SHTUKAS AND THE TAYLOR EXPANSION OF L-FUNCTIONS

ZHIWEI YUN AND WEI ZHANG

ABSTRACT. We define the Heegner—Drinfeld cycle on the moduli stack of Drinfeld Shtukas of

rank two with r-modifications for an even integer r. We prove an identity between

(1) The r-th central derivative of the quadratic base change L-function associated to an
everywhere unramified cuspidal automorphic representation 7 of PGLag;

(2) The self-intersection number of the m-isotypic component of the Heegner—Drinfeld cycle.

This identity can be viewed as a function-field analog of the Waldspurger and Gross—Zagier

formula for higher derivatives of L-functions.
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1. INTRODUCTION

In this paper we prove a formula for the arbitrary order central derivative of a certain class of
L-functions over a function field F = k(X), for a curve X over a finite field k. The L-function
under consideration is associated to a cuspidal automorphic representation of PGLy g, or rather,
its base change to a quadratic field extension of F. The r-th central derivative of our L-function
is expressed in terms of the intersection number of the “Heegner—Drinfeld cycle” on a moduli
stack denoted by Shtg; in the introduction, where G = PGL2. The moduli stack Sht, is closely
related to the moduli stack of Drinfeld Shtukas of rank two with r-modifications. One important
feature of this stack is that it admits a natural fibration over the r-fold self-product X" of the
curve X over Speck

Shtg; —— X7 .
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The very existence of such moduli stacks presents a striking difference between a function field
and a number field. In the number field case, the analogous spaces only exist (at least for the
time being) when r < 1. When r = 0, the moduli stack Sht%, is the constant groupoid over k

Bung(k) ~ G(F)\ (G(A)/K), (1.1)

where A is the ring of adeles, and K a maximal compact open subgroup of G(A). The double
coset in the RHS of remains meaningful for a number field F' (except that one cannot
demand the archimedean component of K to be open). When r = 1 the analogous space in
the case F' = Q is the moduli stack of elliptic curves, which lives over SpecZ. From such
perspectives, our formula can be viewed as a simultaneous generalization (for function fields) of
the Waldspurger formula [24] (in the case of » = 0) and the Gross—Zagier formula [12] (in the
case of r = 1).

Another noteworthy feature of our work is that we need not restrict ourselves to the leading
coefficient in the Taylor expansion of the L-functions: our formula is about the r-th Taylor
coefficient of the L-function regardless whether r is the central vanishing order or not. This
leads us to speculate that, contrary to the usual belief, central derivatives of arbitrary order of
motivic L-functions (for instance, those associated to elliptic curves) should bear some geometric
meaning in the number field case. However, due to the lack of the analog of Shty for arbitrary
r in the number field case, we could not formulate a precise conjecture.

Finally we note that, in the current paper, we restrict ourselves to everywhere unramified
cuspidal automorphic representations. One consequence is that we only need to consider the
even r case. Ramifications, particularly the odd r case, will be considered in subsequent work.

Now we give more details of our main theorems.

1.1. Some notation. Throughout the paper, let k¥ = F, be a finite field of characteristic p.
Let X be a geometrically connected smooth proper curve over k. Let v : X’ — X be a finite
étale cover of degree 2 such that X’ is also geometrically connected. Let o € Gal(X’/X) be the
nontrivial involution. Let F = k(X) and F’ = k(X’) be their function fields. Let g and ¢’ be
the genera of X and X', then ¢’ = 2¢g — 1.

We denote the set of closed points (places) of X by | X|. For z € | X]|, let O, be the completed
local ring of X at x and let F, be its fraction field. Let A = H;E|X| F, be the ring of adeles,
and O = er\X| O, the ring of integers inside A. Similar notation applies to X’. Let

77F//F : FX\AX/(D)X *}{il}

be the character corresponding to the étale double cover X’ via class field theory.

Let G = PGLy. Let K = [],¢ x| Kz where K = G(O;). The (spherical) Hecke algebra
A is the Q-algebra of bi-K-invariant functions C°(G(A)/K,Q) with the product given by
convolution.

1.2. L-functions. Let A = C*(G(F)\G(A)/K,Q) be the space of everywhere unramified Q-
valued automorphic functions for G. Then A is an J#-module. By an everywhere unramified
cuspidal automorphic representation m of G(Ar) we mean an s#-submodule A, C A that is
irreducible over Q.

For every such 7, End»(A;) is a number field E,, which we call the coefficient field of
m. Then by the commutativity of 7, A, is a one-dimensional E,-vector space. If we extend
scalars to C, A, splits into one-dimensional J¢¢-modules A Qg , C, one for each embedding
t: Ep — C, and each A, ®p, , C C Ac is the unramified vectors of an everywhere unramified
cuspidal automorphic representation in the usual sense.

The standard (complete) L-function L(m, s) is a polynomial of degree 4(g—1) in ¢~~ /2 with
coefficients in the ring of integers Op_. Let mp/ be the base change to F’, and let L(np,s) be
the standard L-function of wg.. This L-function is a product of two L-functions associated to
cuspidal automorphic representations of G over F':

L(’/TF/,S) = L(TF,S)L(’/T ® nF’/FvS)'
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Therefore L(mps,s) is a polynomial of degree 8(¢ — 1) in ¢ with coefficients in FE,. It

satisfies a functional equation
L(TFF/75) = E(ﬂ-F’a S)L(T‘-F’a 1- 5)7
where the epsilon factor takes a simple form

e(mpr,s) = g 8le=D(s=1/2),

Let L(m, Ad, s) be the adjoint L-function of 7. Denote

—1/2 L(mp,s)

X(TFF/,S):C(TFF/75) L(T(' Ad 1)7

(1.2)

where the the square root is understood as

“1/2 . Ag=1)(s-1/2),

6(7TF/, 8)
In particular, we have a functional equation:

L(npr,s) =L(np,1—3).

Consider the Taylor expansion at the central point s = 1/2:

—1/2)"
, _ (r) ;. 1/2 (87
L7, 5) ;03 (M, 1/2)——,
ie.,
dr _ L(7TF’ S)
") , _ ) 1/2_SA\NE,0)
Lmpn1/2) = 22| (6(7““5) L(m, Ad, 1))'

If r is odd, by the functional equation we have
L (1p,1/2) = 0.
Since L(m,Ad, 1) € E,, we have Z(np,s) € B [q~*"'/2,¢°7/2]. Tt follows that
L) (npi,1/2) € By - (logq)".

The main result of this paper is to relate each even degree Taylor coefficient to the self-intersection
numbers of a certain algebraic cycle on the moduli stack of Shtukas. We give two formulations
of our main results, one using certain subquotient of the rational Chow group, and the other
using f-adic cohomology.

1.3. The Heegner—Drinfeld cycles. From now on, we let 7 be an even integer. In we will
introduce moduli stack Sht¢, of Drinfeld Shtukas with r-modifications for the group G = PGLs.
The stack Shtg; is a Deligne-Mumford stack over X" and the natural morphism

g : Sht, —— X"

is smooth of relative dimension r, and locally of finite type. Let T'= (Resp//p Gn)/G,y, be the
non-split torus associated to the double cover X’ of X.In we will introduce the moduli stack
Sht/. of T-Shtukas, depending on the choice of an r-tuple of signs u € {£}" satisfying certain
balance conditions in Then we have a similar map

wh, « Shth, —— X"

which is a torsor under the finite Picard stack Picy(k)/Picx (k). In particular, Sht/. is a proper
smooth Deligne-Mumford stack over Spec k.
There is a natural finite morphism of stacks over X"

Sht!, —— Shtg, .
It induces a finite morphism
# : Shtf, —— Sht¢; := Shtg, x x» X" .
This defines a class in the Chow group
0%[Sht?] € Che,,(Sht&)g.
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Here Ch,,(—)gp means the Chow group of proper cycles of dimension r, tensored over Q. See
for details. In analogy to the classical Heegner cycles |12, we will call 64 [Sht’.] the Heegner—
Drinfeld cycle in our setting.

1.4. Main results: cycle-theoretic version. The Hecke algebra J acts on the Chow group
Ch,,(Shté:)g as correspondences. Let W C Ch,,.(Shtg:)g be the sub #-module generated by
the Heegner—Drinfeld cycle 64 [Shtf.]. There is a bilinear and symmetric intersection pairing

(- )smey - W x W —— Q. (1.3)
Let Wo be the kernel of the pairing, i.e.,
Wy = {z € W’ (2,2') =0, for all 2/ € W}
The pairing (-, '>Shtg then induces a non-degenerate pairing on the quotient W := 1% / WO
() WxW—Q. (1.4)
The Hecke algebra s# acts on W. For any ideal Z C JZ, let
W(Z] = {we W|T -w=0},

Let m be an everywhere unramified cuspidal automorphic representation of G with coefficient
field E,, and let A, : 2 — E. be the associated character, whose kernel m, is a maximal ideal
of 7. Let

W, = Wm,] c W

be the A -eigenspace of W. This is an F -vector space. Let Zgjs C S be the Eisenstein ideal
as defined in Definition .1l and define

Weis = W Zgis).

Theorem 1.1. We have an orthogonal decomposition of J€-modules

W = Wgis ® <€B WW> , (1.5)

where w runs over the finite set of everywhere unramified cuspidal automorphic representation
of G, and Wy is an E,-vector space of dimension at most one.

The proof will be given in §9.3.1] In fact one can also show that W is a free rank one
module over Q[Picx (k)]*Pie (for notation see §4.1.2)), but we shall omit the proof of this fact.
The Q-bilinear pairing (-,-) on W can be lifted to an E.-bilinear symmetric pairing

(o )n W x Wp —— Ep (1.6)

where for w,w’ € Wy, (w,w'), is the unique element in E; such that Trg_,g(e - (w,w’)x) =
(ew,w’).
We now present the cycle-theoretic version of our main result.

Theorem 1.2. Let w be an everywhere unramified cuspidal automorphic TepresentationAo/f G
with coefficient field E.. Let [Shth]. € Wy be the projection of the image of 6% [Sht}.] € W in
W to the direct summand W, under the decomposition (1.5)). Then we have an equality in E

1
- (r) , _ I3 m
Sog gy X127 (s 1/2) (1Sn5le,  [Shth])

where wx is the canonical divisor of X, and |wx| = q~

The proof will be completed in §9.3.2]

degwx

n this paper, the intersection pairing on the Chow groups will be denoted by (-,-), and other pairings (the
ones on the quotient of the Chow groups, and the cup product pairing on cohomology) will be denoted by (,-).
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Remark 1.3. Assume that » = 0. Then our formula is equivalent to the Waldspurger formula
[24] for an everywhere unramified cuspidal automorphic representation 7. More precisely, for
any nonzero ¢ € 7, the Waldspurger formula is the identity

2
1 ‘fT(F)\T(A) (t) dt
—|lwx|ZL(rp,1/2) = ,
2 | Xl ( g / ) <¢7 ¢>Pet

where (¢, @) pet is the Petersson inner product (4.10)), and the measure on G(A) (resp. T(A)) is

chosen such that vol(K) =1 (resp. vol(T(Q)) = 1).

Remark 1.4. Our E;-valued intersection paring is similar to the Néron—-Tate height pairing
with coefficients in [25, §1.2.4].

1.5. Main results: cohomological version. Let ¢ be a prime number different from p. Con-
sider the middle degree cohomology with compact support

V§, = HZ((Shtés) @ k, Qe)(r).
In the main body of the paper, we simply denote this by V’. This vector space is endowed with
the cup product
() Vg, x Vg, — Qe .
Then for any maximal ideal m C J¢g,, we define the generalized eigenspace of V@ with respect
to m by
V(ég,m = Ui>ov(ée [mz]
We also define the Eisenstein part of V@ by
Voe.Eis = UisoVg, [ )

We remark that in the cycle-theoretic version (cf. §1.4), the generalized eigenspace coincides

with the eigenspace because the space W is a cyclic module over the Hecke algebra.

Theorem 1.5 (see Theorem for a more precise statement). We have an orthogonal decom-
position of Hp,-modules

Véz = V(/Dz,EiS D (@ Vég,m) ) (17)

where m runs over a finite set of mazimal ideals of A, whose residue fields Ey = g, /m are
finite extensions of Qg, and each V@,m is an Jg,-module of finite dimension over Qp supported
at the maximal ideal m.

The action of g, on Vp, . factors through the completion %/’f\@bm with residue field Ey,.
Since Fy, is finite étale over Qp, and %[,m is a complete local (hence henselian) Qg-algebra
with residue field Ey,, Hensel’s lemma implies that there is a unique section Ey — %/’f\@bm (the
minimal polynomial of every element h € E, over Q; has a unique root h € %bm whose
reduction is h). Hence each Vé)(,m is also an Ey-vector space in a canonical way. As in the
case of W, using the En-action on V), ., the Q-bilinear pairing on Vg, , may be lifted to an
FE-bilinear symmetric pairing

(5 )m  Vg,m X Vg,m = Em -

Note that, unlike 7 in the decomposition we can not be sure whether all m are auto-
morphic (i.e., the homomorphism % — E,, is the character by which 7 acts on the unramified
line of an irreducible automorphic representation). However, for an everywhere unramified cus-
pidal automorphic representation 7w of G with coefficient field E., we may extend A, : & — E,
to Qg to get

)\ﬂ®QZ : ‘%g *>E7T®QZ = H)\‘gErr,A

where A runs over places of E above . Let m, » be the maximal ideal of ¢, obtained as the
kernel of the A-component of the above map ¢, — Ex .
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To alleviate notation, we denote ‘/@mmk simply by V7£7 > and denote the E y-bilinear pairing
('a .)m'rr)\ on Vé,/\ by
(o )ma s VA X Vi —— Ex .
We now present the cohomological version of our main result.

Theorem 1.6. Let m be an everywhere unramified cuspidal automorphic representation of G
with coefficient field Ex. Let X be a place of Ex above (. Let [Sht}|, \ € V;’A be the projection
of the cycle class cl(0%[Shtl]) € V§), to the direct summand V, , under the decomposition (T7).
Then we have an equality in E

1

— L) (mp,1/2) = ([Shth], Sht#] .
Sogqy X127 (i 1/2) = (IS0tflen, [Shtflen)
In particular, the RHS also lies in E,.

The proof will be completed in in §9.2]

1.6. Two other results. We have the following positivity result. This may be seen as an
evidence of the Hodge standard conjecture (on the positivity of intersection pairing) for a sub-
quotient of the Chow group of middle dimensional cycles on Sht,.

Theorem 1.7. Let Weysp be the orthogonal complement of Wgis in W (¢f. (L.5)). Then the
restriction to Weysp of the intersection pairing (-,-) in (1.4]) is positive definite.

Proof. The assertion is equivalent to the positivity for the restriction to W, of the intersection
pairing, for all 7 in . Fix such a m. Then the coefficient field E, is a totally real number
field because the Hecke operators .7 act on the positive definite inner product space A ®g R
(under the Petersson inner product) by self-adjoint operators. For an embedding ¢ : E, — R,
we define

W‘n’,b =W QF, . R.

Extending scalars from E to R via ¢, the pairing (1.6 induces an R-bilinear symmetric pairing
('7 ')7r,L : W‘n’,L X WWVL 4)R

It suffices to show that, for every embedding ¢ : E; — R, the pairing (-, ), is positive definite.
The R-vector space Wy, is at most one-dimensional, with a generator given by [Sht%]., =
[Sht]r ® 1. The embedding ¢ gives an irreducible cuspidal automorphic representation 7, with
R-coefficient. Then Theorem implies that
1

x| 2D (1, 1/2 :(Sht"m, Sht"m) R.

sio gy X127 (o 1/2) = (Shhls, (Shif,) | e
It is easy to see that L(m,,Ad,1) > 0. By Theorem we have

L) (7, p1,1/2) > 0.

It follows that
(IStthlrs, [Sthlr)  >0.

L

This completes the proof. O

Another result is a “Kronecker limit formula” for function fields. Let L(n, s) be the (complete)
L-function associated to the Hecke character 7.

Theorem 1.8. When r > 0 is even, we have
2r+2 -
LY (n,0).
(log q)" 1.0)

The proof will be given in §9.1.1] For the case r = 0, see Remark

(6%[Shtf],  64[Shty])sney =

Remark 1.9. To obtain a similar formula for the odd order derivatives L(")(n,0), we need
moduli spaces analogous to Shtf. and Shtg; for odd r. We will return this in future work.

1.7. Outline of the proof of the main theorems.
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1.7.1. Basic strategy. The basic strategy is to compare two relative trace formulae. A relative
trace formula (abbreviated as RTF) is an equality between a spectral expansion and an orbital
integral expansion. We have two RTFs, an “analytic” one for the L-functions, and a “geometric”
one for the intersection numbers, corresponding to the two sides of the desired equality in
Theorem [L6

We may summarize the strategy of the proof into the following diagram

Analyticc Y ogpy o Ir (0, ) —2= 1, () —2 5, T, (. f) (1.8)
~Th[Ed = Th[E2 = =Th L6l
Geometric: ZuG]P’l (F)—{1} Hr(u7 f) @ Hr(f) E Zm Hr(mv f)

The vertical lines mean equalities after dividing the first row by (logq)".

1.7.2. The analytic side. We start with the analytic RTF. To an f € % (or more generally,
C(G(A))), one first associates an automorphic kernel function Ky on G(A) x G(A) and then
a regularized integral:

reg
J(f,s) = / Kf(h17h2)|h1h2|s’r](h2) dhl dhg
[A]x[A]

Here A is the diagonal torus of G, and [A] = A(F)\A(A). We refer to for the definition of
the weighted factors, and the regularization. Informally, we may view this integral as a weighted
(naive) intersection number on the constant groupoid Bung(k) (the moduli stack of Shtukas
with 7 = 0 modifications) between Buny (k) and its Hecke translation under f of Bung (k).

The resulting J(f, s) belongs to Q[¢~*,¢°]. For an f in the Eisenstein ideal Zgss (cf. ,
the spectral decomposition of J(f, s) takes a simple form: it is the sum of

Ta(f,) = 5 lox| Z (e, 5 +1/2) An()

where 7 runs over all everywhere unramified cuspidal automorphic representations  of G with
Qy-coefficients (cf. Prop. [4.5). We define J,.(f) to be the r-th derivative

LU%=(£>T

We point out that in the case of r = 0, the relative trace formula in question was first
introduced by Jacquet |13], in his reproof of Waldspurger’s formula. In the case of r = 1, a
variant was first considered in [29] (for number fields).

_OJ(f, s).

s=

1.7.3. The geometric side. Next we consider the geometric RTF. We consider the Heegner—
Drinfeld cycle 04 [Shtf.] and its translation by the Hecke correspondence given by f € ¢, both
being cycles on the ambient stack Shtg. We define I.(f) to be their intersection number

I.(f) := (02[Sht7], [+ 0LShtT])sney  €Q, f € Ay

To decompose this spectrally according to the Hecke action, we have two perspectives, one view-
ing the Heegner—Drinfeld cycle as an element in the Chow group modulo numerical equivalence,
the other considering the cycle class of the Heegner—Drinfeld cycle in the ¢-adic cohomology. In
either case, when f is in a certain power of Zg;s, the spectral decomposition (§7, or Theorem

expresses [,.(f) as a sum of
L, f) = A (F) (IS0t ], [SU)

where 7 runs over all everywhere unramified cuspidal automorphic representations 7 of G with
Qy-coefficients. We remark that the method of the proof of the spectral decomposition in Theo-
rem can potentially be applied to moduli of Shtukas for more general groups G, which should
lead to a better understanding of the cohomology of these moduli spaces.

We point out that here we use the same way as in [29] to set up the geometric RTF, although
in [29] only the case of 7 = 1 was considered. In the case r = 0, Jacquet used an integration of
kernel function to set up an RTF for the T-period integral, which is equivalent to our geometric
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RTF because in this case Shty, and Shtg; become discrete stacks Buny (k) and Bung(k). Our
geometric formulation treats all values of r uniformly.

1.7.4. The key identity. In view of the spectral decompositions of both I,.(f) and J,.(f), to prove
the main Theorem for all m simultaneously, it suffices to establish the following key identity
(cf. Theorem [9.2))

L(f) = (logq) "3, (f) € Q, for all f € 4, (L.9)

This key identity also allows us to deduce Theorem [I.I] on the spectral decomposition of the
space W of cycles from the spectral decomposition of J,. Theorems then follows easily from
Theorem [L6l

Since half of the paper is devoted to the proof of the key identity , we comment on its proof
in more detail. The spectral decompositions allow us to reduce to proving for sufficiently
many functions f € J%, indexed by effective divisors on X with large degree compared to the
genus of X (cf. Theorem . Most of the algebro-geometric part of this paper is devoted to
the proof of the key identity for those Hecke functions.

In §3] we interpret the orbital integral expansion of J,.(f) (the northwestern sum in (1.8))
as a certain weighted counting of effective divisors on the curve X. The geometric ideas used
in the part are close to those in the proof of various fundamental lemmas by Ngé [19] and by
the first-named author [26], although the situation is much simpler in the current paper. In
86, we interpret the intersection number I.(f) as the trace of a correspondence acting on the
cohomology of a certain variety. This section involves new geometric ideas that did not appear
in the treatment of the fundamental lemma type problems. This is also the most technical part
of the paper, making use of the general machinery on intersection theory reviewed or improved
in Appendix A.

After the preparations in §3 and 6] our situation can be summarized as follows. For an
integer d > 0, we have fibrations

I iNa=| |Na— Aa, fra: Ma — Aq,
d

where d runs over all quadruples (di11,d12, d21,d22) € Zio such that di1 + dos = d = di3 + da1.
We need to show that the direct image complexes fo/h*@g and R far L4 are isomorphic to
each other, where Ly is a local system of rank one coming from the double cover X’/X. When d
is sufficiently large, we show that both complexes are shifted perverse sheaves, and are obtained
by middle extension from a dense open subset of Ay over which both can be explicitly calculated
(cf. Prop and [8.5)). The isomorphism between the two complexes over the entire base Ay
then follows by the functoriality of the middle extension. The strategy used here is the perverse
continuation principle coined by Ngo, which has already played a key role in all known geometric
proofs of fundamental lemmas, see [19] and [26].

Remark 1.10. One feature of our proof of the key identity is that it is entirely global, in
the sense that we do not reduce to the comparison of local orbital integral identities, as opposed
to what one usually does when comparing two trace formulae. Therefore our proof is different
from Jacquet’s in the case r = 0 in that his proof is essentially local (this is inevitable because
he also considers the number field case).

Another remark is that our proof of in fact gives a term-by-term identity of the orbital
expansion of both J,(f) and I,.(f), as indicated in the left column of (L.8)), although this is not
logically needed for our main results. However, such more refined identities (for more general G)
will be needed in the proof of the arithmetic fundamental lemma for function fields, a project
to be completed in near future [27].

1.8. A guide for readers. Since this paper uses a mixture of tools from automorphic repre-
sentation theory, algebraic geometry and sheaf theory, we think it might help orient the readers
by providing a brief summary of the contents and the background knowledge required for each
section.

First we give the Leitfaden.
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Section [2] sets up the relative trace formula following Jacquet’s approach [13] to the Wald-
spurger formula. This section is purely representation-theoretic.

Section [3] gives a geometric interpretation of the orbital integrals involved in the relative trace
formula introduced in We express these orbital integrals as the trace of Frobenius on the
cohomology of certain varieties, in the similar spirit of the proof of various fundamental lemmas
(119], [26]). This section involves both orbital integrals and some algebraic geometry but not yet
perverse sheaves.

Section [] relates the spectral side of the relative trace formula in §2] to automorphic L-
functions. Again this section is purely representation-theoretic.

Section 5| introduces the geometric players in our main theorem: moduli stacks Sht¢ of
Drinfeld Shtukas, and Heegner—Drinfeld cycles on them. We give self-contained definitions of
these moduli stacks, so no prior knowledge of Shtukas is assumed, although some experience
with the moduli stack of bundles will help.

Section [f]is the technical heart of the paper, aiming to prove Theorem[6.5] The proof involves
studying several auxiliary moduli stacks and uses heavily the intersection-theoretic tools reviewed
and developed in Appendix [A] The first-time readers may skip the proof and only read the
statement of Theorem [6.5]

Section [7| gives a decomposition of the cohomology of Sht: under the action of the Hecke alge-
bra, generalizing the classical spectral decomposition for the space automorphic forms. The idea
is to remove the analytic ingredients from the classical treatment of spectral decomposition, and
to use solely commutative algebra (in particular, we crucially use the Fisenstein ideal introduced
in §4)). For first-time readers, we suggest read then jump directly to Definition and
continue from there. What he/she will miss in doing this is the study of the geometry of Shtg,
near infinity (horocycles), which requires some familiarity with the moduli stack of bundles, and
the formalism of /-adic sheaves.

Section |8 combines the geometric formula for orbital integrals established in §3|and the alter-
native formula for the intersection numbers established in §6|to prove the key identity for
most Hecke functions. The proofs in this section involve perverse sheaves.

Section [0 finishes the proofs of our main results. Assuming results from the previous sections,
most argument in this section only involves commutative algebra.

Both appendices can be read independently of the rest of the paper.

Appendixreviews the intersection theory on algebraic stacks following Kresch [15], with two
key results that are used in §6|for the calculation of the intersection number of Heegner—Drinfeld
cycles. The first result, called the Octahedron Lemma (Theorem , is an elaborated version
of the following simple principle: in calculating the intersection product of several cycles, one
can combine terms and change the orders arbitrarily. The second result is a Lefschetz fixed point
formula for certain correspondences, building on results of Varshavsky [22].

Appendix [B] proves a positivity result for central derivatives of automorphic L-functions,
assuming the generalized Riemann hypothesis in the case of number fields. The main body of
the paper only considers L-functions for function fields, for which the positivity result can be
proved in an elementary way (see Remark .
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1.9. Further notation.

1.9.1. Function field notation. For x € |X]|, let w, be a uniformizer of O., k, be the residue
field of z, d, = [k, : k], and q, = #k, = ¢%.The valuation map is a homomorphism

val: A —— 7Z
such that val(w,) = d,. The normalized absolute value on A* is defined as
|-]: A ——QZ, CR*.
a )
Denote the kernel of the absolute value by
Al = Ker(] - ).
We have the global and local zeta function
Cr(s) = [] (). Gls)
z€|X|

Denote by Div(X) 2 A*/O* the group of divisors on X.

B 1
=T o

1.9.2. Group-theoretic notation. Let G be an algebraic group over k. We will view it as an
algebraic group over F by extension of scalar. We will abbreviate [G] = G(F)\G(A). Unless
otherwise stated, the Haar measure on the group G(A) will be chosen such that the natural
maximal compact open subgroup G(Q) has volume equal to one. For example, the measure on
A, resp. G(A) is such that vol (0*) = 1, resp. vol(K) = 1.

1.9.3. Algebro-geometric notation. In the main body of the paper, all geometric objects are
algebraic stacks over the finite field k = IF,. For such a stack S, let Frg : S — S be the absolute
g-Frobenius endomorphism that raises functions to their g-th powers.

For an algebraic stack S over k, we write H*(S ®j k) (resp. H’(S ®}, k)) for the étale co-
homology (resp. étale cohomology with compact support) of the base change S ®j k with
Q-coefficients. The f-adic homology H, (S ®; k) and Borel-Moore homology HE™ (S @, k) are
defined as the graded dual of H*(S ® k) and H}(S ® k) respectively. We use D%(S) to denote
the derived category of Q-complexes for the étale topology of S, as defined in [18]. We use Dg
to denote the dualizing complex of S with Qg-coefficients.

Acknowledgement. We thank Akshay Venkatesh for a key conversation that inspired our use
of the Fisenstein ideal, Dorian Goldfeld and Peter Sarnak for their help on Appendix We
thank Benedict Gross for his comments, Michael Rapoport for communicating us comments
from participants of ARGOS in Bonn, and Shouwu Zhang for carefully reading the first draft of
the paper and providing many useful suggestions.

Part 1. The analytic side
2. THE RELATIVE TRACE FORMULA

In this section we set up the relative trace formula following Jacquet’s approach [13] to the
Waldspurger formula.

2.1. Orbits. In this subsection F' is allowed to be an arbitrary field. Let F’ be a semisimple
quadratic F-algebra, i.e., it is either the split algebra F' @ F' or a quadratic field extension of F.
Denote by Nm : F/ — F the norm map.

Denote G = PGLg r and A the subgroup of diagonal matrices in G. We consider the action
of Ax A on G where (hy,hs) € Ax A acts by (h1,ha)g = hflghg. We define an A x A-invariant
morphism:

T 1
inv: G ——Pp bc{l} 2.1)
[0 2 e 4 ad
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where [ } € GLj3 is a lifting of v. We say that v € G is A x A-regular semisimple if

b

d
iHV(’}/) € ]P)}:‘ - {07 17 00}7

or equivalently all a,b,c,d are invertible in terms of the lifting of «. Let G5 be the open

subscheme of A x A-regular semisimple locus. A section of the restriction of the morphism inv

to Gys is given by

v: PL—{0,1,00} ————— @

1 u ] : (2:2)

ub————y(u) = { 11

Now we consider the induced map on the F-points inv : G(F) — P1(F) — {1}, and the action
of A(F) x A(F) on G(F). Denote by O.(G) = A(F)\G,s(F)/A(F) the set of orbits in G,s(F)
under the action of A(F) x A(F). They will be called the regular semisimple orbits. It is easy
to see that the map inv : Gs(F) — PY(F) — {0, 1,00} induces a bijection

inv: O (G) — PY(F) — {0, 1, 00}.
A convenient set of representative of O,s(G) is given by

0n(G) =~ {’y(u) — [ } ' } u € P'(F) —{0,1,00}}.

There are six non-regular-semisimple orbits in G(F'), represented respectively by

[ 11 [t
S A O R R O R [N O

_ 1 _ 1 |11
w= sowny = s wne = ,

where the first three (the last three, resp.) have inv = 0 (oo, resp.)

2.2. Jacquet’s RTF. Now we return to the setting of the introduction. In particular, we have
n = npyp. In [13] Jacquet constructs an RTF to study the central value of L-functions of the
same type as ours (mainly in the number field case). Here we modify his RTF to study higher
derivatives.

For f € C°(G(A)), we consider the automorphic kernel function

191, 92) Z Flgrvg2), 91,92 € G(A). (2.3)
YEG(F
We will define a distribution, given by a regulamzed integral

reg
J(f,s) =/ Ky (hi, ho)|h1ho|*n(ha) dhy dhs.
[A]x[A]

Here we recall that [A] = A(F)\A(A), and for h = { “ ] € A(A) we write for simplicity

d
[ = |

n(h) = n(a/d).
The integral is not always convergent but can be regularized in a way analogous to [13]. For an

integer n, consider the “annulus”

n

AX = {xGAX

val(z) = n}

This is a torsor under the group A = AJ. Let A(A),, be the subset of A(A) defined by

A(A),L:{[ “ p ] € A(A)

a/d € A:}



12 ZHIWEI YUN AND WEI ZHANG
Then we define, for (ny,ng) € Z2,
v]]nl,ng (f, S) = / Kf(hl, h2)|h1h2‘sn(h2) dh1 dhg (24)
[Alny X [Alngy

The integral (2.4) is clearly absolutely convergent and equal to a Laurent polynomial in ¢°.
Proposition 2.1. The integral Jn, n, (f, s) vanishes when |n1| + |na| is sufficiently large.

Granting this proposition, we then define
IFs) = D Tnuma(fos): (2.5)
(n1,n9)€Z?
This is a Laurent polynomial in ¢°.

The proof of Proposition [2.1] will occupy §2.3-2.5.

2.3. A finiteness lemma. For an (A x A)(F)-orbit of v, we define

Kiq(hi,ha) = Y f(hy'0ha), ha,ha € A(A). (2.6)
SEA(F)vA(F)
Then we have
Ky (h1, he) = > Ky (1, h2). (2.7)
YEA(F)\G(F)/A(F)

Lemma 2.2. The sum in has only finitely many non-zero terms.

Proof. Denote by G(F),, the fiber of u under the (surjective) map
inv: G(F) — PYF) — {1}.

We then have a decomposition of G(F') as a disjoint union

Gr) = J[ G@F)u.

uw€eP(F)—{1}

There is exactly one (three, resp.) (A x A)(F)-orbit in G(F), when u € P1(F)—{0,1,00} (when
u € {0,00}, resp.). It suffices to show that for all but finitely many u € P}(F) — {0, 1,0}, the
kernel function Ky () (h1, h2) vanishes identically on A(A) x A(A).
Consider the map
inv
U P G(A) — A.
The map 7 is continuous and takes constant values on A(A) x A(A)-orbits. For K¢ ) (h1, hz)
to be nonzero, the invariant 7(y(u)) = 1% must be in the image of supp(f), the support of the
function f. Since supp(f) is compact, so is its image under 7. On the other hand, the invariant
7(v(u)) = 1% belongs to F. Since the intersection of a compact set supp(f) with a discrete

set I in A must have finite cardinality, the kernel function Ky ,)(h1, he) is nonzero for only

finitely many wu. O
For v € A(F)\G(F)/A(F), we define
Ty s (7 1 8) = / K. (s ho)lhahaln(he) dhy dhs. (2.8)
[A]ny X [A]n,
Then we have
Jnlﬂ’bz(.f: 8) = Z Jn17n2(77f7s)'
YEA(F)\G(F)/A(F)

By the previous lemma, the above sum has only finitely many nonzero terms. Therefore, to
show Prop. it suffices to show

Proposition 2.3. For any v € G(F), the integral Jn, n, (7, f,$) vanishes when |ni| + |na| is
sufficiently large.
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Granting this proposition, we may define the (weighted) orbital integral
J(’Y,f,S) = Z «Hnl,ng('y,f,s)~ (29)
(n1,m2)€2Z2
To show Prop. we distinguish two cases according to whether v is regular semisimple.
2.4. Proof of Proposition regular semisimple orbits. For u € P(F) — {0, 1, cc}, the
fiber G(F), = inv~*(u) is a single A(F) x A(F)-orbit of y(u), and the stabilizer of y(u) is trivial.
We may rewrite (2.8) as
Do), f5) = [ PO 3o ol n(ho) dhy dho.— (2.10)
A(A) iy X A(A) 1y
For the regular semisimple v = y(u), the map
tyt (Ax A)(A) — G(A)
(h1, ha) > hityhe
is a closed embedding. It follows that the function f o ¢, has compact support, hence belongs to
C((A x A)(A)). Therefore, the integrand in (2.10) vanishes when |ni| 4 |na| > 0 (depending
on f and y(u)).
2.5. Proof of Proposition non-regular-semisimple orbits. Let u € {0,00}. We only
consider the case u = 0 since the other case is completely analogous. There are three orbit

representatives {1,ny,n_}.
It is easy to see that for v = 1, we have for all (ny,ns) € Z2,

Jnl,nz (’7) fa 3) =0,

because 7|41 is a nontrivial character.
Now we consider the case 7 = n; the remaining case v = n_ is similar. Define a function

T
swn=1(|" 1)) wmesxa (21)
Then we have ¢ € C°(A* x A). The integral J,,, n, (14, f,s) is given by
/ ¢ (z 7y, 2 70) n(y)layl* d*ed*y, (2.12)
A XAy,

where we use the multiplicative measure d*2 on A*. We substitute y by 2y, and then x by z~!:

[ sl e,
Z(n1,n2)

where
Z(ni,n2) = {(z,y) |z € A(A)_p,, 27 'y € A(A), } -
Since C°(A* x A) ~ C®(A*) ® C(A), we may reduce to the case ¢(z,y) = ¢1(z)p2(y)
where ¢ € C(A*), p2 € C°(A). Moreover, by writing ¢; as a finite linear combination, each
supported on a single AX, we may even assume that supp(¢1) is contained in AX, for some

n

n € Z. The last integral is equal to

(/ o1 )l ) (/

Finally we recall that, from Tate’s thesis, for any ¢ € C°(A), the integral on an annulus

| e@ e e,
A

vanishes when |n| > 0. We briefly recall how this is proved. It is clear if n < 0. Now assume
that n > 0. We rewrite the integral as

/ S (o) n(@) [z d*z,
FX\AX

acFX

b (x)n(x)lxlzsdxx> .

n —ng+n
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The Fourier transform of ¢, denoted by @, still lies in C°(A). By the Poisson summation
formula, we have

Y wlaz) = —p(0) + || '(0) + |27 Y Bla/a), (2.13)
acFXx acFXx

By the boundedness of the support of @, the sum over F* on the RHS vanishes when val(z) =
n > 0. Finally we note that the the integral of the remaining two terms on the RHS of
vanishes because 7 is nontrivial on F*\A!.

This completes the proof of Prop. and Prop.

2.6. The distribution J. Now J(f, s) is a Laurent polynomial in ¢°. Consider the r-th deriva-

tive
2= (Y] a0
" T ds s=0 8-
For v € A(F)\G(F)/A(F), we define
d I
JT(’Y?f) = (Cl8> SZOJ(’YMﬁS)'
We then have an expansion (cf.(2.5))
I(f,5) = Y. It
YEA(F)\G(F)/A(F)
and (cf. (2.9))
LhH= Y L (2.14)
YEA(F)\G(F)/A(F)
We define
J(u7f7$) = Z J(’Ya f,S), uePl(F)—{l} (215)
YEA(F\G(F)u/A(F)
and
Ir(u, f) = > I.(v, f), weP(F)—{1}. (2.16)
YEA(F\G(F)u/A(F)
Then we have a slightly coarser decomposition than
L= Y Lwh. (2.17)

ueP! (F)—{1}
2.7. A special test function f = 1.
Proposition 2.4. For the test function
=1k,
we have

L(n,2s) 4+ L(n,—2s) if u € {0, 00},
J(u, 1k, 8) =41 ifu € k—{0,1}, (2.18)
0 otherwise.

Proof. We first consider the case u € P*(F) — {0,1,c}. In this case, we have

/AXXAX 1x ([ m; (1) } [ } zf ] [ 3 ? D eyl n(y) d*xd”y

> Ik ({ x;y fllu D lzy[*n(y)-

z,y€AX /OX

“U(ua 1K7 8)
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7y 7l
Y 1
condition that g7;/det(g) € O, where {g;j}1<ij<2 are the entries of g. We have det(g) =

27 1y(1 — u), therefore g € K is equivalent to
s ly(1—w) e 0z ly (1 —u) € O,ay(l —u) ' € O, and zy ' (1 —u)~! € Q. (2.19)

Multiplying the first and last condition we get (1 —u)~! € Q. Therefore 1 — u € F* must be a
constant function, i.e., u € k — {0,1}. This shows that J(u,1x,s) =0 when u € F — k.
When u € k — {0,1}, the conditions (2.19)) become

zlye0,2 Yy e0,zy €0, and zy~ ! € O.

The integrand is nonzero if and only if g = [ } € K. This is equivalent to the

These together imply that z,y € Q. Therefore the integrand is nonzero only when both = and
y are in the unit coset of A*/O*, and the integrand is equal to 1 when this happens. This
proves J(u,1x,s) =1 when u € k — {0, 1}.

Next we consider the case u = 0. For f = 1 and v = ny, we have in ¢ =01 ® @
where

¢1=1gx, ¢2=1g.
Therefore we have

J(ng, 1k, s) = N bo(z)n(z)|z| 725 d*x = L(n, —2s).

Similarly we have
J(n_,1k,s) = L(n,2s).
This proves the equality (2.18) for w = 0. The case for u = oo is analogous. ([l

Corollary 2.5. We have

AL(n,0) +q—2 =422l 4 g9 =y
J(1x) =272 (L) OL(n,s) r >0 even;
s=
0 r >0 odd.

3. GEOMETRIC INTERPRETATION OF ORBITAL INTEGRALS

In this section, we will give a geometric interpretation the orbital integrals J(v, f, s) (cf. (2.9))
as a certain weighted counting of effective divisors on the curve X, when f is in the unramified
Hecke algebra.

3.1. A basis for the Hecke algebra. Let z € | X|. In the case G = PGLg, the local unramified
Hecke algebra 7, is the polynomial algebra Q[h,] where h, is the characteristic function of the

G(0O;)-double coset of [ @z 0 , and @, € O, is a uniformizer. For each integer n > 0,

0 1
consider the set Mato (O ).y, (det)=n Of matrices A € Maty(O,) such that v, (det(A)) = n. Let
M, ,, be the image of Maty(Oy )y, (det)=n in G(F%). Then M, ,, is a union of G(O,)-double cosets.
We define h,,, to be the characteristic function

Then {hngtn>o0 is a Q-basis for J&,.

Now consider the global unramified Hecke algebra ¢ = ®,¢|x |7, which is a polynomial
ring over Q with infinitely generators h,. For each effective divisor D = Zmel x| M T, We can
define an element hp € S using
where h,,,, is defined in (3.I). It is easy to see that the set {hp|D effective divisor on X} is a
Q-basis for 2.

The goal of the next few subsections is to give a geometric interpretation the orbital integral
J(v,hp,s). We begin by defining certain moduli spaces.

3.2. Global moduli space for orbital integrals.
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3.2.1. For d € Z, we consider the Picard stack Picgg of lines bundles over X of degree d. Note
that Picg( is a G,,-gerbe over its coarse moduli space. Let )A(d — Picgl( be the universal family
of sections of line bundles, i.e., an S-point of )?d is a pair (L, s), where L is a line bundle over
X x S such that deg £|x (s} = d for all geometric points ¢ of S, and s € H(X x S, L).

When d < 0, X, = Pic% since all global sections of all line bundles £ € Pic% vanish. When
d >0, let Xq= X%)S; be the d-th symmetric power of X. Then there is an open embedding

X4 — X, as the open locus of nonzero sections, with complement isomorphic to Picg(.
For dy,ds € Z, we have a morphism

a,dddl,d2 : Xd1 X Xd2 — Xd1+d2

sending ((£1,51), (L2,52)) to (L1 ® L2,81 ® s2). The restriction of z;c—izldh(b to the open subset
Xa, x X4, becomes the addition map for divisors addg, a, : Xa, X Xda, = Xa,+d,-

3.2.2. The moduli space Ny. Let d > 0 be an integer. Let X4 be the set of quadruple of non-
negative integers d = (dy;); je{1,2} satisfying di1 + dao = di2 + do1 = d.
For d € ¥4, we consider the moduli functor J\~/¢ classifying (K1, Ko, K, Kb, ¢) where
e K;, K} € Picx with deg K} — degK; = d;;.
e v: K1 ®Ky — Kj @K} is an Ox-linear map. We express it as a matrix

_ | P11 P12
P21 P22
where ¢;; : C; — K.
o If dy; < dag, then 11 # 0 otherwise pgo # 0. If dio < day then 12 # 0 otherwise g # 0.
Moreover, at most one of the four maps ¢;;,%,j € {1,2} can be zero.
The Picard stack Picx acts on J\~/'¢ by tensoring each KC; and IC; with the same line bundle. Let

N be the quotient stack J\~fi / Picx, which will turn out to be representable by a scheme over k.
We remark that the artificial-looking last condition in the definition of Ny is to guarantee that
Ny is separated.

3.2.3. The base Aq. Let Ag be the moduli stack of triples (A, a,b) where A € Pic%, a and b are
sections of A with the open condition that a and b are not simultaneously zero. Then we have
an isomorphism

Ag = X, X Ppicd, Xa—Z4 (3.3)
where Z4 = Pic‘)i( is the image of the diagonal zero sections (0,0) : Picg( < X4 X picd. X,
We claim that Ay is a scheme. In fact, A is covered by two opens V = Xy X picd. X4 and
V' = Xa Xpjed X4. Both V and V’ are schemes because the map X4 — Pic% is schematic.
We have a map R
0: Ay — Xy
given by (A, a,b) — (A,a —b).

3.2.4. The open part Ad@. Later we will consider the open subscheme Ag C Ay defined by the
condition a # b, i.e., the preimage of X; under the map 4 : Ag — Xg.

3.2.5. To a point (K1, Ka, K, Kb, ) € Ny we attach the following maps

® 0= ®pxn: K@Ky = K] ®Ks;

e b= Rpy K@Ky — Ky® K 2K KL

Both a and b can be viewed as sections of the line bundle A = K} ® Ky @ 7' @ K;! € Pic%k.

Clearly this assignment (K1, Ko, K1, K5, ¢) — (A, a,b) is invariant under the action of Picy on

./\Nfd. Therefore we get a map

de : Ni — Ad.

The composition ¢ o fa, : Ng — X, takes (K1, K2, K1, K5, ) to det(p) as a section of A =
KioKkyo kit eyt
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3.2.6. Geometry of Ng. Fix d = (di;) € 4. For i,j € {1,2}, we have a morphism j;; : Ny —
)/(:di]. sending (KCq,- -+, K5, ¢) to the section ¢;; of the line bundle £;; := K, ® /C;l € Picié’j. We
have canonical isomorphisms £11 @ Lo = L1o® Lo T A=K QKL ® lel ® lC;l. Thus we get
a morphism

Jd = (jij)iaj :Ni — (Xdll X Xdzz) XPic"X (de X de)' (34)

Here the fiber product on the right side is formed using the maps )?du x)A(dQQ — Picglgl X Picglfz 2,

Pick and Xg4,, x X4, — Pich2 x Pic®?' 25 Pic%.
Proposition 3.1. Letd € 3.

(1) The morphism jq is an open embedding, and Ny is a geometrically connected scheme over
k.

(2) If d>2¢' — 1 =4g — 3, Ny is smooth over k of dimension 2d — g + 1.

(3) We have a commutative diagram

ji A~ A~ A~ A~
Ni (an X Xd22) XPic‘)l( (XdIZ X de) (35)
Jde Ja/dadu»dzz Xa/d\ddlzxdzl
Ag© Xy X picd. Xyg

Moreover, the map fn, is proper.

Proof. (1) We abbreviate Pic%k by P?%. Let Z; C (Xa,, % )?dn) X picd. ()A(d12 X )A(dzl) be the closed
substack consisting of ((Lqj,si;) € Xa,;)1<i,j<2 such that

o Either two of {s;;}1<i j<2 are zero;

e Or s11 =0 if dy1 < dag;

e Or s90 =0 if dy; > dao;

e Or 510 =0 if dyg < doy;

e Or s91 =0 if dig > doy.

By the definition of Ny, we have a Cartesian diagram

]7 A~ A~ A~ A~
Nd —d> (Xdll X Xd22) X pd (Xd12 X Xd21) - Zi

§ J

— I3
Pdii—diz  pdin 5 pda 5 (Pdll X Pd22) X pa (Pd12 X Pd21)

Here A sends (Ky, -+ ,Kh, ) to (X =Ko @ K71 A = K| @K, Xy = Ky ® K1), and p sends
(Xs, X, X3) to (X, X5 ® X{l,/’l"{ ® X{l,Xz’). Note that p is an isomorphism. Therefore j4 is
an isomorphism. Since the geometric fibers of A are connected, and P41—%2 x pdin x pda g
geometrically connected, so is Ny.

The stack Ny is covered by four open substacks U;;, 4, j € {1,2} where U;; is the locus where
only ;; is allow to be zero. Each U;; is a scheme over k. In fact, for example, Uy; is an open
substack of (Xg,, X Xa,,) X pa (Xay, X Xa,,), and the latter is a scheme since the morphism
)?du — P41 s schematic.

(2) We first show that Ny is smooth when d > 2¢’ — 1 = 4g — 3. For this we only need to show
that U,; is smooth (see the proof of part (1) for the definition of U,;). By the definition of Njg,
;; is allowed to be zero only when d;; > d/2, which implies that d;; > 2g — 1. Therefore, we
need U;; to cover Ny only when d;; > 2g — 1; otherwise ¢;; is never zero and the rest of the U;:
still cover Ny. Therefore, we only need to prove the smoothness of U;; under the assumption
that d;; > d/2. Without loss of generality we argue for i = j = 1. Then di; > 2¢g — 1 implies
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that the Abel-Jacobi map AlJg,, : Xdu — P41 is smooth of relative dimension dy; — g + 1. We
have a Cartesian diagram

Ull _— Xdll

J P‘Im

Xd22 X Xd12 X Xd21 E— pin

where the bottom horizontal map is giVGH by (£227 5227£12, $12, £21, 521> — Elg X £21 ® £2_21.
Therefore Uy; is smooth over Xg4,, X Xg,, X X4,, with relative dimension d1; — g + 1, and Uy,
is itself smooth over k of dimension 2d — g + 1.

(3) The commutativity of the diagram is clear from the definition of j4. Finally we show
that fa, : Ng — Ay is proper. Note that A, is covered by open subschemes V' = )?d X pa X4 and
V= Xy Xpa )/fd whose preimages under far, are U11 UUszs and U2 UUs; respectively. Therefore
it suffices to show that fy : Uj; U Uz — V and fvr 1 Uig UUs — V' are both proper.

We argue for the properness of fi,. There are two cases: either dy; > das or di; < dao.

When di; > da2, by the last condition in the definition of Ny, @22 is never zero, hence
Ui1 UUss = Uyy. By part (2), the map fy becomes

(Xd11 X Xd22) X pd (Xd12 X Xd21) — Xd X pd Xd.
Therefore it suffices to show that the restriction of the addition map

o = adddn,dzzl)?dn ><Xd22 : Xdu X Xd22 — Xd

is proper. We may factor a as the composition of the closed embedding )A(du X Xdyy — Xqx Xy,
sending (Ell,Sll,D22) to (Ell(DQQ),Sll’DQQ) and the projection )?d X an — )?d; and the
properness of « follows.

The case di; < dao is argued in the same way. The properness of fy/ is also proved in the
similar way. This finishes the proof of the properness of fu,. O

3.3. Relation with orbital integrals. In this subsection we relate the derivative orbital inte-
gral J(7, hp,s) to the cohomology of fibers of fay,.

3.3.1. The local system L4. Recall that v : X’ — X is a geometrically connected étale double
cover with the nontrivial involution o € Gal(X’/X). Let L = (v.Q,)°=~!. This is a rank one
local system on X with L®2 = Q,. Since we have a canonical isomorphism Hy(X,Z/2Z) =
H,(Pic%, Z/27Z), each Pic’; carries a rank one local system L,, corresponding to L. By abuse of

notation, we also denote the pullback of L,, to )/(\'n by L,. Note that the pullback of L, to X,
via the Abel-Jacobi map X, — Picy is the descent of LB along the natural map X™ — X,,.
Using the map 74 (3.4), we define the following local system Ly on Ny:

Ld = ]Z(Ldu X @g X Ld12 X Qg)

3.3.2. Fix D € Xy(k). Let Ap C Ay be the fiber of Ay over D under the map § : Ay — )?d.
Then Ap classifies triples (Ox (D), a,b) in A4 with the condition that a — b is the tautological
section 1 € I'(X, Ox (D)). Such a triple is determined uniquely by the section a € I'(X, Ox (D)).
Therefore we get canonical isomorphisms (viewing the RHS as an affine spaces over k)

Ap = T(X,0x(D)). (3.6)
On the level of k-points, we have an injective map

invp : Ap(k) 2T(X,0x(D)) — PYF)-{1}
(Ox(D),a,a—1)<ra > (a—1)/a=1—a"".
Proposition 3.2. Let D € X4(k) and consider the test function hp defined in (3.2). Let
uePYF)—{1}.
(1) If w is not in the image of invp, then J(v,hp,s) = 0 for any v € A(F)\G(F)/A(F) with
inv(y) = u;
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(2) If u = invp(a) for some a € Ap(k) = I'(X,0x (D)), and u ¢ {0,1,00} (i.e., a ¢ {0,1}),
then
I(v(w),hp,5) = > q®2= D Tr (Froby, (R L), ) -
detq
(3) Assume d > 2¢g' —1=4g—3. If u =0 then it corresponds to a =1 € Ap(k); if u = 0o then
it corresponds to a =0 € Ap(k). In both cases we have

Y Inhps) =Y Pl Doty (Froba,(Rng*Li)E). (3.7)

inv(vy)=u dexy

Here the sum on the LHS is over the three irregular double cosets v € {1,ny,n_} if u=0,
and over v € {w,wny,wn_} if u = oo.

Proof. We first make some general construction. Let AcC GL2 be the diagonal torus and let
¥ € GLo(F) — (A(F) UwA(F)) with image v € G(F). Let @ : A — G,, be the simple root
a

d } — a/d. Let Z =2 G, C A be the center of GL,. We may rewrite J(v, hp,s) as an

orbital integral on A(A)-double cosets on GLy(A) (cf. (2.10), @.11), @.12))

Iy, hp,s) = L (8 150) (@) () [P n(u(t)) di dt. (3.8)

/A(Z(A))\(gxg)(A)
Here for D = Zw Ng T, ?LD = ®:jlnmm is an element in the global unramified Hecke algebra for
GL3, where Enw is the characteristic function of Mata(Oy )y, (det)=n, > cf-

Using the isomorphism Z(A)/HmQXl A(0,) = (AX/0*)? = Div(X)? given by taking the
divisors of the two diagonal entries, we may further write the RHS of as a sum over
divisors Ey, By, E}, E} € Div(X), up to simultaneous translation by Div(X). Suppose ¢t € A(A)
gives the pair (Ey, Ey) and ¢ € A(A) gives the pair (B}, E}), then the integrand hp(t'=151)
takes value 1 if and only if the rational map 7 : O% --+ O% given by the matrix ¥ fits into a
commutative diagram

ox---—---—---- + 0% (3.9)

Ox(—E1) ® Ox(~Es) —— Ox(—E})® Ox(—Ej)

Here the vertical maps are the natural inclusions, and ¢5 is an injective map of Ox-modules
such that det(y5) has divisor D. The integrand hp(=17t) is zero otherwise.

Let &Dﬁ C Div(X)* be the set of quadruples of divisors (Ey, Ea, Ef, E) such that ¥ fits into
a diagram and det(p5) has divisor D. Let Mp 5 = ‘YID’;/Div(X) where Div(X) acts by
simultaneous translation on the divisors Fy, Eq, E] and Fj.

We have |a(t)a(t')|® = ¢~ des(Br-E24E1-E3)s - Viewing 7 as a character on the idele class
group FP\AL/[1,¢ x| Os =2 Picx(k), we have n(a(t)) = n(E1)n(E2) = n(Er — E1)n(Es — EY).
Therefore

b= 3 g BB EyE - BB - B, (310)
(Ex,Ea,E} ES)ENp 5

(1) Since u = 0 and oo are in the image of invp, we may assume that u ¢ {0,1,00}. For
v € G(F) with invariant u, any lifting ¥ of v in GLy(F) does not lie in A or wA. Therefore
the previous discussion applies to 5. Suppose J(v,hp,s) # 0, then Np 5 # &. Take a point
(Ehr, E2, B, E)) € Mp 5, the map det(p5) gives an isomorphism Ox (—E] — Ej) = Ox(—E; —
Ey + D). Taking a = ¢51195,22 : Ox(—FE1 — E3) = Ox(—E] — Ej), then a can be viewed as a
section of Ox (D) satisfying 1 — a~! = inv(y). Therefore u = inv(y) = invp(a) is in the image
of invp.
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(2) When u ¢ {0, 1,00}, recall y(u) is the image of F(u) = { 1 qf } Let Ny, be the fiber
of Ny over a € Ap(k). Let Ny =[] c5, Na,a- We have a map

I/u:’ﬁpﬁ(u) — Na(k)
(E17E27 ivEé) — (OX(_E1)7OX(_E2)>OX(_E1)>OX(_EQ)790'7/(”))‘

We show that this map is bijective by constructing an inverse. For (Ki, Ko, K1, K5, i) €
Nga(k), we may assume K3 = Ox (since we mod out by the action of Picx in the end).
Let S = |div(a)| U |div(a — 1)| U |D| be a finite collection of places of X. Then each ¢;; is
an isomorphism over U = X — S. In particular, we get isomorphisms ¢1; : Oy = Ki|u,
©o1 1 Oy =2 K|y and oy o1 : Oy = Ka|y. Let B}, Ey and E, be the negative of the divisors of
the isomorphisms ¢11, @921 and g02_21 21, viewed as rational maps between line bundles on X. Set
E; = 0. Then we have K; = Ox(—E;) and K} = Ox(—E}) for i = 1,2. The map ¢ guarantees
that the quadruple (Ey = 0, Ey, E{, Ey) € Np 5(u). This gives a map No(k) = Np 5(u), which
is easily seen to be inverse to v,.
By the Lefschetz trace formula, we have

> d#D T (Froba, (Rfw,.«La)a))
deXy
- > q®12=Don(D11)n(Ds2)
(K1,K2,K K, 0)ENG (k)
where D;; is the divisor of ¢;;. Moreover, under the isomorphism v,,, the term ¢~ deg(Br—Ea+Ey—FEy)s
corresponds to ¢(?12=9)s where dy5 = deg(D12). Therefore Part (2) follows from the bijectivity

of v,, and (3.10).

(3) We treat the case u = 0 (i.e., a = 1), and the case u = oo is similar. Let 9N}, , be the
set of triples of effective divisors (D11, D12, Da22) such that Dy; + Das = D. Then we have a
bijection

mD,TH, L> mlD"”’Jr
(E\,Ey, B\, Ey) — (Ey\—E},E;— E},Ey — Ey).
Using this bijection, we may rewrite (3.10]) as

I(ny, hp,s) = > g8 P2)= DDy )n(Dis)

(D11717121722)6’31}37”+

_ s Z g2 deg(D12) (D) Z n(D11)
D12>0 Di1+D22=D
D11,D2220
= g L(-25,m) 3 n(Du) (3.11)
0<D;:<D

Similarly, let ‘)?’D7m be the set of triples of effective divisors (D11, D21, Da2) such that D11+ Dag =
D. Then we have a bijection Mp,,_ < M}, and an identity

J(n_,hp,s) = > q(4=2 48D (Dyy )(Da2)
(D11,D21,D22)ENY,
= ¢®L(2s,n) >, n(Dan). (3.12)
0<D22<D

We now introduce a subset mg ny

C ‘ﬁ’DM consisting of those (D11, D12, D2o) such that
deg(D12) < d/2; similarly we introduce ‘ﬂg n. C ‘R’Dﬂt consisting of those (D11, D21, Da2)
such that deg(Ds1) < d/2. Then the same argument as Part (2) gives a bijection

Vi :sngm+ 190, = Na(k) = ] Naa(k).

daexy
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Here the degree constraints deg(D12) < d/2 or deg(D21) < d/2 come from the last condition in
the definition of Ny in §3.2.2]
Using the Lefschetz trace formula, we get

> 420" T (Frob,, B (Ma x F. L))

deXy
_ Z q(2deg(Dlz)_d)sT](Dll)n(DIQ)
(D11,D12,D22)€NG,
+ Z q(d_2deg(DZl))sn(Dm)n(DQZ)
(D11,D217D22)€mg,n,
— g Z g2 des(Di2)s () Z n(D11) (3.13)
D12>0,deg(D12)<d/2 0<Dn<D
Jrqcls Z q72deg(D21)sn(D21) Z 77(D22)- (3.14)
D3120,deg(D21)<d/2 0sD22<D

The only difference between the term in (3.13)) and the RHS of (3.11)) is that we have restricted
the range of the summation to effective divisors D15 satisfying deg(D12) < d/2. However, since
7 is a nontrivial idele class character, the Dirichlet L-function L(s,7) =3 5504~ deg(E)sp(E) is
a polynomial in ¢~* of degree 29 — 2 < d/2. Therefore(3.13) is the same as (3.11)). Similarly,
(3-14) is the same as (3.12). We conclude that

> q®hm D2 Ty (Frob,, Hi (Ng.e @k K, La)) = J(ny, hp,s) + I(n_, hp, s). (3.15)

dey

Finally, observe that
J(1,hp,s) =0 (3.16)

because 7 restricts nontrivially to the centralizer of v = 1. Putting together (3.15) and the
vanishing (3.16)), we get (3.7). O
Corollary 3.3. For D € Xy4(k) and u € PL(F) — {1}, we have

(108 )" Y ges, (212 — d)" T (Froba, (Rfx.La),) if u=invp(a),a € Ap(k);

0 otherwise.

J,(u,hp) = {

4. ANALYTIC SPECTRAL DECOMPOSITION

In this section we express the spectral side of the relative trace formula in in terms of
automorphic L-functions.

4.1. The Eisenstein ideal. Consider the Hecke algebra /" = ®,¢|x|#;. We also consider
the Hecke algebra 7, for the diagonal torus A = G, of G. Then H#) = ®R,¢|x|H# 4, With
Hrp = Q[FE)/OX] = Qlts, t; '], and t, stands for the characteristic function of w; 10}, where
w, 1S a uniformizer of F,.

Recall we have a basis {hp} for 5 indexed by effective divisors D on X. For fixed z € | X|,
hy € 4, and 7, = Q[h,] is a polynomial algebra with generator h,.

4.1.1. The Satake transform. To avoid introducing ,/q, we normalize the Satake transform in
the following way
Saty : I — Hu,
hey — tz+ qgct;1

where ¢, = #k,. Consider the involution ¢, on J#j , sending ¢, to ¢.t; 1. Then Sat, identifies
H;, with the subring of ¢, -invariants of 4 ;. This normalization of the Satake transform is
designed to make it compatible with constant term operators, see Lemma [7.8] Let

Sat : S — Hy
be the tensor product of all Sat,.



22 ZHIWEI YUN AND WEI ZHANG

4.1.2.  'We have natural homomorphisms between abelian groups:

A% /0* —=— Div(X)

J |

FX\AX /O* —=— Picx (k).

~

In particular, the top row above gives a canonical isomorphism 24 = Q[A*/0*] = Q[Div(X)],
the group algebra of Div(X).
Define an involution ¢pi. on Q[Picx (k)] by

wic(lz) = ¢ 1,1
Here 1, € Q[Picx (k)] is the characteristic function of the point £ € Picx (k). Since the action

of ®uty on 7 = Q[Div(X)] is compatible with the involution tpi. on Q[Picx (k)] under the
projection Q[Div(X)] — Q[Picx (k)], we see that the image of the composition

Sat

H — Ay = QDiv(X)] — Q[Picx (k)]
lies in the tpjc-invariants. Therefore the above composition gives a ring homomorphism
agis : H —> Q[PiCX(k‘)]LPiC =: His- (41)

Definition 4.1. We define the Fisenstein ideal Zgis C F to be the kernel of the ring homo-
morphism ag;s in (4.1)).

The ideal Zg;s is the analog of the Eisenstein ideal of Mazur in the function field setting.
Taking the spectra we get a morphism of affine schemes

Spec(agis) : Zmis := Spec Q[Picx (k)] — Spec JZ.

Lemma 4.2. (1) For any x € | X|, under the ring homomorphism agis, Q[Picx (k)]*Fic is finitely
generated as an ,-module.

(2) The map ags is surjective, hence Spec(ag;s) is a closed embedding. E|

Proof. (1) We have an exact sequence 0 — Jacy (k) — Picx (k) — Z — 0 with Jacx (k) finite.
Let 2 € |X]|, then the map Z — Picx (k) sending n — Ox (nz) has finite cokernel since Jacx (k)
is finite. Therefore Q[Picx (k)] is finitely generated as a 7 , = Ql[t,,t; ']-module. On the other
hand, via Sat,, 74 , is a finitely generated #;-module (in fact a free module of rank two over
). Therefore Q[Picx (k)] is a finitely generated module over the noetherian ring 5, hence
so is its submodule Q[Picx (k)]*Fie.

(2) For proving surjectivity we may base change the situation to Q,. Let 3gis = Spec Q,[Picx (k)]*Pi,
and we still use Spec(agis) to denote 3gis — Spec %%Z. We first check that Spec(agis) is injec-
tive on Q,-points. Identifying Picx (k) with the abelianized Weil group W (X)2P via class field
theory, the set 3pis(Q,) are in natural bijection with Galois characters x : W(X) — @,X up
to the equivalence relation x ~ x~1(—1) (where (—1) means Tate twist). Suppose x1 and xo
are two such characters that pullback to the same homomorphism % — Q,[Picx (k)] <5 Q,,
then xi(amis(hs)) = x1(Froby) + gzx1(Froby ') = x2(Frob,) + gux2(Frob, ') = Xa(apis(ha))
for all 2. Consider the two-dimensional representation p; = x; @ x; '(—1) of W(X). Then
Tr(p1(Frob,)) = Tr(p2(Frob,)) for all x. By Chebotarev density, this implies that p; and po
are isomorphic to each other (since they are already semisimple). Therefore either y; = x2 or
X1 = Xgl(—l). In any case x1 and y define the same @@-point of 3gis. We are done.

Next, we show that Spec(agis) is injective on tangent spaces at @g—points. Let EEiS =
Spec Q[Picx (k)]. Then 3 1S a disjoint union of components indexed by characters g :
Jacx (k) — @[X , and each component is a torsor under G,,. The scheme 3gis is the quotient
EEis /| {tpic). For a character y : Picx (k) — @@X with restriction xqo to Jacx(k), we may
identify its component EXO with G,, in such a way that s € G,, corresponds to the character

2This result is not used in an essential way in the rest of paper.
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X - 898 : Picx (k) — @Z,E > x(£)s%8 £, The map Spec(ag;s) pulled back to 3)(0 then gives a
morphism

b: G = 3y, — 3 — Spec g, = AIX
given by the formula

G 35— (X(ta)s™ + @x(t;1)s™™) ¢ x| (4.2)

where d, = [k, : k]. The derivative % at s = 1 is then the vector (d,(x(t;) — G Xtz 1)) welx|-
This is identically zero only when y(¢,) = :i:qglc/2 for all 2, hence if and only if x2 = ¢4°¢ = Q,(—1).
Therefore when x? # Q,(—1), we have proved that the tangent map of b at s = 1 is nonzero,
hence a fortiori the tangent map of Spec(ag;s) at the image of  is nonzero. If x2 = Q,(—1), x
is a fixed point under ¢pj.. The component EXO is then stable under ¢pj. which acts by s +— s~ 1,
and its image 3y, C 3gis is a component isomorphic to A! with affine coordinate z = s + s71.
Therefore we may factor b into two steps

C oz=sts Tl a1 o ~
b:3Xo = Gm B AlZBXOgSpeC%Z:A‘Xl

dedz _

where c is the restriction of Spec(agis) to Zy,. By chain rule we have §¢%% = %. Using this we

see that the derivative % at z = s+ s~ ! is the vector

d —d
gle _ g—da
<dxX(tx) 1 >
§— S5 z€|X|

(using that x(t;) = gzx(t;!)). Evaluating at s = 1 we get the vector (x(t;)d2)e x|, which is
nonzero. We have checked that the tangent map of Spec(ag;s) is also injective at the image of
those points y € 3mis(Qy) such that x> = Qg(—1). Therefore the tangent map of Spec(ag;s) is
injective at all Q,-points. Combining the two injectivity results we conclude that Spec(ag;s) is
a closed immersion and hence ag;s is surjective. O

4.2. Spectral decomposition of the kernel function. Recall that we have defined the au-
tomorphic kernel function by . For a cuspidal automorphic representation 7 (in the usual
sense, i.e., an irreducible sub-representation of the C-values automorphic functions), we define
the m-component of the kernel function as (cf. [13] §7.1(1)])

Kpn(z,y) =Y w(f)o(x)d(y), (4.3)
o

where the sum runs over an orthonormal basis {¢} of m. The cuspidal kernel function is defined
as

Kfeusp = O Kpm, (4.4)

where the sum runs over all cuspidal automorphic representations m of G. Note that this is a
finite sum.
Similarly, we define the special (residual) kernel function (cf. [13, §7.4])

Kysp(@,y) =Y 7(f)x(@)x(®),

X

where the sum runs over all one-dimensional automorphic representations m = x, indeed solely
characters of order two:

x: G(A) —— FX\AX/(AX)? —— {£1}.
Theorem 4.3. Let f € Igis be in the Eisenstein ideal Tris C €. Then we have
Ky =Ky cusp + Ky sp-

Proof. To show this, we need to recall the Eisenstein series (cf. [13) §8.4]). We fix an o € A*
with valuation one and we then have a direct product

AX = Al x oZ.
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For a character y : F*\A! — C*, we extend it as a character of F*\A*, by demanding y(a) = 1.
Moreover, we define a character for any u € C
Xu: A — C*
a+——x(a)|al"

We also define

o B(AZ)%AX g X B ——C
[a d] ——a/d’ b——— x(a/d)

For u € C, the (induced) representation p, , of G(A) = PGL2(A) is defined to be the right
translation on the space V., of smooth functions

¢:GA) —C
such that
ut L
¢ (bg) = x (b) [0s()[""2é(g), be B(A), geGA).
Note that we have py . = py 4 2= . By restriction to K, the space Vy , is canonically identified
with the space of smooth functions

Vi: = {gb : K — C, smooth ‘ o (bk) =x (D) p(k), be KﬁB(A)}.
This space is endowed with a natural inner product

(6,6) = /K o(k) P (k) dk. (4.5)

Let ¢ € V,, we denote by ¢(g,u, x) the corresponding function in V, ,, i.e.,

1
ut3

6lg.u.) = x (8) [o5(0)] " 9(k)

if we write g = bk where b € B(A),k € K.
For ¢ € V,, the Eisenstein series is defined as (the analytic continuation of)

E(g,¢u,x)= Y. o(vg,u,%)-

YEB(I\G(F)

Let {¢;}; be an orthonormal basis of the Hermitian space V,. We define

27

1 logiq -
Kf,EisQ((m?y) = o8 Z/O (px,u(f)¢l7¢j)E(x7¢l7u7X)E(yﬂ¢]au7 X) dua (46)
0,J

211
where the inner product is given by (4.5) via the identification V, , ~ V... We set (cf., [13] §8.4])

Ky gis :== Z Ky Eis,x (4.7)
X

where the sum runs over all characters y of F'*\A!. Since our test function f is in the spherical
Hecke algebra ¢, for Ky gisy to be nonzero, the character x is necessarily unramified every-
where. Therefore the sum over x is in fact finite.

By [13} §7.1(4)], we have a spectral decomposition of the automorphic kernel function Ky

defined by (2.3
Kr =Ky cusp + Kpsp + Ky mis- (4.8)
Therefore it remains to show that Ky gis vanishes if f lies in the Eisenstein ideal Zg;s.

We may assume that x is unramified. Then we have

loggq
27

K, o () = /O (£, 8) B2, 6, VE(g: 6,1, %) du, (4.9)

where ¢ = 15 € V, (we are taking the Haar measure on G(A) such that vol(K) = 1).
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Recall that the Satake transform Sat has the property that, for all unramified characters
and all u € C, we have

tr px,u(f) = Xu+1/2(Sat(f))7
where we extend x,41/2 to a homomorphism 7 ¢ ~ C[Div(X)] — C. Since x, : A(A)/(A(A)N
K) ~ Div(X) — C* factors through Picx (k), we have

tr oy u(f) = Xug1/2(agis(f)),
Then we may rewrite (4.9) as

log q
2mi

2mi
Tog q -
Kf,Eis,x(-Tyy) = /0 Xu+1/2(aEiS(f))E(‘r7¢7u7X)E(y7¢7u7X) du.

In particular, if f lies in the Eisenstein ideal, then ag;s(f) = 0, and hence the integrand vanishes.
This completes the proof. ([

4.3. The cuspidal kernel. Let 7 be a cuspidal automorphic representation of G(A), endowed
with the natural Hermitian form given by the Petersson inner product:

(6, & )pes = /[G]¢<g>¢'(g>dg, 6,8 €. (4.10)

We abbreviate the notation to (¢, ¢’). For a character x : F*\A* — C*, the (A, x)—period
integral for ¢ € 7 is defined as

P (b,5) = /[A] ()X (W)|h|* dh. (4.11)

We simply write (¢, s) if x = 1 is trivial. This is absolutely convergent for all s € C.
The spherical character (relative to (A x A,1 x 1)) associated to 7 is a distribution on G(A)
defined by

L(f,s) = ; cauti f;;f” ()] (4.12)

where the sum runs over an orthogonal basis {¢} of 7. This is a finite sum, and the result is
independent of the choice of the basis.

Lemma 4.4. Let f be a function in the Eisenstein ideal Tgis C €. Then we have

J(fvs) = Z "]]Tr(f’s)a

where the sum runs over all (everywhere unramified) cuspidal automorphic representations w of
G(A).

Proof. For % = cusp, sp or m, we define J.(f, s) by replacing K; by Ky , in both and .
To make sense of this, we need to show the analogous statements to Proposition [2.1 When
*x = sp, we note that, for any character y : A* — C*, one of x and x7n must be nontrivial on
A'. Tt follows that for any (n,ng) € Z? we have

/ X)X (h) [l ha|*n(ha) iy dhs = 0.
[A]ny X[A]n,

Consequently we have
Jsp(f,8) =0.
When x = 7, we need to show that, for any ¢ € 7, the following integral vanishes if [n| > 0
o(h)x(h)|h| dh.
[Aln
But this follows from the fact that ¢ is cuspidal, particularly ¢(h) = 0 if h € [A4], and |n| > 0.

This also shows that this definition of J.(f,s) coincides with (4.12)). The case * = cusp follows
from the case for x = 7 and the finite sum decomposition (4.4). We then have

Jeusp(f28) =D Jx(f.9).
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The proof is complete, noting that, by Theorem we have

J(f,8) = Jeusp (£, 8) + Jsp (f 5)-
(]

Proposition 4.5. Let m be a cuspidal automorphic representation of G(A), unramified every-
where. Let A\ : 7 — C be the homomorphism associated to w. Then we have

To(f,) = 5 lox| Z (w54 1/200(F).

Proof. Write m = ®,¢|x|7: and let ¢ be a nonzero vector in the one-dimensional space K.

Since f € 4 is bi-K-invariant, the sum in (4.12) is reduced to one term

(6, 5)P(.5)
Il = =0 e

where we may choose any measure on G(A), and then define the Petersson inner product using
the same measure. We will choose the Tamagawa measure on G(A) in this proof. To decompose
the Tamagawa measure into local measures, we fix a nontrivial additive character associated to
a nonzero meromorphic differential form ¢ on X:

Ax(f) vol(K), (4.13)

v A——C* .

We note that the character 1 is defined by ¥ (a) = ¢, (Zzax\ Try, sk, (Res (ca))) where ¥,
is a fixed nontrivial character F, — C*.

We decompose ¢ = Hze\ x| 1, where v, is a character of F,. This gives us a self-dual
measure dt = dty, on Fj, a measure d*t = (w(l)% on F), and the product measure on
A*. We then choose the Haar measure dg, = (,(1)| det(g.)| 2 [1.<ij<2dgij on GLa(F,) where
9z = (9i5) € GLa(Fy). The measure on G(Fy) is then the quotient measure, and the Tamagawa
measure on G(A) decomposes dg = [[,¢ x| d9.- Note that under such a choice of measures, we
have

vol(0*) = vol(0Q) = |wx|"/?, (4.14)

vol(K) = Cr(2) ™ vol(0)* = ¢ (2)~ fux [*2. (4.15)

To compute the period integrals, we use the Whittaker models with respect to the character

1. Denote the Whittaker model of 7w, by Wy . Write the i)-Whittaker coefficient Wy as a
product ®,¢|x| Wz, where W, € Wy, .

Let L(m, X Ty, ), resp. L(w x 7, s) denote the local, resp. global Rankin—Selberg L-functions.
By [30, Prop. 3.1] there are invariant inner products 6% on the Whittaker models Wy,

R L

such that
Ress—1 L(m X 7, s

vol(F*\Al)

)H%Wmm.

€| X|

<¢7 ¢>Pet =2

Note that
Res,—1 L(m x 7, 8) = L(m,Ad, 1) Ress—y (r(s) = L(m, Ad, 1) vol(F*\A').

Hence we have

<¢a ¢>Pet = 2L(7T7Ad’ 1) H ai(Wxa Wx)
z€|X|

Moreover, when 1), is unramified, we have 0% (W,,, W) = vol(K,) = (,(2)~! (cf. loc. cit.).
In [30, Prop. 3.3] there are linear functionals A% on the Whittaker models Wy,

1 a
bW — 11,7 s gx
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such that
Py (¢,8) = L(r @ x,5+1/2) H /\ Wa, Xz, 8)-
€| X
While in loc. cit. we only treated the case s = 0, the same argument goes through. Moreover,
when 1), and y, are unramified, we have A% = 1.
We now have
32((;575)3277((;575) . 1 L(’]TF/ S+1/2
W = |wx]| m H oo Wa, Nz 8), (4.16)

where the constant |wx|~! is caused by the choice of measures (cf. (4.14))), and the local term
at a place x is

z€|X]|

0 (W, W) '
Note that the local term &, 4, is now independent of the choice of the nonzero vector W, in the
one-dimensional space Wd{ff We thus simply write it as

Eopy Way ey 8) 1= (4.17)

s (N, 8) = Sz,wz( w3 ey 8)-
When v, is unramified, we have

o pe My 8) = C2(2).
We want to know how & ., depends on ¢,. Let ¢, € F, and denote by 5, the twist
wa:7cx (t> = ww<cwt)

Lemma 4.6. For any unramified character x, of F}, we have

Eopner (Xar 8) = XM (ea) e 7260 4, (Xas 9).

Proof. The self-dual measure on F, changes according to the following rule
dty,.., = ||/ dty,.

Then the multiplicative measure on F;* changes by the same multiple. Now we compare &; 4,
and &y, . using the same measure on F,;‘ to define the integrals.
There is a natural isomorphism between the Whittaker models Wy, ~ W,,__ , preserving the

natural inner product #%. We write )\sz to indicate the dependence on 1,. Then we have for
any character x, : F, — C*:

Ny (W Xars) = XM (ea)leal TN, (Wi, Xas 9)-
This completes the proof of Lemma O

Let 1, have conductor ¢;'O,. Then the idele class of (c;),ex| in Picx (k) is the class of
div(c) and hence the class of wy. Hence we have

I fesl = x| = g~ 2sex = =202,
z€|X|

This shows that the product in (4.16|) is equal to

IT &welnes) =nlwx) [ G@le| >+

z€e|X| z€|X|
= n(wx)lwx|"? (r(2) ¢*97 10
We claim that
nwx) = 1.

In fact, this follows from

n(wX> = H 6(7’]:”, 1/271/}30) = 6(777 1/2) =1,
z€|X|

where €(7, s) is in the functional equation (of the complete L-function) L(n, s) = €(n, s)L(n, 1—s).
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We thus have

W = % |(A)X|71/2<F(2)$(7TF’78+ 1/2)

<¢7 ¢> Pet
Together with (4.13) and (4.15)), the proof of Proposition is complete. |

4.4. Change of coefficients. Let E be algebraic closed field containing Q. We consider the
space of E-valued automorphic functions Ag = C°(G(F)\G(A)/K, E), and its subspace Ag o
of cuspidal automorphic functions. For an irreducible s#z-module 7 in Agy, let Ay : S — E
be the associated homomorphism. The L-function .Z(7p/, s + 1/2) is a well-defined element in
Elq*,¢°]. Recall that f € 2, the distribution J(f, s) defines an element in Q[¢~*, ¢°] (cf. §2).

Theorem 4.7. Let f be a function in the Fisenstein ideal Trys C €. Then we have an equality
in Elqg—°,¢%):

36,9 = 5 lox] 32 Ll +1/2) M),

where the sum runs over all irreducible Fz-module 7 in the E-vector space Ag .

Proof. Tt suffices to show this when E = Q, and we fix an embedding Q < C. For f € Zg,
then Theorem on the kernel functions remains valid if we understand the sum in over
m as Hp-submodule. In fact, to prove Theorem we are allowed to extend E = Q to C.
Since a cuspidal ¢ has compact support, the integral 22, (¢, s) defined by for x € {1,n}
reduces to a finite sum. In particular, it defines an element in E[qg~*%, ¢°]. Therefore the equalities
in Lemma and Proposition hold, when both sides are viewed as elements in E[¢g™%, ¢°],
and A\, as an E = Q-valued homomorphism. This completes the proof. O

Part 2. The geometric side
5. MODULI SPACES OF SHTUKAS

The notion of rank n Shtukas (or F-sheaves) with one upper and one lower modifications was
introduced by Drinfeld [6]. It was generalized to an arbitrary reductive group G and arbitrary
number and type of modifications by Varshavsky [21]. In this section, we will review the definition
of rank n Shtukas, and then specialize to the case of G = PGLy and the case of T' a nonsplit
torus. Then we define Heegner—Drinfeld cycles to set up notation for the geometric side of the
main theorem.

5.1. The moduli of rank n Shtukas.

5.1.1. We fix the following data.
e r > () is an integer;

o 1= (p1,..., tr) is an ordered sequence of dominant coweights for GL,,, where each p; is either
equal to py = (1,0,...,0) or equal to p— = (0,...,0,—1).

To such a tuple p we assign an r-tuple of signs
sgn(p) = (sgn(p1), -~ ,sgnpr)) € {£1}"
where sgn(pus) = £1.

5.1.2. Parity condition. At certain places we will impose the following conditions on the data
(r, ) above:

e 1 is even;

e Exactly half of y; are py, and the other half are u_. Equivalently >.!_,; sgn(u;) = 0.
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5.1.3. The Hecke stack. We denote by Bun,, the moduli stack of rank n vector bundles on X.
By definition, for any k-scheme .S, Bun, (.S) is the groupoid of vector bundles over X x S of rank
n. It is well-known that Bun,, is a smooth algebraic stack over k of dimension n?(g — 1).

Definition 5.1. Let p be as in §5.1.1} The Hecke stack Hk% is the stack whose S-points Hk: (.9)
is the groupoid of the following data:

(1) A sequence of vector bundles (&, &1, -+, &) of rank n on X x S;
(2) Morphisms z; : S — X fori=1,---,r, with graphs T',, C X x S;
(3) Isomorphisms of vector bundles

fir&icilxxs-r,, = Eilxxs-r,,, 1=1,2,..,7

such that
o If y; = py, then f; extends to an injective map &;_1 — &; whose cokernel is an invertible
sheaf on the graph I'y;;

o If y; = p_, then f[l extends to an injective map & — &£;_1 whose cokernel is an invertible
sheaf on the graph I'y,.

For each ¢ = 0,--- ,r, we have a map
p; : Hk) — Bun,,
sending (&, -+ , &, 1, Ty, f1,00+ , fr) to E. We also have a map
px : Hkb — X7
recording the points (z1,...,z,) € X".

Remark 5.2. The morphism (pg, px) : Hkl — Bun,, x X" is representable, proper and smooth
of relative dimension r(n — 1). Its fibers are iterated P"~!-bundles. In particular, Hk! is a
smooth algebraic stack over k because Bun,, is.

5.1.4. The moduli stack of rank n Shtukas.

Definition 5.3. Let p satisfy the conditions in §5.1.2] The moduli stack Sht!, of GL,,-Shtukas
of type p is the fiber product

Sht Hk” (5.1)

J{ (Po,pr)l
(id,Fr)

Bun, —— Bun,, x Bun,,

By definition, we have a morphism
7k Sht# — Hk* 255 X,

5.1.5. Let S be a scheme over k. For a vector bundle £ on X x S, we denote
T& = (idx x Frg)*€.

An object in the groupoid Shtf(S) is called a Shtuka of type p over S. Concretely, a Shtuka of
type p over S is the following data:
(1) (E0,81,- &y, yxps f1,0 0, fr) s in Deﬁnition
(2) An isomorphism ¢ : &, ~ T&.
The basic geometric properties of Sht? are summarized in the following theorem.
Theorem 5.4 (Drinfeld [6] for » = 2 ; Varshavsky [22] Prop 2.16, Thm 2.20] in general).
(1) The stack Sht! is a Deligne-Mumford stack locally of finite type.

(2) The morphism w# : Shth — X" is separated and smooth of relative dimension r(n —1).
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We briefly comment on the proof of the separatedness of 7. Pick a place z € | X|, and consider
the restriction of 7 to (X — {z})". By [22, Prop 2.16(a)], Sht/;|(x_{z})~ is an increasing union
of open substacks X; C Xo C --- where each X; = [V;/G,] is the quotient of a quasi-projective
scheme V; over k by a finite discrete group G;. These V; are obtained as moduli of Shtukas
with level structures at z and then truncated using stability conditions. Therefore each map
X; — (X —{z})" is separated, hence so is /| (x _{})r- Since X" is covered by open subschemes
of the form (X — {z})", the map 7¥ is separated.

5.1.6. The Picard stack Picx of line bundles on X acts on Bun,, and on Hk! by tensoring on
the vector bundles.

Similarly, the groupoid Picx (k) of line bundles over X acts on Sht!. For a line bundle £ over
X and (&; x5 fi;0) € Shth(S), we define £+ (&;; x5 fi;1) to be (& ®oy L2 fi @ idz; ) where
¢/ is the isomorphism

& ®o, L1292 ((idx x Frg)*&) ®o, L 2 (idx x Frg)* (& ®o, L) = (& ®o, L).

5.2. Moduli of Shtukas for G = PGLsy. Now we move on to G-Shtukas where G = PGL,.
Let Bung be the moduli stack of G-torsors over X, then Bung = Buny/ Picx.

For each p as in we define
HK, := Hk/ / Picy .
For p satisfying §5.1.2] we define
Shtf, := Sht} / Picx (k).
The actions of Picx and Picx (k) are those introduced in §5.1.6f The maps p; : HkY — Buns
are Picx-equivariant, and induce maps

p; : Hkl, — Bung, 0<i<r. (5.2)

Lemma 5.5. For different choices p and p' as in §5.1.1, there are canonical isomorphisms
Hky = Hk and HKY, = HKY, . Moreover, these isomorphisms respect the maps p; in (5.2)).

Proof. For p% := (pu4,--- , pi4), we denote the corresponding Hecke stack by Hkj. The S-points
of Hk;, classify a sequence of rank two vector bundles on X x S together with embeddings

S lhe 2 Ine

such that the cokernel of f; is an invertible sheaf supported on the graph of a morphism z; :
S—X.
We construct a morphism
¢, HKY —s HK}.
Consider a point (&; x;; fi) € Hkh(S). For i = 1,--- ,r, we define a divisor on X x S
Dl' =

> o T,
1<j<i,pj=p—

Then we define

& = &i(D;).
If w; = py, then D;_; = D;, the map f; induces an embedding f/ : &_; = &-1(D;—1) —
Ei(Di—1) =& I py = p—, then D; = D;_q1 + Ty, and the map f; : & — &;_1 induces an
embedding &1 — &;(T';,), and hence an embedding f! : &/_; = &_1(Di—1) = &(Di—1+4T,,) =
&. The map ¢, sends (&;;z;; fi) to (&5 zi; ).

We also have a morphism
Y, :Hky — Hkh
(Ehwa fi) — (El(=Di)iai fi).

It is easy to check that ¢, and %, are inverse to each other. This way we get a canonical
isomorphism Hk = Hkj, which is clearly Picx-equivariant. Therefore all Hk{, are also canoni-
cally isomorphic to each other. In the construction of ¢,, the vector bundles &; only change by
tensoring with line bundles, therefore the image of & in Bung remain unchanged. This shows
that the canonical isomorphisms between the Hk?, respect the maps p; in . O
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Lemma 5.6. There is a canonical Cartesian diagram

S HKY, (5.3)

l l(pﬂ \Dr)
(id,Fr)

Bung ————— Bung x Bung

In particular, for different choices of p satisfying the conditions in the stacks Sht, are
canonically isomorphic to each other.

Proof. This follows from the Cartesian diagram (5.1]) divided termwisely by the Cartesian dia-
gram

Picy (k) —— Picy

| o
(id,Fr)

Picx ———  Picx x Picx

By the above lemmas, we may unambiguously use the notation
Shty;  Hkg (5.4)

for Shty, and Hk}, with any choice of . If r is fixed from the context, we may also drop r from
the notation and write simply Shtg. The morphism 74 : Shtf — X" is invariant under the
action of Picx (k) and induces a morphism
g 1 Shtg, — X7,
Theorem has the following immediate consequence.
Corollary 5.7. (1) The stack Shtg, is a Deligne—Mumford stack locally of finite type.

(2) The morphism w¢ : Shtg, — X7 is separated and smooth of relative dimension r.

5.3. Hecke correspondences. We define the rational Chow group of proper cycles Ch, ;(Sht¢;)g
as in Asin we also have a Q-algebra .Chg, (Shtg, x Sht;)g that acts on Ch, ;(Shtg;)q.
The goal of this subsection is to define a ring homomorphism from the unramified Hecke algebra
H = C.(K\G(A)/K,Q) to .Chy,(Shtg; x Shtg)g.

5.3.1. The stack Shtg(hp). Recall from that we have a basis hp of 7 indexed by effective
divisors D on X. For each effective divisor D =} clx| M We shall define a self-correspondence

Shte:(hp) of Shtg over X

/Sh teww\
b 7
\Xr -

For this, we first fix a p as in §5.1.2 We introduce a self-correspondence Sht (hp) of Sht}, whose

S-points is the groupoid classifying the data

(1) Two objects (E;;as; fise) and (E;x4; fl5¢') of Shth(S) with the same collection of points
L1, 3Ty in X(S>,

(2) For each i = 0,---,r, an embedding of coherent sheaves ¢; : & — &/ such that det(¢;) :
det & — det & has divisor D x S C X x S.

Sht?, Sht?,
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(3) The following diagram is commutative

f1 f2 fr

E-=2&-=5 =L 6—57& (5.5)
l(ﬁg l(ﬁl l(ﬁr l‘r(bo
5{)7@+5{7§+-~-7& »5;%76{)

There is a natural action of Picx (k) on Shth(hp) by tensoring on each &; and &. We define
Shtg(hD) = Shtg(hp)/PICX(k‘>

Using Lemma it is easy to check that Sht(hp) is canonically independent of the choice of
p. The two maps P, 7 : Shtl(hp) — Shtl, send the data above to the image of (&;xy; fi; 1)
and (&;x;; f!;¢) in Sht¢; respectively.
Lemma 5.8. The maps p, P as well as (p, 7) : Sht?y(hp) — Shty, x Shtl, are representable
and proper.
Proof. Once the bottom row of the diagram (5.5)) is fixed, the choices of the vertical maps ¢;
fori=1,---,r form a closed subscheme of the product of Quot schemes []_, Quotd(é‘i’ ), where
d = deg D, which is proper. Therefore ? is representable and proper. Same argument applied
to the dual of the diagram (5.5)) proves that v is proper.

The representability of (p 7?) is obvious from the definition, since its fibers are closed sub-
schemes of [];_, Hom(&;, &]). Since Shtg, is separated by Corollary and % is proper, (?, 7)
is also proper. O

Lemma 5.9. The geometric fibers of the map Shtg(hp) — X" have dimension r.

The proof of this lemma will be postponed to §6.4.4] because the argument will involve some
auxiliary moduli spaces that we will introduce in
Granting Lemma we have dimShtg(hp) = 2r. By Lemma it makes sense to
push forward the fundamental cycle of Shtl(hp) along the proper map (%, 7). Therefore
(0, 7)«[Sht% (hp)] defines an element in .Chy,(Shtf: x Shtf:)g (because ‘p is also proper). We
define the Q-linear map
H:# — Chy,(Shtg x Shtg)g (5.6)
hp +— (P x P)u[Shtl(hp)], for all effective divisors D (5.7)
Proposition 5.10. The linear map H in (5.6) is a ring homomorphism.
Proof. Let D, D’ be two effective divisors, and we would like to show the equality
H(hphp) = H(hp) * H(hp') € «Cha, (Sht?, x Sht?)q. (5.8)
Let U = X — |D| — |D’|. Since hphps is a linear combination of hp for effective divisors
E < D+ D’ such that D + D’ — E has even coefficients, the cycle H(hphp/) is supported on
Ur<D+D",D+D'—E evenShte(hg) = Shtg(hpipr). The cycle H(hp) * H(hps) is supported on
the image of the projection
prys : Shtfs(hp) X5 s, 5 Shtgs (hupr) — Shtgy x Shel,

which is easily seen to be contained in Shtg(hpip/). We see that both sides of (5.8)) are
supported on Z := Sht¢(hp4pr).
By Lemma [5.9| applied to Z = Sht;(hp4pr), the dimension of Z — Z|yr is strictly less than
2r. Therefore, the restriction map induces an isomorphism
Chy,(Z)g — Cha(Z|ur)g (5.9)

Restricting the definition of H to U", we get a linear map Hy : 5 — .Cha,(Shtg
Shtf | )g. For any effective divisor E supported on |D| U |D’|, the two projections p, 7 :
Sht (hg)|ur — Shtg |y are finite étale. The equality

HU(hDhD/) = HU(hD) * HU(hD/) € ChQT(Z U'r)Q (510)

is well-known. By (5.9), this implies the equality (5.8) where both sides are interpreted as
elements in Chy,(Z)g, and a fortiori as elements in .Cha, (Shts x Shtg)g. O

Ur X
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Remark 5.11. Let g = (95) € G(A), and let f = 1g,x € H be the characteristic function
of the double coset KgK in G(A). Traditionally, one defines a self-correspondence I'(g) of
Shtg|(x—g) over (X —5)", Where S'is the finite set of places where g, ¢ K, (see [16, Construction
2. 20]). The two projections 9.7 I'(g) — Shtg|(x—s)- are finite étale. The disadvantage of
this definition is that we need to remove the bad points S which depend on f, so one is forced to
work only with the generic fiber of Sht¢; over X” if one wants to consider the actions of all Hecke
functions. Our definition of H(f) for any f € % gives a correspondence for the whole Shtg,. It
is easy to check that for f = 1k 4k, our cycle H(f)|x—g)-, which is a linear combination of the
cycles Shtg; (hp)|(x—g)- for divisors D supported on S, is the same cycle as I'(g). Therefore our
definition of the Hecke algebra action extends the traditional one.

5.3.2. A variant. Later we will consider the stack Shtg; := Shtg, x x~ X'" defined using the double
cover X' — X. Let Shtg(hp) = Shtg(hD) x xr X'". Then we have natural maps
P, 7+ Sht¢s(hp) — Shtf;

The analogs of Lemma [5.8] m and 5.9 . 9| for Shtgi(hp) follow from the original statements. The map
hp — (0" x P).[Shts(hp)] € Chgr(Sht x Shtf)o then gives a ring homomorphism H':

" # — Cha, (Sht; x Sht/%)g.
5.3.3. Notation. By the Q-algebra .Cha,(Sht{ x Sht)g acts on Ch, . (Shtg)g. Hence

the Hecke algebra 5 also acts on Ch, . (Sht$)g via the homomorphism H’. For f € 5, we
denote its action on Ch,..(Sht{)g by

f* (—) : Ch&*(Shtg)Q — Chc’*(Sht/GT)Q.

Recall the Chow group Ch, .(Shty)g (or Ch. .(Shté)g) is equipped with an intersection
pairing between complementary degrees, see

Lemma 5.12. The action of any f € # on Ch,. .(Shty)g or Ch. .(Sht&)qg is self-adjoint with
respect to the intersection pairing.

Proof. Tt suffices to prove self-adjointness for hp for all effective divisors D. We give the ar-
gument for Shty, and the case of Shtg; can be proved in the same way. For ¢; € Ch,;(Shty)g
and (o € Ch, 2,—;(Sht¢)g, the intersection pairing (hp * (1, QQ)ShtE is the same as the following
intersection number in Shtg x Shtg

C1 % Co, (P, ) [Shts (hp)])sher, xsher, -

We will construct an involution 7 on Sht¢(hp) such that the following diagram is commutative

Sht? (hp) ———— Sht, (hp) (5.11)

J/(‘F,?) J(??)

Shtr, x Shty, ——=— Sht, x Sht/,

Here 012 in the bottom row means flipping two factors. Once we have such a diagram, we can
apply 7 to Shtg(hp) and 015 to Shtg, x Shtg and get

(€1 % Gy (P, P)u[ShtG (hp)))sner, xsner, = (G2 % 1, (9, )+ [Shtgy (Ap)])shir, xsher,
which is the same as the self-adjointness for h * (—):
(hp * C1,C2)sney, = (hp * C2,C1)shez, = (C1, o * C2)sher, -

We pick any y as in §5.1.2{and identify Sht¢, with Shtf, = Sht5/ Picx (k). We use —p to denote

the negated tuple if we think of u € {+1}" using the sgn map. We consider the composition
5 : Sht?, 25 Sh* = Sht!,

where & (€245 fis ) = (€524 (fY) 71
Sht" = Sht{, given by Lemma

Similarly we define 7 as the composition

: (1¥)™1) and the second map is the canonical isomorphism

7+ Shtt (hp) = ShtZ*(hp) = Shtt: (hp) (5.12)
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where 7’ sends the diagram (5.5)) to the diagram

AP A (e T
56v77%5{V,,+...,7954V*> 56\/ (513)
J% lmv }bi r%

pv=t fy-t Fy-t V1
Ef == 2 & s s EY Ty

and the second map in is the canonical isomorphism Sht;"(hp) = Shtf(hp) given by
the analog of Lemma It is clear from the definition that if we replace the bottom arrow of
(5.11) with o150 (6 x §) (i.e., the map (a,b) — (6(b),d(a))), the diagram is commutative.

We claim that § is the identity map for Shtf,. In fact, § turns (&;a;; fise) € Shtf into
(& (Di)sws; (£) 75 (Y)7h), where D = 37, < sgn(p;)ly;. Note that we have a canonical
isomorphism &Y = & @ (det &)1, and isomorphisms det & = (det & )(D;) induced by the f;.
Therefore we get a canonical isomorphism &Y (D;) & & ® (det &)~ @ O(D;) = & @ (det &) !
compatibly with the maps (f)')~! and f;, and also compatible with (:Y)~! and :. Therefore
8(&i; 45 fi; 1) is canonically isomorphic to (&;; 245 fi;¢) up to tensoring with det(&y). This shows
that ¢ is the identity map of Shti..

Since § = id, the diagram is also commutative. This finishes the proof. O

5.4. Moduli of Shtukas for the torus 7.

5.4.1. Recall that v : X’ — X is an étale double covering with X’ also geometrically connected.
Let o € Gal(X’/X) be the non-trivial involution.
Let T be the two-dimensional torus over X defined as

T = RGSX//X Gm
We have a natural homomorphism G,,, — T. We define a one-dimensional torus over X
T .= T/Gm = (RQSX//X Gm)/Gm

Let Bungy be the moduli stack of T-torsors over X. Then we have a canonical isomorphism
of stacks
BunT = PiCX/ /PiCX .

In particular, Buny is a Deligne-Mumford stack whose coarse moduli space is a group scheme
with two components, and its neutral component is an abelian variety over k.

5.4.2. Specializing Definition to the case n = 1 and replacing the curve X with its double
cover X', we get the Hecke stack Hk‘f, - This makes sense for any tuple p as in

Now assume that p satisfies the conditions in We may view each u; as a coweight for
GL; = G,, in an obvious way: p4 means 1 and s means —1. Specializing Definition [5.3] to the
case n = 1 and replacing X with X', we get the moduli stack Sht’i -+ of rank one Shtukas over
X' of type u. We define

Sht’ := Sht{ x..
We have a Cartesian diagram
Sht% _— Hk’iX,
l l(z}o,m)
. (id,Fr) . .
Picxs ———— Picxs x Picx-

We also have a morphism

N e
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5.4.3. Fix p as in E Concretely, for any k-scheme S, Sht’%(S) classifies the following data

(1) A line bundle £ over X’ x S,
(2) Morphisms z; : S — X' for i = 1,--- 7, with graphs I'y;; C X" x 5;

(3) An isomorphism
L: L (Z sgn(ui)Fx;> = 7L = (id x Frg)*L.
i=1

Here the signs sgn(p+) = 1 are defined in §5.1.1]

This description of points appears to be simpler than its counterpart in §5.1.5; the other line
bundles £; are canonically determined by £y and 2 using the formula

Li=Lo| > sen(u)Ta | (5.14)

1<5<i
5.4.4. The Picard stack Picy/, and hence Picyx, acts on Hkllt,X" We consider the quotient
HK := Hk‘f’X//PicX . (5.15)

In fact we have a canonical isomorphism Hk/, = Buny x X' sending (L;;2%; fi) to (Lo;2}). In
particular, HkY. is a smooth and proper Deligne-Mumford stack of pure dimension r + g — 1 over
k.

5.4.5. The groupoid Picx (k) acts on Sht‘% by tensoring on the line bundle £. We consider the
restriction of this action to Picx (k) via the pullback map v* : Picx (k) — Picx/ (k). We define

Shtfs := Sht’s/ Picx (k).
The analog of Lemma [5.6] gives a Cartesian diagram
Sht!. HK (5.16)

J{ J{(po,pr)
(id,Fr)

Buny ——— Buny x Bunyp

Since the morphism ﬂ% is invariant under Picx (k), we get a morphism

il Shtl, — X7,
Lemma 5.13. The morphism wl. is a torsor under the finite Picard groupoid Picx:(k)/ Picx (k).
In particular, 7. is finite étale, and the stack Sht}. is a smooth proper Deligne-Mumford stack
over k of pure dimension r.

Proof. This description given in gives a Cartesian diagram
Sht‘Ti —— > Picyr (5.17)
xr—— %, pick,

where ¢(zf, -+ ,2.) = Ox/(3_, sgn(p;)2}). Dividing the top row of the diagram (5.17) by
Picx (k) we get a Cartesian diagram

=

Sht", —— Picx: /(Picx (k)

J{ﬂ‘; J{id—Fr

[ . 0
X' Pic.

Since the right vertical map id—Fr : Picx: /(Picx (k)) — Pic%. is a torsor under Picy- (k)/ Picx (k),
-
so is 7. O
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5.4.6. Changing u. For a different choice p’ as in[5.1.1) we have a canonical isomorphism

~

w w
HK % HL. (5.18)
sending (L;; 2% fi) to (Ki;yl; gi) where
/ 3 i
/ T if s = pj
/= 5.19
v {a@c;) i g # 4 (519
and
Ki= Lo Z sgn(p;)Ty; | - (5.20)
1<j<i

The rational maps g; : KC;_1 —-» IC; is the one corresponding to the identity map on Ly via the
description ([5.20)). Note that we have

3 sgn(p;) — sgn(u;) r

/Cizﬁi ®OXXS OX><S ) Tj

1<5<i

where z; : S — X is the image of z}. Therefore IC; has the same image as £; in Buny. The
isomorphism (5.18]) induces an isomorphism

~

HkY 5 HK (5.21)

From the construction and the above discussion, this isomorphism preserves the maps p; to Bunp
but does not preserve the projections to X" (it only preserves the further projection to X").

Since the isomorphism preserves the maps pg and p,, the diagram implies a
canonical isomorphism

~

Lyt Shtt 5 Shth (5.22)

Just as the map (5.21), ¢, ,» does not respect the maps 7% and ﬁéi/ from Sht/, and Sht;l to X'":
it only respects their further projections to X.

5.5. The Heegner—Drinfeld cycles.

5.5.1. 'We have a morphism
II: Bunp — Bung
(L mod Picx) +—— (v«£ mod Picx)
5.5.2. For any p as in §5.1.2] we define a morphism
6" : Sht’ — St}
as follows. Let (L;x};¢) € Sht%(S) as in the description in §5.4.3l Let £y = £ and we may
define the line bundles £; using ([5.14)). Then there are natural maps g; : £;—1 < L; if p; = ps

orgi: L; =L 1ifu;=p_. Let vg =v xidg : X’ x § — X x S the base change of v. We
define

& =vs. Ly

with the maps f; : £&_1 — &; or & — &;_1 induced from g;. The isomorphism ¢ then induces an
isomorphism

9:& = vsLr 225 vg. (idxr x Frg)* Lo = (idx x Frg)*vs.Lo = "&.

Let 2; = v o z}. The morphism 6" then sends (L;al;0) to (&3 245 fi57). Clearly or is equivariant
with respect to the Picx (k)-actions. Passing to the quotients, we get a morphism

" : Sht — Sht?,.
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’

For a different 41/, the canonical isomorphism ¢, ,» in (5.22) intertwines the maps 7" and 0",
i.e., we have a commutative diagram

St —— 2 Sht”,

J{L/w/ l
’

Sht — " Sht!"
where the right vertical map is the canonical isomorphism in Lemma @ By our identification
of Shtf, for different p (cf. ), we get a morphism, still denoted by 6,
6" : Sht#, —s Shty,.

5.5.3. By construction we have a commutative diagram

Shtf. —r Shtg,

)
:

Xx'r v’ Xr
Recall that
Shtg; := Shty, x xr X"
Then the map 7" factors through a morphism
6" : Shtf, — Sht,
over X'". Since Sht}. is proper of dimension 7, #4[Sht%.] is a proper cycle class in Sht¢; of
dimension r.

Definition 5.14. The Heegner—Drinfeld cycle of type p is the direct image of [Sht] under 6#:
0%[Sht?] € Ch,,(Sht&)g.
Recall from Proposition and §5.3.3|that we have an action of 5 on Ch,,(Sht¢)g. Since

1
dim Sht}. = r = 3 dim Sht(,

both 04[Sht%.] and f  6%[Sht}] for any function f € S are proper cycle classes in Shtg, of
complementary dimension, and they define elements in Ch,,(Shtg)g. The following definition
then makes sense.

Definition 5.15. Let f € 5 be an unramified Hecke function. We define the following inter-
section number

L(f) = (0U[Shty], f 0% [Sht7])shey € Q.
5.5.4. Changing p. For different p and ' as in §5.1.2] the Heegner-Drinfeld cycles 64 [Shtf]
and 0% [Shtf.] are different. Therefore, a priorily the intersection number I,.(f) depends on p.
However we have

Lemma 5.16. The intersection number L.(f) for any f € S is independent of the choice of .

Proof. Let Z" denote the cycle 64 [Sht%.]. Using the isomorphism ¢, , in , we see that Z#
and Z" are transformed to each other under the involution o (s, p') : Shty; = Shtf, X xr X" —
Shty, X x» X'™ = Sht{; which is the identity on Shtg, and on X" sends (2}, -+ ,2%) to (v}, -+ ,y.)
using the formula . Since o(p, p') is the identity on Shtg, it commutes with the Hecke
action on Ch, ,(Sht¢;)g. Therefore we have

<ZM7 I = ZM>Shtg = <J(u,/jl)*Zﬂ,U(ﬂ, :u/)*(f * ZH)>Sht£’;'
= <U(M7/’L/)*Z”>f * (U(Maﬂl)*ZH)>Shtg = <ZH/7f * ZHI>Shtg'
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6. ALTERNATIVE CALCULATION OF INTERSECTION NUMBERS

The goal of this section is to turn the intersection number I,.(hp) into the trace of an operator
acting on the cohomology of a certain variety. This will be accomplished in Theorem [6.5 To
state the theorem, we need to introduce certain moduli spaces similar to Ny defined in §3.2.2)

6.1. Geometry of M,.

6.1.1. Recall v : X’ — X is a geometrically connected étale double cover. We will use the
notation )/(\'(/i and X/ as in We have the norm map 7, : )/(\'(’j — X4 sending (£, € T(X', L))
to (Nm(£), Nm(«) € T'(X,Nm(L))).

Let d > 0 be an integer. Let Mvd be the moduli functor whose S-points is the groupoid of
(L, L, «, B) where
L, L € Pic(X’' x S) such that deg(L]) — deg(Ls) = d for all geometric points s € S;
e a: L — L' is an Ox-linear map;

e 3:L — o*L"is an Ox-linear map;
e For each geometric point s € S, the restrictions a|x/xs and 8|x/xs are not both zero.
There is a natural action of Picx on My by tensoring: K € Picx sends (£, L', a, ) to (L ®
VK, L @K, a®id, 8 ® id). We define
My = Md/ Picx .

6.1.2. To (L,L,a,B) € My, we may attach

e a:=Nm(a): Nm(£) — Nm(L');

e b:=Nm(8): Nm(£) - Nm(c*L") = Nm(L’).

Both a and b are sections of the same line bundle A = Nm(£') ® Nm(£)~! € Pic%, and they
are not simultaneously zero. The assignment (£, L', o, 8) — (A, a,b) is invariant under the the
action of Picx on /Dlih and it induces a morphism

fM : ./\/ld — .Ad.
Here A, is defined in §3.2.3]

6.1.3. Given (£,L',a,8) € Md, there is a canonical way to attach an Ox-linear map v :
vl — v L' and vice versa. In fact, by adjunction, a map v : v, £ — v, L' is the same as a
map v*v L — L'. Since v*v L = L & o*L canonically, the datum of 1 is the same as a map of
Ox -modules L@ o*L — L', and we name the two components of this map by a and o*3. Note
that the determinant of the map 1 is given by

det(v)) = Nm(a) — Nm(8) =a — b: Nm(£L) = det v, £ — det v, L = Nm(L). (6.1)
The composition § o far : Mg — Ag — X, takes (L, L', B) to the pair (A = Nm(L') ®
Nm(£)~", det(s))

6.1.4. We give another description of My. We have a map ¢, : Mg — 55«/1 sending (£, L', o, B)
to the line bundle £’ ® £~! and its section given by a. Similarly we have a map t5: Mg — X 4
sending (£, L', a, 8) to the line bundle 0*£’ @ £~ and its section given by 3. Note that the
line bundles underlying ¢o (L, L', o, 8) and t5(L, L', o, ) have the same norm A = Nm(£L') ®

Nm(£)~! € Pic%. Since o and § are not both zero, we get a map

t=(ta,8) : Mg — )?c/i X picd )?(/1 -7
where the fiber product on the RHS is taken with respect to the map )?C’i — Pic"f(, Nm, Picg(,
and Z); := Picg(/ X picd. Pic%, is embedded into X}, X picd. X/, by viewing Pic%/ as the zero section
of X/ in both factors.

Proposition 6.1. (1) The morphism ¢ is an isomorphism of functors, and Mg is a proper
Deligne—Mumford stack over k. E|

3The properness of My will not be used elsewhere in this paper.
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(2) Ford > 2g'—1, My is a smooth Deligne—-Mumford stack over k of pure dimension 2d—g+1.
3) The morphism Uy : X, — Xgq is proper.

( d

(4) We have a Cartesian diagram

My X Xpiea X} (6.2)

lf/\/l J/I//\d X I//\d

.Adc—> )?d xPicg( )?d

Moreover, the map faq is proper.

Proof. (1) Let (Picxs x Picx)q be the disjoint union of Pch, x Picit? over all i € Z. Consider

the morphism 6 : (Picxs x Picx)q/ Picx — Pick Xpicd Pic%, (the fiber product is taken with
respect to the norm map) that sends (£,£') to (L' ® L7Y,0*L' ® L7, 7), where T is the tau-
tological isomorphism between Nm (£’ ® £71) = Nm(£') ® Nm(£)~! and Nm(o*L' ® £71) =
Nm(£') ® Nm(£)~!. By definition, we have a Cartesian diagram

Mg ———— X Xpiea Xg— 24 (6.3)

(Picx x Picxs)q/ Picx —— Pick, xpi Pick,
X Pic% X

where the map w sends (£, L, «, ) to (£, L"). Therefore it suffices to check that 6 is an isomor-
phism. For this we will construct an inverse to 6.
From the exact sequence of étale sheaves

id

* — N
1 — 0% 5 1,05 =5 .05 =5 05 — 1

we get an exact sequence of Picard stacks
. . id—o .0 Nm .0
1 — Picx/ /Picx — Picy, — Picy — 1.

Given (K1, Ky, 7) € Pick, X picd, Pic%, (where 7 : Nm(K;) 2 Nm(Ks)), there is a unique object
L' € Picxs / Picy such that £'®@ o* L1 2 K1 ® IC2_1 compatible with the trivializations of the
norms to X of both sides. We then define (K, Ko, 7) = (£’ @ K11, L), which is a well-defined
object in (Picxs x Picx/)q/ Picx. It is easy to check that ¢ is an inverse to §. This proves that
0 is an isomorphism, and so is ¢.

We show that M, is a proper Deligne-Mumford stack over k. By extending k we may
assume that X’ contains a k-point, and we fix a point y € X'(k). We consider the moduli
stack M\d classifying (K1,71, K, p, @, 8) where Ky € Picff(,, v1 is a trivialization of the stalk /C; 4,
K € Pic%/, p is an isomorphism Nm(K) = Ox, a is a section of K; and ﬁ is a section of IC1 @K
such that o and B are not both zero. There is a canonical map p : My — X X picd. X’
Z!, sending (KCy,71,K, p, e, B) to (K1,Ke := K1 ® K, 7, ¢, 8) (the isomorphism 7 : Nm(lCl) =
Nm(K2) is induced from the trivialization p). Clearly p is the quotient map for the G,,-action
on M\d that scales ;. There is another G,,-action on /\//\ld that scales a and [ simultaneously.
Using automorphisms of K7, we have a canonical identification of the two G,,-actions on M\d;
however, to distinguish them, we call the first torus G,,(y) and the second G,,(«, 3). By the
aib\ove discussion, ¢! o p gives an isomorphism M\d /G (y) = Mg, hence also an isomorphism
Md/Gm(a,ﬁ) = Md.

Let Prymy,,y = ker(Nm : Pic%, — Pic%) which classifies a line bundle K on X’ together
with a trivialization of Nm(£). This is a Deligne-Mumford stack isomorphic to the usual Prym
variety divided by the trivial action of us. Let J;l(, be the degree d-component of the Picard
scheme of X’ which classifies a line bundle Iy on X’ of degree d together with a trivialization
of the stalk X’y ,. We have a natural map h : M\d — J4, x Prymy,,x sending (K1, 71, K, p, a, )
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to (K1,71) € J% and (K, p) € Prymy, x. The map h is invariant under the G, (o, 8)-action,
hence induces a map

E : M\d/Gm(a, ﬁ) = Md — Jg(/ X Prme//X (64)

The fiber of h over a point ((K1,71), (K, p)) € J&, xPrym ., x is the projective space P(I'( X', K1)®
(X', K1 ® K)). In particular, the map h is proper and schematic. Since J$, x Prymy,, x is a
proper Deligne-Mumford stack over k, so is M.

(2) Since Mg is covered by open substacks X7 X pjca )?:1 and )A([’l Xpict. Xg, it suffices to show
that both of them are smooth over k. For d > 2¢g’ — 1 the Abel-Jacobi map AlJy : X(lz — Picgl(,
is smooth of relative dimension d — ¢’ + 1, hence X, is smooth over Pici of relative dimension
d—g+1. Therefore both X{ X pjca )?:1 and )A(& Xpict X are smooth over X of relative dimension
d — g+ 1. We conclude that My is a smooth Deligne-Mumford stack of dimension 2d — g + 1
over k.

(3) We introduce a compactification Y:i of X !, as follows. Consider the product X L ox Al
with the natural G,,-action scaling both the section of the line bundle and the scalar in A'.
Let 2 : Pick, < X/ x Al sending £ to (£,0,0). Let X := (X} x Al — 29(Pic%,))/Gy. Then
the fiber of Y; over £ € Pic%, is the projective space P(I'(X’, £ @ Ox-)). In particular, Y; is
proper and schematic over Picgp. The stack Yii contains X !, as an open substack where the Al-
coordinate is invertible, whose complement is isomorphic to the projective space bundle X};/G,,
over Picg(,. Similarly we a compactification X4 of )/(\’d.

Consider the quadratic map 55(/1 x Al = X;x Al sending (L,5,A) = (Nm(L), Nm(

s),A?). This
quadratic map passes to the projectivizations because (Nm(s), \?) = (0, 0) implies (s, ) = (0, 0)
on the level of field-valued points. The resulting map 7y : Y; — X, extends ;. We may

factorize 7y as the composition

)

— 5 ~ . ~
Va: Xq— Xa Xpies Pick — X4

Here the first map is proper because both the source and the target are proper over Picfi(,; the
second map is proper by the properness of the norm map Nm : Picﬁ(, — Picgl(. We conclude
that 74 is proper. Since Uy is the restriction of 74 to )A(d — Xy, it is also proper.

(4) The commutativity of the diagram is clear from the construction of ¢. Note that Z}
is the preimage of Z; under 7y x Vg, and Mg and Ag are complements of Z/; and Z; respectively.
Therefore is also Cartesian. Now the properness of faq follows from the properness of v,
proved in part (3) together with the Cartesian diagram (6.2).

O

6.2. A formula for I,.(hp).

6.2.1. The correspondence Hkﬁ,/(/l,d' Fix any tuple pn = (u1,- - , pr) as in & We define I:IEMMJ
to be the moduli functor whose S-points classify the following data

(1) Fori=1,---,r, amap z;: S — X' with graph I';.
(2) For each i =0,1,---,r, an S-point (L;, L}, a;, B;) of Mvd:
Ly — L B Li — 0" L.
In particular, deg £; — deg £; = d and «; and §; are not both zero.

(3) A commutative diagram of Ox-linear maps between line bundles on X’

[’O,fjﬁﬁlfffé...fflﬁﬁr (65)

P
f1 f3 17

Ly—-=-L1—=>- ==L
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where the top and bottom rows are S-points of Hk/. over the same point (z},---,2]) €
X'"(S), such that the following diagram is also commutative

C()**flféﬁlféﬁ"'fﬁﬁﬁr (66)

lﬁo lﬁl \LBT
U:f * o/ * f/

/ o f. o™ f,
oLy~ = L= = =50 L

There is an action of Picx on ItI\l;}LM,d by tensoring on the line bundles £; and L. We define

HIK), , == Hk)y ./ Picx .

The same argument as §5.4.6| (applying the isomorphism ([5.21)) to both rows of (6.6])) shows that
for different choices of u, the stacks Hk‘fw’ 4 are canonically isomorphic to each other. However,

as in the case for Hk/., the morphism Hk/\, ; — X" does depend on .

6.2.2. Let ~; : Hk‘/(,l’d — My, be the projections given by taking the diagram (6.5)) to its i-th
column. It is clear that this map is schematic, therefore Hk‘fw 4 itself is a scheme.

In the diagram (6.5)), the line bundles A; = Nm(£;)®Nm(L;) ! are all canonically isomorphic
to each other for ¢ = 0,--- ,7. Also the sections a; = Nm(«;) (resp. b; = Nm(5;)) of A; can
be identified with each other for all i under the isomorphisms between the A;’s. Therefore,
composing y; with the map faq : Mg — Ay all give the same map. We may view Hk“/\/[,d as a
self-correspondence of My over Ay via the maps (yo, V).

There is a stronger statement. Let us define Ayc X J X picd X, to be preimage of A4 under
Nm xid : )?(/1 X picd. X4 — X4 X picd. Xg4. Then Ay classifies triples (K, o, b) where K € Picx,
a is a section of I and b is a section of Nm(K) such that o and b are not simultaneously zero.
Then faq factors through the map

fM Mg — .Zd
sending (£, L', B) to (L' ® L7, a, Nm(3)).
Consider a point of Hk“/\/[, 4 giving among others the diagram (6.5)). Since the maps f; and f/

are simple modifications at the same point 2, the line bundles £,®£; ! are all isomorphic to each
other for all ¢ = 0,1,---,r. Under these isomorphisms, their sections given by a; correspond to
each other. Therefore the maps fuq 0 y; : Hky, , — Aq are the same for all .

6.2.3. The particular case r = 1 and g = (u4) gives a moduli space H := Hk}w’d classifying
commutative diagrams up to simultaneous tensoring by Picx:

f /

[,0 — £1 £0 Em— £1 (67)
Jao Jal J/BO Jm

, 1 / wpr O F T
Ly —— L] o* Lo —— 0" L]

such that the cokernel of f and f’ are invertible sheaves supported at the same point 2’ € X',
and the data (Lo, L), ao, fo) and (L1, L], a1, B1) are objects of M.
We have two maps (70,71) : H — Mg, and we view H as a self-correspondence of M, over
Aqg. We also have a map p: H — X' recording the point 2’ (support of £1/Lg and L /L]).
The following lemma follows directly from the definition of Hk/y, ,.

Lemma 6.2. As a self-correspondence of Mg, Hkﬁ/{,d is canonically isomorphic to the r-fold
composition of H

M ~
HkM,d =H Xy1,Ma,0 xXH Xy1,Mayo X Xy, Ma,vo H.



42 ZHIWEI YUN AND WEI ZHANG

6.2.4. Let A C A4 be the open subset consisting of (A, a,b) where b # 0, i.e., AS = X4 X picd.
X4 under the isomorphism (3.3). Let Mg, Hk“M<> 4 and H be the preimages of Ag in Mgy,
Hk/\, ; and H.

Lemma 6.3. Let I, C X} x X' be the incidence scheme, i.e., I, — X/ is the universal family
of degree d effective divisors on X'. There is a natural map H® — I, such that the diagram

p
HO /m X' (6.8)

b

& v/ ) Pr2 /
My Xg Xpies. Xg —— X§

is commutative and the square is Cartesian. Here the q : I}, — X, sends (D,y) € X}, x X' to
D—y+o(y), and pp : I, = X' sends (D,y) toy.

Proof. A point in H¢ is a diagram as in with 8; nonzero (hence injections). Such a diagram
is uniquely determined by (Lo, L, ao, 8o) € /\/l;> and y = div(f) € X’ for then £; = Lo(y),
L) = L(y) are determined, and f, f* are the obvious inclusions and a; the unique map making
the first diagram in commutative; the commutativity of the second diagram uniquely
determines (1, but there is a condition on y to make it possible:

div(Bo) + o(y) = div(f1) +y € X -

Since o acts on X’ without fixed points, ¥ must appear in div(3p). The assignment H® >
(y, Lo, ,Bo, L1, ,b1) — (div(Bo),y) then gives a point in I;. The above argument shows
that the square in is Cartesian and the triangle therein is commutative. (I

Lemma 6.4. We have

(1) The map 7o : HkHMO,d — /\/lfi> is finite and surjective. In particular, dim HkMMO,d =
dim M$ =2d — g+ 1.

(2) The dimension of the image of Hk!\, ; — Hk“MQ)d in Mg x My is at most d + 2g — 2.

Proof. (1) In the case r = 1, this follows from the Cartesian square in , because the map
q : I, = X is finite. For general r, the statement follows by induction from Lemma

(2) The closed subscheme Y = Hk”M’ a— Hk“MO’ 4 Classifies diagrams only because all the
B; are zero. Its image Z C My x My under (vo,7,) consists of pairs of points (Lo, L, o, 0)
and (L, L, ar,0) in My such that there exists a diagram of the form connecting them.
In particular, the divisors of ag and «,. are the same. Therefore such a point in Z is completely
determined by two points Lo, £, € Buny and a divisor D € X/ (as the divisor of o and o).

We see that dim Z < 2dim Buny + dim X, = d 4+ 2g — 2. O

6.2.5. Recall H = Hk}\,t, 4 1s a self-correspondence of Mg over A4 (see the discussion in §6.2.2).
Let

[H] € Chza—g11(H)o
denote the class of the closure of H®. The image of [’HO] in the Borel-Moore homology group

H]23(1\2/[d_g +1)(H ®k k)(—2d 4+ g — 1) defines a cohomological self-correspondence of the constant
sheaf Q; on My. According the discussion in it induces an endomorphism

I HO] - R Qe — Rfag1Qy

For a point a gAd(k), we denote the action of fu[H] on the geometric stalk (R fa1Qr)a =
HZ(foh (@) ©x F) by (faa[HO))a. A

Recall from §3.3.2 that Ap = 6~ 1(D) C A5 is the fiber of D under § : Ay — X4. The main
result of this section is the following.
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Theorem 6.5. Suppose D is an effective divisor on X of degree d > max{2g' — 1,2g}. Then
we have

Io(hp) = > Tr((frmi[HO]) 0 Froba, (Rfa,Qe)z) - (6.9)
a€Ap (k)
6.2.6. Orbital decomposition of I.(hp). According Theorem [6.5] we may write
I(hp)= Y.  IL(uhp) (6.10)
u€P! (F)—{1}
where
I, (u, hp) Tr ((fa, [HO))% o Frobg, (Rfa1Qe)z)  if u = invp(a) for some a € Ap(k);
r U, = .
b 0 otherwise.
(6.11)

The rest of the section is devoted to the proof of this theorem. In the rest of this subsection
we assume d > max{2¢’ — 1,2g}.

6.2.7. We apply the discussion in Appendix & to M = My EECIy - Ay and the self-
correspondence C' = Hk“M7 4 of My. We define Sht“M7 4 by the Cartesian diagram

Shtfy, , ———— HEkA (6.12)

J J(vom)
(id,Fra,)

Mg ———— Mg x My

This fits into the situation of §A-4.4) because fa107v9 = fa1 07, by the discussion in §6.2.2] hence
Hk’fw 4 1s a self-correspondence of My over Ag while (id, Fr 4, ) covers the map (id, Fr,) : Ag —
Ag x Ag. In particular we have a decomposition

Shthy .= ] Shthy4(a). (6.13)
a€Aq(k)
For D € X4(k), we let
Shthy, p =[] Shth,(a) C Shtl . (6.14)
a€Ap (k)

Using the decompositions (6.13)) and (6.14]), we get a decomposition

Cho(Shth, Jo = €D Cho(Shthy, plo | ® b Cho(Shty 4(a))g | . (6.15)
DeXa(k) a€A4(k)— A (k)

Let ¢ € Chag_ g1 (HkY . Since M is a smooth Deligne-Mumford stack by Proposition
g+ M,d)Q g y

6.12), (id,Fraq,) is a regular local immersion, the refined Gysin map (which is the same as

intersecting with the Frobenius graph I'(Fra,,) of M) is defined

(id, FI"Md)! : Chgd_g+1(Hkle,d)Q — ChO(Sht[j\/(’d)Q
Under the decomposition (6.15)), we denote the component of (id, Fras,)'¢ in the direct summand
Cho(Sht'y p)q by
((id, Fram,)'¢) , € Cho(Shthy, p)o-
Composing with the degree map (which exists because Sht“M’ p is proper over k, see the discussion
after (A.27))), we define
(¢, T(Frum,))p = deg ((id, Fraq,)'¢) , € Q.
As the first step towards the proof of Theorem [6.5] we have the following result.

Theorem 6.6. Suppose D is an effective divisor on X of degree d > max{2g’ — 1,2g}, then

there exists a class € Chag—g41(Hkl\4 ;)o whose restriction to HkﬂM,d‘Af nag 18 the fundamental
cycle, such that

I.(hp) = ((, T'(Frm,))D- (6.16)
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This theorem will be proved in §6.3.6] after introducing some auxiliary moduli stacks in the
next subsection.

6.2.8. Proof of Theorem [6.5. Granting Theorem [6.6] we now prove Theorem [6.5] Let ¢ €
Chag—g+1(Hk'y, ;)0 be the class as in Theorem By (6.14), we have a decomposition

Cho(Shthy, p)o = €D  Cho(Shtly, 4(a))o- (6.17)
a€Ap (k)

We write

<C7P(Fer)>D = Z <Cﬂ F(Fer)>a

a€Ap (k)

under the decomposition (6.17), where (¢, T'(Fraq,))q is the degree of ((id, Fer)!C)a € Chy(Sht!y 4(a))g-
Combining this with Theorem [6.6] we get

I(hp) = Y (¢ T(Fra,))a (6.18)

acAp (k)

On the other hand, by Proposition [A.12] we have for any a € Ap(k)

(€ T(Framy))a = Tr((far,1€l(C))a 0 Froba, (Rfar,1Qe)a)- (6.19)

Here we are viewing the cycle class cl(¢) € H§(1\24d_ g+1)(HK ) (=2d + g — 1) as a cohomological

self-correspondence of the constant sheaf Q@ on M, which induces an endomorphism

fael(€) s R Qe — Rfag 1 Qo (6.20)

and (fa,1cl(¢))q is the induced endomorphism on the geometric stalk (Rfa,1Q¢)z. Since we
only care about the action of faq1cl(¢) on stalks in Ag, only the restriction ¢¥ := (| A5 €

Z2dfg+1(HkMM@|A§)@ matters. Combining (6.19) with (6.18]), we see that in order to prove

(6.9), it suffices to show that faq1cl(¢Y) and (far,1[H¥])" give the same endomorphism of the
complex R fag,1Qy] A This is the following lemma, which is applicable because d > 3g — 2 is

implied by d > 2¢' — 1 =4g — 3 (since g > 1).

Lemma 6.7. Suppose d > 3g—2, and (¥ € Z2d—g+1(Hkl/Lvl,d|A§)Q' Suppose the restriction of (¥
to HkMM,d|Aan§> is the fundamental cycle, then the endomorphism faq.1cl(CY) of RfM7gQg|A;9
is equal to the r-th power of the endomorphism faq[H<].

Proof. Let [H®]" denotes the r-th self-convolution of [H®], which is a cycle on the r-th self
composition of H, hence on Hk’fw 4 by Lemma (6.2). We have two cycle ¢% and (the restriction
of) [HO]" in Zag—g41 (HKY, d|Af)Q' We temporarily denote ./\/ld|A;9 by M (although the same
notation will be defined in an a priorily different way in §6.3). We need to show that they are
in the same cycle class when projected to ./\/lfl? X M;? under (Yo, Yr) : Hk/“\/t.d‘Af — Mdv X ./\/lg.

By assumption, when restricted to Hk’, d|AffmAji>v both (¥ and [H®]" are the fundamental
cycle. Therefore the difference (7o, 7)< (C¥ — [H?]") € Zaa_g11(MS x M )g is supported on
the image of Hklf\/l,dud” _ag in M x M, which is contained in the image of Hk\ 4 — Hklj\/to,d
in My x My. By Lemma?), the latter has dimension < d + 2g — 2. Since d > 3g — 3, we
have d 429 — 2 < 2d — g + 1, therefore (70, 7,)«(C% — [H®]") = 0 € Zag—g11(M x M )qg, and
the lemma follows. O

6.3. Auxiliary moduli stacks. The goal of this subsection is to prove Theorem [6.6] Below we
fix an integer d > max{2¢’ — 1,2¢}. In this subsection, we will introduce moduli stacks Hk/&d
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and Hy that will fit into the following commutative diagram

R ld ’
HK x Hk il HKY, x HEKS 77

(vo,vr)J/ l(%m) (vé,vi)l J{(Vé»vi)

(Bunr)? x (Bunr)? DA (Bung)? x (Bung)? +————— Hy x Hy

(id,Fr)T T(id,Fr) (id,Fr)T T(id,Fr) T(id,Fr)
XTI 7=(%.7)

Buny x Bunyp Bung x Bung Hy

HK¢, 4 (6.21)

l(v{w;)
<5>13><<5)24

The maps in this diagram will be introduced later. The fiber products of the three columns are

Shtt x Shtt 2%y Shes x Shtf <77 ghels (6.22)

where Sht¢ ; is defined as the fiber product of the third column.
The fiber products of the three rows will be denoted

Hk“/\/lo,d

[n

M x M

T(id,Fr)

M

(6.23)

These stacks will turn out to be the restrictions of My and Hk', , to Ag, as we will see in

Lemma [6.8{[2) and Lemma

6.3.1. In A3 we discuss an abstract situation as in the above diagrams, which can be pictured
using a subdivided octahedron. By Lemma the fiber products of the two diagrams (6.22)
and (6.23)) are canonically isomorphic. We denote this stack by

n
Sht!y (o 4-

Below we will introduce Hy and HKZ 4.

6.3.2. We define ﬁ[d to be the moduli stack whose S-points is the groupoid of maps
¢ &= &

where &, &’ are vector bundles over X x S of rank two, ¢ is an injective map of Ox xg-modules
(so its cokernel has support finite over S) and prg, coker(¢) is a locally free Og-module of rank
d (where prg : X x S — S is the projection). We have an action of Picx on H, by tensoring,
and we form the quotient

Hd = f‘jd/ PiCX
Taking the map ¢ to its source and target gives two maps ?,? : H; — Bung. The map
P15 x P’oq that appears in (6.21)) is the map
?13 X ?24 :Hyx Hi — Bung x Bung x Bung x Bung
(h,h') (P (R), B (R), P (h), T ().
On the other hand we have the morphism II : Buny — Bung sending £ to v, L, see §5.5.1]
We form the following Cartesian diagram, and take it as the definition of ./\/ldo

M) ——————— s Hy (6.24)

J Jm?)

IIxII
Buny x Buny —— Bung x Bung
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Lemma 6.8. (1) The morphisms ?7? : H; — Bung are representable and smooth of pure
relative dimension 2d. In particular, Hg is a smooth algebraic stack over k of pure dimension
2d + 3¢9 — 3.

(2) There is a canonical open embedding ./\/ld@ < M, whose image is f (.Ad@) (for the definition
of .Ad@, see . In particular, Mg is a smooth Deligne—Mumford stack over k of pure
dimension 2d — g + 1.

Proof. (1) Let R be a local artinian k-algebra, and let ¢ : £ < &' be an R-point of H,, where
£ and &’ are rank two vector bundles over Xg. The tangent complex of Hy at ¢ is H*(Xg, K)
where /C is the two-term complex

(End(€) @ End(£))/Ox,, - (ide,idg/) 2 Hom(E, &)

where ¢ sends a pair (a,b) € End(€) @ End(£’) to ¢ oa — bo ¢. Here K is placed in degrees —1
and 0. The tangent complex of Bung at £ € Bung(R) is given by

H*(XR,EHd(g)/OXR . ldg)[l]

The tangent map of o is H*(Xg, K) — H*(Xg, End(£)/0O -id)[1] induced from the projection
K — End(£)/O - idg[1]. Therefore the relative tangent complex of ‘o is H*(Xg, V) where V is
the two-term complex

/N b—>—boo ’

End(&") ——— Hom(&, &) (6.25)
in degrees —1 and 0. Since ¢ is generically an isomorphism, the map is generically an
isomorphism, and V is quasi-isomorphic to the torsion sheaf H°V, which is the cokernel of the
map (6.25). Therefore H*(Xp, V) is concentrated in degree zero, and P is smooth. The relative
dimension of <ﬁ at a k-point ¢ as above (for R = k) is equal to the Euler characteristic of
H*(X%,V), or the length of the torsion sheaf H°V, which is 2d (using that deg End(£’) = 0 and
degHom(&, &) = 2d). Similar argument works for 7.

(2) By the diagram (6.24)), M classifies (£, £',4)) up to the action of Picy, where £ and £’
are as in the definition of Mvd, and 1 is an injective Ox-linear map v L — v, L.

The discussion in turns a point (£, L, : v.L = v, L) € ./\/l;? into a point (£,L", « :
L= L B:L— c*L') € My. The condition that ¢ be injective is precisely the condition that
det()) # 0, which is equivalent to saying that fa(L, L', ¢) € Ag, according to (6.1).

Proposition shows that My is a smooth Deligne-Mumford stack over k of pure dimen-
sion 2d — g + 1, hence the same is true for its open substack Mg. O

6.3.3. Recall the Hecke stacks Hkg and Hk7. defined in (5.4) and (5.15). Let Hkj ,; be the
moduli stack of commutative diagrams

5077951773...77357, (626)
lcﬁo Jﬁl lﬁf’r
E——2& ——>--— =&

where both rows are points in Hk) with the same image in X", and the vertical maps ¢; are
points in Hy (i.e., injective maps with colength d). Let

Hkf, , = Hkb ,/ Picx

where Picy simultaneously acts on all & and & by tensor product. The same argument of
Lemma shows that Hkg, 4 is independent of .
There are natural maps Hkg — X" and Hkg 4, — X". We define

Hk{: = Hkj, xxr X'; Hk&d = Hkg g xxr X
The map Hk7. — Hkg, given by & = v,.L; induces a map
" : Hky. — HkZ.

We have two maps
?7 ? : HkrG,d — HkrG
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sending the diagram ((6.26)) to its top and bottom row. We denote their base change to X' by
9.7 HkE , — HK

We define Hk/ by the following Cartesian diagram

M® .d
HIY o, HK¢ 4 (6.27)
l lmm

HK x it — M e H,
The same argument of Lemma [6.8([2) shows the following result. Recall that the stack Hk'y, ,
is defined in §6.2.1]

Lemma 6.9. There is a canonical isomorphism between Hk’;\/[QQ 4 and the preimage of .Ag under
the natural map faq 0 7o : HKY ; — Aqg.

6.3.4. We have a map

s HKG ; — Xg x X7
which sends a diagram (6.26]) to (D;x1,- - ,2,) where D is the divisor of det(¢;) for all i. Let
(Xg x X™)° C X4 x X" be the open subscheme consisting of those (D;x1,--- ,x,) where z; is
disjoint from the support of D for all 7. Let

Hkg?y = 571 ((Xa x X7)°).

be an open substack of Hkg 4. Let Hkg:‘; C Hk¢ 4 and Hk'V(o , C HKY o , be the preimages of
HK>°,.
G.d

Lemma 6.10. (1) The stacks Hkg;, and Hk;'g are smooth of pure dimension 2d +2r +3g — 3.

(2) The dimensions of all geometric fibers of s are d +r + 3g — 3. In particular, dim Hkg 4, =
dim HKJ, , = 2d + 2 + 3¢ — 3.

(3) Recall that Hk!, (., , is the restriction Hk#M,d|A§’ where AS C Aq is defined in , Sup-
pose d > max{2g’ — 1,2g}. Let Hk'"",  be the intersection of Hk!, with Hk', o, | inside

MO d M d M®.d
Hk!Y\( 4o Then dim(HK , , —HK0P ) < 2d — g+ 1 = dim Hi/}

MO d”
The proof of this lemma will be postponed to §6.4.1}§6.4.3]

Lemma 6.11. Suppose d > max{2g’ — 1,2g}.
(1) The diagram (6.27)) satisfies the conditions in §4.2.8 In particular, the refined Gysin map

(I x T1*)* : Cha (HkE g)o — Chu_s(2g—24r) (HK o0 4)0

is defined.
(2) Let
(¥ = (1" x TI*)'[Hkg 4] € Chag g1 (HK o )0 (6.28)

Then the restriction of (¥ to Hk‘]w,dugmg 1s the fundamental cycle.

Proof. (1) We first check that Hk“Mv’ ; admits a finite flat presentation. The map 7o : ij‘wo’ g
M is schematic, so it suffices to check that M or M, admits a finite flat presentation.
In the proof of Proposition we constructed a proper and schematic map h : My —
J¢, x Prymy,, x, see (6.4). Since J¢, is a scheme and Prymy,,x is the quotient of the usual
Prym variety by the trivial action of y, J&, x Prymy, /x admits a finite flat presentation, hence
so do My and Hk”M@7d.

Next we verify the condition of Extending k if necessary, we may choose a point
y € X (k) that is split into ¢,y € X'(k). Let Bung(y) be the moduli stack of G-torsors over X
with a Borel reduction at y. Let Hk{(y) = Hk{: Xpune Bung(y) where the map HkZ — Bung
sends (&;; z;; fi) to E. We may lift the morphism II* to a morphism

I*(y) - Hky, — Hk (y)
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where the Borel reduction of & = v, Ly at y (i.e., a line in the stalk & ) is given by the stalk
of Lo at 3. The projection p : Hk(y) — Hk{ is smooth, and IT* = p o IT*(y). So to check the
condition (2 of it suffices to show that I1#(y) is a regular local immersion.

We will show by tangential calculations that Hkf(y) is a Deligne-Mumford stack in a neigh-
borhood of the image of II*(y), and the tangent map of IT#(y) is injective. For this it suffices to
make tangential calculations at geometric points of Hk/. and its image in Hk¢ (y). We identify
HK’. with Buny x X" as in Fix a geometric point (£;2’) € Picx/(K) x X'(K)". For
notational simplicity, we base change the situation from k to K without changing notation. So
X means X ®; K, etc.

The relative tangent space of Hkh. — X' at (£;2’) is H' (X, Ox//Ox). The relative tangent
complex of HkZi (y) — X" at ITH(y)(L;2') = (v £ — v L(xh) — -+ 5 L,) is HY (X, Adrf/’y(l/*ﬁ))[l],
where AdZY (vL) = mzfl’y(u*ﬁ)/ox -id, and mzfl’y(u*ﬁ) is the endomorphism sheaf of the
chain of vector bundles v, £ — v, L(z]) — --- preserving the line £,/ of the stalk (v,.L),. Note
that

End®¥(v,£) C End’(v.L) = v,Hom(L & (¢*L)(y"), L)
= 1,0x (LR L (—y")) (6.29)

We also have a natural inclusion
v : v Oxr — Endi’y(u*ﬁ)

identifying the LHS as those endomorphisms of v, L that are Ox-linear. Now 7 (v.Ox/) maps
isomorphically to v,Oxs on the RHS of . Combining these we get a canonical decomposi-
tion M‘L/’y(y*/:) = v,O0x/ @ K for some line bundle K on X with deg(K) < 0. Consequently,
we have a canonical decomposition

AdZY (v, L) = Ox/ /Ox & K. (6.30)

In particular H° (X, Adwf/’y(u*ﬁ)) = H%(X,0x//Ox) = 0. This shows that Hk/;(y) is a Deligne-
Mumford stack in a neighborhood of II*(y)(L; z’).

The tangent map of TI#(y) is the map H*(X,Ox//Ox) — H*(X, AdL/(V*E)) induced by 7,
hence it corresponds to the inclusion of the first factor in the decomposition . In particular,
the tangent map of II#(y) is injective. This finishes the verification of all conditions in

for the diagram (6.27)).

(2) Let Hk’j\f@ 4 be the preimage of Hkg:;. By Lemma 1’ Hkg:; is smooth of dimension

2d + 2r + 3g — 3. On the other hand, by Lemma ﬂ, Hkﬁ/l<> 4 has dimension 2d — g + 1.
Combining these facts, we see that Hk’j\;{’Qp dﬁHk”/V1<> 4 has the expected dimension in the Cartesian

diagram (6.27). This implies that (% | e is the fundamental cycle. By Lemma
M@ d MO d

6.10/(3), HK\ 64— Hk“/\;to@’d has lower dimension than Hk/, ., ;, therefore Cv‘HkiAQ,d must be the
undamental cycle. (I

6.3.5. There are 7 + 1 maps ; (0 < i < r) from the diagram to : it sends the
diagram to its 4-th column, etc. In particular, we have maps ~; : HkTG’d — Hy and
i Hk/&d — Hgy. The maps 7 and ~,. appear in the diagram (6.21)).

We define the stack Shtg; , by the following Cartesian diagram

Sty g — HK 4 (6.31)

l J('vom)
(id,Fr)

H;——— Hyg x Hy
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Similarly we define Sht'G’",d as the fiber product of the third column of (6.21)):

Sht( ; — HKZ (6.32)
l J{(%’wi)
(id,Fr)
Hd Hd X Hd

We have ShtG d = ShtG dXXr X/T

Lemma 6.12. There are canonical isomorphisms of stacks

Shtg o= [ Shtg(hp);
DeX (k)
shtgp ;= [ Shté(hp)
DEXd(k')
For the definitions of Shty,(hp) and Shtéi(hp), see §5.3.1| and §5.3.2,

Proof. From the definitions, (y0,7,) factors through the map Hkg ; — Hg xx, Ha. On the
other hand, (id,Fr) : Hy — Hy x Hy covers the similar map (id, Fr) : X3 — X4 x X,4. By the
discussion in we have a decomposition

DeXy(k)

Let Hp and Hkg  be the fibers of Hy and Hkg ; over D. Then the D-component Shtg p of
Shtg 4 fits into a Cartesian diagram

Shtg p — Hkg p (6.33)
J/ J/(’yom)
(id,Fr)
HD HD X HD
Comparing this with the definition in §5.3.1} we see that Shtg , = Shtg(hp). The statement
for Shtg; 4 follows from the statement for Shtg, ;, by base change to X' O

Corollary 6.13. Let D € Xq(k) (i-e., an eﬁective divisor on X of degree d). Recall the stack
Sht‘fw’d defined in and ShtM@ d deﬁned in . Then Sht‘/(/t@ 4 '8 canonically isomorphic
to the restriction of ShtM,d to A (k) < Aa(k).

Moreover, there is a canonical decomposition

Shtho,= ] Shthps
DeXq4(k)

where Sht“M p s defined in (6.14). In particular, we have a Cartesian diagram

Sht't, Sht’%(hp) (6.34)
J Jm?/)
o ©w 0" x 6" r r
Sht!s x Sht’. — ", Sht!% x Sht/;

Proof Note that Sht/, MO .d is defined as a fiber product in two ways: one as the fiber product of

and the other as the fiber product of - Using the first point of view and the decompo-
smon of ShtG 4 given by Lemma we get a decomposition of ShtM(y d HDeXd(k) ShtM@’D,
where Sht’{ o, |, is by definition the stack to put in the northwest corner of to make the
diagram Cartesian.

On the other hand, using the second point of view of Sht MO 88 the fiber product of ,

and using the fact that Hk" MO .d is the restriction of Hk“ M,d Over Ad@ by Lemma we see
that Sht”Mv 4 18 the restriction of Sht“M 4 over ,Ad by comparing ) and - By -
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and (6.14), and the fact that A5 (k) = pex, @) Ap(k), we get a decomposition ShtM@ g =
I pex k) Sht'yy p- Therefore, both Sht/y and Sht/y, ,, are the fiber of the map Sht/y, ; —

M@ ,D
Agq — Xy over D, and they are canonically isomorphic. Hence we may replace the northwest
corner of - by Sht, MO.D> and the new diagram is Cartesian by definition. O

Lemma 6.14. (1) The diagram satisfies the conditions in . In particular, the

refined Gysin map

(id, Frar,)' : Chy(HkE 9)o — Chy—dim 1, (Shtd; 4)g

is defined.

(2) We have
[Sht¢; 4] = (id, Frpy,)' [Hk( 4] € Cha,(Shtds ).

Proof. (1) Since ‘p : Sht%,(hp) — Shty, is representable by Lemma Sht(hp) is also a
Deligne-Mumford stack. Since Sht, 4 is the disjoint union of Shtg (hp) by Lemma Shtg 4
is Deligne-Mumford, hence so is Shtg,d. The map 7 : Hk'é’d — Hy is representable because its
fibers are closed subschemes of iterated Quot schemes (fixing & < &), building &; and &/ step
by step and imposing commutativity of the maps). Therefore (7, ~,) is also representable. This
verifies the condition (1) in §A.2.10]

Since H is smooth by Lemma m the normal cone stack of the map (id, Fry,) : Hg — Hgx Hg
is the vector bundle stack Fr* T'H,, the Frobenius pullback of the tangent bundle stack of Hy.

Therefore (id, Fry,) satisfies condition in §A.2.10} It also satisfies condition of §A.2.10

by the discussion in Remark
Finally the dlmenblon condition (4)) in §A.2.10| for Hk¢ ; and Sht; ; = ], Sht¢y(hp) follow

from Lemma [6.10([2]) and Lemma We have verified all conditions in §A.2.10

(2) Take the open substack Hk(, 'y C Hk¢ 4 as in Lemma m Then Hk(;'; is smooth of pure
dimension 2d + 2r + 3g — 3. According to Lemma L the corresponding open part ShtG g s
the disjoint union of Sht°(hp), where

Shtg’o(hp) = Sht/GT(hD)kX/_Vfl(D))r.

It is easy to see that both projections Shtyy°(hp) — Sht: are étale, hence Shtyy°(hp) is smooth

of dimension 2r = dim HkG7 4 codlm(ld,FrH ), the expected dimension. ThlS implies that if

we replace Hkg)d with Hkg:;, and replace Shtg’d with Shtgfi in the diagram (|6 , it becomes

a complete intersection diagram. Therefore (id,Fryg,)'[HkZ ) s the fundamental cycle when
Ir,0

restricted to Shtg ;. Since Shte; 4 — Shtg:(; has lower dimension than 2r by Lemma m we see
that (id, Frg,)' [Hk .a) must be equal to the fundamental cycle over the whole Shtgyd. g

6.3.6. Proof of Theorem (6.6 - Con81der the diagram (6.34). Since Sht/. is a proper Deligne—
Mumford stack over k and the map ( ? is proper and representable, Sht M,p 18 also a
proper Deligne-Mumford stack over k. A simple manipulation using the functorlahty of Gysin
maps gives

L.(hp) = (04[Sht’], hp * 04[Sht}])sney = deg ((6* x 6%)'[Sht¢;(hp)]) -
Here (6# x 0*)" : Cha,(Sht&(hp))g — Cho(Shty, )q is the refined Gysin map attached to the
map 0" x 6*. By Corollary (0" x 0")'[Shtg(hp)] is the D-component of the O-cycle
(0" x 0")'[Sht¢; 4] € Cho(Sht!y o Jo= €D Cho(Shth, p)o-
DeXq(k)

Therefore, to prove (6.16)) simultaneously for all D of degree d, it suffices to find a cycle class (¥ €
Chag— g+1(HkM@ 4Jo whose restriction to Hk\ o ,NHK , , = Hk/, d|A§mA§ is the fundamental
class, and that

M@ .d
(6% x 6")'[Sht¢; 4] = (id, Fr9)'¢¥ € Cho(Shthy o 4)g
The statement of Theorem m asks for a cycle ¢ on HkY M. but we may extend the above ¢¥
arbitrarily to a (2d — g + 1)-cycle in Hk/, ;.

)a. (6.35)
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To prove (6.35]), we would like to apply Theorem to the situation of (6.21)). We check
the assumptions:

(1) The smoothness of Buny and Bung is well-known. The smoothness of Hk and HkY. follow
from Remark and Finally, by Lemma Hy, is smooth of pure dimension
2d + 3g — 3. This checks the smoothness of all members in (6.21]) except B = Hk'&d

(2) By Corollary Shty, and hence Shtf; is smooth of pure dimension 2r; by Lemma
Sht/. is smooth of pure dimension r. By Lemma Mff is smooth of pure dimension
2d — g + 1. All of them have the dimension expected from the Cartesian diagrams defining
them.

(3) The diagram satisfies the conditions in by Lemma The diagram
satisfies the conditions in by Lemma [6.17]

(4) We check that the Cartesian diagram formed by , or rather , satisfies the condi-
tions in §A.2.8} The map Shtude — M is representable because Hky, ; — Mg x My is.
In the proof of Lemma [6.11(1) we have proved that My admits a finite flat presentation,
hence so does Shtj/l g ThlS verifies the first condition in ‘- Since My is a smooth
Deligne-Mumford stack by Lemma II (1d Fer) Mg — Mg x My is a regular local
immersion, which verifies condition (|2)

Finally we consider the Cartesian dlagram forrned by (6.22] - (or equivalently, the disjoint
union of the diagrams (6.34) for all D € X4(k)). We have already showed above that Shty, ,
admits a finite flat presentatlon All members in these diagrams are Dehgne Mumford stacks

and Sht’, and Sht¢: are smooth Deligne— Mumford stacks by Lemma and Corollary
Hence the map 9“ x O satisfies the conditions (2) of §A.2.§ by Remark

Now we can apply Theorem |A.10| to the situation Let ¢V = (H’* x I1*)'[Hkg 4] €
i 28)

Chag— g+1(HkM@ 4o as defined in (6.28). Then the restrlctlon of ¢Y to HkM7d|A§mAf is the
fundamental cycle by Lemma 2). Finally,

(id, Fr )’ ¢ = (id, FrMo) (TI* x T1*)' [Hkg 4]

= (0" x 0")'(id, Fry,)' [Hk¢ 4] (Theorem [A.10)
= (0" x 0”)![Sht’é7d] (Lemma 2))

which is (6.35]). This finishes the proof of (6.16)).

6.4. Some dimension calculation. In this subsection, we give the proofs of several lemmas
we stated previously concerning the dimensions of certain moduli stacks.

6.4.1. Proof of Lemma|6.1((1). In the diagram (6.26]), when the divisors of the ¢; are disjoint
from the divisors of the horizontal maps, namely the x;’s, the diagram is uniquely determined
by its left column ¢g : &g — &) and top row. Therefore we have

Hkg?d = (Hd XBunG HkTG)|(Xd><X")°'

Since Hg is smooth of pure dimension 2d+ 3g — 3 by Lemma and the map pg : Hk; — Bung
is smooth of relative dimension 2r, we see that Hy Xpun, Hk¢ is smooth of pure dimension
2d + 2r + 3g — 3.

6.4.2. Proof of Lemmal6. 1((2). Over (X4x X")°, we have dim Hkgf’d = 2d+2r+3g—3, therefore
the generic fiber of s has dimension d + r + 3g — 3. By the semicontinuity of fiber dimensions,
it suffices to show that the geometric fibers of s have dimension < d + r + 3g — 3. We will
actually show that the geometric fibers of the map (s, po) : Hk’é,d — Xg x X" X Bung sending
the diagram (6.26)) to (D;x;; &) have dimension < d + r.

We present Hkg, 4 as the quotient of Hk;d/ Picx with p = p’;. Therefore a point in Hkg 4 is
a diagram of the form with all arrows f;, f/ pointing to the right.

Let (D;z = (x;)) € Xgx X" and &, € Bung be geometric points. For notational simplicity we
base change the whole situation to the field of definition of this point without changing notation.
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Let Hp e, be the fiber of (s,po) over (D;x;;E)). We consider the scheme H' = Hp, , o
classifying commutative diagrams

AN L R BN SN (6.36)
lfﬁo Jfﬁr
£ i &l 2 f g

where div(det ¢g) = D = div(det ¢,.) and div(det f;) = x; = div(det f/). The only difference
between H' and Hp . ¢ is that we do not require the maps ¢; for 1 <i <7 —1 to exist (they
are unique if exist). There is a natural embedding Hp , ¢ < H', and it suffices to show that

dim(H’) < d+r. We isolate this part of the argument into a separate Lemma below, because it
will be used in another proof. This finishes the proof of Lemma .

Lemma 6.15. Consider the scheme H' = Hb,%g, introduced in the proof of Lemma ,
We have dim H' = d + r.

Proof. We only give the argument for the essential case where all z; are equal to the same point
z and D = dz. The general case can be reduced to this case by factorizing H' into a product
indexed by points that appear in |D|U{z1,- -+ ,z,}. Let Gri- 4 be the iterated version of the affine
Schubert variety classifying chains of lattices Ag C Ay C Ay C--- C A, C Al = O2 in F? where
all inclusions have colength 1 except for the last one, which has colength d. Similarly let Grq 1~ be
the iterated affine Schubert variety classifying chains of lattices Ag C Af C Aj C --- C AL = O2
in F? where the first inclusion has colength d and all other inclusions have colength 1. Let
Grg4r C Grg,, be the affine Schubert variety classifying O,-lattices A C Oi with colength d+r.
We have natural maps 7 : Grir g — Grgqr and 7' : Grg1r — Grgy, sending the lattice chains
to Ag. By the definition of H’, after choosing a trivialization of £/ in the formal neighborhood
of x, we have an isomorphism

H/ = Gr1r7d XGrdJH, Grd,lr. (637)

Since 7 and 7" are surjective, therefore dim H' > dim Gryy, = d + .

Now we show dim H' < d + r. Since the natural projections Grya+» — Grir ¢ and Grya+r —
Grg,1- are surjective, it suffices to show that dim(Grya+r Xgr,,, Gria+r) < d+r. In other words,
letting m = d 4 r, we have to show that 7, : Grym — Gr,, is a semismall map. This is a very
special case of the semismallness of convolution maps in the geometric Satake equivalence, and
we shall give a direct argument. The scheme Gr,, is stratified into Y;, (0 <4 < [m/2]) where Y},
classifies those A C O2 such that O2/A =2 O, /@’ ® O, /w™ ", We may identify Y\ with the
open subscheme Y2 . C Gr,,_2; by sending A € Y} to w A C O hence dimY,} = m — 2i
and codimg,, Y, = i. We need to show that for A € Y;, dimm,,}(A) < i. We do this by
induction on m. By definition, m,,}(A) classifies chains A = Ag C Ay C --- C A, = 02 each
step of which has colength one. For ¢ = 0 such a chain is unique. For i > 0, the choices of
A, are parametrized by P!, and the map p : 7' (A) — P! recording A; has fibers 7' | (A;).
Either O2/A; = 0, /w! ™' @ O, /@, in which case dim p~1(A;) = dim7,,' | (A;) <i—1Dby
inductive hypothesis, or O2/A; 2 0, /w’ & O, /w™ ! (which happens for exactly one A1), in
which case dim p~!(A;) = dim,' ;(A;) < 4. These imply that dim 7, (A) < i. The lemma is
proved.

O

6.4.3. Proof of Lemma l) We denote HkﬁAQ,d - Hk”j\;(oo,d by 8Hku,/\/t0,d' By Lemma

and Lemma HK o, = )A(él Xpict. Bra, where B, g classifies (r + 1)-triples of divisors

(Do, D1, ,D,) of degree d on X', such that for each 1 < ¢ < r, D; is obtained from

D;_1 by changing some point 2 € D;_; to o(z}). In particular, all D; have the same image

Dy :=n(D;) € X4. We denote a point in Hky , , by 2z = (£,a, Do,---, D) € )?Zl Xpicd Br.d;

where (£, a) € X /, denotes a line bundle £ on X’ and a section « of it, together with an isomor-
phism Nm(L) 2 Ox(Dy). Therefore both Nm(«) and 1 give sections of Ox (D). The image

of z under HkMMO,d = Ag S Xy is the pair (Ox(Dyp), Nm(a) — 1). Therefore z € 8Hk"M<>’d if
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and only if div(Nm(a) — 1) contains 7 (z}) for some 1 < i < r (Nm(a) = 1 is allowed). Since
x; € D;_1, we have 7(z}) € m(D;_1) = Dy, therefore m(x}) also appears in the divisor of Nm(«).
So we have two cases: either a = 0 or div(Nm(«)) shares a common point with D.

In the former case, z is contained in Pic%, Xpict Br.a which has dimension g—1+4+d < 2d—g+1
since d > 2g.

In the latter case, the image of z in Ay lies in the subscheme C; C Xy, X picd, X4 consisting
of triples (D1, D2,y : O(Dy) = O(Dz)) such that the divisors D; and D have a common
point. There is a surjection X x (Xg_1 X pigd=1 X4-1) — C4 which implies that dimCy <
14+2(d—-1)—g+1=2d—g. Here we are using the fact that d — 1 > 2¢g — 1 to compute the
dimension of X;_1 X picd-1 X4—1. The conclusion is that in the latter case, z lies in the preimage
of C4 in Hki/[q 4» Which has dimension equal to dimCy (because Hk'y, ; — Ag is finite when
restricted to Cq C Xq Xpjca. X4), which is <2d—g < 2d—g+1.

Combining the two cases we conclude that dim 8Hk”M<>’d <2d—g+1=dim Hk#MO,d'

6.4.4. Proof of Lemmal5.9. Let x = (x1,--- ,2,) € X" be a geometric point. Let Sht;(hp)s be
the fiber of Sht,(hp) over z. When z is disjoint from |D|, o : Sht%,(hp), — Shtg, , is étale,
hence in this case dim Shtg; (hp), = r. By semicontinuity of fiber dimensions, it remains to show
that dim Sht;(hp),; < r for all geometric points  over closed points of X”. To simplify notation
we assume z; € X (k). The general case can be argued similarly.

We use the same notation as in In particular, we will use Hkg 4, and think of it as
Hkg,d/ Picy with p = p’,. Let Hp be the fiber over D of Hy — X, sending (¢ : £ — £’) to the
divisor of det(¢). Let Hk, , be the fiber of s : Hkg ; — Xg x X" over (D;z).

Taking the fiber of the diagram (6.33) over z we get a Cartesian diagram
Shtg(hp)y —— Hkp (6.38)

J J(po \Dr)
(id,Fr)

Hp—>Hp x Hp

For each divisor D’ < D such that D — D’ has even coefficients, we have a closed embedding
Hp < Hp sending (¢ : € — ') € Hp to £ 5 & < (LD - D')). Let Hp<p: be the
image of this embedding. Also let Hp pr = Hp <p — Upr<pHp <pr. Then {Hp p'} give a
stratification of Hp indexed by divisors D’ < D such that D — D’ is even. We may restrict the
diagram (6.38) to Hp p x Hp pr < Hp x Hp and get a Cartesian diagram

Shtg(hp)pr e ——— Hkp pr (6.39)

l J(po,pr)
(id,Fr)

Hp pr ——— Hp pr X Hp pr

We will show that dim Sht¢(hp)pr , < r for each D’ < D and D — D’ even.

The embedding Hp — Hp above restricts to an isomorphism Hp/ ps = Hp ps. Similarly we
have an isomorphism Hk},, p, . = Hk}, p, , sending a diagram of the form to the diagram
of the same shape with each £/ changed to £'(3(D — D’)). Therefore we have Shtg(hp/)pr s =
Shte(hp)pr 2, and it suffices to show that the open stratum Shtg(hp)p , has dimension at most
r. This way we reduce to treating the case D’ = D.

Let D =D +z=D+x1+ -+ € X414, be the effective divisor of degree d + r. Let
BunG,E be the moduli stack of G bundles with a trivialization over D. A point of BunG,ﬁ is
apair (&',7: &5 = (9]25) (where £’ is a vector bundle of rank two over X) up to the action of
Picx (D) (line bundles with a trivialization over D). There is a map h : Bung, 5 = Hp,p sending
(&',7) to (¢ : £ = &) where & is the preimage of the first copy of Op under the surjective map
E - &5 (’)125 — 0%. Let Bp C ReskOD G = PGLy(Op) be the subgroup stabilizing the
first copy of 0%, and let Bp C ReskoB G = PGL3(Op) be the preimage of Bp. Then h is a
ED—torsor. In particular, Hp p is smooth, and the map h is also smooth. Since smooth maps
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have sections étale locally, we may choose an étale surjective map w : Y — Hp p and a map
s:Y — BunGﬁ such that hs = w.

Let W = Hk, p . Xu, ,, Y (using the projection v, : Hk, , ., — Hp p). We claim that the
projection W — Y is in fact a trivial fibration. In fact, let T be the moduli space of diagrams
of the form with £/ = 0% and &, = Ox(—D) @ Ox and ¢, is the obvious embedding
&, < E!. In such a diagram all & and & contain E.(—D), therefore it contains the same amount
of information as the diagram formed by the torsion sheaves & /E.(—D) and &l &!(~D). For
a point y € Y with image (¢, : & — &) € Hpp, s(y) € Bun, p gives a trivialization of
&}l 5. Therefore, completing ¢, into a diagram of the form is the same as completing the
standard point (£, = Ox(—D) ® Ox — 0%) € Hp p into such a diagram. This shows that
W =Y xT. We have a diagram

wXxid

u w = YXTHHDVDXT

Shtg(h[))[)7£ E— Hk;),D,g

J{ l(’m,’yr)
(id,Fr)

Hpp—HppxHpp

where U is defined so that the top square is Cartesian. The outer Cartesian diagram fits into
the situation of |16, Lemme 2.13], and we have used the same notation as in loc.cit, except
that we take Z = Hp p. Applying loc. cit., we conclude that the map U/ — T is étale. Since
w: W — Hkp, p , is étale surjective, so is u : U — Sht(hp)p .. Therefore Shte; (hp)p . is étale
locally isomorphic to T, and in particular they have the same dimension.

It remains to show that dim 7" < r. Recall the moduli space H' = Hb%g; introduced in the
proof of Lemma classifying diagrams of the form (6.36). Here we fix £, = O%. Let T’
be subscheme of H' consisting of diagrams of the form (6.36)) where (¢, : . — £/) is fixed to
be (£, = Ox(—D) ® Ox — O%). Then we have a natural embedding 7" < 7", and it suffices
to show that dim 7T’ < r. Again we treat only the case where D and z are both supported at
a single point # € X. The general case easily reduces to this by factorizing T” into a product
indexed by points in |D|U {x1, -, 2.}

Let Gry C Grg, be the affine Schubert variety classifying lattices A C O2 of colength d. Let
Grg C Grg be the open Schubert stratum consisting of lattices A C O such that 02 /A = O, /w?
(w, is a uniformizer at ). We have a natural projection p : H — Gry sending the diagram
to A := Elspeco, < Ellspeco, = O2. Then T’ is the fiber of p at the point A = @wl0, @ O,.
Let HY = p_l(Grg). There is a natural action of the positive loop group L} G on both H' and
Grg making p equivariant under these actions. Since the action of L} G on Grg is transitive, all
fibers of p over points of Grg have the same dimension, i.e.,

dim 7" = dim HY — dim Grj = dim HY — d. (6.40)

By Lemma dim H' = d + r. Therefore dim HY = d +r and dim 7" < r by (6.40). We are
done.

7. COHOMOLOGICAL SPECTRAL DECOMPOSITION

In this section, we give a decomposition of the cohomology of Shty under the action of the
Hecke algebra 2, generalizing the classical spectral decomposition for the space of automorphic
forms. The main result is Theorem which shows that H?:T(Shtg,g,(@g) is an orthogonal
direct sum of an Eisenstein part and finitely many (generalized) Hecke eigenspaces. We then use
a variant of such a decomposition for Shtg; to make a decomposition for the Heegner-Drinfeld
cycle.

7.1. Cohomology of the moduli stack of Shtukas.
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7.1.1. Truncation of Bung by index of instability. For a rank two vector bundle £ over X, we
define its index of instability to be
inst(€) := max{2deg £ — deg £},

where £ runs over line subbundle of £. When inst(£) > 0, £ is called unstable, in which case
there is a unique line subbundle £ C & such that deg £ > %deg E. We call this line subbundle
the maximal line subbundle of £. Note that there is a constant ¢(g) depending only on the genus
g of X such that inst(€) > ¢(g) for all rank two vector bundles £ on X.

The function inst : Buny — 7Z is upper semi-continuous, and descends to a function inst :
Bung — Z. For an integer a, inst ™' ((—o0, a]) =: Bunéa is an open substack of Bung of finite
type over k.

7.1.2. Truncation of Shtg by index of instability. For Shty, we define a similar stratification
by the index of instability of the various &. We choose u as in and present Shty, as
Shth / Picx (k).

Consider the set D of functions d : Z/rZ — Z such that d(i) — d(i — 1) = £1 for all . There
is a partial order on D by pointwise comparison.

For any d € D, let Sht4"<? be the open substack of Sht% consisting of those (&;;z;; fi) such
that inst(&;) < d(i). Then each Sht4=% is preserved by the Picy (k)-action, and we define
Shté’gd = Shtg’gd/ Picx(k), an open substack of Sht¢ of finite type. If we change u to p/,
the canonical isomorphism Shtf, = Sht‘é, in Lemma preserves the G-torsors &;, therefore the
open substacks Sht’é’gd and Sht’é/ <d correspond to each other under the isomorphism. This
shows that Shtg’gd is canonically independent of the choice of i, and we will simply denote it
by Sht5?.

In the sequel, the superscript on Shts will be reserved for the truncation parameters d € D,
and we will omit r from the superscripts. In the rest of the section, Shtg means Shtg,.

Define Shté = Shtgd — Ud/<dSht§d/. This is a locally closed substack of Shtg of finite type
classifying Shtukas (&;;2;; fi) with inst(&;) = d(i) for all i. A priori we could define Sht¢, for
any function d : Z/rZ — Z; however, only for those d € D is Shth nonempty, because for
(&; 5 fi) € Shth, inst(E;) = inst(&_1) + 1. The locally closed substacks {Sht&}sep give a
stratification of Shtg.

7.1.3. Cohomology of Shtg. Let ﬂéd : Shtéd — X" be the restriction of g, and similarly define
Wéd and W%. For d < d’ € D we have a map induced by the open inclusion Shtéd — Shtéd :

ld,d’ * Rﬂ'é?,@g — R?Té:i, Qg
The total cohomology H(Shtg ®j k) is defined as the inductive limit

H (Shtg @ k) := lim HE (Shtg? @ k) = lim H* (X" @, k, Rrg Q).
deD deD
7.1.4. The action of Hecke algebra on the cohomology of Shtg. For each effective divisor D of
X, we have defined in §5.3.1] a self-correspondence Shtg(hp) of Shtg over X7.

For any d € D, let =“Shtg(hp) C Shtg(hp) be the preimage of Shtgd under . For a point
(& — &!) of =¥Shte(hp), we have inst(£;) < d(i), hence inst(E!) < d(i) + deg D. Therefore
the image of SdSh‘cg(hD) under 7 lies in Shtg‘”degD. For any d' > d + deg D, we may
view =?Shtg(hp) as a correspondence between Shté.d and Shtéd/ over X”. By Lemma
dim Shtg(hp) = dimShtg = 2r, the fundamental cycle of <*Sht(hp) gives a cohomological

correspondence between the constant sheaf on Shtéd and the constant sheaf on Shtéd/ (see

§A.4.1)), and induces a map
C(hp)aa : RT51Qe — Rﬁéf{@z- (7.1)

Here we are using the fact that Sd% : S9Shtg (hp) — Shtgd is proper (which is necessary for the

construction (A.25)), which follows from the properness of p : Shtg(hp) — Shtg by Lemma
5%
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For any e > d and ¢’ > e +deg D and €’ > d’, we have a commutative diagram

C(hD) ’ ’

R <d d,d R <d
‘(;‘ l@ !

N ¢ 1(;7. @Z

J{Ld,e lbd/’e/

C(hD)e et /
<e ee <e
RWC_:,!QZ RT@,! Qe

which follows from the definition of cohomological correspondences. Taking Hi(X " @ k,—) and
taking inductive limit over d and e, we get an endomorphism of H},(Shtg ®y, k)
C(hp) : Hi(Shtg @y k) = lim H* (X" @, k, Rr51Q0)
deD ’
lim C(hp) g q _ , _
= Y B (X7 @k, Rrst Qp) = HE(Shtc @ F).
d’eD
The following result is a cohomological analog of Proposition [5.10

Proposition 7.1. The assignment hp — C(hp) gives a ring homomorphism for each i € Z
C : # — End(H!(Shtg @y k)).

Proof. The argument is similar to that of Proposition for this reason we only give a sketch
here. For two effective divisors D and D', we need to check that the action of C'(hphp) is the
same as the composition C(hp) o C(hpr).

Let d,d! and d’ € D satisty d' > d + deg D’ and d’ > d' + deg D, then the map

T /
C(hp)arar © C(hp)gar : R Qe — Ra5t Qe — R Q

is induced from a cohomological correspondence ¢ between the constant sheaves on Shtéd and
on Shtéd' supported on SdSh‘cg(hD) * SUlTSh‘cg(hD/) = SdSh‘cG(hD) XF Shtg. 5 SdTShtg(hD,);
. T -
ie., ¢ € HBM(S9Shtg(hp) * =% Shtg(hp) @k k).

On the other hand, the Hecke function hphp: is a linear combination of hg where E < D+ D’
and D+ D’ — F is even. Since d € D and d’ > d + deg D + deg D’, the map

C(hphp)aa : Rrg{Qr — Rrg| Q

is induced from a cohomological correspondence £ between the constant sheaves on Shtéd and
on Shté.d, supported on the union of <?Sht¢(hg) for E < D + D’ and D 4+ D' — E even, i.e.,
supported on =“Shtg(hpp). In other words, & € HEM(S9Sht(hpy pr) @4 k).

There is a proper map of correspondences 8 : <Sht (hp) * SdTShtg(hD/) — =Shtg(hpyp),
and the action of C'(hp) gt 40 C(hp)g,q4t is also induced from the class 6,¢ € HBM(SSht (hpip) @k k),
viewed as a cohomological correspondence supported on <?Sht (hpp). Let U = X —|D|—|D’|.
It is easy to check that |y = 0.(|y- using that, over U", the correspondences Sht(hp), Sht(hp)
and Sht(hp pr) are finite étale over Shtg. By Lemmal5.9l =4Shte(hpy p) — =Shte (hpip)|u-
has dimension < 2r, therefore & = 6,¢ holds as elements in HPM(S?Shtg(hpyp/) @k k), and
hence O(hDhD’)d,d/ = C(hD)dT7d/ o O(hD/)d,dT- Applying H*(Xr Rk E,—) and taking induc-
tive limit over d and d’, we see that C(hphp/) = C(hp) o C(hps) as endomorphisms of
H(Shtg ®¢ k). O
7.1.5. Notation. For a € H!(Shtg ®j k) and f € 2, we denote the action of C(f) on « simply
by f*a € H:(Shtg ®4 k).

7.1.6. Cup product gives a symmetric bilinear pairing on H}(Shtg ®y k)
(—,—) : H.(Shtg ® k) x Hi""*(Shtg @ k) — HE"(Shtg @ k) = Qe(—2r).
We have a cohomological analog of Lemma [5.12

Lemma 7.2. The action of any f € S on H’(Shtg ® k) is self-adjoint with respect to the cup
product pairing.
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Proof. Since {hp} span JZ, it suffices to show that the action of hp is self-adjoint. From the

construction of the endomorphism C(hp) of H:(Shtg ® k), we see that for o € H.(Shtg ® k)

and 8 € HY % (Shtg ®y, k), the pairing (hp %, 3) is the same as the pairing ([Shtg(hp)], P*au

?*ﬂ) (i.e, the pairing of PrauPrB € HY"(Shte(hp) @k k) with the fundamental class of

Sht(hp)). Similarly, («, hp*/3) is the pairing ([Shta(hp)], PFBUT e ). Applying the involution

7 on Shtg(hp) constructed in the proof of Lemman that switches the two projections ? and
, we get

(Isntc(ho)], 5 a U F*8) = ([Shta (ko)) 58U T a)

which is equivalent to the self-adjointness of hp: (hp * «, 8) = (a, hp * B). O

7.1.7. The cycle class map gives a Q-linear map (see §A.1.5)
cl: Chc7i<ShtG)Q — Hir_Qi(ShtG R E)(?T —1).
Lemma 7.3. The map cl is € -equivariant for any i.

Proof. Since {hp} span .5, it suffices to show that cl intertwines the actions of hp on Ch, ;(Shts)
and on HY "% (Shtg @y k)(2r —4). Let ¢ € Ch,;(Shtg). By the definition of the hp-action on
Ch, Z(Shtg) hp*( € Ch, ;(Shtg) is pry, ((Pri¢) ‘Shte xShte ( p ? )«[Shte(hp)]). Taking its cycle
class we get that cl(hp * ¢) € H¥" 72 (Shtg @4 k)(2r — i) can be identified with the class

T +(P*cl(¢) N [Shte(hp)]) € Hay(Shtg ®y k)(—i)

under the Poincaré duality isomorphism H2" 2/ (Shtg @y, k) 2 Ha; (Shte @y k) (—2r).
On the other hand, by m the action of hp on H2" "2/ (Shtg @4 k) is the composition

P

Shtc (hD )]
_—

HA % (Shtg @k k) ~— H" "% (Sht (hp) @4 k)

Ha; (Sht(hp) @4 k)(—2r) EN Hy;(Shtg @y k)(—2r) = HY "% (Shtg @ k).

Therefore we have cl(hp * ¢) = hp * cl({). O

7.1.8.  'We are most interested in the middle dimensional cohomology
Vo, := HY (Shtg ®x k, Q¢)(r).

This is a Q-vector space with an action of 7. In the sequel, we simply write V' for Vg,.

For the purpose of proving our main theorems, it is the cohomology of Shty, rather than
Sht that matters. However, for most of this section, we will study V. The main result in this
section (Theorem provides a decomposition of V' into a direct sum of two -modules, an
infinite-dimensional one called the Eisenstein part and a finite-dimensional complement. The
same result holds when Shtg is replaced by Shty, with the same proof. This will mention this
in the final subsection §7.5] and use it to decompose the Heegner-Drinfeld cycle.

7.2. Study of horocycles. Let B C G be a Borel subgroup with quotient torus H = G,,. We
think of H as the universal Cartan of GG, which is to be distinguished with the subgroup A of G.
We shall define horocycles in Shtg corresponding to B-Shtukas.

7.2.1. Bung. Let B C GLj be the preimage of B. Then Bungp classifies pairs (£ < &) where £
is a rank two vector bundle over X and £ is a line subbundle of it. We have Bung = Bung / Picx
where Picy acts by simultaneous tensoring on £ and on £. We have a decomposition

Bung = H Bun’
neZ

where Buny = Bun/Picx, and Bun’ is the open and closed substack of Bung classifying
those (£ < &) such that 2deg £ — deg & = n.



58 ZHIWEI YUN AND WEI ZHANG

7.2.2. Hecke stack for B. Fix d € D. Choose any p as in & Consider the moduli stack
Hk%’d whose S-points classify the data (£; — &;; xy; f;) where

(1) A point (&;z4; fi) € HKL(S).

(2) Foreach i =0,---,r, (L; = &) € Bun%(i) such that the isomorphism f; : 5i—1|X><S—Fz1 o
5i|XX5—Fm7~, restricts to an isomorphism o, : ,Ci_1|X><S_F$i o £i|XXs_p”.

We have (r 4+ 1) maps p; : Hk%’d — Bun%(i) by sending the above data to (£; — &), i =

0,1,--+,r. We define Sht%’d by the Cartesian diagram

S Hlz (7.2)
J/ l(pﬂva“)
id,
Bun%((]) & Bunrgo) X Buncé(o)

In other words, Sht%’d classifies (L£; < &;;ay; fi;1), where (£; — &;;24; f;) is a point in Hk%’d
and ¢ is an isomorphism &, = 7&; sending L, isomorphically to " L.
We may summarize the data classified by Sht%’d as a commutative diagram

0 Lo & M 0 (7.3)
| | |
| oh | f1 %
4 4 4
| | |
| a;, I frr I a;/
4 4 4
0 L, &, M, 0
L/ll Lll ”ll
0 Tﬁo 7'50 TMO 0

Here we denote the quotient line bundle &;/L; by M,;.

7.2.3. B-Shtukas. There is an action of Picx (k) on Sht%’d by tensoring each member in ([7.3) by
a line bundle defined over k. We define

Shtf := Sht’o?/ Picx (k).

Equivalently we may first define Hk);* := Hk%’d / Picx and define Sht% by a diagram similar to
(7.2), using Hk% and Bun‘é(o) instead of Hk%’d and Bun%(O). The same argument as Lemma

shows that Hk’g’d is canonically independent of the choice of u and these isomorphisms preserve
the maps p;, hence Shtjig is also independent of the choice of u.

7.2.4. Indexing by degrees. In the definition of Shtukas in §5.1.4] we may decompose Sht! ac-
cording to the degrees of £;. More precisely, for d € D, we let u(d) € {£1}" be defined as

pi(d) = d(i) — d(i — 1). (7.4)

Let Sht‘,iL C Shtg(d) be the open and closed substack classifying rank n Shtukas (&;;---) with
deg&; = d(i).

Consider the action of Z on D by adding a constant integer to a function d € D. The
assignment d — p(d) descends to a function D/Z — {£1}". For a Z-orbit 6 € D/Z, we write
u(d) as p(6) for any d € §. Then for any § € D/Z, we have a decomposition

Shtt(® = T Shts (7.5)
ded

In particular, after identifying H with G,,,, we define Shti[ to be Shtf for any d € D.
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7.2.5. The horocycle correspondence. From the definition of Sht‘é,7 we have a forgetful map
pa : St} — Shtg

sending the data in ([7.3]) to the middle column.
On the other hand, mapping the diagram (7.3) to (£; @ M; ' x;0) @ of ;1 @ V") we get a
morphism
qq : Sht% — Sht?,.
Via the maps pg and ¢4, we may view Sht% as a correspondence between Shtg and Sht}i{ over
X
Sht%, (7.6)

2N

Shtg L Sht?,

A

XT

Lemma 7.4. Let DT C D be the subset consisting of functions d such that d(i) > 0 for all i.
Suppose d € DT. Then the map py : ShtdB — Shtg has image Shté and induces an isomorphism
Sht%, = Shtd,.

Proof. We first show that pg(Sht%) C Shtl,. If (£; < &;4; fi;1) € Sht (up to tensoring with
a line bundle), then deg £; > 1(deg&; +d(i)) > % deg&;, hence L; is the maximal line subbundle
of &. Therefore inst(&;) = d(i) and (&; z;; fi) € Shtd.

Conversely, we will define a map Sht?, — Sht%. Let (&;; x4; fi;¢) € Sht%(S), then the maximal
line bundle £; — &; is well-defined since each &; is unstable.

We claim that for each geometric point s € S, the generic fibers of L;|x s} map isomor-
phically to each other under the rational maps f; between the &;’s. For this we may assume
S = Spec(K) for some field K and we base change the situation to K without changing no-
tation. Let L] ; C &1 be the line bundle obtained by saturating £; under the rational map
Jiv1 2 & - &1 Then d'(i + 1) := 2L}, | —deg&iy1 = d(i) £ 1. If d'(i + 1) > 0, then
L, is also the maximal line subbundle of &1, hence £}, ; = Li11. If d'(i +1) < 0, then
we must have d(i) = 1 and d'(i + 1) = 0. Since d € Dt, we must have d(i + 1) = 2. In this
case the map L£j, | @ L;41 — &£41 cannot be injective because the source has degree at least
1(deg&ip1 + d'(i+1)) + S(deg &1 +d(i + 1)) = deg &1 + 1 > deg Ei11. Therefore L], | and
L;+1 have the same generic fiber, which is impossible since they are both line subbundles of &; 1
but have different degrees. This proves the claim.

Moreover, the isomorphism ¢ : &, = "&; must send £, isomorphically onto "Ly by the
uniqueness of the maximal line subbundle. This together with the claim above implies that
(Li;24 filc,stle,) is a rank one sub-Shtuka of (&;;x;; fi;¢), and therefore (£; — &y fist)
gives a point in Shtcll;. This way we have defined a map Sht‘é — ShtdB. It is easy to check that
this map is inverse to pg : Sht, — Shtd,. O

Lemma 7.5. Letd € D be such that d(i) > 2g—2 for alli. Then the morphism qq : Sht% — Sht%;
is smooth of relative dimension r/2, and its geometric fibers are isomorphic to [GZ/Q/Z] for some

finite étale group scheme Z acting on GZ/Q via a homomorphism Z — GZ/Q.

Proof. We pick p as in to realize Sht as the quotient Sht’/Picx (k), and Sht$ as the
quotient Sht%’d/ Picx (k).

In the definition of Shtukas in we may allow some coordinates y; of the modification
type p to be 0, which means that the corresponding f; is an isomorphism. Therefore we may
define Sht! for more general p € {0,41}" such that > u; = 0.

We define the sequence p/(d) = (g} (d), -, pr.(d)) € {0,£1}" by

pi(d) = 3 (sem(yu) + d(3) — d(i — 1))
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We also define p/’(d) = (pf(d),--- , ul/(d)) € {0,£1}" by

() = 5 (smn(ne) — (i) + (i — 1)) = san(iu) — i)

We write p/(d) and p”(d) simply as p/ and p”. Mapping the diagram (7.3) to the rank one
Shtuka (L;;;;a4;¢") defines a map Sht%’d — Sht¥" ; similarly, sending the diagram (7.3) to the

rank one Shtuka (M;; z;; o ;") defines a map Sht%’d — Sht’f//. Combining the two maps we get
Ga + Sht" — Shtt x o Shtf”

Fix a pair Lo := (Li;25;0;0) € Sht‘f/(S) and Mg := (My;z4;0f50") € Sht’f”(S). Then the
fiber of ¢4 over (L; ®./\/l;1; Xijeer) € Shtﬁlq(S) is isomorphic to the fiber of gz over (Lo, M,), the
latter being the moduli stack Egsni(Me, Le) (over S) of extensions of M, by L, as Shtukas.

Since deg(L;)—deg(M;) = d(i) > 2g—2, we have Ext' (M, £;) = 0. For each i, let E(M;, ;)
be the stack classifying extensions of M; by £;. Then E(M;, L;) is canonically isomorphic to
the classifying space of the additive group H; := Hom (M, £;) over S. For eachi=1,--- ,r, we
have another moduli stack C; classifying commutative diagrams of extensions

0 Li_q Ei—1 M1 ——0
| | |
| o | fi | ol
" " +

Here the left and right columns are fixed. We have four cases:

(1) When (u, ) = (1,0), then o} : £;_1 — L; with colength one and ¢ is an isomorphism.
In this case, the bottom row is the pushout of the top row along o, hence determined by
the top row. Therefore C; = E(M;_1,L;-1) in this case.

(2) When (p}, /) = (—1,0), then o' : £; <= £;_; with colength one and o/ is an isomorphism.
In this case, the top row is the pushout of the bottom row along a;_l, hence determined by
the bottom row. Therefore C; = E(M;, L;) in this case.

(3) When (pf, pf') = (0,1), then o} is an isomorphism and o : M;_; — M, with colength one.
In this case, the top row is the pullback of the bottom row along o}, hence determined by
the bottom row. Therefore C; = E(M;, L;) in this case.

(4) When (p}, /) = (0, —1), then o/ is an isomorphism and o~ : M; < M;_; with colength
one. In this case, the bottom row is the pullback of the top row along aé’fl, hence determined
by the top row. Therefore C; = F(M;_1,L;_1) in this case.

From the combinatorics of p/ and u” we see that the cases (1)(4) and (2)(3) each appear r/2

times. In all cases, we view C; as a correspondence

E(Mifhﬁifﬂ — C’z — E(M“[,z)

then C; is the graph of a natural map E(M;_1,L;—1) — E(M;, L;) in cases (1) and (4) and
the graph of a natural map E(M;, £;) = E(M;_1,L;_1) in cases (2) and (3). We see that C;
is canonically the classifying space of an additive group scheme ; over S, which is either H;
in cases (1) and (4) or H; in cases (2) and (3).

Consider the composition of these correspondences

C(Ma, Le) = C1 Xpm, 1) C2 XB(Ma.L£2) " XE(M,_1,£,_1) Cr-
This is viewed as a correspondence
E(Mg, L) + C(Mae,Le) = E(M,, L) =2 E(" My,  Ly).

To compute C(M,, Lo) more explicitly, we consider the following situation. Let G be a group
scheme over S with two subgroup schemes G; and Gs. Then we have a canonical isomorphism
of stacks over S

B(G1) XB(Q) B(G2) = G1\G/G>.
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Using this fact repeatedly, and using that E(M;, £;) = B(H;) and C; = B(;), we see that
QQ Qg Qrfl
O(M.,ﬁ.) ggl\Hl X H2 X e X Hr—l/Qr- (77)

Q;
where H; 1 X H; means dividing by the diagonal action of ; on both H; ; and H; by trans-

lations. Let
Ql Qg Qr—l QT
A(Me,Le):=Hy x Hy X --- x H,_1 X H,

Since (; is always the smaller of H;,_; and H;, A(Ma., L) is an additive group scheme over S.
Then we have

C(Ma, L) = H\A(M,, Le)/H,.. (7.8)
Note that H,. = " Hy is the pullback of Hy via Frg. We have a relative Frobenius map over S

Froy /s

Fr/s : E(Mo, Lo) = B(Hy) B(H,) = E(M;, L;).
By the moduli meaning of Egpi(Ma, Le), we have a Cartesian diagram of stacks

ESht(M07£0) C(M.,ﬂ.)

‘L (id,Fr, ) J

E(Mg, Ly) ———— E(Mg, Ly) x E(M,, L)

Using the isomorphism (|7.8])), the above diagram becomes
Esp (M, Lo) ———— Ho\A(M,, Lo)/H. (7.9)

l (idaF\rHO/S) J’

B(H,) B(H) x B(H,)

This implies that
Egnt(Ma, Lo) = [A(Me, Lo)/ (id,Frp, ) Ho (7.10)

where Hy acts on A(M,, L,) via the embedding (id, Fry, ,5) : Ho — Ho x H, and the natural
action of Hy x H, on A(M,,L,). Since A is an additive group scheme over S, hence smooth
over S, the isomorphism ((7.10) shows that Fgpi(Mae, Le) is smooth over S.

To compute the dimension of A(M,, L, ), we compare dim €; with dim H;. We have dim H; —
dimQ; =1 in cases (1) and (4) and dim H; — dim Q; = 0 in cases (2) and (3). Since (1)(4) and
(2)(3) each appear r/2 times, we have

dim A(Ma, £a) = dim Hy + > _(dim H; — dim Q;) = dim Hy + /2.
i=1
This implies Esn(Mea, L) is smooth of dimension r/2.

When S is a geometric point Spec(K), Hy and H, can be viewed as subspaces of the K-vector
space A := A(M,, L,), and ¢ = Fry,,x : Hy — H, is a morphism of group schemes over K.
Choose a K-subspace L C A complement to Hy, then L = GZ/ 2 as a group scheme over K.
Consider the homomorphism

a:HyxL— A
given by (z,y) — x + y + ¢(z). By computing the tangent map of « at the origin, we see that
« is étale, therefore Z = ker(a) is a finite étale group scheme over K. We conclude that in this
case the fiber of ¢4 over S = Spec(K) is

Esne(Ma, Lo) 22 [A/ ga,p)Ho) = [L/Z) = [GL/?/Z].
O

Corollary 7.6. Suppose d € D satisfies d(i) > 2g — 2 for all i, then the cone of the map
Rr54Q, — Rwéf@g is isomorphic to W?I,IQK[—T](—T/Q), which is a local system concentrated in
degree r.
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Proof. The cone of Rﬂ'éd‘(@[ — ngcf(@g is isomorphic to Rwé 1Q¢, where wg : Shté — X". By
Lemma [7.4}, for d € DT, we have R?TG 1Q = R7TB 1Q¢. By Lemma [7.5] g4 is smooth of relative
dlmensmn r/2, the relative fundamental cycles gives Rgq Q¢ — R” d,g(@g[ r] = Qe[—r](—1/2),
which is an isomorphism by checking the stalks (using the description of the geometric fibers of
g4 given in Lemma. Therefore RW%)!Qg & RW?IJQg[*T’K*T/Q) Finally, 7% : Sht, — X7 is
a Pic% (k)-torsor by an argument similar to Lemma Therefore RTFHy!Qg is a local system
on X", and R ,Qp = 7 ,Qe[—r](—7/2) is a local system shifted to degree . O

7.3. Horocycles in the generic fiber. Fix a geometric generic point 77 of X". For a stack X
over X", we denote its fiber over 77 by X7. Next we study the cycles in Shtg 7 given by images
of Sht .

Lemma 7.7 (Drinfeld |6, Prop 4.2] for » = 2; Varshavsky |21, Prop 5.7] in general). For each
d €D, the map pay : Sht%ﬁ — Shtg 5 is finite and unramified.

7.3.1. The cohomological constant term. Taking the geometric generic fiber of the diagram ,
we view ShtdBﬁ as a correspondence between Shtg 7 and Shtﬁl{ﬁ. The fundamental cycle of Sht; -
(of dimension r/2) gives a cohomological correspondence between the constant sheaf on Shtg 5
and the shifted constant sheaf Q[—r](—r/2) on Sht?{ﬁ. Therefore [Sht%ﬁ] induces a map

B 77] qd,m,

r Pa ul
va : HL(Shtg 7)(r/2) = HL(Sht ) (r /2) Ho(Sht$ ) —= Ho(Sht% ). (7.11)
Here we are implicitly using Lemma to conclude that pg 5 is proper, hence pzﬁ induces a
map between compactly supported cohomology groups.
Taking the product of ~4 for all d in a fixed Z-orbit 6 € D/Z, using the decomposition ({7.5)),
we get a map
T d ~ 9
75 - HL(Sht7)(r/2) — [ | Ho(Shtf; ;) = HO(Sht} ). (7.12)
deé
When r = 0, (7.12) is exactly the constant term map for automorphic forms. Therefore we may
call 5 the cohomological constant term map.

The RHS of (7.12) carries an action of the Hecke algebra % = ®ZG‘X‘Q[tw7t;1]. In fact,

Sht‘f’(ﬁé) is a Picy (k)-torsor over Spec k(7). The action of 5% on Sht; ‘i) is via the natural map

Sy = QDiv(X)] — Q[Picx (k)].

Lemma 7.8. The map s in (7.12) intertwines the J€-action on the LHS and the ¢ -action
on the RHS via the Satake transform Sat : J€ — 7.

Proof. Since J is generated by {h;},c|x| as a Q-algebra, it suffices to show that for any z € | X]|,
the following diagram is commutative

HY (Sht,7) ——— > [T4es Ho(Sht}; ;) (7.13)

Jc(hm) ltﬁqmtzl

H; (Shtg,y) ———— [14es Ho(Sht 5)

Let U = X — {«}. For a stack X over X", we use Xyr to denote its restriction to U”. Similar
notation applies to morphisms over X".

Recall that Shtg y-(S) classifies (&;;x;; fi;¢) such that z; are disjoint from z. Hence the
composition ¢ o fr--- f1 : & --» "& is an isomorphism near z. In particular, the fiber & , =
&ol Sx{z} carries a Frobenius structure &, = "&o,z, hence & , descends to a two-dimensional
vector space over Spec k; (k, is the residue field of X at x) up to tensoring with a line. In other
words, there is a morphism w, : Shtg yr — B(G(ky)) sending (z;; &;; fi;¢) to the descent of &
to Spec k;. In the following we shall understand that & , is a 2-dimensional vector space over
k., up to tensoring with a line over k.

The correspondence Shtg (h;)yr classifies diagrams of the form where the vertical maps
have divisor . Therefore, if the first row in is fixed, the bottom row is determined by
&y, which in turn is determined by the line e, = ker(& . — &) ,) over k.. Recall that % and
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7 Shtq (h,;) — Shtg are the projections sending (5.5) to the top and bottom row respectively.
Then we have a Cartesian diagram

Shtg (he)yr — B(B(k.))

=

Shte, e ——— B(G(kz))

where B C G is a Borel subgroup. We have a similar Cartesian diagram where ?Ur is replaced
with P y-. In particular, - and Py~ are finite étale of degree q, + 1.

Let Sht%(h,) be the base change of p along Sht% — Shtg. Let p g : Sht (hy)yr — Sht%ﬂr
be the base-changed map restricted to U". A point (£; < &;x;; fi;t) € Shtjlg gives another line
Uy = Loy C &y Therefore, for a point (£; — & — E/;---) € Sh‘c}ig(hgg)hjr7 we get two lines £,
and e, inside & ,. In other words we have a morphism

w : St (hy)ur — B(B(ks)) X (k) B(B(kz)) = B(ko)\G(kz)/B(ks)

This allows us to decompose Sht% (hg)ur into the disjoint union of two parts
Shtf (hy)ur = Cy ] Co

where C} is the preimage of the unit coset B(k,)\B(ky)/B(k;) and Cs is the preimage of the
complement.

For a point (£; — & — &;--+) € C1, &/ is determined by e, = ¢, = Lo ,. Therefore the map
ﬁBJ = ?B‘Cl :C1 — Sht%)Ur is an isomorphism. In this case, &/ is obtained via the pushout of
L; — &; along L£; — L;(x). This way we get an exact sequence 0 — L;(x) — &(x) = M; =0
where M,; = &;/L;. We define a map ppi: Cy — Sht‘,?:gﬁ sending (£; — & — &l;--+) € C1 to
(Li(z) < &l;---). Since pp 1 is an isomorphism, C; viewed as a correspondence between Sht}éﬂr
and Sht‘?gr can be identified with the graph of the map ¢, := pB {0 § ShtB ur = ShtdBJrgﬁ.
Note that py is a finite étale map of degree g,. We have a commutatlve dlagram

Shtdy e 9 T(t,) —— Shtd e
T% T T%de
P51
Sht? ;- @ O = T(pa) 2 Sht s
J{Pd J J{Pdww
Shtes e P Shtes(ha)ur ——s Shtey e

Here T'(t;) is the graph of the isomorphism Sht?{VU,v — Sht?;:g?ﬁ given by tensoring the line
bundles with O(z). Therefore the action of [C;] on the compactly supported cohomology of the
generic fiber of Sht$ fits into a commutative diagram

[Sht ]

HJ(Sht(, ) (r/2) ———— Ho(Sht{ ) — Ho(Sht, ) (7.14)
l[ol] sz,* }Z
Qs dtda [She 5] dtd, d+d
H (Sht 579+) (r /2) ————— Ho (Sht5¢*) —— Ho(Sht{2+)

Similarly for Cs, we deﬁne a morphism pg 3 pBs:Co — ShtB e sendlng (Li =& — &) ey
to (L; = &E---). Then 754 DB is an isomorphism while p B2=1p B|02 1s finite étale of degree ¢,
Therefore Cy viewed as a correspondence between Shtf B,ur and Sht%, UT can be identified with
the transpose of the graph of the map ¢, : Sht%’g’ﬁ — Sht¢ p,ur defined previously. We also have
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a commutative diagram

—1
id ty

Shtf; r r(t;1) Sht{;
T% T T(Zdalac
—
Sht%, ;7 UE Co = "T(p,) =2 Sht{,
de J lpddw

The action of [C5] on the compactly supported cohomology of the generic fibers of ShtdB fits into
a commutative diagram

[Shtf -]

HJ (Sht, ) (r/2) Hy (Sht% ;) — Ho(Sht{ ) (7.15)
J[CZ]_WZ thglwz,* qultz
d—d [Shtf 5" d—d d—d
HZ(ShtBjﬁL)(T/Z) : Ho(ShtBjﬁx) — Ho(ShtHjﬁw)

The appearance of ¢, in the above diagram is because the degree of ¢, is ¢,. Combining ([7.14]
and (7.15) we get a commutative diagram

[Tues He(Sht 5)(r/2) —— [Tses Ho(Shtf ) (7.16)

J[Cl]"'[Cz] Jtﬁqztml

TTes Ho(Shth ) (r/2) —— [T e Ho(Shtf, )

Finally, let ]E} : Sht%(hm)m — ShtdBvU,v be pp,1 on C; and pp 3 on Cy. Consider the commu-
tative diagram

S
p
Hdeé Sht%(hm)U”‘ — ” Hdeé Shtclli’,Ur

J{(Pd)deé l(pd)des

Shtes (he)ur ——— Shteoe

Since pp and T are both finite étale of degree g, 4 1, by examining geometric fibers we conclude
that the above diagram is Cartesian. The similar diagram with @) and ? replaced with % and
? is Cartesian by definition. From these facts we get a commutative diagram

r (r7) T
H, (Shtcﬁ) e Hde§ H, (Sht%,ﬁ)
Jcmw) J[Cl]HCz]
r (r7) T
H, (Shtgyﬂ 2 Hd€5 He (ShtdB,ﬁ)
Combining this with (7.16]) we obtain (7.13]), as desired. =

7.4. Finiteness. For fixed d € D, the Leray spectral sequence associated with the map Wéd gives
an increasing filtration LSiHir(Shtéd ® k) on HgT(Shtéd @ k), with LSiHiT(Shtéd ® k) being
the image of H*" (X" @y, k, TSiRﬂngg) — H (X" @y k, Rwéfi!(@g) ~ HfT'(Shtgd ® k). Here 7<;
means the truncation in the usual t-structure of D%(X",Qy). Let L<;V be the inductive limit
lim, LSngT(Shtéd ®x k)(r), which is a subspace of V. This way we get a filtration on V'

0CL§0VCL§1VC CLSQTV:V.
Lemma 7.9. Each L<;V is stable under the action of €.
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. . <d <d
Proof. The map C(hp)q,a in (7.1)) induces 7<;C(hp)a,a : T<iR75 Q¢ = 7<;R7z') Qp. By the
construction of C'(hp) we have a commutative diagram

. o ) — <d hETﬁiC(hD)d,d/. o ) _ <d'
%ﬁdH (XT Rk k,TSZ‘Rﬂ'éy!Qz) _ hgd’ H (XT Rk k,TSiRﬂ'éJ @5)

J |

ng(ShtG Rk E) cho) HgT(ShtG Rk E)

The image of the vertical maps are both L<;V up to a Tate twist, therefore L<;V is stable under
C(hp). When D runs over all effective divisors on X, C(hp) span 4, hence L<;V is stable
under J7. |

Lemma 7.10. Fori#r, GriLV = L<;V/L<;_1V is finite-dimensional over Q.

Proof. We say d € D is large if d(i) > 2¢g — 2 for all i. In the following argument it is convenient
to choose a total order on D that extends its partial order. Under the total order, Shtéd =
Ha<a Shtg and Shtéd = [ [ <4 Sht& are different from their original meanings, and we will use
the new notion during the proof.

By Corollary the inductive system Tgr,lngng stabilizes for d large. Hence so does
Lgr,lHET(Shté ®y k). Therefore L<,_1V is finite dimensional.

It remains to show that V/L<,V is finite dimensional. Again by Corollary for d large, the
map RT+17T5’C§Q@ — R”‘lﬂéf(@g is surjective because the next term in the long exact sequence
is R’"‘*‘lﬂé!(@ = 0. This implies that the inductive system R’"“‘%réf(@g is eventually stable
because any chain of surjections F; — Fo — --- of constructible sheaves on X" has to stabilize
(i.e., constructible Qg-sheaves satisfy the ascending chain condition). Also by Corollary the
inductive system T>T+1R7r§ff(@g is stable. Combined with the stability of R”lwéf(@g, we see
that the system T>TR7r§fog is stable. In other words, there exists a large dy € D such that for
any d > dyp, the natural map T>T-R7Téf1!Qg — T>T-R7Té:i!(@g is an isomorphism.

We abbreviate H?"(Sht5® @ k) by H-q and HiT(Shtgd ®k k) by Hey. For d > dy, the
distinguished triangle of functors 7<, — id — 7, — applied to Rwéff@g and Rﬂ'éi@g gives a
morphism of exact sequences

Ly Heg H_y H?" (X" @k k, 7o  RTEQp) — -+
L§TH§d Hgd HQT(XT Rk E, T>7«R7Téfi!(@g) —_—

Therefore the inductive system H<q/L<,H<q is a subsystem of H* (X" @4 k, T>7~R7T§Cf(@g) which
is stable with finite-dimensional inductive limit. Hence the inductive system H<;/L<,H<q is
itself stable with finite-dimensional inductive limit. Taking inductive limit on d, using that
V= hﬂd H<y(r) and L<;V = @d L<;H<4(r), we see that V/L<,V = @d Hey(r)/L<yH<q(r)
is finite dimensional. O

Lemma 7.11. The space Tgis - (L<,V) is finite-dimensional over Q.

Proof. Let U C Sht¢ be the union of those Sht5” for d € D such that min,ez,/,z{d(i)} < 29— 2.
Since inst(€) has an absolute lower bound, there are only finitely many such d with Sht‘é #* O,
hence U is an open substack of finite type. Let wg : U — X7 be the restriction of mg. For
f €, and any d € D, its action defines a map C(f)q,a : Riwéfi!@g — Riﬂ'é,d!/Q( for sufficiently
large d’. We may assume d’ > 2g — 2 , which means d'(j) > 2g — 2 for all j. We shall
show that when f € Zg;s and i < r, the image of C(f)q, is contained in the image of the
map ty,q : Riﬂ'g’!(@g — Riﬂ'éfi!,(@z induced by the inclusion U C Shtéd/7 which implies the
proposition. By Corollary either ty ¢ is an isomorphism (if ¢ < r) or when ¢ = r, the
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cokernel of ¢ is a local system on X". Therefore, it suffices to show the same statement for the
generic stalk of the relevant complexes.

Let 77 be a geometric generic point of X" and we use a subscript 77 to denote the fibers over 7,
as in Let ¢y : H,(Uy) — H;(Shtg 7) be the map induced by the inclusion of U. It suffices to
show that for f € Zg;s, the composition Hf (Shtg 7) EAN H7 (Shtg7) — H.(Shtg 7)/w (HL(Us))
is zero.

Recall from ) the cohomological constant term map 4 : H.(Shtg ) — Ho(Sht% 7)- By
the definition of Yd, for d > 2g — 2, 4 factors through the quotient Hy (Shtg 5)/tw (HL(Us)), and
induces a map

II e H(Shtem)/w @ (Uz) — ] Ho(Shtf)-
d>2g-2 d>2g—2
Both sides of the above map admit filtrations indexed by the poset {d € D;d > 2g — 2}: on the
LHS this is given by the image of H’,(Sht5 n) and on the RHS thisis given by [[5, 5 4<4 Ho(ShtH )
The map 74 respects these filtrations and by Corollary [7.6] the associated graded map of 4
under these filtrations is injective. Therefore 4 is injective.
By Lemma we have a commutative diagram

H (Shtc ) (r/2) —— H3(Sht 7)(r/2) —— Hi(Sht ) (/2) /1w (H(U7)) (r/2)

| | |-

S%t(f)*
[aen HO(Sht(IiJ,n) [aen Hy (Sht ) —Ilus2g-2 O(Sht?[,ﬁ

Since the action of 7 on [],;cp Ho(ShtCIl{ﬁ) factors through Q[Picx (k)], Sat(f) acts by zero
in the bottom arrow above. Since 7, is injective, the composition of the top row is also zero, as
desired. 0

Definition 7.12. We define the Q-algebra .74 to be the image of the map
IR Qp — EndQl( ) X Qg[PlCX(k’)}LP‘“
the product of the action map on V and agis ® Q.

Lemma 7.13. (1) For any x € |X|, V is a finitely generated 7, @ Qg-module.
(2) The Qq-algebra 7 is finitely generated over Qq and is a ring with Krull dimension one.

Proof. (1) Let D<,, C D be the subset of those d such that min,;{d(i)} < 2g — 2+ nd,. Let
D, = D<p —D<y—1. For eachn > 0, let U,, = Udep<nShtG , then Uy C Uy C --- are finite type
open substacks of Shte which exhaust Shte. Let 7, : U, — X" be the restriction of 7¢, and
let K,, = Rm,,1Q. The inclusion U,, — U, 11 induces maps ¢, : K;,, = Kp41. Let Cp 1 be the
cone of ¢,. Then by Corollary @ when n > 0, C),41 is a successive extension of shifted local
systems w%,,Qg[—r](—r/Q) for those d € D,,41. In particular, for n > 0, C,,41 is a shifted local
system in degree r and pure of weight 0 as a complex.

By construction, the action of h, € 5, on H}(Shtg ® k) is induced from the correspondence
Shtg(h,), which restricts to a correspondence S"Shtg(he) = p ~H(U,) between U, and U, ;.
Similar to the construction of C(hy)g,e in (7.1)), the fundamental class of <"Shtq(h,) gives a
map C(hy), : K, — K,41. Since C( 2)n O tn—1 = tp © C(hy)n—1, we have the induced map
Tp ¢ Cp — Cri1. We claim that 7, is an isomorphism for n > 0. In fact, since C,, and C, 41
are local systems in degree r, it suffices to check that 7, induces an isomorphism between the

geometric generic stalks Cy, 7 and C),1157. By Corollary [7.6| . we have an isomorphism induced
from the maps vq for d € D,, (cf. (7.11))

Cnz = P Ho(Shtd; ).
deD,,

By Lemma [7.8 7,5 : Chz = Cny15 is the same as the direct sum of the isomorphisms t,
HO(Shth,ﬁ) — Hy (Shtﬁ'ﬁd’) (the other term q,t,; ' : HO(Sht‘Iii’ﬁ) — Ho(Sht‘Ii{_,ﬁd”‘) does not appear
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because d—d, € D<,_1 hence the corresponding contribution becomes zero in C, 11 7). Therefore
Tn,7 IS an isomorphism, hence so is 7,.
We claim that there exists ng > 0 such that for any n > ng, the map

Weo, H X" @4 k, Ky,) — Weo, H Y X" @1 K, Kpi1)

is an isomorphism. Here W<, is the weight filtration using Frobenius weights. In fact, the next
term in the long exact sequence is WSQTH2T+1 (X" @ k, Chp+1), which is zero because C,, 11 is pure
of weight 0. Therefore the natural map Weo, H* (X" @, k, K,,) = Weo, H* X" @1 k, Kpi11)
is always surjective for n > 0, hence it has to be an isomorphism for sﬁfﬁciently large n.

The triangle K,, = K,,+1 — Cr11 — K,[1] gives a long exact sequence

H (X" @k, K,) — B (X" @1 k, K1) — H7 (X" @1 k, Cry1) —  (7.17)
— W, BPHXT @ k, K,) — Weop B TH(XT @ b,y Kg1)
Here we are using the fact that H*" (X" @, k, C,,41) is pure of weight 2r (since C,,,1 is pure of
weight 0). For n > ng, the last map above is an isomorphism, therefore the first row of ((7.17) is
exact on the right. 7 7
Let F<,,V be the image of H*" (X" @ k, K,,)(r) = lim H*" (X" @ k, K,,)(r) = V. Then for
n > ng, the exactness of (7.17) implies H*" (X" ®j, &, Cp11)(r) — Grk, V for n > ng. The Hecke

operator C(hy) sends F<,V to F<, 41V and induces a map Grl C(h,) : GtV — GrﬁHV. We
have a commutative diagram for n > ng

— H2" (X" ®uk,Tn —
H2 (X7 @5 F, ) (1) T 2e e 0 T Gt ) ()

J |

Grf'C(hy
Grf'v n Ohe) Grl vV

The fact that 7, : C;, — Cj41 is an isomorphism implies that Grfj C/(hy) is surjective for n > ng.
Therefore the action map

is surjective by checking the surjectivity on the associated graded. Since F<,,V is finite-
dimensional over Qp, V' is finitely generated as an /7, ® Q,-module.

(2) We have % C Enduggq,(V @ Q[Picx (k)]*"¢). Since both V and Qg[Picx (k)]*"ic are
finitely generated ., ® Q;-modules by Part (1) and Lemmal[d.2] End », o, (V @& Q¢[Picx (k)]*7)
is also finitely generated as an 2, ® Qg-module. Since 7, ® Qy is a polynomial ring in one
variable over Qp, . is a finitely generated algebra over Q, of Krull dimension at most one.
Since 74 — Q[Picx (k)]*P* is surjective by Lemma and Q¢[Picx (k)]*Pc has Krull dimension
one, 4 also has Krull dimension one. O

The map agis : #; — Qu[Picx (k)]*Pic is surjective by Lemma (2). It induces a closed
embedding Spec(agis) : Zris,0, = Spec Q¢[Picx (k)]*Pic — Spec 7.

Theorem 7.14 (Cohomologiﬁcal spectral decomposition). (1) There is a decomposition of the
reduced scheme of Spec 7 into a disjoint union

= Zuisa [ [ Z6. (7.18)
where Zj , consists of a finite set of closed points. There is a unique decomposition
V = Vgis ® Vo
into S @ Qq-submodules, such that Supp(Viis) C Zris,g, and Supp(Vp) = Z5 0 E|
(2) The subspace Vy is finite dimensional over Q.

Spe(} (%) red

4When we talk about the support of a coherent module M over a Noetherian ring R, we always mean a closed
subset of Spec R with the reduced scheme structure.
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Proof. (1) Let V! = L<,V. Let Ig;s C ; be the ideal generated by the image of Zgis. By
Lemma V'’ is a submodule of a finitely generated module V' over the noetherian ring
H;, therefore V' is also finitely generated. By Lemma TgisV' is a finite-dimensional -
submodule of V'. Let Z’ C Spec(.%)™" be the finite set of closed points corresponding to the
action of 7 on ZgiV’'. We claim that Supp(V’) is contained in the union Zgis,0, U Z'. In fact,
suppose f € 7 lies in the defining radical ideal J of Zgis g, U Z’, then after replacing f by a
power of it, we have f € Tgis (since J is contained in the radical of Zg;s) and f acts on Zg;sV’
by zero. Therefore f2 acts on V' by zero, hence f lies in the radical ideal defining Supp(V’).

By Lemma V/V' is finite-dimensional. Let Z” C Spec(.7%)"" be the support of V/V' as
a Jf-module, which is a finite set. Then Spec(7)** = Supp(V) U Zris.0, = Zris0, U Z' U Z".
Let Zi , = (Z' U Z") — Zgisq,, we get the desired decomposition (7.18).

According to , the finitely generated J#-module V, viewed as a coherent sheaf on
Spec 74, can be uniquely decomposed into

V= VEis S ‘/O
with Supp(VEis) C Zgis,q, and Supp(Vo) = Zg .

(2) We know that Vj is a coherent sheaf on the scheme Spec./% which is of finite type over
Q¢ and that Supp(Vp) = Zg,z is finite. Therefore Vj is finite dimensional over Q. O

7.4.1. The case r = 0. Let us reformulate the result in Theorem [Z.14]in the case r = 0 in terms

of automorphic forms. Let A = C.(G(F)\G(AFr)/K,Q) be the space of compactly supported Q-

valued unramified automorphic forms, where K =[], G(O,). This is a Q-form of the Q-vector

space V for r = 0. Let J%y be the image of the action map 5 — Endg(A) x Q[Picx (k)]*Pie.

The Qg-algebra 44 q, = out ® Q¢ is the algebra A, defined in Definition for r = 0.
Theorem [7.14] for » = 0 reads

Spec A, = Zrisae [ [ 20, (7.19)

where Z , is a finite set of closed points. Below we will strengthen this decomposition to work
over Q, and link Z(()),e to the set of cuspidal automorphic representations.

7.4.2. Positivity and reducedness. The first thing to observe is that 7%, is already reduced. In
fact, we may extend the Petersson inner product on A to a positive definitive quadratic form
on Ag. By the r = 0 case of Lemma Fhut acts on Ag as self-adjoint operators, its image in
End(A) is therefore reduced. Since Q[Picx (k)]*Pc is reduced as well, we conclude that J%,; is
reduced.

Let Acysp C A be the finite-dimensional Q-vector space of cusp forms. Let %, be the
image of 4, in Endg(Acusp). Then Hsp is a reduced artinian Q-algebra, hence a product of
fields. Let Zcusp = Spec Husp. Then a point in Ze,p, is the same as an everywhere unramified
cuspidal automorphic representation 7 of G in the sense of Therefore we have a canonical
isomorphism

%usp = H E
TEZcusp
where FE . is the coefficient field of .

Lemma 7.15. (1) There is a canonical isomorphism of Q-algebras
Hans, = Q[Picx (k)] X Husp
Equivalently, we have a decomposition into disjoint reduced closed subschemes
Spec Hput = Zris H Zecusp- (7.20)
(2) We have Z&e = Zeusp,Q,» the base change of Zeysp from Q to Q.

Proof. (1) The Q version of Lemma says that J%,, is a finitely generated Q-algebra, and
that A is a finitely generated J#,,;-module. By the same argument of Theorem we get a
decomposition

Spec %fftd = Spec Hawt = Zgis H Zy (7.21)
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where Zj is a finite collection of closed points. Correspondingly we have a decomposition
A = Agis © Ao

with Supp(Agis) C Zgis and Supp(Ag) = Zy. Since A is finitely generated over %, with finite
support, it is finite dimensional over Q. Since Ay is finite dimensional and stable under J#, we
necessarily have Ay C Acusp (see [16, Lemme 8.13]; in fact in our case it can be easily deduced
from the r = 0 case of Lemma .

We claim that Ay = Acusp- To show the inclusion in the other direction, it suffices to show
that any cuspidal Hecke eigenform ¢ € Acysp ® Q lies in Ag ® Q. Suppose this is not the case
for ¢, letting A : # — Q be the character by which J# acts on ¢, then A ¢ Z(Q). By (7.21),

A € Zgis(Q), which means that the action of Z on ¢ factors through Q[Picx (k)] via agis, which
is impossible.
Now Ay = Acusp implies that Zy = Supp(Ao) = Supp(Acusp) = Zeusp- Combining with

[F21), we get (7:20).
Part (2) follows from comparing (7.19) to the base change of (7.20) to Q. O

7.5. Decomposition of the Heegner—Drinfeld cycle class. In previous subsections, we have
been working with the middle-dimensional cohomology (with compact support) of Shtg = Sht,
and we established a decomposition of it as an c%?@—module. Exactly the same argument works

if we replace Shtg with Shty, = Sht.. Instead of repeating the argument we simply state the
corresponding result for Shty, in what follows.

Let B

V' = H(Shte @5 k, Qe)(r).
Then V' is equipped with a Qg-valued cup product pairing
('7 ) V! XQ, Vi— Qe (722)

and an action of 7 by self-adjoint operators.

Similar to Definition we define the Q-algebra %/ to be the image of the map

H @ Qp — Endg, (V') x Qg[Picx (k)]""*.

Theorem 7.16 (Variant of Lemma and Theorem [7.14)). (1) For anyx € |X/|, V' is a finitely
generated 6, @ Qp-module.

(2) The Qq-algebra %/ is finitely generated over Qp and is one-dimensional as a Ting.

(3) There is a decomposition of the reduced scheme of Spec%/ into a disjoint union

___p\red ,
Spec (% ) = ZEis,Qg H ZO”,‘Z (723)
where Z(/)Te consists of a finite set of closed points. There is a unique decomposition
VI = V]éis D VE]/
into ' @ Qq-submodules, such that Supp(Vg;,) C Zrisg, and Supp(Vy) = Zg,.
(4) The subspace Vj is finite dimensional over Q.
We may further decompose V@ = V' ®g, Q; according to points in Z(’f@(@z)- A point in

Z(’)TL,(@@) is a maximal ideal m C %f@, or equivalently a ring homomorphism .s# — Q, whose
kernel is m. We have a decomposition

Vs, = Vg, 0 D Va) (7.24)
meZg", (Q)

Then V}, is characterized as the largest Q,-subspace of Vé on which the action of m is locally

£
nilpotent. By Theorem VI, turns out to be the localization of V' at the maximal ideal m,
hence our notation V] is consistent with the standard notation used in commutative algebra.
We may decompose the cycle class cl(¢4 [Sht/]) € Vé according to the decomposition (7.24))
£

cl(0¥[Sht4]) = [Shtr]eis + Y [Shtr]m (7.25)
mEZZ)‘,((@IZ)
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where [Shty|mis € Vi, and [Shtr]m € V.
Corollary 7.17. (1) The decomposition (7.24) is an orthogonal decomposition under the cup
product pairing (7.22) on V.
(2) For any f € S, we have
L.(f) = ([Shtr]mis, £ * [Shtrlms) + Y, Lo(m, f) (7.26)

meZ{", Q)
where
L.(m, f) := ([Sht7]m, f * [Shtr]m) .

Proof. The orthogonality of the decomposition ([7.24)) follows from the self-adjointness of 7
with respect to the cup product pairing, i.e., variant of Lemma for Shty;. The formula (7.26))
then follows from the orthogonality of the terms in the decomposition (7.25]). O

Part 3. The comparison
8. COMPARISON FOR MOST HECKE FUNCTIONS

The goal of this section is to prove the key identity (1.9) for most Hecke functions. More
precisely, we will prove the following theorem.

Theorem 8.1. Let D be an effective divisor on X of degree d > max{2¢’ — 1,2g}. Then for
any u € PY(F) — {1} we have
(logq)™"Jr(u, hp) = 1. (u, hp). (8.1)
In particular, we have
(logq)~"J(hp) =1, (hp). (8.2)
For the definition of J,.(u, hp) and L,.(u, hp), see (2.16]) and (6.11]) respectively.
8.1. Direct image of fu4.

8.1.1. The local system L(p;). Let j : X3 C Xgq C X4 be the locus of multiplicity-free divisors.
Taking the preimage of XS under the branched cover X' — X — X, we get an étale Galois
cover
w: X' — X — X3

with Galois group I'y := {+1}9x.5,. For 0 < i < d, let ; be the character {+1}¢ — {£1} that is
nontrivial on the first 7 factors and trivial on the rest. Let S; 4—; = S; X S4—; be the subgroup of
S, stabilizing {1,2,--- ,i} C {1,--+ ,d}. Then x; extends to the subgroup T'4(i) = {£1}¥xS; 4_;
of I'y with the trivial representation on the S; 4—;-factor. The induced representation

pi = Indp? ;) (xi ¥ 1) (8.3)
is an irreducible representation of I'y. This representation gives rise to an irreducible local system
L(p;) on X3. Let K, := j1.(L(p;)[d])[—d] be the middle extension of L(p;) (see 3} 2.1.7]). Then
K; is a shifted simple perverse sheaf on )A(d.

Proposition 8.2. Suppose d > 29’ — 1. Then we have a canonical isomorphism of shifted

perverse sheaves
d

R Qe = @ (K B K;)| 4, (8.4)

i,j=0
Here K; )X K lives on Xg X picd. Xg4, which contains Agq as an open subscheme.
Proof. By Proposition H fa is the restriction of Uy x Uy : X/ Xpicd. X, — Xa Xpict Xd;

where 7y : )?C’l — X, is the norm map. By Proposition 1] Vg4 is also proper. Therefore by
the Kiinneth formula, it suffices to show that

d
RU,.Qp = @Ki. (8.5)
=0
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We claim that 7y is a small map (see [11, 6.2]). In fact the only positive dimension fibers are
over the zero section Pic% % = Xd, which has codimension d — g + 1. On the other hand, the
restriction of Dy to the zero section is the norm map Pick, — Pic%k, which has fiber dimension
g — 1. The condition d > 2¢’ —1 > 3g — 2 implies d — g+ 1 > 2(g — 1) + 1, therefore 7y is a small
map.

Now 74 is proper, small with smooth and geometrically irreducible source, Rvg.Qp is the

middle extension of its restriction to any dense open subset of )A(d (see |11, Theorem at the end
of 6.2]). In particular, R7; Qg is the middle extension of its restriction to XJ. It remains to
show

d
R74.Qel x5 = €D L(pi). (8.6)
i=0
Let 5 : X/ = v; 1 (X3) — XS be the restriction of v4 : X/, — X4 over X3. Then Rvg ,Q is
the local system on Xj associated with the representation Indngg = Q¢[T'q/Saq] of T'yq. A basis

{1.} of Q[I'y/S4] is given by the indicator functions of the Sj-coset of ¢ € {+1}?. For any
character x i {1} — {£1}, let 1, := >"_ x(e)1. € Q¢[T'a/S4]. For the character x; considered
in §8.1.1} 1,, is invariant under Sl d—i, and therefore we have a I'g-equivariant embedding p; =

Ind d( )(Xz X 1) — Q[I'4/Sa4]. Checking total dimensions we conclude that

Qe[la/Sa) = @pz

This gives a canonical isomorphism of local systems Rvg Q¢ = @, L(p;), which is (8.6). O

In we have defined a self-correspondence H = Hk! M. of Mg over Aj. Recall that
Ag C Ayg is the open subscheme X Xpicd Xd, and Mg and H< are the restrictions of My and
H to Ag. Recall that [H¢] € Chag—g+1(H)g is the fundamental cycle of the closure of HO.

Proposition 8.3. Suppose d > 2g' — 1. Then the action f1[H?] on RfrQp preserves each
direct summand K; X K; under the decomposition (8.4), and acts on K; ¥ K; by the scalar

(d —2j).

Proof. By Proposition R fi+Qy is a shifted perverse sheaf all of whose simple constituents
have full support. Therefore it suffices to prove the same statement after restricting to any dense
open subset U C Ay. We work with U = .Ag.

Recall H is indeed a self-correspondence of My over Ay (see §6.2.2):

/\
ma

By Lemma the diagram (8.7 restricted to Ag (the preimage of A in Ad) is obtained
from the following correspondence via base change along the second projection pr, : .A<> =

)?L’i Xpicd. Xa — Xg which is smooth

(8.7)
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Here for (D, y) in the universal divisor I; C X, x X', pr(D,y) = D and ¢(D,y) = D —y+o(y).

Let Ty := vg, 1] : Rvg«Qp — Rug . Qy be the operator on Ry Q) induced from the cohomo-
logical correspondence between the constant sheaf Q, on X/, and itself given by the fundamental
class of I;. Under the isomorphism RfM,!Qe\Ag =~ prsRyg . Qy, the action of fMJ[’HO] is the
pullback along the smooth map pr, of the action of Ty = vg,[I}]. Therefore it suffices to show
that Ty preserves the decomposition (restricted to Xg4), and acts on each K; by the scalar
(d — 2j).

Since Ryy Qg is the middle extension of the local system L = @?:OL(pj) on X7, it suffices
to calculate the action of Ty on L, or rather calculate its action over a geometric generic point
n € Xy4. Writen = z1+x2+- - -+x4 and name the two points in X’ over z; by x+ and x; (in one of

the two ways). The fiber Vd (1) consists of points ¢, where ¢ € {£}", and &, = Zd . Asin
the proof of Proposition 8.2} we may identify the stalk L, with Q¢[l'q/Sq] = Span{le, e e {£}"}
(we identify {£+} with {:I:l}) Now we denote 1. formally by the monomial z5* - . The stalk
L(pj), has a basis given by {Ps}, where
d
Ps .= H(l‘j_ + (51.13:)
i=1
and § runs over those elements § = (01, -+ ,64) € {#}¢ with exactly ¢ minuses. The action of

: : €1 €d ; d €1 —€t
T4 on L, turns each monomial basis element 7" --- 25" into ), 7' - 2, %" -+~

Ty is a derivation in the following sense: for any linear form ¢; in x;" and z; , we have

x5, Therefore,

d
Tq H&' = (Tyly) Ly Ly + b (Tala)ls - Lg+ - F Ly ---Lg_1(Tyla).
i=1
Also Ty(xf +x7) = +2; and Ty(z] —x;) = —(z] — ;). From these we easily calculate
that TyPs = (d — 2|0|)Ps where |d] is the number of minuses in §. Since L(p;), is the span of
Ps with |§] = j, it is exactly the eigenspace of T, with eigenvalue (d — 2j). This finishes the
proof. O

Combining Theorem (6.11)) with Proposition we get
Corollary 8.4. Suppose d > max{2¢’ — 1,2¢g}. Let D € X4(k). Then

>7_o(d — 2§)" Te(Froby, (Ki) @ (K;)z) u=invp(a),a € Ap(k)

0 otherwise.

Hr(uv hD) = {

8.2. Direct image of fy;,. Recall the moduli space Ny defined in §3.2.2]for d € X4. It carries
a local system Ly, see §3.3.1}

Proposition 8.5. Let d > 2g' — 1 and d € Xq. Then there is a canonical isomorphism
Rng,*Li = (Kdll X Kdl2)|-Ad' (88)

Proof. The condition d > 2¢g’ — 1 does not imply that fa;, is small. Nevertheless we shall
show that the complex Ky := Rfn; «Lq4 is the middle extension from its restriction to B :
Xa Xpica Xa C Aqg. By Proposition (3.1 2), Ny is smooth hence Lg[dim Ny] is Verdier self- dual
up to a Tate twist. By Proposition [3.1(3), fa;, is proper, hence the complex Ky[dim Ny is
also Verdier self-dual up to a Tate twist. The morphism fy, is finite over the open stratum
B, therefore K 4|5 is concentrated in degree 0. The complement Ay — B is the disjoint union of
C ={0} x Xy and C' = X4 x {0}. We compute the restriction Kq|c.

When di; < dss, by the last condition in the definition of Nd, 2o is allowed to be zero but
11 is not. The fiber of fx;, over a point (0, D) € C is of the form Xg4,, x add;llz’dZI(D), where
addjg—; : X; x Xq—; — Xg is the addition map. We have (Kq4)(0,p) = H (X4, @ k, La,,) ®
M where M = Ho(audd(;ll2 4, (D) @ k, Lq,,) is a finite-dimensional vector space. We have
H* (X4, @ k, La,,) = /\d“(Hl(X ®r k LX//X))[—dn] which is concentrated in degree dq1, and
is zero for di; > 2g — 2. Therefore (Ky)(o,p) is concentrated in some degree < 2g — 2, which is
smaller than codim4,C =d — g+ 1.
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When dy; > daa, ¢11 may be zero but pas is nonzero. The fiber of far, over a point (0, D) € C
is of the form Xg4,, X add;ll2 dy, (D). For (Dag, Dia, Da1) € Xa,, X auddgll2 4, (D), its image in
Pic%! is Ox (D — Dyy), therefore the restriction of Lg,, to de (0, D) is isomorphic to L, = on the
Xa,, factor. Therefore (Kq)(o,py = H* (X4, @k k, L, )®H0(addd12 &, (D) @k k, La,,), Wthh is
again concentrated in some degree < 2g — 2 < codlm 4,=d—g+1.

Same argument shows that the stalks of Ky over C’ are concentrated in some degree < 2g—2 <
codim4,C’ = d — g+ 1. Using Verdier self-duality of K [dimNy], we conclude that K, is the
middle extension from its restriction to B.

By Proposition [3.1](3) and the Kunneth formula, we have

Ki|3 = adddu,dm,*(Ldu X QE) X adddlz,dm,*(Ldm X QZ)

To prove the proposition, it suffices to give a canonical isomorphism

add;ja—j«(L; ®Qr) = Kj|x, (8.9)
for every 0 < j < d. Both sides of are middle extensions from X7, we only need to
give an isomorphism between their restrictions to Xj. Over X7, the local system L; is given
by the representation 7 (X5) — m (X)) x Sj - Gal(X'/X)) % S; = {+1}) x S5 — {+1}
which is nontrivial on each factor Gal(X’/X) and trivial on the S;-factor. The finite étale cover
add$ 4 ;1 (X; X Xq-5)° = Xg (rvestriction of add; 4—; to Xg) is the quotient X%°/S; 4_; where
Sj.d—j C Sq is the subgroup defined in g@ Therefore the local system add; ;_; . (L; B Q)
corresponds to the representation p; of T'y, and addj ,_; .(L; ¥ Q) = L(p;) as local systems
over X 7. This completes the proof of ., and the proposition is proved. O

Combining Propositions [8.2] and 8.5 we get

Corollary 8.6. Assume d > 29’ — 1. Then there is a canonical isomorphism
RfM *QE @ Rfj\/d *Ld
dexy
such that the (i,j)-grading of the LHS appearing in (8.4) corresponds to the (di1,d12)-grading
on the RHS.

8.3. Proof of Theorem By Corollary [3.3|and (2.16)), both J,(u, hp) and I,.(u, hp) vanish
when u is not of the form invp(a) for a € Ap(k). We only need to prove (8.1) when v = invp(a)
for a € Ap(k). In this case we have

(logq) "Tr(uhp) = 3 (2d1o —d) Tr (F‘roba, (R fNi’*Li)E) (Corollary
deXy
d

- Z (2d15 — d)" Tr (Frobg, (K4,,)a ® (K4,,)a) (Prop.

di11,d12=0
d

= > (d—2j)" Tr(Frobg, (K;)z ® (K;)z) (r is even)

i,7=0

I (u, hp) (Corollary.

Therefore is proved. By ([2.14] - ) and - 8.1]) implies (8.2]

9. PROOF OF THE MAIN THEOREMS

In this section we complete the proofs of our main results stated in the Introduction.

9.1. The identity (logq) "J.(f) = L.(f) for all Hecke functions. By Theorem we
have (logq)~"J.(f) = L.(f) for all f = hp where D is an effective divisor with deg(D) >
max{2g’ — 1,2g}. Our goal in this subsection is to show by some algebraic manipulations that
this identity holds for all f € 7.

We first fix a place © € |X|. Recall the Satake transform identifies .7, = Q[h,] with the
subalgebra of Q[t1!] generated by h, = t, + q.t;'. For n > 0, we have Sat,(h,.) = t7 +
e N/ P A
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Lemma 9.1. Let E be any field containing Q. Let I be a nonzero ideal of 7, g = ; ®qg E
and let m be a positive integer. Then I + Spang{hma, him+1)ar " } = Kz B

Proof. Let t = q;1/2t$. Then h,, = qg/zTn where T), = t" +t""2 4 ... + 27" 4+ ¢t~ for any

n > 0. It suffices to show that I + Spang{T,,, Tin+1, -} = 2 E.

Let 7 : €, g — 5, g/I be the quotient map. Let /4, g C J€, g be the E-span of " +t~" for
n > m. Note that T,, — T),_2 = t"™ +t~", therefore it suffices to show that 7(, g) = 7 5/
for all m. To show this, it suffices to show the same statement after base change from E to
an algebraic closure E. From now on we use the notation %, I and 4%, to denote their base
changes to E.

To show that 7(J%,) = 5, /I, we take any nonzero linear function ¢ : 5, /I — E. We only
need to show that £(w(t" +t~™)) # 0 for some n > m. We prove this by contradiction: suppose
Um(t™ +t~™)) =0 for all n > m.

Let v : G,, = A' = Spec 4%, be the morphism given by ¢t — T =t +¢~!. This is the quotient
by the involution o(t) = t~!. Consider the finite subscheme Z = Spec(.%,/I) and its preimage
Z = v YZ) in G,. We have Oy = /1 = OZ C Oz. One can uniquely extend £ to a
o-invariant linear function £ : O 5 — E. Note that O is a product of the form E[t]/(t — z)? for
a finite set of points z € EX, and that z € Z if and only if o(z) = 271 € Z. Any linear function
¢ on O3, when pulled back to Og,, = E[t,t™'], takes the form

Elt,t7"]3 fr—= Y (D.f)(2)
2eZ

with D, = > .5, cj(z)(t%)j (finitely many terms) a differential operator on G,, with constant
coefficients ¢;(z) depending on z. The o-invariance of (s equivalent to

cj(z) = (=1)¢;j(z7), forall z € Z and j. (9.1)
Evaluating at f =t" +t~"™, we get that

Lr(™ +t™™)) = Z P,(n)z" + P.(—n)z™"

ZEZ

where P, (T) =3, ¢j(2)T7 € E[T) is a polynomial depending on z. The symmetry (9.1)) implies

P.(T) = P,-1(—T). Using this symmetry, we may collect the terms corresponding to z and z~!
and re-organize the sum above as

Lr(t"+t7") =2 Z P.(n)z" =0, foralln>m.
z€Z
By linear independence of ¢, . : n — n*z™ as functions on {m,m +1,m +2,---}, we see that
all polynomials P, (T) are identically zero. Hence {=0and (= 0, which is a contradiction! O

Theorem 9.2. For any f € €, we have the identity
(log Q)_TJr(f) = ]Ir(f)

Proof. Let #; be the image of £ ®Qy in Endg, (V') x Endg, (A®Qy) x Q[Picx (k)]"®. Denote
the quotient map J ® Qy — 7 by a. Then for any z € |X|, o C Endyego,(V @ AR Q&
Q¢[Picx (k)]*Pie). The latter being finitely generated over 7, ® Q; by Lemma (or rather,
the analogous assertion for V'), % is also a finitely generated 5%, ® Qp-module, and hence a
finitely generated Qg-algebra. Clearly for f € 22, I.(f) and J,.(f) only depend on the image of
fin jN‘ﬁg Let 71 C 4 be the linear span of the functions hp for effective divisors D such that
deg D > max{2¢’ — 1,2¢g}. By Theorem we have (logq)™"J,.(f) = L.(f) for all f € s#1.
Therefore it suffices to show that the composition #T @ Q; — # @ Q; = j/i\;i is surjective.
Since % is ﬁnitelyy generated as an algebra, there exists a finite set S C |X]| such that

{a(hy)}res generate S4;. We may enlarge S and assume that S contains all places with degree
< max{2¢’ — 1,2g}. Let y € |X| — S, then for any f € H#% = ®,c55;, we have fh, € A1



TAYLOR EXPANSION 75

Therefore a(s1T @ Q) D a(H#s @ Qp)a(hy) = %a(hy). In other words, a(#T ® Q) contains
the ideal I generated by the a(h ) fory ¢ S.

We claim that the quotient %@ /I is finite-dimensional over Q. Since j% is ﬁnltely generated
over Qg, it suffices to show that Spec(%’i /I) is finite. Combining Theorem and ( -7
Spec #4 = Spec 7 U Spec Hme.o, = Zpis,g, U Z§, U 28, Let o : )T — Qg be a Q-

point of Spec(j%/[). If o lies in Zgis,@,, then the composition & — :%\Zg/] 2 Q, factors as

2 Q[Picx (k)] & @, for some character x : PicX(k) — Q, . Since hy vanishes in %/I

for any y ¢ S, we have x(Sat(h,)) = x(ty) + q,x(t,') = 0 for all y ¢ S, which implies that
x(ty) = +(—q,)/2 for all y ¢ S. Let ¥’ : Picx (k) — Q, be the character ' = y - ¢~ 98/2,
Then Y’ is a character with finite image satisfying x’(¢,) = /=1 for all but finitely y. This
contradicts Chebotarev density since there should be a positive density of y such that x'(¢,) = 1.
Therefore Spec(%/1) is disjoint from Zgis g, hence Spec(%/])red C Z{y U Z3 ,, hence finite.
Leta: #Q, = % — }?ig/[ be the quotient map. For each x € |X|, consider the surjective
ring homomorphism 2, ® Q; — a(54, @ Q). Note that AT N A, is spanned by elements of the
form hy,, for ndeg(x) > max{2¢’ — 1,2g}. Since a(H, @ Q) C %/I is finite-dimensional over
Qy, Lemmaimplies that (1 NJ7,) @Qp — a(H#, @ Q) is surjective. Therefore a(#T @ Qy)
contains a(; ® Q) for all z € |X|. Since @ is surjective, a(/; ® Q) (all z € |X|) generate the
image %’Q/I as an algebra, hence a(#" ® Q) = jﬁ/] Since a( T ® Q) already contains 1,
we conclude that a(#T @ Q) = % O

9.1.1. Proof of Theorem[1.8 Apply Theorem [9.2] to the unit function h = 1, we get
(0L [Shtr], 0L [ShtZ])sner = (logq) " Jr(1k).
We then apply Corollary to write the RHS using the r-th derivative of L(n, s), as desired.
Remark 9.3. Let r = 0. Note that Sht/., resp. Sht{, is the constant groupoid Bunr(k), resp.
Bung (k). We write 6, [Bunr (k)] for 64 [Sht7], as an element in C2°(Bung(k), Q). The analogous
statement of Theorem [[.§ should be
(0«[Bunp(k)], 0.[Bunt(k)]))Bung k) = 4L(1,0) +q — 2. (9.2)
Here the left side (—, —)Bung (k) is the inner product on CZ°(Bung(k), Q) defined such that the
characteristic functions {1(¢]}ecBung (k) are orthogonal to each other and that
(Lie1, 111 __ 1
[€]> +[€]/Bung (k) — #Aut(c‘,’)'
The equality (9.2) can be proved directly. We leave the detail to the reader.

9.2. Proof of Theorem The theorem was formulated as an equality in E, », but for
the proof we shall extend scal&rs from Qp to Q,, and use the deCOIEpOSitiOH (7.24) instead.
For any embedding ¢ : Ex — Qy, we have the point m(7,t) € Zousp(Qy) corresponding to the

homomorphism 57 A—"J E. % Q,. To prove the theorem, it suffices to showing that for all
embeddings ¢ : B — Q,, we have an identity in Q,
|wx|
2(log q)"
where (-, ')@z is the Q,-bilinear extension of the cup product pairing (7.22) on V’. In other

words, for any everywhere unramified cuspidal automorphic Q,-representation 7 of G(Ar) that
corresponds to the homomorphism A : e%f@ — Qy, we need to show

L(.,E/ﬂ(r) (7TF’a 1/2)) = ([ShtT]m(ﬂ' L) [ShtT]m(W L))Q

£

lwx| , B p .
WZ( (g, 1/2) = ([ShtT]m,,, [ShtT]mw)@z (9.3)

where m; = ker()r) is the maximal ideal of /% , and [Sht]m, is understood to be zero if
my ¢ Z(’f@(@z)
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As in the proof of Theorem ‘ let /% be the image of ¢, in Endg, (V') x Endg, (A® Q) x
Q¢[Picx (k)]*Pic. By Theorem[7.16
subsets

|and (7.19)), we may write Spec .7 as a disjoint union of closed

Spec %red = Zgis,Q, H Zo’g. (9.4)
where Z), ¢ = Z(’{,'é UZ& ¢ is a finite collection of closed points. This gives a product decomposition
of the ring %

A = %Eis x «%Aﬂzj,o (9.5)
with Spec [Els = Zgis,q, and Spec Jffe‘i ZO,IZ~ For any element h € L%A’ZO, we view it as the
element (0,h) € . By Corollary |7 - 7| we have for any h € j/g 0

L) = Y ([ShtT]m, h [ShtT]m> (9.6)

meZy,(Qy)

Extending by linearity, the above formula also holds for all h € f%ﬂi 0®g, Qp. Note that the linear
function h — ([Shtr]m, h * [Shtr]m) on %0 ® @z factors through the localization j%\”;o ®Q, —
(A1 @ Qp)m (viewing m as a maximal ideal of jﬁ 0® Q).

On the other hand, let IEIS be the ideal of %@ generated by the image of Zg;s. We have
(0,h) € Igis. By Theorem we have for any h € 3% 0®Qy

d’r‘
Ly = 3, o=| _J((0.h) (97)
€ Zousp (Qe)
= 2 %Aw(hw@w,l/m. (98)
7€ Zousp (Qe)

By Lemma |7 -(3 Zcusp Q) = Z&(@e), hence can be viewed as a subset of Zoyg. Comparing
the RHS of (9.6) and -, and using Theorem we get for any h € ﬁ%’zo ®Q,

> ([ShtT]m,h*ShtT]m): > ﬂxﬁ(h)zw(ﬁp,,l/m. (9.9)

mGZ&Z(@e) TFGZCUSD(@Z)

Since 7 o ® Qy is an artinian algebra, we have a canonical decomposition into local artinian
algebras

ﬁgﬂz/,o ®Q, H (%0 ® Qp)m- (9.10)
mGZO 2(Qp)
As linear functions on jﬁo ® Qy, the m-summand of the left side of ( . ) factors through

(%”z 0® Qy)m while the m-summand of the right side of . factors through (%@ 0®2Q)m,.. By
the decomposition (9 , we conclude that

e lfme Z(/)TZ(@K) - ZCusp(@g), then for any h e %0 ®@é7
([Shtr]wm, h*[Shtr]m)g, =0

o Ifm € Zé';e(@z) N Zeusp(Qy), i.e., there is a (necessarily unique) ™ € Zeusp(Qy) such that
m = m,, then for any h € %0 ® Q, we have

A W) g 2 1/2) = (St o [Shtrl, ),

In particular, taking h = 1 we get

lwx| (r) _ o
72(1% q)r,i” (rpr,1/2) = ([Shtr)m,, [Sht:r]mw)@e-

o If 7 e Zcusp(@l) — Z(’)Tf(@Z% then
L (1p,1/2) = 0.
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These together imply (9.3]), which finishes the proof of Theorem

9.3. The Chow group version of the main theorem. In we defined an sZ-module W
equipped with a perfect symmetric bilinear pairing (-, ). Recall that W is the #-submodule of
Ch,(Sht¢y)g generated by 64 [Sht’.], and W is by definition the quotient of W by the kernel W,
of the intersection pairing.

Corollary 9.4 (of Theorem [9.2)). The action of 7 on W factors through Hayt. In particular,
W is a cyclic Hus-module, hence finitely generated module over 7, for any x € |X|.

Proof. Suppose f € 5 is in the kernel of 7 — Hys, then J.(f) = 0 hence I,.(f) = 0 by Theo-
rem(9.2 In particular, for any h € ¢, we have J,.(hf) = 0. Therefore (h = 64 [Sht7], f * 04 [Sht])
I.(hf) = 0. This implies that f = 6%[Sht/] € Wo, hence f % 6% [Sht%] is zero in W, i.c., f acts as
zero on W. O

9.3.1. Proof of Theorem . By the decomposition ([7.20]), we have an orthogonal decomposition
W = WEis S Wcusp

with Supp(Weis) C Zgis and Supp(Weusp) C Zeusp- Since Weygp is a finitely generated 5,-

module with finite support, it is finite-dimensional over Q. By Lemma [7.15 Zcsp is the set

of unramified cuspidal automorphic representations in A4, which implies the finer decomposi-

tion (L.5). Since W is a cyclic J&-module, we have dimg W, < dimpg_ - = 1 by the

decomposition in Lemma [7.151).

9.3.2. Proof of Theorem [1.9. Pick any place A of E, over ¢, then by the compatibility of the
intersection pairing and the cup product pairing under the cycle class map, we have

(Shtf]x,  [Shtf]r)x = ([Shtflrn,  [ShtT]aa)xn
both as elements in the local field E . Therefore Theorem @ follows from Theorem

APPENDIX A. RESULTS FROM INTERSECTION THEORY

In this appendix, we use Roman letters X, Y, V., W, etc to denote algebraic stacks over a field
k. In particular, X does not mean an algebraic curve. All algebraic stacks we consider are locally
of finite type over k.

A.1. Rational Chow groups for Deligne—-Mumford stacks.

A.1.1. Generalities about intersection theory on stacks. We refer to [15] for the definition of the
Chow group Ch,(X) of an algebraic stack X over k.

For a Deligne-Mumford stack of finite type over k, the rational Chow group Ch,(X)g can be
defined in a more naive way using Q-coefficient cycles modulo rational equivalence, see [23].

A.1.2. Chow group of proper cycles. Let X be a Deligne-Mumford stack locally of finite type
over k. Let Z.;(X)g denote the Q-vector space spanned by irreducible i-dimensional closed
substacks Z C X that are proper over k. Let Ch.;(X)g be the quotient of Z.,(X)p modulo
rational equivalence which comes from rational functions on cycles which are proper over k.
Equivalently, Ch.;(X)g = lim, Ch;(Y)g where Y runs over closed substacks of X that are
proper over k, partially ordered by inclusion.

From the definition, we see that if X is exhausted by open substacks X; C Xs C ---, then
we have

Che,i(X)g 2 lim Ch, ;(X,.)g-

A.1.3. The degree map. When X is a Deligne-Mumford stack, we have a degree map
deg : Ch.o(X)g — Q.

Suppose x € X is a closed point with residue field &, and automorphism group Aut(z) (a finite
group scheme over k). Let | Aut(z)|i, be the order of Aut(z) as a finite group scheme over k.
Let [z] € Ch.o(X)g be the cycle class of the closed point z. Then

deg([z]) = [kz : K]/| Aut(2) |k, -
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A.1.4. Intersection pairing. For the rest of we assume that X is a smooth separated
Deligne-Mumford stack, locally of finite type over k with pure dimension n. There is an inter-
section product

(=) x (=) : Chei(X)q % Che j(X)g — Che,iyj—n(X)g
defined as follows. For closed substacks Y7 and Y5 of X that are proper over k, the refined Gysin
map attached to the regular local immersion A : X — X x X gives an intersection product
Ch;(Y1)g x Ch;(Ya)g — Chipj—n(Y1NY2)g — Cheitvj—n(X)o
(G1:G) — A xG)
Note that Y1 NY; = Y] xx Yo — Y7 is proper, hence Y; NY5 is proper over k. Taking direct

limits for Y7 and Ya, we get the intersection product on Ch, .(X)g.
Composing with the degree map, we get an intersection pairing

(,)x : Che j(X)g X Chep—j(X)g — Q (A1)
defined as
(C1,G2)x =deg(C1-x C2), (1 € Chej(X)g, G2 € Chepn—j(X)g-

A.1.5. The cycle class map. For any closed substack Y C X that is proper over k, we have the
usual cycle class map into the ¢-adic (Borel-Moore) homology of Y

cly : Chy(Y)g — HEM(Y @k k, Qe)(—4) = Hoj (Y @ k, Qo) (—).
Composing with the proper map i : Y — X we get
cly,x 1 Chy(V)g <5 Hoy (Y @4 K, Qo) (—) = Hay (X @1 k, Qe)(—) = 2™ (X @y k, Qe) (n—y)-
(A.2)

where the last isomorphism is the Poincaré duality for X. Taking inductive limit over all such
proper Y, we get a cycle class map for proper cycles on X

1i C]y‘X . _
el : Chej(X)g = lim Ch;(Y)g ——— H2""%(X @4 F, Qp)(n - ).
Y

This map intertwines the intersection pairing (|A.1]) with the cup product pairing

H2 (X @0y k, Qo) () x B2 (X @ K, Qo)(n — j) < H2(X @ K, Qu)(n) “b Q.

A.1.6. A ring of correspondences. Let

cChn(X X X)Q = hgrl Chn(Z)Q
ZCXxX,pr:Z—X is proper

For closed substacks Z1, Z5 C X x X that are proper over X via the first projections, we have
a bilinear map

Ch,(Z1)g x Chy(Za)g — Chu((Z1 x X) N (X X Z3))g =25 .Chy (X x X)g
(p1,p2) == p1*p2 = Dprog, (o1 x [X]) xs ([X] % p2)).

Note that (Z1 x X)N (X X Z2) = Z1 Xpr,, X,pr, Z2 is proper over Zi, hence is proper over X via
the first projection. Taking direct limit over such Z; and Zs, we get a convolutiton product

(=) (=) : «Chy (X x X)g % Chy (X x X)g — «Chy (X x X)g.

This gives .Ch, (X x X)q the structure of an associative Q-algebra.
For a closed substack Z C X x X such that pr; is proper, and a closed substack ¥ C X which
is proper over k, we have a bilinear map

Ch,(Z)o x Chy(Y)g — Chi(ZN (Y x X))o 225 Che4(X)g
(p.¢) = pxCi=pry(p-xxx (( x [X])

Note here Z N (Y x X) = Z xp;, x Y is proper over Y, hence is itself proper over k. Taking
direct limit over such Z and Y, we get a bilinear map

cChn<X X X)Q X Chc)i(X)Q — Chc)i(X)Q.
This defines an action of the Q-algebra .Ch,, (X x X)g on Ch.;(X)g.
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A.2. Graded K|, and Chow groups for Deligne—-Mumford stacks.

A.2.1. A naive filtration on K{(X)gq. For an algebraic stack X over k, let Coh(X) be the abelian
category of coherent O x-modules on X. Let K()(X) denote the Grothendieck group of Coh(X).

Let Coh(X )<, be the full subcategory of coherent sheaves of Ox-modules with support di-
mension < n. We define Kj(X)g*2s to be the the image of Ko(Coh(X)<,)g — K(X)g. They
give an increasing filtration on K}(X)g. This is not yet the correct filtration to put on K4(X)o,
but let us first review the case where X is a scheme.

Let X be a scheme of finite type over k. Recall from |7, §15.1.5] that there is a natural graded
map ¢x : Ch.(X)g — G K/ (X)q sending the class of an irreducible subvariety V C X of
dimension n to the image of Oy in Gri**K{(X)g. This map is in fact an isomorphism, with
inverse ¢x : Gr*®“*K/(X)g — Ch,(X)g given by the leading term of the Riemann-Roch map
Tx  K{(X)g — Ch.(X)g. For details, see |7, Theorem 18.3, and proof of Corollary 18.3.2].
These results also hold for algebraic spaces X over k by Gillet [§].

A.2.2. A naive attempt to generalize the map ¥ x to stacks is the following. Let Z,(X)g be
the naive cycle group of X, namely the Q-vector space with a basis given by integral closed
substacks V' C X of dimension n.

We define a linear map suppy : Ko(Coh(X)<,)g — Z,(X)g sending a coherent sheaf F to
>y myv(F)[V], where V runs over all integral substacks of X of dimension n and my (F) is the
length of F at the generic point of V.

Clearly this map kills the image of K¢(Coh(X)<,—_1)g but what is not clear is whether or not

the composition Ko(Coh(X)<n)o 2P, Z (X)g — Ch,(X)g factors through K (X)&“‘gfl For
this reason we will look for another filtration on K{(X)g.

When X is an algebraic space, the map supp x does induce a map GrﬁaiveK{)(X)Q — Chy,(X)g,
and it is the same as the map ¥, the top term of the Riemann—Roch map.

A.2.3. Another filtration on K{(X)g. Now we define another filtration on K{(X)g when X is a
Deligne-Mumford stack satisfying the following condition.

Definition A.1. Let X be a Deligne-Mumford stack over k. A finite flat surjective map U — X
from an algebraic space U of finite type over k is called a finite flat presentation of X. We say
that X admits a finite flat presentation if such a map U — X exists.

We define K{(X)g,<n to be the subset of elements a € K, (X)q such that there exists a finite
flat presentation 7 : U — X such that 7*a € K{)(U)Efg’fl

We claim that K{(X)g,<n is a Q-linear subspace of K{(X)g. In fact, for any two elements
ay, s € K)(X)g,<n, we find finite flat presentations m; : U; — X such that 7fa; € K()(U,){éag’fl
for ¢ = 1,2. Then the pullback of the sum a7 + as to the finite flat presentation Uy x x Us — X
lies in Kp(Uy x x Us)iive,

By this definition, K{(X)g,<, may not be zero for n < 0. For any negative n, K{(X)g,<n
consists of those classes that vanish when pulled back to some finite flat presentation U — X.
Lemma A.2. When X is an algebraic space of finite type over k, the filtration K{(X)g,<n is

the same as the naive one Ké(X)&*Q’;’;

Proof. To see this, it suffices to show that for a finite flat surjective map 7 : U — X of algebraic
spaces over k, and an element o € K{(X)q, if 7*a € K(’)(U)f&ag’z, then o € K(’)(X)(’Eéa“gvf1 In
fact, suppose « € K(’)(X)&ag’fn for some m > n, let a,, be its image in Gr™™"°K}(X)g. Since
the composition m,7* : Chy,(X)g — Chy,(U)g — Chyy,(X)g is the multiplication by deg(w) #
0 on each connected component, it is an isomorphism hence 7* : Ch,,(X)g — Ch,,(U)g is
injective. By the compatibility between the isomorphism ¢ x : Gry:""*K((X)g = Ch,,(X)g and
flat pullback, the map 7* : Gr,, K{(X)g — Gr,, K{(U)g is also injective. Now 7*(ay,) = 0 €
Gr2V*K{(U)g because m > n, we see that O = 0, ie., a € K(’)(X){éag’;_l Repeating the
argument we see that o has to lie in Kg(X)g2y,. O

50ur definition in 3 may still seem naive to experts, but it suffices for our applications. We wonder if
there is a way to put a natural A-structure on K{(X)g when X is a Deligne-Mumford stack, and then one may
define a filtration on it using eigenvalues of the Adams operations.
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For a Deligne-Mumford stack X that admits a finite flat presentation, we denote by Gr, K{(X)q
the associated graded of K{(X)g with respect to the filtration K{(X)g,<n. We always have
Ko(X)EYe € Ko(X)qg,<n, but the inclusion can be strict. For example, when X is the classify-
ing space of a finite group G, we have K} (X)g = Ri(G)q is the k-representation ring of G with
Q-coefficients. Any element o € Ry (G)g with virtual dimension 0 vanishes when pulled back
along the finite flat map Speck — X, therefore K{(X)g<—1 C K{(X)g is the augmentation
ideal of classes of virtual degree 0, and GroK}(X)g = Q.

A.2.4. Functoriality under flat pullback. The filtration K{(X)g,<n is functorial under flat pull-
back. Suppose f : X — Y is a flat map of relative dimension d between Deligne—-Mumford stacks
that admit finite flat presentations, then f* : K{(Y)g — K{(X)q is defined. Let o € K{(Y)g,<n-
We claim that f*a € K((X)g,<n+a- In fact, choose a finite flat presentation 7 : V' — Y such that
™o € K(’)(V){@ag’fb Let W =V xy X, then ©' : W — X is representable, finite flat and surjec-
tive. Although W itself may not be an algebraic space, we may take any finite flat presentation
oc:U — X and let U' := W xx U. Then U’ is an algebraic space and £ : U' =W xx U — X
is a finite flat presentation. The map f’ : U’ — W — V is flat of relative dimension d be-

tween algebraic spaces, hence f"m*a € K{(U')§'Yq,,. Since f"7*a = §*f*a, we see that

fra € Ko(X)g.nsa
As a particular case of the above discussion, we have

Lemma A.3. Let X be a Deligne-Mumford stack that admits a finite flat presentation. Let
a € K{(X)g,<n. Then for any finite flat representable map f: X' — X, where X' is a Deligne—
Mumford stack (which automatically admits a finite flat presentation), f*a € K§(X )g,<n-

A.2.5. Functoriality under proper pushforward. The filtration K{(X)g,<n is also functorial under
proper representable pushforward. Suppose f : X — Y is a proper representable map of Deligne—
Mumford stacks that admit finite flat presentations. Suppose o € K{(X)g,<n, we claim that
feao€ Kj(Y)g,<n- Let m: V' — Y be a finite flat presentation. Let o : U = X xy V' — X be the
corresponding finite flat presentation of X (U is an algebraic space because f is representable).
Then f’ : U — V is a proper map of algebraic spaces. By Lemma o*a € Kij(U)g,<n =
Ko(U)gYe, therefore m* fua = flo*a € Ko(V)§Ee, hence f.o € K§(Y)g,<n-

A.2.6. For a Deligne-Mumford stack X that admits a finite flat presentation, we now define a
graded map ¥x : Gr.K((X)g — Ch.(X)g extending the same-named map for algebraic spaces
X.

We may assume X is connected for otherwise both sides break up into direct summands
indexed by the connected components of X and we can define 1 x for each component. Let
m: U — X be a finite flat presentation of constant degree d. For a € K(X)qg,<n, we know from
Lemma that 7*a € K{(U)qg,<n- Then we define

¥x(a) = Gmbu(na) € Chu(X)g

It is easy to check that thus defined 1 x is independent of the choice of the finite flat presentation
U by dominating two finite flat presentations by their Cartesian product over X.

A.2.7. The definition of ¥ x is compatible with the support map supp,, in the sense that the
following diagram is commutative when X is a Deligne-Mumford stack admitting a finite flat
presentation

Ko(Coh(X)<n)g — Ko(X)§L, —— Ki(X)g.<n

)

Supp x Px

Zn(X)o Ch,(X)g
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A.2.8. Compatibility with the Gysin map. We need a compatibility result of ¥ x and the refined
Gysin map. Consider a Cartesian diagram of algebraic stacks

x Ly (A.3)

f
X——>Y

satisfying the following conditions

(1) The stack X’ is a Deligne-Mumford stack that admits a finite flat presentation.

(2) The morphism f can be factored as X Lph Y, where i is a regular local immersion of
pure codimension e , and p is a smooth relative Deligne-Mumford type morphism of pure
relative dimension e — d.

Remark A.4. Let X and Y be smooth Deligne-Mumford stacks, and f : X — Y is any

id,, L. .-
morphism. Then we may factor f as X M X xy 2¥ Y, which is the composition of a
regular local immersion with a smooth morphism of Deligne-Mumford type. In this case any f
always satisfies the condition .

A.2.9. In the situation of the refined Gysin map [15, Theorem 2.1.12(xi), and end of
p.529] is defined
f i Ch (Yo — Cha_g(X')g.
We also have a map
F* i KG(Y) — Kh(X) (A.4)
defined using derived pullback of coherent sheaves. Let F be a coherent sheaf on Y’. Then

L
the derived tensor product f'~!F ®(fg)-10y g 1Ox has cohomology sheaves only in a bounded
range because for a regular local immersion it can be computed locally by a Koszul complex.
Then the alternating sum

* 7 -lo — _
PR = DD Tor? O (f 7 F g Ox))
is a well-defined element in K{(X’). We then extend this definition by linearity to obtain the
map f* in (A.4).
Proposition A.5. In the situation of (A.3]), assume all conditions in are satisfied. Let
n > 0 be an integer. We have
(1) The map f* sends Kjy(Y')§Ys to K§(X)g,<n—d, and hence induces

Grraive = Griave K1 (Y ) g — Gr_aKj(X')g.
(2) The following diagram is commutative

naive p*

Ko(Coh(Y)<pn)og — Grﬁai"CK{)(Y’)@ — Gr,—q K{(X')g (A.5)

Zy(Y")g —— Chn(Y)g —— 5 Chy_a(X)g
(3) If Y’ is also a Deligne-Mumford stack that admits a finite flat presentation, then f* sends
K{(Yg,<n to K§(X')g,<n—d, and we have a commutative diagram

Gry f*
Cra K5V )~ Gr_aEH(X)g

J{lﬁy/ Jﬂ’x'

Chn (Y')g —— Chy_a(X')g
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Proof. (1) and (2). Write f = poi: X -5 P % Y as in condition () in §A.2.8, Let P’ = Pxy Y".
For the smooth morphism p of relative dimension e — d, p* sends Coh(Y")<,, to Coh(P’)<pte—d-
Then we have a commutative diagram

K} (Coh(Y') <) — K§(Coh(P)<pye—a)o (A.6)

JSUPPY’ lSUPPP’

Zn(Y')g ———— Znte—-a(P')q

Therefore to prove (1) and (2) we may replace f : X — Y with ¢ : X — P hence reducing to the
case f is a regular local immersion of pure codimension d.

Let o € Ko(Coh(Y')<n)g. Then there exists a closed n-dimensional closed substack Y C Y’
such that « is in the image of K{(Y")g. We may replace Y’ with Y and replace X’ with
X" := X' Xy, Y”. Tt suffices to prove the statements (1)(2) for X” and Y for then we may
pushforward along the closed immersion X" < X’ to get the desired statements for X’ and Y.
Therefore we may assume that dimY’ = n.

The construction of the deformation to the normal cone can be extended to our situation, see
115, p.529]. Let Ny be the normal bundle of the regular local immersion f. Then the normal
cone Cx/Y’ for the morphism f’: X’ — Y’ is a closed substack of g*Ny. We denote the total
space of the deformation by M, Y’. This is a stack over P! whose restriction to A! is Y/ x Al
and whose fiber over oo is the normal cone Cx/Y'. Let i, : Cx/Y’ — M%,Y’ be the inclusion
of the fiber over co. We have the specialization map for K-groups

pr;‘,,

Sp 1 Kj(Y')g “ Kj(Y' x Al)g = K§(M%,Y")o/K§(CxY)g = K§(CxiY')o.
Similarly, we also have a specialization map for the naive cycle groups

Sp: Zu(Y g 220 Zyr (V! x AY)g =5 Zpsr (MY ) == Z,(CxY')g.
Here we are using the fact that n = dimY’ = dimCx/ Y’ = dim M%, Y’ — 1, and Z.(—)g is the
naive cycle group. For any n-dimensional integral closed substack V' C Y’, Sp([V]) is the class
of the cone Cx/nyV C Cx/ Y.
The diagram (A.5)) can be decomposed into two diagrams

S s*
Ey(Y)g — K§(CxY')g = = + K§(X )g.<n—d

lsuppy/ lsuppcxl Y/ ldix/
|

Zn(Y")g —25 Z,(Cxr Y )g —>—s Chy_a(X)g

The dotted arrow is conditional on showing that the image of s* lands K{(X')g<n—d. The
left square above is commutative: since we are checking an equality of top-dimensional cycles,
we may pass to a smooth atlas and reduce the problem to the case of schemes for which the
statement is easy. Therefore it remains to show that the image of s* lands Ko(X')g,<n—d, and
that the right square is commutative. Since Cx/Y’ C ¢* Ny, it suffices to replace Cx/ Y’ by g* Ny
and prove the same original statements (1) and (2), but without assuming that dim ¢* Ny = n.
In other words, we have reduced the problem to the following special situation

X'=X,Y' =Y is a vector bundle of rank d over X, (A7)

g =1idx,h =idy and f = s is the inclusion of the zero section.

In this case, let 7 : U — X be a finite flat presentation, let Yy be the vector bundle Y base
changed to U. Then U and Yy are both algebraic spaces. Let sy : U — Yy be the inclusion
of the zero section and let o : Yy — Y be the projection. For any o € K(’)(Y)(‘éfigfb, we have
m's*a = sj;o"a € Ky(U)g. We have c*a € K(’)(YU)&aQ’fL In the case of the regular embedding
of algebraic spaces sy : U < Yy, si; sends K (Y )o,.<n to K(U)g.<n—a by the compatibility
of the Riemann-Roch map with the Gysin map ([7, Theorem 18.3(4)]). Therefore m*s*a =
sio*a € K{(U)g,<n—d, hence s*a € Ky(X)g,<n—a-
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We finally check the commutativity of in the special case (A.7). For any a € K{(Coh(Y)<y)g,
we need to check that § = s'suppy (a)—1x (s*a) € Ch,,_4(X)g is zero. Since m.7* : Ch,,_4(X)g —
Ch,,—¢(U)g — Chy,—4(X)q is the multiplication by deg(w) on each component of X, in particular
it is an isomorphism and 7* is injective. Therefore it suffices to check that 7§ = 0 € Ch,,—q(U)g.
Since 7§ = s!UsuppYU (c*a) —yYusi;(0*a), we reduce to the situation of sy : U — Yy, a regular
embedding of algebraic spaces. In this case, the equality s!UsuppU = yysj; follows from the
compatibility of the Riemann-Roch map with the Gysin map (|7, Theorem 18.3(4)]).

(3) Let @ € K{(Y')g,<n. Then for some finite flat presentation my : V — Y/, nja €
Ko(V)Els. Let W = X' xy/V = X xyV,and let f” : W — V be the projection. Then we have
a Cartesian diagram as in with the top row replaced by f” : W — V. Since my : W — X'
is a finite flat surjective map (W may not be an algebraic space because we are not assuming that
f is representable), 7y, : Chyp—q(X')g = Chy—q(W)g is injective. Therefore, in order to show
that f*a € K{(X')g.<n—a and that ¢ x/ f*a— fpyra = 0 in Ch,,_4(X')q, it suffices to show that
Ty fra = frrba € KY(W)g,<n—a and that 7, (Vx/ f*a — foyra) = w5 (7ha) — fov(nha)
is zero in Ch,_4(W)g. Therefore we have reduced to the case where Y’ = V is an algebraic
space. In this case Kq(Y")g,.<n = Ko(Y')§'25, and the statements follows from (1)(2). O

By applying Proposition to the diagonal map X — X x X (and taking g, h to be the
identity maps), we get the following result, which is not used in the paper.

Corollary A.6. Let X be a smooth Deligne—Mumford stack that admits a finite flat presentation,
then the map Vx s a graded ring homomorphism.

A.2.10. The case of proper intersection. There is another situation where an analog of Propo-
sition can be easily proved. We consider a Cartesian diagram as in (A.3)) satisfying the
following conditions

(1) X’ is a Deligne-Mumford stack, and h (hence g) is representable.

(2) The normal cone stack of f is a vector bundle stack (see [2], Definition 1.9]) of some constant
virtual rank d.

(3) There exists a commutative diagram

U5V (A.8)

x—1.y

where U and V' are schemes locally of finite type over k, v and v are smooth surjective and
1 is a regular local immersion.
(4) We have dimY”’ =n and dim X’ = n — d.
Remark A.7. Suppose X and Y are smooth stacks over k. Pick any smooth surjective W — Y
where W is a smooth scheme, and let v : U — X Xy W be any smooth surjective map from a

smooth scheme U. Take V = U x W, then i = (id,pryy ou) : U = V = U x W is a regular local
immersion. Therefore, in this case, f satisfies the condition above.

If f satisfies the condition above, the refined Gysin map is defined (see |15, End of p.529
and footnote]). We only consider the top degree Gysin map

f' Ch,(Y)g — Chy—a(X')g
On the other hand, derived pullback by f* gives
K (YY) — Ko(X)

as in (A.4). Here the boundedness of Tor can be checked by passing to a smooth cover of X',
and we may use the diagram (A.8]) to reduce to the case where f is a regular local immersion,
where Tor-boundedness can be proved by using the Koszul resolution.
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Lemma A.8. Under the assumptions of §4.2.10, we have a commutative diagram

K)(Y")g —— K} (X')q

suppy/l lSUPPx’
1

Zu(Y")g —1 Zn_a(X')q

Proof. The statement we would like to prove is an equality of top-dimensional cycles in X’. Such
an equality can be checked after pulling back along a smooth surjective morphism X" — X',
We shall use this observation to reduce the general case to the case where all members of the
diagram are algebraic spaces and that f is a regular embedding.

Let i : U — V be a regular local immersion of schemes as in Condition (3] of that
covers f : X — Y. By passing to connected components of U and V', we may assume that the
maps u,v and ¢ in have pure (co)dimension. Let U' = X' xx U and V' =Y’ Xy V, then
we have a diagram where all three squares and the outer square are Cartesian

f/
X gy Y Sy
IO A R
X Uty ",y

Let a € K)(Y"). To show suppy/(f*a) — f'suppy(a) =0 € Z,_a(X")g, it suffices to show its
pullback to U’ is zero. We have
u* (supp ./ (f*@) — f'suppy (@) = suppy (u*f*a) — u' f'suppy- (a) (A.9)
= suppy. (i*v*a) — i'v'suppy- (a).
Since v is smooth and representable, we have v'suppy- (o) = suppy~ (v"*a). Letting 8 = v"*a €
Ky(V'), we get
suppy (i*v* @) — i'v'suppy. (@) = suppy (i* 8) — i'suppy (8).

To show the LHS of (A.9) is zero, we only need to show that supp;, (i*3) — i'suppy(3) = 0.
Therefore we have reduced to the following situation:

X and Y are schemes and f is a regular local immersion.

In this case, X’ and Y’ are also algebraic spaces by the representability of A and ¢. In this case
we have suppy, = ¥xs and suppy~ = ¥y+. The identity suppy. (f*a) = ¥x: (f*a) = foy: (o) =
f'suppy- () follows from the compatibility of the Riemann-Roch map with the Gysin map
(|7, Theorem 18.3(4)]). O

A.3. The octahedron lemma. We consider the following commutative diagram of algebraic
stacks over k

A—"3X+—B (A.10)
SR
[T 4
C——Y<+—D
Attached to this diagram we may form the fiber product of each row
Axx B—UxgV < CxyD (A.11)

and the fiber product of each column

CxpASBY xs X+ DxyB (A.12)
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We form the fiber products of the maps in (A.11]) and in (A.12]):

(C XYD)X(UXSV) (A XxB)4)A Xx B (A13)
CxyD—> 5 UxgV
(C XUA)X(YXSX) (D XvB)*)D Xy B (A14)
Cxy A @ Y x¢ X
Finally we introduce another stack N as the fiber product
N AxBxCxD (A.15)

| |

X xsY xgUxgV—= (X xgU)x (X xsV)x (Y xsU)x (Y xgV)=R

Lemma A.9. There is a canonical isomorphism of stacks that appear in the northwest corners
of (A.13) and (A.14)

(C Xy D) xwxgev) (Axx B) =N = (C xy A) Xyxyx) (D xy B) (A.16)

Proof. For the first isomorphism, we consider the diagram (to shorten notation, we use - instead
of x)

(Cy D) -@.sv)(Ax B)——(Cy D)- (A-x B)—— A-B-C-D  (A.17)

| J |

Y~SX-SU-SV4>(Y~5U-5V)-(X~SU~SV)4>R

| |

U-sV—2 5 (U-gV)? Y. x SV y2ox2

Here all the squares are Cartesian. The upper two squares combined give the square in (A.15)).
This shows that the LHS of (A.16) is canonically isomorphic to N.
For the second isomorphism, we argue in the same way using the following diagram instead

(C-vA)(y.sx)(D-v B)—— (C-y A)-(D-y Bl——A-B-C-D  (A.18)

| J |

Y~SX-SU-SV4)(Y~5X'SU)-(Y~SX-SV)4>R

Yo X —2 5 (Y5 X)? U.v U2y
0

There is a way to label the vertices of the barycentric subdivision of an octahedron by the
stacks introduced above. We consider an octahedron with a north pole, a south pole and a
square as the equator. We put S at the south pole. The four vertices of the equator labelled
with A, B, D and C clockwisely. The barycenters of the four lower faces are labeled by U, V, X, Y
so that their adjacency relation with the vertices labelled by A, B,C, D is consistent with the
diagram . At the barycenters of the four upper faces we put the fiber products: e.g., for
the triangle with bottom edge labeled by A, B, we put A X x B at the barycenter of this triangle.
Finally we put N at the north pole.

Theorem A.10 (The Octahedron Lemma). Suppose we are in the above situation. Suppose
further that
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(1) The algebraic stacks A,C,D,U,V, XY and S (everybody except B, B for bad) are smooth
and equidimensional over k. We denote dim A by da, etc.

(2) The fiber products U xg V, Y xg X, C xy D and C xy A have expected dimensions dy +
dy —dg, etc.
(3) Each of the Cartesian squares

Axx B—B (A.19)

DxyB——B (A.20)

D—1 v
satisfies either the conditions in or the conditions in §4.2.10,

(4) The Cartesian squares (A.13) and (A.14) satisfy the conditions in §A.2.8,
Letn=das+dg +dc+dp —dy —dy —dx —dy +dg. Then

8'a'[B] = o'd'[B] € Ch,(N).

Proof. Since U, S and V are smooth and pure dimensional, and U xg V has the expected di-
mension, it is a local complete intersection and we have

L
Ovuxsv = 0y ®og Oy

Here we implicitly pullback the sheaves Oy, Oy and Og to U x gV using the plain sheaf pullback.
Similar argument shows that the usual structure sheaves Oy« x, Ocxyp and Ocx, 4 coincide
with the corresponding derived tensor products.

We now show a derived version of the isomorphism . We equip each member of the
diagrams , and with the derived structure sheaves, starting from the usual
structure sheaves of A, B,C, D, X,Y, U,V and S. For N, we use to equip it with the
derived structure sheaf

L L L L
OF" = (Ox ®og Oy o, Ov ®os Ov) Rpaer (04 KO WO KW Op)

where O%" is the derived structure sheaf (O éos Oy)X-- X (Oy éos Oy)on R= (X xg
U) x -+ x (Y xg V). To make sense of this derived tensor product over O%", we need to work
with dg categories of coherent complexes rather than the derived category.

We claim that under the isomorphisms between both sides of and N, their derived
structure sheaves are also quasi-isomorphic to each other. In fact we simply put derived struc-
tures sheaves on each vertex of the diagram . Since the upper two squares combined give

the square in (A.15), transitivity of the derived tensor product gives a quasi-isomorphism

der . L L
ON" = (Oc ®o, Op) ® (04 ®ox Op) (A.21)

(©uFo sOv)
Similarly, by considering the diagram (|A.18)), we get a quasi-isomorphism

der L L L
ON" = (Oc ®o, Oa) @ (Op @0, Op) (A.22)

(Oy Q%os Ox)
Combing the isomorphisms (A.21)) and (A.22), and using the fact that U xgV, Y xg X, C xy D
and C' Xy A need not be derived, we get an isomorphism of coherent complexes on N
L L N L L
OCXyD ®OU><SV (OA ®ox OB) = OCXUA ®OY><SX (OD Koy OB)

These are bounded complexes because the diagrams (A.19)), (A.20]), (A.13) and (A.14) satisfy
the conditions in §A.2.8 or §A.2.10] Taking classes in K{(N)g we get

§*a*Op = a*d*Op € K\(N)g (A.23)
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Here a*,d*,a* and §* are the derived pullbacks maps between K|(-groups defined using the

relevant Cartesian diagrams. Now we apply Proposition to the diagrams (A.19)), ,
(A.13) and (A.14)), to conclude that both sides of (A.23) lic in K{(N)g <n (where n is the

expected dimension of N). In case (A.19) or (A.20) satisfies §A.2.10] instead of §A.2.8 the

corresponding statement K{(B)g,<ds — K§(A Xx B)go.<ds+dp—dx OF K§(B)o,<ap — K{(D Xy
B)g,<dp+ds—dy is automatic for dimension reasons.

Now we finish the proof. We treat only the case where (A.19)) satisfies the conditions in §A.2.§
and (A.20)) satisfies the conditions in This is the case which we actually use in the main
body of the paper, and the other cases can be treated in the same way.

Let 0*a*Op and a*d*Op denote their images in Gr,, K)(N)g. Similarly let a*Op € Grg, tas—dx K§(AX x
B)g be the images of a*Op. Applying Proposition three times and Lemma once we get

8'a'[B] = 8'a'suppp(Op)
= "Yaxyp(a*Op) (Prop[A5(2) applied to (A19))
Yn(0*a*Op) (Prop[A.5(3) applied to (A.13))
Q/JN(a*d*OB) 1A23
= a'supppy, p(d*Op) (Prop[A5|2) applied to (A.14))
= a'd'suppy(Op) (Lemma [A 8 applied to (A.20))
[
= «o'd[B].

A.4. A Lefschetz trace formula. In this subsection, we will assume:

o All sheaf-theoretic functors are derived functors.

A.4.1. Cohomological correspondences. We first review some basic definitions and properties of
cohomological correspondences following . Consider a diagram of algebraic stacks over k

k3 <
X+—C——Y (A.24)

We call C' together with the maps T and 7 a correspondence between X and Y.
Let F € D%(X) and G € D%(Y') be Q-complexes of sheaves. A cohomological correspondence
between F and G supported on C' is a map

(T F—72'¢g
in D%(0).
Suppose we have a map of correspondences

3 <
X+—C——Y

bbb

S+—B——T

%
where ¢ and b are proper, then we have an induced map between the group of cohomological

correspondences supported on C' and on B (see §1.1.6(a)])
hy - Home (€% F, @'G) — Homp (b *fiF, D

'9G)
. . — - . —x ] .
In particular, if S= B =T and b = b =idg, then ¢ € Homg(¢c *F, ?g) induces a map ¢
between fiF and ¢G given by the composition
—
h¢: iF — fg%!%*]: flc—'(o> fg%l?!g = gg?g?!g — q1G. (A.25>

When S =T, B the diagonal of S, X =Y and f = g, we call C a self-correspondence of X
over S. In this case, for a cohomological correspondence ¢ between F and G supported on C,
we also use fi¢ to denote hi¢ € Homg(fi.F, f1G) defined above.
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A.4.2. Fized locus and the trace map. Suppose in the diagram (A.24) we have X =Y. We
denote X by M. Define the fixed point locus Fix(C) of C by the Cartesian diagram

Fix(C) ——— C

" e

M—25MxM
For any F € D% M), there is a natural trace map (see [22, Eqn(1.2)])
7o : Hom(‘e* F, @'F) — HEM(Fix(C) @4 k)
In other words, for a cohomological self-correspondence ¢ of F supported on C, there is a well-

defined Borel-Moore homology class 7¢(¢) € HM (Fix(C) @ k).

A.4.3. In the situation of §A.4:2] we further assume that both C' and M are Deligne-Mumford
stacks, M is smooth and separated over k of pure dimension n, and that F = Qg s is the
constant sheaf on M.

Using Poincaré duality for M, a cohomological self-correspondence of the constant sheaf Qg s
supported on C is the same as a map

Qec = <€*@z,M — 7'Quar = Dy [-2n](—n) = Do[-2n](—n)
Over C ®y, k, this is the same thing as an element in HSM(C' @y, k)(—n). In this case, the trace
map 7¢ becomes the map
7o 1 HPYW(C @y k) (—n) — HeM (Fix(C) @4 k).
On the other hand, we have the cycle class map
cle : Chy, (C)g — HEM(C @y, k) (—n) = Hom(‘e*Qq,ar, @' Qe 1)

Therefore, any cycle ¢ € Ch,(C)g gives a cohomological self-correspondence of the constant
sheaf Qg ps supported on C. We will use the same notation ¢ to denote the cohomological self-
correspondence induced by it. Since Ay : M — M x M is a regular local immersion of pure
codimension n, we have the refined Gysin map

Al : Ch,(C)g — Chy(Fix(C))g.
Lemma A.11. Under the assumptions of §4.1.3, we have a commutative diagram

Chn (C)g ——22, Cho(Fix(C))g

lclc JClFix(C)

HEM(C @y, F)(—n) —< HPM(Fix(C) @5 &)

Proof. Let us base change to k and keep the same notation for M,C etc. Tracing through the
definition of 7¢, we see that it is the same as the cap product with the relative cycle class of
A(M) in H*™(M x M, M x M — A(M))(n). Then the lemma follows from |7, Theorem 19.2].
Note that [7, Theorem 19.2] is for schemes over C but the argument there works in our situation
as well, using the construction of the deformation to the normal cone for Deligne-Mumford stacks
in [14, p.489]. O

A.4.4. Intersection with the graph of Frobenius. Suppose we are given a self-correspondence C

of M over S
N
h
Nl

S

M M

satisfying
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k is a finite field;
S is a scheme over k;

e M is a smooth and separated Deligne-Mumford stack over k of pure dimension n;
f: M — S is proper;

e ‘C:C— Mis representable and proper.
We define Shto by the Cartesian diagram

Shte —— C (A.26)

e

YRS VIV VY

Here the notation Shto suggests that in applications Shte will be a kind of moduli of Shtukas.
We denote the image of the fundamental class [M] under (id, Frps). by T'(Frps). Since (id, Frps)
is a regular immersion of pure codimension n, the refined Gysin map

(id, Fras)' : Ch,,(C)g — Cho(Shte)g
is defined. In particular, for ¢ € Ch,(C)q, we get a 0-cycle
(id, Frar)'¢ € Cho(Shte)o.

A.4.5. Since C — M xg M, while (id,Fras) : M — M x M covers the similar map (id, Frg) :
S — S xS, the map Shte — S factors through the discrete set S(k), viewed as a discrete closed
subscheme of S. Since Shtc — S(k), we get a decomposition of Shte into open and closed
subschemes

Shte = ]_[ Shte(s).

seS(k)
Therefore
Chy(Shtc)g = €D Cho(Shte(s))g-
seS(k)
For ¢ € Ch,(C)q, the 0-cycle ¢ -prxar I'(Fras) can be written uniquely as the sum of 0-cycles
((id, Fras)'¢)s € Cho(Shte(s))g, Vs € S(k). (A.27)

Each Shteo(s) = T'(Frar,) Xa.xa, Cs. Since ¢+ Cy — M, is proper and M, is separated
(because f is proper), Cs — Mg x My is proper, therefore Sht¢(s) is proper over I'(Fryy, ), hence
it is itself proper over k because I'(Frps,) = M, is proper over k. Therefore the degree map
deg : Cho(Shtc(s))gp — Q is defined, we get an intersection number indexed by s € S(k):

(¢, D(Fran))s = deg((id, Frar)')s € Q.
The main result of this subsection is the following.
Proposition A.12. Assume all conditions in §A.4.4| are satisfied. Let ¢ € Ch,,(C)q. Then for
all s € S(k), we have
<<7 F(FrM)>s =Tr ((f‘(ﬂC(C))s o Froby, (f!@@)?) . (A28>
Here ficlg(€) := hiclg(€) is the endomorphism of fiQq induced by the cohomological correspon-
dence cla(C) supported on C, and (ficle(C))s is its action on the geometric stalk (fiQe)s.

Proof. Let 'C' = C but viewed as a self-correspondence of M via the following maps

M 5_C=FI'M oT /C C /_c>:7 M
————C=C————

However, 'C' is no longer a self-correspondence of M over S. Instead, it maps to the Frobenius
graph of S:

¥ 2
M+——'C—5 M (A.29)

o

§ets g M g
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Here 'S = S but viewed as a self-correspondence of S via (Frg,id) : 'S — S x S. The map
'h :'C' — 'S is simply the original map h: C — S.
We have the following diagram where both squares are Cartesian and the top square is (A.26))

Shte —/C' =C (A.30)

e
y

(1d,FrM
LN X M

\LFI‘]\/I l(FrM,ld)

M—2Y M x M

Therefore the outer square is also Cartesian, i.e., there is a canonical isomorphism Fix('C) =
Shte.

For ¢ € Ch,(C)g = Ch,('C)q, we may also view it as a cohomological self-correspondence of
Qp¢,a supported on ‘C. We denote it by ¢ € Ch,('C)g to emphasize that it is supported on C’.
We claim that

(id, Fras)'¢ = Al ('¢) € Chy(Shto)g.

In fact, this is a very special case of the Excess Intersection Formula [7, Theorem 6.3] applied to
the diagram (A.30) where both (id, Frps) and Ay are regular immersions of the same codimen-
sion. In particular, taking the degree of the s components, we have

(¢, AM])s = (¢, T(Frpp))s  for all s € S(k). (A.31)

By |22, Prop. 1.2.5] applied to the proper map (A.29) between correspondences, we get a
commutative diagram

_) Tr 7
Hom(i*Qg,M, ¢! Q) —— HGM (Fix('C) @ k) == @,cs) Ho  (Shtc(s) @y k)
J’hy() Jdeg
HOIII(FI‘S fr(@g M, fl@[ M) 4) HBM S(k ) @Ses(k) Qg

Combining the with the commutative diagram in Lemma applied to 'C, we get a commu-
tative diagram

!

Chy, ('C)g ———=2— Chy(Fix('C))g —— @,cs(p) Cho(Shtc(s))  (A.32)

J/hlocllc l Jdeg

Hom(Fr§ iQear, fiear) — = HEM (S(k) @ k) =——= Dcsiw) Q
Applying (A.32)) to '¢, and using (A.31]), we get that for all s € S(k)
T/S( h|C1/c( C)) < C A [ ]>S = <C,F(FI‘M)>S (A33)

Here 75(—)s € Q; denotes the s-component of the class 75(—) € HEM(S(k) @4 k) = Does(k)Qe-

Next we would like to express g (’ hicla('¢ )) , as atrace. The argument works more generally
when Qs is replaced with any F € D2(M) and cl¢(C) replaced with any cohomological self-
correspondence 7 : CrF =5 2'F supported on C. So we will work in this generality. For
any F € D%(M) we have a canonical isomorphism ®z : Frj, 7 = F whose restriction to the
geometric stalk at « € M (k) is given by the geometric Frobenius Frob, acting on Fz. Similar
remark applies to complexes on S. Using 1 we define a cohomological self-correspondence 'n of
F supported on 'C' as the composition

"n: Yo F = %*Fr;‘wf—% G PFTF
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On the other hand we have a commutative diagram

B fF —90 R, F— Y b e By, F—— e F —— i F (A.34)

& U fer e ar hi(')
Ly
adj hi(n) dj

f1]: _— hg%*]: E— h[?!]: L) fy]:

Here the arrows indexed by “adj.” are induced from adjunctions, using the properness of <.
The middle square is commutative by the definition of 'n, and the right square is commutative
by design. The composition of the top row in is by definition the push-forward 'hy'n
as a cohomological self-correspondence of fi.F supported on ’S; the composition of the bottom
row in is by definition the push-forward hyn as a cohomological self-correspondence of
fiF supported on the diagonal S. Therefore, shows that 'hy'n may be written as the
composition

I, * PsF hyn

hy n: FI"S f1.7: E— f[]: — f!f. (A.35)

For any cohomological self-correspondence ¢ of G € D%(S) supported on the graph of Frobenius

'S, ie., £ FrgG — G, the trace 7g(§)s at s € S(k) is simply given by the trace of & acting
on the geometric stalk Gz: this is because the Frobenius map is contracting at its fixed points,
so the local term for the correspondence supported on its graph is the naive local term (a very
special case of the main result in |22, Theorem 2.1.3]). Applying this observation to £ = 'h)/'n
we get

ms(h'n)s = Te((h'n)s, (AF)s)
= Tr ((ln)s o Frob,, (fiF)s) by (A35). (A.36)
Now apply to F = Q¢ ., 1 = cle(¢) and note that 'n = cl¢('¢). Then gives
75("hickc(Q))s = Tr ((ficle(€))s o Froby, (fiQear)s)- (A.37)
Combining with we get the desired formula . O

APPENDIX B. SUPER-POSITIVITY OF L-VALUES

In this appendix we show the positivity of all derivatives of certain L-functions (suitably
corrected by their epsilon factors), assuming the Riemann hypothesis. The result is unconditional
in the function field case since the Riemann hypothesis is known to hold.

It is well-known that the positivity of the leading coefficient of such L-function is implied by
the Riemann hypothesis. We have not seen the positivity of non-leading terms in the literature
and we provisionally call such phenomenon “super-positivity”.

B.1. The product expansion of an entire function. We recall the (canonical) product
expansion of an entire function following [1, §5.2.3, §5.3.2]. Let ¢(s) be an entire function in
the variable s € C. Let m be the vanishing order of ¢ at s = 0. List all the nonzero roots of
¢ as aj,qo, ..., q;, ... (multiple roots being repeated) indexed by a subset I of Zs, such that
laq| < |azg| < .... Let E, be the elementary Weierstrass function

En(u) - {(1 _ u) eu-‘r%uz-l-"'-i-%u”’ n>1.

An entire function ¢ is said to have finite genus if it can be written as an absolutely convergent
product

o00) =57 [ £, (2) (B.1)

for a polynomial h(s) € C[s] and an integer n > 0. The product (B.1]) is unique if we further
demand that n is the smallest possible integer, which is characterized as the smallest n € Zxg
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such that
1
iel |ai|
The genus g(¢) of such ¢ is then defined to be
9(¢) := max{deg(h), n}.

The order p(¢) of an entire function ¢ is defined as the smallest real number p € [0, co] with the
following property: for every e > 0, there is a constant C, such that

|p(s)] < el

If ¢ is a non-constant entire function, an equivalent definition is

", when |s| > C-..

log1
p(¢) — limsup Og Og HQS”OOvBT

r—s00 r

where |¢]co,5, is the supremum norm of the function ¢ on the disc B, of radius r. If the order
of ¢ is finite, then Hadamard theorem |1} §5.3.2] asserts that the function ¢ has finite genus and

9(¢) < p(¢) < g(8) + 1. (B.3)
In particular, an entire function of finite order admits a product expansion of the form (B.1).

Proposition B.1. Let ¢(s) be an entire function with the following properties
(1) It has a functional equation ¢p(—s) = Lo(s).
(2) For s € R such that s > 0, we have ¢(s) € R.
(3) The order p(¢) of ¢(s) is at most 1.
(4) (RH) The only zeros of ¢(s) lie on the imaginary azis Re(s) = 0.
Then we have for all v > 0,
$00) = | ols) >0

Moreover, if ¢(s) is not a constant function, we have
P (0) #£ 0 = ¢"0F2)(0) £ 0, for all 7y and i € Z>o.

Proof. By the functional equation, if « is a root of ¢, so is —a with the same multiplicity.
Therefore we may list all nonzero roots as {a;}icz\ (0} such that

a_;=—q;, and |o1| <|ag] < ...

If ¢ has only finitely many roots the sequence terminates at a finite number.
Since the order p(¢) < 1, by (B.3) we have g(¢) < 1. Hence we may write ¢ as a product

_ m Jh(s) = S _S
cr=r [l (2)(-2).

where m is the vanishing order at s = 0. Note that it is possible that g(¢) = 0, in which case
one still has a product expansion using E; by the convergence of .

By the functional equation, we conclude that h(s) = h is a constant.

By the condition (4)(RH), all roots «; are purely imaginary, and hence @; = a_;. We have

¢(s)=smeh}jEI (cf) Ex <;>
o)

i=1
By the condition (2), the leading coefficient e” is a positive real number. Then the desired
assertion follows from the product above. O

2
;0
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B.2. Super-positivity. Let F' be a global field (i.e., a number field, or the function field of a
connected smooth projective curve over a finite field F,). Let A be the ring of adéles of F. Let
be an irreducible cuspidal automorphic representation of GL,,(A). Let L(w, s) be the complete
(standard) L-function associated to m [9]. We have a functional equation

L(m,s) = e(m,s)L(7,1 — s),
where 7 denotes the contragredient of 7, and
e(m,s) = e(m, 1/2)N3~1/2

for some positive real number N,.. Define
_(s=1/2)
A(m,8) = Nx 2 L(m,s),

and
d

AT (7,1/2) = o SZl/QA(W,S).
Theorem B.2. Let 7 be a nontrivial cuspidal automorphic representation of GL,(A). Assume
that it is self-dual:
T~
Assume that, if F is a number field, the Riemann hypothesis holds for L(m,s), that is, all the
roots of L(m,s) have real parts equal to 1/2.
(1) For all r € Z>o, we have
A (7,1/2) > 0.
(2) If A(w,s) is not a constant function, we have
AT (7,1/2) # 0 = ATOF2) (1.1/2) £ 0, for all i € L.

Proof. We consider
A7, s) = A(m, s +1/2).
Since 7 is cuspidal and nontrivial, its standard L-function L(7,s) is entire in s € C. By the
equality e(m, s)e(,1 — s) = 1 and the self-duality 7 ~ 7 we deduce
1=e(m,1/2)e(m, 1 —1/2) = e(m,1/2)2.
Hence €(m,1/2) = £1, and we have a functional equation
A, 8) = £A(m, —s). (B.4)

We apply Proposition to the entire function A(7, s). The function L(7, s) is entire of order
one, and so is A(m, s). In the function field case, the condition (4)(RH) is known by the theorem
of Deligne on Weil conjecture, and of Drinfeld and L. Lafforgue on the global Langlands corre-
spondence. It remains to verify the condition (2) for A(m,s). This follows from the following
lemma. U

The local L-factor L(m,,s) is of the form - (1q,5) where Py, is a polynomial with constant

term equal to one when v is non-archimedean, and a product of functions of the form I'c(s+ «),
or I'r(s + ), where o € C, and

Te(s) = 2(2m)"°T(s), Tr(s) =7/ (s/2),

when v is archimedean. We say that L(m,, s) has real coefficients if the polynomial P, has real
coefficients when v is non-archimedean, and the factor I'g, (s + «) in L(m,, s) has real a or the
pair I'r, (s + a) and T'g, (s + @) show up simultaneously when v is archimedean. In particular,
if L(m,, s) has real coeflicients, it takes positive real values when s is real and sufficiently large.

Lemma B.3. Let 7, be unitary and self-dual. Then L(m,,s) has real coefficients.
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Proof. We suppress the index v in the notation and write F' for a local field. Let 7 be irreducible
admissible representation of GL,, (F'). It suffices to show that, if 7 is unitary, then we have

L(m,3) = L(7, s). (B.5)

Let 2 be the space of local zeta integrals, i.e., the meromorphic continuation of

2(®,5,f) = / F(9)®(g)lgl""

GL, (F)

n—

1
2 dg

where f runs over all matrix coefficients of 7, and ® runs over all Bruhat—Schwartz functions on
Mat,, (F)) (a certain subspace, stable under complex conjugation, if F' is archimedean, cf. [9, §8]).
We recall that from [9, Theorem 3.3, 8.7] that the Euler factor L(, s) is uniquely determined
by the space Z; (for instance, it is a certain normalized generator of the Cl¢®, ¢~*]-module 25
if F' is non-archimedean).

Let % be the space of matrix coefficients of =, i.e., the space consisting of all linear combi-
nations of functions on GL,(F): ¢ — (m(g)u,v) where u € m,v € T and (-,-) : 7 x 7 — C is
the canonical bilinear pairing. We remark that the involution g — ¢g~! induces an isomorphism
between %, with %%.

To show , it now suffices to show that, if 7 is unitary, the complex conjugation induces an
isomorphism between €, and %%. Let (-,-) : # x 1 — C be a non-degenerate Hermitian pairing
invariant under GL,,(F'). Then the space %, consists of all functions f, . : g — (7(g)u,v),u,v €
7. Under complex conjugation we have f,.,(9) = (7(g)u,v) = (v,7(g)u) = (w(g~)v,u) =
fo.u(g™1). This function belongs to €% by the remark at the end of the previous paragraph. This
clearly shows that the complex conjugation induces the desired isomorphism. (I

Remark B.4. In the case of a function field, we have a simpler proof of Theorem The
function L(m,s) is a polynomial in ¢~* of degree denoted by d. Then the function A(mw,s) is of
the form

d

A, s) = qu/Q H (1 — oziqfs), (B.6)

i=1
where all the roots «; satisfy |a;| = 1. By the functional equation (B.4), if « is a root in (B.6),
s0is a~! = @. We divide all roots not equal to +1 into pairs af', a5, ...,a;t! (some of them
may repeat). Consider

Ai(s) = qs(l — aiq_s) (1 — a;lq_s)

S

=¢+q¢° -
_ (slogq)®
=Q2-a—@)+2Yy —.

From |o;| = 1 and «; # 1 it follows that A;(s) has strictly positive coefficients at all even degrees.
Now let a (resp., b) be the multiplicity of the root 1 (resp., —1). We then have

A, s) = (672 — /%) (@ + ¢/ T[Ails), 2m+a+b=ad.
i=1
The desired assertions follow immediately from this product expansion.

Remark B.5. In the statement of the theorem, we excludes the trivial representation. In this
case the complete L-function has a pole at s = 1. If we replace A(m, s) by s(s — 1)A(m, s), the
theorem still holds by the same proof. Moreover, if F = Q, we have the Riemann zeta function,
and the super-positivity is known without assuming the Riemann hypothesis, by Pélya [4]. The
super-positivity also holds when the L-function is “positive definite” as defined by Sarnak in [20].
One of such examples is the weight 12 cusp form with g-expansion A = ¢[], (1 —¢™)?*. More
recently, Goldfeld and Huang in [10] prove that there are infinitely many classical holomorphic
cusp forms (Hecke eigenforms) on SLo(Z) whose L-functions satisfy super-positivity.

Remark B.6. The positivity of the central value is known for the standard L-function attached
to a symplectic cuspidal representation of GL,,(A) by |17].
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Remark B.7. The positivity of the first derivative is known for the L-function appearing in
the Gross—Zagier formula in [12], [25], for example the L-function of an elliptic curve over Q.
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