of (Ei;xi; fi; ι)
and (E ′i ;xi; f ′i ; ι′) in ShtrG respectively.

Lemma 5.8. The maps ←−p ,−→p as well as (←−p ,−→p ) : ShtrG(hD) → ShtrG × ShtrG are representable
and proper.

Proof. Once the bottom row of the diagram (5.5) is fixed, the choices of the vertical maps φi
for i = 1, · · · , r form a closed subscheme of the product of Quot schemes

∏r
i=1 Quotd(E ′i), where

d = degD, which is proper. Therefore −→p is representable and proper. Same argument applied
to the dual of the diagram (5.5) proves that ←−p is proper.

The representability of (←−p ,−→p ) is obvious from the definition, since its fibers are closed sub-
schemes of

∏r
i=1 Hom(Ei, E ′i). Since ShtrG is separated by Corollary 5.7 and←−p is proper, (←−p ,−→p )

is also proper. �

Lemma 5.9. The geometric fibers of the map ShtrG(hD)→ Xr have dimension r.

The proof of this lemma will be postponed to §6.4.4, because the argument will involve some
auxiliary moduli spaces that we will introduce in §6.3.

Granting Lemma 5.9, we have dim ShtrG(hD) = 2r. By Lemma 5.8, it makes sense to
push forward the fundamental cycle of ShtrG(hD) along the proper map (←−p ,−→p ). Therefore
(←−p ,−→p )∗[ShtrG(hD)] defines an element in cCh2r(ShtrG × ShtrG)Q (because ←−p is also proper). We
define the Q-linear map

H : H −→ cCh2r(ShtrG × ShtrG)Q (5.6)

hD 7−→ (←−p ×−→p )∗[ShtrG(hD)], for all effective divisors D (5.7)

Proposition 5.10. The linear map H in (5.6) is a ring homomorphism.

Proof. Let D,D′ be two effective divisors, and we would like to show the equality

H(hDhD′) = H(hD) ∗H(hD′) ∈ cCh2r(ShtrG × ShtrG)Q. (5.8)

Let U = X − |D| − |D′|. Since hDhD′ is a linear combination of hE for effective divisors
E ≤ D + D′ such that D + D′ − E has even coefficients, the cycle H(hDhD′) is supported on
∪E≤D+D′,D+D′−E evenShtrG(hE) = ShtrG(hD+D′). The cycle H(hD) ∗ H(hD′) is supported on
the image of the projection

pr13 : ShtrG(hD)×−→p ,ShtrG,
←−p ShtrG(hD′) −→ ShtrG × ShtrG

which is easily seen to be contained in ShtrG(hD+D′). We see that both sides of (5.8) are
supported on Z := ShtrG(hD+D′).

By Lemma 5.9 applied to Z = ShtrG(hD+D′), the dimension of Z − Z|Ur is strictly less than
2r. Therefore, the restriction map induces an isomorphism

Ch2r(Z)Q
∼−→ Ch2r(Z|Ur )Q (5.9)

Restricting the definition of H to Ur, we get a linear map HU : H → cCh2r(ShtrG|Ur ×
ShtrG|Ur )Q. For any effective divisor E supported on |D| ∪ |D′|, the two projections ←−p ,−→p :
ShtrG(hE)|Ur → ShtrG|Ur are finite étale. The equality

HU (hDhD′) = HU (hD) ∗HU (hD′) ∈ Ch2r(Z|Ur )Q (5.10)

is well-known. By (5.9), this implies the equality (5.8) where both sides are interpreted as
elements in Ch2r(Z)Q, and a fortiori as elements in cCh2r(ShtrG × ShtrG)Q. �
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Remark 5.11. Let g = (gx) ∈ G(A), and let f = 1KgK ∈ H be the characteristic function
of the double coset KgK in G(A). Traditionally, one defines a self-correspondence Γ(g) of
ShtrG|(X−S)r over (X−S)r, where S is the finite set of places where gx /∈ Kx (see [16, Construction

2.20]). The two projections ←−p ,−→p : Γ(g) → ShtrG|(X−S)r are finite étale. The disadvantage of
this definition is that we need to remove the bad points S which depend on f , so one is forced to
work only with the generic fiber of ShtrG over Xr if one wants to consider the actions of all Hecke
functions. Our definition of H(f) for any f ∈H gives a correspondence for the whole ShtrG. It
is easy to check that for f = 1KgK , our cycle H(f)|(X−S)r , which is a linear combination of the
cycles ShtrG(hD)|(X−S)r for divisors D supported on S, is the same cycle as Γ(g). Therefore our
definition of the Hecke algebra action extends the traditional one.

5.3.2. A variant. Later we will consider the stack Sht′rG := ShtrG×XrX ′r defined using the double
cover X ′ → X. Let Sht′rG(hD) = ShtrG(hD)×Xr X ′r. Then we have natural maps

←−p ′,−→p ′ : Sht′rG(hD) −→ Sht′rG.

The analogs of Lemma 5.8 and 5.9 for Sht′rG(hD) follow from the original statements. The map
hD 7→ (←−p ′ ×−→p ′)∗[Sht′rG(hD)] ∈ cCh2r(Sht′rG × Sht′rG)Q then gives a ring homomorphism H ′:

H ′ : H −→ cCh2r(Sht′rG × Sht′rG)Q.

5.3.3. Notation. By §A.1.6, the Q-algebra cCh2r(Sht′rG × Sht′rG)Q acts on Chc,∗(Sht′rG)Q. Hence
the Hecke algebra H also acts on Chc,∗(Sht′rG)Q via the homomorphism H ′. For f ∈ H , we
denote its action on Chc,∗(Sht′rG)Q by

f ∗ (−) : Chc,∗(Sht′rG)Q −→ Chc,∗(Sht′rG)Q.

Recall the Chow group Chc,∗(ShtrG)Q (or Chc,∗(Sht′rG)Q) is equipped with an intersection
pairing between complementary degrees, see §A.1.4.

Lemma 5.12. The action of any f ∈H on Chc,∗(ShtrG)Q or Chc,∗(Sht′rG)Q is self-adjoint with
respect to the intersection pairing.

Proof. It suffices to prove self-adjointness for hD for all effective divisors D. We give the ar-
gument for ShtrG and the case of Sht′rG can be proved in the same way. For ζ1 ∈ Chc,i(ShtrG)Q
and ζ2 ∈ Chc,2r−i(ShtrG)Q, the intersection pairing (hD ∗ ζ1, ζ2)ShtrG

is the same as the following
intersection number in ShtrG × ShtrG

(ζ1 × ζ2, (←−p ,−→p )∗[ShtrG(hD)])ShtrG×ShtrG
.

We will construct an involution τ on ShtrG(hD) such that the following diagram is commutative

ShtrG(hD)

(←−p ,−→p )

��

τ // ShtrG(hD)

(←−p ,−→p )

��

ShtrG × ShtrG
σ12 // ShtrG × ShtrG

(5.11)

Here σ12 in the bottom row means flipping two factors. Once we have such a diagram, we can
apply τ to ShtrG(hD) and σ12 to ShtrG × ShtrG and get

(ζ1 × ζ2, (←−p ,−→p )∗[ShtrG(hD)])ShtrG×ShtrG
= (ζ2 × ζ1, (←−p ,−→p )∗[ShtrG(hD)])ShtrG×ShtrG

which is the same as the self-adjointness for h ∗ (−):

(hD ∗ ζ1, ζ2)ShtrG
= (hD ∗ ζ2, ζ1)ShtrG

= (ζ1, hD ∗ ζ2)ShtrG
.

We pick any µ as in §5.1.2 and identify ShtrG with ShtµG = Shtµ2/PicX(k). We use −µ to denote
the negated tuple if we think of µ ∈ {±1}r using the sgn map. We consider the composition

δ : ShtµG
δ′−→ Sht−µG

∼= ShtµG

where δ′(Ei;xi; fi; ι) = (E∨i ;xi; (f∨i )−1; (ι∨)−1) and the second map is the canonical isomorphism

Sht−µG
∼= ShtµG given by Lemma 5.6.

Similarly we define τ as the composition

τ : ShtµG(hD)
τ ′−→ Sht−µG (hD) ∼= ShtµG(hD) (5.12)



34 ZHIWEI YUN AND WEI ZHANG

where τ ′ sends the diagram (5.5) to the diagram

E ′∨0
f ′∨−1
1 //

φ∨0
��

E ′∨1
f ′∨−1
2 //

φ∨1
��

· · ·
f ′∨−1
r // E ′∨r

φ∨r
��

ι′∨−1
// τE ′∨0

τφ∨0
��

E∨0
f∨−1
1 // E∨1

f∨−1
2 // · · ·

f∨−1
r // E∨r

ι∨−1
// τE∨0

(5.13)

and the second map in (5.12) is the canonical isomorphism Sht−µG (hD) ∼= ShtµG(hD) given by
the analog of Lemma 5.6. It is clear from the definition that if we replace the bottom arrow of
(5.11) with σ12 ◦ (δ × δ) (i.e., the map (a, b) 7→ (δ(b), δ(a))), the diagram is commutative.

We claim that δ is the identity map for ShtµG. In fact, δ turns (Ei;xi; fi; ι) ∈ ShtµG into
(E∨i (Di);xi; (f∨i )−1; (ι∨)−1), where Di =

∑
1≤j≤i sgn(µj)Γxj . Note that we have a canonical

isomorphism E∨i ∼= Ei ⊗ (det Ei)−1, and isomorphisms det Ei ∼= (det E0)(Di) induced by the fi.
Therefore we get a canonical isomorphism E∨i (Di) ∼= Ei ⊗ (det Ei)−1 ⊗O(Di) ∼= Ei ⊗ (det E0)−1

compatibly with the maps (f∨i )−1 and fi, and also compatible with (ι∨)−1 and ι. Therefore
δ(Ei;xi; fi; ι) is canonically isomorphic to (Ei;xi; fi; ι) up to tensoring with det(E0). This shows
that δ is the identity map of ShtµG.

Since δ = id, the diagram (5.11) is also commutative. This finishes the proof. �

5.4. Moduli of Shtukas for the torus T .

5.4.1. Recall that ν : X ′ → X is an étale double covering with X ′ also geometrically connected.
Let σ ∈ Gal(X ′/X) be the non-trivial involution.

Let T̃ be the two-dimensional torus over X defined as

T̃ := ResX′/X Gm.

We have a natural homomorphism Gm → T̃ . We define a one-dimensional torus over X

T := T̃ /Gm = (ResX′/X Gm)/Gm.

Let BunT be the moduli stack of T -torsors over X. Then we have a canonical isomorphism
of stacks

BunT ∼= PicX′ /PicX .

In particular, BunT is a Deligne–Mumford stack whose coarse moduli space is a group scheme
with two components, and its neutral component is an abelian variety over k.

5.4.2. Specializing Definition 5.1 to the case n = 1 and replacing the curve X with its double
cover X ′, we get the Hecke stack Hkµ1,X′ . This makes sense for any tuple µ as in §5.1.1.

Now assume that µ satisfies the conditions in §5.1.2. We may view each µi as a coweight for
GL1 = Gm in an obvious way: µ+ means 1 and µ− means −1. Specializing Definition 5.3 to the
case n = 1 and replacing X with X ′, we get the moduli stack Shtµ1,X′ of rank one Shtukas over

X ′ of type µ. We define

Shtµ
T̃

:= Shtµ1,X′ .

We have a Cartesian diagram

Shtµ
T̃

��

// Hkµ1,X′

(p0,pr)

��

PicX′
(id,Fr)

// PicX′ ×PicX′

We also have a morphism

πµ
T̃

: Shtµ
T̃
−→ Hkµ1,X′

pX′−−→ X ′r.
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5.4.3. Fix µ as in §5.1.2. Concretely, for any k-scheme S, Shtµ
T̃

(S) classifies the following data

(1) A line bundle L over X ′ × S;

(2) Morphisms x′i : S → X ′ for i = 1, · · · , r, with graphs Γx′i ⊂ X
′ × S;

(3) An isomorphism

ι : L

(
r∑
i=1

sgn(µi)Γx′i

)
∼−→ τL := (id× FrS)∗L.

Here the signs sgn(µ±) = ±1 are defined in §5.1.1.

This description of points appears to be simpler than its counterpart in §5.1.5: the other line
bundles Li are canonically determined by L0 and x′i using the formula

Li = L0

 ∑
1≤j≤i

sgn(µj)Γx′j

 . (5.14)

5.4.4. The Picard stack PicX′ , and hence PicX , acts on Hkµ1,X′ . We consider the quotient

HkµT := Hkµ1,X′/PicX . (5.15)

In fact we have a canonical isomorphism HkµT
∼= BunT ×X ′r sending (Li;x′i; fi) to (L0;x′i). In

particular, HkµT is a smooth and proper Deligne–Mumford stack of pure dimension r+g−1 over
k.

5.4.5. The groupoid PicX′(k) acts on Shtµ
T̃

by tensoring on the line bundle L. We consider the

restriction of this action to PicX(k) via the pullback map ν∗ : PicX(k)→ PicX′(k). We define

ShtµT := Shtµ
T̃
/PicX(k).

The analog of Lemma 5.6 gives a Cartesian diagram

ShtµT

��

// HkµT

(p0,pr)

��

BunT
(id,Fr)

// BunT × BunT

(5.16)

Since the morphism πµ
T̃

is invariant under PicX(k), we get a morphism

πµT : ShtµT −→ X ′r.

Lemma 5.13. The morphism πµT is a torsor under the finite Picard groupoid PicX′(k)/PicX(k).
In particular, πµT is finite étale, and the stack ShtµT is a smooth proper Deligne–Mumford stack
over k of pure dimension r.

Proof. This description given in §5.4.3 gives a Cartesian diagram

Shtµ
T̃

πµ
T̃

��

// PicX′

id−Fr

��

X ′r
φ

// Pic0
X′

(5.17)

where φ(x′1, · · · , x′r) = OX′(
∑r
i=1 sgn(µi)x

′
i). Dividing the top row of the diagram (5.17) by

PicX(k) we get a Cartesian diagram

ShtµT

πµT
��

// PicX′ /(PicX(k))

id−Fr

��

X ′r
φ

// Pic0
X′

Since the right vertical map id−Fr : PicX′ /(PicX(k))→ Pic0
X′ is a torsor under PicX′(k)/PicX(k),

so is πµT . �
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5.4.6. Changing µ. For a different choice µ′ as in 5.1.1, we have a canonical isomorphism

Hkµ
T̃

∼−→ Hkµ
′

T̃
(5.18)

sending (Li;x′i; fi) to (Ki; y′i; gi) where

y′i =

{
x′i if µi = µ′i
σ(x′i) if µi 6= µ′i

(5.19)

and

Ki = L0

 ∑
1≤j≤i

sgn(µ′j)Γy′j

 . (5.20)

The rational maps gi : Ki−1 99K Ki is the one corresponding to the identity map on L0 via the
description (5.20). Note that we have

Ki = Li ⊗OX×S OX×S

 ∑
1≤j≤i

sgn(µ′j)− sgn(µj)

2
Γxj


where xi : S → X is the image of x′i. Therefore Ki has the same image as Li in BunT . The
isomorphism (5.18) induces an isomorphism

HkµT
∼−→ Hkµ

′

T . (5.21)

From the construction and the above discussion, this isomorphism preserves the maps pi to BunT
but does not preserve the projections to X ′r (it only preserves the further projection to Xr).

Since the isomorphism (5.21) preserves the maps p0 and pr, the diagram (5.16) implies a
canonical isomorphism

ιµ,µ′ : ShtµT
∼−→ Shtµ

′

T . (5.22)

Just as the map (5.21), ιµ,µ′ does not respect the maps πµT and πµ
′

T from ShtµT and Shtµ
′

T to X ′r:
it only respects their further projections to Xr.

5.5. The Heegner–Drinfeld cycles.

5.5.1. We have a morphism

Π : BunT −→ BunG

(L mod PicX) 7−→ (ν∗L mod PicX)

5.5.2. For any µ as in §5.1.2 we define a morphism

θ̃µ : Shtµ
T̃
−→ Shtµ2

as follows. Let (L;x′i; ι) ∈ Shtµ
T̃

(S) as in the description in §5.4.3. Let L0 = L and we may

define the line bundles Li using (5.14). Then there are natural maps gi : Li−1 ↪→ Li if µi = µ+

or gi : Li ↪→ Li−1 if µi = µ−. Let νS = ν × idS : X ′ × S → X × S the base change of ν. We
define

Ei = νS∗Li
with the maps fi : Ei−1 → Ei or Ei → Ei−1 induced from gi. The isomorphism ι then induces an
isomorphism

 : Er = νS∗Lr
νS∗ι−−−→ νS∗(idX′ × FrS)∗L0

∼= (idX × FrS)∗νS∗L0 = τE0.

Let xi = ν ◦ x′i. The morphism θ̃µ then sends (L;x′i; ι) to (Ei;xi; fi; ). Clearly θ̃µ is equivariant
with respect to the PicX(k)-actions. Passing to the quotients, we get a morphism

θ
µ

: ShtµT −→ ShtµG.
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For a different µ′, the canonical isomorphism ιµ,µ′ in (5.22) intertwines the maps θ
µ

and θ
µ′

,
i.e., we have a commutative diagram

ShtµT

ιµ,µ′

��

θ
µ

// ShtµG

��

Shtµ
′

T
θ
µ′

// Shtµ
′

G

where the right vertical map is the canonical isomorphism in Lemma 5.6. By our identification
of ShtµG for different µ (cf. (5.4)), we get a morphism, still denoted by θ

µ
,

θ
µ

: ShtµT −→ ShtrG.

5.5.3. By construction we have a commutative diagram

ShtµT

πµT
��

θ
µ

// ShtrG

πG

��

X ′r
νr // Xr

Recall that

Sht′rG := ShtrG ×Xr X ′r.
Then the map θ

µ
factors through a morphism

θµ : ShtµT −→ Sht′rG

over X ′r. Since ShtµT is proper of dimension r, θµ∗ [ShtµT ] is a proper cycle class in Sht′rG of
dimension r.

Definition 5.14. The Heegner–Drinfeld cycle of type µ is the direct image of [ShtµT ] under θµ:

θµ∗ [ShtµT ] ∈ Chc,r(Sht′rG)Q.

Recall from Proposition 5.10 and §5.3.3 that we have an action of H on Chc,r(Sht′rG)Q. Since

dim ShtµT = r =
1

2
dim Sht′rG,

both θµ∗ [ShtµT ] and f ∗ θµ∗ [ShtµT ] for any function f ∈ H are proper cycle classes in ShtrG of
complementary dimension, and they define elements in Chc,r(Sht′rG)Q. The following definition
then makes sense.

Definition 5.15. Let f ∈ H be an unramified Hecke function. We define the following inter-
section number

Ir(f) := 〈θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉Sht′rG
∈ Q.

5.5.4. Changing µ. For different µ and µ′ as in §5.1.2, the Heegner–Drinfeld cycles θµ∗ [ShtµT ]

and θµ
′

∗ [Shtµ
′

T ] are different. Therefore, a priorily the intersection number Ir(f) depends on µ.
However we have

Lemma 5.16. The intersection number Ir(f) for any f ∈H is independent of the choice of µ.

Proof. Let Zµ denote the cycle θµ∗ [ShtµT ]. Using the isomorphism ιµ,µ′ in (5.22), we see that Zµ

and Zµ
′

are transformed to each other under the involution σ(µ, µ′) : Sht′rG = ShtrG ×Xr X ′r →
ShtrG×XrX ′r = Sht′rG which is the identity on ShtrG and on X ′r sends (x′1, · · · , x′r) to (y′1, · · · , y′r)
using the formula (5.19). Since σ(µ, µ′) is the identity on ShtrG, it commutes with the Hecke
action on Chc,r(Sht′rG)Q. Therefore we have

〈Zµ, f ∗ Zµ〉Sht′rG
= 〈σ(µ, µ′)∗Z

µ, σ(µ, µ′)∗(f ∗ Zµ)〉Sht′rG

= 〈σ(µ, µ′)∗Z
µ, f ∗ (σ(µ, µ′)∗Z

µ)〉Sht′rG
= 〈Zµ

′
, f ∗ Zµ

′
〉Sht′rG

.

�
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6. Alternative calculation of intersection numbers

The goal of this section is to turn the intersection number Ir(hD) into the trace of an operator
acting on the cohomology of a certain variety. This will be accomplished in Theorem 6.5. To
state the theorem, we need to introduce certain moduli spaces similar to Nd defined in §3.2.2.

6.1. Geometry of Md.

6.1.1. Recall ν : X ′ → X is a geometrically connected étale double cover. We will use the

notation X̂ ′d and X ′d as in §3.2.1. We have the norm map ν̂d : X̂ ′d → X̂d sending (L, α ∈ Γ(X ′,L))
to (Nm(L),Nm(α) ∈ Γ(X,Nm(L))).

Let d ≥ 0 be an integer. Let M̃d be the moduli functor whose S-points is the groupoid of
(L,L′, α, β) where

• L,L′ ∈ Pic(X ′ × S) such that deg(L′s)− deg(Ls) = d for all geometric points s ∈ S;

• α : L → L′ is an OX′ -linear map;

• β : L → σ∗L′ is an OX′ -linear map;

• For each geometric point s ∈ S, the restrictions α|X′×s and β|X′×s are not both zero.

There is a natural action of PicX on M̃d by tensoring: K ∈ PicX sends (L,L′, α, β) to (L ⊗
ν∗K,L′ ⊗ ν∗K, α⊗ idK, β ⊗ idK). We define

Md := M̃d/PicX .

6.1.2. To (L,L′, α, β) ∈ M̃d, we may attach

• a := Nm(α) : Nm(L)→ Nm(L′);
• b := Nm(β) : Nm(L)→ Nm(σ∗L′) = Nm(L′).
Both a and b are sections of the same line bundle ∆ = Nm(L′) ⊗ Nm(L)−1 ∈ PicdX , and they
are not simultaneously zero. The assignment (L,L′, α, β) 7→ (∆, a, b) is invariant under the the

action of PicX on M̃d, and it induces a morphism

fM :Md −→ Ad.
Here Ad is defined in §3.2.3.

6.1.3. Given (L,L′, α, β) ∈ M̃d, there is a canonical way to attach an OX -linear map ψ :
ν∗L → ν∗L′ and vice versa. In fact, by adjunction, a map ψ : ν∗L → ν∗L′ is the same as a
map ν∗ν∗L → L′. Since ν∗ν∗L ∼= L ⊕ σ∗L canonically, the datum of ψ is the same as a map of
OX′ -modules L⊕σ∗L → L′, and we name the two components of this map by α and σ∗β. Note
that the determinant of the map ψ is given by

det(ψ) = Nm(α)−Nm(β) = a− b : Nm(L) = det ν∗L −→ det ν∗L′ = Nm(L′). (6.1)

The composition δ ◦ fM : Md → Ad → X̂d takes (L,L′, α, β) to the pair (∆ = Nm(L′) ⊗
Nm(L)−1,det(ψ)).

6.1.4. We give another description of Md. We have a map ια :Md → X̂ ′d sending (L,L′, α, β)

to the line bundle L′ ⊗L−1 and its section given by α. Similarly we have a map ιβ :Md → X̂ ′d
sending (L,L′, α, β) to the line bundle σ∗L′ ⊗ L−1 and its section given by β. Note that the
line bundles underlying ια(L,L′, α, β) and ιβ(L,L′, α, β) have the same norm ∆ = Nm(L′) ⊗
Nm(L)−1 ∈ PicdX . Since α and β are not both zero, we get a map

ι = (ια, ιβ) :Md −→ X̂ ′d ×PicdX
X̂ ′d − Z ′d

where the fiber product on the RHS is taken with respect to the map X̂ ′d → PicdX′
Nm−−→ PicdX ,

and Z ′d := PicdX′ ×PicdX
PicdX′ is embedded into X̂ ′d×PicdX

X̂ ′d by viewing PicdX′ as the zero section

of X̂ ′d in both factors.

Proposition 6.1. (1) The morphism ι is an isomorphism of functors, and Md is a proper
Deligne–Mumford stack over k. 3

3The properness of Md will not be used elsewhere in this paper.
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(2) For d ≥ 2g′−1,Md is a smooth Deligne–Mumford stack over k of pure dimension 2d−g+1.

(3) The morphism ν̂d : X̂ ′d → X̂d is proper.

(4) We have a Cartesian diagram

Md
� � ι //

fM

��

X̂ ′d ×PicdX
X̂ ′d

ν̂d×ν̂d
��

Ad �
�

// X̂d ×PicdX
X̂d

(6.2)

Moreover, the map fM is proper.

Proof. (1) Let (PicX′ ×PicX′)d be the disjoint union of PiciX′ ×Pici+dX′ over all i ∈ Z. Consider

the morphism θ : (PicX′ ×PicX′)d/PicX → PicdX′ ×PicdX
PicdX′ (the fiber product is taken with

respect to the norm map) that sends (L,L′) to (L′ ⊗ L−1, σ∗L′ ⊗ L−1, τ), where τ is the tau-
tological isomorphism between Nm(L′ ⊗ L−1) ∼= Nm(L′) ⊗ Nm(L)−1 and Nm(σ∗L′ ⊗ L−1) ∼=
Nm(L′)⊗Nm(L)−1. By definition, we have a Cartesian diagram

Md
ι //

ω

��

X̂ ′d ×PicdX
X̂ ′d − Z ′d

��

(PicX′ ×PicX′)d/PicX
θ // PicdX′ ×PicdX

PicdX′

(6.3)

where the map ω sends (L,L′, α, β) to (L,L′). Therefore it suffices to check that θ is an isomor-
phism. For this we will construct an inverse to θ.

From the exact sequence of étale sheaves

1 −→ O×X
ν∗−→ ν∗O×X′

id−σ−−−→ ν∗O×X′
Nm−−→ O×X −→ 1

we get an exact sequence of Picard stacks

1 −→ PicX′ /PicX
id−σ−−−→ Pic0

X′
Nm−−→ Pic0

X −→ 1.

Given (K1,K2, τ) ∈ PicdX′ ×PicdX
PicdX′ (where τ : Nm(K1) ∼= Nm(K2)), there is a unique object

L′ ∈ PicX′ /PicX such that L′ ⊗ σ∗L′−1 ∼= K1 ⊗K−1
2 compatible with the trivializations of the

norms to X of both sides. We then define ψ(K1,K2, τ) = (L′ ⊗K−1
1 ,L′), which is a well-defined

object in (PicX′ ×PicX′)d/PicX . It is easy to check that ψ is an inverse to θ. This proves that
θ is an isomorphism, and so is ι.

We show that Md is a proper Deligne–Mumford stack over k. By extending k we may
assume that X ′ contains a k-point, and we fix a point y ∈ X ′(k). We consider the moduli

stack M̂d classifying (K1, γ1,K, ρ, α, β) where K1 ∈ PicdX′ , γ1 is a trivialization of the stalk K1,y,

K ∈ Pic0
X′ , ρ is an isomorphism Nm(K) ∼= OX , α is a section of K1 and β is a section of K1 ⊗K

such that α and β are not both zero. There is a canonical map p : M̂d → X̂ ′d ×PicdX
X̂ ′d −

Z ′d sending (K1, γ1,K, ρ, α, β) to (K1,K2 := K1 ⊗ K, τ, α, β) (the isomorphism τ : Nm(K1) ∼=
Nm(K2) is induced from the trivialization ρ). Clearly p is the quotient map for the Gm-action

on M̂d that scales γ1. There is another Gm-action on M̂d that scales α and β simultaneously.

Using automorphisms of K1, we have a canonical identification of the two Gm-actions on M̂d;
however, to distinguish them, we call the first torus Gm(y) and the second Gm(α, β). By the

above discussion, ι−1 ◦ p gives an isomorphism M̂d/Gm(y) ∼= Md, hence also an isomorphism

M̂d/Gm(α, β) ∼=Md.
Let PrymX′/X := ker(Nm : Pic0

X′ → Pic0
X) which classifies a line bundle K on X ′ together

with a trivialization of Nm(L). This is a Deligne–Mumford stack isomorphic to the usual Prym
variety divided by the trivial action of µ2. Let JdX′ be the degree d-component of the Picard
scheme of X ′, which classifies a line bundle K1 on X ′ of degree d together with a trivialization

of the stalk K1,y. We have a natural map h : M̂d → JdX′ ×PrymX′/X sending (K1, γ1,K, ρ, α, β)
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to (K1, γ1) ∈ JdX′ and (K, ρ) ∈ PrymX′/X . The map h is invariant under the Gm(α, β)-action,
hence induces a map

h : M̂d/Gm(α, β) ∼=Md −→ JdX′ × PrymX′/X (6.4)

The fiber of h over a point ((K1, γ1), (K, ρ)) ∈ JdX′×PrymX′/X is the projective space P(Γ(X ′,K1)⊕
Γ(X ′,K1 ⊗ K)). In particular, the map h is proper and schematic. Since JdX′ × PrymX′/X is a
proper Deligne–Mumford stack over k, so is Md.

(2) SinceMd is covered by open substacks X ′d×PicdX
X̂ ′d and X̂ ′d×PicdX

X ′d, it suffices to show

that both of them are smooth over k. For d ≥ 2g′ − 1 the Abel-Jacobi map AJd : X ′d → PicdX′

is smooth of relative dimension d− g′ + 1, hence X ′d is smooth over PicdX of relative dimension

d−g+1. Therefore both X ′d×PicdX
X̂ ′d and X̂ ′d×PicdX

X ′d are smooth over X ′d of relative dimension

d − g + 1. We conclude that Md is a smooth Deligne–Mumford stack of dimension 2d − g + 1
over k.

(3) We introduce a compactification X
′
d of X̂ ′d as follows. Consider the product X̂ ′d × A1

with the natural Gm-action scaling both the section of the line bundle and the scalar in A1.

Let z0 : PicdX′ ↪→ X̂ ′d × A1 sending L to (L, 0, 0). Let X
′
d := (X̂ ′d × A1 − z0(PicdX′))/Gm. Then

the fiber of X
′
d over L ∈ PicdX′ is the projective space P(Γ(X ′,L ⊕ OX′)). In particular, X

′
d is

proper and schematic over PicdX′ . The stack X
′
d contains X̂ ′d as an open substack where the A1-

coordinate is invertible, whose complement is isomorphic to the projective space bundle X ′d/Gm
over PicdX′ . Similarly we a compactification Xd of X̂d.

Consider the quadratic map X̂ ′d×A1 → X̂d×A1 sending (L, s, λ) 7→ (Nm(L),Nm(s), λ2). This
quadratic map passes to the projectivizations because (Nm(s), λ2) = (0, 0) implies (s, λ) = (0, 0)

on the level of field-valued points. The resulting map νd : X
′
d → Xd extends ν̂d. We may

factorize νd as the composition

νd : X
′
d −→ Xd ×PicdX

PicdX′ −→ Xd

Here the first map is proper because both the source and the target are proper over PicdX′ ; the

second map is proper by the properness of the norm map Nm : PicdX′ → PicdX . We conclude

that νd is proper. Since ν̂d is the restriction of νd to X̂d ↪→ Xd, it is also proper.
(4) The commutativity of the diagram (6.2) is clear from the construction of ι. Note that Z ′d

is the preimage of Zd under ν̂d× ν̂d, andMd and Ad are complements of Z ′d and Zd respectively.
Therefore (6.2) is also Cartesian. Now the properness of fM follows from the properness of ν̂d
proved in part (3) together with the Cartesian diagram (6.2).

�

6.2. A formula for Ir(hD).

6.2.1. The correspondence HkµM,d. Fix any tuple µ = (µ1, · · · , µr) as in §5.1.1. We define H̃k
µ

M,d

to be the moduli functor whose S-points classify the following data

(1) For i = 1, · · · , r, a map x′i : S → X ′ with graph Γx′i .

(2) For each i = 0, 1, · · · , r, an S-point (Li,L′i, αi, βi) of M̃d:

αi : Li −→ L′i, βi : Li −→ σ∗L′i.

In particular, degL′i − degLi = d and αi and βi are not both zero.

(3) A commutative diagram of OX′ -linear maps between line bundles on X ′

L0

α0

��

f1 // L1

α1

��

f2 // · · ·
fr // Lr

αr

��

L′0
f ′1 // L′1

f ′2 // · · ·
f ′r // L′r

(6.5)
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where the top and bottom rows are S-points of HkµT over the same point (x′1, · · · , x′r) ∈
X ′r(S), such that the following diagram is also commutative

L0

β0

��

f1 // L1

β1

��

f2 // · · ·
fr // Lr

βr

��

σ∗L′0
σ∗f ′1 // σ∗L′1

σ∗f ′2 // · · ·
σ∗f ′r // σ∗L′r

(6.6)

There is an action of PicX on H̃k
µ

M,d by tensoring on the line bundles Li and L′i. We define

HkµM,d := H̃k
µ

M,d/PicX .

The same argument as §5.4.6 (applying the isomorphism (5.21) to both rows of (6.6)) shows that
for different choices of µ, the stacks HkµM,d are canonically isomorphic to each other. However,

as in the case for HkµT , the morphism HkµM,d → X ′r does depend on µ.

6.2.2. Let γi : HkµM,d → Md be the projections given by taking the diagram (6.5) to its i-th

column. It is clear that this map is schematic, therefore HkµM,d itself is a scheme.

In the diagram (6.5), the line bundles ∆i = Nm(L′i)⊗Nm(Li)−1 are all canonically isomorphic
to each other for i = 0, · · · , r. Also the sections ai = Nm(αi) (resp. bi = Nm(βi)) of ∆i can
be identified with each other for all i under the isomorphisms between the ∆i’s. Therefore,
composing γi with the map fM : Md → Ad all give the same map. We may view HkµM,d as a

self-correspondence of Md over Ad via the maps (γ0, γr).

There is a stronger statement. Let us define Ãd ⊂ X̂ ′d ×PicdX
X̂d to be preimage of Ad under

Nm×id : X̂ ′d ×PicdX
X̂d → X̂d ×PicdX

X̂d. Then Ãd classifies triples (K, α, b) where K ∈ PicX′ ,

α is a section of K and b is a section of Nm(K) such that α and b are not simultaneously zero.
Then fM factors through the map

f̃M :Md −→ Ãd

sending (L,L′, α, β) to (L′ ⊗ L−1, α,Nm(β)).
Consider a point of HkµM,d giving among others the diagram (6.5). Since the maps fi and f ′i

are simple modifications at the same point x′i, the line bundles L′i⊗L
−1
i are all isomorphic to each

other for all i = 0, 1, · · · , r. Under these isomorphisms, their sections given by αi correspond to

each other. Therefore the maps f̃M ◦ γi : HkµM,d → Ãd are the same for all i.

6.2.3. The particular case r = 1 and µ = (µ+) gives a moduli space H := Hk1
M,d classifying

commutative diagrams up to simultaneous tensoring by PicX :

L0
f
//

α0

��

L1

α1

��

L0
f
//

β0

��

L1

β1

��

L′0
f ′
// L′1 σ∗L′0

σ∗f ′
// σ∗L′1

(6.7)

such that the cokernel of f and f ′ are invertible sheaves supported at the same point x′ ∈ X ′,
and the data (L0,L′0, α0, β0) and (L1,L′1, α1, β1) are objects of Md.

We have two maps (γ0, γ1) : H → Md, and we view H as a self-correspondence of Md over
Ad. We also have a map p : H → X ′ recording the point x′ (support of L1/L0 and L′1/L′0).

The following lemma follows directly from the definition of HkµM,d.

Lemma 6.2. As a self-correspondence of Md, HkµM,d is canonically isomorphic to the r-fold
composition of H

HkµM,d
∼= H×γ1,Md,γ0 ×H×γ1,Md,γ0 × · · · ×γ1,Md,γ0 H.
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6.2.4. Let A♦d ⊂ Ad be the open subset consisting of (∆, a, b) where b 6= 0, i.e., A♦d = X̂d×PicdX

Xd under the isomorphism (3.3). Let M♦d , HkµM♦,d and H♦ be the preimages of A♦d in Md,

HkµM,d and H.

Lemma 6.3. Let I ′d ⊂ X ′d ×X ′ be the incidence scheme, i.e., I ′d → X ′d is the universal family
of degree d effective divisors on X ′. There is a natural map H♦ → I ′d such that the diagram

H♦
p

))
//

γ1

��

I ′d

q

��

pI′
// X ′

M♦d X̂ ′d ×PicdX
X ′d

pr2 // X ′d

(6.8)

is commutative and the square is Cartesian. Here the q : I ′d → X ′d sends (D, y) ∈ X ′d × X ′ to
D − y + σ(y), and pI′ : I ′d → X ′ sends (D, y) to y.

Proof. A point in H♦ is a diagram as in (6.7) with βi nonzero (hence injections). Such a diagram

is uniquely determined by (L0,L′0, α0, β0) ∈ M♦d and y = div(f) ∈ X ′ for then L1 = L0(y),
L′1 = L′0(y) are determined, and f, f ′ are the obvious inclusions and α1 the unique map making
the first diagram in (6.7) commutative; the commutativity of the second diagram uniquely
determines β1, but there is a condition on y to make it possible:

div(β0) + σ(y) = div(β1) + y ∈ X ′d+1.

Since σ acts on X ′ without fixed points, y must appear in div(β0). The assignment H♦ 3
(y,L0, · · · , β0,L1, · · · , β1) 7→ (div(β0), y) then gives a point in I ′d. The above argument shows
that the square in (6.8) is Cartesian and the triangle therein is commutative. �

Lemma 6.4. We have

(1) The map γ0 : HkµM♦,d → M♦d is finite and surjective. In particular, dim HkµM♦,d =

dimM♦d = 2d− g + 1.

(2) The dimension of the image of HkµM,d −HkµM♦,d in Md ×Md is at most d+ 2g − 2.

Proof. (1) In the case r = 1, this follows from the Cartesian square in (6.8), because the map
q : I ′d → X ′d is finite. For general r, the statement follows by induction from Lemma 6.2.

(2) The closed subscheme Y = HkµM,d−HkµM♦,d classifies diagrams (6.5) only because all the

βi are zero. Its image Z ⊂ Md ×Md under (γ0, γr) consists of pairs of points (L0,L′0, α0, 0)
and (Lr,L′r, αr, 0) in Md such that there exists a diagram of the form (6.5) connecting them.
In particular, the divisors of α0 and αr are the same. Therefore such a point in Z is completely
determined by two points L0,Lr ∈ BunT and a divisor D ∈ X ′d (as the divisor of α0 and αr).
We see that dimZ ≤ 2 dim BunT + dimX ′d = d+ 2g − 2. �

6.2.5. Recall H = Hk1
M,d is a self-correspondence ofMd over Ad (see the discussion in §6.2.2).

Let

[H♦] ∈ Ch2d−g+1(H)Q

denote the class of the closure of H♦. The image of [H♦] in the Borel-Moore homology group

HBM
2(2d−g+1)(H⊗k k)(−2d + g − 1) defines a cohomological self-correspondence of the constant

sheaf Q` on Md. According the discussion in §A.4.1, it induces an endomorphism

fM,![H♦] : RfM,!Q` −→ RfM,!Q`

For a point a ∈ Ad(k), we denote the action of fM,![H♦] on the geometric stalk (RfM,!Q`)a =

H∗c(f
−1
M (a)⊗k k) by (fM,![H♦])a.

Recall from §3.3.2 that AD = δ−1(D) ⊂ A♥d is the fiber of D under δ : Ad → X̂d. The main
result of this section is the following.
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Theorem 6.5. Suppose D is an effective divisor on X of degree d ≥ max{2g′ − 1, 2g}. Then
we have

Ir(hD) =
∑

a∈AD(k)

Tr
(
(fM,![H♦])ra ◦ Froba, (RfM,!Q`)a

)
. (6.9)

6.2.6. Orbital decomposition of Ir(hD). According Theorem 6.5, we may write

Ir(hD) =
∑

u∈P1(F )−{1}

Ir(u, hD) (6.10)

where

Ir(u, hD) =

{
Tr
(
(fM,![H♦])ra ◦ Froba, (RfM,!Q`)a

)
if u = invD(a) for some a ∈ AD(k);

0 otherwise.

(6.11)

The rest of the section is devoted to the proof of this theorem. In the rest of this subsection
we assume d ≥ max{2g′ − 1, 2g}.

6.2.7. We apply the discussion in Appendix §A.4.4 to M = Md
fM−−→ S = Ad and the self-

correspondence C = HkµM,d of Md. We define ShtµM,d by the Cartesian diagram

ShtµM,d
//

��

HkµM,d

(γ0,γr)

��

Md

(id,FrMd
)
//Md ×Md

(6.12)

This fits into the situation of §A.4.4 because fM ◦γ0 = fM ◦γr by the discussion in §6.2.2, hence
HkµM,d is a self-correspondence ofMd over Ad while (id,FrMd

) covers the map (id,FrAd) : Ad →
Ad ×Ad. In particular we have a decomposition

ShtµM,d =
∐

a∈Ad(k)

ShtµM,d(a). (6.13)

For D ∈ Xd(k), we let

ShtµM,D :=
∐

a∈AD(k)

ShtµM,d(a) ⊂ ShtµM,d. (6.14)

Using the decompositions (6.13) and (6.14), we get a decomposition

Ch0(ShtµM,d)Q =

 ⊕
D∈Xd(k)

Ch0(ShtµM,D)Q

⊕
 ⊕
a∈Ad(k)−A♥d (k)

Ch0(ShtµM,d(a))Q

 . (6.15)

Let ζ ∈ Ch2d−g+1(HkµM,d)Q. Since Md is a smooth Deligne–Mumford stack by Proposition

6.1(2), (id,FrMd
) is a regular local immersion, the refined Gysin map (which is the same as

intersecting with the Frobenius graph Γ(FrMd
) of Md) is defined

(id,FrMd
)! : Ch2d−g+1(HkµM,d)Q −→ Ch0(ShtµM,d)Q

Under the decomposition (6.15), we denote the component of (id,FrMd
)!ζ in the direct summand

Ch0(ShtµM,D)Q by (
(id,FrMd

)!ζ
)
D
∈ Ch0(ShtµM,D)Q.

Composing with the degree map (which exists because ShtµM,D is proper over k, see the discussion

after (A.27)), we define

〈ζ,Γ(FrMd
)〉D := deg

(
(id,FrMd

)!ζ
)
D
∈ Q.

As the first step towards the proof of Theorem 6.5, we have the following result.

Theorem 6.6. Suppose D is an effective divisor on X of degree d ≥ max{2g′ − 1, 2g}, then
there exists a class ζ ∈ Ch2d−g+1(HkµM,d)Q whose restriction to HkµM,d|A♥d ∩A♦d is the fundamental

cycle, such that
Ir(hD) = 〈ζ,Γ(FrMd

)〉D. (6.16)
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This theorem will be proved in §6.3.6, after introducing some auxiliary moduli stacks in the
next subsection.

6.2.8. Proof of Theorem 6.5. Granting Theorem 6.6, we now prove Theorem 6.5. Let ζ ∈
Ch2d−g+1(HkµM,d)Q be the class as in Theorem 6.6. By (6.14), we have a decomposition

Ch0(ShtµM,D)Q =
⊕

a∈AD(k)

Ch0(ShtµM,d(a))Q. (6.17)

We write

〈ζ,Γ(FrMd
)〉D =

∑
a∈AD(k)

〈ζ,Γ(FrMd
)〉a

under the decomposition (6.17), where 〈ζ,Γ(FrMd
)〉a is the degree of

(
(id,FrMd

)!ζ
)
a
∈ Ch0(ShtµM,d(a))Q.

Combining this with Theorem 6.6 we get

Ir(hD) =
∑

a∈AD(k)

〈ζ,Γ(FrMd
)〉a. (6.18)

On the other hand, by Proposition A.12, we have for any a ∈ AD(k)

〈ζ,Γ(FrMd
)〉a = Tr((fM,!cl(ζ))a ◦ Froba, (RfM,!Q`)a). (6.19)

Here we are viewing the cycle class cl(ζ) ∈ HBM
2(2d−g+1)(HkµM,d)(−2d+ g − 1) as a cohomological

self-correspondence of the constant sheaf Q` on Md, which induces an endomorphism

fM,!cl(ζ) : RfM,!Q` −→ RfM,!Q`, (6.20)

and (fM,!cl(ζ))a is the induced endomorphism on the geometric stalk (RfM,!Q`)a. Since we

only care about the action of fM,!cl(ζ) on stalks in A♥d , only the restriction ζ♥ := ζ|A♥d ∈
Z2d−g+1(HkµM,d|A♥d )Q matters. Combining (6.19) with (6.18), we see that in order to prove

(6.9), it suffices to show that fM,!cl(ζ♥) and (fM,![H♦])r give the same endomorphism of the
complex RfM,!Q`|A♥d . This is the following lemma, which is applicable because d ≥ 3g − 2 is

implied by d ≥ 2g′ − 1 = 4g − 3 (since g ≥ 1).

Lemma 6.7. Suppose d ≥ 3g−2, and ζ♥ ∈ Z2d−g+1(HkµM,d|A♥d )Q. Suppose the restriction of ζ♥

to HkµM,d|A♥d ∩A♦d is the fundamental cycle, then the endomorphism fM,!cl(ζ♥) of RfM,!Q`|A♥d
is equal to the r-th power of the endomorphism fM,![H♦].

Proof. Let [H♦]r denotes the r-th self-convolution of [H♦], which is a cycle on the r-th self
composition of H, hence on HkµM,d by Lemma (6.2). We have two cycle ζ♥ and (the restriction

of) [H♦]r in Z2d−g+1(HkµM,d|A♥d )Q. We temporarily denote Md|A♥d by M♥d (although the same

notation will be defined in an a priorily different way in §6.3). We need to show that they are

in the same cycle class when projected to M♥d ×M
♥
d under (γ0, γr) : HkµM,d|A♥d →M

♥
d ×M

♥
d .

By assumption, when restricted to HkµM,d|A♥d ∩A♦d , both ζ♥ and [H♦]r are the fundamental

cycle. Therefore the difference (γ0, γr)∗(ζ
♥ − [H♦]r) ∈ Z2d−g+1(M♥d ×M

♥
d )Q is supported on

the image of HkµM,d|A♥d −A♦d inM♥d ×M
♥
d , which is contained in the image of HkµM,d−HkµM♦,d

in Md ×Md. By Lemma 6.4(2), the latter has dimension ≤ d + 2g − 2. Since d > 3g − 3, we

have d+ 2g − 2 < 2d− g + 1, therefore (γ0, γr)∗(ζ
♥ − [H♦]r) = 0 ∈ Z2d−g+1(M♥d ×M

♥
d )Q, and

the lemma follows. �

6.3. Auxiliary moduli stacks. The goal of this subsection is to prove Theorem 6.6. Below we
fix an integer d ≥ max{2g′ − 1, 2g}. In this subsection, we will introduce moduli stacks Hk′rG,d
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and Hd that will fit into the following commutative diagram

HkµT ×HkµT

(γ0,γr)

��

(γ0,γr)

��

Πµ×Πµ
// Hk′rG ×Hk′rG

(γ′0,γ
′
r)

��

(γ′0,γ
′
r)

��

Hk′rG,d

(γ′0,γ
′
r)

��

(←−ρ ′,−→ρ ′)
oo

(BunT )2 × (BunT )2 Π×Π×Π×Π
// (BunG)2 × (BunG)2 Hd ×Hd

←→p 13×←→p 24oo

BunT × BunT

(id,Fr)

OO

(id,Fr)

OO

Π×Π
// BunG × BunG

(id,Fr)

OO

(id,Fr)

OO

Hd

←→p =(←−p ,−→p )
oo

(id,Fr)

OO

(6.21)

The maps in this diagram will be introduced later. The fiber products of the three columns are

ShtµT × ShtµT
θµ×θµ−−−−→ Sht′rG × Sht′rG

(←−p ′,−→p ′)←−−−−− Sht′rG,d (6.22)

where Sht′rG,d is defined as the fiber product of the third column.
The fiber products of the three rows will be denoted

HkµM♥,d

(γ0,γr)

��

M♥d ×M
♥
d

M♥d

(id,Fr)

OO

(6.23)

These stacks will turn out to be the restrictions of Md and HkµM,d to A♥d , as we will see in

Lemma 6.8(2) and Lemma 6.9.

6.3.1. In §A.3 we discuss an abstract situation as in the above diagrams, which can be pictured
using a subdivided octahedron. By Lemma A.9, the fiber products of the two diagrams (6.22)
and (6.23) are canonically isomorphic. We denote this stack by

ShtµM♥,d.

Below we will introduce Hd and Hk′rG,d.

6.3.2. We define H̃d to be the moduli stack whose S-points is the groupoid of maps

φ : E ↪→ E ′

where E , E ′ are vector bundles over X × S of rank two, φ is an injective map of OX×S-modules
(so its cokernel has support finite over S) and prS∗ coker(φ) is a locally free OS-module of rank

d (where prS : X × S → S is the projection). We have an action of PicX on H̃d by tensoring,
and we form the quotient

Hd := H̃d/PicX

Taking the map φ to its source and target gives two maps ←−p ,−→p : Hd → BunG. The map
←→p 13 ×←→p 24 that appears in (6.21) is the map

←→p 13 ×←→p 24 : Hd ×Hd −→ BunG × BunG × BunG × BunG

(h, h′) 7−→ (←−p (h),←−p (h′),−→p (h),−→p (h′)).

On the other hand we have the morphism Π : BunT → BunG sending L to ν∗L, see §5.5.1.
We form the following Cartesian diagram, and take it as the definition of M♥d

M♥d //

��

Hd

(←−p ,−→p )

��

BunT × BunT
Π×Π

// BunG × BunG

(6.24)
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Lemma 6.8. (1) The morphisms ←−p ,−→p : Hd → BunG are representable and smooth of pure
relative dimension 2d. In particular, Hd is a smooth algebraic stack over k of pure dimension
2d+ 3g − 3.

(2) There is a canonical open embeddingM♥d ↪→Md whose image is f−1
M (A♥d ) (for the definition

of A♥d , see §3.2.4). In particular, M♥d is a smooth Deligne–Mumford stack over k of pure
dimension 2d− g + 1.

Proof. (1) Let R be a local artinian k-algebra, and let φ : E ↪→ E ′ be an R-point of Hd, where
E and E ′ are rank two vector bundles over XR. The tangent complex of Hd at φ is H∗(XR,K)
where K is the two-term complex

(End(E)⊕ End(E ′))/OXR · (idE , idE′)
δ−→ Hom(E , E ′)

where δ sends a pair (a, b) ∈ End(E)⊕ End(E ′) to φ ◦ a− b ◦ φ. Here K is placed in degrees −1
and 0. The tangent complex of BunG at E ∈ BunG(R) is given by

H∗(XR,End(E)/OXR · idE)[1].

The tangent map of ←−p is H∗(XR,K) → H∗(XR,End(E)/O · id)[1] induced from the projection
K → End(E)/O · idE [1]. Therefore the relative tangent complex of ←−p is H∗(XR,V) where V is
the two-term complex

End(E ′) b 7−→−b◦φ−−−−−−→ Hom(E , E ′) (6.25)

in degrees −1 and 0. Since φ is generically an isomorphism, the map (6.25) is generically an
isomorphism, and V is quasi-isomorphic to the torsion sheaf H0V, which is the cokernel of the
map (6.25). Therefore H∗(XR,V) is concentrated in degree zero, and ←−p is smooth. The relative
dimension of ←−p at a k-point φ as above (for R = k) is equal to the Euler characteristic of
H∗(Xk,V), or the length of the torsion sheaf H0V, which is 2d (using that deg End(E ′) = 0 and
deg Hom(E , E ′) = 2d). Similar argument works for −→p .

(2) By the diagram (6.24), M♥d classifies (L,L′, ψ) up to the action of PicX , where L and L′

are as in the definition of M̃d, and ψ is an injective OX -linear map ν∗L → ν∗L′.
The discussion in §6.1.3 turns a point (L,L′, ψ : ν∗L → ν∗L′) ∈ M♥d into a point (L,L′, α :

L → L′, β : L → σ∗L′) ∈ Md. The condition that ψ be injective is precisely the condition that

det(ψ) 6= 0, which is equivalent to saying that fM(L,L′, ψ) ∈ A♥d , according to (6.1).
Proposition 6.1(2) shows thatMd is a smooth Deligne–Mumford stack over k of pure dimen-

sion 2d− g + 1, hence the same is true for its open substack M♥d . �

6.3.3. Recall the Hecke stacks HkrG and HkµT defined in (5.4) and (5.15). Let Hkµ2,d be the
moduli stack of commutative diagrams

E0 //

φ0

��

E1 //

φ1

��

· · · // Er

φr

��

E ′0 // E ′1 // · · · // E ′r

(6.26)

where both rows are points in Hkµ2 with the same image in Xr, and the vertical maps φj are
points in Hd (i.e., injective maps with colength d). Let

HkrG,d = Hkµ2,d/PicX

where PicX simultaneously acts on all Ei and E ′i by tensor product. The same argument of
Lemma 5.5 shows that HkrG,d is independent of µ.

There are natural maps HkrG → Xr and HkrG,d → Xr. We define

Hk′rG = HkrG ×Xr X ′r; Hk′rG,d := HkrG,d ×Xr X ′r.

The map HkµT → HkrG given by Ei = ν∗Li induces a map

Πµ : HkµT −→ Hk′rG.

We have two maps
←−ρ ,−→ρ : HkrG,d −→ HkrG
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sending the diagram (6.26) to its top and bottom row. We denote their base change to X ′r by
←−ρ ′,−→ρ ′ : Hk′rG,d −→ Hk′rG

We define HkµM♥,d by the following Cartesian diagram

HkµM♥,d
//

��

Hk′rG,d

(←−ρ ′,−→ρ ′)
��

HkµT ×HkµT
Πµ×Πµ

// Hk′rG ×Hk′rG

(6.27)

The same argument of Lemma 6.8(2) shows the following result. Recall that the stack HkµM,d

is defined in §6.2.1.

Lemma 6.9. There is a canonical isomorphism between HkµM♥,d and the preimage of A♥d under

the natural map fM ◦ γ0 : HkµM,d → Ad.

6.3.4. We have a map
s : HkrG,d −→ Xd ×Xr

which sends a diagram (6.26) to (D;x1, · · · , xr) where D is the divisor of det(φi) for all i. Let
(Xd ×Xr)◦ ⊂ Xd ×Xr be the open subscheme consisting of those (D;x1, · · · , xr) where xi is
disjoint from the support of D for all i. Let

Hkr,◦G,d = s−1((Xd ×Xr)◦).

be an open substack of HkrG,d. Let Hk′r,◦G,d ⊂ Hk′rG,d and Hkµ,◦M♥,d ⊂ HkµM♥,d be the preimages of

Hkr,◦G,d.

Lemma 6.10. (1) The stacks Hkr,◦G,d and Hk′r,◦G,d are smooth of pure dimension 2d+ 2r+ 3g− 3.

(2) The dimensions of all geometric fibers of s are d + r + 3g − 3. In particular, dim HkrG,d =

dim Hk′rG,d = 2d+ 2r + 3g − 3.

(3) Recall that HkµM♦,d is the restriction HkµM,d|A♦d , where A♦d ⊂ Ad is defined in §6.2.4. Sup-

pose d ≥ max{2g′ − 1, 2g}. Let Hkµ,◦M♦,d be the intersection of HkµM♦,d with Hkµ,◦M♥,d inside

HkµM,d. Then dim(HkµM♦,d −Hkµ,◦M♦,d) < 2d− g + 1 = dim HkµM♦,d.

The proof of this lemma will be postponed to §6.4.1-§6.4.3.

Lemma 6.11. Suppose d ≥ max{2g′ − 1, 2g}.
(1) The diagram (6.27) satisfies the conditions in §A.2.8. In particular, the refined Gysin map

(Πµ ×Πµ)! : Ch∗(Hk′rG,d)Q −→ Ch∗−2(2g−2+r)(HkµM♥,d)Q

is defined.

(2) Let

ζ♥ = (Πµ ×Πµ)![Hk′rG,d] ∈ Ch2d−g+1(HkµM♥,d)Q. (6.28)

Then the restriction of ζ♥ to HkµM♥,d|A♦d ∩A♥d is the fundamental cycle.

Proof. (1) We first check that HkµM♥,d admits a finite flat presentation. The map γ0 : HkµM♥,d →
M♥d is schematic, so it suffices to check that M♥d or Md admits a finite flat presentation.

In the proof of Proposition 6.1(1) we constructed a proper and schematic map h : Md →
JdX′ × PrymX′/X , see (6.4). Since JdX′ is a scheme and PrymX′/X is the quotient of the usual

Prym variety by the trivial action of µ2, JdX′×PrymX′/X admits a finite flat presentation, hence

so do Md and HkµM♥,d.

Next we verify the condition (2) of §A.2.8. Extending k if necessary, we may choose a point
y ∈ X(k) that is split into y′, y′′ ∈ X ′(k). Let BunG(y) be the moduli stack of G-torsors over X
with a Borel reduction at y. Let Hk′rG(y) = Hk′rG ×BunG BunG(y) where the map Hk′rG → BunG
sends (Ei;xi; fi) to E0. We may lift the morphism Πµ to a morphism

Πµ(y) : HkµT −→ Hk′rG(y)



48 ZHIWEI YUN AND WEI ZHANG

where the Borel reduction of E0 = ν∗L0 at y (i.e., a line in the stalk E0,y) is given by the stalk
of L0 at y′. The projection p : Hk′rG(y)→ Hk′rG is smooth, and Πµ = p ◦ Πµ(y). So to check the
condition (2) of §A.2.8, it suffices to show that Πµ(y) is a regular local immersion.

We will show by tangential calculations that Hk′rG(y) is a Deligne–Mumford stack in a neigh-
borhood of the image of Πµ(y), and the tangent map of Πµ(y) is injective. For this it suffices to
make tangential calculations at geometric points of HkµT and its image in Hk′rG(y). We identify
HkµT with BunT × X ′r as in §5.4.4. Fix a geometric point (L;x′) ∈ PicX′(K) × X ′(K)r. For
notational simplicity, we base change the situation from k to K without changing notation. So
X means X ⊗k K, etc.

The relative tangent space of HkµT → X ′r at (L;x′) is H1(X,OX′/OX). The relative tangent

complex of Hk′rG(y)→ X ′r at Πµ(y)(L;x′) = (ν∗L → ν∗L(x′1)→ · · · ;Ly′) is H∗(X,Adx
′,y(ν∗L))[1],

where Adx
′,y(ν∗L) = Endx

′,y(ν∗L)/OX · id, and Endx
′,y(ν∗L) is the endomorphism sheaf of the

chain of vector bundles ν∗L → ν∗L(x′1)→ · · · preserving the line Ly′ of the stalk (ν∗L)y. Note
that

Endx
′,y(ν∗L) ⊂ Endy(ν∗L) = ν∗Hom(L ⊕ (σ∗L)(y′′),L)

= ν∗OX′ ⊕ ν∗(L ⊗ σ∗L−1(−y′′)) (6.29)

We also have a natural inclusion

γ : ν∗OX′ ↪→ Endx
′,y(ν∗L)

identifying the LHS as those endomorphisms of ν∗L that are OX′ -linear. Now γ(ν∗OX′) maps
isomorphically to ν∗OX′ on the RHS of (6.29). Combining these we get a canonical decomposi-

tion Endx
′,y(ν∗L) = ν∗OX′ ⊕ K for some line bundle K on X with deg(K) < 0. Consequently,

we have a canonical decomposition

Adx
′,y(ν∗L) = OX′/OX ⊕K. (6.30)

In particular H0(X,Adx
′,y(ν∗L)) = H0(X,OX′/OX) = 0. This shows that Hk′rG(y) is a Deligne–

Mumford stack in a neighborhood of Πµ(y)(L;x′).

The tangent map of Πµ(y) is the map H1(X,OX′/OX) → H1(X,Adx
′
(ν∗L)) induced by γ,

hence it corresponds to the inclusion of the first factor in the decomposition (6.30). In particular,
the tangent map of Πµ(y) is injective. This finishes the verification of all conditions in §A.2.8
for the diagram (6.27).

(2) Let Hkµ,◦M♥,d be the preimage of Hk′r,◦G,d. By Lemma 6.10(1), Hk′r,◦G,d is smooth of dimension

2d + 2r + 3g − 3. On the other hand, by Lemma 6.4, HkµM♦,d has dimension 2d − g + 1.

Combining these facts, we see that Hkµ,◦M♥,d∩HkµM♦,d has the expected dimension in the Cartesian

diagram (6.27). This implies that ζ♥|Hkµ,◦
M♥,d

∩Hkµ
M♦,d

is the fundamental cycle. By Lemma

6.10(3), HkµM♦,d−Hkµ,◦M♥,d has lower dimension than HkµM♦,d, therefore ζ♥|Hkµ
M♦,d

must be the

fundamental cycle. �

6.3.5. There are r + 1 maps γi (0 ≤ i ≤ r) from the diagram (6.27) to (6.24): it sends the
diagram (6.26) to its i-th column, etc. In particular, we have maps γi : HkrG,d → Hd and

γ′i : Hk′rG,d → Hd. The maps γ′0 and γ′r appear in the diagram (6.21).
We define the stack ShtrG,d by the following Cartesian diagram

ShtrG,d

��

// HkrG,d

(γ0,γr)

��

Hd
(id,Fr)

// Hd ×Hd

(6.31)
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Similarly we define Sht′rG,d as the fiber product of the third column of (6.21):

Sht′rG,d

��

// Hk′rG,d

(γ′0,γ
′
r)

��

Hd

(id,Fr)
// Hd ×Hd

(6.32)

We have Sht′rG,d
∼= ShtrG,d ×Xr X ′r.

Lemma 6.12. There are canonical isomorphisms of stacks

ShtrG,d
∼=

∐
D∈Xd(k)

ShtrG(hD);

Sht′rG,d
∼=

∐
D∈Xd(k)

Sht′rG(hD).

For the definitions of ShtrG(hD) and Sht′rG(hD), see §5.3.1 and §5.3.2.

Proof. From the definitions, (γ0, γr) factors through the map HkrG,d → Hd ×Xd Hd. On the
other hand, (id,Fr) : Hd → Hd ×Hd covers the similar map (id,Fr) : Xd → Xd ×Xd. By the
discussion in §A.4.5, we have a decomposition

ShtrG,d =
∐

D∈Xd(k)

ShtrG,D

Let HD and HkrG,D be the fibers of Hd and HkrG,d over D. Then the D-component ShtrG,D of
ShtrG,d fits into a Cartesian diagram

ShtrG,D //

��

HkrG,D

(γ0,γr)

��

HD

(id,Fr)
// HD ×HD

(6.33)

Comparing this with the definition in §5.3.1, we see that ShtrG,D
∼= ShtrG(hD). The statement

for Sht′rG,d follows from the statement for ShtrG,d by base change to X ′r. �

Corollary 6.13. Let D ∈ Xd(k) (i.e., an effective divisor on X of degree d). Recall the stack
ShtµM,d defined in (6.12) and ShtµM♥,d defined in §6.3.1. Then ShtµM♥,d is canonically isomorphic

to the restriction of ShtµM,d to A♥d (k) ⊂ Ad(k).
Moreover, there is a canonical decomposition

ShtµM♥,d =
∐

D∈Xd(k)

ShtµM,D,

where ShtµM,D is defined in (6.14). In particular, we have a Cartesian diagram

ShtµM,D

��

// Sht′rG(hD)

(←−p ′,−→p ′)
��

ShtµT × ShtµT
θµ×θµ

// Sht′rG × Sht′rG

(6.34)

Proof. Note that ShtµM♥,d is defined as a fiber product in two ways: one as the fiber product of

(6.22) and the other as the fiber product of (6.23). Using the first point of view and the decompo-
sition of Sht′rG,d given by Lemma 6.12, we get a decomposition of ShtµM♥,d =

∐
D∈Xd(k) ShtµM♥,D,

where ShtµM♥,D is by definition the stack to put in the northwest corner of (6.34) to make the

diagram Cartesian.
On the other hand, using the second point of view of ShtµM♥,d as the fiber product of (6.23),

and using the fact that HkµM♥,d is the restriction of HkµM,d over A♥d by Lemma 6.9, we see

that ShtµM♥,d is the restriction of ShtµM,d over A♥d by comparing (6.23) and (6.12). By (6.13)
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and (6.14), and the fact that A♥d (k) =
∐
D∈Xd(k)AD(k), we get a decomposition ShtµM♥,d =∐

D∈Xd(k) ShtµM,D. Therefore, both ShtµM♥,D and ShtµM,D are the fiber of the map ShtµM,d →
Ad → X̂d over D, and they are canonically isomorphic. Hence we may replace the northwest
corner of (6.34) by ShtµM♥,D, and the new diagram is Cartesian by definition. �

Lemma 6.14. (1) The diagram (6.32) satisfies the conditions in §A.2.10. In particular, the
refined Gysin map

(id,FrHd)! : Ch∗(Hk′rG,d)Q −→ Ch∗−dimHd(Sht′rG,d)Q

is defined.

(2) We have

[Sht′rG,d] = (id,FrHd)![Hk′rG,d] ∈ Ch2r(Sht′rG,d).

Proof. (1) Since ←−p : ShtrG(hD) → ShtrG is representable by Lemma 5.8, ShtrG(hD) is also a
Deligne–Mumford stack. Since ShtrG,d is the disjoint union of ShtrG(hD) by Lemma 6.12, ShtrG,d
is Deligne–Mumford, hence so is Sht′rG,d. The map γ′0 : Hk′rG,d → Hd is representable because its
fibers are closed subschemes of iterated Quot schemes (fixing E0 ↪→ E ′0, building Ei and E ′i step
by step and imposing commutativity of the maps). Therefore (γ′0, γ

′
r) is also representable. This

verifies the condition (1) in §A.2.10.
SinceHd is smooth by Lemma 6.8, the normal cone stack of the map (id,FrHd) : Hd → Hd×Hd

is the vector bundle stack Fr∗ THd, the Frobenius pullback of the tangent bundle stack of Hd.
Therefore (id,FrHd) satisfies condition (2) in §A.2.10. It also satisfies condition (3) of §A.2.10
by the discussion in Remark A.7.

Finally the dimension condition (4) in §A.2.10 for Hk′rG,d and Sht′rG,d =
∐
D Sht′rG(hD) follow

from Lemma 6.10(2) and Lemma 5.9. We have verified all conditions in §A.2.10.
(2) Take the open substack Hk′r,◦G,d ⊂ Hk′rG,d as in Lemma 6.10. Then Hk′r,◦G,d is smooth of pure

dimension 2d + 2r + 3g − 3. According to Lemma 6.12, the corresponding open part Sht′r,◦G,d is

the disjoint union of Sht′r,◦G (hD), where

Sht′r,◦G (hD) = Sht′rG(hD)|(X′−ν−1(D))r .

It is easy to see that both projections Sht′r,◦G (hD)→ Sht′rG are étale, hence Sht′r,◦G (hD) is smooth

of dimension 2r = dim Hk′r,◦G,d − codim(id,FrHd), the expected dimension. This implies that if

we replace Hk′rG,d with Hk′r,◦G,d, and replace Sht′rG,d with Sht′r,◦G,d in the diagram (6.32), it becomes

a complete intersection diagram. Therefore (id,FrHd)![Hk′rG,d] is the fundamental cycle when

restricted to Sht′r,◦G,d. Since Sht′rG,d − Sht′r,◦G,d has lower dimension than 2r by Lemma 5.9, we see

that (id,FrHd)![Hk′rG,d] must be equal to the fundamental cycle over the whole Sht′rG,d. �

6.3.6. Proof of Theorem 6.6. Consider the diagram (6.34). Since ShtµT is a proper Deligne–
Mumford stack over k and the map (←−p ′,−→p ′) is proper and representable, ShtµM,D is also a
proper Deligne–Mumford stack over k. A simple manipulation using the functoriality of Gysin
maps gives

Ir(hD) = 〈θµ∗ [ShtµT ], hD ∗ θµ∗ [ShtµT ]〉Sht′rG
= deg

(
(θµ × θµ)![Sht′rG(hD)]

)
.

Here (θµ × θµ)! : Ch2r(Sht′rG(hD))Q → Ch0(ShtµM,D)Q is the refined Gysin map attached to the

map θµ × θµ. By Corollary 6.13, (θµ × θµ)![Sht′rG(hD)] is the D-component of the 0-cycle

(θµ × θµ)![Sht′rG,d] ∈ Ch0(ShtµM♥,d)Q =
⊕

D∈Xd(k)

Ch0(ShtµM,D)Q.

Therefore, to prove (6.16) simultaneously for all D of degree d, it suffices to find a cycle class ζ♥ ∈
Ch2d−g+1(HkµM♥,d)Q whose restriction to HkµM♥,d∩HkµM♦,d = HkµM,d|A♥d ∩A♦d is the fundamental

class, and that

(θµ × θµ)![Sht′rG,d] = (id,FrM♥d
)!ζ♥ ∈ Ch0(ShtµM♥,d)Q. (6.35)

The statement of Theorem 6.6 asks for a cycle ζ on HkµM,d, but we may extend the above ζ♥

arbitrarily to a (2d− g + 1)-cycle in HkµM,d.
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To prove (6.35), we would like to apply Theorem A.10 to the situation of (6.21). We check
the assumptions:

(1) The smoothness of BunT and BunG is well-known. The smoothness of Hk′rG and HkµT follow
from Remark 5.2 and §5.4.4. Finally, by Lemma 6.8, Hd is smooth of pure dimension
2d+ 3g − 3. This checks the smoothness of all members in (6.21) except B = Hk′rG,d.

(2) By Corollary 5.7, ShtrG and hence Sht′rG is smooth of pure dimension 2r; by Lemma 5.13,

ShtµT is smooth of pure dimension r. By Lemma 6.8, M♥d is smooth of pure dimension
2d− g + 1. All of them have the dimension expected from the Cartesian diagrams defining
them.

(3) The diagram (6.32) satisfies the conditions in §A.2.10 by Lemma 6.14. The diagram (6.27)
satisfies the conditions in §A.2.8 by Lemma 6.11.

(4) We check that the Cartesian diagram formed by (6.23), or rather (6.12), satisfies the condi-
tions in §A.2.8. The map ShtµM,d → Md is representable because HkµM,d → Md ×Md is.

In the proof of Lemma 6.11(1) we have proved that Md admits a finite flat presentation,
hence so does ShtµM,d. This verifies the first condition in §A.2.8. Since Md is a smooth

Deligne–Mumford stack by Lemma 6.1(2), (id,FrMd
) : Md →Md ×Md is a regular local

immersion, which verifies condition (2) of §A.2.8.
Finally we consider the Cartesian diagram formed by (6.22) (or equivalently, the disjoint

union of the diagrams (6.34) for all D ∈ Xd(k)). We have already showed above that ShtµM,d

admits a finite flat presentation. All members in these diagrams are Deligne–Mumford stacks,
and ShtµT and Sht′rG are smooth Deligne–Mumford stacks by Lemma 5.13 and Corollary 5.7.
Hence the map θµ × θµ satisfies the conditions (2) of §A.2.8 by Remark A.4.

Now we can apply Theorem A.10 to the situation (6.21). Let ζ♥ = (Πµ × Πµ)![Hk′rG,d] ∈
Ch2d−g+1(HkµM♥,d)Q as defined in (6.28). Then the restriction of ζ♥ to HkµM,d|A♦d ∩A♥d is the

fundamental cycle by Lemma 6.11(2). Finally,

(id,FrM♥d
)!ζ♥ = (id,FrM♥d

)!(Πµ ×Πµ)![Hk′rG,d]

= (θµ × θµ)!(id,FrHd)![Hk′rG,d] (Theorem A.10)

= (θµ × θµ)![Sht′rG,d] (Lemma 6.14(2))

which is (6.35). This finishes the proof of (6.16).

6.4. Some dimension calculation. In this subsection, we give the proofs of several lemmas
we stated previously concerning the dimensions of certain moduli stacks.

6.4.1. Proof of Lemma 6.10(1). In the diagram (6.26), when the divisors of the φi are disjoint
from the divisors of the horizontal maps, namely the xi’s, the diagram is uniquely determined
by its left column φ0 : E0 → E ′0 and top row. Therefore we have

Hkr,◦G,d = (Hd ×BunG HkrG)|(Xd×Xr)◦ .

Since Hd is smooth of pure dimension 2d+3g−3 by Lemma 6.8, and the map p0 : HkrG → BunG
is smooth of relative dimension 2r, we see that Hd ×BunG HkrG is smooth of pure dimension
2d+ 2r + 3g − 3.

6.4.2. Proof of Lemma 6.10(2). Over (Xd×Xr)◦, we have dim Hkr,◦G,d = 2d+2r+3g−3, therefore
the generic fiber of s has dimension d + r + 3g − 3. By the semicontinuity of fiber dimensions,
it suffices to show that the geometric fibers of s have dimension ≤ d + r + 3g − 3. We will
actually show that the geometric fibers of the map (s, p0) : HkrG,d → Xd ×Xr × BunG sending
the diagram (6.26) to (D;xi; E ′r) have dimension ≤ d+ r.

We present HkrG,d as the quotient of Hkµ2,d/PicX with µ = µr+. Therefore a point in HkrG,d is

a diagram of the form (6.26) with all arrows fi, f
′
i pointing to the right.

Let (D;x = (xi)) ∈ Xd×Xr and E ′r ∈ BunG be geometric points. For notational simplicity we
base change the whole situation to the field of definition of this point without changing notation.
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Let HD,x,E′r be the fiber of (s, p0) over (D;xi; E ′r). We consider the scheme H ′ = H ′D,x,E′r
classifying commutative diagrams

E0
f1 //

φ0

��

E1
f2 // · · ·

fr // Er

φr

��

E ′0
f ′1 // E ′1

f ′2 // · · ·
f ′r // E ′r

(6.36)

where div(detφ0) = D = div(detφr) and div(det fi) = xi = div(det f ′i). The only difference
between H ′ and HD,x,E′r is that we do not require the maps φi for 1 ≤ i ≤ r − 1 to exist (they
are unique if exist). There is a natural embedding HD,x,E′r ↪→ H ′, and it suffices to show that
dim(H ′) ≤ d+ r. We isolate this part of the argument into a separate Lemma below, because it
will be used in another proof. This finishes the proof of Lemma 6.10(2).

Lemma 6.15. Consider the scheme H ′ = H ′D,x,E′r introduced in the proof of Lemma 6.10(2).

We have dimH ′ = d+ r.

Proof. We only give the argument for the essential case where all xi are equal to the same point
x and D = dx. The general case can be reduced to this case by factorizing H ′ into a product
indexed by points that appear in |D|∪{x1, · · · , xr}. Let Gr1r,d be the iterated version of the affine
Schubert variety classifying chains of lattices Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λr ⊂ Λ′r = O2

x in F 2
x where

all inclusions have colength 1 except for the last one, which has colength d. Similarly let Grd,1r be
the iterated affine Schubert variety classifying chains of lattices Λ0 ⊂ Λ′0 ⊂ Λ′1 ⊂ · · · ⊂ Λ′r = O2

x

in F 2
x where the first inclusion has colength d and all other inclusions have colength 1. Let

Grd+r ⊂ GrG,x be the affine Schubert variety classifying Ox-lattices Λ ⊂ O2
x with colength d+r.

We have natural maps π : Gr1r,d → Grd+r and π′ : Grd,1r → Grd+r sending the lattice chains
to Λ0. By the definition of H ′, after choosing a trivialization of E ′r in the formal neighborhood
of x, we have an isomorphism

H ′ ∼= Gr1r,d ×Grd+r Grd,1r . (6.37)

Since π and π′ are surjective, therefore dimH ′ ≥ dim Grd+r = d+ r.
Now we show dimH ′ ≤ d + r. Since the natural projections Gr1d+r → Gr1r,d and Gr1d+r →

Grd,1r are surjective, it suffices to show that dim(Gr1d+r ×Grd+r Gr1d+r ) ≤ d+ r. In other words,
letting m = d + r, we have to show that πm : Gr1m → Grm is a semismall map. This is a very
special case of the semismallness of convolution maps in the geometric Satake equivalence, and
we shall give a direct argument. The scheme Grm is stratified into Y im (0 ≤ i ≤ [m/2]) where Y im
classifies those Λ ⊂ O2

x such that O2
x/Λ

∼= Ox/$i
x ⊕ Ox/$m−i

x . We may identify Y im with the
open subscheme Y 0

m−2i ⊂ Grm−2i by sending Λ ∈ Y im to $−ix Λ ⊂ O2
x, hence dimY im = m − 2i

and codimGrmY
i
m = i. We need to show that for Λ ∈ Yi, dimπ−1

m (Λ) ≤ i. We do this by
induction on m. By definition, π−1

m (Λ) classifies chains Λ = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λm = O2
x each

step of which has colength one. For i = 0 such a chain is unique. For i > 0, the choices of
Λ1 are parametrized by P1, and the map ρ : π−1

m (Λ) → P1 recording Λ1 has fibers π−1
m−1(Λ1).

Either O2
x/Λ1

∼= Ox/$i−1
x ⊕ Ox/$m−i

x , in which case dim ρ−1(Λ1) = dimπ−1
m−1(Λ1) ≤ i − 1 by

inductive hypothesis, or O2
x/Λ1

∼= Ox/$i
x⊕Ox/$m−i−1

x (which happens for exactly one Λ1), in
which case dim ρ−1(Λ1) = dimπ−1

m−1(Λ1) ≤ i. These imply that dimπ−1
m (Λ) ≤ i. The lemma is

proved.
�

6.4.3. Proof of Lemma 6.10(3). We denote HkµM♦,d − Hkµ,◦M♦,d by ∂HkµM♦,d. By Lemma 6.2

and Lemma 6.3, HkµM♦,d
∼= X̂ ′d ×PicdX

Br,d, where Br,d classifies (r + 1)-triples of divisors

(D0, D1, · · · , Dr) of degree d on X ′, such that for each 1 ≤ i ≤ r, Di is obtained from
Di−1 by changing some point x′i ∈ Di−1 to σ(x′i). In particular, all Di have the same image

Db := π(Di) ∈ Xd. We denote a point in HkµM♦,d by z = (L, α,D0, · · · , Dr) ∈ X̂ ′d ×PicdX
Br,d,

where (L, α) ∈ X̂ ′d denotes a line bundle L on X ′ and a section α of it, together with an isomor-
phism Nm(L) ∼= OX(Db). Therefore both Nm(α) and 1 give sections of OX(Db). The image

of z under HkµM♦,d → Ad
δ−→ X̂d is the pair (OX(Db),Nm(α) − 1). Therefore z ∈ ∂HkµM♦,d if
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and only if div(Nm(α) − 1) contains π(x′i) for some 1 ≤ i ≤ r (Nm(α) = 1 is allowed). Since
x′i ∈ Di−1, we have π(x′i) ∈ π(Di−1) = Db, therefore π(x′i) also appears in the divisor of Nm(α).
So we have two cases: either α = 0 or div(Nm(α)) shares a common point with Db.

In the former case, z is contained in PicdX′ ×PicdX
Br,d which has dimension g−1+d < 2d−g+1

since d ≥ 2g.
In the latter case, the image of z in Ad lies in the subscheme Cd ⊂ Xd ×PicdX

Xd consisting

of triples (D1, D2, γ : O(D1) ∼= O(D2)) such that the divisors D1 and D2 have a common
point. There is a surjection X × (Xd−1 ×Picd−1

X
Xd−1) → Cd which implies that dim Cd ≤

1 + 2(d − 1) − g + 1 = 2d − g. Here we are using the fact that d − 1 ≥ 2g − 1 to compute the
dimension of Xd−1×Picd−1

X
Xd−1. The conclusion is that in the latter case, z lies in the preimage

of Cd in HkµM♦,d, which has dimension equal to dim Cd (because HkµM,d → Ad is finite when

restricted to Cd ⊂ Xd ×PicdX
Xd), which is ≤ 2d− g < 2d− g + 1.

Combining the two cases we conclude that dim ∂HkµM♦,d < 2d− g + 1 = dim HkµM♦,d.

6.4.4. Proof of Lemma 5.9. Let x = (x1, · · · , xr) ∈ Xr be a geometric point. Let ShtrG(hD)x be
the fiber of ShtrG(hD) over x. When x is disjoint from |D|, ←−p : ShtrG(hD)x → ShtrG,x is étale,

hence in this case dim ShtrG(hD)x = r. By semicontinuity of fiber dimensions, it remains to show
that dim ShtrG(hD)x ≤ r for all geometric points x over closed points of Xr. To simplify notation
we assume xi ∈ X(k). The general case can be argued similarly.

We use the same notation as in §6.4.2. In particular, we will use HkrG,d, and think of it as

Hkµ2,d/PicX with µ = µr+. Let HD be the fiber over D of Hd → Xd sending (φ : E ↪→ E ′) to the

divisor of det(φ). Let HkrD,x be the fiber of s : HkrG,d → Xd ×Xr over (D;x).

Taking the fiber of the diagram (6.33) over x we get a Cartesian diagram

ShtrG(hD)x

��

// HkrD,x

(p0,pr)

��

HD

(id,Fr)
// HD ×HD

(6.38)

For each divisor D′ ≤ D such that D − D′ has even coefficients, we have a closed embedding

HD′ ↪→ HD sending (φ : E → E ′) ∈ HD′ to E φ−→ E ′ ↪→ E ′( 1
2 (D − D′)). Let HD,≤D′ be the

image of this embedding. Also let HD,D′ = HD,≤D′ − ∪D′′<D′HD,≤D′′ . Then {HD,D′} give a
stratification of HD indexed by divisors D′ ≤ D such that D −D′ is even. We may restrict the
diagram (6.38) to HD,D′ ×HD,D′ ↪→ HD ×HD and get a Cartesian diagram

ShtrG(hD)D′,x

��

// HkrD,D′,x

(p0,pr)

��

HD,D′
(id,Fr)

// HD,D′ ×HD,D′

(6.39)

We will show that dim ShtrG(hD)D′,x ≤ r for each D′ ≤ D and D −D′ even.
The embedding HD′ ↪→ HD above restricts to an isomorphism HD′,D′

∼= HD,D′ . Similarly we
have an isomorphism HkrD′,D′,x

∼= HkrD,D′,x sending a diagram of the form (6.26) to the diagram

of the same shape with each E ′i changed to E ′( 1
2 (D −D′)). Therefore we have ShtG(hD′)D′,x ∼=

ShtG(hD)D′,x, and it suffices to show that the open stratum ShtG(hD)D,x has dimension at most
r. This way we reduce to treating the case D′ = D.

Let D̃ = D + x = D + x1 + · · · + xr ∈ Xd+r be the effective divisor of degree d + r. Let

BunG,D̃ be the moduli stack of G bundles with a trivialization over D̃. A point of BunG,D̃ is

a pair (E ′, τ : E ′
D̃
∼= O2

D̃
) (where E ′ is a vector bundle of rank two over X) up to the action of

PicX(D̃) (line bundles with a trivialization over D̃). There is a map h : BunG,D̃ → HD,D sending

(E ′, τ) to (φ : E ↪→ E ′) where E is the preimage of the first copy of OD under the surjective map

E ′ � E ′D
τ−→ O2

D̃
� O2

D. Let BD ⊂ ResODk G = PGL2(OD) be the subgroup stabilizing the

first copy of O2
D, and let B̃D ⊂ Res

O
D̃

k G = PGL2(OD̃) be the preimage of BD. Then h is a

B̃D-torsor. In particular, HD,D is smooth, and the map h is also smooth. Since smooth maps



54 ZHIWEI YUN AND WEI ZHANG

have sections étale locally, we may choose an étale surjective map ω : Y → HD,D and a map
s : Y → BunG,D̃ such that hs = ω.

Let W = HkrD,D,x ×HD,D Y (using the projection γr : HkrD,D,x → HD,D). We claim that the
projection W → Y is in fact a trivial fibration. In fact, let T be the moduli space of diagrams
of the form (6.26) with E ′r = O2

X and Er = OX(−D) ⊕ OX and φr is the obvious embedding

Er ↪→ E ′r. In such a diagram all Ei and E ′i contain E ′r(−D̃), therefore it contains the same amount

of information as the diagram formed by the torsion sheaves Ei/E ′r(−D̃) and E ′i/E ′r(−D̃). For
a point y ∈ Y with image (φr : Er ↪→ E ′r) ∈ HD,D, s(y) ∈ BunG,D̃ gives a trivialization of

E ′r|D̃. Therefore, completing φr into a diagram of the form (6.26) is the same as completing the

standard point (Er = OX(−D) ⊕ OX ↪→ O2
X) ∈ HD,D into such a diagram. This shows that

W ∼= Y × T . We have a diagram

U

u

��

// W

w

��

∼ // Y × T ω×id
// HD,D × T

ShtrG(hD)D,x //

��

HkrD,D,x

(γ0,γr)

��

HD,D

(id,Fr)
// HD,D ×HD,D

where U is defined so that the top square is Cartesian. The outer Cartesian diagram fits into
the situation of [16, Lemme 2.13], and we have used the same notation as in loc.cit, except
that we take Z = HD,D. Applying loc. cit., we conclude that the map U → T is étale. Since
w : W → HkrD,D,x is étale surjective, so is u : U → ShtrG(hD)D,x. Therefore ShtrG(hD)D,x is étale
locally isomorphic to T , and in particular they have the same dimension.

It remains to show that dimT ≤ r. Recall the moduli space H ′ = H ′D,x,E′r introduced in the

proof of Lemma 6.10(2) classifying diagrams of the form (6.36). Here we fix E ′r = O2
X . Let T ′

be subscheme of H ′ consisting of diagrams of the form (6.36) where (φr : Er ↪→ E ′r) is fixed to
be (Er = OX(−D) ⊕ OX ↪→ O2

X). Then we have a natural embedding T ↪→ T ′, and it suffices
to show that dimT ′ ≤ r. Again we treat only the case where D and x are both supported at
a single point x ∈ X. The general case easily reduces to this by factorizing T ′ into a product
indexed by points in |D| ∪ {x1, · · · , xr}.

Let Grd ⊂ GrG,x be the affine Schubert variety classifying lattices Λ ⊂ O2
x of colength d. Let

Gr♥d ⊂ Grd be the open Schubert stratum consisting of lattices Λ ⊂ O2
x such thatO2

x/Λ
∼= Ox/$d

x

($x is a uniformizer at x). We have a natural projection ρ : H ′ → Grd sending the diagram (6.36)
to Λ := Er|SpecOx ↪→ E ′r|SpecOx = O2

x. Then T ′ is the fiber of ρ at the point Λ = $d
xOx ⊕ Ox.

Let H♥ = ρ−1(Gr♥d ). There is a natural action of the positive loop group L+
xG on both H ′ and

Grd making ρ equivariant under these actions. Since the action of L+
xG on Gr♥d is transitive, all

fibers of ρ over points of Gr♥d have the same dimension, i.e.,

dimT ′ = dimH♥ − dim Gr♥d = dimH♥ − d. (6.40)

By Lemma 6.15, dimH ′ = d+ r. Therefore dimH♥ = d+ r and dimT ′ ≤ r by (6.40). We are
done.

7. Cohomological spectral decomposition

In this section, we give a decomposition of the cohomology of ShtrG under the action of the
Hecke algebra H , generalizing the classical spectral decomposition for the space of automorphic
forms. The main result is Theorem 7.14 which shows that H2r

c (Shtr
G,k

,Q`) is an orthogonal

direct sum of an Eisenstein part and finitely many (generalized) Hecke eigenspaces. We then use
a variant of such a decomposition for Sht′rG to make a decomposition for the Heegner-Drinfeld
cycle.

7.1. Cohomology of the moduli stack of Shtukas.
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7.1.1. Truncation of BunG by index of instability. For a rank two vector bundle E over X, we
define its index of instability to be

inst(E) := max{2 degL − deg E},
where L runs over line subbundle of E . When inst(E) > 0, E is called unstable, in which case
there is a unique line subbundle L ⊂ E such that degL > 1

2 deg E . We call this line subbundle
the maximal line subbundle of E . Note that there is a constant c(g) depending only on the genus
g of X such that inst(E) ≥ c(g) for all rank two vector bundles E on X.

The function inst : Bun2 → Z is upper semi-continuous, and descends to a function inst :
BunG → Z. For an integer a, inst−1((−∞, a]) =: Bun≤aG is an open substack of BunG of finite
type over k.

7.1.2. Truncation of ShtrG by index of instability. For ShtrG we define a similar stratification
by the index of instability of the various Ei. We choose µ as in §5.1.2 and present ShtrG as
Shtµ2/PicX(k).

Consider the set D of functions d : Z/rZ→ Z such that d(i)− d(i− 1) = ±1 for all i. There
is a partial order on D by pointwise comparison.

For any d ∈ D, let Shtµ,≤d2 be the open substack of Shtµ2 consisting of those (Ei;xi; fi) such

that inst(Ei) ≤ d(i). Then each Shtµ,≤d2 is preserved by the PicX(k)-action, and we define

Shtµ,≤dG := Shtµ,≤d2 /PicX(k), an open substack of ShtrG of finite type. If we change µ to µ′,

the canonical isomorphism ShtµG
∼= Shtµ

′

G in Lemma 5.6 preserves the G-torsors Ei, therefore the

open substacks Shtµ,≤dG and Shtµ
′,≤d
G correspond to each other under the isomorphism. This

shows that Shtµ,≤dG is canonically independent of the choice of µ, and we will simply denote it

by Sht≤dG .
In the sequel, the superscript on ShtG will be reserved for the truncation parameters d ∈ D,

and we will omit r from the superscripts. In the rest of the section, ShtG means ShtrG.

Define ShtdG := Sht≤dG − ∪d′<dSht≤d
′

G . This is a locally closed substack of ShtG of finite type

classifying Shtukas (Ei;xi; fi) with inst(Ei) = d(i) for all i. A priori we could define ShtdG for

any function d : Z/rZ → Z; however, only for those d ∈ D is ShtdG nonempty, because for

(Ei;xi; fi) ∈ Shtµ2 , inst(Ei) = inst(Ei−1) ± 1. The locally closed substacks {ShtdG}d∈D give a
stratification of ShtG.

7.1.3. Cohomology of ShtG. Let π≤dG : Sht≤dG → Xr be the restriction of πG, and similarly define

π<dG and πdG. For d ≤ d′ ∈ D we have a map induced by the open inclusion Sht≤dG ↪→ Sht≤d
′

G :

ιd,d′ : Rπ≤dG,!Q` −→ Rπ≤d
′

G,! Q`

The total cohomology H∗c(ShtG ⊗k k) is defined as the inductive limit

H∗c(ShtG ⊗k k) := lim−→
d∈D

H∗c(Sht≤dG ⊗k k) = lim−→
d∈D

H∗(Xr ⊗k k,Rπ≤dG,!Q`).

7.1.4. The action of Hecke algebra on the cohomology of ShtG. For each effective divisor D of
X, we have defined in §5.3.1 a self-correspondence ShtG(hD) of ShtG over Xr.

For any d ∈ D, let ≤dShtG(hD) ⊂ ShtG(hD) be the preimage of Sht≤dG under ←−p . For a point

(Ei ↪→ E ′i) of ≤dShtG(hD), we have inst(Ei) ≤ d(i), hence inst(E ′i) ≤ d(i) + degD. Therefore

the image of ≤dShtG(hD) under −→p lies in Sht≤d+degD
G . For any d′ ≥ d + degD, we may

view ≤dShtG(hD) as a correspondence between Sht≤dG and Sht≤d
′

G over Xr. By Lemma 5.9,

dim ShtG(hD) = dim ShtG = 2r, the fundamental cycle of ≤dShtG(hD) gives a cohomological

correspondence between the constant sheaf on Sht≤dG and the constant sheaf on Sht≤d
′

G (see
§A.4.1), and induces a map

C(hD)d,d′ : Rπ≤dG,!Q` −→ Rπ≤d
′

G,! Q`. (7.1)

Here we are using the fact that
≤d←−p : ≤dShtG(hD)→ Sht≤dG is proper (which is necessary for the

construction (A.25)), which follows from the properness of ←−p : ShtG(hD) → ShtG by Lemma
5.8.
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For any e ≥ d and e′ ≥ e+ degD and e′ ≥ d′, we have a commutative diagram

Rπ≤dG,!Q`
C(hD)d,d′

//

ιd,e

��

Rπ≤d
′

G,! Q`

ιd′,e′

��

Rπ≤eG,!Q`
C(hD)e,e′

// Rπ≤e
′

G,! Q`

which follows from the definition of cohomological correspondences. Taking H∗(Xr ⊗k k,−) and
taking inductive limit over d and e, we get an endomorphism of H∗c(ShtG ⊗k k)

C(hD) : H∗c(ShtG ⊗k k) = lim−→
d∈D

H∗(Xr ⊗k k,Rπ≤dG,!Q`)

lim−→C(hD)d,d′
−−−−−−−−−→ lim−→

d′∈D
H∗(Xr ⊗k k,Rπ≤d

′

G,! Q`) = H∗c(ShtG ⊗k k).

The following result is a cohomological analog of Proposition 5.10.

Proposition 7.1. The assignment hD 7→ C(hD) gives a ring homomorphism for each i ∈ Z

C : H −→ End(Hi
c(ShtG ⊗k k)).

Proof. The argument is similar to that of Proposition 5.10, for this reason we only give a sketch
here. For two effective divisors D and D′, we need to check that the action of C(hDhD′) is the
same as the composition C(hD) ◦ C(hD′).

Let d, d† and d′ ∈ D satisfy d† ≥ d+ degD′ and d′ ≥ d† + degD, then the map

C(hD)d†,d′ ◦ C(hD′)d,d† : Rπ≤dG,!Q` −→ Rπ≤d
†

G,! Q` −→ Rπ≤d
′

G,! Q`

is induced from a cohomological correspondence ζ between the constant sheaves on Sht≤dG and

on Sht≤d
′

G supported on ≤dShtG(hD) ∗ ≤d
†
ShtG(hD′) := ≤dShtG(hD) ×−→p ,ShtG,

←−p
≤d†ShtG(hD′);

i.e., ζ ∈ HBM
4r (≤dShtG(hD) ∗ ≤d

†
ShtG(hD′)⊗k k).

On the other hand, the Hecke function hDhD′ is a linear combination of hE where E ≤ D+D′

and D +D′ − E is even. Since d ∈ D and d′ ≥ d+ degD + degD′, the map

C(hDhD′)d,d′ : Rπ≤dG,!Q` −→ Rπ≤d
′

G,! Q`

is induced from a cohomological correspondence ξ between the constant sheaves on Sht≤dG and

on Sht≤d
′

G supported on the union of ≤dShtG(hE) for E ≤ D + D′ and D + D′ − E even, i.e.,

supported on ≤dShtG(hD+D′). In other words, ξ ∈ HBM
4r (≤dShtG(hD+D′)⊗k k).

There is a proper map of correspondences θ : ≤dShtG(hD)∗≤d
†
ShtG(hD′)→ ≤dShtG(hD+D′),

and the action of C(hD)d†,d′◦C(hD′)d,d† is also induced from the class θ∗ζ ∈ HBM
4r (≤dShtG(hD+D′)⊗k k),

viewed as a cohomological correspondence supported on ≤dShtG(hD+D′). Let U = X−|D|−|D′|.
It is easy to check that ξ|Ur = θ∗ζ|Ur using that, over Ur, the correspondences Sht(hD),Sht(hD′)

and Sht(hD+D′) are finite étale over ShtG. By Lemma 5.9, ≤dShtG(hD+D′)−≤dShtG(hD+D′)|Ur
has dimension < 2r, therefore ξ = θ∗ζ holds as elements in HBM

4r (≤dShtG(hD+D′)⊗k k), and
hence C(hDhD′)d,d′ = C(hD)d†,d′ ◦ C(hD′)d,d† . Applying H∗(Xr ⊗k k,−) and taking induc-
tive limit over d and d′, we see that C(hDhD′) = C(hD) ◦ C(hD′) as endomorphisms of
H∗c(ShtG ⊗k k). �

7.1.5. Notation. For α ∈ H∗c(ShtG ⊗k k) and f ∈H , we denote the action of C(f) on α simply
by f ∗ α ∈ H∗c(ShtG ⊗k k).

7.1.6. Cup product gives a symmetric bilinear pairing on H∗c(ShtG ⊗k k)

(−,−) : Hi
c(ShtG ⊗k k)×H4r−i

c (ShtG ⊗k k) −→ H4r
c (ShtG ⊗k k) ∼= Q`(−2r).

We have a cohomological analog of Lemma 5.12.

Lemma 7.2. The action of any f ∈H on H∗c(ShtG ⊗k k) is self-adjoint with respect to the cup
product pairing.
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Proof. Since {hD} span H , it suffices to show that the action of hD is self-adjoint. From the
construction of the endomorphism C(hD) of Hi

c(ShtG ⊗k k), we see that for α ∈ Hi
c(ShtG ⊗k k)

and β ∈ H4r−i
c (ShtG ⊗k k), the pairing (hD ∗α, β) is the same as the pairing ([ShtG(hD)],←−p ∗α∪

−→p ∗β) (i.e, the pairing of ←−p ∗α ∪ −→p ∗β ∈ H4r
c (ShtG(hD)⊗k k) with the fundamental class of

ShtG(hD)). Similarly, (α, hD∗β) is the pairing ([ShtG(hD)],←−p ∗β∪−→p ∗α). Applying the involution
τ on ShtG(hD) constructed in the proof of Lemma 5.12 that switches the two projections←−p and
−→p , we get (

[ShtG(hD)],←−p ∗α ∪ −→p ∗β
)

=
(

[ShtG(hD)],←−p ∗β ∪ −→p ∗α
)

which is equivalent to the self-adjointness of hD: (hD ∗ α, β) = (α, hD ∗ β). �

7.1.7. The cycle class map gives a Q-linear map (see §A.1.5)

cl : Chc,i(ShtG)Q −→ H4r−2i
c (ShtG ⊗k k)(2r − i).

Lemma 7.3. The map cl is H -equivariant for any i.

Proof. Since {hD} span H , it suffices to show that cl intertwines the actions of hD on Chc,i(ShtG)

and on H4r−2i
c (ShtG ⊗k k)(2r − i). Let ζ ∈ Chc,i(ShtG). By the definition of the hD-action on

Chc,i(ShtG), hD ∗ζ ∈ Chc,i(ShtG) is pr2∗((pr∗1ζ) ·ShtG×ShtG (←−p ,−→p )∗[ShtG(hD)]). Taking its cycle

class we get that cl(hD ∗ ζ) ∈ H4r−2i
c (ShtG ⊗k k)(2r − i) can be identified with the class

−→p ∗(←−p ∗cl(ζ) ∩ [ShtG(hD)]) ∈ H2i(ShtG ⊗k k)(−i)

under the Poincaré duality isomorphism H4r−2i
c (ShtG ⊗k k) ∼= H2i(ShtG ⊗k k)(−2r).

On the other hand, by (A.25), the action of hD on H4r−2i
c (ShtG ⊗k k) is the composition

H4r−2i
c (ShtG ⊗k k)

←−p ∗−−→ H4r−2i
c (ShtG(hD)⊗k k)

∩[ShtG(hD)]−−−−−−−−→

H2i(ShtG(hD)⊗k k)(−2r)
−→p ∗−−→ H2i(ShtG ⊗k k)(−2r) ∼= H4r−2i

c (ShtG ⊗k k).

Therefore we have cl(hD ∗ ζ) = hD ∗ cl(ζ). �

7.1.8. We are most interested in the middle dimensional cohomology

VQ` := H2r
c (ShtG ⊗k k,Q`)(r).

This is a Q`-vector space with an action of H . In the sequel, we simply write V for VQ` .
For the purpose of proving our main theorems, it is the cohomology of Sht′G rather than

ShtG that matters. However, for most of this section, we will study V . The main result in this
section (Theorem 7.14) provides a decomposition of V into a direct sum of two H -modules, an
infinite-dimensional one called the Eisenstein part and a finite-dimensional complement. The
same result holds when ShtG is replaced by Sht′G with the same proof. This will mention this
in the final subsection §7.5 and use it to decompose the Heegner-Drinfeld cycle.

7.2. Study of horocycles. Let B ⊂ G be a Borel subgroup with quotient torus H ∼= Gm. We
think of H as the universal Cartan of G, which is to be distinguished with the subgroup A of G.
We shall define horocycles in ShtG corresponding to B-Shtukas.

7.2.1. BunB. Let B̃ ⊂ GL2 be the preimage of B. Then BunB̃ classifies pairs (L ↪→ E) where E
is a rank two vector bundle over X and L is a line subbundle of it. We have BunB = BunB̃/PicX
where PicX acts by simultaneous tensoring on E and on L. We have a decomposition

BunB =
∐
n∈Z

BunnB

where BunnB = Bunn
B̃
/PicX , and Bunn

B̃
is the open and closed substack of BunB̃ classifying

those (L ↪→ E) such that 2 degL − deg E = n.
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7.2.2. Hecke stack for B̃. Fix d ∈ D. Choose any µ as in §5.1.2. Consider the moduli stack

Hkµ,d
B̃

whose S-points classify the data (Li ↪→ Ei;xi; fi) where

(1) A point (Ei;xi; fi) ∈ Hkµ2 (S).

(2) For each i = 0, · · · , r, (Li ↪→ Ei) ∈ Bun
d(i)

B̃
such that the isomorphism fi : Ei−1|X×S−Γxi

∼=
Ei|X×S−Γxi

restricts to an isomorphism α′i : Li−1|X×S−Γxi
∼= Li|X×S−Γxi

.

We have (r + 1) maps pi : Hkµ,d
B̃
→ Bun

d(i)

B̃
by sending the above data to (Li ↪→ Ei), i =

0, 1, · · · , r. We define Shtµ,d
B̃

by the Cartesian diagram

Shtµ,d
B̃

//

��

Hkµ,d
B̃

(p0,pr)

��

Bun
d(0)

B̃

(id,Fr)
// Bun

d(0)

B̃
× Bun

d(0)

B̃

(7.2)

In other words, Shtµ,d
B̃

classifies (Li ↪→ Ei;xi; fi; ι), where (Li ↪→ Ei;xi; fi) is a point in Hkµ,d
B̃

and ι is an isomorphism Er ∼= τE0 sending Lr isomorphically to τL0.

We may summarize the data classified by Shtµ,d
B̃

as a commutative diagram

0 // L0

α′1

��

// E0
f1

��

//M0

α′′1

��

// 0

· · ·

α′r
��

· · ·

fr
��

· · ·

α′′r
��

0 // Lr
oι′

��

// Er
ι o
��

//Mr

oι′′

��

// 0

0 // τL0
// τE0 // τM0

// 0

(7.3)

Here we denote the quotient line bundle Ei/Li by Mi.

7.2.3. B-Shtukas. There is an action of PicX(k) on Shtµ,d
B̃

by tensoring each member in (7.3) by

a line bundle defined over k. We define

ShtdB := Shtµ,d
B̃
/PicX(k).

Equivalently we may first define Hkµ,dB := Hkµ,d
B̃
/PicX and define ShtdB by a diagram similar to

(7.2), using HkdB and Bun
d(0)
B instead of Hkµ,d

B̃
and Bun

d(0)

B̃
. The same argument as Lemma 5.5

shows that Hkµ,dB is canonically independent of the choice of µ and these isomorphisms preserve

the maps pi, hence ShtdB is also independent of the choice of µ.

7.2.4. Indexing by degrees. In the definition of Shtukas in §5.1.4, we may decompose Shtµn ac-
cording to the degrees of Ei. More precisely, for d ∈ D, we let µ(d) ∈ {±1}r be defined as

µi(d) = d(i)− d(i− 1). (7.4)

Let Shtdn ⊂ Shtµ(d)
n be the open and closed substack classifying rank n Shtukas (Ei; · · · ) with

deg Ei = d(i).
Consider the action of Z on D by adding a constant integer to a function d ∈ D. The

assignment d 7→ µ(d) descends to a function D/Z → {±1}r. For a Z-orbit δ ∈ D/Z, we write
µ(d) as µ(δ) for any d ∈ δ. Then for any δ ∈ D/Z, we have a decomposition

Shtµ(δ)
n =

∐
d∈δ

Shtdn (7.5)

In particular, after identifying H with Gm, we define ShtdH to be Shtd1 for any d ∈ D.
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7.2.5. The horocycle correspondence. From the definition of ShtdB , we have a forgetful map

pd : ShtdB −→ ShtG

sending the data in (7.3) to the middle column.
On the other hand, mapping the diagram (7.3) to (Li ⊗M−1

i ;xi;α
′
i ⊗ α′′i ; ι′ ⊗ ι′′) we get a

morphism

qd : ShtdB −→ ShtdH .

Via the maps pd and qd, we may view ShtdB as a correspondence between ShtG and ShtdH over
Xr:

ShtdB
pd

||

qd

""

πdB

��

ShtG

πG
##

ShtdH

πdH{{

Xr

(7.6)

Lemma 7.4. Let D+ ⊂ D be the subset consisting of functions d such that d(i) > 0 for all i.

Suppose d ∈ D+. Then the map pd : ShtdB → ShtG has image ShtdG and induces an isomorphism

ShtdB
∼= ShtdG.

Proof. We first show that pd(ShtdB) ⊂ ShtdG. If (Li ↪→ Ei;xi; fi; ι) ∈ ShtdB (up to tensoring with
a line bundle), then degLi ≥ 1

2 (deg Ei+d(i)) > 1
2 deg Ei, hence Li is the maximal line subbundle

of Ei. Therefore inst(Ei) = d(i) and (Ei;xi; fi) ∈ ShtdG.

Conversely, we will define a map ShtdG → ShtdB . Let (Ei;xi; fi; ι) ∈ ShtdG(S), then the maximal
line bundle Li ↪→ Ei is well-defined since each Ei is unstable.

We claim that for each geometric point s ∈ S, the generic fibers of Li|X×{s} map isomor-
phically to each other under the rational maps fi between the Ei’s. For this we may assume
S = Spec(K) for some field K and we base change the situation to K without changing no-
tation. Let L′i+1 ⊂ Ei+1 be the line bundle obtained by saturating Li under the rational map
fi+1 : Ei 99K Ei+1. Then d′(i + 1) := 2L′i+1 − deg Ei+1 = d(i) ± 1. If d′(i + 1) > 0, then
L′i+1 is also the maximal line subbundle of Ei+1, hence L′i+1 = Li+1. If d′(i + 1) ≤ 0, then
we must have d(i) = 1 and d′(i + 1) = 0. Since d ∈ D+, we must have d(i + 1) = 2. In this
case the map L′i+1 ⊕ Li+1 → Ei+1 cannot be injective because the source has degree at least
1
2 (deg Ei+1 + d′(i + 1)) + 1

2 (deg Ei+1 + d(i + 1)) = deg Ei+1 + 1 > deg Ei+1. Therefore L′i+1 and
Li+1 have the same generic fiber, which is impossible since they are both line subbundles of Ei+1

but have different degrees. This proves the claim.
Moreover, the isomorphism ι : Er ∼= τE0 must send Lr isomorphically onto τL0 by the

uniqueness of the maximal line subbundle. This together with the claim above implies that
(Li;xi; fi|Li ; ι|Lr ) is a rank one sub-Shtuka of (Ei;xi; fi; ι), and therefore (Li ↪→ Ei;xi; fi; ι)
gives a point in ShtdB . This way we have defined a map ShtdG → ShtdB . It is easy to check that

this map is inverse to pd : ShtdB → ShtdG. �

Lemma 7.5. Let d ∈ D be such that d(i) > 2g−2 for all i. Then the morphism qd : ShtdB → ShtdH
is smooth of relative dimension r/2, and its geometric fibers are isomorphic to [Gr/2a /Z] for some

finite étale group scheme Z acting on Gr/2a via a homomorphism Z → Gr/2a .

Proof. We pick µ as in §5.1.2 to realize ShtG as the quotient Shtµ2/PicX(k), and ShtdB as the

quotient Shtµ,d
B̃
/PicX(k).

In the definition of Shtukas in §5.1.4, we may allow some coordinates µi of the modification
type µ to be 0, which means that the corresponding fi is an isomorphism. Therefore we may
define Shtµn for more general µ ∈ {0,±1}r such that

∑
µi = 0.

We define the sequence µ′(d) = (µ′1(d), · · · , µ′r(d)) ∈ {0,±1}r by

µ′i(d) :=
1

2
(sgn(µi) + d(i)− d(i− 1))
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We also define µ′′(d) = (µ′′1(d), · · · , µ′′r (d)) ∈ {0,±1}r by

µ′′i (d) :=
1

2
(sgn(µi)− d(i) + d(i− 1)) = sgn(µi)− µ′i(d)

We write µ′(d) and µ′′(d) simply as µ′ and µ′′. Mapping the diagram (7.3) to the rank one

Shtuka (Li;xi;α′i; ι′) defines a map Shtµ,d
B̃
→ Shtµ

′

1 ; similarly, sending the diagram (7.3) to the

rank one Shtuka (Mi;xi;α
′′
i ; ι′′) defines a map Shtµ,d

B̃
→ Shtµ

′′

1 . Combining the two maps we get

q̃d : Shtµ,d
B̃
−→ Shtµ

′

1 ×Xr Shtµ
′′

1 .

Fix a pair L• := (Li;xi;α′i; ι′) ∈ Shtµ
′

1 (S) and M• := (Mi;xi;α
′′
i ; ι′′) ∈ Shtµ

′′

1 (S). Then the

fiber of qd over (Li⊗M−1
i ;xi; · · · ) ∈ ShtdH(S) is isomorphic to the fiber of q̃d over (L•,M•), the

latter being the moduli stack ESht(M•,L•) (over S) of extensions of M• by L• as Shtukas.
Since deg(Li)−deg(Mi) = d(i) > 2g−2, we have Ext1(Mi,Li) = 0. For each i, let E(Mi,Li)

be the stack classifying extensions of Mi by Li. Then E(Mi,Li) is canonically isomorphic to
the classifying space of the additive group Hi := Hom(Mi,Li) over S. For each i = 1, · · · , r, we
have another moduli stack Ci classifying commutative diagrams of extensions

0 // Li−1
//

α′i
��

Ei−1
//

fi

��

Mi−1
//

α′′i
��

0

0 // Li // Ei //Mi
// 0

Here the left and right columns are fixed. We have four cases:

(1) When (µ′i, µ
′′
i ) = (1, 0), then α′i : Li−1 ↪→ Li with colength one and α′′i is an isomorphism.

In this case, the bottom row is the pushout of the top row along α′i, hence determined by
the top row. Therefore Ci = E(Mi−1,Li−1) in this case.

(2) When (µ′i, µ
′′
i ) = (−1, 0), then α′−1

i : Li ↪→ Li−1 with colength one and α′′i is an isomorphism.

In this case, the top row is the pushout of the bottom row along α′−1
i , hence determined by

the bottom row. Therefore Ci = E(Mi,Li) in this case.

(3) When (µ′i, µ
′′
i ) = (0, 1), then α′i is an isomorphism and α′′i :Mi−1 ↪→Mi with colength one.

In this case, the top row is the pullback of the bottom row along α′′i , hence determined by
the bottom row. Therefore Ci = E(Mi,Li) in this case.

(4) When (µ′i, µ
′′
i ) = (0,−1), then α′i is an isomorphism and α′′−1

i :Mi ↪→Mi−1 with colength

one. In this case, the bottom row is the pullback of the top row along α′′−1
i , hence determined

by the top row. Therefore Ci = E(Mi−1,Li−1) in this case.

From the combinatorics of µ′ and µ′′ we see that the cases (1)(4) and (2)(3) each appear r/2
times. In all cases, we view Ci as a correspondence

E(Mi−1,Li−1)← Ci → E(Mi,Li)

then Ci is the graph of a natural map E(Mi−1,Li−1) → E(Mi,Li) in cases (1) and (4) and
the graph of a natural map E(Mi,Li) → E(Mi−1,Li−1) in cases (2) and (3). We see that Ci
is canonically the classifying space of an additive group scheme Ωi over S, which is either Hi−1

in cases (1) and (4) or Hi in cases (2) and (3).
Consider the composition of these correspondences

C(M•,L•) := C1 ×E(M1,L1) C2 ×E(M2,L2) · · · ×E(Mr−1,Lr−1) Cr.

This is viewed as a correspondence

E(M0,L0)← C(M•,L•)→ E(Mr,Lr) ∼= E(τM0,
τL0).

To compute C(M•,L•) more explicitly, we consider the following situation. Let G be a group
scheme over S with two subgroup schemes G1 and G2. Then we have a canonical isomorphism
of stacks over S

B(G1)×B(G) B(G2) ∼= G1\G/G2.
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Using this fact repeatedly, and using that E(Mi,Li) = B(Hi) and Ci = B(Ωi), we see that

C(M•,L•) ∼= Ω1\H1

Ω2

× H2

Ω3

× · · ·
Ωr−1

× Hr−1/Ωr. (7.7)

where Hi−1

Ωi
× Hi means dividing by the diagonal action of Ωi on both Hi−1 and Hi by trans-

lations. Let

A(M•,L•) := H0

Ω1

× H1

Ω2

× · · ·
Ωr−1

× Hr−1

Ωr
× Hr

Since Ωi is always the smaller of Hi−1 and Hi, A(M•,L•) is an additive group scheme over S.
Then we have

C(M•,L•) ∼= H0\A(M•,L•)/Hr. (7.8)

Note that Hr
∼= τH0 is the pullback of H0 via FrS . We have a relative Frobenius map over S

Fr/S : E(M0,L0) = B(H0)
FrH0/S−−−−→ B(Hr) = E(Mr,Lr).

By the moduli meaning of ESht(M•,L•), we have a Cartesian diagram of stacks

ESht(M•,L•) //

��

C(M•,L•)

��

E(M0,L0)
(id,Fr/S)

// E(M0,L0)× E(Mr,Lr)

Using the isomorphism (7.8), the above diagram becomes

ESht(M•,L•) //

��

H0\A(M•,L•)/Hr

��

B(H0)
(id,FrH0/S

)
// B(H)× B(Hr)

(7.9)

This implies that

ESht(M•,L•) ∼= [A(M•,L•)/(id,FrH0/S
)H0] (7.10)

where H0 acts on A(M•,L•) via the embedding (id,FrH0/S) : H0 → H0 ×Hr and the natural
action of H0 × Hr on A(M•,L•). Since A is an additive group scheme over S, hence smooth
over S, the isomorphism (7.10) shows that ESht(M•,L•) is smooth over S.

To compute the dimension of A(M•,L•), we compare dim Ωi with dimHi. We have dimHi−
dim Ωi = 1 in cases (1) and (4) and dimHi − dim Ωi = 0 in cases (2) and (3). Since (1)(4) and
(2)(3) each appear r/2 times, we have

dimA(M•,L•) = dimH0 +

r∑
i=1

(dimHi − dim Ωi) = dimH0 + r/2.

This implies ESht(M•,L•) is smooth of dimension r/2.
When S is a geometric point Spec(K), H0 and Hr can be viewed as subspaces of the K-vector

space A := A(M•,L•), and φ = FrH0/K : H0 → Hr is a morphism of group schemes over K.

Choose a K-subspace L ⊂ A complement to H0, then L ∼= Gr/2a as a group scheme over K.
Consider the homomorphism

α : H0 × L −→ A

given by (x, y) 7→ x + y + φ(x). By computing the tangent map of α at the origin, we see that
α is étale, therefore Z = ker(α) is a finite étale group scheme over K. We conclude that in this
case the fiber of qd over S = Spec(K) is

ESht(M•,L•) ∼= [A/(id,φ)H0] ∼= [L/Z] ∼= [Gr/2a /Z].

�

Corollary 7.6. Suppose d ∈ D satisfies d(i) > 2g − 2 for all i, then the cone of the map

Rπ<dG,!Q` → Rπ≤dG,!Q` is isomorphic to πdH,!Q`[−r](−r/2), which is a local system concentrated in
degree r.
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Proof. The cone of Rπ<dG,!Q` → Rπ≤dG,!Q` is isomorphic to RπdG,!Q`, where πdG : ShtdG → Xr. By

Lemma 7.4, for d ∈ D+, we have RπdG,!Q` ∼= RπdB,!Q`. By Lemma 7.5, qd is smooth of relative

dimension r/2, the relative fundamental cycles gives Rqd,!Q` → Rrqd,!Q`[−r]→ Q`[−r](−r/2),
which is an isomorphism by checking the stalks (using the description of the geometric fibers of

qd given in Lemma 7.5). Therefore RπdB,!Q` ∼= RπdH,!Q`[−r](−r/2). Finally, πdH : ShtdH → Xr is

a Pic0
X(k)-torsor by an argument similar to Lemma 5.13. Therefore RπdH,!Q` is a local system

on Xr, and RπdG,!Q` ∼= πdH,!Q`[−r](−r/2) is a local system shifted to degree r. �

7.3. Horocycles in the generic fiber. Fix a geometric generic point η of Xr. For a stack X
over Xr, we denote its fiber over η by Xη. Next we study the cycles in ShtG,η given by images

of ShtdB,η.

Lemma 7.7 (Drinfeld [6, Prop 4.2] for r = 2; Varshavsky [21, Prop 5.7] in general). For each

d ∈ D, the map pd,η : ShtdB,η → ShtG,η is finite and unramified.

7.3.1. The cohomological constant term. Taking the geometric generic fiber of the diagram (7.6),

we view ShtdB,η as a correspondence between ShtG,η and ShtdH,η. The fundamental cycle of ShtdB,η
(of dimension r/2) gives a cohomological correspondence between the constant sheaf on ShtG,η
and the shifted constant sheaf Q`[−r](−r/2) on ShtdH,η. Therefore [ShtdB,η] induces a map

γd : Hr
c(ShtG,η)(r/2)

p∗d,η−−→ Hr
c(ShtdB,η)(r/2)

[ShtdB,η ]
−−−−−→ H0(ShtdB,η)

qd,η,!−−−→ H0(ShtdH,η). (7.11)

Here we are implicitly using Lemma 7.7 to conclude that pd,η is proper, hence p∗d,η induces a
map between compactly supported cohomology groups.

Taking the product of γd for all d in a fixed Z-orbit δ ∈ D/Z, using the decomposition (7.5),
we get a map

γδ : Hr
c(ShtG,η)(r/2) −→

∏
d∈δ

H0(ShtdH,η) ∼= H0(Sht
µ(δ)
1,η ). (7.12)

When r = 0, (7.12) is exactly the constant term map for automorphic forms. Therefore we may
call γδ the cohomological constant term map.

The RHS of (7.12) carries an action of the Hecke algebra HH = ⊗x∈|X|Q[tx, t
−1
x ]. In fact,

Sht
µ(δ)
1,η is a PicX(k)-torsor over Spec k(η). The action of HH on Sht

µ(δ)
H,η is via the natural map

HH
∼= Q[Div(X)]→ Q[PicX(k)].

Lemma 7.8. The map γδ in (7.12) intertwines the H -action on the LHS and the HH-action
on the RHS via the Satake transform Sat : H ↪→HH .

Proof. Since H is generated by {hx}x∈|X| as a Q-algebra, it suffices to show that for any x ∈ |X|,
the following diagram is commutative

Hr
c(ShtG,η)

C(hx)

��

γδ //
∏
d∈δ H0(ShtdH,η)

tx+qxt
−1
x

��

Hr
c(ShtG,η)

γδ //
∏
d∈δ H0(ShtdH,η)

(7.13)

Let U = X −{x}. For a stack X over Xr, we use XUr to denote its restriction to Ur. Similar
notation applies to morphisms over Xr.

Recall that ShtG,Ur (S) classifies (Ei;xi; fi; ι) such that xi are disjoint from x. Hence the
composition ι ◦ fr · · · f1 : E0 99K τE0 is an isomorphism near x. In particular, the fiber E0,x =
E0|S×{x} carries a Frobenius structure E0,x ∼= τE0,x, hence E0,x descends to a two-dimensional
vector space over Spec kx (kx is the residue field of X at x) up to tensoring with a line. In other
words, there is a morphism ωx : ShtG,Ur → B(G(kx)) sending (xi; Ei; fi; ι) to the descent of E0,x
to Spec kx. In the following we shall understand that E0,x is a 2-dimensional vector space over
kx, up to tensoring with a line over kx.

The correspondence ShtG(hx)Ur classifies diagrams of the form (5.5) where the vertical maps
have divisor x. Therefore, if the first row in (5.5) is fixed, the bottom row is determined by
E ′0, which in turn is determined by the line ex = ker(E0,x → E ′0,x) over kx. Recall that ←−p and
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−→p : ShtG(hx)→ ShtG are the projections sending (5.5) to the top and bottom row respectively.
Then we have a Cartesian diagram

ShtG(hx)Ur //

←−p Ur
��

B(B(kx))

��

ShtG,Ur
ωx // B(G(kx))

where B ⊂ G is a Borel subgroup. We have a similar Cartesian diagram where ←−p Ur is replaced
with −→p Ur . In particular, ←−p Ur and −→p Ur are finite étale of degree qx + 1.

Let ShtdB(hx) be the base change of←−p along ShtdB → ShtG. Let←−p B : ShtdB(hx)Ur → ShtdB,Ur

be the base-changed map restricted to Ur. A point (Li ↪→ Ei;xi; fi; ι) ∈ ShtdB gives another line

`x := L0,x ⊂ E0,x. Therefore, for a point (Li ↪→ Ei → E ′i ; · · · ) ∈ ShtdB(hx)|Ur , we get two lines `x
and ex inside E0,x. In other words we have a morphism

ω : ShtdB(hx)Ur −→ B(B(kx))×B(G(kx)) B(B(kx)) = B(kx)\G(kx)/B(kx)

This allows us to decompose ShtdB(hx)Ur into the disjoint union of two parts

ShtdB(hx)Ur = C1

∐
C2

where C1 is the preimage of the unit coset B(kx)\B(kx)/B(kx) and C2 is the preimage of the
complement.

For a point (Li ↪→ Ei ↪→ E ′i ; · · · ) ∈ C1, E ′i is determined by ex = `x = L0,x. Therefore the map
←−−pB,1 :=←−p B |C1

: C1 → ShtdB,Ur is an isomorphism. In this case, E ′i is obtained via the pushout of
Li → Ei along Li ↪→ Li(x). This way we get an exact sequence 0 → Li(x) → Ei(x) →Mi → 0

where Mi = Ei/Li. We define a map −−→pB,1 : C1 → Shtd+dx
B,Ur sending (Li ↪→ Ei ↪→ E ′i ; · · · ) ∈ C1 to

(Li(x) ↪→ E ′i ; · · · ). Since←−−pB,1 is an isomorphism, C1 viewed as a correspondence between ShtdB,Ur

and Shtd+dx
B,Ur can be identified with the graph of the map ϕx := −−→pB,1◦←−−pB,1−1 : ShtdB,Ur → Shtd+dx

B,Ur .
Note that ϕx is a finite étale map of degree qx. We have a commutative diagram

ShtdH,Ur Γ(tx)
idoo

tx // Shtd+dx
H,Ur

ShtdB,Ur

pd

��

qd

OO

C1 = Γ(ϕx)

OO

��

←−−pB,1

∼
oo

−−→pB,1
// Shtd+dx

B,Ur

pd+dx

��

qd+dx

OO

ShtG,Ur ShtG(hx)Ur
←−p

oo
−→p

// ShtG,Ur

Here Γ(tx) is the graph of the isomorphism ShtdH,Ur → Shtd+dx
H,Ur given by tensoring the line

bundles with O(x). Therefore the action of [C1] on the compactly supported cohomology of the

generic fiber of ShtdB fits into a commutative diagram

Hr
c(ShtdB,η)(r/2)

[C1]

��

[ShtdB,η]
// H0(ShtdB,η)

ϕx,∗

��

// H0(ShtdH,η)

tx

��

Hr
c(Shtd+dx

B,η )(r/2)
[Shtd+dxB,η ]

// H0(Shtd+dx
B,η ) // H0(Shtd+dx

H,η )

(7.14)

Similarly for C2, we define a morphism −−→pB,2 : C2 → Shtd−dxB,Ur sending (Li ↪→ Ei ↪→ E ′i ; · · · ) ∈ C2

to (Li ↪→ E ′i ; · · · ). Then −−→pB,2 is an isomorphism while ←−p B,2 =←−p B |C2
is finite étale of degree qx.

Therefore C2 viewed as a correspondence between ShtdB,Ur and Shtd−dxB,Ur can be identified with

the transpose of the graph of the map ϕx : Shtd−dxB,Ur → ShtdB,Ur defined previously. We also have
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a commutative diagram

ShtdH,Ur Γ(t−1
x )

idoo
t−1
x // Shtd−dxH,Ur

ShtdB,Ur

pd

��

qd

OO

C2 = tΓ(ϕx)

OO

��

←−−pB,2
oo

−−→pB,2
∼

// Shtd−dxB,Ur

pd−dx

��

qd−dx

OO

ShtG,Ur ShtG(hx)Ur
←−p

oo
−→p

// ShtG,Ur

The action of [C2] on the compactly supported cohomology of the generic fibers of ShtdB fits into
a commutative diagram

Hr
c(ShtdB,η)(r/2)

[C2]=ϕ∗x
��

[ShtdB,η ]
// H0(ShtdB,η) // H0(ShtdH,η)

Hr
c(Shtd−dxB,η )(r/2)

[Shtd−dxB,η ]
// H0(Shtd−dxB,η ) //

q−1
x ϕx,∗

OO

H0(Shtd−dxH,η )

q−1
x tx

OO
(7.15)

The appearance of qx in the above diagram is because the degree of ϕx is qx. Combining (7.14)
and (7.15) we get a commutative diagram∏

d∈δ Hr
c(ShtdB,η)(r/2) //

[C1]+[C2]

��

∏
d∈δ H0(ShtdH,η)

tx+qxt
−1
x

��∏
d∈δ Hr

c(ShtdB,η)(r/2) //
∏
d∈δ H0(ShtdH,η)

(7.16)

Finally, let −→pB : ShtdB(hx)Ur → ShtdB,Ur be −−→pB,1 on C1 and −−→pB,2 on C2. Consider the commu-
tative diagram ∐

d∈δ ShtdB(hx)Ur

(pd)d∈δ

��

−→pB //
∐
d∈δ ShtdB,Ur

(pd)d∈δ

��

ShtG(hx)Ur
−→p

// ShtG,Ur

Since −→pB and −→p are both finite étale of degree qx+1, by examining geometric fibers we conclude
that the above diagram is Cartesian. The similar diagram with −→pB and −→p replaced with ←−pB and
←−p is Cartesian by definition. From these facts we get a commutative diagram

Hr
c(ShtG,η)

C(hx)

��

(p∗d)d∈δ
//
∏
d∈δ Hr

c(ShtdB,η)

[C1]+[C2]

��

Hr
c(ShtG,η)

(p∗d)d∈δ
//
∏
d∈δ Hr

c(ShtdB,η)

Combining this with (7.16) we obtain (7.13), as desired. �

7.4. Finiteness. For fixed d ∈ D, the Leray spectral sequence associated with the map π≤dG gives

an increasing filtration L≤iH
2r
c (Sht≤dG ⊗k k) on H2r

c (Sht≤dG ⊗k k), with L≤iH
2r
c (Sht≤dG ⊗k k) being

the image of H2r(Xr ⊗k k, τ≤iRπ≤dG,!Q`)→ H2r(Xr ⊗k k,Rπ≤dG,!Q`) ∼= H2r
c (Sht≤dG ⊗k k). Here τ≤i

means the truncation in the usual t-structure of Db
c(X

r,Q`). Let L≤iV be the inductive limit

lim−→d∈D L≤iH
2r
c (Sht≤dG ⊗k k)(r), which is a subspace of V . This way we get a filtration on V

0 ⊂ L≤0V ⊂ L≤1V ⊂ · · · ⊂ L≤2rV = V.

Lemma 7.9. Each L≤iV is stable under the action of H .
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Proof. The map C(hD)d,d′ in (7.1) induces τ≤iC(hD)d,d′ : τ≤iRπ
≤d
G,!Q` → τ≤iRπ

≤d′
G,! Q`. By the

construction of C(hD) we have a commutative diagram

lim−→d
H2r(Xr ⊗k k, τ≤iRπ≤dG,!Q`)

lim−→ τ≤iC(hD)d,d′
//

��

lim−→d′
H2r(Xr ⊗k k, τ≤iRπ≤d

′

G,! Q`)

��

H2r
c (ShtG ⊗k k)

C(hD)
// H2r
c (ShtG ⊗k k)

The image of the vertical maps are both L≤iV up to a Tate twist, therefore L≤iV is stable under
C(hD). When D runs over all effective divisors on X, C(hD) span H , hence L≤iV is stable
under H . �

Lemma 7.10. For i 6= r, GrLi V := L≤iV/L≤i−1V is finite-dimensional over Q`.

Proof. We say d ∈ D is large if d(i) > 2g− 2 for all i. In the following argument it is convenient

to choose a total order on D that extends its partial order. Under the total order, Sht<dG =∐
d′<d Shtd

′

G and Sht≤dG =
∐
d′≤d ShtdG are different from their original meanings, and we will use

the new notion during the proof.

By Corollary 7.6, the inductive system τ≤r−1Rπ
≤d
G,!Q` stabilizes for d large. Hence so does

L≤r−1H2r
c (Sht≤dG ⊗k k). Therefore L≤r−1V is finite dimensional.

It remains to show that V/L≤rV is finite dimensional. Again by Corollary 7.6, for d large, the

map Rr+1π<dG,!Q` → Rr+1π≤dG,!Q` is surjective because the next term in the long exact sequence

is Rr+1πdG,!Q` = 0. This implies that the inductive system Rr+1π≤dG,!Q` is eventually stable
because any chain of surjections F1 � F2 � · · · of constructible sheaves on Xr has to stabilize
(i.e., constructible Q`-sheaves satisfy the ascending chain condition). Also by Corollary 7.6, the

inductive system τ>r+1Rπ
≤d
G,!Q` is stable. Combined with the stability of Rr+1π≤dG,!Q`, we see

that the system τ>rRπ
≤d
G,!Q` is stable. In other words, there exists a large d0 ∈ D such that for

any d ≥ d0, the natural map τ>rRπ
<d
G,!Q` → τ>rRπ

≤d
G,!Q` is an isomorphism.

We abbreviate H2r
c (Sht<dG ⊗k k) by H<d and H2r

c (Sht≤dG ⊗k k) by H≤d. For d ≥ d0, the

distinguished triangle of functors τ≤r → id → τ>r → applied to Rπ<dG,!Q` and Rπ≤dG,!Q` gives a
morphism of exact sequences

L≤rH<d
//

��

H<d
//

��

H2r(Xr ⊗k k, τ>rRπ<dG,!Q`) //

o
��

· · ·

L≤rH≤d // H≤d // H2r(Xr ⊗k k, τ>rRπ≤dG,!Q`) // · · ·

Therefore the inductive system H≤d/L≤rH≤d is a subsystem of H2r(Xr ⊗k k, τ>rRπ≤dG,!Q`) which

is stable with finite-dimensional inductive limit. Hence the inductive system H≤d/L≤rH≤d is
itself stable with finite-dimensional inductive limit. Taking inductive limit on d, using that
V = lim−→d

H≤d(r) and L≤iV = lim−→d
L≤iH≤d(r), we see that V/L≤rV ∼= lim−→d

H≤d(r)/L≤rH≤d(r)

is finite dimensional. �

Lemma 7.11. The space IEis · (L≤rV ) is finite-dimensional over Q`.

Proof. Let U ⊂ ShtG be the union of those Sht≤dG for d ∈ D such that mini∈Z/rZ{d(i)} ≤ 2g− 2.

Since inst(E) has an absolute lower bound, there are only finitely many such d with ShtdG 6= ∅,
hence U is an open substack of finite type. Let πUG : U → Xr be the restriction of πG. For

f ∈H , and any d ∈ D, its action defines a map C(f)d,d′ : Riπ≤dG,!Q` → Riπ≤d
′

G,! Q` for sufficiently

large d′. We may assume d′ > 2g − 2 , which means d′(j) > 2g − 2 for all j. We shall
show that when f ∈ IEis and i ≤ r, the image of C(f)d,d′ is contained in the image of the

map ιU,d′ : RiπUG,!Q` → Riπ≤d
′

G,! Q` induced by the inclusion U ⊂ Sht≤d
′

G , which implies the

proposition. By Corollary 7.6, either ιU,d′ is an isomorphism (if i < r) or when i = r, the
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cokernel of ι is a local system on Xr. Therefore, it suffices to show the same statement for the
generic stalk of the relevant complexes.

Let η be a geometric generic point of Xr and we use a subscript η to denote the fibers over η,
as in §7.3. Let ιU : Hr

c(Uη)→ Hr
c(ShtG,η) be the map induced by the inclusion of U . It suffices to

show that for f ∈ IEis, the composition Hr
c(ShtG,η)

f∗−→ Hr
c(ShtG,η) � Hr

c(ShtG,η)/ιU (Hr
c(Uη))

is zero.
Recall from (7.11) the cohomological constant term map γd : Hr

c(ShtG,η) → H0(ShtdH,η). By
the definition of γd, for d > 2g− 2, γd factors through the quotient Hr

c(ShtG,η)/ιU (Hr
c(Uη)), and

induces a map

γ+ :=
∏

d>2g−2

γd : Hr
c(ShtG,η)/ιU (Hr

c(Uη)) −→
∏

d>2g−2

H0(ShtdH,η).

Both sides of the above map admit filtrations indexed by the poset {d ∈ D; d > 2g − 2}: on the

LHS this is given by the image of Hr
c(Sht≤dG,η) and on the RHS this is given by

∏
2g−2<d′≤d H0(Shtd

′

H,η).
The map γ+ respects these filtrations and by Corollary 7.6, the associated graded map of γ+

under these filtrations is injective. Therefore γ+ is injective.
By Lemma 7.8, we have a commutative diagram

Hr
c(ShtG,η)(r/2)

f∗
//

∏
γd

��

Hr
c(ShtG,η)(r/2) //

∏
γd

��

Hr
c(ShtG,η)(r/2)/ιU (Hr

c(Uη))(r/2)

γ+

��∏
d∈D H0(ShtdH,η)

Sat(f)∗
//
∏
d∈D H0(ShtdH,η) //

∏
d>2g−2 H0(ShtdH,η)

Since the action of HH on
∏
d∈D H0(ShtdH,η) factors through Q`[PicX(k)], Sat(f) acts by zero

in the bottom arrow above. Since γ+ is injective, the composition of the top row is also zero, as
desired. �

Definition 7.12. We define the Q`-algebra H` to be the image of the map

H ⊗Q` −→ EndQ`(V )×Q`[PicX(k)]ιPic ,

the product of the action map on V and aEis ⊗Q`.

Lemma 7.13. (1) For any x ∈ |X|, V is a finitely generated Hx ⊗Q`-module.

(2) The Q`-algebra H` is finitely generated over Q` and is a ring with Krull dimension one.

Proof. (1) Let D≤n ⊂ D be the subset of those d such that mini{d(i)} ≤ 2g − 2 + ndx. Let

Dn = D≤n−D≤n−1. For each n ≥ 0, let Un = ∪d∈D≤nSht≤dG , then U0 ⊂ U1 ⊂ · · · are finite type
open substacks of ShtG which exhaust ShtG. Let πn : Un → Xr be the restriction of πG, and
let Kn = Rπn,!Q`. The inclusion Un ↪→ Un+1 induces maps ιn : Kn → Kn+1. Let Cn+1 be the
cone of ιn. Then by Corollary 7.6, when n ≥ 0, Cn+1 is a successive extension of shifted local
systems πdH,!Q`[−r](−r/2) for those d ∈ Dn+1. In particular, for n ≥ 0, Cn+1 is a shifted local
system in degree r and pure of weight 0 as a complex.

By construction, the action of hx ∈Hx on H∗c(ShtG ⊗k k) is induced from the correspondence

ShtG(hx), which restricts to a correspondence ≤nShtG(hx) = ←−p −1(Un) between Un and Un+1.

Similar to the construction of C(hx)d,d′ in (7.1), the fundamental class of ≤nShtG(hx) gives a
map C(hx)n : Kn → Kn+1. Since C(hx)n ◦ ιn−1 = ιn ◦ C(hx)n−1, we have the induced map
τn : Cn → Cn+1. We claim that τn is an isomorphism for n > 0. In fact, since Cn and Cn+1

are local systems in degree r, it suffices to check that τn induces an isomorphism between the
geometric generic stalks Cn,η and Cn+1,η. By Corollary 7.6, we have an isomorphism induced
from the maps γd for d ∈ Dn (cf. (7.11))

Cn,η ∼=
⊕
d∈Dn

H0(ShtdH,η).

By Lemma 7.8, τn,η : Cn,η → Cn+1,η is the same as the direct sum of the isomorphisms tx :

H0(ShtdH,η)→ H0(Shtd+dx
H,η ) (the other term qxt

−1
x : H0(ShtdH,η)→ H0(Shtd−dxH,η ) does not appear
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because d−dx ∈ D≤n−1 hence the corresponding contribution becomes zero in Cn+1,η). Therefore
τn,η is an isomorphism, hence so is τn.

We claim that there exists n0 ≥ 0 such that for any n ≥ n0, the map

W≤2rH
2r+1(Xr ⊗k k,Kn) −→W≤2rH

2r+1(Xr ⊗k k,Kn+1)

is an isomorphism. Here W≤2r is the weight filtration using Frobenius weights. In fact, the next

term in the long exact sequence isW≤2rH
2r+1(Xr ⊗k k,Cn+1), which is zero because Cn+1 is pure

of weight 0. Therefore the natural mapW≤2rH
2r+1(Xr ⊗k k,Kn)→W≤2rH

2r+1(Xr ⊗k k,Kn+1)
is always surjective for n ≥ 0, hence it has to be an isomorphism for sufficiently large n.

The triangle Kn → Kn+1 → Cn+1 → Kn[1] gives a long exact sequence

H2r(Xr ⊗k k,Kn) −→ H2r(Xr ⊗k k,Kn+1) −→ H2r(Xr ⊗k k,Cn+1) −→ (7.17)

−→ W≤2rH
2r+1(Xr ⊗k k,Kn) −→W≤2rH

2r+1(Xr ⊗k k,Kn+1)

Here we are using the fact that H2r(Xr ⊗k k,Cn+1) is pure of weight 2r (since Cn+1 is pure of
weight 0). For n ≥ n0, the last map above is an isomorphism, therefore the first row of (7.17) is
exact on the right.

Let F≤nV be the image of H2r(Xr ⊗k k,Kn)(r)→ lim−→n
H2r(Xr ⊗k k,Kn)(r) = V . Then for

n ≥ n0, the exactness of (7.17) implies H2r(Xr ⊗k k,Cn+1)(r)� GrFn+1V for n ≥ n0. The Hecke

operator C(hx) sends F≤nV to F≤n+1V and induces a map GrFnC(hx) : GrFnV → GrFn+1V . We
have a commutative diagram for n ≥ n0

H2r(Xr ⊗k k,Cn)(r)

��

H2r(Xr⊗kk,τn)
// H2r(Xr ⊗k k,Cn+1)(r)

����

GrFnV
GrFnC(hx)

// GrFn+1V

The fact that τn : Cn → Cn+1 is an isomorphism implies that GrFnC(hx) is surjective for n ≥ n0.
Therefore the action map

Hx ⊗Q F≤n0
V = Q[hx]⊗Q F≤n0

V −→ V

is surjective by checking the surjectivity on the associated graded. Since F≤n0V is finite-
dimensional over Q`, V is finitely generated as an Hx ⊗Q`-module.

(2) We have H` ⊂ EndHx⊗Q`(V ⊕ Q`[PicX(k)]ιPic). Since both V and Q`[PicX(k)]ιPic are
finitely generated Hx⊗Q`-modules by Part (1) and Lemma 4.2, EndHx⊗Q`(V ⊕Q`[PicX(k)]ιPic)
is also finitely generated as an Hx ⊗ Q`-module. Since Hx ⊗ Q` is a polynomial ring in one
variable over Q`, H` is a finitely generated algebra over Q` of Krull dimension at most one.
Since H` → Q`[PicX(k)]ιPic is surjective by Lemma 4.2 and Q`[PicX(k)]ιPic has Krull dimension

one, H` also has Krull dimension one. �

The map aEis : H` → Q`[PicX(k)]ιPic is surjective by Lemma 4.2 (2). It induces a closed

embedding Spec(aEis) : ZEis,Q` = SpecQ`[PicX(k)]ιPic ↪→ Spec H`.

Theorem 7.14 (Cohomological spectral decomposition). (1) There is a decomposition of the

reduced scheme of Spec H` into a disjoint union

Spec
(
H`

)red
= ZEis,Q`

∐
Zr0,` (7.18)

where Zr0,` consists of a finite set of closed points. There is a unique decomposition

V = VEis ⊕ V0

into H ⊗Q`-submodules, such that Supp(VEis) ⊂ ZEis,Q` and Supp(V0) = Zr0,`.
4

(2) The subspace V0 is finite dimensional over Q`.

4When we talk about the support of a coherent module M over a Noetherian ring R, we always mean a closed

subset of SpecR with the reduced scheme structure.
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Proof. (1) Let V ′ = L≤rV . Let IEis ⊂ H` be the ideal generated by the image of IEis. By
Lemma 7.13, V ′ is a submodule of a finitely generated module V over the noetherian ring
H`, therefore V ′ is also finitely generated. By Lemma 7.11, IEisV

′ is a finite-dimensional H`-
submodule of V ′. Let Z ′ ⊂ Spec(H`)

red be the finite set of closed points corresponding to the

action of H` on IEisV
′. We claim that Supp(V ′) is contained in the union ZEis,Q` ∪Z ′. In fact,

suppose f ∈ H` lies in the defining radical ideal J of ZEis,Q` ∪ Z ′, then after replacing f by a

power of it, we have f ∈ IEis (since J is contained in the radical of IEis) and f acts on IEisV
′

by zero. Therefore f2 acts on V ′ by zero, hence f lies in the radical ideal defining Supp(V ′).

By Lemma 7.10, V/V ′ is finite-dimensional. Let Z ′′ ⊂ Spec(H`)
red be the support of V/V ′ as

a H`-module, which is a finite set. Then Spec(H`)
red = Supp(V ) ∪ ZEis,Q` = ZEis,Q` ∪ Z ′ ∪ Z ′′.

Let Zr0,` = (Z ′ ∪ Z ′′)− ZEis,Q` , we get the desired decomposition (7.18).

According to (7.18), the finitely generated H`-module V , viewed as a coherent sheaf on

Spec H`, can be uniquely decomposed into

V = VEis ⊕ V0

with Supp(VEis) ⊂ ZEis,Q` and Supp(V0) = Zr0,`.

(2) We know that V0 is a coherent sheaf on the scheme Spec H` which is of finite type over
Q` and that Supp(V0) = Zr0,` is finite. Therefore V0 is finite dimensional over Q`. �

7.4.1. The case r = 0. Let us reformulate the result in Theorem 7.14 in the case r = 0 in terms
of automorphic forms. Let A = Cc(G(F )\G(AF )/K,Q) be the space of compactly supported Q-
valued unramified automorphic forms, where K =

∏
xG(Ox). This is a Q-form of the Q`-vector

space V for r = 0. Let Haut be the image of the action map H → EndQ(A) × Q[PicX(k)]ιPic .

The Q`-algebra Haut,Q` := Haut ⊗Q` is the algebra H` defined in Definition 7.12 for r = 0.
Theorem 7.14 for r = 0 reads

Spec H red
aut,Q` = ZEis,Q`

∐
Z0

0,` (7.19)

where Z0
0,` is a finite set of closed points. Below we will strengthen this decomposition to work

over Q, and link Z0
0,` to the set of cuspidal automorphic representations.

7.4.2. Positivity and reducedness. The first thing to observe is that Haut is already reduced. In
fact, we may extend the Petersson inner product on A to a positive definitive quadratic form
on AR. By the r = 0 case of Lemma 7.2, Haut acts on AR as self-adjoint operators, its image in
End(A) is therefore reduced. Since Q[PicX(k)]ιPic is reduced as well, we conclude that Haut is
reduced.

Let Acusp ⊂ A be the finite-dimensional Q-vector space of cusp forms. Let Hcusp be the
image of Haut in EndQ(Acusp). Then Hcusp is a reduced artinian Q-algebra, hence a product of
fields. Let Zcusp = Spec Hcusp. Then a point in Zcusp is the same as an everywhere unramified
cuspidal automorphic representation π of G in the sense of §1.2. Therefore we have a canonical
isomorphism

Hcusp =
∏

π∈Zcusp

Eπ

where Eπ is the coefficient field of π.

Lemma 7.15. (1) There is a canonical isomorphism of Q-algebras

Haut
∼= Q[PicX(k)]ιPic ×Hcusp

Equivalently, we have a decomposition into disjoint reduced closed subschemes

Spec Haut = ZEis

∐
Zcusp. (7.20)

(2) We have Z0
0,` = Zcusp,Q` , the base change of Zcusp from Q to Q`.

Proof. (1) The Q version of Lemma 7.13 says that Haut is a finitely generated Q-algebra, and
that A is a finitely generated Haut-module. By the same argument of Theorem 7.14, we get a
decomposition

Spec H red
aut = Spec Haut = ZEis

∐
Z0 (7.21)
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where Z0 is a finite collection of closed points. Correspondingly we have a decomposition

A = AEis ⊕A0

with Supp(AEis) ⊂ ZEis and Supp(A0) = Z0. Since A0 is finitely generated over Haut with finite
support, it is finite dimensional over Q. Since A0 is finite dimensional and stable under H , we
necessarily have A0 ⊂ Acusp (see [16, Lemme 8.13]; in fact in our case it can be easily deduced
from the r = 0 case of Lemma 7.8).

We claim that A0 = Acusp. To show the inclusion in the other direction, it suffices to show

that any cuspidal Hecke eigenform ϕ ∈ Acusp ⊗ Q lies in A0 ⊗ Q. Suppose this is not the case

for ϕ, letting λ : H → Q be the character by which H acts on ϕ, then λ /∈ Z0(Q). By (7.21),
λ ∈ ZEis(Q), which means that the action of H on ϕ factors through Q[PicX(k)] via aEis, which
is impossible.

Now A0 = Acusp implies that Z0 = Supp(A0) = Supp(Acusp) = Zcusp. Combining with
(7.21), we get (7.20).

Part (2) follows from comparing (7.19) to the base change of (7.20) to Q`. �

7.5. Decomposition of the Heegner–Drinfeld cycle class. In previous subsections, we have
been working with the middle-dimensional cohomology (with compact support) of ShtG = ShtrG,
and we established a decomposition of it as an HQ` -module. Exactly the same argument works

if we replace ShtG with Sht′G = Sht′rG. Instead of repeating the argument we simply state the
corresponding result for Sht′G in what follows.

Let
V ′ = H2r

c (Sht′G ⊗k k,Q`)(r).
Then V ′ is equipped with a Q`-valued cup product pairing

(·, ·) : V ′ ⊗Q` V
′ −→ Q` (7.22)

and an action of H by self-adjoint operators.

Similar to Definition 7.12, we define the Q`-algebra H`
′

to be the image of the map

H ⊗Q` −→ EndQ`(V
′)×Q`[PicX(k)]ιPic .

Theorem 7.16 (Variant of Lemma 7.13 and Theorem 7.14). (1) For any x ∈ |X|, V ′ is a finitely
generated Hx ⊗Q`-module.

(2) The Q`-algebra H`
′

is finitely generated over Q` and is one-dimensional as a ring.

(3) There is a decomposition of the reduced scheme of Spec H`
′

into a disjoint union

Spec
(
H`
′)red

= ZEis,Q`

∐
Z ′r0,` (7.23)

where Z ′r0,` consists of a finite set of closed points. There is a unique decomposition

V ′ = V ′Eis ⊕ V ′0
into H ⊗Q`-submodules, such that Supp(V ′Eis) ⊂ ZEis,Q` and Supp(V ′0) = Z ′r0,`.

(4) The subspace V ′0 is finite dimensional over Q`.

We may further decompose V ′Q`
:= V ′ ⊗Q` Q` according to points in Z ′r0,`(Q`). A point in

Z ′r0,`(Q`) is a maximal ideal m ⊂ HQ` , or equivalently a ring homomorphism H → Q` whose

kernel is m. We have a decomposition

V ′Q`
= V ′

Eis,Q`
⊕ (

⊕
m∈Z′r0,`(Q`)

V ′m). (7.24)

Then V ′m is characterized as the largest Q`-subspace of V ′Q`
on which the action of m is locally

nilpotent. By Theorem 7.16, V ′m turns out to be the localization of V ′ at the maximal ideal m,
hence our notation V ′m is consistent with the standard notation used in commutative algebra.

We may decompose the cycle class cl(θµ∗ [ShtµT ]) ∈ V ′Q` according to the decomposition (7.24)

cl(θµ∗ [ShtµT ]) = [ShtT ]Eis +
∑

m∈Zr0,`(Q`)

[ShtT ]m (7.25)
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where [ShtT ]Eis ∈ V ′Eis and [ShtT ]m ∈ V ′m.

Corollary 7.17. (1) The decomposition (7.24) is an orthogonal decomposition under the cup
product pairing (7.22) on V ′.

(2) For any f ∈H , we have

Ir(f) = ([ShtT ]Eis, f ∗ [ShtT ]Eis) +
∑

m∈Z′r0,`(Q`)

Ir(m, f) (7.26)

where
Ir(m, f) := ([ShtT ]m, f ∗ [ShtT ]m) .

Proof. The orthogonality of the decomposition (7.24) follows from the self-adjointness of H
with respect to the cup product pairing, i.e., variant of Lemma 7.2 for Sht′G. The formula (7.26)
then follows from the orthogonality of the terms in the decomposition (7.25). �

Part 3. The comparison

8. Comparison for most Hecke functions

The goal of this section is to prove the key identity (1.9) for most Hecke functions. More
precisely, we will prove the following theorem.

Theorem 8.1. Let D be an effective divisor on X of degree d ≥ max{2g′ − 1, 2g}. Then for
any u ∈ P1(F )− {1} we have

(log q)−rJr(u, hD) = Ir(u, hD). (8.1)

In particular, we have
(log q)−rJr(hD) = Ir(hD). (8.2)

For the definition of Jr(u, hD) and Ir(u, hD), see (2.16) and (6.11) respectively.

8.1. Direct image of fM.

8.1.1. The local system L(ρi). Let j : X◦d ⊂ Xd ⊂ X̂d be the locus of multiplicity-free divisors.
Taking the preimage of X◦d under the branched cover X ′d → Xd → Xd, we get an étale Galois
cover

u : X ′d,◦ −→ Xd,◦ −→ X◦d
with Galois group Γd := {±1}doSd. For 0 ≤ i ≤ d, let χi be the character {±1}d → {±1} that is
nontrivial on the first i factors and trivial on the rest. Let Si,d−i ∼= Si×Sd−i be the subgroup of
Sd stabilizing {1, 2, · · · , i} ⊂ {1, · · · , d}. Then χi extends to the subgroup Γd(i) = {±1}doSi,d−i
of Γd with the trivial representation on the Si,d−i-factor. The induced representation

ρi = IndΓd
Γd(i)(χi � 1) (8.3)

is an irreducible representation of Γd. This representation gives rise to an irreducible local system
L(ρi) on X◦d . Let Ki := j!∗(L(ρi)[d])[−d] be the middle extension of L(ρi) (see [3, 2.1.7]). Then

Ki is a shifted simple perverse sheaf on X̂d.

Proposition 8.2. Suppose d ≥ 2g′ − 1. Then we have a canonical isomorphism of shifted
perverse sheaves

RfM,∗Q` ∼=
d⊕

i,j=0

(Ki �Kj)|Ad . (8.4)

Here Ki �Kj lives on X̂d ×PicdX
X̂d, which contains Ad as an open subscheme.

Proof. By Proposition 6.1(4), fM is the restriction of ν̂d × ν̂d : X̂ ′d ×PicdX
X̂ ′d → X̂d ×PicdX

X̂d,

where ν̂d : X̂ ′d → X̂d is the norm map. By Proposition 6.1(3), ν̂d is also proper. Therefore by
the Künneth formula, it suffices to show that

Rν̂d,∗Q` ∼=
d⊕
i=0

Ki. (8.5)
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We claim that ν̂d is a small map (see [11, 6.2]). In fact the only positive dimension fibers are

over the zero section PicdX ↪→ X̂d, which has codimension d − g + 1. On the other hand, the

restriction of ν̂d to the zero section is the norm map PicdX′ → PicdX , which has fiber dimension
g− 1. The condition d ≥ 2g′− 1 ≥ 3g− 2 implies d− g+ 1 ≥ 2(g− 1) + 1, therefore ν̂d is a small
map.

Now ν̂d is proper, small with smooth and geometrically irreducible source, Rν̂d,∗Q` is the

middle extension of its restriction to any dense open subset of X̂d (see [11, Theorem at the end
of 6.2]). In particular, Rν̂d,∗Q` is the middle extension of its restriction to X◦d . It remains to
show

Rν̂d,∗Q`|X◦d ∼=
d⊕
i=0

L(ρi). (8.6)

Let ν◦d : X ′◦d = ν−1
d (X◦d )→ X◦d be the restriction of νd : X ′d → Xd over X◦d . Then Rν◦d,∗Q` is

the local system on X◦d associated with the representation IndΓd
Sd
Q` = Q`[Γd/Sd] of Γd. A basis

{1ε} of Q`[Γd/Sd] is given by the indicator functions of the Sd-coset of ε ∈ {±1}d. For any
character χ : {±1}d → {±1}, let 1χ :=

∑
ε χ(ε)1ε ∈ Q`[Γd/Sd]. For the character χi considered

in §8.1.1, 1χi is invariant under Si,d−i, and therefore we have a Γd-equivariant embedding ρi =

IndΓd
Γd(i)(χi � 1) ↪→ Q`[Γd/Sd]. Checking total dimensions we conclude that

Q`[Γd/Sd] ∼=
d⊕
i=0

ρi.

This gives a canonical isomorphism of local systems Rν◦d,∗Q` ∼= ⊕di=0L(ρi), which is (8.6). �

In §6.2.3, we have defined a self-correspondence H = Hk1
M,d of Md over Ad. Recall that

A♦d ⊂ Ad is the open subscheme X̂d ×PicdX
Xd, andM♦d and H♦ are the restrictions ofMd and

H to A♦d . Recall that [H♦] ∈ Ch2d−g+1(H)Q is the fundamental cycle of the closure of H♦.

Proposition 8.3. Suppose d ≥ 2g′ − 1. Then the action fM,![H♦] on RfM∗Q` preserves each
direct summand Ki � Kj under the decomposition (8.4), and acts on Ki � Kj by the scalar
(d− 2j).

Proof. By Proposition 8.2, RfM∗Q` is a shifted perverse sheaf all of whose simple constituents
have full support. Therefore it suffices to prove the same statement after restricting to any dense
open subset U ⊂ Ad. We work with U = A♦d .

Recall H is indeed a self-correspondence of Md over Ãd (see §6.2.2):

H
γ0

||

γ1

""

Md

f̃M !!

Md

f̃M}}

Ãd

(8.7)

By Lemma 6.3, the diagram (8.7) restricted to Ã♦d (the preimage of A♦d in Ãd) is obtained

from the following correspondence via base change along the second projection pr2 : Ã♦d ∼=
X̂ ′d ×PicdX

Xd → Xd which is smooth

I ′d
pr

~~

q

  

X ′d

νd
  

X ′d

νd
~~

Xd
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Here for (D, y) in the universal divisor I ′d ⊂ X ′d×X ′, pr(D, y) = D and q(D, y) = D− y+ σ(y).
Let Td := νd,![I

′
d] : Rνd,∗Q` → Rνd,∗Q` be the operator on Rνd,∗Q` induced from the cohomo-

logical correspondence between the constant sheaf Q` on X ′d and itself given by the fundamental

class of I ′d. Under the isomorphism Rf̃M,!Q`|A♦d
∼= pr∗2Rνd,∗Q`, the action of f̃M,![H♦] is the

pullback along the smooth map pr2 of the action of Td = νd,![I
′
d]. Therefore it suffices to show

that Td preserves the decomposition (8.5) (restricted to Xd), and acts on each Kj by the scalar
(d− 2j).

Since Rνd,∗Q` is the middle extension of the local system L = ⊕dj=0L(ρj) on X◦d , it suffices
to calculate the action of Td on L, or rather calculate its action over a geometric generic point
η ∈ Xd. Write η = x1+x2+· · ·+xd and name the two points in X ′ over xi by x+

i and x−i (in one of

the two ways). The fiber ν−1
d (η) consists of points ξε where ε ∈ {±}r, and ξε =

∑d
i=1 x

εi
i . As in

the proof of Proposition 8.2, we may identify the stalk Lη with Q`[Γd/Sd] = Span{1ε; ε ∈ {±}r}
(we identify {±} with {±1}). Now we denote 1ε formally by the monomial xε11 · · ·x

εd
d . The stalk

L(ρj)η has a basis given by {Pδ}, where

Pδ :=

d∏
i=1

(x+
i + δix

−
i )

and δ runs over those elements δ = (δ1, · · · , δd) ∈ {±}d with exactly i minuses. The action of

Td on Lη turns each monomial basis element xε11 · · ·x
εd
d into

∑d
t=1 x

ε1
1 · · ·x

−εt
t · · ·xεdd . Therefore,

Td is a derivation in the following sense: for any linear form `i in x+
i and x−i , we have

Td

d∏
i=1

`i = (Td`1) · `2 · · · `d + `1(Td`2)`3 · · · `d + · · ·+ `1 · · · `d−1(Td`d).

Also Td(x
+
i + x−i ) = x+

i + x−i and Td(x
+
i − x

−
i ) = −(x+

i − x
−
i ). From these we easily calculate

that TdPδ = (d − 2|δ|)Pδ where |δ| is the number of minuses in δ. Since L(ρj)η is the span of
Pδ with |δ| = j, it is exactly the eigenspace of Td with eigenvalue (d − 2j). This finishes the
proof. �

Combining Theorem 6.5, (6.11) with Proposition 8.3, we get

Corollary 8.4. Suppose d ≥ max{2g′ − 1, 2g}. Let D ∈ Xd(k). Then

Ir(u, hD) =

{∑d
i,j=0(d− 2j)r Tr(Froba, (Ki)a ⊗ (Kj)a) u = invD(a), a ∈ AD(k)

0 otherwise.

8.2. Direct image of fNd . Recall the moduli space Nd defined in §3.2.2 for d ∈ Σd. It carries
a local system Ld, see §3.3.1.

Proposition 8.5. Let d ≥ 2g′ − 1 and d ∈ Σd. Then there is a canonical isomorphism

RfNd,∗Ld
∼= (Kd11 �Kd12)|Ad . (8.8)

Proof. The condition d ≥ 2g′ − 1 does not imply that fNd is small. Nevertheless we shall
show that the complex Kd := RfNd,∗Ld is the middle extension from its restriction to B :=
Xd ×PicdX

Xd ⊂ Ad. By Proposition 3.1(2), Nd is smooth hence Ld[dimNd] is Verdier self-dual

up to a Tate twist. By Proposition 3.1(3), fNd is proper, hence the complex Kd[dimNd] is
also Verdier self-dual up to a Tate twist. The morphism fNd is finite over the open stratum
B, therefore Kd|B is concentrated in degree 0. The complement Ad − B is the disjoint union of
C = {0} ×Xd and C′ = Xd × {0}. We compute the restriction Kd|C .

When d11 < d22, by the last condition in the definition of Nd, ϕ22 is allowed to be zero but

ϕ11 is not. The fiber of fNd over a point (0, D) ∈ C is of the form Xd11 × add−1
d12,d21

(D), where

addj,d−j : Xj × Xd−j → Xd is the addition map. We have (Kd)(0,D) = H∗(Xd11 ⊗k k, Ld11) ⊗
M where M = H0(add−1

d12,d21
(D)⊗k k, Ld12) is a finite-dimensional vector space. We have

H∗(Xd11 ⊗k k, Ld11) ∼=
∧d11(H1(X ⊗k k, LX′/X))[−d11] which is concentrated in degree d11, and

is zero for d11 > 2g − 2. Therefore (Kd)(0,D) is concentrated in some degree ≤ 2g − 2, which is
smaller than codimAdC = d− g + 1.
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When d11 ≥ d22, ϕ11 may be zero but ϕ22 is nonzero. The fiber of fNd over a point (0, D) ∈ C
is of the form Xd22 × add−1

d12,d21
(D). For (D22, D12, D21) ∈ Xd22 × add−1

d12,d21
(D), its image in

Picd11X is OX(D−D22), therefore the restriction of Ld11 to f−1
Nd (0, D) is isomorphic to L−1

d22
on the

Xd22 factor. Therefore (Kd)(0,D) = H∗(Xd22 ⊗k k, L−1
d22

)⊗H0(add−1
d12,d21

(D)⊗k k, Ld12), which is
again concentrated in some degree ≤ 2g − 2 < codimAdC = d− g + 1.

Same argument shows that the stalks of Kd over C′ are concentrated in some degree ≤ 2g−2 <
codimAdC′ = d − g + 1. Using Verdier self-duality of Kd[dimNd], we conclude that Kd is the
middle extension from its restriction to B.

By Proposition 3.1(3) and the Kunneth formula, we have

Kd|B ∼= addd11,d22,∗(Ld11 �Q`)� addd12,d21,∗(Ld12 �Q`).
To prove the proposition, it suffices to give a canonical isomorphism

addj,d−j,∗(Lj �Q`) ∼= Kj |Xd (8.9)

for every 0 ≤ j ≤ d. Both sides of (8.9) are middle extensions from X◦d , we only need to
give an isomorphism between their restrictions to X◦d . Over X◦j , the local system Lj is given

by the representation π1(X◦j ) → π1(X)j o Sj � Gal(X ′/X)j o Sj ∼= {±1}j o Sj → {±1}
which is nontrivial on each factor Gal(X ′/X) and trivial on the Sj-factor. The finite étale cover
add◦j,d−j : (Xj ×Xd−j)

◦ → X◦d (restriction of addj,d−j to X◦d ) is the quotient Xd,◦/Sj,d−j where

Sj,d−j ⊂ Sd is the subgroup defined in §8.1.1. Therefore the local system add◦j,d−j,∗(Lj � Q`)
corresponds to the representation ρj of Γd, and add◦j,d−j,∗(Lj � Q`) ∼= L(ρj) as local systems
over X◦d . This completes the proof of (8.9), and the proposition is proved. �

Combining Propositions 8.2 and 8.5, we get

Corollary 8.6. Assume d ≥ 2g′ − 1. Then there is a canonical isomorphism

RfM,∗Q` ∼=
⊕
d∈Σd

RfNd,∗Ld

such that the (i, j)-grading of the LHS appearing in (8.4) corresponds to the (d11, d12)-grading
on the RHS.

8.3. Proof of Theorem 8.1. By Corollary 3.3 and (2.16), both Jr(u, hD) and Ir(u, hD) vanish
when u is not of the form invD(a) for a ∈ AD(k). We only need to prove (8.1) when u = invD(a)
for a ∈ AD(k). In this case we have

(log q)−rJr(u, hD) =
∑
d∈Σd

(2d12 − d)r Tr
(

Froba,
(
RfNd,∗Ld

)
a

)
(Corollary 3.3)

=

d∑
d11,d12=0

(2d12 − d)r Tr (Froba, (Kd11)a ⊗ (Kd12)a) (Prop. 8.5)

=

d∑
i,j=0

(d− 2j)r Tr (Froba, (Ki)a ⊗ (Kj)a) (r is even)

= Ir(u, hD) (Corollary 8.4)

Therefore (8.1) is proved. By (2.14) and (6.10), (8.1) implies (8.2).

9. Proof of the main theorems

In this section we complete the proofs of our main results stated in the Introduction.

9.1. The identity (log q)−rJr(f) = Ir(f) for all Hecke functions. By Theorem 8.1, we
have (log q)−rJr(f) = Ir(f) for all f = hD where D is an effective divisor with deg(D) ≥
max{2g′ − 1, 2g}. Our goal in this subsection is to show by some algebraic manipulations that
this identity holds for all f ∈H .

We first fix a place x ∈ |X|. Recall the Satake transform identifies Hx = Q[hx] with the
subalgebra of Q[t±1

x ] generated by hx = tx + qxt
−1
x . For n ≥ 0, we have Satx(hnx) = tnx +

qxt
n−2
x + · · ·+ qn−1

x t−n+2
x + qnx t

−n
x .
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Lemma 9.1. Let E be any field containing Q. Let I be a nonzero ideal of Hx,E := Hx ⊗Q E
and let m be a positive integer. Then I + SpanE{hmx, h(m+1)x, · · · } = Hx,E.

Proof. Let t = q
−1/2
x tx. Then hnx = q

n/2
x Tn where Tn = tn + tn−2 + · · · + t2−n + t−n for any

n ≥ 0. It suffices to show that I + SpanE{Tm, Tm+1, · · · } = Hx,E .
Let π : Hx,E →Hx,E/I be the quotient map. Let Hm,E ⊂Hx,E be the E-span of tn+t−n for

n ≥ m. Note that Tn − Tn−2 = tn + t−n, therefore it suffices to show that π(Hm,E) = Hx,E/I
for all m. To show this, it suffices to show the same statement after base change from E to
an algebraic closure E. From now on we use the notation Hx, I and Hm to denote their base
changes to E.

To show that π(Hm) = Hx/I, we take any nonzero linear function ` : Hx/I → E. We only
need to show that `(π(tn + t−n)) 6= 0 for some n ≥ m. We prove this by contradiction: suppose
`(π(tn + t−n)) = 0 for all n ≥ m.

Let ν : Gm → A1 = Spec Hx be the morphism given by t 7→ T = t+ t−1. This is the quotient
by the involution σ(t) = t−1. Consider the finite subscheme Z = Spec(Hx/I) and its preimage

Z̃ = ν−1(Z) in Gm. We have OZ = Hx/I = Oσ
Z̃
⊂ OZ̃ . One can uniquely extend ` to a

σ-invariant linear function ˜̀ : OZ̃ → E. Note that OZ̃ is a product of the form E[t]/(t− z)dz for

a finite set of points z ∈ E×, and that z ∈ Z̃ if and only if σ(z) = z−1 ∈ Z̃. Any linear function˜̀ on OZ̃ , when pulled back to OGm = E[t, t−1], takes the form

E[t, t−1] 3 f 7−→
∑
z∈Z̃

(Dzf)(z)

with Dz =
∑
j≥0 cj(z)(t

d
dt )

j (finitely many terms) a differential operator on Gm with constant

coefficients cj(z) depending on z. The σ-invariance of ˜̀ is equivalent to

cj(z) = (−1)jcj(z
−1), for all z ∈ Z̃ and j. (9.1)

Evaluating at f = tn + t−n, we get that

`(π(tn + t−n)) =
∑
z∈Z̃

Pz(n)zn + Pz(−n)z−n

where Pz(T ) =
∑
j cj(z)T

j ∈ E[T ] is a polynomial depending on z. The symmetry (9.1) implies

Pz(T ) = Pz−1(−T ). Using this symmetry, we may collect the terms corresponding to z and z−1

and re-organize the sum above as

`(π(tn + t−n)) = 2
∑
z∈Z̃

Pz(n)zn = 0, for all n ≥ m.

By linear independence of φa,z : n 7→ nazn as functions on {m,m + 1,m + 2, · · · }, we see that

all polynomials Pz(T ) are identically zero. Hence ˜̀= 0 and ` = 0, which is a contradiction! �

Theorem 9.2. For any f ∈H , we have the identity

(log q)−rJr(f) = Ir(f).

Proof. Let H̃` be the image of H ⊗Q` in EndQ`(V
′)×EndQ`(A⊗Q`)×Q`[PicX(k)]ιPic . Denote

the quotient map H ⊗Q` � H̃` by a. Then for any x ∈ |X|, H̃` ⊂ EndHx⊗Q`(V
′ ⊕A⊗Q` ⊕

Q`[PicX(k)]ιPic). The latter being finitely generated over Hx ⊗ Q` by Lemma 7.13 (or rather,

the analogous assertion for V ′), H̃` is also a finitely generated Hx ⊗ Q`-module, and hence a
finitely generated Q`-algebra. Clearly for f ∈H , Ir(f) and Jr(f) only depend on the image of

f in H̃`. Let H † ⊂H be the linear span of the functions hD for effective divisors D such that
degD ≥ max{2g′ − 1, 2g}. By Theorem 8.1, we have (log q)−rJr(f) = Ir(f) for all f ∈ H †.

Therefore it suffices to show that the composition H † ⊗Q` →H ⊗Q`
a−→ H̃` is surjective.

Since H̃` is finitely generated as an algebra, there exists a finite set S ⊂ |X| such that

{a(hx)}x∈S generate H̃`. We may enlarge S and assume that S contains all places with degree
≤ max{2g′ − 1, 2g}. Let y ∈ |X| − S, then for any f ∈ HS = ⊗x∈SHx, we have fhy ∈ H †.
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Therefore a(H † ⊗ Q`) ⊃ a(HS ⊗ Q`)a(hy) = H̃`a(hy). In other words, a(H † ⊗ Q`) contains
the ideal I generated by the a(hy) for y /∈ S.

We claim that the quotient H̃`/I is finite-dimensional over Q`. Since H̃` is finitely generated

over Q`, it suffices to show that Spec(H̃`/I) is finite. Combining Theorem 7.16 and (7.19),

Spec H̃` = Spec H`
′ ∪ Spec Haut,Q` = ZEis,Q` ∪ Z ′r0,` ∪ Z0

0,`. Let σ : H̃`/I → Q` be a Q`-
point of Spec(H̃`/I). If σ lies in ZEis,Q` , then the composition H → H̃`/I

σ−→ Q` factors as

H
Sat−−→ Q[PicX(k)]

χ−→ Q` for some character χ : PicX(k) → Q×` . Since hy vanishes in H̃`/I
for any y /∈ S, we have χ(Sat(hy)) = χ(ty) + qyχ(t−1

y ) = 0 for all y /∈ S, which implies that

χ(ty) = ±(−qy)1/2 for all y /∈ S. Let χ′ : PicX(k) → Q×` be the character χ′ = χ · q− deg /2.

Then χ′ is a character with finite image satisfying χ′(ty) = ±
√
−1 for all but finitely y. This

contradicts Chebotarev density since there should be a positive density of y such that χ′(ty) = 1.

Therefore Spec(H̃`/I) is disjoint from ZEis,Q` hence Spec(H̃`/I)red ⊂ Z ′r0,` ∪ Z0
0,`, hence finite.

Let a : H ⊗Q`
a−→ H̃` → H̃`/I be the quotient map. For each x ∈ |X|, consider the surjective

ring homomorphism Hx⊗Q` → a(Hx⊗Q`). Note that H †∩Hx is spanned by elements of the

form hnx for ndeg(x) ≥ max{2g′ − 1, 2g}. Since a(Hx ⊗Q`) ⊂ H̃`/I is finite-dimensional over
Q`, Lemma 9.1 implies that (H †∩Hx)⊗Q` → a(Hx⊗Q`) is surjective. Therefore a(H †⊗Q`)
contains a(Hx⊗Q`) for all x ∈ |X|. Since a is surjective, a(Hx⊗Q`) (all x ∈ |X|) generate the

image H̃`/I as an algebra, hence a(H † ⊗ Q`) = H̃`/I. Since a(H † ⊗ Q`) already contains I,

we conclude that a(H † ⊗Q`) = H̃`. �

9.1.1. Proof of Theorem 1.8. Apply Theorem 9.2 to the unit function h = 1K , we get

(θµ∗ [ShtµT ], θµ∗ [ShtµT ])Sht′rG
= (log q)−rJr(1K).

We then apply Corollary 2.5 to write the RHS using the r-th derivative of L(η, s), as desired.

Remark 9.3. Let r = 0. Note that ShtµT , resp. Sht′rG, is the constant groupoid BunT (k), resp.
BunG(k). We write θ∗[BunT (k)] for θµ∗ [ShtµT ], as an element in C∞c (BunG(k),Q). The analogous
statement of Theorem 1.8 should be

〈θ∗[BunT (k)], θ∗[BunT (k)]〉BunG(k) = 4L(η, 0) + q − 2. (9.2)

Here the left side 〈−,−〉BunG(k) is the inner product on C∞c (BunG(k),Q) defined such that the
characteristic functions {1[E]}E∈BunG(k) are orthogonal to each other and that

〈1[E],1[E]〉BunG(k) =
1

# Aut(E)
.

The equality (9.2) can be proved directly. We leave the detail to the reader.

9.2. Proof of Theorem 1.6. The theorem was formulated as an equality in Eπ,λ, but for

the proof we shall extend scalars from Q` to Q`, and use the decomposition (7.24) instead.
For any embedding ι : Eπ ↪→ Q`, we have the point m(π, ι) ∈ Zcusp(Q`) corresponding to the

homomorphism H
λπ−−→ Eπ

ι−→ Q`. To prove the theorem, it suffices to showing that for all
embeddings ι : Eπ ↪→ Q`, we have an identity in Q`

|ωX |
2(log q)r

ι(L (r)(πF ′ , 1/2)) =
(

[ShtµT ]m(π,ι), [ShtµT ]m(π,ι)

)
Q`

where (·, ·)Q` is the Q`-bilinear extension of the cup product pairing (7.22) on V ′. In other

words, for any everywhere unramified cuspidal automorphic Q`-representation π of G(AF ) that
corresponds to the homomorphism λπ : HQ` → Q`, we need to show

|ωX |
2(log q)r

L (r)(πF ′ , 1/2) =
(

[ShtµT ]mπ , [ShtµT ]mπ

)
Q`

(9.3)

where mπ = ker(λπ) is the maximal ideal of HQ` , and [ShtµT ]mπ is understood to be zero if

mπ /∈ Z ′r0,`(Q`).
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As in the proof of Theorem 9.2, let H̃` be the image of HQ` in EndQ`(V
′)×EndQ`(A⊗Q`)×

Q`[PicX(k)]ιPic . By Theorem 7.16 and (7.19), we may write Spec H̃` as a disjoint union of closed
subsets

Spec H̃`

red
= ZEis,Q`

∐
Z̃0,`. (9.4)

where Z̃0,` = Z ′r0,`∪Z0
0,` is a finite collection of closed points. This gives a product decomposition

of the ring H̃`

H̃` = H̃`,Eis × H̃`,0 (9.5)

with Spec H̃ red
`,Eis = ZEis,Q` and Spec H̃ red

`,0 = Z̃0,`. For any element h ∈ H̃`,0, we view it as the

element (0, h) ∈ H̃`. By Corollary 7.17 we have for any h ∈ H̃`,0

Ir(h) =
∑

m∈Z′r0,`(Q`)

(
[ShtT ]m, h ∗ [ShtT ]m

)
(9.6)

Extending by linearity, the above formula also holds for all h ∈ H̃`,0⊗Q`Q`. Note that the linear

function h 7→ ([ShtT ]m, h ∗ [ShtT ]m) on H̃`,0 ⊗Q` factors through the localization H̃`,0 ⊗Q` →
(H̃`,0 ⊗Q`)m (viewing m as a maximal ideal of H̃`,0 ⊗Q`).

On the other hand, let ĨEis be the ideal of H̃` generated by the image of IEis. We have

(0, h) ∈ ĨEis. By Theorem 4.7, we have for any h ∈ H̃`,0 ⊗Q`

Jr(h) =
∑

π∈Zcusp(Q`)

dr

dsr

∣∣∣
s=0

Jπ((0, h)) (9.7)

=
∑

π∈Zcusp(Q`)

|ωX |
2

λπ(h)L (r)(πF ′ , 1/2). (9.8)

By Lemma 7.15(3), Zcusp(Q`) = Z0
0,`(Q`), hence can be viewed as a subset of Z̃0,`. Comparing

the RHS of (9.6) and (9.7), and using Theorem 9.2, we get for any h ∈ H̃`,0 ⊗Q`∑
m∈Zr0,`(Q`)

(
[ShtT ]m, h ∗ ShtT ]m

)
=

∑
π∈Zcusp(Q`)

|ωX |
2(log q)r

λπ(h)L (r)(πF ′ , 1/2). (9.9)

Since H̃`,0 ⊗Q` is an artinian algebra, we have a canonical decomposition into local artinian
algebras

H̃`,0 ⊗Q` ∼=
∏

m∈Z̃0,`(Q`)

(H̃`,0 ⊗Q`)m. (9.10)

As linear functions on H̃`,0 ⊗ Q`, the m-summand of the left side of (9.9) factors through

(H̃`,0⊗Q`)m while the π-summand of the right side of (9.9) factors through (H̃`,0⊗Q`)mπ . By
the decomposition (9.10), we conclude that

• If m ∈ Z ′r0,`(Q`)− Zcusp(Q`), then for any h ∈ H̃`,0 ⊗Q`,

([ShtT ]m, h ∗ [ShtT ]m)Q` = 0.

• If m ∈ Z ′r0,`(Q`) ∩ Zcusp(Q`), i.e., there is a (necessarily unique) π ∈ Zcusp(Q`) such that

m = mπ, then for any h ∈ H̃`,0 ⊗Q` we have

λπ(h)
|ωX |

2(log q)r
L (r)(πF ′ , 1/2) = ([ShtT ]mπ , h ∗ [ShtT ]mπ )Q` .

In particular, taking h = 1 we get

|ωX |
2(log q)r

L (r)(πF ′ , 1/2) = ([ShtT ]mπ , [ShtT ]mπ )Q` .

• If π ∈ Zcusp(Q`)− Z ′r0,`(Q`), then

L (r)(πF ′ , 1/2) = 0.
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These together imply (9.3), which finishes the proof of Theorem 1.6.

9.3. The Chow group version of the main theorem. In §1.4 we defined an H -module W

equipped with a perfect symmetric bilinear pairing (·, ·). Recall that W̃ is the H -submodule of

Chc,r(Sht′rG)Q generated by θµ∗ [ShtµT ], and W is by definition the quotient of W̃ by the kernel W̃0

of the intersection pairing.

Corollary 9.4 (of Theorem 9.2). The action of H on W factors through Haut. In particular,
W is a cyclic Haut-module, hence finitely generated module over Hx for any x ∈ |X|.

Proof. Suppose f ∈H is in the kernel of H →Haut, then Jr(f) = 0 hence Ir(f) = 0 by Theo-
rem 9.2. In particular, for any h ∈H , we have Jr(hf) = 0. Therefore 〈h ∗ θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉 =

Ir(hf) = 0. This implies that f ∗ θµ∗ [ShtµT ] ∈ W̃0, hence f ∗ θµ∗ [ShtµT ] is zero in W , i.e., f acts as
zero on W . �

9.3.1. Proof of Theorem 1.1. By the decomposition (7.20), we have an orthogonal decomposition

W = WEis ⊕Wcusp

with Supp(WEis) ⊂ ZEis and Supp(Wcusp) ⊂ Zcusp. Since Wcusp is a finitely generated Haut-
module with finite support, it is finite-dimensional over Q. By Lemma 7.15, Zcusp is the set
of unramified cuspidal automorphic representations in A, which implies the finer decomposi-
tion (1.5). Since W is a cyclic Haut-module, we have dimEπ Wπ ≤ dimEπ Haut,π = 1 by the
decomposition in Lemma 7.15(1).

9.3.2. Proof of Theorem 1.2. Pick any place λ of Eπ over `, then by the compatibility of the
intersection pairing and the cup product pairing under the cycle class map, we have

([ShtµT ]π, [ShtµT ]π)π = ([ShtµT ]π,λ, [ShtµT ]π,λ)π,λ

both as elements in the local field Eπ,λ. Therefore Theorem 1.2 follows from Theorem 1.6.

Appendix A. Results from intersection theory

In this appendix, we use Roman letters X,Y, V,W, etc to denote algebraic stacks over a field
k. In particular, X does not mean an algebraic curve. All algebraic stacks we consider are locally
of finite type over k.

A.1. Rational Chow groups for Deligne–Mumford stacks.

A.1.1. Generalities about intersection theory on stacks. We refer to [15] for the definition of the
Chow group Ch∗(X) of an algebraic stack X over k.

For a Deligne–Mumford stack of finite type over k, the rational Chow group Ch∗(X)Q can be
defined in a more naive way using Q-coefficient cycles modulo rational equivalence, see [23].

A.1.2. Chow group of proper cycles. Let X be a Deligne–Mumford stack locally of finite type
over k. Let Zc,i(X)Q denote the Q-vector space spanned by irreducible i-dimensional closed
substacks Z ⊂ X that are proper over k. Let Chc,i(X)Q be the quotient of Zc,i(X)Q modulo
rational equivalence which comes from rational functions on cycles which are proper over k.
Equivalently, Chc,i(X)Q = lim−→Y⊂X Chi(Y )Q where Y runs over closed substacks of X that are

proper over k, partially ordered by inclusion.
From the definition, we see that if X is exhausted by open substacks X1 ⊂ X2 ⊂ · · · , then

we have
Chc,i(X)Q ∼= lim−→

n

Chc,i(Xn)Q.

A.1.3. The degree map. When X is a Deligne–Mumford stack, we have a degree map

deg : Chc,0(X)Q −→ Q.
Suppose x ∈ X is a closed point with residue field kx and automorphism group Aut(x) (a finite
group scheme over kx). Let |Aut(x)|kx be the order of Aut(x) as a finite group scheme over kx.
Let [x] ∈ Chc,0(X)Q be the cycle class of the closed point x. Then

deg([x]) = [kx : k]/|Aut(x)|kx .
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A.1.4. Intersection pairing. For the rest of §A.1, we assume that X is a smooth separated
Deligne–Mumford stack, locally of finite type over k with pure dimension n. There is an inter-
section product

(−) ·X (−) : Chc,i(X)Q × Chc,j(X)Q −→ Chc,i+j−n(X)Q

defined as follows. For closed substacks Y1 and Y2 of X that are proper over k, the refined Gysin
map attached to the regular local immersion ∆ : X → X ×X gives an intersection product

Chi(Y1)Q × Chj(Y2)Q −→ Chi+j−n(Y1 ∩ Y2)Q −→ Chc,i+j−n(X)Q

(ζ1, ζ2) 7−→ ∆!(ζ1 × ζ2)

Note that Y1 ∩ Y2 = Y1 ×X Y2 → Y1 is proper, hence Y1 ∩ Y2 is proper over k. Taking direct
limits for Y1 and Y2, we get the intersection product on Chc,∗(X)Q.

Composing with the degree map, we get an intersection pairing

〈·, ·〉X : Chc,j(X)Q × Chc,n−j(X)Q −→ Q (A.1)

defined as
〈ζ1, ζ2〉X = deg(ζ1 ·X ζ2), ζ1 ∈ Chc,j(X)Q, ζ2 ∈ Chc,n−j(X)Q.

A.1.5. The cycle class map. For any closed substack Y ⊂ X that is proper over k, we have the
usual cycle class map into the `-adic (Borel-Moore) homology of Y

clY : Chj(Y )Q −→ HBM
2j (Y ⊗k k,Q`)(−j) ∼= H2j(Y ⊗k k,Q`)(−j).

Composing with the proper map i : Y ↪→ X we get

clY,X : Chj(Y )Q
clY−−→ H2j(Y ⊗k k,Q`)(−j)

i∗−→ H2j(X ⊗k k,Q`)(−j) ∼= H2n−2j
c (X ⊗k k,Q`)(n−j).

(A.2)
where the last isomorphism is the Poincaré duality for X. Taking inductive limit over all such
proper Y , we get a cycle class map for proper cycles on X

clX : Chc,j(X)Q = lim−→
Y

Chj(Y )Q
lim−→ clY,X
−−−−−−→ H2n−2j

c (X ⊗k k,Q`)(n− j).

This map intertwines the intersection pairing (A.1) with the cup product pairing

H2j
c (X ⊗k k,Q`)(j)×H2n−2j

c (X ⊗k k,Q`)(n− j)
∪−→ H2n

c (X ⊗k k,Q`)(n)
∩[X]−−−→ Q`.

A.1.6. A ring of correspondences. Let

cChn(X ×X)Q = lim−→
Z⊂X×X,pr1:Z−→X is proper

Chn(Z)Q.

For closed substacks Z1, Z2 ⊂ X×X that are proper over X via the first projections, we have
a bilinear map

Chn(Z1)Q × Chn(Z2)Q −→ Chn((Z1 ×X) ∩ (X × Z2))Q
pr13∗−−−→ cChn(X ×X)Q

(ρ1, ρ2) 7−→ ρ1 ∗ ρ2 := pr13∗
(
(ρ1 × [X]) ·X3 ([X]× ρ2)

)
.

Note that (Z1 ×X)∩ (X ×Z2) = Z1 ×pr2,X,pr1 Z2 is proper over Z1, hence is proper over X via
the first projection. Taking direct limit over such Z1 and Z2, we get a convolutiton product

(−) ∗ (−) : cChn(X ×X)Q × cChn(X ×X)Q −→ cChn(X ×X)Q.

This gives cChn(X ×X)Q the structure of an associative Q-algebra.
For a closed substack Z ⊂ X×X such that pr1 is proper, and a closed substack Y ⊂ X which

is proper over k, we have a bilinear map

Chn(Z)Q × Chi(Y )Q −→ Chi(Z ∩ (Y ×X))Q
pr2∗−−−→ Chc,i(X)Q

(ρ, ζ) 7−→ ρ ∗ ζ := pr2∗
(
ρ ·X×X (ζ × [X])

)
Note here Z ∩ (Y × X) = Z ×pr1,X Y is proper over Y , hence is itself proper over k. Taking
direct limit over such Z and Y , we get a bilinear map

cChn(X ×X)Q × Chc,i(X)Q −→ Chc,i(X)Q.

This defines an action of the Q-algebra cChn(X ×X)Q on Chc,i(X)Q.
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A.2. Graded K ′0 and Chow groups for Deligne–Mumford stacks.

A.2.1. A naive filtration on K ′0(X)Q. For an algebraic stack X over k, let Coh(X) be the abelian
category of coherent OX -modules on X. Let K ′0(X) denote the Grothendieck group of Coh(X).

Let Coh(X)≤n be the full subcategory of coherent sheaves of OX -modules with support di-
mension ≤ n. We define K ′0(X)naive

Q,≤n to be the the image of K0(Coh(X)≤n)Q → K ′0(X)Q. They

give an increasing filtration on K ′0(X)Q. This is not yet the correct filtration to put on K ′0(X)Q,
but let us first review the case where X is a scheme.

Let X be a scheme of finite type over k. Recall from [7, §15.1.5] that there is a natural graded

map φX : Ch∗(X)Q → Grnaive
∗ K ′0(X)Q sending the class of an irreducible subvariety V ⊂ X of

dimension n to the image of OV in Grnaive
n K ′0(X)Q. This map is in fact an isomorphism, with

inverse ψX : Grnaive
∗ K ′0(X)Q → Ch∗(X)Q given by the leading term of the Riemann–Roch map

τX : K ′0(X)Q → Ch∗(X)Q. For details, see [7, Theorem 18.3, and proof of Corollary 18.3.2].
These results also hold for algebraic spaces X over k by Gillet [8].

A.2.2. A naive attempt to generalize the map ψX to stacks is the following. Let Zn(X)Q be
the naive cycle group of X, namely the Q-vector space with a basis given by integral closed
substacks V ⊂ X of dimension n.

We define a linear map suppX : K0(Coh(X)≤n)Q → Zn(X)Q sending a coherent sheaf F to∑
V mV (F)[V ], where V runs over all integral substacks of X of dimension n and mV (F) is the

length of F at the generic point of V .
Clearly this map kills the image of K0(Coh(X)≤n−1)Q but what is not clear is whether or not

the composition K0(Coh(X)≤n)Q
suppX−−−−→ Zn(X)Q → Chn(X)Q factors through K ′0(X)naive

Q,≤n. For

this reason we will look for another filtration on K ′0(X)Q. 5

WhenX is an algebraic space, the map suppX does induce a map Grnaive
n K ′0(X)Q → Chn(X)Q,

and it is the same as the map ψX , the top term of the Riemann–Roch map.

A.2.3. Another filtration on K ′0(X)Q. Now we define another filtration on K ′0(X)Q when X is a
Deligne–Mumford stack satisfying the following condition.

Definition A.1. Let X be a Deligne–Mumford stack over k. A finite flat surjective map U → X
from an algebraic space U of finite type over k is called a finite flat presentation of X. We say
that X admits a finite flat presentation if such a map U → X exists.

We define K ′0(X)Q,≤n to be the subset of elements α ∈ K ′0(X)Q such that there exists a finite
flat presentation π : U → X such that π∗α ∈ K ′0(U)naive

Q,≤n.

We claim that K ′0(X)Q,≤n is a Q-linear subspace of K ′0(X)Q. In fact, for any two elements
α1, α2 ∈ K ′0(X)Q,≤n, we find finite flat presentations πi : Ui → X such that π∗i αi ∈ K ′0(Ui)

naive
Q,≤n

for i = 1, 2. Then the pullback of the sum α1 +α2 to the finite flat presentation U1×X U2 → X
lies in K ′0(U1 ×X U2)naive

Q,≤n.

By this definition, K ′0(X)Q,≤n may not be zero for n < 0. For any negative n, K ′0(X)Q,≤n
consists of those classes that vanish when pulled back to some finite flat presentation U → X.

Lemma A.2. When X is an algebraic space of finite type over k, the filtration K ′0(X)Q,≤n is
the same as the naive one K ′0(X)naive

Q,≤n.

Proof. To see this, it suffices to show that for a finite flat surjective map π : U → X of algebraic
spaces over k, and an element α ∈ K ′0(X)Q, if π∗α ∈ K ′0(U)naive

Q,≤n, then α ∈ K ′0(X)naive
Q,≤n. In

fact, suppose α ∈ K ′0(X)naive
Q,≤m for some m > n, let αm be its image in Grnaive

m K ′0(X)Q. Since

the composition π∗π
∗ : Chm(X)Q → Chm(U)Q → Chm(X)Q is the multiplication by deg(π) 6=

0 on each connected component, it is an isomorphism hence π∗ : Chm(X)Q → Chm(U)Q is

injective. By the compatibility between the isomorphism ψX : Grnaive
m K ′0(X)Q ∼= Chm(X)Q and

flat pullback, the map π∗ : GrmK
′
0(X)Q → GrmK

′
0(U)Q is also injective. Now π∗(αm) = 0 ∈

Grnaive
m K ′0(U)Q because m > n, we see that αm = 0, i.e., α ∈ K ′0(X)naive

Q,≤m−1. Repeating the

argument we see that α has to lie in K ′0(X)naive
Q,≤n. �

5Our definition in §A.2.3 may still seem naive to experts, but it suffices for our applications. We wonder if

there is a way to put a natural λ-structure on K′
0(X)Q when X is a Deligne–Mumford stack, and then one may

define a filtration on it using eigenvalues of the Adams operations.
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For a Deligne–Mumford stackX that admits a finite flat presentation, we denote by GrnK
′
0(X)Q

the associated graded of K ′0(X)Q with respect to the filtration K ′0(X)Q,≤n. We always have
K ′0(X)naive

Q,≤n ⊂ K ′0(X)Q,≤n, but the inclusion can be strict. For example, when X is the classify-

ing space of a finite group G, we have K ′0(X)Q = Rk(G)Q is the k-representation ring of G with
Q-coefficients. Any element α ∈ Rk(G)Q with virtual dimension 0 vanishes when pulled back
along the finite flat map Spec k → X, therefore K ′0(X)Q,≤−1 ⊂ K ′0(X)Q is the augmentation
ideal of classes of virtual degree 0, and Gr0K

′
0(X)Q = Q.

A.2.4. Functoriality under flat pullback. The filtration K ′0(X)Q,≤n is functorial under flat pull-
back. Suppose f : X → Y is a flat map of relative dimension d between Deligne–Mumford stacks
that admit finite flat presentations, then f∗ : K ′0(Y )Q → K ′0(X)Q is defined. Let α ∈ K ′0(Y )Q,≤n.
We claim that f∗α ∈ K ′0(X)Q,≤n+d. In fact, choose a finite flat presentation π : V → Y such that
π∗α ∈ K ′0(V )naive

Q,≤n. Let W = V ×Y X, then π′ : W → X is representable, finite flat and surjec-
tive. Although W itself may not be an algebraic space, we may take any finite flat presentation
σ : U → X and let U ′ := W ×X U . Then U ′ is an algebraic space and ξ : U ′ = W ×X U → X
is a finite flat presentation. The map f ′ : U ′ → W → V is flat of relative dimension d be-
tween algebraic spaces, hence f ′∗π∗α ∈ K ′0(U ′)naive

Q,≤d+n. Since f ′∗π∗α = ξ∗f∗α, we see that

f∗α ∈ K ′0(X)Q,≤n+d.
As a particular case of the above discussion, we have

Lemma A.3. Let X be a Deligne–Mumford stack that admits a finite flat presentation. Let
α ∈ K ′0(X)Q,≤n. Then for any finite flat representable map f : X ′ → X, where X ′ is a Deligne–
Mumford stack (which automatically admits a finite flat presentation), f∗α ∈ K ′0(X ′)Q,≤n.

A.2.5. Functoriality under proper pushforward. The filtrationK ′0(X)Q,≤n is also functorial under
proper representable pushforward. Suppose f : X → Y is a proper representable map of Deligne–
Mumford stacks that admit finite flat presentations. Suppose α ∈ K ′0(X)Q,≤n, we claim that
f∗α ∈ K ′0(Y )Q,≤n. Let π : V → Y be a finite flat presentation. Let σ : U = X×Y V → X be the
corresponding finite flat presentation of X (U is an algebraic space because f is representable).
Then f ′ : U → V is a proper map of algebraic spaces. By Lemma A.3, σ∗α ∈ K ′0(U)Q,≤n =
K ′0(U)naive

Q,≤n, therefore π∗f∗α = f ′∗σ
∗α ∈ K ′0(V )naive

Q,≤n, hence f∗α ∈ K ′0(Y )Q,≤n.

A.2.6. For a Deligne–Mumford stack X that admits a finite flat presentation, we now define a
graded map ψX : Gr∗K

′
0(X)Q → Ch∗(X)Q extending the same-named map for algebraic spaces

X.
We may assume X is connected for otherwise both sides break up into direct summands

indexed by the connected components of X and we can define ψX for each component. Let
π : U → X be a finite flat presentation of constant degree d. For α ∈ K ′0(X)Q,≤n, we know from
Lemma A.3 that π∗α ∈ K ′0(U)Q,≤n. Then we define

ψX(α) :=
1

d
π∗ψU (π∗α) ∈ Chn(X)Q.

It is easy to check that thus defined ψX is independent of the choice of the finite flat presentation
U by dominating two finite flat presentations by their Cartesian product over X.

A.2.7. The definition of ψX is compatible with the support map suppn in the sense that the
following diagram is commutative when X is a Deligne–Mumford stack admitting a finite flat
presentation

K0(Coh(X)≤n)Q //

suppX

��

K ′0(X)naive
Q,≤n

// K ′0(X)Q,≤n

ψX

��

Zn(X)Q // Chn(X)Q
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A.2.8. Compatibility with the Gysin map. We need a compatibility result of ψX and the refined
Gysin map. Consider a Cartesian diagram of algebraic stacks

X ′
f ′
//

g

��

Y ′

h

��

X
f
// Y

(A.3)

satisfying the following conditions

(1) The stack X ′ is a Deligne–Mumford stack that admits a finite flat presentation.

(2) The morphism f can be factored as X
i−→ P

p−→ Y , where i is a regular local immersion of
pure codimension e , and p is a smooth relative Deligne–Mumford type morphism of pure
relative dimension e− d.

Remark A.4. Let X and Y be smooth Deligne–Mumford stacks, and f : X → Y is any

morphism. Then we may factor f as X
(id,f)−−−→ X × Y prY−−→ Y , which is the composition of a

regular local immersion with a smooth morphism of Deligne–Mumford type. In this case any f
always satisfies the condition (2).

A.2.9. In the situation of §A.2.8, the refined Gysin map [15, Theorem 2.1.12(xi), and end of
p.529] is defined

f ! : Ch∗(Y
′)Q −→ Ch∗−d(X

′)Q.

We also have a map

f∗ : K ′0(Y ′) −→ K ′0(X ′) (A.4)

defined using derived pullback of coherent sheaves. Let F be a coherent sheaf on Y ′. Then

the derived tensor product f ′−1F
L
⊗(fg)−1OY g

−1OX has cohomology sheaves only in a bounded
range because for a regular local immersion it can be computed locally by a Koszul complex.
Then the alternating sum

f∗[F ] =
∑
i

(−1)i[Tor
(fg)−1OY
i (f ′−1F , g−1OX)]

is a well-defined element in K ′0(X ′). We then extend this definition by linearity to obtain the
map f∗ in (A.4).

Proposition A.5. In the situation of (A.3), assume all conditions in §A.2.8 are satisfied. Let
n ≥ 0 be an integer. We have

(1) The map f∗ sends K ′0(Y ′)naive
Q,≤n to K ′0(X ′)Q,≤n−d, and hence induces

Grnaive
n f∗ : Grnaive

n K ′0(Y ′)Q −→ Grn−dK
′
0(X ′)Q.

(2) The following diagram is commutative

K0(Coh(Y ′)≤n)Q

suppY ′

��

// Grnaive
n K ′0(Y ′)Q

Grnaiven f∗
// Grn−dK

′
0(X ′)Q

ψX′

��

Zn(Y ′)Q // Chn(Y ′)Q
f !

// Chn−d(X
′)Q

(A.5)

(3) If Y ′ is also a Deligne–Mumford stack that admits a finite flat presentation, then f∗ sends
K ′0(Y ′)Q,≤n to K ′0(X ′)Q,≤n−d, and we have a commutative diagram

GrnK
′
0(Y ′)Q

ψY ′

��

Grnf
∗
// Grn−dK

′
0(X ′)Q

ψX′

��

Chn(Y ′)Q
f !

// Chn−d(X
′)Q
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Proof. (1) and (2). Write f = p◦i : X
i−→ P

p−→ Y as in condition (2) in §A.2.8. Let P ′ = P×Y Y ′.
For the smooth morphism p of relative dimension e−d, p∗ sends Coh(Y ′)≤n to Coh(P ′)≤n+e−d.
Then we have a commutative diagram

K ′0(Coh(Y ′)≤n)Q

suppY ′

��

p∗
// K ′0(Coh(P ′)≤n+e−d)Q

suppP ′

��

Zn(Y ′)Q
p∗

// Zn+e−d(P
′)Q

(A.6)

Therefore to prove (1) and (2) we may replace f : X → Y with i : X → P hence reducing to the
case f is a regular local immersion of pure codimension d.

Let α ∈ K0(Coh(Y ′)≤n)Q. Then there exists a closed n-dimensional closed substack Y ′′ ⊂ Y ′
such that α is in the image of K ′0(Y ′′)Q. We may replace Y ′ with Y ′′ and replace X ′ with
X ′′ := X ′ ×Y ′ Y ′′. It suffices to prove the statements (1)(2) for X ′′ and Y ′′ for then we may
pushforward along the closed immersion X ′′ ↪→ X ′ to get the desired statements for X ′ and Y ′.
Therefore we may assume that dimY ′ = n.

The construction of the deformation to the normal cone can be extended to our situation, see
[15, p.529]. Let Nf be the normal bundle of the regular local immersion f . Then the normal
cone CX′Y

′ for the morphism f ′ : X ′ → Y ′ is a closed substack of g∗Nf . We denote the total
space of the deformation by M◦X′Y

′. This is a stack over P1 whose restriction to A1 is Y ′ × A1

and whose fiber over ∞ is the normal cone CX′Y
′. Let i∞ : CX′Y

′ ↪→ M◦X′Y
′ be the inclusion

of the fiber over ∞. We have the specialization map for K-groups

Sp : K ′0(Y ′)Q
pr∗
Y ′−−−→ K ′0(Y ′ × A1)Q ∼= K ′0(M◦X′Y

′)Q/K
′
0(CX′Y

′)Q
i∗∞−−→ K ′0(CX′Y

′)Q.

Similarly, we also have a specialization map for the naive cycle groups

Sp : Zn(Y ′)Q
pr∗
Y ′−−−→ Zn+1(Y ′ × A1)Q

∼−→ Zn+1(M◦X′Y
′)Q

i!∞−−→ Zn(CX′Y
′)Q.

Here we are using the fact that n = dimY ′ = dimCX′Y
′ = dimM◦X′Y

′ − 1, and Z∗(−)Q is the
naive cycle group. For any n-dimensional integral closed substack V ⊂ Y ′, Sp([V ]) is the class
of the cone CX′∩V V ⊂ CX′Y ′.

The diagram (A.5) can be decomposed into two diagrams

K ′0(Y ′)Q
Sp
//

suppY ′

��

K ′0(CX′Y
′)Q

suppC
X′Y

′

��

s∗ // K ′0(X ′)Q,≤n−d

ψX′

��

Zn(Y ′)Q
Sp
// Zn(CX′Y

′)Q
s! // Chn−d(X

′)Q

The dotted arrow is conditional on showing that the image of s∗ lands K ′0(X ′)Q,≤n−d. The
left square above is commutative: since we are checking an equality of top-dimensional cycles,
we may pass to a smooth atlas and reduce the problem to the case of schemes for which the
statement is easy. Therefore it remains to show that the image of s∗ lands K0(X ′)Q,≤n−d, and
that the right square is commutative. Since CX′Y

′ ⊂ g∗Nf , it suffices to replace CX′Y
′ by g∗Nf

and prove the same original statements (1) and (2), but without assuming that dim g∗Nf = n.
In other words, we have reduced the problem to the following special situation

X ′ = X, Y ′ = Y is a vector bundle of rank d over X, (A.7)

g = idX , h = idY and f = s is the inclusion of the zero section.

In this case, let π : U → X be a finite flat presentation, let YU be the vector bundle Y base
changed to U . Then U and YU are both algebraic spaces. Let sU : U ↪→ YU be the inclusion
of the zero section and let σ : YU → Y be the projection. For any α ∈ K ′0(Y )naive

Q,≤n, we have

π∗s∗α = s∗Uσ
∗α ∈ K ′0(U)Q. We have σ∗α ∈ K ′0(YU )naive

Q,≤n. In the case of the regular embedding

of algebraic spaces sU : U ↪→ YU , s∗U sends K ′0(YU )Q,≤n to K ′0(U)Q,≤n−d by the compatibility
of the Riemann–Roch map with the Gysin map ([7, Theorem 18.3(4)]). Therefore π∗s∗α =
s∗Uσ

∗α ∈ K ′0(U)Q,≤n−d, hence s∗α ∈ K ′0(X)Q,≤n−d.
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We finally check the commutativity of (A.5) in the special case (A.7). For any α ∈ K ′0(Coh(Y )≤n)Q,
we need to check that δ = s!suppY (α)−ψX(s∗α) ∈ Chn−d(X)Q is zero. Since π∗π

∗ : Chn−d(X)Q →
Chn−d(U)Q → Chn−d(X)Q is the multiplication by deg(π) on each component of X, in particular
it is an isomorphism and π∗ is injective. Therefore it suffices to check that π∗δ = 0 ∈ Chn−d(U)Q.
Since π∗δ = s!

U suppYU (σ∗α)−ψUs∗U (σ∗α), we reduce to the situation of sU : U ↪→ YU , a regular

embedding of algebraic spaces. In this case, the equality s!
U suppU = ψUs

∗
U follows from the

compatibility of the Riemann–Roch map with the Gysin map ([7, Theorem 18.3(4)]).
(3) Let α ∈ K ′0(Y ′)Q,≤n. Then for some finite flat presentation πV : V → Y ′, π∗V α ∈

K ′0(V )naive
Q,≤n. Let W = X ′×Y ′ V = X×Y V , and let f ′′ : W → V be the projection. Then we have

a Cartesian diagram as in (A.3) with the top row replaced by f ′′ : W → V . Since πW : W → X ′

is a finite flat surjective map (W may not be an algebraic space because we are not assuming that
f is representable), π∗W : Chn−d(X

′)Q → Chn−d(W )Q is injective. Therefore, in order to show
that f∗α ∈ K ′0(X ′)Q,≤n−d and that ψX′f

∗α−f !ψY ′α = 0 in Chn−d(X
′)Q, it suffices to show that

π∗W f
∗α = f∗π∗V α ∈ K ′0(W )Q,≤n−d and that π∗W (ψX′f

∗α− f !ψY ′α) = ψW f
∗(π∗V α)− f !ψV (π∗V α)

is zero in Chn−d(W )Q. Therefore we have reduced to the case where Y ′ = V is an algebraic
space. In this case K ′0(Y ′)Q,≤n = K ′0(Y ′)naive

Q,≤n, and the statements follows from (1)(2). �

By applying Proposition A.5 to the diagonal map X → X × X (and taking g, h to be the
identity maps), we get the following result, which is not used in the paper.

Corollary A.6. Let X be a smooth Deligne–Mumford stack that admits a finite flat presentation,
then the map ψX is a graded ring homomorphism.

A.2.10. The case of proper intersection. There is another situation where an analog of Propo-
sition A.5 can be easily proved. We consider a Cartesian diagram as in (A.3) satisfying the
following conditions

(1) X ′ is a Deligne–Mumford stack, and h (hence g) is representable.

(2) The normal cone stack of f is a vector bundle stack (see [2, Definition 1.9]) of some constant
virtual rank d.

(3) There exists a commutative diagram

U

u

��

� � i // V

v

��

X
f
// Y

(A.8)

where U and V are schemes locally of finite type over k, u and v are smooth surjective and
i is a regular local immersion.

(4) We have dimY ′ = n and dimX ′ = n− d.

Remark A.7. Suppose X and Y are smooth stacks over k. Pick any smooth surjective W � Y
where W is a smooth scheme, and let u : U → X ×Y W be any smooth surjective map from a
smooth scheme U . Take V = U ×W , then i = (id,prW ◦ u) : U → V = U ×W is a regular local
immersion. Therefore, in this case, f satisfies the condition (3) above.

If f satisfies the condition (2) above, the refined Gysin map is defined (see [15, End of p.529
and footnote]). We only consider the top degree Gysin map

f ! : Chn(Y ′)Q −→ Chn−d(X
′)Q

On the other hand, derived pullback by f∗ gives

f∗ : K ′0(Y ′) −→ K ′0(X ′)

as in (A.4). Here the boundedness of Tor can be checked by passing to a smooth cover of X ′,
and we may use the diagram (A.8) to reduce to the case where f is a regular local immersion,
where Tor-boundedness can be proved by using the Koszul resolution.
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Lemma A.8. Under the assumptions of §A.2.10, we have a commutative diagram

K ′0(Y ′)Q

suppY ′

��

f∗
// K ′0(X ′)Q

suppX′

��

Zn(Y ′)Q
f !

// Zn−d(X
′)Q

Proof. The statement we would like to prove is an equality of top-dimensional cycles in X ′. Such
an equality can be checked after pulling back along a smooth surjective morphism X ′′ → X ′.
We shall use this observation to reduce the general case to the case where all members of the
diagram are algebraic spaces and that f is a regular embedding.

Let i : U → V be a regular local immersion of schemes as in Condition (3) of §A.2.10 that
covers f : X → Y . By passing to connected components of U and V , we may assume that the
maps u, v and i in (A.8) have pure (co)dimension. Let U ′ = X ′ ×X U and V ′ = Y ′ ×Y V , then
we have a diagram where all three squares and the outer square are Cartesian

X ′

g

��

f ′

$$

U ′
u′oo i′ //

��

V ′

��

v′ // Y ′

h

��

X

f

::U
uoo i // V

v // Y

Let α ∈ K ′0(Y ′). To show suppX′(f
∗α) − f !suppY ′(α) = 0 ∈ Zn−d(X ′)Q, it suffices to show its

pullback to U ′ is zero. We have

u′∗(suppX′(f
′∗α)− f !suppY ′(α)) = suppU ′(u

∗f∗α)− u!f !suppY ′(α) (A.9)

= suppU ′(i
∗v∗α)− i!v!suppY ′(α).

Since v is smooth and representable, we have v!suppY ′(α) = suppV ′(v
′∗α). Letting β = v′∗α ∈

K ′0(V ′), we get

suppU ′(i
∗v∗α)− i!v!suppY ′(α) = suppU ′(i

∗β)− i!suppV ′(β).

To show the LHS of (A.9) is zero, we only need to show that suppU ′(i
∗β) − i!suppV ′(β) = 0.

Therefore we have reduced to the following situation:

X and Y are schemes and f is a regular local immersion.

In this case, X ′ and Y ′ are also algebraic spaces by the representability of h and g. In this case
we have suppX′ = ψX′ and suppY ′ = ψY ′ . The identity suppX′(f

∗α) = ψX′(f
∗α) = f !ψY ′(α) =

f !suppY ′(α) follows from the compatibility of the Riemann–Roch map with the Gysin map
([7, Theorem 18.3(4)]). �

A.3. The octahedron lemma. We consider the following commutative diagram of algebraic
stacks over k

A
a //

��

X

��

Boo

��

U // S Voo

C //

OO

Y

OO

Doo

d

OO

(A.10)

Attached to this diagram we may form the fiber product of each row

A×X B −→ U ×S V
γ←− C ×Y D (A.11)

and the fiber product of each column

C ×U A
α−→ Y ×S X ← D ×V B (A.12)
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We form the fiber products of the maps in (A.11) and in (A.12):

(C ×Y D)×(U×SV ) (A×X B) //

��

A×X B

��

C ×Y D
δ // U ×S V

(A.13)

(C ×U A)×(Y×SX) (D ×V B)

��

// D ×V B

��

C ×U A
α // Y ×S X

(A.14)

Finally we introduce another stack N as the fiber product

N

��

// A×B × C ×D

��

X ×S Y ×S U ×S V // (X ×S U)× (X ×S V )× (Y ×S U)× (Y ×S V ) =: R

(A.15)

Lemma A.9. There is a canonical isomorphism of stacks that appear in the northwest corners
of (A.13) and (A.14)

(C ×Y D)×(U×SV ) (A×X B) ∼= N ∼= (C ×U A)×(Y×SX) (D ×V B) (A.16)

Proof. For the first isomorphism, we consider the diagram (to shorten notation, we use · instead
of ×)

(C ·Y D) ·(U ·SV ) (A ·X B)

��

// (C ·Y D) · (A ·X B)

��

// A ·B · C ·D

��

Y ·S X ·S U ·S V //

ww

(Y ·S U ·S V ) · (X ·S U ·S V ) //

tt ��

R

��

U ·S V
∆ // (U ·S V )2 Y ·X ∆Y ·∆X // Y 2 ·X2

(A.17)

Here all the squares are Cartesian. The upper two squares combined give the square in (A.15).
This shows that the LHS of (A.16) is canonically isomorphic to N .

For the second isomorphism, we argue in the same way using the following diagram instead

(C ·U A) ·(Y ·SX) (D ·V B)

��

// (C ·U A) · (D ·V B)

��

// A ·B · C ·D

��

Y ·S X ·S U ·S V //

ww

(Y ·S X ·S U) · (Y ·S X ·S V ) //

tt ��

R

��

Y ·S X
∆ // (Y ·S X)2 U · V ∆U ·∆V // U2 · V 2

(A.18)

�

There is a way to label the vertices of the barycentric subdivision of an octahedron by the
stacks introduced above. We consider an octahedron with a north pole, a south pole and a
square as the equator. We put S at the south pole. The four vertices of the equator labelled
with A,B,D and C clockwisely. The barycenters of the four lower faces are labeled by U, V,X, Y
so that their adjacency relation with the vertices labelled by A,B,C,D is consistent with the
diagram (A.10). At the barycenters of the four upper faces we put the fiber products: e.g., for
the triangle with bottom edge labeled by A,B, we put A×XB at the barycenter of this triangle.
Finally we put N at the north pole.

Theorem A.10 (The Octahedron Lemma). Suppose we are in the above situation. Suppose
further that



86 ZHIWEI YUN AND WEI ZHANG

(1) The algebraic stacks A,C,D,U, V,X, Y and S (everybody except B, B for bad) are smooth
and equidimensional over k. We denote dimA by dA, etc.

(2) The fiber products U ×S V , Y ×S X, C ×Y D and C ×U A have expected dimensions dU +
dV − dS, etc.

(3) Each of the Cartesian squares

A×X B

��

// B

��

A
a // X

(A.19)

D ×V B

��

// B

��

D
d // V

(A.20)

satisfies either the conditions in §A.2.8 or the conditions in §A.2.10.

(4) The Cartesian squares (A.13) and (A.14) satisfy the conditions in §A.2.8.

Let n = dA + dB + dC + dD − dU − dV − dX − dY + dS. Then

δ!a![B] = α!d![B] ∈ Chn(N).

Proof. Since U, S and V are smooth and pure dimensional, and U ×S V has the expected di-
mension, it is a local complete intersection and we have

OU×SV ∼= OU
L
⊗OS OV

Here we implicitly pullback the sheaves OU ,OV and OS to U×SV using the plain sheaf pullback.
Similar argument shows that the usual structure sheaves OY×SX ,OC×YD and OC×UA coincide
with the corresponding derived tensor products.

We now show a derived version of the isomorphism (A.16). We equip each member of the
diagrams (A.13), (A.14) and (A.15) with the derived structure sheaves, starting from the usual
structure sheaves of A,B,C,D,X, Y, U, V and S. For N , we use (A.15) to equip it with the
derived structure sheaf

Oder
N := (OX

L
⊗OS OY

L
⊗OS OU

L
⊗OS OV )

L
⊗Oder

R
(OA �OB �OC �OD)

where Oder
R is the derived structure sheaf (OX

L
⊗OS OU ) � · · · � (OY

L
⊗OS OV ) on R = (X ×S

U)× · · · × (Y ×S V ). To make sense of this derived tensor product over Oder
R , we need to work

with dg categories of coherent complexes rather than the derived category.
We claim that under the isomorphisms between both sides of (A.16) and N , their derived

structure sheaves are also quasi-isomorphic to each other. In fact we simply put derived struc-
tures sheaves on each vertex of the diagram (A.17). Since the upper two squares combined give
the square in (A.15), transitivity of the derived tensor product gives a quasi-isomorphism

Oder
N
∼= (OC

L
⊗OY OD)

L
⊗

(OU
L
⊗OSOV )

(OA
L
⊗OX OB) (A.21)

Similarly, by considering the diagram (A.18), we get a quasi-isomorphism

Oder
N
∼= (OC

L
⊗OU OA)

L
⊗

(OY
L
⊗OSOX)

(OD
L
⊗OV OB) (A.22)

Combing the isomorphisms (A.21) and (A.22), and using the fact that U ×S V , Y ×SX, C×Y D
and C ×U A need not be derived, we get an isomorphism of coherent complexes on N

OC×YD
L
⊗OU×SV (OA

L
⊗OX OB) ∼= OC×UA

L
⊗OY×SX (OD

L
⊗OV OB)

These are bounded complexes because the diagrams (A.19), (A.20), (A.13) and (A.14) satisfy
the conditions in §A.2.8 or §A.2.10. Taking classes in K ′0(N)Q we get

δ∗a∗OB = α∗d∗OB ∈ K ′0(N)Q (A.23)
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Here a∗, d∗, α∗ and δ∗ are the derived pullbacks maps between K ′0-groups defined using the
relevant Cartesian diagrams. Now we apply Proposition A.5 to the diagrams (A.19), (A.20),
(A.13) and (A.14), to conclude that both sides of (A.23) lie in K ′0(N)Q,≤n (where n is the
expected dimension of N). In case (A.19) or (A.20) satisfies §A.2.10 instead of §A.2.8, the
corresponding statement K ′0(B)Q,≤dB → K ′0(A×X B)Q,≤dA+dB−dX or K ′0(B)Q,≤dB → K ′0(D×V
B)Q,≤dD+dB−dV is automatic for dimension reasons.

Now we finish the proof. We treat only the case where (A.19) satisfies the conditions in §A.2.8
and (A.20) satisfies the conditions in §A.20. This is the case which we actually use in the main
body of the paper, and the other cases can be treated in the same way.

Let δ∗a∗OB and α∗d∗OB denote their images in GrnK
′
0(N)Q. Similarly let a∗OB ∈ GrdA+dB−dXK

′
0(A×X

B)Q be the images of a∗OB . Applying Proposition A.5 three times and Lemma A.8 once we get

δ!a![B] = δ!a!suppB(OB)

= δ!ψA×XB(a∗OB) (Prop A.5(2) applied to (A.19))

= ψN (δ∗a∗OB) (Prop A.5(3) applied to (A.13))

= ψN (α∗d∗OB) (A.23)

= α!suppD×V B(d∗OB) (Prop A.5(2) applied to (A.14))

= α!d!suppB(OB) (Lemma A.8 applied to (A.20))

= α!d![B].

�

A.4. A Lefschetz trace formula. In this subsection, we will assume:

• All sheaf-theoretic functors are derived functors.

A.4.1. Cohomological correspondences. We first review some basic definitions and properties of
cohomological correspondences following [22]. Consider a diagram of algebraic stacks over k

X C
←−coo

−→c // Y (A.24)

We call C together with the maps ←−c and −→c a correspondence between X and Y .
Let F ∈ Db

c(X) and G ∈ Db
c(Y ) be Q`-complexes of sheaves. A cohomological correspondence

between F and G supported on C is a map

ζ :←−c ∗F −→ −→c !G

in Db
c(C).

Suppose we have a map of correspondences

X

f

��

C
←−coo

−→c //

h
��

Y

g

��

S B
←−
boo

−→
b // T

where ←−c and
←−
b are proper, then we have an induced map between the group of cohomological

correspondences supported on C and on B (see [22, §1.1.6(a)])

h! : HomC(←−c ∗F ,−→c !G) −→ HomB(
←−
b ∗f!F ,

−→
b !g!G)

In particular, if S = B = T and
←−
b =

−→
b = idS , then ζ ∈ HomC(←−c ∗F ,−→c !G) induces a map h!ζ

between f!F and g!G given by the composition

h!ζ : f!F −→ f!
←−c !
←−c ∗F f!

←−c !(ζ)−−−−−→ f!
←−c !
−→c !G = g!

−→c !
−→c !G −→ g!G. (A.25)

When S = T , B the diagonal of S, X = Y and f = g, we call C a self-correspondence of X
over S. In this case, for a cohomological correspondence ζ between F and G supported on C,
we also use f!ζ to denote h!ζ ∈ HomS(f!F , f!G) defined above.
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A.4.2. Fixed locus and the trace map. Suppose in the diagram (A.24) we have X = Y . We
denote X by M . Define the fixed point locus Fix(C) of C by the Cartesian diagram

Fix(C) //

��

C

(←−c ,−→c )

��

M
∆ // M ×M

For any F ∈ Db
c(M), there is a natural trace map (see [22, Eqn(1.2)])

τC : Hom(←−c ∗F ,−→c !F) −→ HBM
0 (Fix(C)⊗k k)

In other words, for a cohomological self-correspondence ζ of F supported on C, there is a well-
defined Borel-Moore homology class τC(ζ) ∈ HBM

0 (Fix(C)⊗k k).

A.4.3. In the situation of §A.4.2, we further assume that both C and M are Deligne–Mumford
stacks, M is smooth and separated over k of pure dimension n, and that F = Q`,M is the
constant sheaf on M .

Using Poincaré duality for M , a cohomological self-correspondence of the constant sheaf Q`,M
supported on C is the same as a map

Q`,C =←−c ∗Q`,M −→ −→c !Q`,M ∼= −→c !DM [−2n](−n) ∼= DC [−2n](−n)

Over C ⊗k k, this is the same thing as an element in HBM
2n (C ⊗k k)(−n). In this case, the trace

map τC becomes the map

τC : HBM
2n (C ⊗k k)(−n) −→ HBM

0 (Fix(C)⊗k k).

On the other hand, we have the cycle class map

clC : Chn(C)Q −→ HBM
2n (C ⊗k k)(−n) = Hom(←−c ∗Q`,M ,−→c !Q`,M ).

Therefore, any cycle ζ ∈ Chn(C)Q gives a cohomological self-correspondence of the constant
sheaf Q`,M supported on C. We will use the same notation ζ to denote the cohomological self-
correspondence induced by it. Since ∆M : M → M ×M is a regular local immersion of pure
codimension n, we have the refined Gysin map

∆!
M : Chn(C)Q −→ Ch0(Fix(C))Q.

Lemma A.11. Under the assumptions of §A.4.3, we have a commutative diagram

Chn(C)Q

clC
��

∆!
M // Ch0(Fix(C))Q

clFix(C)

��

HBM
2n (C ⊗k k)(−n)

τC // HBM
0 (Fix(C)⊗k k)

Proof. Let us base change to k and keep the same notation for M,C etc. Tracing through the
definition of τC , we see that it is the same as the cap product with the relative cycle class of
∆(M) in H2n(M ×M,M ×M −∆(M))(n). Then the lemma follows from [7, Theorem 19.2].
Note that [7, Theorem 19.2] is for schemes over C but the argument there works in our situation
as well, using the construction of the deformation to the normal cone for Deligne-Mumford stacks
in [14, p.489]. �

A.4.4. Intersection with the graph of Frobenius. Suppose we are given a self-correspondence C
of M over S

C

h

��

←−c

~~

−→c

  

M

f
  

M

f
~~

S

satisfying
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• k is a finite field;

• S is a scheme over k;

• M is a smooth and separated Deligne–Mumford stack over k of pure dimension n;

• f : M → S is proper;

• ←−c : C →M is representable and proper.

We define ShtC by the Cartesian diagram

ShtC //

��

C

(←−c ,−→c )

��

M
(id,FrM )

// M ×M

(A.26)

Here the notation ShtC suggests that in applications ShtC will be a kind of moduli of Shtukas.
We denote the image of the fundamental class [M ] under (id,FrM )∗ by Γ(FrM ). Since (id,FrM )
is a regular immersion of pure codimension n, the refined Gysin map

(id,FrM )! : Chn(C)Q −→ Ch0(ShtC)Q

is defined. In particular, for ζ ∈ Chn(C)Q, we get a 0-cycle

(id,FrM )!ζ ∈ Ch0(ShtC)Q.

A.4.5. Since C → M ×S M , while (id,FrM ) : M → M ×M covers the similar map (id,FrS) :
S → S×S, the map ShtC → S factors through the discrete set S(k), viewed as a discrete closed
subscheme of S. Since ShtC → S(k), we get a decomposition of ShtC into open and closed
subschemes

ShtC =
∐

s∈S(k)

ShtC(s).

Therefore
Ch0(ShtC)Q =

⊕
s∈S(k)

Ch0(ShtC(s))Q.

For ζ ∈ Chn(C)Q, the 0-cycle ζ ·M×M Γ(FrM ) can be written uniquely as the sum of 0-cycles

((id,FrM )!ζ)s ∈ Ch0(ShtC(s))Q, ∀s ∈ S(k). (A.27)

Each ShtC(s) = Γ(FrMs
) ×Ms×Ms

Cs. Since ←−c : Cs → Ms is proper and Ms is separated
(because f is proper), Cs →Ms×Ms is proper, therefore ShtC(s) is proper over Γ(FrMs), hence
it is itself proper over k because Γ(FrMs)

∼= Ms is proper over k. Therefore the degree map
deg : Ch0(ShtC(s))Q → Q is defined, we get an intersection number indexed by s ∈ S(k):

〈ζ,Γ(FrM )〉s := deg((id,FrM )!ζ)s ∈ Q.
The main result of this subsection is the following.

Proposition A.12. Assume all conditions in §A.4.4 are satisfied. Let ζ ∈ Chn(C)Q. Then for
all s ∈ S(k), we have

〈ζ,Γ(FrM )〉s = Tr ((f!clC(ζ))s ◦ Frobs, (f!Q`)s) . (A.28)

Here f!clC(ζ) := h!clC(ζ) is the endomorphism of f!Q` induced by the cohomological correspon-
dence clC(ζ) supported on C, and (f!clC(ζ))s is its action on the geometric stalk (f!Q`)s.

Proof. Let ′C = C but viewed as a self-correspondence of M via the following maps

M ′C = C
←−′c=FrM ◦←−coo

−→′c=−→c // M

However, ′C is no longer a self-correspondence of M over S. Instead, it maps to the Frobenius
graph of S:

M

f

��

′C

′h
��

←−′coo
−→c // M

f

��

S ′S
FrSoo id // S

(A.29)
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Here ′S = S but viewed as a self-correspondence of S via (FrS , id) : ′S → S × S. The map
′h : ′C → ′S is simply the original map h : C → S.

We have the following diagram where both squares are Cartesian and the top square is (A.26)

ShtC

��

// ′C = C

(←−c ,−→c )

��

M
(id,FrM )

//

FrM
��

M ×M

(FrM ,id)

��

M
∆M // M ×M

(A.30)

Therefore the outer square is also Cartesian, i.e., there is a canonical isomorphism Fix(′C) =
ShtC .

For ζ ∈ Chn(C)Q = Chn(′C)Q, we may also view it as a cohomological self-correspondence of
Q`,M supported on ′C. We denote it by ′ζ ∈ Chn(′C)Q to emphasize that it is supported on C ′.
We claim that

(id,FrM )!ζ = ∆!
M (′ζ) ∈ Ch0(ShtC)Q.

In fact, this is a very special case of the Excess Intersection Formula [7, Theorem 6.3] applied to
the diagram (A.30) where both (id,FrM ) and ∆M are regular immersions of the same codimen-
sion. In particular, taking the degree of the s components, we have

〈′ζ,∆∗[M ]〉s = 〈ζ,Γ(FrM )〉s for all s ∈ S(k). (A.31)

By [22, Prop. 1.2.5] applied to the proper map (A.29) between correspondences, we get a
commutative diagram

Hom(
←−′c ∗Q`,M ,

−→′c !Q`,M )
τ′C //

′h!(−)

��

HBM
0 (Fix(′C)⊗k k)

��

⊕
s∈S(k) HBM

0 (ShtC(s)⊗k k)

deg

��

Hom(Fr∗S f!Q`,M , f!Q`,M )
τ′S // HBM

0 (S(k)⊗k k)
⊕

s∈S(k) Q`

Combining the with the commutative diagram in Lemma A.11 applied to ′C, we get a commu-
tative diagram

Chn(′C)Q
∆!
M //

′h!◦cl′C

��

Ch0(Fix(′C))Q

��

⊕
s∈S(k) Ch0(ShtC(s))

deg

��

Hom(Fr∗S f!Q`,M , f!Q`,M )
τ′S // HBM

0 (S(k)⊗k k)
⊕

s∈S(k) Q`

(A.32)

Applying (A.32) to ′ζ, and using (A.31), we get that for all s ∈ S(k)

τ′S
(′h!cl′C(′ζ)

)
s

= 〈′ζ,∆∗[M ]〉s = 〈ζ,Γ(FrM )〉s. (A.33)

Here τ′S(−)s ∈ Q` denotes the s-component of the class τ′S(−) ∈ HBM
0 (S(k)⊗k k) = ⊕s∈S(k)Q`.

Next we would like to express τ′S
(′h!cl′C(′ζ)

)
s

as a trace. The argument works more generally

when Q`,M is replaced with any F ∈ Db
c(M) and clC(ζ) replaced with any cohomological self-

correspondence η : ←−c ∗F → −→c !F supported on C. So we will work in this generality. For
any F ∈ Db

c(M) we have a canonical isomorphism ΦF : Fr∗M F
∼→ F whose restriction to the

geometric stalk at x ∈ M(k) is given by the geometric Frobenius Frobx acting on Fx. Similar
remark applies to complexes on S. Using η we define a cohomological self-correspondence ′η of
F supported on ′C as the composition

′η :
←−′c ∗F =←−c ∗ Fr∗M F

←−c ∗ΦF−−−−→←−c ∗F η−→ −→c !F =
−→′c !F .
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On the other hand we have a commutative diagram

Fr∗S f!F
adj.

∼
//

Φf!F

∼

%%

f! Fr∗M F

f!ΦFo
��

adj.
// h!
←−c ∗ Fr∗M F

h!
←−c ∗ΦFo

��

h!

←−′c ∗F //

h!(
′η)

��

f!F

f!F
adj.

// h!
←−c ∗F

h!(η)
// h!
−→c !F

adj.
// f!F

(A.34)

Here the arrows indexed by “adj.” are induced from adjunctions, using the properness of ←−c .
The middle square is commutative by the definition of ′η, and the right square is commutative
by design. The composition of the top row in (A.34) is by definition the push-forward ′h!

′η
as a cohomological self-correspondence of f!F supported on ′S; the composition of the bottom
row in (A.34) is by definition the push-forward h!η as a cohomological self-correspondence of
f!F supported on the diagonal S. Therefore, (A.34) shows that ′h!

′η may be written as the
composition

′h!
′η : Fr∗S f!F

Φf!F−−−→ f!F
h!η−−→ f!F . (A.35)

For any cohomological self-correspondence ξ of G ∈ Db
c(S) supported on the graph of Frobenius

′S, i.e., ξ : Fr∗S G → G, the trace τ′S(ξ)s at s ∈ S(k) is simply given by the trace of ξs acting
on the geometric stalk Gs: this is because the Frobenius map is contracting at its fixed points,
so the local term for the correspondence supported on its graph is the naive local term (a very
special case of the main result in [22, Theorem 2.1.3]). Applying this observation to ξ = ′h!

′η
we get

τ′S(′h!
′η)s = Tr

(
(′h!
′η)s, (f!F)s

)
= Tr

(
(h!η)s ◦ Frobs, (f!F)s

)
by (A.35). (A.36)

Now apply (A.36) to F = Q`,M , η = clC(ζ) and note that ′η = cl′C(′ζ). Then (A.36) gives

τ′S(′h!cl′C(′ζ))s = Tr
(
(f!clC(ζ))s ◦ Frobs, (f!Q`,M )s

)
. (A.37)

Combining (A.37) with (A.33) we get the desired formula (A.28). �

Appendix B. Super-positivity of L-values

In this appendix we show the positivity of all derivatives of certain L-functions (suitably
corrected by their epsilon factors), assuming the Riemann hypothesis. The result is unconditional
in the function field case since the Riemann hypothesis is known to hold.

It is well-known that the positivity of the leading coefficient of such L-function is implied by
the Riemann hypothesis. We have not seen the positivity of non-leading terms in the literature
and we provisionally call such phenomenon “super-positivity”.

B.1. The product expansion of an entire function. We recall the (canonical) product
expansion of an entire function following [1, §5.2.3, §5.3.2]. Let φ(s) be an entire function in
the variable s ∈ C. Let m be the vanishing order of φ at s = 0. List all the nonzero roots of
φ as α1, α2, ..., αi, ... (multiple roots being repeated) indexed by a subset I of Z>0, such that
|α1| ≤ |α2| ≤ .... Let En be the elementary Weierstrass function

En(u) =

{
(1− u) , n = 0;

(1− u) eu+ 1
2u

2+···+ 1
nu

n

, n ≥ 1.

An entire function φ is said to have finite genus if it can be written as an absolutely convergent
product

φ(s) = sm eh(s)
∏
i∈Z

En

(
s

αi

)
(B.1)

for a polynomial h(s) ∈ C[s] and an integer n ≥ 0. The product (B.1) is unique if we further
demand that n is the smallest possible integer, which is characterized as the smallest n ∈ Z≥0
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such that ∑
i∈I

1∣∣αi∣∣n+1 <∞. (B.2)

The genus g(φ) of such φ is then defined to be

g(φ) := max{deg(h), n}.

The order ρ(φ) of an entire function φ is defined as the smallest real number ρ ∈ [0,∞] with the
following property: for every ε > 0, there is a constant Cε such that∣∣φ(s)

∣∣ ≤ e|s|ρ+ε , when |s| ≥ Cε.

If φ is a non-constant entire function, an equivalent definition is

ρ(φ) = lim sup
r−→∞

log log ||φ||∞,Br
r

where ||φ||∞,Br is the supremum norm of the function φ on the disc Br of radius r. If the order
of φ is finite, then Hadamard theorem [1, §5.3.2] asserts that the function φ has finite genus and

g(φ) ≤ ρ(φ) ≤ g(φ) + 1. (B.3)

In particular, an entire function of finite order admits a product expansion of the form (B.1).

Proposition B.1. Let φ(s) be an entire function with the following properties

(1) It has a functional equation φ(−s) = ±φ(s).

(2) For s ∈ R such that s� 0, we have φ(s) ∈ R>0.

(3) The order ρ(φ) of φ(s) is at most 1.

(4) (RH) The only zeros of φ(s) lie on the imaginary axis Re(s) = 0.

Then we have for all r ≥ 0,

φ(r)(0) :=
d

ds

∣∣∣
s=0

φ(s) ≥ 0.

Moreover, if φ(s) is not a constant function, we have

φ(r0)(0) 6= 0 =⇒ φ(r0+2i)(0) 6= 0, for all r0 and i ∈ Z≥0.

Proof. By the functional equation, if α is a root of φ, so is −α with the same multiplicity.
Therefore we may list all nonzero roots as {αi}i∈Z\{0} such that

α−i = −αi, and |α1| ≤ |α2| ≤ ....

If φ has only finitely many roots the sequence terminates at a finite number.
Since the order ρ(φ) ≤ 1, by (B.3) we have g(φ) ≤ 1. Hence we may write φ as a product

φ(s) = sm eh(s)
∞∏
i=1

E1

(
s

αi

)
E1

(
− s

αi

)
,

where m is the vanishing order at s = 0. Note that it is possible that g(φ) = 0, in which case
one still has a product expansion using E1 by the convergence of (B.2).

By the functional equation, we conclude that h(s) = h is a constant.
By the condition (4)(RH), all roots αi are purely imaginary, and hence αi = α−i. We have

φ(s) = sm eh
∞∏
i=1

E1

(
s

αi

)
E1

(
s

αi

)

= sm eh
∞∏
i=1

(
1 +

s2

αiαi

)
.

By the condition (2), the leading coefficient eh is a positive real number. Then the desired
assertion follows from the product above. �
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B.2. Super-positivity. Let F be a global field (i.e., a number field, or the function field of a
connected smooth projective curve over a finite field Fq). Let A be the ring of adèles of F . Let π
be an irreducible cuspidal automorphic representation of GLn(A). Let L(π, s) be the complete
(standard) L-function associated to π [9]. We have a functional equation

L(π, s) = ε(π, s)L(π̃, 1− s),

where π̃ denotes the contragredient of π, and

ε(π, s) = ε(π, 1/2)Ns−1/2
π

for some positive real number Nπ. Define

Λ(π, s) = N
− (s−1/2)

2
π L(π, s),

and

Λ(r)(π, 1/2) :=
d

ds

∣∣∣
s=1/2

Λ(π, s).

Theorem B.2. Let π be a nontrivial cuspidal automorphic representation of GLn(A). Assume
that it is self-dual:

π ' π̃.
Assume that, if F is a number field, the Riemann hypothesis holds for L(π, s), that is, all the
roots of L(π, s) have real parts equal to 1/2.

(1) For all r ∈ Z≥0, we have

Λ(r)(π, 1/2) ≥ 0.

(2) If Λ(π, s) is not a constant function, we have

Λ(r0)(π, 1/2) 6= 0 =⇒ Λ(r0+2i)(π, 1/2) 6= 0, for all i ∈ Z≥0.

Proof. We consider

λ(π, s) := Λ(π, s+ 1/2).

Since π is cuspidal and nontrivial, its standard L-function L(π, s) is entire in s ∈ C. By the
equality ε(π, s)ε(π̃, 1− s) = 1 and the self-duality π ' π̃ we deduce

1 = ε(π, 1/2)ε(π, 1− 1/2) = ε(π, 1/2)2.

Hence ε(π, 1/2) = ±1, and we have a functional equation

λ(π, s) = ±λ(π,−s). (B.4)

We apply Proposition B.1 to the entire function λ(π, s). The function L(π, s) is entire of order
one, and so is λ(π, s). In the function field case, the condition (4)(RH) is known by the theorem
of Deligne on Weil conjecture, and of Drinfeld and L. Lafforgue on the global Langlands corre-
spondence. It remains to verify the condition (2) for λ(π, s). This follows from the following
lemma. �

The local L-factor L(πv, s) is of the form 1
Pπv (q−sv )

where Pπv is a polynomial with constant

term equal to one when v is non-archimedean, and a product of functions of the form ΓC(s+α),
or ΓR(s+ α), where α ∈ C, and

ΓC(s) = 2(2π)−sΓ(s), ΓR(s) = π−s/2Γ(s/2),

when v is archimedean. We say that L(πv, s) has real coefficients if the polynomial Pπv has real
coefficients when v is non-archimedean, and the factor ΓFv (s + α) in L(πv, s) has real α or the
pair ΓFv (s + α) and ΓFv (s + α) show up simultaneously when v is archimedean. In particular,
if L(πv, s) has real coefficients, it takes positive real values when s is real and sufficiently large.

Lemma B.3. Let πv be unitary and self-dual. Then L(πv, s) has real coefficients.
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Proof. We suppress the index v in the notation and write F for a local field. Let π be irreducible
admissible representation of GLn(F ). It suffices to show that, if π is unitary, then we have

L(π, s) = L(π̃, s). (B.5)

Let Zπ be the space of local zeta integrals, i.e., the meromorphic continuation of

Z(Φ, s, f) =

∫
GLn(F )

f(g)Φ(g)|g|s+
n−1
2 dg

where f runs over all matrix coefficients of π, and Φ runs over all Bruhat–Schwartz functions on
Matn(F ) (a certain subspace, stable under complex conjugation, if F is archimedean, cf. [9, §8]).
We recall that from [9, Theorem 3.3, 8.7] that the Euler factor L(π, s) is uniquely determined
by the space Zπ (for instance, it is a certain normalized generator of the C[qs, q−s]-module Zπ

if F is non-archimedean).
Let Cπ be the space of matrix coefficients of π, i.e., the space consisting of all linear combi-

nations of functions on GLn(F ): g 7→ (π(g)u, v) where u ∈ π, v ∈ π̃ and (·, ·) : π × π̃ → C is
the canonical bilinear pairing. We remark that the involution g 7→ g−1 induces an isomorphism
between Cπ with Cπ̃.

To show (B.5), it now suffices to show that, if π is unitary, the complex conjugation induces an
isomorphism between Cπ and Cπ̃. Let 〈·, ·〉 : π × π → C be a non-degenerate Hermitian pairing
invariant under GLn(F ). Then the space Cπ consists of all functions fu,v : g 7→ 〈π(g)u, v〉, u, v ∈
π. Under complex conjugation we have fu,v(g) = 〈π(g)u, v〉 = 〈v, π(g)u〉 = 〈π(g−1)v, u〉 =
fv,u(g−1). This function belongs to Cπ̃ by the remark at the end of the previous paragraph. This
clearly shows that the complex conjugation induces the desired isomorphism. �

Remark B.4. In the case of a function field, we have a simpler proof of Theorem B.2. The
function L(π, s) is a polynomial in q−s of degree denoted by d. Then the function λ(π, s) is of
the form

λ(π, s) = qds/2
d∏
i=1

(
1− αiq−s

)
, (B.6)

where all the roots αi satisfy |αi| = 1. By the functional equation (B.4), if α is a root in (B.6),
so is α−1 = α. We divide all roots not equal to ±1 into pairs α±1

1 , α±1
2 , ..., α±1

m (some of them
may repeat). Consider

Ai(s) = qs
(
1− αiq−s

)(
1− α−1

i q−s
)

= qs + q−s − αi − αi

=
(
2− αi − αi

)
+ 2

∑
j≥1

(s log q)2j

j!
.

From |αi| = 1 and αi 6= 1 it follows that Ai(s) has strictly positive coefficients at all even degrees.
Now let a (resp., b) be the multiplicity of the root 1 (resp., −1). We then have

λ(π, s) =
(
qs/2 − q−s/2

)a (
qs/2 + q−s/2

)b m∏
i=1

Ai(s), 2m+ a+ b = d.

The desired assertions follow immediately from this product expansion.

Remark B.5. In the statement of the theorem, we excludes the trivial representation. In this
case the complete L-function has a pole at s = 1. If we replace Λ(π, s) by s(s − 1)Λ(π, s), the
theorem still holds by the same proof. Moreover, if F = Q, we have the Riemann zeta function,
and the super-positivity is known without assuming the Riemann hypothesis, by Pólya [4]. The
super-positivity also holds when the L-function is “positive definite” as defined by Sarnak in [20].
One of such examples is the weight 12 cusp form with q-expansion ∆ = q

∏
n≥1(1− qn)24. More

recently, Goldfeld and Huang in [10] prove that there are infinitely many classical holomorphic
cusp forms (Hecke eigenforms) on SL2(Z) whose L-functions satisfy super-positivity.

Remark B.6. The positivity of the central value is known for the standard L-function attached
to a symplectic cuspidal representation of GLn(A) by [17].
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Remark B.7. The positivity of the first derivative is known for the L-function appearing in
the Gross–Zagier formula in [12], [25], for example the L-function of an elliptic curve over Q.
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