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SUP NORM ON PGLn IN DEPTH ASPECT

YUEKE HU

Abstract. In this short paper we give the sub-local upper bound for the sup norm of
an automorphic form on PGLn, whose associated automorphic representation has finite
conductor C(π) = pc with c → ∞, and its local component at the place of ramification is a
minimal vector belonging to an irreducible representation with generic induction datum.
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1. Introduction

1.1. Sup norm problem. The study of sup norm of an automorphic form restricted to
a compact domain originated from the work of [9], and has since be extended to various
aspects and groups. In this short paper we study the sup norm problem of automorphic
forms on PGLn in the depth aspect. We shall give a generalisation of our previous work
in depth aspect for GL2 in [8], which at the same time is an p − adic analogue of [10] and
[2] in the archimedean aspect, in a simple and explicit fashion. Instead of the standard
setting in which people usually choose newforms as the local component at ramified places,
we choose the so-called minimal vectors, whose special properties allow us to greatly simplify
the computations and estimates. We would like to use this result to advocate the idea that
minimal vectors are better or more natural choices than classical newforms for studying
certain algebraic and analytic problems in depth aspect.
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More specifically, let π be an automorphic representation on PGLn over any number field
with bounded archimedean parameter and finite conductor pc with ramification at a sin-
gle place v and c → ∞. Furthermore we assume that πv has generic induction datum. See
Definition 3.15 for the exact meaning for such representations. For supercuspidal representa-
tions, this implies that the associated datum β is ’minimal’ (which is not related to ’minimal’
vector) as in Definition 3.4. For parabolically induced representation, this implies that the
all supercuspidal representations σj used in the construction have generic induction datum,
are not related, and have similar normalised depth c(σj) (see Definition 3.11). These are the
p-adic analogues of the principal series representations at archimedean places whose Satake
parameters stay away from the walls of Weyl chambers. Let F ∈ π be an automorphic form
whose local components at unramified places are spherical, and at v is a minimal vector as
in Definition 3.20.

Under such assumptions, our main result is the following.

Theorem 1.1. For an automorphic form F as above and g in a fixed compact domain Ω of
PGLn(A), we have

(1.1) sup |F (g)| ≪Ω,n,p C(π)
n−1
4

− 1
8n3 ,

where C(π) = pc is the finite conductor of π.

The basic strategy is to use amplified pre-trace formula following the original paper [9],
which was also used in most subsequent papers on sup norm problem and we will directly
borrow it. In particular we borrow the amplifier from [2], which is the only reason we work
with PGLn instead of GLn, and can be easily extended to GLn with additional pages. The
main innovation of this paper lies in the idea to apply minimal vectors into this mechanism
for more general groups.

1.2. Minimal vector. This result is a direct generalisation of [8], where we used minimal
vectors for a special family of supercuspidal representations on GL2 to obtain nice upper
and lower bounds for the sup norm of automorphic forms. Such test vectors arise naturally
from compact induction theory in general, but were rarely used to study analytic number
theory problems. In a recent paper [7] we also use them to study the test vector problem for
Waldspurger’s period integral, and can effectively reprove the dichotomy and Tunnell-Saito’s
ǫ−value test along the way whenever a Lie-algebra argument can apply.

This paper shows that one can easily generalise the minimal vector of [8] to a more general
setting by making use of the compact induction theory on GLn in [5], and conveniently get a
nontrivial bound for the sup norm. Such test vector can be uniquely identified by its property
as in Corollary 3.13. The main ingredient for getting sup norm upper bound is an explicit
description of the matrix coefficient for the minimal vector, which serves two purposes.

(I) It allows explicit computations for the formal degree, which can be related to the
finite conductor and directly give a convexity bound for sup norm when using matrix
coefficient as test function for the pre-trace formula.

(II) One can also see that the support of its matrix coefficient is concentrated in a neigh-
bourhood of a torus, and we shall exploit this property to get an easy lattice point
counting for the geometric side of pre-trace formula and get a power saving.

We shall also go beyond supercuspidal representations by giving similar test vectors for
parabolic inductions, which directly generalise the test vector used in [11] and is closely
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related to the semisimple type in [6]. We shall choose the test function to be the restriction of
the matrix coefficient of such minimal vector to proper compact subgroup, while maintaining
similar properties (I) (II) as above. Whether such minimal vector is unique and whether the
test function is capturing most information (meaning that the compact subgroup we chose
is of bounded index in the support of the matrix coefficient when restricted to a maximal
compact open subgroup) are trickier questions, which we shall discuss in Remark 3.21 and
3.25. Under the assumption that π has generic induction datum, the result in this case is
consistent with the supercuspidal representation case.

We do remark that it’s also possible to obtain sub-local bound for newforms on GL2 in
depth aspect, which is an ongoing project of the author with Abhishek Saha. It however
requires more complicated discussion on the associated matrix coefficient, and doesn’t seem
easily generalisable to GLn.

1.3. Comparison. One can compare this result with the sup norm bound in [2], where they
obtained

(1.2) sup |F (g)| ≪ λ
n(n−1)

4
( 1
2
−δ).

Here λ is the Laplace eigenvalue for F . Suppose that for π∞, the Satake parameters µi for
i = 1, · · · , n stay away from the walls of Weyl chambers, and in particular are of similar size.
Then λ ≍n |µi|

2 ≍ C(π)
2
n where C(π) is the analytic conductor. Then the sup norm bound

in eigenvalue aspect can be rewritten as

(1.3) sup |F (g)| ≪ C(π)
n−1
4

−δ′ .

Thus our result is the exact analogue of [2] in the p-adic setting for generic induction datum.
Our power saving is explicit and better due to the fact that we are exploiting the special
properties of the minimal vector at ramified places.

1.4. Further possible generalisations. For the sake of simplicity and conciseness, we
prove our main result in the setting of representations of PGLn with generic induction datum.
Here we briefly discuss possible generalisations.

The strategy should also work for more general representations other than those with
generic induction datum. Minimal vectors can still be defined in a similar fashion. The main
differences are directly related to properties [I] and [II] for minimal vectors. For [I], while one
can still effectively estimate the ’formal degree’, there is no longer a simple relation between
the normalised depth and the finite conductor. One would need to formulate the result in
terms of more detailed information of the induction datum.

For [II], it is possible that the matrix coefficient of the minimal when restricted to a
maximal compact subgroup is concentrated around a non-trivial Levy subgroup, instead of
a simple torus. In that case, the lattice point counting problem would be more complicated
(while still possible regarding [10]). One can also avoid this issue by assuming that, for
example for parabolically-induced representations, there exists a constant δ > 0 such that
each normalised depth c(σj) ≥ δc(π). Similar condition for supercuspidal representations
exists, and then the associated matrix coefficient is still concentrated around a torus.

In principle the method in this paper will also work for sup norm problems on classical
groups regarding the similar construction of supercuspidal representations on them in [12].
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As explained in [8] these minimal vectors are the p− adic analogue of micro-local lifts. It
would also be interesting to see if one can easily get a similar upper bound for micro-local
lifts in the archimedean aspect.

1.5. Acknowledgement. The author would like to thank Simon Marshall, Philippe Michel,
Paul Nelson, Abhishek Saha, Will Savin and Nicolas Templier for helpful discussions. This
work is partially supported by NSF Grant No. DMS-1440140 during author’s stay at MSRI
in 2017 spring, and later on supported by SNF grant SNF-169247.

2. Preliminary notations and results

Let ⌊x⌋ denote the floor function for x ∈ R, and ⌈x⌉ denote the ceiling function.
Let Mn1×n2 the n1 × n2 matrix algebra. Mn =Mn×n.
For a p-adic field Fv, let kFv be its residue field, ̟v be a uniformiser, Ov be the ring of

integers. Kv is the maximal compact open subgroup of GLn(Fv). Let ψv be an additive
character of level 1 (instead of an unramified additive character in convention).

By abuse of notations subgroups which are compact-mod-center will also be referred to as
compact subgroups.

Definition 2.1. Let π be an irreducible representation of G, H ⊂ G is a compact open
subgroup and ρ is an irreducible representation ofH . π is said to contain ρ if HomH(ρ, π) 6= 0.

Definition 2.2. For i = 1, 2 let Hi be compact open subgroups of G and ρi be irreducible
representations of Hi. We say g ∈ G intertwines ρ1 with ρ2 if

HomH1∩H
g
2
(ρ1, ρ

g
2) 6= 0.

Here Hg
2 = g−1H2g and ρg2 is the representation of Hg

2 given by ρg2(g
−1hg) = ρ2(h). In the

case H1 = H2 = H and ρ1 = ρ2 = ρ, we simply say g intertwines ρ.

Lemma 2.3. Let π be an irreducible smooth representation of G. Let ρi be irreducible smooth
representations of Hi which are compact open subgroups of G. Then there exists g ∈ G which
intertwines ρi.

Lemma 2.4 (Mackey theory for compact induction). Let K, H be compact subgroups of G
and Λ be an irreducible smooth representation of K. Then

(2.1) c− IndG
K Λ|H =

⊕

g∈K\G/H

IndH
H∩Kg(Λg|H∩Kg)

Proof. Similar to the proof for Mackey theory for finite groups, as one can give a basis for
compact induction explicitly. �

Lemma 2.5. Let π = c − IndG
J Λ be compactly induced representation for some irreducible

representation Λ of a compact open subgroup J . If g intertwines Λ iff g ∈ J , then π is
irreducible and supercuspidal.

3. Minimal vector

This section is purely local and we shall omit sub-script v from all notations.
4



3.1. Supercuspidal representation and minimal vector. Here we follow [5] closely to
review useful results for the construction of supercuspidal representations on GLn.

Definition 3.1. For a fixed interger e = eA dividing n and m = n
e
, a principal hereditary

order A in Mn is up to a conjugation of the following shape

(3.1) A =









Mm(OF) Mm(OF) · · · Mm(OF)
̟Mm(OF) Mm(OF) · · · Mm(OF)

...
...

. . .
...

̟Mm(OF) ̟Mm(OF) · · · Mm(OF)









.

Its Jacobson radical B is then of shape

(3.2) B =









̟Mm(OF) Mm(OF) · · · Mm(OF)
̟Mm(OF) ̟Mm(OF) · · · Mm(OF)

...
...

. . .
...

̟Mm(OF) ̟Mm(OF) · · · ̟Mm(OF)









.

It has the property that

(3.3) Be = ̟A.

Denote A0 to be the hereditary order Mn(OF) with eA = 1, and B0 to be its associated
Jacobson radical ̟Mn(OF).

Thus by mutiplying with a suitable negative power of ̟ one can define Bi for i < 0. This
gives rise to a filtration of orders {Bi}i∈Z, which defines a semi-valuation vA on Mn

vA(x) = min
i
{x ∈ Bi}.

One can directly verify the following approximation result.

Corollary 3.2. Let B be in the standard form as in Definition 3.1, and B0 be as above.
Then for any i ∈ Z,

(3.4) B
⌈ i−1

eA
⌉+1

0 ⊂ Bi ⊂ B
⌊ i
eA

⌋

0 .

Definition 3.3. Let β ∈Mn with vA(β) = −j < 0 be such that L = F[β] is a field of degree
n (which is maximal possible) with the property that L∗ normalises A and its ramification
index eL/F = eA.

vA is a semi-valuation with respect to L in the sense that

(3.5) vA(lx) = vL(l)vA(x), ∀l ∈ L∗,

where vL(x) is the normalised p-adic evaluation on the local field L.
Let αβ denote the map

(3.6) αβ(x) = βx− xβ.

Define an interger

(3.7) k0(β,A) = max
i

{∃x ∈ A, x /∈ B +OL, αβ(x) ∈ Bk}.

Definition 3.4. β is called ’minimal’ over F in [5] if it satisfies

(1) vL(β) is coprime to eL/F, and
5



(2) ̟−vL(β)βeL/F +̟LOL generates the residue field extension kL/kF.

Note here vL(̟
−vL(β)βeL/F) = 0. β being minimal over F is equivalent to that

k0(β,A) = vA(β).

β being minimal is the analogue of the condition for principal series representations that
the Satake parameters stay away from the walls of Weyl chamber, where the Galois group
becomes the Weyl group.

While supercuspidal representations can be associated to general β as in Definition 3.3,
we shall focus on those associated to the minimal ones, in which case the construction is
slightly easier.

Definition 3.5. Suppose that β is minimal. Let UA(i) = 1 + Bi. Let H1 = H1(β,A) =
UL(1)UA(⌊

j
2
⌋+ 1), J1 = J1(β,A) = UL(1)UA(⌊

j+1
2
⌋), J = J(β,A) = L∗UA(⌊

j+1
2
⌋). Note that

⌊ j
2
⌋ + 1 = ⌈ j+1

2
⌉.

Note that J1 = H1 when j = −vA(β) is odd. Otherwise J1/H1 is a n2−n (which is alway
even) dimensional vector space over the residue field kF.

Definition 3.6. A simple character of H1 associated to β is defined to be any character θ
on H1 such that

(3.8) θ|UA(⌊
j
2
⌋+1)(x) = ψ ◦ TrMn(β(x− 1)).

In particular θ is trivial on UA(j + 1).

Remark 3.7. When p is sufficiently large, one can also require that

θ|UL(1)(x) = ψ ◦ TrL/F(β logp(x)).

For this definition, the simple character θ associated to β is then unique. For the purpose
of this paper, we shall just use the previous definition.

The most important property for a simple character is about its intertwiner

Lemma 3.8. g intertwines θ iff g ∈ J iff g conjugates θ (i.e., g intertwines θ and (H1)g =
H1).

The next step is to extend a simple character to be a representation of J1 in the case
J1 6= H1.

Lemma 3.9. There exists a unique irreducible representation η(θ) of J1 such that η(θ)|H1

contains θ. Moreover η(θ)|H1 is a multiple of θ and

dim(η(θ)) = (J1 : H1)1/2.

When J1 = H1 this lemma is trivial. Otherwise η(θ) is actually a Heisenberg represen-
tation constructed as follows. Let B1 be any intermediate group between H1 and J1 which
polarises J1/H1 under pairing given by (x, y) 7→ ψ ◦ TrMn(βxy), and θ̃ be any extension of
θ to B1. Then

(3.9) η(θ) = IndJ1

B1 θ̃.

The general theory of Heisenberg representation tells that η(θ) is independent of choices of

B1 and θ̃. For uniformity we denote B1 = H1 and θ̃ = θ in the case when J1 = H1.
6



Lemma 3.10. There exists a representation (usually not unique) Λ of J called simple type
such that Λ|J1 = η(θ). In particular dimΛ = dim η(θ). g intertwines Λ iff g ∈ J .

Then immediately the representation π = c− IndG
J Λ is irreducible and supercuspidal.

Definition 3.11. We call

d(π) = −vA(β)

the depth of the supercuspidal representation π (which is always an integer), and

c(π) = −vA(β)/eA

the normalised depth of π (which may not be an integer).

Definition 3.12. In general any supercuspidal representation arise in a similar way for
proper β as in Definition 3.3. To avoid confusion between the minimal element β and
minimal test vector, we shall call supercuspidal representations arising from a minimal β a
supercuspidal representation with generic induction datum.

Corollary 3.13. Let π be a supercuspidal representation with generic induction datum. Let
ϕ0 ∈ π be a vector on which B1 acts by θ̃. Then such vector exists and is unique up to a
constant.

Furthermore for any g ∈ G, π(g)ϕ0 is the unique vector on which (B1)g acts by θ̃g. We
call any of these vectors a minimal vector.

Proof. The existence follows directly from the construction (3.9) and compact induction.
The uniqueness comes from Mackey theory and Lemma 3.8. In particular one need to prove
that HomB1(c − IndG

J Λ, θ̃) is 1−dimensional. Using Mackey theory for compact induction,
we have that

HomB1(c− IndG
J Λ, θ̃) =

∑

g∈J\G/B1

HomB1(IndB1

Jg∩B1 Λg|Jg∩B1 , θ̃)(3.10)

=
∑

g∈J\G/B1

HomJg∩B1(Λg, θ̃).

Here we have used Frobenius reciprocity in the last equality. Let g ∈ J\G/B1 be such that

HomJg∩B1(Λg, θ̃) is not zero. As Λ|H1 is a multiple of θ, this in particular implies that g

intertwines θ with itself when restricting Λ and θ̃ to H1. By Lemma 3.8 we have g ∈ J ,
corresponding to a single double J −B1 coset. Taking g = 1, we see that the corresponding
space HomJg∩B1(Λg, θ̃) = HomB1(η(θ), θ̃). This is 1−dimensional by (3.9) because by Mackey
theory and Frobenius reciprocity again,

(3.11) HomB1(η(θ), θ̃) =
∑

g∈B1\J1/B1

HomB1∩(B1)g(θ̃
g, θ̃),

and g ∈ J1 intertwines θ̃ iff g ∈ B1. �

Corollary 3.14. Let Φϕ0 be the matrix coefficient associated to a minimal vector ϕ0. Then
Φϕ0 is supported on J , and

(3.12) Φϕ0(bx) = Φϕ0(xb) = θ̃(b)Φ(x)

for any b ∈ B1.
7



One can approximately view |Φϕ0 | as the characteristic function of a neighbourhood of the
torus L∗.

3.2. Parabolic induction and minimal vector. Let M =
∏

1≤i≤k

GLni
with n =

∑

ni

and let P be a parabolic subgroup of GLn containing M as the Levi subgroup. Let σi be
irreducible supercuspidal representations of GLni

and σ = ⊗σi be an irreducible supercusp-
idal representation of M . The parabolic induction theory in [1] implies that any irreducible
smooth representation of GLn can be constructed as a subquotient of parabolically-induced
representation of form IndGLn

P σ.
We shall assume the following.

Definition 3.15. Let π be a parabolically induced representation as above. We call π a
representation with generic induction datum if it satisfies the following conditions.

(1) Each σi are supercuspidal representations associate to minimal βi’s.
(2) For i 6= j, σi and σj are not equivalent up to an unramified twist. In particular by

[1], π = IndGLn
P σ is irreducible.

(3) σi’s have essentially the same normalised depth, or more precisely, let

(3.13) c = c(π) = ⌈max{c(σi)}⌉,

then c(σi) = c(π) +O(1).

These conditions again are analogues of the condition for principal series representations
that the Satake parameters stay away from the walls of Weyl chamber.

Definition 3.16. Let

(3.14) c = min
i
{⌊

1

eAi

⌊
d(σi) + 1

2
⌋⌋}.

By Definition 3.15 (3), we have

(3.15) c ≍
c(π)

2
.

By the previous section, in each σi, there is a test vector ϕi ∈ σi such that B1
i acts on it by

θ̃i. By properly translating ϕi, we further assume that each Ai are taken to be the standard
form given in Definition 3.1. Then each B1

i is a subgroup of the standard maximal subgroup
in GLni

(as vLi
≥ 0 for these elements and vAi

is consistent with vLi
).

Definition 3.17. Let Li be the torus appearing in the construction of πi, UL(1) = ⊗ULi
(1).

Define the group

(3.16) Kπ =











B1
1 ̟⌊ c+1

2
⌋Mn1×n2(OF) · · · ̟⌊ c+1

2
⌋Mn1×nk

(OF)

̟⌈ c+1
2

⌉Mn2×n1(OF) B1
2 · · · ̟⌊ c+1

2
⌋OF

...
...

. . .
...

̟⌈ c+1
2

⌉Mnk×n1(OF) ̟⌈ c+1
2

⌉Mnk×n2(OF) · · · B1
k











,

Corollary 3.18. Kπ is contained in UL(1)(1 +̟cMn(OF)).

Proof. By definition and Corollary 3.2. �
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Define a character Θ = ⊗θ̃i on Kπ by

(3.17) Θ(









b1 m12 · · · m1k

m21 b2 · · · m2k
...

...
. . .

...
mk1 mk2 · · · bk









) =
∏

i

θ̃i(bi).

This character is well defined as
(3.18)








b1 m12 · · · m1k

m21 b2 · · · m2k
...

...
. . .

...
mk1 mk2 · · · bk

















b′1 m′
12 · · · m′

1k

m′
21 b′2 · · · m′

2k
...

...
. . .

...
m′

k1 m′
k2 · · · b′k









≡









b1b
′
1 0 · · · 0

0 b2b
′
2 · · · 0

...
...

. . .
...

0 0 · · · bkb
′
k









mod ̟c+1,

and by definition of c(π), each θ̃i will be trivial on 1 + B
d(σi)+1
i ⊃ 1 + ̟c(π)+1Mni×ni

(OF)
using Corollary 3.2.

Corollary 3.19. Let π be a parabolically induced representation with generic induction da-
tum. There exists an element ϕ0 ∈ π such that Kπ acts on ϕ0 by Θ.

Proof. Let ϕ0 ∈ IndGLn
P σ be such that ϕ0 is supported on BKπ and defined as

(3.19) ϕ0(bk) = σ(b)Θ(k)
⊗

i

ϕi,

where B1
i acts on ϕi by θ̃i. This element is well-defined following the definition of Θ and

how σi acts on ϕi. �

Definition 3.20. For any ϕ0 as above and any g ∈ G, we call π(g)ϕ0 a minimal vector in π.

For uniformity, we denote Kπ = B1 and Θ = θ̃ if π is already a supercuspidal representa-
tion.

Remark 3.21. One can similarly asks for the uniqueness for the minimal vectors with fixed
embedding of Kπ. One can imitate the proof in the supercuspidal case. However the Mackey
theory for parabolic induction is not known in general, and one need to apply [1][Theorem
5.2]. That theorem requires a decomposability condition, which is not true for a general
pair of parabolic subgroup and compact subgroup. One can restrict the property of minimal
vector to a normal compact subgroup for which the decomposability holds, then one can
show that the dimension of minimal vectors with fixed embedding of Kπ can be bounded
only in terms of p and n.

3.3. Test function, formal degree, and finite conductor.

Lemma 3.22. Let C(π) be the finite conductor of an irreducible smooth representation π
with generic induction datum. Let c(π) be as in Definition 3.11 or (3.13). Then

(3.20) C(π) ≍n,p p
nc(π).

Proof. By [4], the conductor of a supercuspidal representation σ is

(3.21) C(σ) ≍ pnd(π)/e ≍ pnc(π).
9



When π is a parabolically-induced representation with generic induction datum, we have

(3.22) C(π) =
k
∏

j=1

C(σi) ≍ pnic(σi) ≍ pnc(π).

�

Definition 3.23. Let dπ = Vol(Kπ). Define the local test function

(3.23) ω(g) =

{

Θ(g), if g ∈ Kπ,

0, otherwise.

Let ω∗(g) = ω(g−1).

Lemma 3.24 (’formal degree’ of test function). Let π be an irreducible smooth representation
of GLn and ϕ0 ∈ π be a minimal vector. Then

(3.24) dπ ≍ p−
c(n2

−n)
2 ≍ C(π)−

n−1
2 ,

and

(3.25) π(ω)ϕ0 = dπ̟, ω ∗ ω∗ = dπω.

Proof. When π is supercuspidal associated to minimal element β, we have

(3.26) Vol(Kπ) = Vol(B1) ≍ p−
c(n2

−n)
2 .

In general, by construction in (3.16) for generic induction datum we also have

(3.27) Vol(Kπ) ≍ p−
c(n2

−n)
2 .

By Lemma 3.22, C(π) ≍ pnc, thus

(3.28) Vol(Kπ) ≍ C(π)−
n−1
2 .

The rest are easy to check as ω is a character on a subgroup. �

Remark 3.25. A nature question to ask is whether the test function ω is capturing the
most information of a matrix coefficient (of any test vector). In the case of supercuspidal
representations, the answer is yes as the constant dπ is asymptotically the formal degree.

For parabolically induced representations the formal degree is not well-defined as the ma-
trix coefficients are not square-integrable. While one can make dπ arbitrarily large by taking
ω to be the restriction of the matrix coefficient to more double K−cosets, the geometric side
of pre-trace formula is also becoming larger. So the common sense is to take ω to be the
restriction to a maximal compact open subgroup. Then the questions are what is the maxi-
mal L2 norm of a matrix coefficient when restricted to a maximal compact open subgroup K
(or equivalently, the minimal dimension of a K−representation occurring in π), and whether
one’s choice of ω is essentially such a matrix coefficient. To author’s knowledge, the first
question is still open for general GLn. But for ϕ0, our choice of ω is indeed essentially the
matrix coefficient of ϕ0 restricted to K. This is because the support of matrix coefficient for
ϕ0 is controlled by the intertwining of semisimple types, which in turn is known in [6].

Lemma 3.26 (Concentration around torus). For any x ∈ G with ω(x) 6= 0, there exists
l ∈ UL(1) such that xl−1 ∈ 1 +̟cMn(OF).
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Proof. It follows directly from the definition of ω and Corollary 3.18. Note that l ∈ UL(1) ⊂
K normalises 1 +̟cMn(OF). �

4. Proof of the main result

4.1. Amplified pre-trace inequality. The strategy to obtain a sub-local bound for the
sup norm of the automorphic forms on a group G is already somewhat sophisticated. As
the focus of this paper is to highlight the choice of the local test vector for the sup norm
problem, we shall not seek to improve this strategy, and shall directly take the results on
amplifiers from, for example, [2] and [3].

Recall that L0 is sufficiently large parameter to be determined, basically the length of
amplification. P is the set of primes in [L0, 2L0] which are coprime to N and to be used for
amplifier. g ∈ PGLn(A) is in a fixed compact domain, in particular we can assume g =

∏

v gv
where gv is in a fixed domain of PGLn(Fv) when v is archimedean, and gv ∈ Kv when v is
finite. Let ω =

∏

ωv ∈ Cc(GLn(A)) be the test function for the pre-trace formula, where ωv

is

(1) fixed test function which is rapidly decaying outside a compact domain when v = ∞;
(2) Hecke operator as given in [3] when v ∈ P;
(3) At p as given in (3.23);
(4) charKv otherwise.

Let F be an automorphic form on PGLn whose local component at p is a minimal vector
and spherical at all other places.

Then as in [10] we have the following amplified pre-trace inequality using Lemma 3.24.

|π(ω)F (g)|2 ≍ d2π|P|2|F (g)|2 ≤
∑

γ∈Mn(F)

(ω ∗ ω∗)(g−1γg)

(4.1)

≪ dπ(|P|+
n

∑

i=1

∑

q1,q2∈P

1

L
(n−1)i
0

∑

γ∈S(qi1q
(n−1)i
2 )

|ω∞ωp(g
−1γg)|).(4.2)

In the last inequality we have used [2], and

(4.3) S(m) = {γ ∈ GLn(Z)| det γ = m}.

Note that ω∞ is rapidly decaying outside a compact domain and g∞ is also in a fixed compact
domain. Using the Cartan decomposition for GLn(R) = ZKAK, where K = SO(n) and A is
the diagonal torus with det = 1, we can assume that γ contributing to (4.1) has the property
that when we write γ = zk1ak2, a ∈ A0 for some fixed compact domain A0 of A. Define
for a = diag(a1, a2, · · · , an) ∈ A, |a| = max{|ai|}. Then |A0| := max{|a|, a ∈ A0} is finite
and fixed. Also by Lemma 3.26, ωp is p−adically concentrated on some torus UL(1) ⊂ Kp,
and after conjugation by gp ∈ Kp, γp should still be p−adically close to some general torus
T ⊂ Kp. Note that we shall not use any information on the exact embedding of T , but
purely the fact T is a torus. Then those γ’s contributing to (4.1) should lie in the following
set.

(4.4) S(m, T, c) = {γ ∈ GLn(Z)| det γ = m, γ∞ ∈ ZKA0K, γp ≡ t ∈ T mod pc}.
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Then

(4.5) dπ|P|2|F (g)|2 ≪ |P|+
n

∑

i=1

∑

q1,q2∈P

1

L
(n−1)i
0

|S(qi1q
(n−1)i
2 , T, c)|

Remark 4.1. In [2] there are finer conditions for γ ∈ S(m) concerning its 1-st and 2-nd
determinantal divisor. But we don’t need these additional conditions for our purpose.

4.2. Estimate for Hecke return. We shall give a bound for |S(m, T, c)| in this subsection
by utilising the fact γ ∈ S(m, T, c) is p−adically close to some torus T .

Lemma 4.2. When pc ≫ nm2|A0|
4, S(m, T, c) is abelian.

Proof. For any γ1, γ2 ∈ S(m, T, c), let β = [γ1, γ2] = γ−1
1 γ−1

2 γ1γ2. Then

(4.6) det(β) = 1

(4.7) β ∈ GLn(Z[
1

m2
])

(4.8) β∞ ∈ ZKA4
0K

(4.9) βp ≡ 1 mod pc.

Here A4
0 is the smallest compact region containing a4 for all a ∈ A0 (can probably be made

more precise). So by definition |A4
0| = |A0|

4.
We shall show that β = 1 for pc large enough. From (4.7) and (4.9), we can write

(4.10) β =











1 + pc

m2u1,1
pc

m2u1,2 · · · pc

m2u1,n
pc

m2u2,1 1 + pc

m2u2,2 · · · pc

m2u2,n
...

...
. . .

...
pc

m2un,1
pc

m2un,2 · · · 1 + pc

m2un,n











where ui,j ∈ Z. Note that det β = 1. So when we do Cartan decomposition for β, we can
take z = 1. On the other hand, every matrix in KA4

0K has entries bounded by n|A0|
4. Thus

when pc

m2 ≫ n|A0|
4, we must have ui,j = 0 for β and β = 1. �

By the previous lemma we get that S(m, T, c) = S(m, T, c) ∩ T for some global etale
algebra T (possibly different from T ). T is of degree at most n, as it’s abelian and thus
diagonalisable over algebraically closed field, while the diagonal torus of GLn is at most n
dimensional.

When localised at l, Tl =
k
⊗

i=1

T i
l where T i

l is a field extension over Fl of degree ni and

k
∑

i=1

ni ≤ n. In particular k ≤ n. Then for e ∈ T∗
l , e = ⊗ei for ei ∈ T i

l ,

(4.11) det e =
∏

NmT i
l /Fl

(ei).

To see this one can assume that after proper conjugation, Tl can be embedded into GLn in
such a way that T i

l →֒ GLni
and ⊗GLni

is embedded into GLn blockwise diagonally. From
this, one can see that

(4.12) det e =
∏

det ei =
∏

NmT i
l /Fl

(ei).
12



Suppose now that

m =
∏

j

l
aj
j

over a finite subset of primes {lj} ⊂ P, Tlj =
kj
⊗

i=1

T i
lj
. For each field T i

lj
, let Qi

lj
be the set of

ideals in T i
lj
.

Definition 4.3. Let τ be the following map.

τ : S(m, T, c) ∩ T → ⊗j ⊗i Q
i
lj

(4.13)

γ 7→ ⊗i(γ
i
lj
),

where γlj = ⊗γilj for γilj ∈ T i
lj

and (γilj) is the principal ideal in T i
lj

generated by γilj .

Lemma 4.4. The fiber of τ is finite and absolutely bounded in terms of n and |A0|.

Proof. Let γ1, γ2 ∈ S(m, T, c) ∩ T with τ(γ1) = τ(γ2). Then for β ′ = γ−1
1 γ2, we have

(4.14) det(β ′) = 1,

(4.15) β ′
∞ ∈ ZKA2

0K,

(4.16) β ′ ∈ GLn(Ov)

for any finite place v 6= lj . At lj , we have that

(4.17) β ′
l = ⊗iβ

′i
lj

for β
′i
lj
∈ O∗

T i
lj

as τ(γ1) = τ(γ2). Let f(x) be the characteristic polynomial of β ′. From (4.16) and (4.17),
all the coefficients of f(x) has to be integral as the localisation of β ′ is either integral in
GLn(Fv) or in ⊗iT

i
lj
. (4.14) and (4.15) implies that all the coefficients of f(x) are bounded

by a polynomial of |A0| in terms of n. The possible solutions inside an etale algebra to all
such characteristic polynomials can be absolutely bounded in terms of n and |A0|. �

Remark 4.5. One can try to bound the fiber more effectively, which might be useful for a
hybrid bound.

Lemma 4.6.

#Image(τ) ≤
∏

j

P (aj, n), and accordingly |S(m, T, c)| ≪n,|A0|

∏

j

P (aj, n).

Here P (a, n) = Cn−1
n+a−1 is the number of partitions of aj into n non-negative ordered integers.

In particular if ♯j ≪n 1, aj ≪n 1, then |S(m, T, c)| ≪n,|A0| 1.

Proof. First of all by det(γ) = m =
∏

j l
aj
j and det(γlj) =

∏

Nm(γilj), we have that
∏

Nm((γl,i)) = l
aj
j . As the ring of integers OT i

lj
is a discrete valuation ring, it’s automatically

a PID, so any ideal in Qi
lj

is of form (̟n
T i
lj

u) = (̟n
T i
lj

) where ̟T i
lj

is a local uniformizer and

u is any unit in the local field. Its norm only depends on n, so there is at most one ideal in
Qi

lj
with given norm. Each such norm is a power of lj .
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Thus the local components of elements in Image(τ) at lj are in injection to ways of writing
l
aj
j as product of norms of ideals from T i

lj
. Thus

(4.18) #Image(τ) ≤
∏

j

P (aj, kj) ≤
∏

j

P (aj, n).

When ♯j ≪n 1, aj ≪n 1, P (aj, n) = Cn−1
n+aj−1 ≪n 1 and

|S(m, T, c)| ≪n,|A0|

∏

j

P (aj, n) ≪n 1.

�

4.3. proof of the main result. To apply Lemma 4.2, we pick L0 such that

(4.19) L2n2

0 ≍A0,n p
c, i.e., L0 ≍A0,n p

c

2n2

Then by Lemma 4.4, 4.6, (4.5) now reads

dπ|P|2|F (g)|2 ≪ |P|+
n

∑

i=1

∑

q1,q2∈P

1

L
(n−1)i
0

|S(qi1q
(n−1)i
2 , T, c)|(4.20)

≪|A0|,n |P|+
n

∑

i=1

∑

q1,q2∈P

1

L
(n−1)i
0

≪|A0|,n L0.

Then by Lemma 3.22, 3.24 and (3.15)

(4.21) |F (g)| ≪|A0|,n
1

(dπL0)1/2
≍|A0|,n,p p

c(n2
−n)
4

− c

4n2 ≍ C(π)
n−1
4

− 1
8n3 .
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