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AN EXPLICIT GROSS–ZAGIER FORMULA RELATED

TO THE SYLVESTER CONJECTURE

YUEKE HU, JIE SHU, AND HONGBO YIN

Abstract. Let p ≡ 4, 7 mod 9 be a rational prime number such that 3 mod p
is not a cube. In this paper, we prove the 3-part of |III(Ep)| · |III(E3p2 )| is as

predicted by the Birch and Swinnerton-Dyer conjecture, where Ep : x3+y3 = p
and E3p2 : x3 + y3 = 3p2 are the elliptic curves related to the Sylvester

conjecture and cube sum problems.

1. Introduction

In this paper, we are concerned about the explicit Gross–Zagier formula and
the full Birch and Swinnerton-Dyer (BSD) conjecture for the elliptic curves which
are related to the Sylvester conjecture. The motivation comes from the cube sum
problem. A nonzero rational number is called a cube sum if it is of the form a3+ b3

with a, b ∈ Q×. For any n ∈ Q×, let En be the elliptic curve over Q defined by the
projective equation x3 + y3 = nz3 with the distinguished point (1 : −1 : 0). If n is
not a cube or twice a cube of nonzero rationals, then n is a cube sum if and only
if En(Q) has a point of infinite order. A famous conjecture concerning the cube
sums, attributed to Sylvester, is the following.

Conjecture 1.1 (Sylvester [Syl79] and Selmer [Sel51]). Any prime number p ≡
4, 7, 8 mod 9 is a cube sum.

For a good summary of this conjecture, please refer to [DV09, DV18]. For an
odd prime p ≥ 5, a 3-descent [Sat86,DV09] gives

rankZEp(Q) ≤

⎧⎪⎨⎪⎩
0, p ≡ 2, 5 mod 9,

1, p ≡ 4, 7, 8 mod 9,

2, p ≡ 1 mod 9.

Let ε(Ep) be the sign in the functional equation of the Hasse–Weil L-function
L(s, Ep). From [Liv95], we know that

ε(Ep) =

{
−1, p ≡ 4, 7, 8 mod 9,

+1, otherwise.

Then the BSD conjecture implies the Sylvester conjecture. In 1994, Elkies an-
nounced a proof of Conjecture 1.1 for all primes p ≡ 4, 7 mod 9, but without any
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detailed publication. However, Dasgupta and Voight [DV18] proved the following
weaker theorem using a method substantially different than that of Elkies.

Theorem 1.2. Let p ≡ 4, 7 mod 9 be a rational prime number such that 3 mod p
is not a cubic residue. Then p and p2 are cube sums.

Dasgupta and Voight proved the above theorem by establishing the nontriviality
of certain related Heegner points. By the work of Gross and Zagier [GZ86] and
Kolyvagin [Kol90], the nontriviality of Heegner points implies that the rank part of
the BSD conjecture for Ep is true.

If � � 6p is a prime, then Ep has good reduction at �. Then Perrin-Riou [PR87]
and Kobayashi [Kob13] proved that the �-part full BSD conjecture holds for Ep.
Since Ep has potential good ordinary reduction at p, the p-part full BSD conjecture
of Ep is also true by the work of Li, Liu, and Tian [LLT16]. To summarize, the
following theorem is known.

Theorem 1.3. Let p ≡ 4, 7 mod 9 be a rational prime number such that 3 mod p
is not a cubic residue. Then

1. ords=1L(s, Ep) = rankZEp(Q) = 1; and
2. the Tate–Shafarevich group X(Ep) is finite, and for any prime � � 6, the

�-part of |X(Ep)| is as predicted by the BSD conjecture for Ep.

But for the primes � = 2, 3, there are no results known for the �-part full BSD
conjecture of Ep. In this paper, we adopt a similar method as in [CST17] to ap-
proach the 3-part full BSD conjecture of Ep and E3p2 by comparing to an explicit
Gross–Zagier formula.

Let X(Ep) denote the Shafarevich–Tate group of Ep, let Ep(Q)tor denote the

torsion subgroup of Ep(Q), let Ωp denote the minimal real period of Ep, let ĥ(·)
denote the Néron–Tate height of Ep over Q, and let c� denote the Tamagawa number
of Ep at a prime �. From [DV18], we know that Ep(Q) (resp., E3p2(Q)) has rank 1
(resp., 0). Let P be a generator of the free part of Ep(Q). Then the BSD conjecture
predicts that

|X(Ep)| =
L′(1, Ep)

Ωp · ĥQ(P )
· |Ep(Q)tor|2∏

� c�(Ep)
,

where � runs through all prime numbers. Similarly, for E3p2(Q), the BSD conjecture
predicts that ∣∣X(E3p2)

∣∣ = L(1, E3p2)

Ω3p2

· |E3p2(Q)tor|2∏
� c�(E3p2)

.

Combining these two formulae, we shall expect that

(1.1) |X(Ep)| · |X(E3p2)| = L′(1, Ep)

Ωp · ĥQ(P )
· L(1, E3p2)

Ω3p2

· |Ep(Q)tor|2∏
� c�(Ep)

· |E3p2(Q)tor|2∏
� c�(E3p2)

.

Our main result is the following.

Theorem 1.4. Let p ≡ 4, 7 mod 9 be a rational prime number such that 3 mod p
is not a cubic residue. Then both sides of (1.1) are nonzero rational numbers and
the exponents of 3 in both sides of (1.1) are equal, as expected.

In the following, we sketch the proof of Theorem 1.4. Let H = {z ∈ C : Im(z) >
0} be the Poincaré upper half plane, and SL2(Z) acts on H by fractional linear
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AN EXPLICIT GROSS–ZAGIER FORMULA 6907

transformations. Let Γ0(3
5) ⊂ SL2(Z) be the congruence subgroup of level 35

which consists of matrices(
a b
c d

)
with c ≡ 0 mod 35.

Then Y0(3
5) = Γ0(3

5)\H is an affine smooth curve over Q, and let X0(3
5) be its

projective closure.
Fix K = Q(

√
−3) ⊂ C, with OK = Z[ω] being its ring of integers, where ω =

−1+
√
−3

2 . We carefully embed K into M2(Q) as follows. Once such an embedding
is given, the group K× of invertible elements acts on H through fractional linear
transformations, and there is a unique point in H which is invariant under the
action of K×. There are exactly two embeddings ρ : K ↪→ M2(Q) with fixed point
τ = (2pω − 9)/(9pω − 36) ∈ H, and we choose the normalized one, i.e., we have

ρ(t)

(
τ
1

)
= t

(
τ
1

)
for any t ∈ K.

For any n ∈ Q×, the elliptic curve En has the Weierstrass equation

y2 = x3 − 432n2

and has complex multiplication by OK over K. We fix the complex multiplication
[ ] : OK 	 End

Q
(En) by [ω](x, y) = (ωx, y). The image of τ ∈ H defines a complex

multiplication (CM) point on X0(3
5). Let f : X0(3

5) → E9 be the the natural
modular parametrization. The Heegner point f(τ ) is defined over the ring class
field H9p over K of conductor 9p.

Let p ≡ 4, 7 mod 9 be a prime. Let χ : Gal(K/K) → O×
K be the character given

by χ(σ) = ( 3
√
3p)σ−1. Define the Heegner cycle

Pχ(f) =
∑

σ∈Gal(H9p/K)

f(τ )σ ⊗ χ(σ) ∈ E9(H9p)⊗Q K.

The base change L-function L(s, E9, χ) has sign −1 and has a decomposition

L(s, E9, χ) = L(s, Ep) · L(s, E3p2).

By the work [DV18], we know that L(s, Ep) has a 0 of order 1 at s = 1 and
L(1, E3p2) �= 0. The morphism f is a test vector for the pair (E9, χ), i.e., there is
a nontrivial relation between the central value of the derivative of the L-function
L(s, E9, χ) and the height of the Heegner cycle Pχ(f). More precisely, we have the
following result (see Theorem 4.3).

Theorem 1.5. For primes p ≡ 4, 7 mod 9, we have the following explicit height
formula of Heegner cycles:

L′(1, Ep)L(1, E3p2)

ΩpΩ3p2

= 2α ·
〈
Pχ(f), Pχ−1(f)

〉
K,K

,

where α = 0 if p ≡ 4 mod 9 and α = −1 if p ≡ 7 mod 9, and where 〈·, ·〉K,K

denotes the K-linear Néron–Tate height pairing of E9 over K.

For the definition of 〈·, ·〉K,K , see, for example, [CST14, page 2531]. We remark
that we do not need the hypothesis that 3 is not a cube modulo p in the above
theorem.
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The proof of this theorem requires an ingredient on the local Waldspurger’s
period integral at 3-adic place, that is,

(1.2)
β0
3(f

′
3, f

′
3)

β0
3(f3, f3)

= 2α+2.

Here f3 is a local newform, f ′
3 is an eigenvector for the character χ, and β0

3 is the
normalized local Waldspurger period integral, as in (4.2). The computation and
proof for this formula will, however, be skipped for conciseness and simplicity in
this paper and are intended for a separate publication, as they are treated in more
general situations and have independent interest. Interested readers can see the
complete preprint version [HSY17] of this paper for details.

Comparing this explicit Gross–Zagier fomula with the product formula (1.1)
of full BSD conjectures for Ep and E3p2 , Theorem 1.4 follows from the

√
−3-

nondivisibility of Heegner points.
This paper is organized as follows. In Section 2, we give the construction of the

Heegner points and study the Galois actions on the Heegner points via modular
actions. In Section 3, we briefly recall the nontriviality of the Heegner points
from [DV18] and study the 3-nondivisibility of the Heegner points. In Section 4, we
establish the explicit Gross–Zagier formula for the Heegner points (Theorem 1.5).
In Section 5, we prove Theorem 1.4 by comparing the explicit Gross–Zagier formula
and the full BSD conjecture.

2. Modular actions on Heegner points

2.1. The modular curves and modular actions. Let X be an algebraic curve
defined over Q, and let F be a field extension of Q. Denote by AutF (X) the group
of algebraic automorphisms of X which are defined over F . Let

H = {z ∈ C| Im(z) > 0}
be the Poincaré upper half plane. The group GL2(Q)+ acts onH by linear fractional
transformations.

Let U0(3
5) be the open compact subgroup of GL2(Ẑ) consisting of matrices ( a b

c d )
such that c ≡ 0 mod 35, and let Γ0(3

5) = GL2(Q)+ ∩ U0(3
5). Let X0(3

5) be the
modular curve over Q of level Γ0(3

5) whose underlying Riemann surface is

X0(3
5)(C) = GL2(Q)+\

(
H � P1(Q)

)
×GL2(Af )/U0(3

5)

	
(
Γ0(3

5)\H
)
�
(
Γ0(3

5)\P1(Q)
)
,

where Af denote the finite adèle of Q. Define N to be the normalizer of Γ0(3
5) in

GL+
2 (Q). It follows from [KM88, Theorem 1] that the linear fractional transforma-

tion action of N on X0(3
5) induces an isomorphism

N/Q×Γ0(3
5) 	 AutQ(X0(3

5)).

Moreover, all of the algebraic automorphisms in AutQ(X0(3
5)) are defined over K.

We identify AutQ(X0(3
5)) with N/Q×Γ0(3

5) by this isomorphism. By [AL70, The-

orem 8], [Ogg80], the quotient group N/Q×Γ0(3
5) 	 S3 �Z/3Z, where S3 denotes

the symmetric group with three letters which is generated by the Atkin–Lehner

operator W = ( 0 1
−35 0 ) and the matrix A = ( 28 1/3

34 1
), and the subgroup Z/3Z is

generated by the matrix B = ( 1 0
34 1

).
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AN EXPLICIT GROSS–ZAGIER FORMULA 6909

Put

U = 〈U0(3
5),W,A〉 ⊂ GL2(Af ).

Then Q×\Q×U is an open compact subgroup of Q×\GL2(Af ). Put

Γ = GL2(Q)+ ∩ U = 〈Γ0(3
5),W,A〉,

and let XΓ be the modular curve over Q of level Γ whose underlying Riemann
surface is

XΓ(C) = GL2(Q)+\
(
H � P1(Q)

)
×GL2(Af )/U 	 (Γ\H) � (Γ\P1(Q)).

Then XΓ is a smooth projective curve over Q of genus 1, and XΓ has three cusps

Γ\P1(Q) = {[∞], [1/9], [2/9]}.

The cusp [∞] is rational over Q, and the cusps [1/9] and [2/9] are both defined over
K. We identify XΓ with an elliptic curve over Q with [∞] as its zero element. Let
NΓ be the normalizer of Γ in GL2(Q)+. Then we have a natural embedding

Φ : NΓ/Q
×Γ ↪→ AutQ(XΓ) 	 O×

K �XΓ(Q),

where O×
K embeds into AutQ(XΓ) by CMs and XΓ(Q) embeds into AutQ(XΓ) by

translations. The matrices

B =

(
1 0
34 1

)
, C =

(
1 1/9

−33 −2

)
lie in NΓ, and hence induce automorphisms of XΓ.

The elliptic curves En are all endowed with CM by K, and we fix the CM
[·] : OK 	 EndK(En) by [−ω](x, y) = (ωx,−y). We will always take the simple
Weierstrass equation y2 = x3−24·3 for the elliptic curve E9, unless stated otherwise.

Proposition 2.1.

1. The elliptic curve (XΓ, [∞]) is isomorphic to E9 over Q.
2. We have an embedding

Φ : NΓ/Q
×Γ ↪→ O×

K � (Γ\P1(Q)) ⊂ AutQ(XΓ).

Moreover, for any point P ∈ XΓ, we have

Φ(B)(P ) = [ω2]P, Φ(C)(P ) = [ω2]P + [1/9].

In particular, the automorphisms Φ(B) and Φ(C) are defined over K.

Note that there exists a unique isomorphism XΓ → E9 over Q such that the cusp
[1/9] has coordinates (0, 4

√
−3). We use this isomorphism to identify XΓ with E9.

Proof. It is known from [DV18] that E9 is the natural quotient of X0(3
5) by the

finite group S3. Since the automorphism group of the elliptic curve E9 is isomorphic
to O×

K , we have

AutQ(XΓ) 	 O×
K �XΓ(Q).

Then for any M ∈ NΓ and P ∈ XΓ, Φ(M)(P ) = [α]P + S for some α ∈ O×
K , S ∈

XΓ(Q). Taking P = [∞], we see S = Φ(M)([∞]) ∈ Γ\P1(Q). The formulae for
Φ(B) and Φ(C) are taken from [DV18], which can also be verified numerically using
SageMath. �
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Let V ⊂ U0(3
5) be the subgroup consisting of matrices ( a b

c d ) with a ≡ d mod 3,
and put U0 = 〈V,W,A〉. Let X0

Γ be the modular curve over Q whose underlying
Riemann surface is

X0
Γ(C) = GL2(Q)+\

(
H � P1(Q)

)
×GL2(Af )/U0.

By class field theory, Q×
+Ẑ

×/Q×
+ det(U0) 	 Gal(K/Q). Noting that GL2(Q)+∩U0 =

Γ, we see that the modular curve X0
Γ is isomorphic to XΓ ×Q K as a curve over Q

(see [Shi94, Chapter 6]). Usually, we denote by [z, g]U0
the point on X0

Γ which is
represented by the pair (z, g), where z ∈ H and g ∈ GL2(Af ). The curve X0

Γ is not
geometrically connected and has two connected components over C. Put

U/U0 = 〈ε〉, ε =

(
1 0
0 −1

)
.

The nontrivial Galois action of Gal(K/Q) on X0
Γ is given by the right translation

of ε on X0
Γ. We have

AutQ(X
0
Γ) = AutK(XΓ)�Gal(K/Q) 	 (XΓ(K)�O×

K)�Gal(K/Q).

Let NGL2(Af )(U0) be the normalizer of U0 in GL2(Af ). Then there is a natural
homomorphism

NGL2(Af )(U0)/U0 −→ AutQ(X
0
Γ)

induced by right translation on X0
Γ: for P = [z, g]U0

∈ X0
Γ and x ∈ NGL2(Af )(U0),

P �→ P x = [z, gx]U0
.

An element g ∈ NGL2(Af )(U0) maps one component of X0
Γ onto the other if and

only if it has image −1 under the composition of the following morphisms:

GL2(Af ) = GL2(Q)+GL2(Ẑ)
det �� Q×

+Ẑ
× �� Z×

3 /(1 + 3Z3),

where Ẑ =
∏

� Z� and the last morphism is trivial on Q×
+, and, on Ẑ×, it is the

projection from Ẑ× to its 3-adic factor composed with mod 3.

2.2. The modular actions on Heegner points. Let p ≡ 4, 7 mod 9 be a rational
prime number. Let ρ : K → M2(Q) be the normalized embedding with fixed point
τ = (2pω − 9)/(9pω − 36) ∈ H; i.e., we have

ρ(t)

(
τ
1

)
= t

(
τ
1

)
for any t ∈ K.

Here it is matrix multiplication on the left-hand side and scalar multiplication on
the right-hand side. Note that

τ = Mω, M =

(
2 −1
9 −4

)(p
9 0
0 1

)
.

Then the embedding ρ : K → M2(Q) is explicitly given by

ρ(ω) = M

(
−1 −1
1 0

)
M−1 =

(
2p+ 8 + 36/p −4p/9− 2− 9/p
9p+ 36 + 144/p −2p− 9− 36/p

)
.

Let R0(3
5) be the standard Eichler order of discriminant 35 in M2(Q). For any

integer c ≥ 1, let Oc be the order of K of conductor c, and let Hc be the ring class
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field of conductor c. Then K ∩ R0(3
5) = O9p. Let OK,3 be the completion of OK

at the unique place above 3. We have

O×
K,3/Z

×
3 (1 + 9OK,3) = 〈ω3〉 × 〈1 + 3ω3〉 ∼= Z/3Z× Z/3Z,

where ω3 is the image of ω into O×
K,3. Considered as elements in GL2(Af ) with

other components 1, it is straightforward to verify that ω3 and 1 + 3ω3 normalize
U0, and hence we have an embedding

O×
K,3/Z

×
3 (1 + 9OK,3) ↪→ AutQ(X

0
Γ).

If p ≡ 7 mod 9, it is straightforward to verify that the element

w = M

(
1 1
0 −1

)
M−1 =

(
−2p− 17 4p/9 + 4
−9p− 72 2p+ 17

)
is a nontrivial normalizer of K× in GL2(Q) and wε normalizes U0, and hence wε
also induces an automorphism of X0

Γ.

Theorem 2.2.

1. For any point P ∈ X0
Γ, we have

P 1+3ω3 = [ω2]P,

and

Pω3 =

{
[ω2]P + (0, 4

√
−3), p ≡ 4 mod 9,

[ω]P + (0, 4
√
−3), p ≡ 7 mod 9.

2. Suppose that p ≡ 7 mod 9. For any point P ∈ X0
Γ, we have

Pwε = [ω
p−7
9 ]P − (0, 4

√
−3).

Proof. Since ω3, 1 + 3ω3, and wε all have determinant ≡ 1 mod 3, when identified
as elements in AutQ(X

0
Γ), they actually lie in the subgroup AutK(XΓ). Let P =

[z, 1]U0
for z ∈ H be a point on X0

Γ. We have

B(1 + 3ω3)A
2 =

((
60p+ 837/p+ 214 2p/3 + 9/p+ 7/3

5130p+ 71145/p+ 18252 57p+ 765/p+ 199

)
3

, BA2

)
∈ V,

where the subscript “3” denotes the 3-adic component of the adelic matrices. Then

P 1+3ω3 = [z, 1 + 3ω3]U0
= [B(z), B(1 + 3ω3)]U0

= [B(z), 1]U0
= Φ(B)P = [ω2]P.

If p ≡ 4 mod 9, then

Cω3A
2 =

((
867p+ 11635/p+ 2685 31p/3 + 416/3p+ 32

−20808p− 281925/p− 64440 −248p− 3360/p− 768

)
3

, CA2

)
∈ V,

and hence

Pω3 = Φ(C)(P ) = [ω2]P + (0, 4
√
−3).

If p ≡ 7 mod 9, then

BCω3A
2=

((
867p+ 11635/p+ 2685 31p/3 + 416/3p+ 32

49419p+ 660510/p+ 153045 589p+ 7872/p+ 1824

)
3

, BCA2

)
∈V,

and hence

Pω3 = Φ(BC)(P ) = [ω]P + (0, 4
√
−3).
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Suppose that p ≡ 7 mod 9. It can verified that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
BC2wεA2 ∈ V,

p− 7

9
≡ 0 mod 3,

C2wεA2 ∈ V,
p− 7

9
≡ 1 mod 3,

B2C2wεA2 ∈ V,
p− 7

9
≡ 2 mod 3.

Hence, the second assertion follows. �

Let σ : K̂× → Gal(Kab/K) be the Artin reciprocity law, and denote by σt the

image of t ∈ K̂×. Let P0 = [τ, 1] be the CM point on X0
Γ.

Theorem 2.3.

1. The point P0 ∈ X0
Γ(H9p) satisfies

P
σ1+3ω3
0 = [ω2]P0

and

P
σω3
0 =

{
[ω2]P0 + (0, 4

√
−3), p ≡ 4 mod 9,

[ω]P0 + (0, 4
√
−3), p ≡ 7 mod 9.

2. Suppose that p ≡ 7 mod 9. We have

P0 = [ω
p−7
9 ]P0 − (0, 4

√
−3).

Proof. By Shimura’s reciprocity law [Shi94, Theorems 6.31 and 6.38], we have

P σt
0 = P t

0 = [τ, t], t ∈ K̂×.

Since K̂× ∩U0 = Ô9p

×
, we see that P0 is defined over the ring class field H9p, and

the Galois actions of σω3
and σ1+3ω3

are clear from Theorem 2.2. �

Proposition 2.4.

1. We have H9p = H3p(
3
√
3) with Gal(H9p/H3p) = 〈σ1+3ω3

〉 	 Z/3Z, and(
3
√
3
)σ1+3ω3

−1

= ω2.

2. We have
(

3
√
3
)σω3

−1
= 1 and

( 3
√
p)

σω3
−1

=

{
ω2, p ≡ 4 mod 9,

ω, p ≡ 7 mod 9.

Proof. For any place w of K, let Kw denote the completion of K at the place

w, and let
(

·,·
Kw;3

)
be the third Hilbert symbol over Kw; see, for example, [Neu99,

Chapter V, Section 3]. We have the decomposition of ideal 7OK = (1+3ω)(1+3ω2).
Let v be the place corresponding to the prime ideal (1 + 3ω). Then(

3
√
3
)σ1+3ω3

−1

=

(
1 + 3ω3, 3

K3; 3

)
.

It is an important property of the Hilbert symbol that∏
w

(
1 + 3ωw, 3

Kw; 3

)
= 1,
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where ωw denotes the image of ω in Kw and w runs through all places of K.
Since the symbol is trivial whenever w �= 3, v, we have by [Neu99, Chapter V,
Proposition 3.4] that(

3
√
3
)σ1+3ω3

−1

=

(
1 + 3ω3, 3

K3; 3

)
=

(
1 + 3ωv, 3

Kv; 3

)−1

= 3−2 mod (1 + 3ω) = ω2.

Since p ≡ 1 mod 3, the prime p splits in K. Let v and v be the two places of K
above p. Then similarly,

( 3
√
p)

σω3
−1

=

(
ω3, p

K3; 3

)
=

(
ωv, p

Kv; 3

)−1

·
(
ωv, p

Kv; 3

)−1

= ω− p−1
3 . �

The elliptic curve E1 has Weierstrass equation y2 = x3 − 432. Consider the
isomorphism

φ : E9 −→ E1, (x, y) �→ ((
3
√
3)2x, 3y).

We have the following commutative diagram:

E9(H9p)
σ1+3ω3

=ω2

φ

��

TrH9p/L(3,p) �� E9(L(3,p))
σ1+3ω3

=ω2

φ

��
E1(H3p)

TrH3p/L(p) �� E1(L(p)),

where the field extension diagram is as follows:

H9p = H3p(
3
√
3)

3�����
�����

���

�����
�����

����

H3p

(p−1)/3

H9

L(3,p) = K( 3
√
3, 3

√
p)

3
�����

����
3

3

�����
�����

L(p) = K( 3
√
p)

3

�����
�����

���
L(3p) = K( 3

√
3p)

3

L(3) = K( 3
√
3)

3

�����
�����

���

K
2

Q.

Put Q = φ(P0) and R = TrH3p/L(p)
Q.

Corollary 2.5. The point R ∈ E1(L(p)) and satisfies

Rσω3 =

{
[ω2]R + (0, 12

√
−3), p ≡ 4 mod 9,

[ω]R + (0,−12
√
−3), p ≡ 7 mod 9,

and if p ≡ 7 mod 9,

R = [ω
p−7
9 ]R+ (0, 12

√
−3).

Proof. This is a consequence of Theorem 2.3, Proposition 2.4, and the fact that

TrH3p/L(p)
(0, 12

√
−3) =

p− 1

3
(0, 12

√
−3).

Recall that the cusp (0, 12
√
−3) is a 3-torsion. �
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3. Nondivisibility of Heegner points

By the assumption that 3 mod p is not a cubic residue, we decompose pOK = pp

so that

(3.1) 3
p−1
3 ≡ ω mod p, 3

p−1
3 ≡ ω2 mod p.

Since H3p/K is totally ramified at p and p, let P and P be the primes of H3p above
p and p, respectively. We have

OK/pOK
∼= OK/p

⊕
OK/p ⊂ OH3p

/P
⊕

OH3p
/P.

The main result (Proposition 5.2.8) in [DV18] states that if 3 is not a cube
modulo p, the reduction

(R mod P, R mod P) ∈ E1(Fp)
2

is not equal to the image of any torsion point in E1(L(p)), and hence the Heegner
point R is of infinite order.

We sketch their strategy briefly. Note that the CM points P0 considered in this
paper are exactly those considered in [DV18]. We will use the explicit coordinates
of R modulo p later, so we record them in the following lemma.

Lemma 3.1. Under the Weierstrass equation y2 = x3 − 432 for E1,

R ≡
{
(12ωi+2,−36) mod P,

(12ωi+1,−36) mod P,

where i = 0, 1, 2 depends on p.

Proof. As in the proof of [DV18, Proposition 5.2.8],

(3.2) R = TrH3p/L(p)
Q ≡ p− 1

3
Q ≡

{
Q, p ≡ 4 mod 9,

−Q, p ≡ 7 mod 9.

By [DV18, Proposition 5.2.1 and Lemma 5.2.4], the x-coordinate x(Q) is p-adic
integral and satisfies the following congruence (see [DV18, (5.2.6)]):

(3.3) x(Q) ≡ x(Q)p ≡ 12pωi(−3)(p−1)/6 mod pZ,

where Z denotes the ring of integral algebraic numbers and i = 0, 1, 2 depends on
p (see [DV18, Lemma 5.1.3]). Note that Dasgupta and Voight [DV18] used the
Weierstrass equation y2+ y = 3x3− 1 for E1, and we have adapted the coordinates

to the equation y2 = x3−432. Since −3 ∈ F×
p is a square, (−3)

p−1
6 is a third root of

unity modulo p. Note also that p−1
3 is always even in our case. Therefore, by (3.1)

and (3.3), we conclude that

(3.4) x(Q) ≡
{
12ωi+2 mod P,

12ωi+1 mod P.

By Theorem 2.3, we have

[1− ωα]Q ≡ (0, 12
√
−3) mod P (resp., P),

where α = 2 if p ≡ 4 mod 9, and α = 1 if p ≡ 7 mod 9. This implies that (Q mod P)
and (Q mod P) both belong to E1(Fp)[3]. It follows that

(3.5) Q ≡
{
(12ωi+2, (−1)α−1 · 36) mod P,

(12ωi+1, (−1)α−1 · 36) mod P.
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Then the lemma follows from (3.2) and (3.5). �

Consider the reduction map

Red : E1(L(p))\{O} −→ OH3p
/P

⊕
OH3p

/P, T �→ (x(T ) mod P, x(T ) mod P).

By [DV18, Lemma 5.2.9], we have E1(L(p))tor = E1(K)tor. Let D be the image of
E1(L(p))tor\{O} under the reduction map. Then

D = {(0, 0), (12ωi, 12ωi)i=0,1,2} ⊂ OK/p
⊕

OK/p.

On the other hand, by Lemma 3.1, the reduction Red(R) is not trivial and also
does not lie in D. Hence, the Heegner point R is not torsion.

Put T = (12ωi+2,−36), which satisfies the relations

T =

{
[ω2]T + (0, 12

√
−3),

[ω]T + (0,−12
√
−3).

Let α = 2 or 1, according to p ≡ 4 or 7 mod 9, respectively. By Theorem 2.5, the
point Y = R− T belongs to E1(L(p))

σω3
=ωα

, which is identified with Ep(K) under

the isomorphism (x, y) �→ (( 3
√
p)2x, py) defined over L(p). Then the point Y + Y is

identified with an element in Ep(Q).

Proposition 3.2. The point Y is not divisible by
√
−3 in E1(L(p))

σω3
=ωα

. More

precisely, there exists no point X ∈ E1(L(p))
σω3

=ωα

and S ∈ E1(L(p))
σω3

=ωα

tor such
that

Y =
√
−3X + S.

Proof. Suppose that

(3.6) Y =
√
−3X + S

for some X ∈ E1(L(p))
σω3

=ωα

and S ∈ E1(L(p))
σω3

=ωα

tor . Since H3p/K is totally

ramified at P and P, we have

Y σω3 ≡ Y, Xσω3 ≡ X, Sσω3 ≡ S mod P (resp., mod P).

From the formulae

Y σω3 = [ωα]Y, Xσω3 = [ωα]X, Sσω3 = [ωα]S,

we have

[
√
−3]Y = [

√
−3]X = [

√
−3]S ≡ O mod P (resp., mod P).

By (3.6) and our choice of T , we have

S ≡ Y ≡
{
O, mod P,

[1− ω](12ωi+1,−36), mod P,

which implies that (x(S) mod P, x(S) mod P) does not lie in the subset D, and this
contradicts the fact that S is a torsion point. This proves that Y is not divisible
by

√
−3 in E1(L(p))

σω3
=ωα

. �

By the work of Dasgupta and Voight [DV18], we know that the free component
of Ep(K) has rank 1 over OK , and we have

K ⊗OK
Ep(K) 	 K.
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Proposition 3.3. As elements in K ⊗OK
Ep(K), we have

Y =

(
ωi γ

γ

)
⊗ Y,

where i = 0, 1, 2, γ ∈ OK is a nonzero element satisfying (γ, γ) = 1, and all primes
of γ are factors of rational primes which are split in K.

Proof. Recall that if we set α = 2 or 1 according to p ≡ 4 or 7 mod 9, respectively,
then E1(L(p))

σω3
=ωα

is identified with Ep(K) under the real morphism

ϕ : E1 → Ep, (x, y) �→ (( 3
√
p)2x, py).

Since R and R have the same height, as elements in

K ⊗OK
E1(L(p))

σω3
=ωα

,

there exists a β ∈ K× such that

NK/Q(β) = 1

and

R = β ⊗R.

By Hilbert satz 90, we may assume that

β = u · γ
γ̄
,

where u ∈ O×
K , γ ∈ OK such that (γ, γ) = 1, and all primes of γ are factors of

rational primes which are split in K.

Then as usual points, there exists an S ∈ E1(L(p))
σω3

=ωα

tor = E1(K)tor such that

[γ]R = [uγ]R + S.

Since Y = ϕ(R− T ), we have

[γ]Y = [uγ]Y + S′

for some S′ ∈ Ep(K)tor.
It remains to prove that u is a third root of unity. We have

(3.7) [γ]R + [γ]R = [(u+ 1)γ]R+ S.

We claim that if u is a primitive sixth root of unity or −1, then [(u + 1)γ]R has
the same coordinates modulo both P and P. The case u = −1 is obvious. Suppose
that u is a primitive sixth root of unity. Then u + 1 =

√
−3ωj for some j = 1, 2.

By Lemma 3.1, we have

[u+ 1]R ≡
{
[ωj+i+2][

√
−3](12,−36) mod P,

[ωj+i+1][
√
−3](12,−36) mod P.

Since [
√
−3](12,−36) = (0,−12

√
−3), we see that [u+1]R has the same coordinates

when modulo both P and P; consequently, so does [γ(1 + u)]R. Since S is a K-
point, the right-hand side (RHS) of (3.7) has the same coordinates when modulo
both P and P.

On the other hand, we will show that the left-hand side (LHS) of (3.7) has distinct
coordinates when modulo P and P, respectively. To do this, it is enough to show
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that [2γ]R + [2γ]R has distinct coordinates when modulo P and P, respectively.
Write 2γ = a+ b

√
−3, with a, b ∈ Z. Then

[2γ]R + [2γ]R = [a](R+R) + [b
√
−3](R−R).

By Lemma 3.1, R+R has distinct coordinates when modulo P and P, respectively,
and R −R ≡ [1− ωi]R for some i = 0, 1, 2 when modulo P and P, respectively.

Note that R mod P (resp., P) is of order 3 in E1(Fp). Since a ≡ 1, 2 mod 3, we

know that [a](R+R) has distinct coordinates when modulo P and P, respectively.
Since

√
−3 | (1− ωi), we conclude that

[b
√
−3](R−R) ≡ 0 mod P (resp., P).

So we conclude that that [2γ]R+[2γ]R, and hence the LHS of (3.7), has distinct
coordinates when modulo P and P, respectively. Therefore, if u is a primitive sixth
root of unity or −1, we come to a contradiction, and hence u must be a third root
of unity. �

Remark 3.4. If p ≡ 7 mod 9, it follows from Corollary 2.5 that

Y ≡ [ω
p−7
9 ]Y mod torsion.

Theorem 3.5. The point Y + Y ∈ Ep(Q) is not divisible by 3.

Proof. In the following, all points are viewed as elements in

K ⊗OK
Ep(K) 	 K.

By Proposition 3.3, there exists a γ ∈ OK satisfying (γ, γ) = 1, and all primes of γ
are factors of rational primes which are split in K such that

Y + Y =

(
1 + u

γ

γ

)
⊗ Y.

Consider γ + γ as an element in OK,3 = Z3[
√
−3]. Suppose that γ = a + b

√
−3,

with a, b ∈ Z3. Since γ is a 3-adic unit, we have a ∈ Z×
3 . Then

1 + u
γ

γ
= 1 +

γ

γ
+ (u− 1)

γ

γ
=

2a

γ
+ (u− 1)

γ

γ

is a 3-adic unit since
√
−3 | (u− 1). Then the 3-nondivisibility follows from Propo-

sition 3.2. �

4. The explicit Gross–Zagier formulae

4.1. Test vectors and the explicit Gross–Zagier formulae. Let π be the
automorphic representation of GL2(A) corresponding to E9/Q. Then π is only

ramified at 3 with conductor 35. For n ∈ Q×, let χn : Gal(Kab/K) → C× be the
cubic character given by χn(σ) = ( 3

√
n)σ−1. Define

L(s, E9, χn) := L(s− 1/2, πK ⊗ χn), ε(E9, χn) := ε(1/2, πK ⊗ χn),

where πK is the base change of π to GL2(AK).
Let p ≡ 4, 7 mod 9 be a prime number, and put χ = χ3p. From the Artin

formalism, we have

L(s, E9, χ) = L(s, Ep)L(s, E3p2).
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By [Liv95], we have the epsilon factors ε(E3p2) = +1 and ε(Ep) = −1, and hence
the epsilon factor

ε(E9, χ) = ε(Ep)ε(E3p2) = −1.

For a quaternion algebra BA, we define its ramification index ε(Bv) = +1 for any
place v of Q if the local component Bv is split, and ε(Bv) = −1 otherwise.

Proposition 4.1. The incoherent quaternion algebra B over A, which satisfies

ε(1/2, πv, χv) = χv(−1)εv(B)

for all places v of Q, is ramified only at the infinity place.

Proof. Since π is unramified at finite places v � 3, χ is unramified at finite places
v � 3p, and p is split in K, by [Gro88, Proposition 6.3], we get ε(1/2, πv, χv) =
+1 for all finite v �= 3. Again by [Gro88, Proposition 6.5], we also know that
ε(1/2, π∞, χ∞) = −1. Since ε(1/2, π, χ) = −1, we see that ε(1/2, π3, χ3) = +1.
Since χ is a cubic character, χv(−1) = 1 for any v. Hence, B is ramified only at
the infinity place. �

Let B×
f = GL2(Af ) be the finite part of B×. For any open compact subgroup

U ⊂ B×
f , the Shimura curve XU associated with B of level U is the usual modular

curve with complex uniformization

XU (C) = GL2(Q)+\
(
H � P1(Q)

)
×GL2(Af )/U.

Let

πE9
= lim−→

U

Hom0
ξU (XU , E9),

where Hom0
ξU (XU , E9) denotes the morphisms in HomQ(XU , E9) ⊗Z Q using the

Hodge class ξU as a base point. Then πE9
is an automorphic representation of B×

over Q. Let π be the Jacquet–Langlands correspondence of πE9
⊗Q C on GL2(A).

By Proposition 4.1 and a theorem of Tunnell and Saito [YZZ13, Theorem 1.4.1],
the space

Hom
A

×
K
(πE9

⊗ χ,C)⊗Hom
A

×
K
(πE9

⊗ χ−1,C)

is one dimensional with a generator β = ⊗βv where, for each place v of Q, the
bilinear form

βv : πE9,v ⊗ πE9,v
−→ C

is given by

(4.1) βv(ϕ1, ϕ2) =

∫
Q

×
v \K×

v

(πE9,v(t)ϕ1, ϕ2)χv(t)dt, ϕ1, ϕ2 ∈ πE9,v.

Here (·, ·)v is a B×
v -invariant pairing on πE9,v × πE9,v, and dt is a Haar measure on

K×
v /Q×

v . For later application of the explicit Gross–Zagier formula in [CST14], if
(ϕ1, ϕ2)v �= 0, we also define the normalized toric integral

(4.2) β0
v(ϕ1, ϕ2) =

∫
Q

×
v \K×

v

(π(t)ϕ1, ϕ2)vχv(t)

(ϕ1, ϕ2)v
dt.

For more details, we refer the reader to [YZZ13, Section 1.4], [CST14, Section 3].
The elliptic curve E9 has conductor 35. Let f : X0(3

5) → E9 be a nontrivial
modular parametrization which sends the infinity cusp [∞] to the zero element
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O. Explicitly, we may take f to be the quotient map X0(3
5) → XΓ = E9, as in

Proposition 2.1. Let

R =

(
Ẑ Ẑ

35 · Ẑ Ẑ

)
⊂ Bf (Ẑ) = M2(Ẑ)

be the Eichler order of discriminant 35. Then U0(3
5) = R×, and by the newform

theory [Cas73], the invariant subspace πR×

E9
has dimension 1 and is generated by f .

Proposition 4.2. The modular parametrization f : X0(3
5) → E9 is a test vector

for the pair (πE9
, χ), i.e., β(f, f) �= 0.

Proof. Let R′ be the admissible order for the pair (πE9
, χ) in the sense of [CST14,

Definition 1.3]. SinceR′ andR differs only at 3, it suffices to verify that β3(f3, f3) �=
0, which is given by [HSY17, Corollary 7.10]. �

Let ωEn
be the invariant differential on the minimal model of En. Define the

minimal real period Ωn of En by

Ωn =

∫
En(R)

|ωEn
|.

By [ZK87, Formula (9)], we have

(4.3) ΩpΩ3p2 = (3p)−1Ω2
9.

Using SageMath, we compute that {Ω9,Ω9 · ( 12 +
√
−3
2 )} is a Z-basis of the period

lattice L of the minimal model of E9. So

(4.4)
√
3Ω2

9 = 2

∫
C/L

dxdy =

∫
E(C)

|ωE9
∧ ωE9

| = 1

6
· 8π2(φ, φ)Γ0(35),

where φ is the newform of level 35 and weight 2 associated with E9, and (φ, φ)Γ0(35)

is the Petersson norm of φ defined by

(φ, φ)Γ0(35) =

∫ ∫
X0(35)

|φ(z)|2dxdy, z = x+ iy.

Recall τ = (2pω − 9)/(9pω − 36) ∈ H, let P1 = [τ, 1]U0(35) be the CM point on

X0(3
5)(H9p), and note that f(P1) = P0. Define the Heegner point

R1 = TrH9p/L(3,p)
P0 ∈ E9(L(3,p)).

Theorem 4.3. For primes p ≡ 4, 7 mod 9, we have the following explicit formula
of Heegner points:

L′(1, Ep)L(1, E3p2)

ΩpΩ3p2

= 2α · 9 · ĥQ(R1),

where α = 0 if p ≡ 4 mod 9, and α = −1 if p ≡ 7 mod 9.

Proof. We note that the conductor of π is 35 and the conductor of χ is 9p. Let
R′ be the admissible order for the pair (πE9

, χ), and let f ′ �= 0 be a test vector in
V (πE9

, χ) which is defined in [CST14, Definition 1.4]. The newform f differs from
f ′ only at the local place 3. Define the Heegner cycle

P 0
χ(f) =

�Pic(Op)

Vol(K̂×/K×Q̂×, dt)

∫
K×̂Q×\ ̂K×

f(P1)
σtχ(t)dt,
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and define P 0
χ−1(f) as in [CST14, Theorem 1.6]. According to [HSY17, Corol-

lary 7.10], we have
β0
3(f

′
3, f

′
3)

β0
3(f3, f3)

= 2α+2,

where α = 0 if p ≡ 4 mod 9, and α = −1 if p ≡ 7 mod 9. By [CST14, Theorem 1.6],
we have

L(3)′(1, E9, χ) = 2α+1 ·
(8π2) · (φ, φ)Γ0(35)√

3p · (f, f)R′
·
〈
P 0
χ(f), P

0
χ−1(f)

〉
K,K

,

where L(3) denotes the partial L-function with the 3-adic local factor removed,
(·, ·)R′ is the pairing on πE9

× πE9
∨ defined as in [CST14, page 789], and 〈·, ·〉K,K

is a pairing from E9(K)Q ×K E9(K)Q to C such that 〈·, ·〉K = TrC/R〈·, ·〉K,K is
the Néron–Tate height over the base field K; see [CST14, page 790]. The local
representation πK,3⊗χ3 is the principal series induced from the pair (Θ3χ3,Θ3χ3),
where Θ is the Hecke character over K associated with E9 via the CM theory.
By [HSY17, Lemma 7.5], [HSY17, Lemma 7.6], the characters Θ3χ3,Θ3χ3 are both
ramified. Hence, the 3-adic local L-factor of L(s, E9, χ) is trivial, and we have

L′(1, E9, χ) = L(3)′(1, E9, χ).

In our case, by [CST14, Lemmas 2.2 and 3.5],

(f, f)R′ =
Vol(XR′×)

Vol(XR×)
deg f = 6 · Vol(R×)

Vol(R′×)
= 4.

So we get

(4.5) L′(1, E9, χ) = 2α−1 (8π
2) · (φ, φ)Γ0(35)√

3p2
·
〈
P 0
χ(f), P

0
χ−1(f)

〉
K,K

.

On the other hand,

P 0
χ(f) =

#Pic(Op)

#Pic(O9p)

∑
t∈Pic(O9p)

f(P1)
σtχ(t).

Since
#Pic(Op)

#Pic(O9p)
= [K×Ô×

p : K×Ô×
9p]

−1 =
1

9
,

we have

P 0
χ(f) =

1

9

∑
t∈Pic(O9p)

f(P1)
σtχ(t).

If we put

R2 =
∑

σ∈Gal(H9p/L(3p))

f(P1)
σχ(σ) = 3R1 ∈ E9(L(3p)),

then

〈P 0
χ(f), P

0
χ−1(f)〉K,K =

1

92
〈

∑
σ∈Gal(L(3p)/K)

Rσ
2χ(σ),

∑
σ∈Gal(L(3p)/K)

Rσ
2χ

−1(σ)〉K,K

=
1

27
〈R2,

∑
σ∈Gal(L(3p)/K)

Rσ
2χ

−1(σ)〉K,K

(4.6)
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=
1

27
(〈R2, R2〉K,K + χ−1(σ′)〈R2, R

σ′

2 〉K,K

+ χ−1(σ′2)〈R2, R
σ′2

2 〉K,K)

=
1

27

(
〈R2, R2〉K,K −

〈
R2, R

σ′

2

〉
K,K

)
,

(4.7)

where σ′ is a generator of Gal(L(3p)/K). In the last equality, we use the fact that

〈R2, R
σ′

2 〉K,K = 〈R2, R
σ′2

2 〉K,K since 〈, 〉K,K is symmetric and Galois invariant. By

Theorem 2.3 and Corollary 2.5, we can assume that Rσ′

2 = [ω]R2. Then〈
R2, R

σ′

2

〉
K,K

=
1

2

(
ĥK([1 + ω]R2)− ĥK([ω]R2)− ĥK(R2)

)
.

Since |1+ω| = |ω| = 1, by definition, ĥK([1+ω]R2) = ĥK([ω]R2) = ĥK(R2). Then〈
R2, R

σ′

2

〉
K,K

= −1

2
ĥK(R2),

and hence

(4.8)
〈
P 0
χ(f), P

0
χ−1(f)

〉
K,K

=
1

18
ĥK(R2) =

1

9
ĥQ(R2) = ĥQ(R1).

Finally, combining (4.3)–(4.8), we get

L′(1, Ep)L(1, E3p2)

ΩpΩ3p2

= 2α · 9 · ĥQ(R1). �

Recall that there is an isomorphism

φ : E9 −→ E1, (x, y) �→
((

3
√
3
)2

x, 3y

)
,

and we have the following commutative diagram:

E9(H9p)
σ1+3ω3

=ω2

φ

��

TrH9p/L(3,p) �� E9(L(3,p))
σ1+3ω3

=ω2

φ

��
E1(H3p)

TrH3p/L(p) �� E1(L(p)).

In particular, we have φ(R1) = R, and hence the following.

Corollary 4.4. For primes p ≡ 4, 7 mod 9, we have

L′(1, Ep)L(1, E3p2)

ΩpΩ3p2

= 2α · 9 · ĥQ(R),

where α = 0 if p ≡ 4 mod 9, and α = −1 if p ≡ 7 mod 9.

Proof. This is immediate from Theorem 4.3. �

Recall that Dasgupta and Voight [DV18] proved that the Heegner point R is not
torsion. By the above Gross–Zagier formula and the work of Kolyvagin [Kol90], we
know that

rankZEp(Q) = ords=1L(s, Ep) = 1, rankZE3p2(Q) = ords=1L(s, E3p2) = 0.
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5. The 3-part of the BSD conjectures

Let F be a number field. Let φ : A → A′ be an isogeny of elliptic curves over F
of degree m, and let φ′ be its dual isogeny. The commutative diagram

0 �� A[φ]

��

�� A
φ �� A′ ��

φ′

��

0

0 �� A[m]

φ

��

�� A
[m] ��

φ

��

A �� 0

0 �� A′[φ′] �� A′ φ′
�� A �� 0

induces the following commutative diagram:

0

��

0

��
0 �� A′[φ′](F )/φA[m](F )

φ′

��

= �� A′[φ′](F )/φA[m](F )

φ′

��

�� 0

��
0 �� A′(F )/φA(F )

φ′

��

�� Selφ(A/F ) ��

��

X(A/F )[φ] ��

��

0

0 �� A(F )/mA(F )

��

�� Selm(A/F ) ��

φ

��

X(A/F )[m] ��

φ

��

0

0 �� A(F )/φ′A′(F )

��

�� Selφ′ (A′/F ) ��

��

X(A′/F )[φ′] ��

��

0

0 �� Selφ′ (A′/F )/φSelm(A/F )
� ��

��

X(A′/F )[φ′]/φX(A/F )[m] ��

��

0

0 0 .

From this diagram, we immediately have the following.

Lemma 5.1. Let A,A′ and φ, φ′ be as above:

|Selm(A/F )| = |Selφ(A/F )||Selφ′(A′/F )|
|A′[φ′](F )/φA[m](F )||X(A′/F )[φ′]/φX(A/k)[m]| .

Let n be a positive cube-free integer, and let E′
n be the elliptic curve given by the

Weierstrass equation y2 = x3+(4n)2. Then there is a unique isogeny φn : En → E′
n

of degree 3 up to [±1], and denote φ′
n as its dual isogeny.

Proposition 5.2. Let p ≡ 4, 7 mod 9 be primes such that 3 mod p is not a cubic
residue. Then

dimF3
Sel3(Ep(Q)) ≤ 1, dimF3

Sel3(E3p2(Q)) = 0.

Proof. By [Sat86, Theorem 2.9], we know that

Selφp
(Ep(Q)) = Selφ′

p
(E′

p(Q)) = Z/3Z
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and

Selφ3p2
(E3p2(Q)) = Z/3Z, Selφ′

3p2
(E′

3p2(Q)) = 0.

Note that Ep[3](Q) and E3p2 [3](Q) are trivial and that |E′
p[φ

′
p](Q)|=|E′

3p2 [φ′
3p2 ](Q)|

= 3. By Lemma 5.1, the proposition follows. �

Now we are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. By [ZK87, Table 1], we know that cp(Ep) = 3, c3(Ep) =
1 or 2 depending on p congruent to 4 or 7 modulo 9, respectively, and that c�(Ep) =
1 for primes � �= 3, p, while cp(E3p2) = 3, c�(E3p2) = 1 for primes � �= p.

Let P be the generator of the free part of Ep(Q). Then the BSD conjecture
predicts that

L′(1, Ep)

Ωp
= 2m · 3 · |X(Ep)| · ĥQ(P ),

where m = 0 if p ≡ 4 mod 9, and 1 if p ≡ 7 mod 9, and where

L(1, E3p2)

Ω3p2

= 3 ·
∣∣X(E3p2)

∣∣ .
Combining these two, we get

L′(1, Ep)

Ωp
· L(1, E3p2)

Ω3p2

= 2m · 9 · |X(Ep)| · |X(E3p2)| · ĥQ(P ).

By Theorem 4.3 and Corollary 4.4, we expect that

(5.1) |X(Ep)| · |X(E3p2)| = 2i
ĥQ(R)

ĥQ(P )
,

where i = 0 (resp., i = −2) if p ≡ 4 mod 9 (resp., p ≡ 7 mod 9). Note that the
RHS of (5.1) is a nonzero rational number.

By Proposition 5.2, with Ep being rank 1 and the exact sequence

0 �� E(Q)/3E(Q) �� Sel3(E(Q)) �� X(E)[3] �� 0 ,

we know directly that

(5.2) |X(Ep)[3
∞]| = |X(E3p2)[3∞]| = 1.

In order to prove the 3-part of (5.1), it suffices to prove that

ĥQ(P ) = uĥQ(R1) = uĥQ(R)

for some u ∈ Z×
3 ∩ Q. However, it follows from Proposition 3.2 and Theorem 3.5

that

ĥQ(P ) = wĥQ(Y + Y ) = wĥQ(R+R) = uĥQ(R)

for some u,w ∈ Z×
3 ∩ Q, where the last equality follows from Lemma 3.3. Indeed,

we note that a similar formula for the complex conjugation is valid for R in the
proof of Lemma 3.3. �
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vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435–483. MR1106906

[LLT16] Yongxiong Li, Yu Liu, and Ye Tian, On the Birch and Swinnerton-Dyer conjecture for

CM elliptic curves over Q, arXiv:1605.01481 (2016).
[Liv95] Eric Liverance, A formula for the root number of a family of elliptic curves, J. Number

Theory 51 (1995), no. 2, 288–305, DOI 10.1006/jnth.1995.1048. MR1326750
[Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-
Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by
Norbert Schappacher; With a foreword by G. Harder. MR1697859

[Ogg80] A. P. Ogg, Modular functions, Santa cruz conference on finite groups, 1980, pp. 521–532.
MR2137353

[PR87] Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques
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