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Abstract

Let E be a quadratic algebra over a number field F. Let E(g, s) be an Eisenstein series on
GL2(E), and let F be a cuspidal automorphic form on GL2(F). We will consider in this
paper the following automorphic integral:∫

ZAGL2(F)\GL2(AF)

F(g)E(g, s)dg.

This is in some sense the complementary case to the well-known Rankin–Selberg
integral and the triple product formula. We will approach this integral by Waldspurger’s
formula, giving a criterion about when the integral is automatically zero, and otherwise
the L-functions it represents. We will also calculate the local integrals at some ramified
places, where the level of the ramification can be arbitrarily large.

1 Background
In this paper we are interested in the cuspidal part of an Eisenstein series restricted to
an index 2 subfield. More specifically, let E be a quadratic algebra over a number field
F. Let F be a cusp form of a cuspidal automorphic representation π on GL2(AF). Let
E(g, s) be an Eisenstein series over E, defined from two characters χ1 and χ2 over E

∗.
(see (2.4) for more details of the definition) It is well-known that such Eisenstein series is
in the continuous spectrum for L2(GL2(E)\GL2(AE)). Its integral against a cusp form on
GL2(AE) will simply be zero.
But we are interested in the spectral decomposition of E(g, s) when we restrict it to

GL2(AF). In particular we consider the following integral:

I(E, F, s) =
∫

ZAGL2(F)\GL2(AF)

F (g)E(g, s)dg. (1.1)

This integral is not necessarily zero. We would like to see when this integral is automati-
cally zero and otherwise how I(E, F, s) depends on s.
In addition to its own interest, this automorphic integral is in some sense the com-

plementary case to the well-known Rankin–Selberg integral and triple product formula.
It’s also a special case of the automorphic integral related to arithmetic height pairing on
certain Shimura varieties according to the main theorem in the work of Bruinier, Kudla
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and Yang in [4]. The work in this paper may shed some light on how to understand that
integral in general.
Let wπ denote the central character of π . To avoid triviality, we will assume throughout

this paper that

wπ · (χ1χ2)|A∗
F

= 1. (1.2)

Under this assumption, we will relate I(E, F, s) to certain L-functions and special values
of L-functions. This is not surprising as we have already seen many examples relating
automophic integrals and L-functions.

1.1 Automorphic integrals and L-functions

Integral is an important tool to study L-functions, as in the earliest example of the integral
representation for the Riemann zeta function. It is used to show, for example, the func-
tional equation and the analytic continuation of the L- functions. Tate in his thesis gave
the first adelic version of the story. (see [2] as a reference). Let μ be a Hecke character on
A

∗
F
and f ∈ S(AF) be a Schwartz function. Tate showed that the integral∫

A
∗
F

f (x)μ(x)|x|sd∗x (1.3)

represents the L-function of the Hecke character L(μ, s). His work provided the basic
idea to relate the automorphic integrals with the L-functions in general: write the auto-
morphic integral as a product of local integrals, then identify the local integrals with the
corresponding local L-factors for unramified places. The local integral at ramified places
could be different from expectation. It depends on, for example, the choice of the Schwartz
functions. Thus the global integral could differ from the L-function by factors at the set
of ramified places, which is finite.
We introduce here two more examples which are similar to (1.1).

1.1.1 Rankin–Selberg integral

Let Fi be cusp forms over F, coming from automorphic cupidal representations πi for
i = 1, 2. Let E(g, s) be the Eisenstein series over F (not over E) associated to two Hecke
characters χ1 and χ2 of A

∗
F
. Then the integral∫

ZAGL2(F)\GL2(AF)

F1(g)F2(g)E(g, s)dg (1.4)

represents (see for example [2])

L(π1 × π2,χ1, s).

If we specify χ1 to be the trivial character, then we get the standard Rankin–Selberg
L-function L(π1 × π2, s). The Rankin–Selberg method can be applied to more general
reductive groups. For a survey on this subject, see for example [3].

1.1.2 Triple product formula

Let B be a quaternion algebra. Let πi for i = 1, 2, 3 be three irreducible unitary cuspidal
automorphic representations of B

∗. Let Fi ∈ πi be cusp forms for i = 1, 2, 3. Let � denote
π1 ⊗ π2 ⊗ π3 in this subsection. Consider the integral
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∫

ZAB
∗(F)\B∗(A)

F1(g)F2(g)F3(g)dg. (1.5)

This integral gives an element of HomB∗(A)(�,C), which is at most one dimensional.
Prasad in his thesis [20] gave a criterion in terms of local epsilon factors for the local
component of HomB∗(A)(�,C) to be nonzero. Jacquet then conjectured that the central
value

L(π1 ⊗ π2 ⊗ π3, 1/2) (1.6)

of the triple product L-function does not vanish if and only if there exists a quaternion
algebra B and the corresponding Fi ’s such that (1.5) does not vanish. This conjecture
was first proved by Harris and Kudla in [10,11] using an integral representation of triple
product L-function (see [6,18]) and the regularized Siegel–Weil formula (see [17]). Later
on, more explicit formulae relating (1.5) and (1.6) were given in [1,8,25] for some special
cases. Ichino then generalized the above results in [14], where he considered � as an
irreducible unitary cuspidal automorphic representations over an étale cubic algebra K

(this in particular includes the case � = π1 ⊗ π2 ⊗ π3 when K is just F ⊕ F ⊕ F). He
showed that a pairing of integral (1.5)∫

ZAB
∗(F)\B∗(A)

F1(g)F2(g)F3(g)dg
∫

ZAB
∗(F)\B∗(A)

F ′
1(g)F

′
2(g)F

′
3(g)dg

represents
L(�, 1/2)
L(�, Ad, 1)

.

1.1.3 Comparison

Now we compare the integrals (1.1), (1.4) and (1.5). For simplicity, let B be the matrix
algebra for (1.5). We first consider the case when E = F ⊕ F for (1.1), so the Eisenstein
series there is a product of two Eisenstein series over F. Then (1.1), (1.4) and (1.5) give
a complete list of integrals of possible products of three automorphic forms, either cusp
form or Eisenstein series, over ZAGL2(F)\GL2(AF).
In general for the Rankin–Selberg integral, we can start with a cusp form defined over a

quadratic algebra E, restrict it to the base field and integrate it against an Eisenstein series
overF.WhenE is a quadratic field extension, the integral representsAsai L-function([16]).
Similarly for the triple product formula, we can start with a cusp form defined over an
étale cubic algebra K, and integrate it over the diagonal ZAGL2(F)\GL2(AF). So we have
the following table:

Degree of the algebra that
the cusp form is defined over

Degree of the algebra that
the Eisenstein series is
defined over

L-functions represented

3 No Eisenstein series Triple product L-function
2 1 Rankin–Selberg L-function

or Asai L-function
1 2 To be solved in this paper
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Note that we need at least one cusp form to guarantee convergence. So our work on (1.1)
is a complementary case to the Rankin–Selberg integral and the triple product formula.
Despite their similarity, we won’t follow, for example, Ichino’s method directly, as cusp

forms and Eisenstein series are somewhat different in nature. It turns out that our integral
is more closely related toWaldspurger’s period integral (see Sect. 2.4 for its definition and
properties).

1.2 Main results and organization

If we write E = F(
√
D), then we can embed E into the matrix algebra by

t = a + b
√
D �→

(
a b
bD a

)
. (1.7)

Let η be a quadratic character associated to the quadratic extension E/F. Recall that the
Eisenstein series E(g, s) is associated to two characters χ1, χ2. For t ∈ E

∗, define the
character � such that

�(t) = χ1(t̄)χ2(t). (1.8)
Define

χ = χ1
χ2

. (1.9)

Let � be the base change of π to E in this subsection.
The first goal of this paper is to prove the following theorem:

Theorem 1.1 (1) If HomA
∗
E
(π ⊗ �,C) = 0 or L(� ⊗ �, 1/2) = 0, then I(E, F, s) = 0.

(2) Otherwise, we can fix F1 ∈ π̂ such that

C =
∫

ZAE
∗\A∗

E

F1(t1)�−1(t1)dt1 
= 0

It is independent of s and

C · I(E, F, s)
(F1, F )

= ζ (2)L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
2L(π , Ad, 1)L(χ , 2s + 1)

∏
v

P
0
v . (1.10)

Here local integral P0
v is given as in (4.20).

The second goal of this paper is to work out the local integrals P
0
v at some ramified

places when the global integral is not trivially zero.

Remark 1.2 Using Waldspurger’s result, one can at least determine |C| once we specify
the choices of F1, F . It may seem that one still cannot get an explicit formula even if we
compute P

0
v explicitly. However one can divide this formula by Waldspurger’s formula

(see Theorem 2.22 and Corollary 2.24) and get

I(E, F, s)∫

ZAE
∗\A∗

E

F (t)�(t)dt
= L(π ⊗ χ1|F∗ , 2s + 1/2)

L(χ , 2s + 1)
∏
v

P
0
v

P0
v
. (1.11)

Here P0
v is as in (2.32). Now explicit results on the local integrals P

0
v and P0

v will allow us
to compare our period integrals I(E, F, s) with Waldspurger’s period integral∫

ZAE
∗\A∗

E

F (t)�(t)dt
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explicitly. This will be used in our future work on span of restriction of Hecke Eisenstein
series with levels. (1.11) also allows us to see the main L-functions more clearly.

We will mostly discuss the disjoint ramifications, where the test vectors are chosen to
be Gross–Prasad test vectors. But we will also consider a case (Case 5 in Sect. 5) where
there are joint ramifications. As a result, locally HomE∗ (π ⊗ �,C) 
= 0 in this case and
the local new form is a proper test vector. We shall also compute the archimedean place
for a special situation in Sect. 6. As a very special result from these local calculations, we
have

Corollary 1.3 LetE = Q(
√
D) be a real quadratic extension ofQ for a square-free integer

D. Let N = ∏
p pcp > 0 be an integer such that for any p|N, p is inert in E. Let F ∈ π

F1 ∈ π̂ be anti-holomorphic cuspidal new forms of weight−2k. Let E be a holomorphic new
Eisenstein series of parallel weight (k,k), defined by two characters χ1 χ2. Suppose that π ,
its central character wπ , χ1, χ1|Q all have finite conductor N and χ2 has finite conductor
1. Then

C · I(E, F, s)
(F1, F )

= ζ (2)L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
2L(π , Ad, 1)L(χ , 2s + 1)

P∞
∏
p|N

P
0
p, (1.12)

where

P∞ = 4π
2k − 1

1
(1 + D)k

.

P
0
p = 1

(p + 1)(pcp−1)χ1(
√
D)

.

Here χ1,p is the p-component of the Hecke character χ1.

We refer the readers to Case 5 in Sect. 5 for specific choice of local component of the
Eisenstein series in this result. Note that the L-functions here are the standard L-functions
(not completed). We have also used the relation between the Tamagawa measure and the
measure we shall use for local computations (see (2.7)). The condition about the finite
conductor is just to make sure that only Case 5 show up in ramifications. The period
integral C also depends on the choice of D, which decides the embedding of E into the
matrix algebra.
The tools developed in the local calculation of this paper turns out to be useful for

other automorphic integrals. In particular it facilitates the study of the local integral for
triple product formula which has direct arithmetic applications to subconvexity bound
and equidistribution problems. See [12] and [13] for more details.
The arrangement of this paper is as follows: Sect. 2 will cover some basic definitions,

facts and well-known theories. In particular we will review the Weil representations (fol-
lowing [24]), Shimizu’s lifting (see [21]). We will also discuss some special elements
in the Weil representation and their properties. In Sect. 2.4 we will review Gross and
Prasad’s test vector, and also two formulations of Waldspurger’s formula, one in terms
of Shimizu’s lifting which we shall use most of time, the other one in terms of matrix
coefficient.
In Sect. 3, wewill use the standard technique of folding and unfolding to rewrite I(E, F, s)

as ∫

A
∗
E
\GL2(A)

�s(γ0g)
∫

ZAE
∗\A∗

E

F (tg)�(t)dt dg. (1.13)
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This is actually a weighted integral of Waldspurger’s period integral. As a corollary,{
HomA

∗
E
(π ⊗ �,C) = 0

or L(� ⊗ �, 1/2) = 0

}
=⇒ I(E, F, s) = 0,

which is part (1) of Theorem 1.1. When this doesn’t happen, we can pair (1.13) with a
fixed period integral and apply Waldspurger’s formula in Theorem 2.22. The simplifying
observation is that the weighted integral can be combined with the inner integral of
Waldspurger’s formula. This leads us to the main identity of Theorem 1.1. It can be
formulated in terms of Shimizu lifting or matrix coefficient.
In Sect. 4, we will compute the local integral arising from Sect. 3 for unramified places,

i.e. when locally πv is unramified, Ev/Fv is either inert or split, and �s is unramified
(which in turn implies that χ1,v and χ2,v are unramified). We will see in Proposition 4.5
and Proposition 4.6 that the local integral gives the expected L-factors and P

0
v = 1 for

unramified places. The work in Sects. 3 and 4 completes the proof of Theorem 1.1.
In Sect. 5, we will do local computations for other non-archimedean places. We will

specify certain patterns of ramifications, but the levels of the ramification for πv and �s,v
can be arbitrary. We will also make sure that the local components of F1 and F are either
Gross and Prasad’s test vectors or local new forms, and keep the calculations easier at the
possible cost of using somewhat complicated choice of �s.
In Sect. 6, we compute the local integral at real places for the special setting as in

Corollary 1.3.
In Appendix we will prove Proposition A.1 which gives better description of the Kirillov

model of a supercuspidal representation. This proposition is a key ingredient in the local
calculation in Sect. 5.3. It is also important in the local calculations of the triple product
formula in [12] and [13].

2 Notations and preliminary results
2.1 Definitions and basic facts

Let F denote a number field. Let π be an automorphic cuspidal representation of GL2
over F with the central character wπ . Let B be a quaternion algebra over F, and E/F be
a quadratic algebra which is embedded in B. Let AF and AE be the corresponding adelic
rings ofF andE.Without loss of generality we canwriteE asF(

√
D) forD ∈ F an algebraic

integer. (If E  F ⊕ F, just take D = 1.)
In this paper we will be mostly interested in the case when B is the matrix algebra. In

that case, we fix the embedding E ↪→ B as follows:

t = a + b
√
D �→

(
a b
bD a

)
. (2.1)

Note that the quadratic norm is consistent with the determinant of matrices for this
embedding.
Let χ1 and χ2 be two Hecke characters on E

∗\A
∗
E
such that

wπ · (χ1χ2)|A∗
F

= 1. (2.2)

Define

χ = χ1
χ2

. (2.3)
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Let �s be a section of the induced representation IndGL2B (χ1,χ2, s), where B is the Borel
subgroup of GL2. So �s satisfies

�s

((
a1 n
0 a2

)
g
)

= χ1(a1)χ2(a2)
∣∣∣∣a1a2
∣∣∣∣
s+1/2

AE

�s(g)

for all
(
a1 n
0 a2

)
∈ B(AE) and g ∈ GL2(AE).

Let

E(g, s) =
∑

γ∈B(E)\GL2(E)
�s(γ g) (2.4)

be the associated Eisenstein series.
Let Fv be the corresponding local field of F at a place v. Let Kv denote the standard

maximal compact subgroup of GL2(Fv), and

K =
∏
v
Kv. (2.5)

We will call an element of a local representation spherical if it is invariant under Kv . For
unramified representations, there is a unique up to constant spherical element.
When v is a finite place, let�v denote a uniformizer of Fv . LetOF be the ring of integers

of the local field Fv , andOE be the ring of integers for Ev . Let v(x) denote the valuation of
x ∈ F∗

v . Let q−1 = |�v|v . For an integer c > 0, define:

K1(� c
v ) =

{
k ∈ Kv| k ≡

(
∗ ∗
0 1

)
mod (� c

v )
}
. (2.6)

Similarly denote by K0(� c
v ) for those congruent to

(
∗ ∗
0 ∗

)
mod (� c

v ) and K 1
1 (� c

v ) for

those congruent to
(
1 ∗
0 1

)
mod (� c

v ).

We shall pick theHaarmeasuredg onZAGL2(F)\GL2(AF) to be theTamagawameasure.
For simplicity we shall pick the Haar measure dgv at non-archimedean places to be such
that the volume of Kv is 1, and the Haar measure at real places to be

1
2π

da dmdθ

a2
where we write

R
∗\GL2(R) =

{(
a m
0 1

)
|a ∈ R

∗, m ∈ R

}
K

for K = SO(2). Then

dg = |F|−3/2ζ−1
F

(2)
∏
v
dgv (2.7)

Now we describe the integrals on GL2(Fv) when v is finite. These results are easy and
probably known by experts.

Lemma 2.1 For every positive integer c,

GL2(Fv) =
∐

0≤i≤c
B
(

1 0
� i

v 1

)
K1(� c

v ).
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Normalize the Haar measure on GL2(Fv) such that Kv has volume 1. Then we have the
following:

Lemma 2.2 Locally let f be aK1(� c
v )-invariant function, onwhich the center acts trivially.

Then
∫

F∗
v \GL2(Fv)

f (g)dg =
∑
0≤i≤c

Ai

∫

F∗
v\B(Fv)

f
(
b
(

1 0
� i

v 1

))
db. (2.8)

Here db is the left Haar measure on F
∗
v\B(Fv), and

A0 = q
q + 1

, Ac = 1
(q + 1)qc−1 and Ai = q − 1

(q + 1)qi
for 0 < i < c.

Proof For 0 ≤ j ≤ c, let fj be the characteristic function of K0(� j). f0 is just the charac-
teristic function of K . Clearly they are all right-invariant under K1(� c). The integral of
these functions just give the volume of these compact subgroups. Suppose that the Haar
measure on GL2 are so normalized that the volumes of K and B(OF ) = B ∩ K are 1. The
volume of K0(� j) is 1

(q+1)qj−1 for j > 0. On the other hand, we can evaluate the integral

by the right hand side of (2.8).

fj

(
b
(

1 0
� i 1

))
=
⎧⎨
⎩
1, if b ∈ B(OF ) and j ≤ i;

0, otherwise.

So

1
(q + 1)qj−1 =

∫

g∈GL2
fj(g)dg =

∑
0≤i≤c

Ai

∫

b∈B
fj

(
b
(

1 0
� i 1

))
db =

∑
j≤i≤c

Ai

for 0 < j ≤ c. When j = 0, we get

1 =
∑
0≤i≤c

Ai.

Then it’s easy to see that the values of the coefficientsAi in the lemma are the only choice.
��

We also record here some easy results about integrals for additive and multiplicative
characters.

Lemma 2.3 Let ψv be an unramified additive character at v. Then

∫

v(m)=j

ψv(m)dm =

⎧⎪⎪⎨
⎪⎪⎩

0, if j < −1;

−1, if j = −1;

q−j(1 − q−1), if j ≥ 0.

(2.9)

Lemma 2.4 Suppose that μ is a character of level k > 0 on F
∗
v . Then

∫

x∈O∗
F

μ(1 + � ix)dx =

⎧⎪⎪⎨
⎪⎪⎩

0, if i < k − 1;

−q−1, if i = k − 1;

1 − q−1, if i ≥ k.

(2.10)
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2.2 TheWeil representation

The Weil representation can be defined for more general reductive group pairs, but we
will focus on the following setting as in [24]:
Fix ψ a nontrivial additive character of F. Let B be a quaternion algebra over F with

ι : x �→ x̄ being the main involution. We can define the reduced norm on B via

Q(x) = x ι(x).

We will focus on the case when B is the matrix algebraM2(F) later on. Denote by GO(B)
the orthogonal similitude group of B, with the similitude character ν. An element (g1, g2)
in B

∗ × B
∗ acts on B via (g1, g2) · x = g1x g−1

2 . This actually give us a short exact sequence

1 → F
∗ → (B∗ × B

∗) � {1, ι} → GO(B) → 1. (2.11)

Here F
∗ is embedded into the group in the middle by x �→ (x, x)� 1. ι acts on B

∗ × B
∗ by

(g1, g2) �→ (ι(g2)−1, ι(g1)−1). We will simply write (g1, g2) for (g1, g2) � 1 when considered
as an element of GO(B).

Definition 2.5 The Weil representation for the similitude group pair GL2 × GO(B) on
the space of Schwartz functions S(B × F

∗) is defined as follows: for f (x, u) ∈ S(B × F
∗),

α, δ ∈ F
∗, β ∈ F, g ∈ GO(B),

(i) r′
((

1 β

0 1

))
f (x, u) = ψu(βQ(x))f (x, u),

(ii) r′
((

0 1
−1 0

))
f (x, u) = γ [ψu, q]

∫
B

f (y, u)ψu(< x, y >)dy,

(iii) r′
((

α 0
0 α−1

))
f (x, u) = |α|2f (αx, u),

(iv) r′
((

1 0
0 δ

))
f (x, u) = |δ|−1f (x, δ−1u),

(v) r′′(g)f (x, u) = f (g−1 · x, uν(g)).

Here γ [ψu, q] equal to 1 if B is the matrix algebra and −1 is B is a division algebra.
ψu(x) = ψ(ux). 〈x, y〉 = Q(x + y) − Q(x) − Q(y) in (ii).

Remark 2.6 For (g1, g2) ∈ GO(B), we have ν(g1, g2) = Q(g1)Q(g2)−1, and

r′′(g1, g2)f (x, u) = f (g−1
1 xg2, uQ(g1)Q(g2)−1). (2.12)

Also by combining (iii) and (iv), we can get

r′
((

α 0
0 1

))
f (x, u) = |α|f (αx,α−1u). (2.13)

We will use these simple facts later.

2.2.1 Special elements in theWeil representation

For a finite place v, now we specify Bv = M2(Fv). We will discuss explicitly some special
elements in the Weil representation S(M2(Fv) × F

∗
v ) as given above.
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According to (v) of Definition 2.5,

r′′(1, g)f (x, u) = f
(
xg,

u
det g

)
.

We will say a Schwartz function is invariant under the right action of (or just right-
invariant), for example, K1(� c

v ), if r′′(1, g)f (x, u) = f (x, u) for all g ∈ K1(� c
v ).

Denote by ω the matrix
(

0 1
−1 0

)
. Assume that the local additive character ψv is

unramified. Let x =
(
x1 x2
x3 x4

)
, y =

(
y1 y2
y3 y4

)
∈ M2(Fv). By definition,

Q(x) = det x = x1x4 − x2x3,

and

〈x, y〉 = x1y4 + x4y1 − x2y3 − x3y2.

So

r′(ω)f (x, u) =
∫

ψv(u(x1y4 + x4y1 − x2y3 − x3y2))f (y, u)dy. (2.14)

Lemma 2.7 Let f = char
((

OF OF
OF OF

))
(x) × char(O∗

F )(u) ∈ S(M2(Fv) × F
∗
v ). It is

invariant by Kv under both the right action and the Weil representation r′.

Proof One can check directly. ��

Remark 2.8 For the conciseness of notations, later on we will simply write, for example,

f = char
((

OF OF
OF OF

))
× char(O∗

F ) for functions in S(M2(Fv) × F
∗
v ).

Lemma 2.9 Let f = char
((

OF OF
� c

v OF OF

))
× char(O∗

F ), for integer c > 0.

(i) It is invariant by K1(� c
v ) under both the right action and the Weil representation.

(ii) For n ∈ F
∗
v with 0 ≤ v(n) = j ≤ c,

r′
((

1 0
n 1

))
f (x, u) = qj−cchar

((
OF �

j−c
v OF

�
j
vOF OF

))
ψv(−ux2x3n−1)

×char(O∗
F ). (2.15)

This function is still right K1(� c
v )-invariant.

Proof We will prove the formula in (ii) directly. The rest are easy to check. Note that(
1 0
n 1

)
= −ω

(
1 −n
0 1

)
ω. Then by definition

r′(ω)f (x, u) = q−cchar
((

OF �−c
v OF

OF OF

))
× char(O∗

F ),

r′
((

1 −n
0 1

)
ω

)
f (y, u) = q−cchar

((
OF �−c

v OF
OF OF

))
ψv(−un det y)

×char(O∗
F ).
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Note that ψv(−un det y) = ψv(uny2y3) for y ∈
(
OF �−c

v OF
OF OF

)
. For another action of ω,

the integral in y1y4 is very easy. Now we focus on the following integral:

q−c
∫

y2∈�−c
v OF

∫

y3∈OF

ψv(uy3(ny2 − x2))ψv(−ux3y2)dy3dy2.

Let x2 be fixed. For the integral in y3 to be non-zero, we need y2 ∈ n−1x2 + �
−j
v OF as

v(n) = j. Then the integral becomes

q−c
∫

y2∈�−c
v OF∩n−1x2+�

−j
v OF

ψv(−ux3y2)dy2.

Note that �
−j
v OF ⊆ �−c

v OF . The domain of the integral is not empty iff x2 ∈ �
j−c
v OF .

In that case, the integral becomes

q−c
∫

y2∈n−1x2+�
−j
v OF

ψv(−ux3y2)dy2 = qj−cψv(−ux2x3n−1) if x3 ∈ �
j
vOF .

So we get r′
(

ω

(
1 −n
0 1

)
ω

)
= qj−cchar

((
OF �

j−c
v OF

�
j
vOF OF

))
ψv(−ux2x3n−1) ×

char(O∗
F ). Then just note that the action of −1 will not change this function. ��

Now we consider a slightly different type of Schwartz functions.

Lemma 2.10 Let b1, b2 ∈ OF andc bean integer.Define f = char
((

b1 + � c
v OF OF

b2 + � c
v OF OF

))

× char(O∗
F ).

(i) f is K 1
1 (� c

v )-invariant under the Weil representation r′ and the right action.
(ii) For n ∈ F

∗
v with 0 ≤ v(n) = j ≤ c,

r′
((

1 0
n 1

))
f = q2(j−c)char

((
b1 + �

j
vOF �

j−c
v OF

b2 + �
j
vOF �

j−c
v OF

))

×ψv(un−1[(x1 − b1)x4 − x2(x3 − b2)])char(O∗
F ). (2.16)

This function is still right K 1
1 (� c

v )-invariant.

Proof Similar to the proof in the last lemma. ��

Remark 2.11 If f = char
((

b1 + � c
v OF OF

b2 + � c
v OF OF

))
× char(β + � c

v OF ) with β ∈
(OF/� c

v OF )∗, one has a similar result.

2.3 Shimizu’s lifting

Now we review briefly Shimizu’s lifting (see [21] for more details). For the dual group
pair GL2 × GO(B), we can use the Theta lifting to give an automorphic representation
of GO(B) corresponding to a given automorphic representation π ′ of GL2. One can lift
this representation further by the exact sequence (2.11) to an automorphic representation
�(π ′) for B

∗ × B
∗.
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In particular, let f ∈ S(B(A) × A
∗
F ) be an element of the Weil representation defined

above, g1, g2 ∈ B
∗(A), ϕ ∈ π ′ be a cusp form, and h ∈ GL2(AF). The theta kernel is

θ (f, h, g1, g2) =
∑

x∈B(F),u∈F∗
r′(h)r′′(g1, g2)f (x, u). (2.17)

The global Theta lifting is

θ (f,ϕ, g1, g2) =
∫

GL2(F)\GL2(AF)

ϕ(h)θ (f, h, g1, g2)dh. (2.18)

The integral is absolutely convergent since ϕ is a cusp form. Then �(π ′) is just the
collection of all such θ (f,ϕ, g1, g2) for all possible ϕ ∈ π ′ and f ∈ S(B(A) × A

∗
F
).

Theorem 2.12 (Shimizu’s lifting) Let π ′ be a cuspidal automorphic representation of
GL2.

(i) If π ′ doesn’t appear in the image of Jacquet–Langlands correspondence, then�(π ′) =
0.

(ii) Otherwise, let σ be an automorphic representation of B
∗ such that JL(σ ) = π ′. Then

�(π ′) = σ ⊗ σ̂ .

Remark 2.13 In particular this theorem applies to the case when B is the matrix algebra.
In this case, B∗  GL2 and σ  π ′.

2.4 Period integral, test vectors andWaldspurger’s formula

2.4.1 Waldspurger’s period integral

Let F1 be an element of σ , which is an automorphic representation of B
∗ with the central

characters wσ . Let � be a Hecke character over the quadratic algebra E such that �|A∗
F

=
wσ . Waldspurger studied in [24] the following period integral∫

ZAE
∗\A∗

E

F1(t)�−1(t)dt. (2.19)

This period integral actually gives an element in HomA
∗
E
(σ ⊗ �−1,C). But it’s not

necessary that this space is non-zero.
Nowwe discuss the local obstruction for this integral to be nonzero.We first need some

definitions.
The Hasse invariant ε(Bv) of a local quaternion algebra Bv is defined to be 1 if Bv 

M2(Fv), and−1 if it’s a division algebra. Let π ′ be the image of σ under Jacquet–Langlands
correspondence. Then one can define the local root number ε( 12 ,�π ′ ,v⊗�−1

v ) where�π ′ ,v
is the base changeofπ ′

v toEv . In general the local root numberwoulddependon the chosen
additive characterψv . The condition�|A∗

F
= wσ will guarantee that this local root number

is independent of ψv and only takes values ±1. See [23].
The following theorem is due to Tunnell and Saito ([22,23]).

Theorem 2.14 The space HomE∗
v (σv ⊗ �−1

v ,C) is at most one-dimensional. It is nonzero
if and only if

ε

(
1
2
,�π ′ ,v ⊗ �−1

v

)
= �−1

v (−1)ε(Bv). (2.20)
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Example 2.15 Suppose that �v is unramified and Bv  M2(Fv). So π ′
v = JL(σv)  σv . Let

n(π ′
v) denote the level of π ′

v . If Ev is split over Fv , then ε( 12 ,�π ′ ,v ⊗ �−1
v ) is always 1, and

HomE∗
v (π

′
v ⊗ �−1

v ,C) is non-zero. If Ev is inert over Fv , ε( 12 ,�π ′ ,v ⊗ �−1
v ) = 1 if and only

if n(π ′
v) is even. As a result, HomE∗

v (π
′
v ⊗ �−1

v ,C) is non-zero if and only if n(π ′
v) is even

(see [7] Proposition 6.3.).

2.4.2 Gross and Prasad’s test vector

If HomE∗
v (σv ⊗ �−1

v ,C) is non-zero for a non-archimedean place, let l be a non-zero
element of it. Gross and Prasad in [9] gave a choice of test vector F1,v ∈ σv such that
l(F1,v) 
= 0, under the hypothesis that either π ′

v or �v is unramified. This hypothesis
implies that the central character is always unramified.
We first assume that �v is unramified. On Bv we have a Trace map defined to be

Tr(α) = α + ι(α),

where ι is the main involution on Bv . An order R of Bv is defined to be a subring of Bv
containingOF which is a freeOF -module of rank 4 (equivalently, R⊗OF Fv = Bv). Its dual
is defined to be

R⊥ = {β ∈ Bv|Tr(αβ) ∈ OF for all α ∈ R}.
Recall q = |�v|−1. Define the reduced discriminant d(R) of R to be the integer such that

�(R⊥/R) = q2d(R).

See [7] for more details.
Let Rc be an order of reduced discriminant c = n(π ′

v) which contains OE under the
embedding Ev ↪→ Bv . It is unique up to conjugacy by E

∗
v . Let R∗

c denote its units.

Proposition 2.16 Assume that �v is unramified and Bv  M2(Fv). If n(π ′
v) ≥ 2, further

assume that Ev/Fv is unramified.
When HomE∗

v (π
′
v ⊗ �−1

v ,C) 
= 0, let l be a non-trivial element of it. Let Fv ∈ π ′
v be the

unique (up to constant) element fixed by R∗
c . Then l(Fv) 
= 0.

Remark 2.17 Proposition 2.16 has statements on the other side of the Jacquet–Langlands
correspondence when ε( 12 ,�π ′ ,v ⊗ �−1

v ) = −�−1
v (−1). But we won’t record them here as

we don’t need them.

Example 2.18 Suppose thatBv  M2(Fv). Suppose thatEv/Fv is inert and can be written
as Fv(

√
D). Recall that Ev can be embedded intoM2(Fv) via

a + b
√
D �→

(
a b
bD a

)
.

By Example 2.15, π ′
v  σv should be of even level c = 2k . Then we can choose

Rc =
{(

a + � k
v OF b + � k

v OF
bD + � k

v OF a + � k
v OF

)
|a + b

√
D ∈ OE

}
. (2.21)

Example 2.19 When Ev/Fv is split, Bv must be the matrix algebra and π ′
v  σv . Suppose

that 2 is a unit for the local field. For a split place, fix an element
√
D ∈ Fv such that√

D2 = D. One can easily check that
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(
1 − 1√

D√
D 1

)−1 (
a b
bD a

)(
1 1

−√
D√

D 1

)
=
(
a + b

√
D 0

0 a − b
√
D

)
. (2.22)

We can pick

Rc =
(

1 − 1√
D√

D 1

)(
OF OF

� c
v OF OF

)(
1 − 1√

D√
D 1

)−1

. (2.23)

The element fixed by R∗
c is just the image of the new form under the action of

π ′
v

((
1 − 1√

D√
D 1

))
.

Now we assume that π ′
v is unramified and �v is ramified of level c. This already implies

that Bv  M2(Fv) and π ′
v is an unramified principal series. Let Oc = OF + � c

v OE . Let
R be a maximal order in M2(Fv) which optimally contains the order Oc. This just means
that R is maximal and R∩ Ev = Oc. Such maximal order is unique up to conjugacy by E

∗
v .

Similarly we have the following result:

Proposition 2.20 Assume that π ′
v is unramified and �v is ramified of level c.

When HomE∗
v (π

′
v ⊗ �−1

v ,C) 
= 0, let l be a non-trivial element of it. Let Fv ∈ π ′
v be the

unique (up to constant) element fixed by R∗. Then l(Fv) 
= 0.

Example 2.21 Suppose that Ev/Fv is inert, v(D) = 0 and Bv  M2(Fv). Then we can pick

R =
{(

OF � c
v OF

�−c
v OF OF

)}
.

2.4.3 Waldspurger’s formula

Denote by  the modulus function for GL2 such that



((
a1 m
0 a2

)
k
)

=
∣∣∣∣a1a2
∣∣∣∣
1/2

.

Theorem 2.22 (Waldspurger’s formula) Let F1 ∈ σ , F2 ∈ σ̂ . Let ϕ ∈ π ′ such that
θ (f,ϕ, g1, g2) = F1(g1)F2(g2) under the Shimizu lifting. Let � be a Hecke character of E

∗

such that �|A∗
F

= wσ . Then

∫

ZAE
∗\A∗

E

F1(t1g1)�−1(t1)dt1
∫

ZAE
∗\A∗

E

F2(t2g2)�(t2)dt2

= L(η, 1)
∫

NAZA\GL2(A)

∫

A
∗
E

W−
ϕ (h)(h)w−1/2r′(h)r′′(g1, g2)f (t, Q(t)−1)�(t)dt dh|w=1/2

= L(�π ′ ⊗ �−1, 1/2)
∏
v∈S

P0(fv,�v, 1/2), (2.24)

where W−
ϕ is the Whittaker function corresponding to ϕ with respect to ψ−(x) = ψ(−x).

η is the quadratic Hecke character associated to E/F. S is the finite set of ramified places.
P0(fv,�v, w) is defined as
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P0(fv,�v, w) = Lv(ηv, w + 1/2)
Lv(�π ′,v ⊗ �−1

v , w/2 + 1/4)

×
∫

NZ\GL2(Fv)

∫

E∗
v

W−
ϕ (h)(h)w−1/2r′(h)r′′(g1, g2)f (t, Q(t)−1)�(t)dt dh.

(2.25)

One result of Waldspurger’s formula is the following:

Corollary 2.23 There exists F ∈ σ such that∫

ZAE
∗\A∗

E

F (t)�−1(t)dt 
= 0,

if and only if HomA
∗
E
(σ ⊗ �−1,C) 
= 0 and L(�π ′ ⊗ �−1, 1/2) 
= 0.

Waldspurger further considered the integral

B(fv, s) =
∫

NZ\GL2(Fv)

∫

F∗
v

W−
ϕ (h)(h)s−1r′(h)f (x, x−2)wσ (x)d∗x dh. (2.26)

He found that there exists a bilinear pairing between σv and its dual, such that

B(fv, 1) = 〈F1,v , F2,v〉. (2.27)

And at unramified places,

B(fv, s) = L(π , Ad, s)
ζ (2s)

. (2.28)

The global pairing can be written as

(F1, F2) =
∫

B∗(F)Z(A)\B∗(A)

F1(g)F2(g)dg =
∫

B∗(F)Z(A)\B∗(A)

θ (f, h, g, g)w−1
σ (g)dg. (2.29)

For the local pairings defined above, we have the following formula

(F1, F2) = 2L(π , Ad, 1)
ζ (2)

∏
v
B0(fv, 1), (2.30)

where B0(fv, 1) = ζ (2)
L(π ,Ad,1)B(fv, 1).

Now the point is that when the local integral in Theorem 2.22 is absolutely convergent,
it can be rewritten as

P(fv,�v, w) =
∫

F∗
v\E∗

v

〈F1,v , σ̂v(e)F2,v〉�v(e)de.

By combining Theorem 2.22 with (2.30), one can get

Corollary 2.24 For notations as in Theorem 2.22, we have∫
ZAE

∗\A∗
E

F1(t1g1)�−1(t1)dt1
∫
ZAE

∗\A∗
E

F2(t2g2)�(t2)dt2
(F1, F2)

= ζ (2)L(�π ′ ⊗ �−1, 1/2)
2L(π , Ad, 1)

∏
v
P0
v . (2.31)

where

P0
v = L(π , Ad, 1)Lv(ηv, 1)

ζ (2)Lv(�π ′ ,v ⊗ �−1
v , 1/2)

∫
F∗
v\E∗

v
〈σv(g1,v)F1,v , σ̂v(eg2,v)F2,v〉�v(e)de

〈F1,v , F2,v〉 . (2.32)
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Note that the local terms on the right-hand side are now independent of the normal-
ization of local pairings. So instead of the local pairing defined by (2.27), one can use
whichever local pairing that facilitates computations. The local integral is essentially an
integral of matrix coefficients.

3 Global analysis
In this paper we are interested in the following automorphic integral:

I(E, F, s) =
∫

ZAGL2(F)\GL2(AF)

F (g)E(g, s)dg, (3.1)

where F is an automorphic cusp form over F and E(g, s) is an Eisenstein series defined
over a quadratic algebra E as in (2.4). We write E = F(

√
D) for some algebraic integerD.

Lemma 3.1

I(E, F, s) =
∫

ZAE
∗\GL2(A)

�s

((
1 0√
D 1

)
g
)
F (g)dg. (3.2)

Proof Wefirst decide the double coset representatives ofB(E)\GL2(E)/GL2(F). By Bruhat
decomposition,

GL2(E) = B(E) ∪
(⋃
n∈E

B(E)ω
(
1 n
0 1

))
= B(E) ∪

(⋃
m∈E

B(E)
(
1 0
m 1

)
ω

)

for ω =
(

0 1
−1 0

)
. Note that ω ∈ GL2(F). The relation

B(E)
(

1 0
m1 1

)
GL2(F) = B(E)

(
1 0
m2 1

)
GL2(F)

is equivalent to
(

1 0
m1 1

)(
a b
c d

)(
1 0

−m2 1

)
∈ B(E)

for some
(
a b
c d

)
∈ GL2(F). By equating the lower left element of the product to 0, we

get the following condition:

m2 = am1 + c
bm1 + d

.

From this one can figure out the double coset representatives and the stabilizers of the
right GL2(F) action for each representative:

(i) Case m = 0, the stabilizer is {c = 0} = N (F), the unipotent subgroup. The corre-
sponding orbit is negligible.

(ii) Case m = √
D, the stabilizer is {d = a, c = bD} =

{
aI + b

(
0 1
D 0

)}
, which can

be further identified with E
∗.
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As a result, we can rewrite (3.1) as

I(E, F, s) =
∫

ZAGL2(F)\GL2(A)

⎛
⎝ ∑

α∈N (F)\GL2(F)
�s

((
1 0
0 1

)
αg
)

+
∑

α∈E∗\GL2(F)
�s

((
1 0√
D 1

)
αg
)⎞
⎠ F (g)dg

=
∫

ZAN (F)\GL2(A)
�s(g)F (g)dg +

∫

ZAE
∗\GL2(A)

�s

((
1 0√
D 1

)
g
)
F (g)dg. (3.3)

One just has to see that the first term is 0 since F is a cusp form. This is why the corre-
sponding orbit is called negligible. ��

Denote

γ0 =
(

1 0√
D 1

)
.

For t =
(

a b
bD a

)
∈ A

∗
E
, one can check that

γ0tγ −1
0 =

(
a − b

√
D b

0 a + b
√
D

)

is actually upper triangular. Recall that �s satisfies

�s

((
a b
0 d

)
x
)

= χ1(a)χ2(d)
∣∣∣ad
∣∣∣s+1/2

AE

�s(x).

From now on we fix our notation for � as follows:

Definition 3.2 Define for t ∈ A
∗
E

�(t) = χ1(t)χ2(t) = χ1(a − b
√
D)χ2(a + b

√
D). (3.4)

Lemma 3.3 Withnotations as above, we have�s(γ0tg) = �s(γ0g)�(t) for any g ∈ GL2(A)
and t ∈ A

∗
E
.

Now we can further write (3.2) as

I(E, F, s) =
∫

A
∗
E
\GL2(A)

�s(γ0g)
∫

ZAE
∗\A∗

E

F (tg)�(t)dt dg. (3.5)

Note that the interior part of the integral is Waldspurger’s period integral to which one
can apply Theorem 2.22. The whole integral can be thought of as a weighted integral of
Waldspurger’s period integral.
To fit into Theorem 2.22, take the quaternion algebra B there to be M2(F). Pick F2 =

F ∈ σ̂ = π . Then F1 ∈ σ  π̂ and ϕ ∈ π ′  π̂ . Pick � as the one we defined above, and
pick g1 ≡ 1, g2 = g in (2.25). Then there are two possible situations:
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First, if
∫

ZAE
∗\A∗

E

F (tg)�(t)dt = 0 for any g , then I(E, F, s) = 0. In particular we have the

following corollary:

Corollary 3.4 Let � be the base change of π to E. If HomA
∗
E
(π ⊗ �,C) = 0 or

L(� ⊗ �, 1/2) = 0, then I(E, F, s) = 0.

Secondly, if
∫

ZAE
∗\A∗

E

F (tg)�(t)dt is not identically zero, one can fix F1 ∈ π̂ such that the

period integral C = ∫
ZAE

∗\A∗
E

F1(t1)�−1(t1)dt1 is not zero.

Note that since � does not depend on s, this fixed period integral C is also independent
of s. Then by Theorem 2.22 we have the following relation:

C · I(E, F, s) =
∫

A
∗
E
\GL2(A)

�s(γ0g)
∫

ZAE
∗\A∗

E

F1(t1)�−1(t1)dt1
∫

ZAE
∗\A∗

E

F (t2g)�(t2)dt2 dg

= L(η, 1)
∫

A
∗
E
\GL2(A)

�s(γ0g)
∫

ZANA\GL2(A)

∫

A
∗
E

W−
ϕ (h)(h)w−1/2r′(h)r′′(1, g)

× f (t, Q(t)−1)�(t)dt dh dg |w=1/2. (3.6)

Recall�s(γ0tg) = �s(γ0g)�(t). By thedefinitionof theWeil representation, inparticular
by formula (2.12), we have r′′(1, g)f (t, Q(t)−1) = f (tg, det(tg)−1). Then we can actually
combine the integrals in t and g . This is why we were applying Waldspurger’s work in a
slightly different way. Using Corollary 2.24, we have

Proposition 3.5 Denote

I(E, F, s) =
∫

ZAGL2(F)\GL2(AF)

F (g)E(g, s)dg, (3.7)

where F is an automorphic cusp form over F and E(g, s) is an Eisenstein series defined over
a quadratic algebra E as in (2.4).

(1) If HomA
∗
E
(π ⊗ �,C) = 0 or L(� ⊗ �, 1/2) = 0, then I(E, F, s) = 0.

(2) Otherwise, we can fix F1 ∈ π̂ , such that

C =
∫

ZAE
∗\A∗

E

F1(t1)�−1(t1)dt1

is not zero, independent of s. Let ϕ ∈ π̂ and f be a Schwarz function such that
θ (f,ϕ, g1, g2) = F1(g1)F (g2) under the Shimizu lifting. Then we have the following
euler products of local integrals:

C · I(E, F, s) = L(η, 1)
∏
v

∫

ZN\GL2(Fv)

∫

GL2(Fv)

W−
ϕ,v(h)(h)w−1/2r′(h)

× fv(g, det(g)−1)�s,v(γ0g)dgdh|w=1/2, (3.8)

or equivalently
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C · I(E, F, s)
(F1, F )

= ζ (2)L(η, 1)
2L(π , Ad, 1)

∏
v

Lv(π , Ad, 1)
ζv(2)

×

∫
ZN\GL2(Fv )

∫
GL2(Fv )

W−
ϕ,v(h)(h)w−1/2r′(h)fv(g, det(g)−1)�s,v(γ0g)dgdh|w=1/2

∫
ZN\GL2(Fv )

∫
F∗
v

W−
ϕ,v(h)(h)w−1/2r′(h)fv(x, x−2)wπ̂ (x)d∗x dh|w=1/2

= ζ (2)L(η, 1)
2L(π , Ad, 1)

∏
v

Lv(π , Ad, 1)
ζv(2)

∫
F∗
v\GL2(Fv )

〈F1,v ,πv(g)Fv〉�s,v(γ0g)dg

〈F1,v , Fv〉 . (3.9)

For the following, we shall denote

P(s, w, f,�s) =
∫

ZN\GL2(Fv)

∫

GL2(Fv)

W−
ϕ,v(h)(h)w−1/2r′(h)fv(g, det(g)−1)�s,v(γ0g)dg dh.

(3.10)

When w = 1
2 , we also have

P

(
s,
1
2
, f,�s

)
=

∫

F∗
v\GL2(Fv)

〈F1,v ,πv(g)Fv〉�s,v(γ0g) dg. (3.11)

For most local calculations, in particular for unramified places, we shall use the first
expression. But in some cases we shall also use the second expression when calculations
can be made easier.

Remark 3.6 In general, ϕ is not necessarily a newform to have θ (f,ϕ, g1, g2) = F1(g1)F (g2).
But ϕ is always a linear combination of translates of a newform, and we can always make
a change of variable in the global Theta lifting to incorporate the translates. So we can
choose without loss of generality that ϕ is a newform at the cost of f being possibly more
complicated. This explains why we didn’t take ϕ as a variable for the integral P.

One potential shortage for the second formulation is that (F1, F ) could be zero while
CI(E, F, s) is nonzero. We will avoid this problem by making (F1, F ) 
= 0 for all the local
calculations in the following sections.

4 Local calculations at unramified places
In the rest sections we will mostly focus on the local integrals, so we will suppress the
subscript v to simplify the notations. In this section we will compute the local integral at
unramified places. In particularwe shall follow the first formula of (3.9) to do computation.
Recall that the denominator of (3.9) was already computed byWaldspurger and reviewed
in (2.28). So we shall mainly focus on computing P(s, w, f,�s).
We specify here what we mean by an unramified place: the quadratic extension E over

F is either inert or split at this place; π is unramified and the corresponding Whittaker
functionW−

ϕ (h) is right K -invariant and normalized so thatW−
ϕ (1) = 1; χi is unramified

for i = 1, 2; �s is right K -invariant and �s(1) = 1; f is the Schwartz function

f = char
((

OF OF
OF OF

))
× char(O∗

F ).

We always fix an unramified additive character ψ for any non-archimedean places.
We will show in Propositions 4.5 and 4.6 that at unramified places,
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P(s, 1/2, f,�s) = L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

, (4.1)

where � is the base change of π , η is the character associated to the quadratic extension,
and χ as in (2.3) is over E (so is the corresponding L-function).
We introduce here a few more notations before we start. When π is unramified at v,

let π = π (μ1,μ2). Then ϕ ∈ π̂  π (μ−1
1 ,μ−1

2 ) and the central character of π̂ satisfies
wπ̂ = χ1,sχ2,s|F. For any multiplicative character χ , we simply write χ for χ (� ) when
there is no confusion. We will also write

χ1,s = χ1|· |s+1/2
E

,χ2,s = χ2| · |−s−1/2
E

.

Then by the definition of �s,

�s

((
a1 m
0 a2

)
g
)

= χ1,s(a1)χ2,s(a2)�s(g).

We shall also assume without loss of generality that if Ev/Fv is unramified, D is a unit
in the local field.

Remark 4.1 First of all, D is a unit for almost all places.
Secondly, suppose everything else are unramified but we use D′ = Da2 for some non-

unit a. Recall one formulation of the local integral is

P

(
s,
1
2
, f,�s

)′
=

∫

F∗\GL2(F)
〈F1,π (g)F〉�s(γ ′

0g)dg. (4.2)

The only influence of a different D is now

γ ′
0 =

(
1 0√
D′ 1

)
=
(
a−1 0
0 1

)(
1 0√
D 1

)(
a 0
0 1

)
.

Denote
(
a 0
0 1

)
bym(a). Then we have

P

(
s,
1
2
, f,�s

)′
=

∫

F∗\GL2(F)
〈F1,π (g)F〉�s(γ ′

0g)dg

=
∫

F∗\GL2(F)
〈F1,π (g)F〉�s(m(a)−1γ0m(a)g)dg

= χ1,s(a−1)
∫

F∗\GL2(F)
〈π̂ (m(a))F1,π (gm(a))F〉�s(γ0gm(a))dg. (4.3)

So if we require π̂ (m(a))F1,π (m(a))F,�s(·m(a)) to be newforms, we will get exactly the
same integral as the D being a unit case. This argument also applies to the ramified cases.

SinceW−
ϕ and f are both right K -invariant at unramified places,

P(s, w, f,�s) =
∫

F∗
W−

ϕ

((
α 0
0 1

))
|α|w/2−1/4

×
∫

GL2(F)

r′
((

α 0
0 1

))
f (g, det(g)−1)�s(γ0g)dg |α|−1d∗α. (4.4)

By the definition of the Weil representation, in particular by equation (2.13),
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∫

GL2(F)

r′
((

α 0
0 1

))
f (g, det(g)−1)�s(γ0g)dg

= |α|
∫

GL2(F)

f (αg,α−1 det(g)−1)�s(γ0g)dg.

By substituting αg → g , we get

|α|
∫

GL2(F)

f (αg,α−1 det(g)−1)�s(γ0g)dg

= |α|�s(α)−1
∫

GL2(F)

f (g,α det(g)−1)�s(γ0g)dg.

To be precise, �s(α) here should be understood as χ1χ2(α) which is actually independent
of s. Then the local integral becomes

∫

F∗
W−

ϕ

((
α 0
0 1

))
|α|w/2−1/4�s(α)−1

∫

GL2(F)

f (g,α det(g)−1)�s(γ0g)dg d∗α. (4.5)

Denote

I(α, f,�s) =
∫

GL2(F)

f (g,α det(g)−1)�s(γ0g)dg. (4.6)

At unramified places f and�s are both rightK - invariant, sowe just have to do the integral
over

B(F) =
{(

a1 m
0 a2

)}

for I(α, f,�s). Denote

n = v(a1), k = v(m), l = v(a2), (4.7)

where v(x) means the valuation of x. By the definition of f ,
((

a1 m
0 a2

)
, α
a1a2

)
is in the

support of f if and only if n, l, k ≥ 0 and α
a1a2 ∈ O∗

F . The latter implies l + n = v(α). So

I(α, f,�s) =
∫

0≤n≤v(α)

∫

k≥0

∫

l=v(α)−n

�s

((
1 0√
D 1

)(
a1 m
0 a2

))
d∗a2|a1|−1dmd∗a1.

(4.8)

Here we have used that the left Haar measure for the Borel subgroup is

d∗a2|a1|−1dmd∗a1.

Recall γ0 =
(

1 0√
D 1

)
.One can easily check that

(
1 0√
D 1

)(
a1 m
0 a2

)
=
(

a1 m
a1

√
D a2 + m

√
D

)
.

Lemma 4.2 (1) If v(a2 + m
√
D) ≥ v(a1

√
D), then �s

((
a1 m

a1
√
D a2 + m

√
D

))
=

χ1,s
(

a2√
D

)
χ2,s(a1

√
D).
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(2) If v(a2+m
√
D) ≤ v(a1

√
D), then�s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s

(a2 + m
√
D).

Proof (1) When v(a2 + m
√
D) ≥ v(a1

√
D),

(
a1 m

a1
√
D a2 + m

√
D

)
=
( a2√

D
a1

0 a1
√
D

)(
0 −1
1 a2+m

√
D

a1
√
D

)
.

(2) When v(a2 + m
√
D) ≤ v(a1

√
D),

(
a1 m

a1
√
D a2 + m

√
D

)
=
( a1a2

a2+m
√
D

m
0 a2 + m

√
D

)(
1 0

a1
√
D

a2+m
√
D

1

)
.

Then the statements follow from the definition of �s and its right K -invariance. ��

Now we have to consider the inert places separately from the split places.

4.1 Inert places

In this subsection we assume that v is an inert place. As a result, v(a2+m
√
D) = min{l, k}.

Note that for this place
√
D is a unit in the local field. Then by the above lemma, we get

Lemma 4.3 1. If 0 ≤ n ≤ v(α)
2 , then l = v(α) − n ≥ n.

(1i) If k ≥ n, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a2√
D

)
χ2,s(a1

√
D) = χ

v(α)−n
1,s χn

2,s.

(1ii) If 0 ≤ k < n, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s(a2 +

m
√
D) = χ

v(α)−k
1,s χk

2,s.

2. If v(α)
2 ≤ n ≤ v(α), then l = v(α) − n ≤ n.

(2i) If k ≥ l, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s(a2 + m

√
D) =

χn
1,sχ

v(α)−n
2,s .

(2ii) If k < l, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s(a2 + m

√
D) =

χ
v(α)−k
1,s χk

2,s.

As
∫
O∗
F

d∗a = 1 ,
∫
O∗
F

dm = 1 − q−1 and |a1|−1 = qn, one can rewrite the integral (4.8) as a

summation

I(α, f,�s) =
∑

0≤n≤ v(α)
2

⎡
⎣ ∑
0≤k<n

χ
v(α)−k
1,s χk

2,sq
n−k (1 − q−1)

+
∑

n≤k<∞
χ
v(α)−n
1,s χn

2,sq
n−k (1 − q−1)

⎤
⎦
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+
∑

v(α)
2 <n≤v(α)

⎡
⎣ ∑
0≤k<v(α)−n

χ
v(α)−k
1,s χk

2,sq
n−k (1 − q−1)

+
∑

v(α)−n≤k<∞
χn
1,sχ

v(α)−n
2,s qn−k (1 − q−1)

⎤
⎦ . (4.9)

Then it’s a tedious process of summation and combining terms.Wewill skip the process
and give the conclusion directly:

Lemma 4.4 Let v be an inert place. When v(α) < 0, I(α, f,�s) = 0. When v(α) ≥ 0,

I(α, f,�s) = χ
v(α)
1,s

1 − qv(α)+1

1 − q
1 − q−1

1 − χ2,s
qχ1,s

+ χ
v(α)
1,s

1 −
(

χ2,s
χ1,s

)b+1

1 − χ2,s
χ1,s

q−1
(
1 − χ2,s

χ1,s

)

1 − χ2,s
qχ1,s

+ (q−1χ2,s)v(α)

(
q2χ1,s
χ2,s

)b+1 −
(
q2χ1,s
χ2,s

)v(α)+1

1 − q2χ1,s
χ2,s

q−1
(
1 − χ2,s

χ1,s

)

1 − χ2,s
qχ1,s

if v(α) = 2b, 2b + 1 (4.10)

= −
q(1 + q)χ1,s

χ2,s

1 − q2 χ1,s
χ2,s

χ
v(α)
1,s qv(α)

+ 1
1 − q2 χ1,s

χ2,s

⎧⎨
⎩
(
1 + q χ1,s

χ2,s

)
χb
1,sχ

b
2,s, if v(α) = 2b;

(1 + q)χb+1
1,s χb

2,s, if v(α) = 2b + 1.

Now we return to the integral (4.5). For a spherical element ϕ ∈ π̂  π (μ−1
1 ,μ−1

2 ), we
have

W−
ϕ

((
α 0
0 1

))
=
⎧⎨
⎩

|α|1/2 μ−1
1 (�α)−μ−1

2 (�α)
μ−1
1 (� )−μ−1

2 (� )
, if v(α) ≥ 0;

0, otherwise.
(4.11)

By the condition (1.2), we have μ1μ2χ1χ2 = 1. Denote

δ = q−( w2 + 1
4 ).

We again skip tedious calculations and show results directly:

P(s, w, f,�s) =
(1 + δ2)

(
1 − q χ1,s

χ2,s
δ2
)

+ (μ1 + μ2)χ1,sδ(1 − qδ2)

(1 − qμ1χ1,sδ)(1 − qμ2χ1,sδ)(1 − μ2
1χ1,sχ2,sδ2)(1 − μ2

2χ1,sχ2,sδ2)
.

For a character χ of F
∗, define s(χ ) to be the real number such that |χ (x)| = |x|s(χ ). We

have following proposition for the inert case:

Proposition 4.5 Let v be a non-archimedean inert place for E/F. Suppose that Re(s) ≥
(s(χ2) − s(χ1))/4.

(i) There exists ε > 0 such that, the integral P(s, w, f,�s) converges uniformly in any
compact subset of D = {w ∈ C; Re(w) > 1/2 − ε}. It’s holomorphic in D.

(ii) For an unramified place we have:

P(s, w, f,�s) =
(1 + δ2)

(
1 − q χ1,s

χ2,s
δ2
)

+ (μ1 + μ2)χ1,sδ(1 − qδ2)

(1 − qμ1χ1,sδ)(1 − qμ2χ1,sδ)(1 − μ2
1χ1,sχ2,sδ2)(1 − μ2

2χ1,sχ2,sδ2)
.
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where δ = q−( w2 + 1
4 ). If we evaluate at w = 1/2, and write out variable s explicitly, we

get

P(s, 1/2, f,�s) = 1 + q−1

(1 − μ2
1χ1χ2q−1)(1 − μ2

2χ1χ2q−1)

× 1 − χ1
χ2
q−(4s+2)

(1 − μ1χ1q−(2s+1/2))(1 − μ2χ1q−(2s+1/2))

= L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

.

Recall χ = χ1
χ2
. L(χ , 2s + 1) here is a product of L factors over all places of E above v.

In this case there is only one place with the order of the residue field being q2.

Proof For part (1), one can easily imitateWaldspurger’s proof for his local integral in [24].
Part (2) follows directly from the calculation above. ��

4.2 Split places

Now we consider the case when v splits into two places v1 and v2 of E. We will use
superscript (1) (2) to denote the component at each of these two places. For simplicity we
assume that 2 is a unit, or equivalently 2 � v. D is now a square in the local field F. Fix one
of its square roots and denote it by

√
D and call the other one −√

D.
We write

�s = �(1)
s ·�(2)

s ,

where �
(i)
s

((
a1 m
0 a2

)
g
)

= χ
(i)
1,s(a1)χ

(i)
2,s(a2)�

(i)
s (g) and �

(i)
s (1) = 1. Here we denote

χ
(i)
1,s = χ

(i)
1 |· |s+1/2

Evi
, χ (i)

2,s = χ
(i)
2 |· |−(s+1/2)

Evi
as in the inert case. In this setting we write

γ0 =
(

1 0
(
√
D,−√

D) 1

)
.

Similarly

�(t) = χ1(a − b
√
D)χ2(a + b

√
D)

= χ
(1)
1 (a − b

√
D)χ (2)

1 (a + b
√
D)χ (1)

2 (a + b
√
D)χ (2)

2 (a − b
√
D)

= χ
(1)
1 χ

(2)
2 (a − b

√
D)χ (1)

2 χ
(2)
1 (a + b

√
D). (4.12)

We start with I(α, f,�s) = ∫
GL2(F)

f (g,α det(g)−1)�s(γ0g)dg . Recall

n = v(a1), k = v(m), l = v(a2).

Note that f is left invariant by
(

1 0√
D 1

)
. By substituting

(
1 0

−√
D 1

)
g �→ g we get

I(α, f,�s) =
∫

GL2(F)

f (g,α det(g)−1)�(1)
s

((
1 0

2
√
D 1

)
g
)

�(2)
s (g)dg

=
∫

0≤n≤v(α)

∫

k≥0

∫

l=v(α)−n

�(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
χ
(2)
1,s (a1)

× χ
(2)
2,s (a2)d

∗a2|a1|−1 dmd∗a1. (4.13)
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Thenwe can apply Lemma 4.2 for�
(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
, as 2

√
D is still a unit.

One can further expect Lemma 4.3 to hold mostly, with one exception: according to case
(2i) of Lemma 4.3, we expect

�(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
=
(
χ
(1)
1,s

)n (
χ
(1)
2,s

)v(α)−n
.

But when v(a2) = v(m) in this case, v(a2 + 2m
√
D) could be larger than v(a2) or v(m),

resulting in a different value for �
(1)
s .

We introduce here a correction term I for I(α, f,�s):

I(α, f,�s) = I ′ + I.

Here I ′ is the result one would get if we follow Lemma 4.3 completely. As an analogue of
the first expression of (4.10), we have (skipping some tedious steps):

I ′ =
(
χ
(1)
1,s χ

(2)
2,s

)v(α) 1 −
(

qχ
(2)
1,s

χ
(2)
2,s

)v(α)+1

1 − qχ
(2)
1,s

χ
(2)
2,s

1 − q−1

1 − χ
(1)
2,s

qχ
(1)
1,s

+
(
χ
(1)
1,s χ

(2)
2,s

)v(α) 1 −
(

χ
(2)
1,s χ

(1)
2,s

χ
(1)
1,s χ

(2)
2,s

)b+1

1 − χ
(2)
1,s χ

(1)
2,s

χ
(1)
1,s χ

(2)
2,s

q−1
(
1 − χ

(1)
2,s

χ
(1)
1,s

)

1 − χ
(1)
2,s

qχ
(1)
1,s

+
(
q−1χ (1)

2,s χ
(2)
2,s

)v(α)
(

q2χ (1)
1,s χ

(2)
1,s

χ
(1)
2,s χ

(2)
2,s

)b+1
−
(

q2χ (1)
1,s χ

(2)
1,s

χ
(1)
2,s χ

(2)
2,s

)v(α)+1

1 − q2χ (1)
1,s χ

(2)
1,s

χ
(1)
2,s χ

(2)
2,s

q−1
(
1 − χ

(1)
2,s

χ
(1)
1,s

)

1 − χ
(1)
2,s

qχ
(1)
1,s

(4.14)

for v(α) = 2b, 2b + 1.
We give here a more detailed description of the correction term. Fix n such that v(α)

2 <

n ≤ v(α) and fix m such that k = v(m) = l. Consider the integration in d∗a2 for (4.13),
that is,

∫

v(a2)=v(α)−n

�(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
χ
(2)
1,s (a1)χ

(2)
2,s (a2)d

∗a2. (4.15)

For a subset of measure q−2
q−1 in a2,

v(a2 + 2m
√
D) = k and �(1)

s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
=
(
χ
(1)
1,s

)n (
χ
(1)
2,s

)v(α)−n
;

For a subset of measure 1
q−1

q−1
q = 1

q in a2,

v(a2 + 2m
√
D) = k + 1 and

�(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
=
(
χ
(1)
1,s

)n−1 (
χ
(1)
2,s

)v(α)−n+1
;



Hu Res. Number Theory (2016) 2:33 Page 26 of 61

and etc. But once v(a2 + 2m
√
D) ≥ n, the value of �

(1)
s will just remain to be

(χ (1)
1,s )v(α)−n(χ (1)

2,s )n. Then the integral (4.15) becomes

(
χ
(1)
1,s χ

(2)
1,s

)n (
χ
(1)
2,s χ

(2)
2,s

)v(α)−n
⎧⎨
⎩
q − 2
q − 1

+ 1
q

χ
(1)
2,s

χ
(1)
1,s

+ 1
q2

(
χ
(1)
2,s

χ
(1)
1,s

)2

+ · · ·

+ q
q2n−v(α)(q − 1)

(
χ
(1)
2,s

χ
(1)
1,s

)2n−v(α)⎫⎬
⎭ .

Comparing with the supposed value (χ (1)
1,s χ

(2)
1,s )n(χ

(1)
2,s χ

(2)
2,s )v(α)−n, we get the correction

−
(
χ
(1)
1,s χ

(2)
1,s

)n (
χ
(1)
2,s χ

(2)
2,s

)v(α)−n
1 − χ

(1)
2,s

χ
(1)
1,s

1 − χ
(1)
2,s

qχ
(1)
1,s

1
q − 1

⎛
⎝1 −

(
χ
(1)
2,s

qχ (1)
1,s

)2n−v(α)⎞
⎠ .

Integrating this inm and a1 would then give

I = −
∑

v(α)
2 <n≤v(α)

(
q−1χ (1)

2,s χ
(2)
2,s

)v(α) (q2χ (1)
1,s χ

(2)
1,s

χ
(1)
2,s χ

(2)
2,s

)n q−1
(
1 − χ

(1)
2,s

χ
(1)
1,s

)

1 − χ
(1)
2,s

qχ
(1)
1,s

×
⎛
⎝1 −

(
χ
(1)
2,s

qχ (1)
1,s

)2n−v(α)⎞
⎠ . (4.16)

Then one can check that

I(α, f,�s) =
(
χ
(1)
1,s χ

(2)
2,s

)v(α) 1 −
(

qχ
(2)
1,s

χ
(2)
2,s

)v(α)+1

1 − qχ
(2)
1,s

χ
(2)
2,s

χ
(1)
1,s

χ
(1)
2,s
(1 − q)

1 − q χ
(1)
1,s

χ
(1)
2,s

+
(
χ
(1)
1,s χ

(2)
2,s

)v(α) 1 −
(

χ
(2)
1,s χ

(1)
2,s

χ
(1)
1,s χ

(2)
2,s

)v(α)+1

1 − χ
(2)
1,s χ

(1)
2,s

χ
(1)
1,s χ

(2)
2,s

q−1
(
1 − χ

(1)
2,s

χ
(1)
1,s

)

1 − χ
(1)
2,s

qχ
(1)
1,s

. (4.17)

The rest story will be the same as in the inert case, so we will skip some steps
and show the results directly. By the assumption on the central character, we have
μ1μ2χ

(1)
1,s χ

(1)
2,s χ

(2)
1,s χ

(2)
2,s = 1. Recall δ = q−( w2 + 1

4 ). Then

P(s, w, f,�s)

=
1 − δ2 − (μ1 + μ2)χ (1)

1,s χ
(2)
1,s δ(1 − qδ2) + (1 − q)

(
χ
(1)
1,s

χ
(1)
2,s

+ χ
(2)
1,s

χ
(2)
2,s

)
δ2 + qχ

(1)
1,s χ

(2)
1,s

χ
(1)
2,s χ

(2)
2,s

δ2(1 − δ2)

(1 − μ1χ
(1)
2,s χ

(2)
1,s δ)(1 − μ1χ

(1)
1,s χ

(2)
2,s δ)(1 − μ2χ

(1)
2,s χ

(2)
1,s δ)(1 − μ2χ

(1)
1,s χ

(2)
2,s δ)

× 1
(1 − qμ1χ

(1)
1,s χ

(2)
1,s δ)(1 − qμ2χ

(1)
1,s χ

(2)
1,s δ)

.

Recall in the beginning of this subsection we have rewritten � = χ
(1)
1 χ

(2)
2 (a −

b
√
D)χ (1)

2 χ
(2)
1 (a+b

√
D). Define s(�) = s(χ (1)

1,s χ
(2)
2,s )−s(χ (1)

2,s χ
(2)
1,s ) = s(χ (1)

1 χ
(2)
2 )−s(χ (1)

2 χ
(2)
1 ).

This is independent of s.



Hu Res. Number Theory (2016) 2:33 Page 27 of 61

Then we have the following proposition:

Proposition 4.6 Let v be a non-archimedean split place for E/F and δ = q−( w2 + 1
4 ). Sup-

pose that Re(s) > (s(χ (1)
2 χ

(2)
2 ) − s(χ (1)

1 χ
(2)
1 ))/4,

(i) There exists an ε′ > 0 such that, the integral P(s, w, f,�s) converges uniformly in any
compact subset of D′ = {w ∈ C; Re(w) > 1/2 + |s(�)| − ε′}. It’s holomorphic in D′.

(ii) For an unramified place we have:

P(s, w, f,�s)

=
1 − δ2 − (μ1 + μ2)χ (1)

1,s χ
(2)
1,s δ(1 − qδ2) + (1 − q)

(
χ
(1)
1,s

χ
(1)
2,s

+ χ
(2)
1,s

χ
(2)
2,s

)
δ2 + qχ (1)

1,s χ
(2)
1,s

χ
(1)
2,s χ

(2)
2,s

δ2(1 − δ2)

(1 − μ1χ
(1)
2,s χ

(2)
1,s δ)(1 − μ1χ

(1)
1,s χ

(2)
2,s δ)(1 − μ2χ

(1)
2,s χ

(2)
1,s δ)(1 − μ2χ

(1)
1,s χ

(2)
2,s δ)

× 1(
1 − qμ1χ

(1)
1,s χ

(2)
1,s δ
) (

1 − qμ2χ
(1)
1,s χ

(2)
1,s δ
) .

When |s(�)| is small enough, we can evaluate at w = 1/2 and write out s explicitly:

P(s, 1/2, f,�s)

= (1 − q−1)(
1 − μ1χ

(1)
2 χ

(2)
1 q−1/2

) (
1 − μ1χ

(1)
1 χ

(2)
2 q−1/2

) (
1 − μ2χ

(1)
2 χ

(2)
1 q−1/2

) (
1 − μ2χ

(1)
1 χ

(2)
2 q−1/2

)

×

(
1 − χ

(1)
1

χ
(1)
2
q−(2s+1)

)(
1 − χ

(2)
1

χ
(2)
2
q−(2s+1)

)
(
1 − μ1χ

(1)
1 χ

(2)
1 q−(2s+1/2)

) (
1 − μ2χ

(1)
1 χ

(2)
1 q−(2s+1/2)

)

= L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

. (4.18)

Recall χ = χ1
χ2
. L(χ , 2s + 1) here is a product of L factors over all places of E above v.

In the split case there are two places over v, thus two factors.

Remark 4.7 Again the proof of part (1) will be very similar to Waldspurger’s original
proof.

Theorem 4.8 For notations as in Proposition 3.5, we have

C · I(E, F, s)
(F1, F )

= ζ (2)L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
2L(π , Ad, 1)L(χ , 2s + 1)

∏
v

P
0
v(s, 1/2, fv,�s,v),

(4.19)

where for non-archimedean places,

P
0
v(s, 1/2, fv,�s,v) = Lv(π , Ad, 1)Lv(η, 1)Lv(χ , 2s + 1)

ζv(2)Lv(� ⊗ �, 1/2)Lv(π ⊗ χ1|F∗ , 2s + 1/2)
Pv(s, 1/2, fv,�s,v)

〈F1,v , Fv〉 ,

(4.20)

for archimedean places,

P
0
v(s, 1/2, fv,�s,v) = Pv(s, 1/2, fv,�s,v)

〈F1,v , Fv〉 , (4.21)

where Pv(s, 1/2, fv,�s,v) is as in (3.10) or alternatively (3.11).

The product in v is a finite product since P
0
v(s, 1/2, fv,�s,v) = 1 for almost all places due

to Propositions 4.5, 4.6 and the local unramified calculations done in [24].
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5 Local calculations for other non-archimedean places
In this section we will compute P

0(s, w, f,�s) for some ramified non-archimedean places.
The additive character ψ is assumed without loss of generality to be unramified, as the
formulation of the local integral (3.11) is completely independent of the choice of ψ . As
explained in Remark 4.1, we assume v(D) = 0 if Ev/Fv is unramified, and v(D) = 1
otherwise. Before we start, we first list the ramified cases we are going to consider in this
section.

Case π χ1 and χ2 E/F

1 Unramified Unramified Ramified
2 Unramified special Unramified Split
3 Highly ramified of level c Unramified Split
4 Unramified χ1 level c Inert
5 μ2 level c χ1 level c Inert
6 Highly ramified of even level c Unramified Inert

The characters not mentioned (that is, μ1 and χ2) in Cases 4 and 5 are all unramified.
This implies that χ1|F∗ is unramified in Case 4 and is of level c in Case 5. Here by π highly
ramified, we mean π is of level c ≥ 2.
This section will be organized to solve these cases one by one. It may seem that Case 6

should be done earlier. But we are going to use a different approach, so we leave it to the
last.
In Case 1 to Case 5, we will also need to keep track of the denominator of the local

integral using (2.27) that

〈F1, F〉 =
∫

NZ\GL2(Fv)

∫

F∗
v

W−
ϕ (h)r′(h)f (x, x−2)wπ̂ (x)d∗x dh. (5.1)

We are going to get the following table of normalized local integral:

Case Choice of F1, F P
0
v(s, 1/2, f,�s)

1 G-P test vector 1

2 G-P test vector
1

q(1 − χ (2)q−(2s+1))

3 G-P test vector
1
qc

L(π , Ad, 1)
1 − χ (2)q−(2s+1)

4 G-P test vector
P

′(1/2)
1 + q−1 for P

′(w) given in (5.66)

5 new form
1

(q + 1)qc−1χ1(
√
D)

6 G-P test vector
L(π , Ad, 1)

qc(1 − χq−(4s+2))

Recall here that χ = χ1
χ2
.

Remark 5.1 1. When c is odd and the quadratic extension is inert, the local integral is
automatically zero according toExample2.15.ThusCase2,3,6will cover all situations
when only π is ramified.When χ1 and/or χ2 are ramified, the situation could be very
complicated. So we restrict ourselves to Case 4 and 5 only.
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2. ϕ is always a newform. G-P test vector above refers to the Gross and Prasad’s test
vectors as discussed in Subsect. 2.4.2. Note that from Case 1 to Case 5 we are going
to use Theta lifting for a Schwartz function f and in this table we claim that we are
using G-P test vector/new form. This is simply because the Schwartz function f we
will choose has corresponding left/right invariance, and G-P test vector/new form is
unique up to constant by such invariance. For the specific choices of f and �s, we
refer the readers to each subsections. We are going to keep F1 F and calculations as
simple as possible, at the cost of sometimes complicated choices of �s.

3. L(π , Ad, 1) is not given explicitly in Cases 3 and 6 as it could be different for highly
ramified principal series and supercuspidal representations, while we wish to keep
the formula uniform.

One corollary for Case 5 above is the following new result after Gross and Prasad’s work:

Corollary 5.2 Suppose that the local field extension E/F is inert and that π , wπ , �, �|F
have same levels. Then

HomE∗ (π ⊗ �,C) 
= 0,

and the local new form for π is a test vector for any nonzero element from this space.

5.1 E/F ramified

Here we consider the case when π and�s are both unramified, but E/F is a ramified local
field extension. Let �E be a uniformizer of E such that � 2

E
= � . For simplicity, we still

let v(� ) = 1 and write μ or χ in short for μ(� ) or χ (� ). We suppose that v(
√
D) = 1

2 .
We will prove in this subsection the following result

Proposition 5.3 Suppose that π and �s are both unramified at v, E/F is ramified with
v(

√
D) = 1/2. We pick f and �s as in the unramified case. Then

P(s, w, f,�s) =
[1 + (μ2

1χ1,sχ2,s)(�E)δ + (μ2
2χ1,sχ2,s)(�E)δ + δ2](1 − qδ2 χ1,s

χ2,s
(�E))

(1 − qμ1χ1,sδ)(1 − qμ2χ1,sδ)(1 − μ2
1χ1,sχ2,sδ2)(1 − μ2

2χ1,sχ2,sδ2)
(5.2)

for δ = q−( w2 + 1
4 ). When w = 1

2 ,

P(s,
1
2
, f,�s) = 1

(1 − (μ2
1χ1χ2)(�E)q− 1

2 )(1 − (μ2
2χ1χ2)(�E)q− 1

2 )

× 1 − χ1
χ2
(�E)q−(2s+1)

(1 − μ1χ1q−(2s+1/2))(1 − μ2χ1q−(2s+1/2))
(5.3)

is just as expected. Thus P
0(s, 1/2, f,�s) = 1.

To comparewith the unramified case, wewriteχ
1
2
i,s tomeanχi,s(�E). As in the inert case,

we can start with Eqs. (4.5) and (4.8). Lemma 4.2 still holds. Then we have the following
lemma as an analogue of Lemma 4.3:

Lemma 5.4 (1) If 0 ≤ n <
v(α)
2 , then l > n.
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(1i) If k ≥ n, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a2√
D

)
χ2,s(a1

√
D) = χ

v(α)−n− 1
2

1,s

χ
n+ 1

2
2,s .

(1ii) If 0 ≤ k < n, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s(a2 +

m
√
D) = χ

v(α)−k− 1
2

1,s χ
k+ 1

2
2,s .

(2) If v(α)
2 ≤ n ≤ v(α), then l ≤ n.

(2i) If k ≥ l, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s(a2 + m

√
D) =

χn
1,sχ

v(α)−n
2,s .

(2ii) If k < l, �s

((
a1 m

a1
√
D a2 + m

√
D

))
= χ1,s

(
a1a2

a2+m
√
D

)
χ2,s(a2 + m

√
D) =

χ
v(α)−k− 1

2
1,s χ

k+ 1
2

2,s .

Proof One just need to use Lemma 4.2, and note that v(a2 + m
√
D) = Min{l, k + 1

2 },
v(a1

√
D) = n + 1

2 . Then the result is clear. ��
Now to compute I(α, f,�s) for this case, we compare Lemma 5.4 to Lemma 4.3. We see
that the values of �s differ by (χ2,s

χ1,s
)
1
2 except the case (2i). Denote by I the formula (4.10)

for the inert case, and we get the relation

I(α, f,�s)

=
(

χ2,s
χ1,s

) 1
2

⎡
⎢⎣I +

((
χ2,s
χ1,s

)− 1
2 − 1

) ∑
v(α)
2 ≤n≤v(α)

∑
v(α)−n≤k<∞

χn
1,sχ

v(α)−n
2,s qn−k (1 − q−1)

⎤
⎥⎦ .

(5.4)

As a result,

I(α, f,�s) =
(

χ2,s
χ1,s

) 1
2
I +

(
1 −

(
χ2,s
χ1,s

) 1
2
)

χ
v(α)
2,s q−v(α)

(
q2 χ1,s

χ2,s

)v(α)−b −
(
q2 χ1,s

χ2,s

)v(α)+1

1 − q2 χ1,s
χ2,s

(5.5)

for v(α) = 2b, 2b + 1.
Then one can follow the same steps to get:

P(s, w, f,�s) =

(
1 + μ1(χ1,sχ2,s)

1
2 δ + μ2(χ1,sχ2,s)

1
2 δ + δ2

)(
1 − qδ2

(
χ2,s
χ1,s

) 1
2
)

(1 − μ2
1χ1,sχ2,sδ2)(1 − μ2

2χ1,sχ2,sδ2)(1 − qμ1χ1,sδ)(1 − qμ2χ1,sδ)
,

(5.6)

where δ = q−( w2 + 1
4 ). Recall that μ1μ2χ1χ2 = 1. When w = 1

2 , δ = q− 1
2 , so

P(s,
1
2
, f,�s) = (1 + (μ2

1χ1χ2)(�E)q− 1
2 )(1 + (μ2

2χ1χ2)(�E)q− 1
2 )

(1 − μ2
1χ1χ2q−1)(1 − μ2

2χ1χ2q−1)

× 1 − χ1
χ2
(�E)q−(2s+1)

(1 − μ1χ1q−(2s+1/2))(1 − μ2χ1q−(2s+1/2))
. (5.7)
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This is exactly the expected L-factor

Lv(� ⊗ �, 1/2)Lv(π ⊗ χ1|F∗ , 2s + 1/2)
Lv(η, 1)Lv(χ , 2s + 1)

.

The local pairing 〈F1, F〉 is the same as in the unramified case, as we choose same Schwartz
function f , and the quadratic extension is not related to this calculation.

5.2 Unramified special representation

In this subsection we consider the case when π = σ (μ1,μ2) is an unramified special
representation. Then ϕ and its corresponding Whittaker function W−

ϕ belong to π̂ =
σ (μ−1

1 ,μ−1
2 ). Since σ (μ−1

1 ,μ−1
2 ) is equivalent to σ (μ−1

2 ,μ−1
1 ), we can assume without loss

of generality that σ (μ−1
1 ,μ−1

2 ) is an irreducible subrepresentation of π (μ−1
1 ,μ−1

2 ). This
implies that μ−1

1 μ2 = |· |. We shall do the computation in the split case, as the inert case
would fail the Tunnell-Saito criterion as seen in Example 2.15. Write �s = �

(1)
s �

(2)
s as in

Sect. 4.2.
Pick

f = char
((

1 0√
D 1

)(
OF OF

�OF OF

))
× char(O∗

F ).

Pick�
(2)
s to be the unique rightK1(� )-invariant function supported on BK1(� ) such that

�
(2)
s (1) = 1, and �

(1)
s just to be the standard right K -invariant function. The property of

f implies that F1 is the Gross–Prasad test vector while F is the local newform, which is
different from what we claimed in the beginning of this section. We shall now do a simple
trick. Let

f ′ = char
((

1 0√
D 1

)(
OF OF

�OF OF

)(
1 0

−√
D 1

))
× char(O∗

F ), (5.8)

and

�′
s(g) = �s

(
g
(

1 0
−√

D 1

))
. (5.9)

for �s defined above. The matrix here should be thought of as an element of GL2(F)
diagonally embedded in GL2(E).
By a simple change of variable, we have

P(s, w, f,�s) = P(s, w, f ′,�′
s), (5.10)

and the Theta lifting of f ′ will be Gross–Prasad test vectors for both F1 and F .

Proposition 5.5 Suppose that χ1 and χ2 are unramified, and E/F is split. Suppose that
π = σ (μ1,μ2) is an unramified special representation such that μ−1

1 μ2 = |· |. Further
assume that 2 is a unit. Then

P(s, w, f ′,�′
s) = P(s, w, f,�s)

= 1 − q−1

(q + 1)2

1 − χ
(1)
1,s

χ
(1)
2,s

(1 − δχ
(1)
2,s χ

(2)
1,s μ2)(1 − δχ

(1)
1,s χ

(2)
2,s μ2)(1 − qδχ (1)

1,s χ
(2)
1,s μ2)

.

(5.11)
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At w = 1/2, we have

P(s, 1/2, f ′,�′
s)

= 1
(q + 1)2

(1 − q−1)
(
1 − χ

(1)
1

χ
(1)
2
q−(2s+1)

)

(1−μ2χ
(1)
2 χ

(2)
1 q−1/2)(1−μ2χ

(1)
1 χ

(2)
2 q−1/2)(1−μ2χ

(1)
1 χ

(2)
1 q−(2s+1/2))

.

(5.12)

The denominator of the expression is as expected, and

P
0(s, 1/2, f ′,�′

s) = 1
q(1 − χ (2)q−(2s+1))

. (5.13)

We first work out the Whittaker function W−
ϕ for a new form ϕ in π̂ . It’s a classical

result that such ϕ should be K1(� )-invariant, and up to a constant multiple

ϕ|K = char(B(OF )K1(� )) − q−1char
(
B(OF )

(
1 0
1 1

)
K1(� )

)
. (5.14)

The correspondingW−
ϕ is also K1(� )-invariant. According to Lemma 2.1, we just need

to figure outW−
ϕ

((
α 0
0 1

))
andW−

ϕ

((
α 0
0 1

)(
1 0
1 1

))
. It is possible to obtain these

values directly from classical theories, but we will start with a more general setting, as it
will be helpful for later cases. Recall thatW−

ϕ is the Whittaker funciton associated to ψ−.
So

W−
ϕ (g) =

∫

m∈F
ϕ

(
ω

(
1 m
0 1

)
g
)

ψ(m)dm.

In general we want to write

ω

(
1 m
0 1

)(
α 0
0 1

)(
1 0

� j 1

)
=
(

� j 1
−α − m� j −m

)

in form of B
(

1 0
� i 1

)
K1(� c) for 0 ≤ i, j ≤ c. Note that if i = c, then

(
1 0

� i 1

)
is

absorbed into K1(� c). Same for j.

Lemma 5.6 (1) Suppose that i = 0.

(1i) If j = 0, we need m /∈ α(−1 + �OF ) for
(

� j 1
−α − m� j −m

)
∈

B
(

1 0
� i 1

)
K1(� c);

(1ii) If j > 0, we need v(m) ≥ v(α).

Under the above conditions we can write
(

� j 1
−α − m� j −m

)
as

(
− α

α+m� j � j + α

α+m� j

0 −α − m� j

)(
1 0
1 1

)(
1 −1 + m

α+m� j

0 1

)
.

(2) Suppose that i = c.

(2i) If j < c, we need m ∈ α�−j(−1 + � c−jOF );
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(2ii) If j = c, we need v(m) ≤ v(α) − c.

Under the above conditions, we can write
(

� j 1
−α − m� j −m

)
as

(
− α

m 1
0 −m

)(
1 0

α
m + � j 1

)
.

(3) Suppose that 0 < i < c.

(3i) If j < i, we need m ∈ α�−j(−1 + � i−jO∗
F );

(3ii) If j > i, we need v(m) = v(α) − i;
(3iii) If j = i, we need v(m) ≤ v(α) − i but m /∈ α�−i(−1 + �OF ).

Under the above conditions we can write
(

� j 1
−α − m� j −m

)
as

(
− α� i

α+m� j 1
0 −m

)(
1 0

� i 1

)(
α+m� j

m� i 0
0 1

)
.

This lemma is straightforward to check. We will leave the proof to the reader.

Corollary 5.7 Assume that μ1 and μ2 are unramified and ϕ ∈ σ (μ−1
1 ,μ−1

2 ) is given by
(5.14). Let W−

ϕ be the normalized Whittaker function associated to ϕ. Then

W−
ϕ

((
α 0
0 1

))
=
⎧⎨
⎩

μ
−v(α)
1 q−v(α)/2, if v(α) ≥ 0;

0, if v(α) < 0,
(5.15)

and

W−
ϕ

((
α 0
0 1

)(
1 0
1 1

))
=
⎧⎨
⎩

−q−1μ−v(α)
1 q−v(α)/2ψ(−α), if v(α) ≥ −1;

0, if v(α) < −1.
(5.16)

Proof Put c = 1, and consider j = 1. By formula (5.14) and (1ii) (2ii) of the above lemma:

W−
ϕ

((
α 0
0 1

))
=
∫

m∈F
ϕ

(
ω

(
1 m
0 1

)(
α 0
0 1

))
ψ(m)dm

=
∫

v(m)≤v(α)−1

μ−1
1

(
− α

m

)
μ−1
2 (−m)

∣∣∣ α

m2

∣∣∣1/2 ψ(m)dm − q−1

×
∫

v(m)≥v(α)

μ−1
1 (−1)μ−1

2 (−α)
∣∣∣∣ 1α
∣∣∣∣
1/2

ψ(m)dm

=
⎧⎨
⎩
(−q−1 − q−2)μ−v(α)

1 q−v(α)/2, if v(α) ≥ 0;

0, if v(α) < 0.
(5.17)

In the last equation, one need to use Lemma 2.3 and that μ−1
1 μ2 = |· |.

If we normalizeW−
ϕ

((
1 0
0 1

))
to be 1, then

W−
ϕ

((
α 0
0 1

))
=
⎧⎨
⎩

μ
−v(α)
1 q−v(α)/2, if v(α) ≥ 0;

0, if v(α) < 0.
(5.18)
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Similarly, we consider the case when j = 0. From (1i) and (2i):

W−
ϕ

((
α 0
0 1

)(
1 0
1 1

))
=
∫

m∈F
ϕ

(
ω

(
1 m
0 1

)(
α 0
0 1

)(
1 0
1 1

))
ψ(m)dm

=
∫

m∈α(−1+�OF )

μ−1
1

(
− α

m

)
μ−1
2 (−m)

∣∣∣ α

m2

∣∣∣1/2 ψ(m)dm

− q−1
∫

m/∈α(−1+�OF )

μ−1
1

(
− α

α + m

)
μ−1
2 (−α − m)

×
∣∣∣∣ α

(α + m)2

∣∣∣∣
1/2

ψ(m)dm

=

⎧⎪⎪⎨
⎪⎪⎩

q−1(q−1 + q−2)μ−v(α)
1 q−v(α)/2, if v(α) ≥ 0;

q−1(1 + q−1)μ1q−1/2ψ(−α), if v(α) = −1;

0, if v(α) < −1.

(5.19)

After normalization, we get

W−
ϕ

((
α 0
0 1

)(
1 0
1 1

))
=
⎧⎨
⎩

−q−1μ−v(α)
1 q−v(α)/2ψ(−α), if v(α) ≥ −1;

0, if v(α) < −1.
(5.20)

��

Suppose that the chosen Schwartz function f is also K1(� )-invariant under the Weil
representation r′. Then by Lemma 2.2 and Corollary 5.7, we have:

P(s, w, f,�s) = 1
q + 1

∫

v(α)≥0

μ
−v(α)
1 q−(w/2+1/4)v(α)�s(α)−1I(α, f,�s)d∗α

+ q
q + 1

∫

v(α)≥−1

−q−1μ−v(α)
1 ψ(−α)q−(w/2+1/4)v(α)�s(α)−1

× I
(

α, r′
((

1 0
1 1

))
f,�s

)
d∗α. (5.21)

Now we verify the K1(� )-invariance of f and calculate I(α, f,�s) and

I
(

α, r′
((

1 0
1 1

))
f,�s

)
. Recall that we picked

f = char
((

1 0√
D 1

)(
OF OF

�OF OF

))
× char(O∗

F ).

It’s clearly rightK1(� )-invariant. This choice of Schwartz function is motivated by Exam-
ple 2.19. It can also be written as

f =
∑

a0∈OF /�OF

char
((

a0 + �OF OF
a0

√
D + �OF OF

))
× char(O∗

F ). (5.22)
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Using Lemmas (2.10) and (2.13) one can easily check that f is K1(� )-invariant under the
Weil representation, and

r′
((

1 0
1 1

))
f = q−2

∑
a0∈OF /�OF

ψ(u[(x1 − a0)x4 − x2(x3 − a0
√
D)])

× char
((

OF �−1OF
OF �−1OF

))
× char(O∗

F ). (5.23)

This sum is also right K1(� )-invariant.
Recall that�(2)

s is the unique rightK1(� )-invariant function supported on BK1(� ), and
�

(1)
s is the standard right K -invariant function.

WewillwriteGL2(F) =
(

1 0√
D 1

)
BK1(� )∪

(
1 0√
D 1

)
B
(
1 0
1 1

)
K1(� ). Thematrix

(
1 0√
D 1

)
on the left amounts to a change of variable. Then by our choice of �

(2)
s , in

particular its support, we only need to integrate over
(

1 0√
D 1

)
BK1(� ) for I(α, f,�s)

and I
(

α, r′
((

1 0
1 1

))
f,�s

)
. By the right K1(� )-invariance of �s, we can write

I(α, f,�s) = 1
q + 1

∫

a1 ,a2 ,m∈OF
v(a1)+v(a2)=v(α)

�(1)
s

((
1 0

2
√
D 1

)(
a1 m
0 a2

))

× �(2)
s

((
a1 m
0 a2

))
dmd∗a2|a1|−1 d∗a1. (5.24)

Note that the domain and the integrand of this integral is exactly the same as (4.13) in
Sect. 4.2. Denote by I the result we got in (4.17). Then

I(α, f,�s) = 1
q + 1

I. (5.25)

Now we consider I
(

α, r′
((

1 0
1 1

))
f,�s

)
. For the matrix

(
1 0√
D 1

)(
a1 m
0 a2

)
=

(
a1 m

a1
√
D a2 + m

√
D

)
,

ψ(u[(x1 − a0)x4 − x2(x3 − a0
√
D)]) = ψ

(
α

(
1 − a0

a1

))
. (5.26)

Here we have used u = α
det x in I

(
α, r′

((
1 0
1 1

))
f,�s

)
. Then by (5.23),
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I
(

α, r′
((

1 0
1 1

))
f,�s

)
= q−2

q + 1
∑

a0∈OF /�OF

∫

a1∈OF
a2 ,m∈�−1OF
v(a1a2)=v(α)

ψ

(
α

(
1 − a0

a1

))

× �(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))

× �(2)
s

((
a1 m
0 a2

))
dmd∗a2|a1|−1 d∗a1. (5.27)

Compare the domain of each integral in this expression with the domain of (4.13), we note
that we have two additional parts:

{v(a1), v(a2) ≥ 0, v(m) = −1} and {v(a1) = v(α) + 1, v(a2) = −1, v(m) ≥ −1}.
Also note ψ(α(1 − a0

a1 )) = 1 if v(α) ≥ 0 and v(a1) ≤ v(α). So over the common domain
{a1, m, a2 ∈ OF }, the integral gives I as in (4.17). It’s not difficult to work out the integral
over the two additional parts. Then one can get

I
(

α, r′
((

1 0
1 1

))
f,�s

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q−1

q+1

⎛
⎜⎜⎝I + (q − 1)χ

(1)
1,s

χ
(1)
2,s
(χ (1)

1,s χ
(2)
2,s )v(α)

1−
(

qχ
(2)
1,s

χ
(2)
2,s

)v(α)+1

1− qχ
(2)
1,s

χ
(2)
2,s

⎞
⎟⎟⎠ , if v(α) ≥ 0;

0, otherwise.

(5.28)

By combining (5.25) (5.28) with (5.21), we get

P(s, w, f,�s) = 1 − q−1

(q + 1)2

1 − χ
(1)
1,s

χ
(1)
2,s

(1 − δχ
(1)
2,s χ

(2)
1,s μ2)(1 − δχ

(1)
1,s χ

(2)
2,s μ2)(1 − qδχ (1)

1,s χ
(2)
1,s μ2)

.

(5.29)

At w = 1/2, we have
P(s, 1/2, f,�s)

= 1
(q + 1)2

(1 − q−1)(1 − χ
(1)
1

χ
(1)
2
q−(2s+1))

(1−μ2χ
(1)
2 χ

(2)
1 q−1/2)(1−μ2χ

(1)
1 χ

(2)
2 q−1/2)(1−μ2χ

(1)
1 χ

(2)
1 q−(2s+1/2))

.

(5.30)
Now we evaluate local pairing 〈F1, F〉 for f ′ by (2.27).
Let

f ′′ = char
((

OF OF
�OF OF

))
× char(O∗

F ).

It differs from f ′ by conjugation, but conjugation acts trivially on the center. So

〈F1, F〉 =
∫

NZ\GL2(Fv)

∫

F∗
v

W−
ϕ (h)r′(h)f ′(x, x−2)wπ̂ (x)d∗x dh

=
∫

NZ\GL2(Fv)

∫

F∗
v

W−
ϕ (h)r′(h)f ′′(x, x−2)wπ̂ (x)d∗x dh. (5.31)
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The latter is easier to compute, and one can easily check that

〈F1, F〉 = 1
q + 1

∑
n≥0

μ−2n
1 q−n(μ1μ2)n − q−1

q + 1
∑
n≥0

μ−2n
1 q−n(μ1μ2)n

= q
(q + 1)2

. (5.32)

Here we have used that μ−1
1 μ2 = | · |.

The expected L-factors in this case is

ζ (2)
L(π , Ad, 1)

L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

= (1 − q−1)(1 − χ (1)q−(2s+1))(1 − χ (2)q−(2s+1))
(1 − μ2χ

(1)
2 χ

(2)
1 q−1/2)(1 − μ2χ

(1)
1 χ

(2)
2 q−1/2)(1 − μ2χ

(1)
1 χ

(2)
1 q−(2s+1/2))

. (5.33)

Thus

P
0(s, 1/2, f ′,�′

s) = 1
q(1 − χ (2)q−(2s+1))

. (5.34)

5.3 π of higher level and E/F split

Definition 5.8 Let

f = char
((

1 0√
D 1

)(
OF OF

� cOF OF

))
× char(O∗

F ), (5.35)

f ′ = char
((

1 0√
D 1

)(
OF OF

� cOF OF

)(
1 0

−√
D 1

))
× char(O∗

F ). (5.36)

Pick �
(2)
s to be the unique right K1(� c)-invariant function supported on BK1(� c) such

that�(2)
s (1) = 1, and�

(1)
s to be the standard rightK -invariant function. For�s = �

(1)
s �

(2)
s ,

let

�′
s(g) = �s

(
g
(

1 0
−√

D 1

))
. (5.37)

In this subsection we will prove:

Proposition 5.9 Suppose that π is a representation of level c > 1with unramified central
character. Suppose that χ1 and χ2 are unramified and E/F is split. Further suppose that 2
is a unit.
Then

P(s, w, f ′,�′
s) = P(s, w, f,�s) = 1 − q−1

(q + 1)2q2c−2

(
1 − χ

(1)
1

χ
(1)
2

q−(2s+1)
)
. (5.38)

Apart from the constant term, the denominator is the same as Lv(� ⊗ �, 1/2)Lv(π ⊗
χ1|F∗ , 2s + 1/2), which is 1 in this case. Then

P
0(s, 1/2, f ′,�′

s) = 1
qc

L(π , Ad, 1)
1 − χ (2)q−(2s+1) . (5.39)
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5.3.1 Supercuspidal representations

We first assume that π and π̂ are supercuspidal representations. Then it is easier to
describe the group actions using the Kirillov model.
For basic properties of the Kirillov model, one can read [15]. For the level and the new

form of the Kirillov model of a supercuspidal representation, we mainly follow [5]. Here
we just recount part of the facts necessary for our computations.
For a fixed additive character ψ−, the Kirillov model of π̂ is a unique realization on the

space of Schwartz functions S(F∗) such that

π̂

((
a1 m
0 a2

))
ϕ(x) = wπ̂ (a2)ψ(−ma−1

2 x)ϕ(a1a−1
2 x), (5.40)

where wπ̂ is the central character for π̂ . By Bruhat decomposition, one just has to know

the action of ω =
(

0 1
−1 0

)
to understand the whole group action.

Define

1ν,n(x) =
⎧⎨
⎩

ν(u), if x = u� n for u ∈ O∗
F ;

0, otherwise.

Roughly speaking, it’s the character ν supported at v(x) = n. Such functions provide a

basis for S(F∗). We can then describe the action of ω =
(

0 1
−1 0

)
on 1ν,n explicitly

according to [15]:

π̂ (ω)1ν,n = C
νw−1

0
z−n
0 1ν−1w0 ,−n+n

ν−1 . (5.41)

Here z0 = wπ̂ (� ) and w0 = wπ̂ |O∗
F
. nν is an integer. Cν and nν are decided by the

representation π̂ and the character ν (and independent of n).

The relation ω2 = −
(
1 0
0 1

)
implies that

nν = n
ν−1w−1

0
, CνCν−1w−1

0
= w0(−1)znν

0 . (5.42)

It’s well-known that

nν ≤ −2

for any ν. According to Proposition A.1, when the supercuspidal representation is fixed
with the central character unramified, nν only depends on the level of ν. When we pick
ν to be the trivial character, the number −n1 is actually the level of this supercuspidal
representation, that is

c = −n1.

The argument in [5] with slight modification can show that there is a unique up to
constant element ϕ in the supercupidal representation which is invariant under K1(� c).
One can easily check that ϕ = 11,0 is such an element.
From now on, we assume that the central character wπ̂ is unramified, so w0 = wπ̂ |O∗

F
=

1. For the newform ϕ = 11,0, its associated Whittaker functionW−
ϕ is also right K1(� c)-

invariant. We can calculateW−
ϕ according to the relation between the Kirillov model and

the Whittaker model:

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
= π̂

((
1 0

� i 1

))
ϕ(α). (5.43)
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It’s difficult to describe W−
ϕ explicitly. But it will suffice to know only some specific

integrals forW−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
.

Lemma 5.10 Suppose that π̂ is a supercuspidal representation with unramified central
character. Let W−

ϕ be the Whittaker function associated to ϕ = 11,0 ∈ π̂ .

(1) W−
ϕ

((
α 0
0 1

))
= 11,0(α). For 0 ≤ i < c, W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
is supported

only at v(α) = min{0, 2i − c}.

(2)
∫

v(α)=min{0,2i−c}
W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
d∗α =

⎧⎪⎪⎨
⎪⎪⎩

1, if i ≥ c;

− 1
q−1 , if i = c − 1;

0, otherwise.

(3)
∫

v(α)=min{0,2i−c}
W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
ψ(�−iα)d∗α =

⎧⎪⎪⎨
⎪⎪⎩

C1, if i = 0;

− 1
q−1C1wπ̂ , if i = 1;

0, otherwise.

Proof The first statement of (1) is clear. Now let 0 ≤ i < c. According to Proposition A.1,
if ν is a character of level i, then nν = min{n1,−2i}. Note that(

1 0
� i 1

)
= −ω

(
1 −� i

0 1

)
ω,

π̂ (ω)11,0 = Cw−1
0
1w0 ,n1 = C111,n1 .

The action of
(
1 −� i

0 1

)
for i < c will give a non-trivial factor ψ(� ix) at v(x) = n1. By

the classical result about Gauss sum, π̂
((

1 −� i

0 1

)
ω

)
11,0 is a linear combination of

all characters of level −n1 − i = c − i, supported at v(x) = n1. (It should be understood
that if c − i = 1, then this is a linear combination of all characters of level 1 and 0.) After
another action of ω their levels will not be changed, but supported at

v(x) = −n1 + min{n1,−2(c − i)} = min{0, 2i − c}.
This finishes the proof of part (1).

When we integrate W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
in α, we are just finding the level 0

component of it. By the discussion above, this is only possible when i = c or c − 1. The
integral in the case i = c is obvious. When i = c − 1, one can compute that the level 0

component of π̂
((

1 −� i

0 1

)
ω

)
11,0 is

− 1
q − 1

C111,n1 ,

as
∫

x∈�−1O∗
F

ψ(x)d∗x = − 1
q−1 . Then the action of ω will map it to − 1

q−111,0, using (5.42).

Thus ∫

v(α)=0

W−
ϕ

((
α 0
0 1

)(
1 0

� c−1 1

))
d∗α = − 1

q − 1
. (5.44)
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Part (2) is proved.

Now to integrateW−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
against ψ(�−iα), the idea is to interpret

ψ(�−iα) as a factorone canget by thegroupaction in theKirillovmodel.More specifically,

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
ψ(�−iα) = π̂

((
1 0

� i 1

))
ϕ(α)ψ(�−iα)

= π̂

((
1 −�−i

0 1

)(
1 0

� i 1

))
ϕ(α)

= π̂

(
−ω

(
� i 1
0 �−i

))
ϕ(α).

The integral of W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
ψ(�−iα) is then the same as to find level 0

component of the expression above. One can do this similarly as in the proof of part (2).
We will leave the rest to the reader. ��

Now we will give the formula for P(s, w, f,�s). We will basically follow the technique used
for the unramified special representation case in the last subsection, so we will skip some
details and give results directly. Recall that we have chosen

f = char
((

1 0√
D 1

)(
OF OF

� cOF OF

))
× char(O∗

F ).

It is K1(� c)-invariant under the right action and theWeil representation. One can calcu-
late for 0 ≤ i ≤ c that

r′
((

1 0
� i 1

))
f = q2(i−c)

∑
a0∈OF /� cOF

ψ(u�−i[(x1 − a0)x4 − x2(x3 − a0
√
D)])

× char
((

a0 + � iOF � i−cOF
a0

√
D + � iOF � i−cOF

))
× char(O∗

F ). (5.45)

The sum is right K1(� c)-invariant for any i.
The local integral can be written as

P(s, w, f,�s) =
∑
0≤i≤c

Ai

∫

v(α)=min{0,2i−c}
W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
|α|w2 − 1

4 �s(α)−1

×I(α, r′
((

1 0
� i 1

))
f,�s)d∗α, (5.46)

where Ai ’s were given in Lemma 2.2.

Recall that �s = �
(1)
s �

(2)
s , and γ0 should be understood as

(
1 0

(
√
D,−√

D) 1

)
. �(2)

s is

the unique right K1(� c)-invariant function supported on BK1(� c) such that �
(2)
s (1) = 1,

and �
(1)
s is the standard right K -invariant function. Then
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I
(

α, r′
((

1 0
� i 1

))
f,�s

)

= Ac

∫
�(1)

s

((
1 0

2
√
D 1

)(
a1 m
0 a2

))
�(2)

s

((
a1 m
0 a2

))

× r′
((

1 0
� i 1

))
f
((

a1 m
a1

√
D a2 + m

√
D

)
,

α

a1a2

)
dmd∗a2|a1|−1 d∗a1,

(5.47)

where

r′
((

1 0
� i 1

))
f
((

a1 m
a1

√
D a2 + m

√
D

)
,

α

a1a2

)

= q2(i−c)
∑

a0∈OF /� cOF

ψ

(
�−iα

(
1 − a0

a1

))
char

((
a0 + � iOF � i−cOF

a0
√
D + � iOF � i−cOF

))

×
((

a1 m
a1

√
D a2 + m

√
D

))
. (5.48)

For each a0, the corresponding term in the above expression is not zero if and only if

a1 ≡ a0 mod (� iOF ), m, a2 ∈ � i−cOF . (5.49)

Lemma 5.11 For any fixed 0 ≤ i ≤ c and fixed v(α), I
(

α, r′
((

1 0
� i 1

))
f,�s

)
as

a function of α is a linear combination of the constant function independent of α and
ψ(�−iα).

Proof For fixed a0, the corresponding term in I
(

α, r′
((

1 0
� i 1

))
f,�s

)
is

Acq2(i−c)
∫

a1≡a0 mod (� i)
v(a1a2)=v(α)
v(a2),v(m)≥i−c

�(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
χ
(2)
1,s (a1)χ

(2)
2,s (a2)

× ψ

(
�−iα

(
1 − a0

a1

))
dmd∗a2|a1|−1 d∗a1. (5.50)

There are two cases. If a0 ∈ � iOF , the domain for a1 is � iOF . We fix a2 andm and inte-

grate in a1 for fixed v(a1) first. Note that �
(1)
s

((
a1 m

2a1
√
D a2 + 2m

√
D

))
only depends

on v(a1) instead of the specific value of a1, as one can see from Lemma 4.2. So we are
essentially integrating

ψ

(
�−iα

(
1 − a0

a1

))
= ψ(�−iα)ψ

(
−�−iα

a0
a1

)
.

Then we get either 0 or a multiple of ψ(�−iα).
If a0 /∈ � iOF , we consider the sum in a0 for fixed v(a0) < i. Note that v(a1) = v(a0)

would also be fixed. As the value of �s and the domains for the integrals in m and a2
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are actually independent of a0, we can change the order of the integral in a2, m and the
summation in a0. Then the sum in a0 is essentially

∑
a0

∫

a1≡a0 mod (� i)

ψ

(
�−iα

a1 − a0
a1

)
d∗a1

=
∫

a1

∑
a0≡a1 mod (� i)

ψ

(
�−iα

a1 − a0
a1

)
d∗a1. (5.51)

One can now easily see that the inner sum is either 0 or a constant independent of α. ��
As a result of this Lemma and Lemma 5.10, we only have to care about the constant part
when i = c, c − 1 and the ψ(�−iα) part when i = 0, 1.

Lemma 5.12 Suppose that v(α) = min{0, 2i − c}.
(1) I(α, f,�s) = Ac.

The constant part of I
(

α, r′
((

1 0
� c−1 1

))
f,�s

)
is Ac

[
q−1 + (1 − q−1)χ

(1)
1,s

χ
(1)
2,s

]
.

(2) I
(

α, r′
((

1 0
1 1

))
f,�s

)
= 0.

The ψ(�−1α) part of I
(

α, r′
((

1 0
� 1

))
f,�s

)
is 0.

We will however not provide proof here. Basically one can use (5.50) to do the calcula-
tions, and at some steps switch the order of the integral and the summation in a0 as in the
proof of the previous lemma. It’s complicated, but not difficult.
Nowwe combine Lemmas 5.10 and 5.12 to compute (5.46). Note that only i = 0, 1 terms

are non-zero, and v(α) = 0 for these terms. Then

P(s, w, f,�s) = Ac

∫

v(α)=0

W−
ϕ

((
α 0
0 1

))
I(α, f,�s)d∗α

+ Ac−1

∫

v(α)=0

W−
ϕ

((
α 0
0 1

)(
1 0

� c−1 1

))

× I
(

α, r′
((

1 0
� c−1 1

))
f,�s

)
d∗α

= Ac · Ac + Ac−1

(
− 1
q − 1

)
Ac

[
q−1 + (1 − q−1)

χ
(1)
1,s

χ
(1)
2,s

]

= 1 − q−1

(q + 1)2q2c−2

(
1 − χ

(1)
1

χ
(1)
2

q−(2s+1)
)
. (5.52)

Note that this result is independent of w.

5.3.2 Highly ramified principal series

Now we consider the case when π  π (μ1,μ2) is highly ramified. In the case when π is
a highly ramified special representation, we will get the same result as we can choose the
same new form.
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We still assume that χ1 and χ2 are unramified and E/F is split. This implies that μ1
and μ2 should be ramified of the same level k . Let c = 2k ≥ 2 be the level of π and π̂ .
It’s a classical result (refer to [5]) that the K1(� c)-invariant new form ϕ is supported on

B
(

1 0
� k 1

)
K1(� c).

The idea is to compare the Whittaker function for ϕ with Lemma 5.10. If we can get
similar properties, then we can choose the same f and �s as in the previous situation and
get the results directly.

Lemma 5.13 (1) If k < i ≤ c, then W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
is not zero only when

v(α) = 0. In that case, its integral against ψ(�−iα) is always 0.

∫

v(α)=0

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
d∗α =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = c;

− 1
q−1 , if i = c − 1 > k ;

0, otherwise .

(5.53)

(2) If i < k, then W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
is not zero only when v(α) = 2i− c. In that

case, its integral against 1 is always 0.
∫

v(α)=2i−c

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
ψ(�−iα)d∗α

= wπ (� k−i)μ−1
1 (−1)

⎧⎪⎪⎨
⎪⎪⎩

1, if i = 0;

− 1
q−1 , if i = 1 < k ;

0, otherwise .

(5.54)

(3) If i = k, the integral of W−
ϕ

((
α 0
0 1

)(
1 0

� k 1

))
against 1 or ψ(�−kα) is always

zero if either k > 1 or v(α) 
= 0. When k = 1 and v(α) = 0, its integral against 1 is
the same as expected from (1) as the limit case, and its integral against ψ(�−kα) is
the same as expected from (2).

Proof According to part (3) of Lemma 5.6, we can always write

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
=
∫

μ−1
1

(
− α� k

α + m� i

)
μ−1
2 (−m)

×
∣∣∣∣∣

α� k

m(α + m� i)

∣∣∣∣∣
1/2

ψ(m)dm. (5.55)

The difference is the domain for m, which was given in Lemma 5.6. For the sake of
conciseness, we will only prove part (1) here.
When k < i ≤ c, the domain form is v(m) = v(α) − k . Writem = �−kαu for u ∈ O∗

F .
The integral becomes

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
=
∫

u∈O∗
F

μ−1
1

(
− � k

1 + u� i−k

)
μ−1
2 (−�−kαu)

×q−v(α)/2ψ(�−kαu)du. (5.56)
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As functions in u, μ−1
1 (− � k

1+u� i−k ) is at most of level 2k − i < k , μ−1
2 (−�−kαu) is

multiplicative of level k and ψ(−�−kαu) is additive of level k − v(α). So if v(α) 
= 0, the
integral will be zero for level reason.
When v(α) = 0 and i = c, μ−1

1 (− � k

1+u� i−k ) = μ−1
1 (−� k ) as μ1 is level k . Then

W−
ϕ

((
1 0
0 1

))
= μ−1

1 (−� k )
∫

u∈O∗
F

μ−1
2 (−�−kαu)ψ(�−kαu)du

= μ−1
1 (� k )

∫

u∈O∗
F

μ−1
2 (�−ku)ψ(�−ku)d∗u · (1 − q−1). (5.57)

We have used μ1μ2(−1) = 1 here.
We first consider the integral∫

v(α)=0

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
d∗α.

One can switch the order and integrate in α first. Note that∫

v(α)

ψ(�−kαu))μ−1
2 (−�−kαu)d∗α =

∫

v(α)

ψ(�−kα))μ−1
2 (−�−kα)d∗α (5.58)

is independent of u. q−v(α) = 1. So
∫

v(α)=0

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
d∗α

=
∫

u∈O∗
F

μ−1
1

(
− � k

1 + u� i−k

)
du
∫

v(α)

ψ(�−kα))μ−1
2 (−�−kα)d∗α

= μ−1
1 (� k )

∫

v(α)

ψ(�−kα))μ−1
2 (�−kα)d∗α ·

⎧⎪⎪⎨
⎪⎪⎩

1 − q−1, if i = c;

−q−1, if i = c − 1 > k ;

0, otherwise.

(5.59)

In the last equation we have used Lemma 2.4.

Now we integrate W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
against ψ(�−iα) when v(α) = 0 and

k < i ≤ c . Again we shall switch the order of the integrals and get
∫

v(α)=0

W−
ϕ

((
α 0
0 1

)(
1 0

� i 1

))
ψ(�−iα)d∗α

=
∫

u∈O∗
F

μ−1
1

(
− � k

1 + u� i−k

) ∫

v(α)=0

μ−1
2 (−�−kαu)ψ(�−kαu)ψ(�−iα)d∗αdu.

(5.60)

As functions in α, μ−1
2 (−�−kαu) is of level k , and ψ(�−iα(1+ u� i−k )) is of level i > k .

Thus the integral in α would be zero.

Lastly when we normalizeW−
ϕ

((
1 0
0 1

))
to be 1, we will get the formulae as claimed.

��
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5.3.3 Normalization

If we use f ′ to do Theta lifting, we will get Gross–Prasad test vectors for both F1 and F .
Let

f ′′ = char
((

OF OF
� cOF OF

))
× char(O∗

F )

We can compute 〈F1, F〉 using f ′′ just as in (5.31):

〈F1, F〉 =
∑
0≤i≤c

Ai

∫ ∫
W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
r′
((

1 0
� i 1

))

× f ′′(αx,α−1x−2)wπ̂ (x)d∗x d∗α (5.61)

Only i = c or c − 1 has non-zero contribution because of Lemmas 5.10, 5.13 and the fact
that f ′′ is invariant under the action of center. Then one can easily compute that

〈F1, F〉 = Ac + Ac−1

(
− 1
q − 1

)
q−1 = q − 1

q + 1
1
qc

. (5.62)

The expected L-factors in this case is

ζ (2)
L(π , Ad, 1)

L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

= 1
(1 − q−2)L(π , Ad, 1)

(1 − q−1)(1 − χ (1)q−(2s+1))(1 − χ (2)q−(2s+1)). (5.63)

Then

P
0(s, 1/2, f ′,�′

s) = 1
qc

L(π , Ad, 1)
1 − χ (2)q−(2s+1) . (5.64)

5.4 Ramification in�s

In this subsection, we consider the case when �s is ramified while π is unramified. To
make things simple, we assume that χ1 is ramified of level c and χ2 is unramified. Note
μ1μ2(χ1χ2)|F∗ = 1 implies that χ1|F∗ is still unramified.

Proposition 5.14 Suppose that π is unramified and E/F is inert. Suppose that χ1 is
ramified of level c, but χ1|F∗ and χ2 are unramified. Pick

f = char
((

OF � cOF
�−cOF OF

))
× char(O∗

F ).

Pick �s to be the new form, that is, the K1(� c)-invariant function supported on

B
(
1 0
1 1

)
K1(� c). Then

P(s, w, f,�s) = P
′(w)

(1 − δμ1χ1,s(� )q)(1 − δμ2χ1,s(� )q)
, (5.65)

where P
′(w) denotes the expression

(
χ2,s
qχ1,s

)−c

μ2 − μ1

[
μ2

(1 − (δμ2χ2,s)c+1) − χ2,s
q2χ1,s

(1 − (δμ2χ2,s)c)

1 − δμ2χ2,s
(1 − qδμ1χ1,s)

−μ1
(1 − (δμ1χ2,s)c+1) − χ2,s

q2χ1,s
(1 − (δμ1χ2,s)c)

1 − δμ1χ2,s
(1 − qδμ2χ1,s)

]
. (5.66)
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Here δ = q−(w/2+1/4). When w = 1/2,

P
0(s, 1/2, f,�s) = P

′(1/2)
1 + q−1 . (5.67)

Recall the local integral

P(s, w, f,�s) =
∫

ZN\GL2(F)
W−

ϕ (h)(h)w−1/2
∫

GL2(F)

r′(h)f (g, det(g)−1)�s(γ0g)dg dh.

(5.68)

We’ve already known well the K -invariant Whittaker functionW−
ϕ . The choice

f = char
((

OF � cOF
�−cOF OF

))
× char(O∗

F ) (5.69)

is motivated by Example 2.21. This Schwartz function is K -invariant under the Weil
representation. Thus as in the unramified case,

P(s, w, f,�s) =
∫

F∗
W−

ϕ

((
α 0
0 1

))
|α|w/2−1/4�s(α)−1I(α, f,�s)d∗α. (5.70)

The key point in this subsection is to work out

I(α, f,�s) =
∫

g∈GL2 ,v(det g)=v(α)

f
(
g,

α

det g

)
�s(γ0g)dg. (5.71)

Note that when the extension E/F is inert,

GL2 = O∗
E · B. (5.72)

Recall that �s(γ0tg) = χ1,s(t̄)χ2,s(t)�s(γ0g) for t = a + b
√
D. By our assumption on χ1,s

andχ2,s,�s(γ0g) as a function of g is left invariant underO∗
F +� cOE . f is also left invariant

under
{(

a b
bD a

)
|a ∈ O∗

F , b ∈ � cOF

}
 O∗

F + � cOE . As a result,

I(α, f,�s) = 1
(q + 1)qc−1

∑
t∈(O∗

F+� cOE )\O∗
E

∫

B

χ1,s(t̄)�s(γ0b)f
(
tb,

α

det tb

)
db

= 1
(q + 1)qc−1

∑
t∈(O∗

F+� cOE )\O∗
E

∫

v(a1)+v(a2)=v(α)

t

⎛
⎝a1 m
0 a2

⎞
⎠∈
⎛
⎝ OF � cOF
�−cOF OF

⎞
⎠

χ1,s(t̄)

× �s

(
γ0

(
a1 m
0 a2

))
|a2|−1dmd∗a1 d∗a2. (5.73)

We have used that the right Haar measure for the Borel subgroup is

|a2|−1dmd∗a1d∗a2.

The coset representatives (O∗
F + � cOE)\O∗

E can be chosen as

{1 + b1
√
D|b1 ∈ OF/� cOF } ∪ {b2 + √

D|b2 ∈ �OF/� cOF }.
One can easily see that this set has (q + 1)qc−1 elements. That’s why we have 1

(q+1)qc−1 in
front of the integral above.
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Lemma 5.15 We need v( a1
√
D

a2+m
√
D
) ≤ 0 for

(
a1 m

a1
√
D a2 + m

√
D

)
∈ B

(
1 0
1 1

)
K1(� c).

Under the above condition we can write
(

a1 m
a1

√
D a2 + m

√
D

)
as

( a2√
D

a1 − a2√
D

0 a1
√
D

)(
1 0
1 1

)(
1 −1 + a2+m

√
D

a1
√
D

0 1

)
.

Corollary 5.16 Assume that χ2,s is unramified and χ1,s is ramified of level c, such
that χ1,s|F∗ is still unramified. Suppose that �s is the unique K1(� c)-invariant func-

tion supported on B
(
1 0
1 1

)
K1(� c). Then�s

((
1 0√
D 1

)(
a1 m
0 a2

))
is non-zero when

v(a1) ≤ v(a2 + m
√
D). In that case, it’s equal to

χ1,s

(
a2√
D

)
χ2,s

(
a1

√
D
)

= χ
v(a2)
1,s χ

v(a1)
2,s

χ1,s(
√
D)

.

For each representative t ∈ (O∗
F +� cOE)\O∗

E , we decide now the domain of the integral
which is given by the condition

t
(
a1 m
0 a2

)
∈
(

OF � cOF
�−cOF OF

)
.

If t = 1 + b1
√
D, then by(

1 b1
b1D 1

)(
a1 m
0 a2

)
∈
(

OF � cOF
�−cOF OF

)

we get v(a1), v(a2) ≥ 0,m ≡ −b1a2 mod (� c). Similarly for t = √
D + b2,(

b2 1
D b2

)(
a1 m
0 a2

)
∈
(

OF � cOF
�−cOF OF

)
.

The domain will be v(a1) ≥ −v(b2), v(m) ≥ 0, a2 ≡ −mb2 mod (� c).
The key observation here is that although the domain depends on the specific choice

of b1 or b2, the integral of �s over the domain only depends on v(b1) and v(b2). Indeed
in Corollary 5.16, the requirement that v(a1) ≤ v(a2 + m

√
D) and the value of �s both

depend only on the valuations of a1, a2 andm. The domains differ slightly but the different
parts have the same volume.
More specifically for fixed v(b1) or v(b2), let t0 be a fixed representative for 1 + b1

√
D

or b2 + √
D. Then we have∫

B

χ1,s(t̄)�s(γ0b)f
(
tb,

α

det tb

)
db = χ1,s(t̄)

∫

B

�s(γ0b)f
(
t0b,

α

det t0b

)
db.

So when we sum over t for fixed v(b1) or v(b2), we are essentially just summing χ1,s(t̄).
Then we need a lemma similar to Lemma 2.4:

Lemma 5.17 Let χ be a character of level c on E
∗ which is unramified when restricted to

F
∗.
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(1) If c ≥ 2, we have

∑
b1∈OF /� cOF ,v(b1)=i

χ (1 + b1
√
D) =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = c;

−1, if i = c − 1;

0, otherwise.

(5.74)

∑
b2∈OF /� cOF ,v(b2)=i

χ (
√
D + b2) = χ (

√
D)

⎧⎪⎪⎨
⎪⎪⎩

1, if i = c;

−1, if i = c − 1;

0, otherwise.

(5.75)

(2) If c = 1, we have
∑

b1∈OF /�OF

χ (1 + b1
√
D) + χ (

√
D) = 0. (5.76)

This lemma enable us to greatly simplify (5.73) as

I(α, f,�s) = 1
(q + 1)qc−1

⎡
⎣
⎛
⎝
∫

B

�s(γ0g)f
(
g,

α

det g

)
dg

−
∫

B

�s(γ0g)f
((

1 � c−1

� c−1D 1

)
g,

α

det g

)
dg

⎞
⎠

+ χ1,s(
√
D)

⎛
⎝
∫

B

�s(γ0g)f (
(
0 1
D 0

)
g,

α

det g

⎞
⎠ dg

−
∫

B

�s(γ0g)f
((

� c−1 1
D � c−1

)
g,

α

det g

)
dg

⎞
⎠
⎤
⎦ . (5.77)

Here we have chosen
(

1 � c−1

� c−1D 1

)
as a representative for 1 + b1

√
D with v(b1) =

c − 1, and
(

� c−1 1
D � c−1

)
as a representative for

√
D + b2 with v(b2) = c − 1. This

formula is true even if c = 1.
To integrate (5.77), it’s easier to compare the domains of the integrals, as the common

part can be cancelled when we do subtraction. We will only give the result here:

Lemma 5.18

I(α, f,�s) = 1
(q + 1)qc−1

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(qχ1,s)v(α)(( χ2,s
qχ1,s

)−c − ( χ2,s
qχ1,s

)v(α)−c+1)
1− χ2,s

q2χ1,s
1− χ2,s

qχ1,s
, if 0 ≤ v(α) ≤ c − 1;

(qχ1,s)v(α)( χ2,s
qχ1,s

)−c
1− χ2,s

q2χ1,s
1− χ2,s

qχ1,s
− (1 − q−1)(qχ1,s)v(α)

χ2,s
qχ1,s

1− χ2,s
qχ1,s

, if v(α) ≥ c.

From this one can get
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P(s, w, f,�s) = P
′(w)

(1 − δμ1χ1,s(� )q)(1 − δμ2χ1,s(� )q)
, (5.78)

where P
′ denotes the expression

(
χ2,s
qχ1,s

)−c

μ2 − μ1

[
μ2

(1 − (δμ2χ2,s)c+1) − χ2,s
q2χ1,s

(1 − (δμ2χ2,s)c)

1 − δμ2χ2,s
(1 − qδμ1χ1,s)

−μ1
(1 − (δμ1χ2,s)c+1) − χ2,s

q2χ1,s
(1 − (δμ1χ2,s)c)

1 − δμ1χ2,s
(1 − qδμ2χ1,s)

]
. (5.79)

Now we compute 〈F1, F〉. Since the Schwartz function is K -invariant under the Weil
representation, we have

〈F1, F〉 =
∫ ∫

W−
ϕ

((
α 0
0 1

))
f (αx,α−1x−2)(μ1μ2)−1(x)d∗xd∗α. (5.80)

This turns out to be the same as in the unramified case, that is,

〈F1, F〉 = L(π , Ad, 1)
ζ (2)

. (5.81)

The expected L-factors in this case is

ζ (2)
L(π , Ad, 1)

L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

= ζ (2)
L(π , Ad, 1)

1 + q−1

(1 − μ1χ1(� )q−(2s+1/2))(1 − μ2χ1(� )q−(2s+1/2))
. (5.82)

Thus

P
0(s, 1/2, f,�s) = P

′(1/2)
1 + q−1 . (5.83)

5.5 Joint ramification

In this section we consider a very special case of the local integral when both π (μ1,μ2)
and �s are ramified.

Proposition 5.19 Suppose that μ1 is unramified and μ2 is of level c > 0 for the principal
series π (μ1,μ2). Suppose that χ2 is unramified and χ1, χ1|F∗ are both ramified of level c.
Assume that E/F is inert. Pick

f = char
((

1 + � cOF OF
� cOF OF

))
× char(1 + � cOF ),

f ′ =
∑

a∈(OF /� cOF )∗

′
char

((
a−1 + � cOF OF

� cOF OF

))
× char(a + � cOF )

=
∑

a∈(OF /� cOF )∗

′
r′
((

a 0
0 1

))
f,

where
∑′ means the average. Pick �s to be the unique up to constant K1(� c)-invariant

function supported on B
(
1 0
1 1

)
K1(� c) such that �s

((
1 0
1 1

))
= 1. Then

P(s, w, f,�s) = P(s, w, f ′,�s) = 1
(q2 − 1)2q4c−4χ1,s(

√
D)

1
1 − qδμ2χ1,s

. (5.84)
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Here δ = q−(w/2+1/4). When w = 1/2, we have

P(s, 1/2, f ′,�s) = 1
(q2 − 1)2q4c−4χ1(

√
D)

1
1 − μ2χ1q−(2s+1/2) . (5.85)

The denominator is as expected since

Lv(� ⊗ �, 1/2)Lv(π ⊗ χ1|F∗ , 2s + 1/2) = 1
1 − μ2χ1q−(2s+1/2)

in this case, and

P
0(s, 1/2, f ′,�s) = 1

(q + 1)qc−1χ1(
√
D)

. (5.86)

First note that our choice for f is only K 1
1 (� c)-invariant under theWeil representation,

whereK 1
1 (� c) is the subgroupofK whose elements are congruent to

(
1 ∗
0 1

)
mod (� c).

On the other hand, f ′ is K1(� c)-invariant under left, right, and Weil representation. For
the following we will only compute P(s, w, f,�s). But all pieces in f ′ can be computed very
similarly, and the result doesn’t depend on a. Thus an average will give the same result.

Lemma 5.20

GL2 =
∐

0≤i≤c,β∈(OF /�min{i,c−i}OF )∗
B
(

1 0
� i 1

)(
β 0
0 1

)
K 1
1 (�

c). (5.87)

Proof First of all,

K1(� c) =
∐

β∈(OF /� cOF )∗

(
β 0
0 1

)
K 1
1 (�

c).

We know by Lemma (2.1)

GL2 =
∐

0≤i≤c
B
(

1 0
� i 1

)
K1(� c).

We just need to check when B
(

1 0
� i 1

)(
β 0
0 1

)
K 1
1 (� c) = B

(
1 0

� i 1

)(
β ′ 0
0 1

)

K 1
1 (� c).
This is equvalent to that when modulo � c,(

1 0
� i 1

)(
β/β ′ ∗
0 1

)(
1 0

−� i 1

)

is upper triangular. That is

� iβ/β ′ − � i − � 2i∗ ≡ 0 mod (� c).

Then the conclusion is clear. ��
We pick ϕ ∈ π (μ−1

1 ,μ−1
2 ) to be the unique K1(� c)-invariant function supported on

BK1(� c). Then by the above lemma, the local integral P(s, w, f,�s) should be
∑

0≤i≤c,β
Ai,β

∫
W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
|α|w2 − 1

4 �s(α)−1

×I
(

α, r′
((

1 0
� i 1

)(
β 0
0 1

))
f,�s

)
d∗α, (5.88)
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where

Ai,β = Ai
�(OF/�min{i,c−i}OF )∗

.

We shall work out the integral I
(

α, r′
((

1 0
� i 1

)(
β 0
0 1

))
f,�s

)
first. By (2.13),

r′
((

β 0
0 1

))
f = char

((
β−1 + � cOF OF

� cOF OF

))
× char(β + � cOF ). (5.89)

Then by Lemma 2.10 and the remark after it,

r′
((

1 0
� i 1

)(
β 0
0 1

))
f = q2(i−c)ψ(u�−i[(x1 − β−1)x4 − x2x3])

×char
((

β−1 + � iOF � i−cOF
� iOF � i−cOF

))

×char(β + � cOF ). (5.90)

Lemma 5.21
∫

�s(γ0g)f (g,
α

det g
)dg =

⎧⎨
⎩

1
(q−1)(q2−1)q3c−3 χ1,s( α√

D
)qv(α), if v(α) ≥ 0,

0, otherwise.
(5.91)

∫
�s(γ0g)r′

((
1 0

� i 1

)(
β 0
0 1

))
f
(
g,

α

det g

)
dg ≡ 0 for any i < c and β .

(5.92)

Proof Recall that we can write GL2 = O∗
EB. �s(γ0g) and r′

((
1 0

� i 1

)(
β 0
0 1

))
f are

both left invariant under 1 + � cOE . Note that O∗
E/1 + � cOE  (OE/� cOE)∗ is of

cardinality (q2 − 1)q2c−2. Then

I
(

α, r′
((

1 0
� i 1

)(
β 0
0 1

))
f,�s

)

= 1
(q2 − 1)q2c−2

∑
t∈(OE/� cOE )∗

∫
�(t)�s

(
γ0

(
a1 m
0 a2

))
r′
((

1 0
� i 1

)(
β 0
0 1

))

× f
(
t
(
a1 m
0 a2

)
,

α

N (t)a1a2

)
|a2|−1dmd∗a1d∗a2. (5.93)

If we write t = b1 + b2
√
D =

(
b1 b2
b2D b1

)
, then N (t) = b21 − b22D, and

�(t) = χ1(t̄)χ2(t) = χ1(b1 − b2
√
D)

as χ2 is unramified.
First let i = c and β = 1. To satisfy

t
(
a1 m
0 a2

)
∈
(
1 + � cOF OF

� cOF OF

)
,
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we need a1b1 ∈ 1 + � cOF , a1b2D ∈ � cOF , and a2, m ∈ OF . If b2 /∈ � cOF , then it’s
impossible for a1 to satisfy the first two conditions. Thus we only need to consider those
t with b2 ∈ � cOF , b1 ∈ (OF/� cOF )∗. Then the domain for the integral is

a1 ≡ b−1
1 + � cOF ,m ∈ OF and a2 ∈ α

b1
(1 + � cOF ), (5.94)

as we also need α
N (t)a1a2 ∈ 1 + � cOF .

By Lemma 5.15,

�s

((
1 0√
D 1

)(
a1 m
0 a2

))
= χ1,s

(
a2√
D

)
χ2,s(a1

√
D),

when the condition v(a1) ≤ v(a2 + m
√
D) is satisfied. In particular over the domain in

(5.94),

�s =
⎧⎨
⎩

χ1,s
(

α

b1
√
D

)
, if v(α) ≥ 0;

0, otherwise,

as χ2,s is unramified and v(a1
√
D) = 0. Also �(t) = χ1,s(b1 − b2

√
D) = χ1,s(b1). Then for

v(α) ≥ 0 the integral is easily computed to be

1
(q2 − 1)q2c−2

∑
b1∈(OF /� cOF )∗

∫

a1≡b−1
1 +� cOF
m∈OF

a2∈ α
b1

(1+� cOF )

χ1,s(b1)χ1,s

(
α

b1
√
D

)
|a2|−1dmd∗a1 d∗a2

= 1
(q − 1)(q2 − 1)q3c−3 χ1,s

(
α√
D

)
qv(α). (5.95)

Now suppose 0 < i < c. For any fixed t = b1 + b2
√
D and β , we can do the integral

similarly. In particular one would need v(a1) ≤ v(a2 + m
√
D), b1 ∈ O∗

F and b2 ∈ � iOF
for the integral to be nonzero. And when that’s the case, the domain of the integral is

v(m) ≥ 0, a2 ∈ b1α
(b21 − b22D)

(1 + � iOF ) and a1 ∈ β−1α

(b21 − b22D)a2
(1 + � cOF ).

Over this domain, we have

ψ(u�−i[(x1 − β−1)x4 − x2x3]) = ψ(�−iα)ψ
(

− β−1α�−i

(b21 − b22D)a1a2
(a2b1 + mb2D)

)

= ψ(�−iα)ψ
(

− b21α�−i

b21 − b22D

)
, (5.96)

which turns out to be constant over the domain.
Nowwedo the integral ofχ1,s( a2√

D
)χ2,s(a1

√
D) over the above domain.When integrating

in a1 first, we are essentially integrating a constant as χ2,s is unramified. Then the integral
in a2 is essentially∫

a2∈ b1α

(b21−b22D)
(1+� iOF )

χ1,s(a2)d∗a2, (5.97)

which is zero according to Lemma 2.4.
When i = 0, the proof is similar. We will leave this case to the reader. ��



Hu Res. Number Theory (2016) 2:33 Page 53 of 61

According to this Lemma, we only need to compute one integral for (5.88) and we only

care aboutW−
ϕ

((
α 0
0 1

))
.

Lemma 5.22 Assume that μ1 is unramified and μ2 is of level c > 0. Suppose that ϕ ∈
π (μ−1

1 ,μ−1
2 ) is the unique K1(� c)− invariant function supported on BK1(� c). Then

W−
ϕ

((
α 0
0 1

))
=
⎧⎨
⎩
q−v(α)/2μ−v(α)

1 , if v(α) ≥ 0;

0, if v(α) < 0.
(5.98)

Proof By Lemma 5.6, in particular by part (2ii), we have

ϕ

(
ω

(
1 m
0 1

)(
α 0
0 1

))
= μ−1

1

(
− α

m

)
μ−1
2 (−m)

∣∣∣ α

m2

∣∣∣1/2 ,

when v(m) ≤ v(α) − c. Recall thatW−
ϕ is the Whittaker function for ϕ associated to ψ−.

Then

W−
ϕ

((
α 0
0 1

))
=

∫

v(m)≤v(α)−c

μ−1
1

(
− α

m

)
μ−1
2 (−m)

∣∣∣ α

m2

∣∣∣1/2 ψ(m)dm

=
⎧⎨
⎩
C ′q−v(α)/2μ−v(α)

1 , if v(α) ≥ 0;

0, if v(α) < 0.
(5.99)

where

C ′ = 1
qcμc

1

∫

v(m)=−c

μ−1
2 (−m)ψ(m)dm

is a non-zero constant and will be cancelled after normalization. ��

Now we combine Lemma 5.21 and 5.22 into (5.88). One can easily see that

P(s, w, f,�s) = Ac

∫

v(α)≥0

q−v(α)/2μ−v(α)
1 |α|w2 − 1

4 �s(α)−1

× 1
(q − 1)(q2 − 1)q3c−3χ1,s

(
α√
D

)
qv(α)d∗α

= 1
(q2 − 1)2q4c−4χ1,s(

√
D)

1
1 − qδμ2χ1,s

. (5.100)

Here δ = q−(w/2+1/4). We have used that μ1μ2χ1,sχ2,s = 1 and μ2χ1,s is unramified.
When w = 1/2, we have

P(s, 1/2, f,�s) = 1
(q2 − 1)2q4c−4χ1,s(

√
D)

1
1 − μ2χ1q−(2s+1/2) . (5.101)

To compute 〈F1, F〉, we shall compute the corresponding integral using f ′.

〈F1, F〉 =
∑

0≤i≤c,β
Ai

∫ ∫
W−

ϕ

((
α 0
0 1

)(
1 0

� i 1

))
r′
((

1 0
� i 1

))

× f ′(αx,α−1x−2)(μ1μ2)−1(x)d∗xd∗α. (5.102)
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By Formula (5.90), we have for any i,

r′
((

1 0
� i 1

))
f ′ =

∑
a∈(OF /� cOF )∗

′
q2(i−c)ψ(u�−i[(x1 − a−1)x4 − x2x3])

×char
((

a−1 + � iOF � i−cOF
� iOF � i−cOF

))
× char(a + � cOF )

(5.103)

(αx,α−1x−2) is in the support if and only if x ∈ 1+ � iOF . On the support, it’s a constant
function in x. Then integral against (μ1μ2)(x) is nonzero if and only if i = c. Thus

〈F1, F〉 = Ac

∫ ∫
W−

ϕ

((
α 0
0 1

))
f ′(αx,α−1x−2)(μ1μ2)−1(x)d∗x d∗α

= Ac

∫

v(α)=0

W−
ϕ

((
α 0
0 1

))
1

(q − 12)(q2c−2)
d∗α

= 1
(q − 1)(q2 − 1)(q3c−3)

. (5.104)

The expected L-factors in this case is

ζ (2)
L(π , Ad, 1)

L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

= 1
1 − μ2χ1q−(2s+1/2) . (5.105)

Thus

P
0(s, 1/2, f,�s) = 1

(q + 1)qc−1χ1(
√
D)

. (5.106)

5.6 The last case when only π is ramified

In this section, we consider a finite place where π is highly ramified, χ1 and χ2 are
unramified and E/F is inert. As mentioned in the end of Section 3, the local integral of
our problem can also be formulated in terms of matrix coefficients:∫

F∗\GL2(F)
�s(γ0g)〈F1,π (g)F〉dg, (5.107)

where F1 ∈ π̂ , F ∈ π and 〈·, ·〉 is a bilinear and GL2(F)− invariant pairing between π̂ and
π .
If the level c of the representation π is odd, then the local integral is automatically zero

according to Theorem 2.14 and Example 2.15. Assume from now on that c = 2k .

Define K̃ to be the subgroup of GL2(OE) whose elements are congruent to
(
1 0
0 1

)

mod (� kOE). Define �s to be the unique up to constant function from the induced

representation such that it’s right K̃ -invariant and supported on B
(

0 1
−1 −

√
D
D

)
K̃ . It

will be normalized such that

�s

((
0 1

−1 −
√
D
D

))
= 1.
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As motivated by Example 2.18, we will pick F1 and F to be the unique up to constant
elements from respective representations which are invariant under

{(
a + � kOF b + � kOF
bD + � kOF a + � kOF

)
|a + b

√
D ∈ O∗

E

}
.

Let F1 and F be so normalized that

〈F1, F〉 = 1.

Proposition 5.23 Suppose that π is highly ramified of level c = 2k, χ1 and χ2 are both
unramified, and E/F is inert. Then for the choice of F1 ∈ π̂ , F ∈ π and �s as given above,
we have∫

F∗\GL2(F)
�s(γ0g)〈F1,π (g)F〉dg = 1

(q − 1)qc−1 , (5.108)

and

P
0 = L(π , Ad, 1)

qc(1 − χq−(4s+2))
. (5.109)

We first give the property for �s.

Lemma 5.24 Let �s be the unique normalized element from the induced representation

which is supported on B
(

0 1
−1 −

√
D
D

)
K̃ . Then

�s

(
γ0

(
a1 m
0 1

))
=
⎧⎨
⎩
1, if v(m) ≥ k and a1 ≡ 1 mod (� kOF );

0, otherwise .
(5.110)

Proof Let’s consider when the matrix
(

1 0√
D 1

)(
a1 m
0 1

)
can be in the support

B
(

0 1
−1 −

√
D
D

)
K̃ . This is equivalent to say if there exists k ∈ K̃ such that

(
a1 m

a1
√
D 1 + m

√
D

)
k
(

−
√
D
D −1
1 0

)

is upper triangular. This in turn is equivalent to that

−a1 + 1 + m
√
D ≡ 0 mod (� kOE).

Thus one get the conditions for�s

(
γ0

(
a1 m
0 1

))
to be non-zero as in the lemma.When

these conditions are satisfied, the rest are easy to check. ��

Now we can prove Proposition 5.23 easily. As χ1 and χ2 are unramified, �s(γ0tg) =

�s(γ0g) for t ∈ O∗
E . Note that F

∗\GL2 = O∗
E

{(
a1 m
0 1

)}
. Then the local integral

(5.107) becomes
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∫

F∗\GL2(F)
�s(γ0g)〈F1,π (g)F〉dg

=
∫

t∈O∗
E

∫

a1 ,m

�(t)�s

(
γ0

(
a1 m
0 1

))〈
π̂ (t−1)F1,π

((
a1 m
0 1

))
F
〉
d∗a1 dmd∗t

=
∫

a1 ,m

�s

(
γ0

(
a1 m
0 1

))〈
F1,π

((
a1 m
0 1

))
F
〉
d∗a1 dm

=
∫

v(m)≥k and a1≡1 mod(� k )

〈
F1,π

((
a1 m
0 1

))
F
〉
d∗a1 dm. (5.111)

Here we have used the fact that F1 is invariant under O∗
E for the second equality, and

Lemma 5.24 for the last equality.
Note that when v(m) ≥ k and a1 ≡ 1 mod(� k ),(

a1 m
0 1

)
∈
{(

a + � kOF b + � kOF
bD + � kOF a + � kOF

)
|a + b

√
D ∈ O∗

E

}
,

under the action of which F is invariant.
Thus ∫

F∗\GL2(F)
�s(γ0g)〈F1,π (g)F〉dg

=
∫

v(m)≥k and a1≡1mod(� k )

〈F1, F〉d∗a1dm = 1
(q − 1)qc−1 . (5.112)

The expected L-factors in this case is

ζ (2)
L(π , Ad, 1)

L(� ⊗ �, 1/2)L(π ⊗ χ1|F∗ , 2s + 1/2)
L(η, 1)L(χ , 2s + 1)

= 1
(1 − q−2)L(π , Ad, 1)

(1 + q−1)(1 − χq−(4s+2)). (5.113)

So

P
0(s, 1/2, f,�s) = L(π , Ad, 1)

qc(1 − χq−(4s+2))
. (5.114)

6 Archimedean places
The local integral at archimedean places in general can be very complicated to compute.
In this section we shall restrict ourselves to the following setting. Suppose that E is totally
real. In particular all infinity places of F are real and they split in E. Suppose that the
cusp form F is anti-holomorphic and is of parallel weight −2n, and the Eisenstein series
is holomorphic and is of parallel weight n.
In terms of local components, we assume that π is of form σ (| · | 2n−1

2 , | · |− 2n−1
2 ). Pick F1

and F to be weight −2n elements. It is well-known that in general the matrix coefficient
associated to holomorphic weight 2n > 0 elements is

ϕ

((
a m
0 1

))
= an(2i)2n

(m + (a + 1)i)2n
. (6.1)
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Note that it is normalized so that ϕ(1) = 1. Then the matrix coefficient associated to
weight −2n elements is

ϕ

((
a m
0 1

))
= an(2i)2n

(−m + (a + 1)i)2n
. (6.2)

Herewe have conjugated the formula by
(

−1 0
0 1

)
to get thematrix coefficient for weight

−2n elements.
Since this real place splits in E, we shall write �s = �

(1)
s �

(2)
s , where we pick �

(i)
s to be

the weight n element from IndGL2B (sgnδ(·)| · | n−1
2 , | · |− n−1

2 ). Here δ is 0 if n is even and 1 if
n is odd. We shall think

√
D = (

√
D,−√

D) in this case. Recall that the local integral is

P =
∫

F∗\GL2(F)
〈F1,π (g)F〉�s(γ0g)dg =

∫

F∗\GL2(F)
ϕ(g)�s(γ0g)dg. (6.3)

Here we shall use the decomposition

F
∗\GL2(F) =

{(
a m
0 1

)
|a ∈ R

∗, m ∈ R

}
K

for K = SO(2), and the Haar measure is
1
2π

da dmdθ

a2
. (6.4)

Note that(
a m

±a
√
D 1 ± m

√
D

)
=
⎛
⎝

a√
a2D+(1±m

√
D)2

±a2
√
D+m±m2√D√

a2D+(1±m
√
D)2

0
√
a2D + (1 ± m

√
D)2

⎞
⎠

×
⎛
⎝

1±m
√
D√

a2D+(1±m
√
D)2

∓a
√
D√

a2D+(1±m
√
D)2

±a
√
D√

a2D+(1±m
√
D)2

1±m
√
D√

a2D+(1±m
√
D)2

⎞
⎠ (6.5)

So by definition,

P =
∫

a>0

∫

m

an22n

(−m + (a + 1)i)2n

(
a

a2D + (1 + m
√
D)2

) n
2

⎛
⎝ 1 + m

√
D − ia

√
D√

a2D + (1 + m
√
D)2

⎞
⎠

n

×
(

a
a2D + (1 − m

√
D)2

) n
2

⎛
⎝ 1 − m

√
D + ia

√
D√

a2D + (1 − m
√
D)2

⎞
⎠

n

a−2da dm. (6.6)

We have used that ϕ is only supported on det(g) > 0. It can be easily simplified as

P = 22n(−1)n

Dn

∫

a>0

∫

m

a2n−2

(m − (a + 1)i)2n
(
m + 1√

D
+ ia

)n (
m − 1√

D
+ ia

)n da dm.

(6.7)

As an analytic function in m, the integrand has a pole of order 2n at m = (a + 1)i in the
upper half plane, and two poles of order n at m = ± 1√

D
− ia in the lower half plane. To

fully make use of the symmetry, we shall shift the contour integral upward and use basic
complex analysis.

P= 2π i
(2n−1)!

22n(−1)n

Dn

∫

a>0

a2n−2
(

d
dm

)2n−1
(

1(
(m + ia)2− 1

D
)n
)∣∣∣∣∣

m=(a+1)i
da. (6.8)
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Now we make use of the linear relation betweenm and a in the expression, and do the
following change of variable:

u = m + ia − i
2i

. (6.9)

Then
(

d
dm

)2n−1
(

1(
(m + ia)2 − 1

D
)n
)

|m=(a+1)i

=
(
1
2i

)2n−1 ( d
du

)2n−1
(

1(
(2u + 1)2 + 1

D
)n (−1)n

)
|u=a.

(6.10)

So

P = − 4π
(2n − 1)!Dn

∫

a>0

a2n−2
(

d
du

)2n−1
(

1(
(2u + 1)2 + 1

D
)n
)∣∣∣∣∣

u=a
da. (6.11)

Now we can use integration by parts multiple times to get

P = − 4π
(2n − 1)!Dn

⎡
⎢⎣a2n−2

(
d
da

)2n−2
⎛
⎜⎝ 1(

(2a + 1)2 + 1
D

)n
⎞
⎟⎠
∣∣∣∣∣∣∣

∞

a=0

− (2n − 2)a2n−3
(

d
da

)2n−3
⎛
⎜⎝ 1(

(2a + 1)2 + 1
D

)n
⎞
⎟⎠
∣∣∣∣∣∣∣

∞

a=0

+ · · ·

+(2n − 2)!
(

1
((2a + 1)2 + 1

D )
n

)∣∣∣∣∣
∞

a=0

⎤
⎥⎦

= 4π
(2n − 1)!Dn (2n − 2)!

1
(1 + 1

D )
n = 4π

2n − 1
1

(1 + D)n
. (6.12)

Here we have used that ai( d
da )

i( 1
((2a+1)2+ 1

D )n
)|∞a=0 = 0 for 0 < i ≤ 2n − 2. We will not

normalize the local integral by L-factors for archimedean places.
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Appendix A: Kirillovmodel for the supercuspidal representation and its
newform
LetFv be a local field and p be the characteristic of its residue field. Letψ be an unramified
additive character. Let π be a supercuspidal representation overFv , with central character
wπ . Its Kirillov model can be realized on S(F∗) such that

π

((
a1 m
0 a2

))
ϕ(x) = wπ (a2)ψ(ma−1

2 x)ϕ(a1a−1
2 x), (A.1)
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A basis of this representation can be given by

1ν,n(x) =
⎧⎨
⎩

ν(u), if x = u� n for u ∈ O∗
F ;

0, otherwise.

The action of ω =
(

0 1
−1 0

)
on this basis is given by

π (ω)1ν,n = C
νw−1

0
z−n
0 1ν−1w0 ,−n+n

ν−1 , (A.2)

where z0 = wπ (� ) and w0 = wπ |O∗
F
. Recall that nν ≤ −2 and c = −n1.

For simplicity, we focus on the case when wπ is unramified or level 1. Correspondingly
w0 = wπ |O∗

F
is trivial or level 1.

Proposition A.1 Suppose p 
= 2. Let c ≥ 2 be the level of a supercuspidal representation
π whose central character is unramified or level 1. If ν is a level i character of O∗

F , then we
have

nν = min{−c,−2i}.

Proof Note that

ω

(
1 −1
0 1

)
ω =

(
1 1
0 1

)
ω

(
1 1
0 1

)
. (A.3)

We will just apply this equation to different test functions and compare levels or supports
of each side. First of all, consider 11,n for n ≥ 0. By the classical result of Gauss sum, the
right hand side of (A.3) will give a linear combination of 1ν,−n+n1 for all ν of level−n1 +n.
The left hand side has an additional action of ω, which has to maintain the right hand
side. In particular,

nν = 2n1 − 2n

for all ν of level −n1 + n.
Then we consider those ν of level from 1 to −n1 − 1. Suppose 1 ≤ i < c/2.
First we test 11,−i. The situation for the left hand side is similar. The action of ω will

change 11,−i into a multiple of 1w0 ,i−c . Then ψ(−x)1w0 ,i−c will be a linear combination of
1w0ν,i−c for all ν of level c − i. After another action of ω, what we get just consists of all
level c − i characters.
On the right hand side, ψ11,−i consists of all 1μ,−i for μ of level i. If i = 1, it should be

understood that μ is of level 1 or 0. If nμ > −c for some μ of level i, then the action of

ω will change 1μ−1 ,−i into 1
μw−1

0 ,i+nμ
, so we know π (ω

(
1 1
0 1

)
)11,−i has level i < c − i

components at v(x) = i + nμ > i − c. Note that μ and ψ(x) at v(x) = i + nμ are both
of level < c − i. Then multiplying another ψ(x) will never give level c − i components at
v(x) = i + nμ, contradiction. So nν ≤ −c.
As a direct result of this, we also get nν ≤ −2(c− i) for all ν of level c− i. This is because

in our argument for nμ ≤ −c, the right hand side will be supported at v(x) ≤ i − c. Then
on the left hand side, the action ofω has to change all level c− i components at v(x) = i−c
back to v(x) ≤ i − c.
Now if nμ′ = n

μ′−1w−1
0

< −c for some character μ′ of level i, then we can test on
1μ′−1 ,−i. The left hand side will give purely level −nμ′ − i > c − i components, supported
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at v(x) ≤ i+nμ′ by what we just showed above. On the right hand side we still have level 0

component inψ1μ′ ,−i asψ(x) at v(x) = −i hasμ′−1 component. The action of
(
1 1
0 1

)
ω

on this level 0 component will give a nonzero part at v(x) = i+n1 = i−c. This contradicts
the support of the left hand side. So nμ ≥ −c for all μ of level i.
Combine the two arguments above, we can conclude that when 1 ≤ i < c/2,

nμ = −c

for all μ of level i, and

nν = −2(c − i)

for all ν of level c − i.
Nowwe only have to consider themiddle level characters. Suppose that c is even and ν is

a character of level c/2. The expected value of nν is still −c, as suggested by the statement
of the lemma. While the argument above to prove nν ≥ −c still works, the argument

about nν ≤ −c will fail. Indeed π (ω
(
1 1
0 1

)
)11,−i has level i = c − i components. Note

that for c = 2, nν ≤ −2 is automatic, so we can assume c ≥ 4. We need a more accurate
description of each side and try to compare the support in addition to the levels.
We know nν ≥ −c for all ν of level c/2 ≥ 2. Suppose that nν′ > −c is the largest

among all characters of level c/2. (Recall that nν ≤ −2 for any ν.) Choose the test func-
tion to be 1ν′−1 ,−c/2. The action of ω will change it into a multiple of 1ν′w0 ,c/2+nν′ . Then
ψ(−x)1ν′w0 ,c/2+nν′ consists of level c/2 characters that differ from ν′w0 by smaller level
characters which are components ofψ(−x) for v(x) = c/2+nν′ > −c/2. That is, it’s a lin-
ear combination of 1ν′w0ν,c/2+nν′ for ν of level less than c/2 introduced by ψ(−x). When
changed back by another ω action, what we get is a linear combination of characters
ν′−1ν−1. They are supported on v(x) ≤ −c/2, as we have assumed nν′ is the largest.
On the right hand side,ψ(x)1ν′−1 ,−c/2 consists of all characters of level less than or equal

to c/2, except those differ from ν′−1 by a lower level characters. After the action of ω, they
will be supported on v(x) ≥ −c/2, as we already know. Multiplying with another ψ won’t
change the support. By comparing the supports on both sides, we can get nν′ν = nν′ for
all ν for left hand side introduced byψ(−x) at v(x) = c/2+nν′ . On the right hand side, we
get nμ = −c for all μ of level c/2 not differing from ν′ by lower level characters. But we
know nν′ = n

ν′−1w−1
0

> −c. To avoid contradiction, ν′−1w−1
0 has to differ from ν′ by lower

level characters. This implies ν′2 itself is of lower level. But we will show this is impossible
if p 
= 2 in the following lemma. Thus the proposition is proved. ��
Lemma A.2 Suppose that p 
= 2, and ν is a character of O∗

F of level n > 1. Then ν2 is still
level n.

Proof Let � be a local uniformizer. ν being of level n implies that there exist b ∈ O∗
F such

that ν(1 + � n−1b) 
= 1. If p 
= 2, then 2 is a unit. So

ν2(1 + � n−1b/2) = ν(1 + � n−1b + � 2n−2b2/4) = ν(1 + � n−1b) 
= 1.

This means ν2 is still level n. ��
Remark A.3 When p = 2 or/and wπ is highly ramified, nν = min{−c,−2i} is still true for
most cases, except when c is even and i = c

2 . Then we only expect nν ≥ −c. This result
however is enough for some applications, see [12].
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One can prove this result similarly as above, but one also need the observation that

c(wπ ) ≤ c/2

when wπ is highly ramified.
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