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Abstract

We improve upon the local bound in the depth aspect for sup-norms of newforms
on D×, where D is an indefinite quaternion division algebra over Q. Our sup-norm
bound implies a depth-aspect subconvexity bound for L(1/2, f × θχ), where f is a
(varying) newform on D× of level pn, and θχ is an (essentially fixed) automorphic form
on GL2 obtained as the theta lift of a Hecke character χ on a quadratic field. For the
proof, we augment the amplification method with a novel filtration argument and a
recent counting result proved by the second-named author to reduce to showing strong
quantitative decay of matrix coefficients of local newvectors along compact subsets,
which we establish via p-adic stationary phase analysis. Furthermore, we prove a general
upper bound in the level aspect for sup-norms of automorphic forms belonging to any
family whose associated matrix coefficients have such a decay property.

1. Introduction

Let D be an indefinite quaternion algebra over Q. For any integer N coprime to the discriminant
of D, let ΓD0 (N) ⊂ SL2(R) denote the congruence subgroup1 corresponding to the norm 1 units
of an Eichler order of level N inside D. There has been a lot of work on bounding the sup-norm
‖f‖∞ of a Hecke–Maass newform of weight 0 and Laplace eigenvalue λ on ΓD0 (N)\H, where f
is L2-normalized with respect to the measure that gives volume 1 to ΓD0 (N)\H. (For simplicity,
we only discuss the case of newforms with trivial character in the introduction.)

The pioneering work here is due to Iwaniec and Sarnak [IS95], who proved the eigenvalue
aspect bound2 ‖f‖∞ �ε λ

5/24+ε in the case N = 1. For the level -aspect analogue of this problem,
the goal is to bound ‖f‖∞ in terms of N , with the dependence on λ suppressed. It will be
convenient to use the notation N1 to denote the smallest integer such that N |N2

1 . Clearly,√
N � N1 � N . Note that N1 equals N if N is squarefree while N1 is around

√
N when all the

prime factors of N divide it to a high power. To show the rapid progress in the level-aspect
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Sup-norms of eigenfunctions in the level aspect

version of the sup-norm problem for newforms on D, we quote the results proved so far in this
direction.3

The case D = M2(Q)
The ‘trivial bound’ (which is not completely trivial, since one has to be careful about behaviour
near cusps) is ‖f‖∞ �λ,ε N

1/2+ε. The following bounds were proved in rapid succession:

– ‖f‖∞ �λ,ε N
1/2−25/914+ε for squarefree N (Blomer and Holowinsky [BH10], 2010);

– ‖f‖∞ �λ,ε N
1/2−1/22+ε for squarefree N (Templier [Tem10], 2010);

– ‖f‖∞ �λ,ε N
1/2−1/20+ε for squarefree N (Helfgott and Ricotta, unpublished);

– ‖f‖∞ �λ,ε N
1/2−1/12+ε for squarefree N (Harcos and Templier [HT12], 2012);

– ‖f‖∞ �λ,ε N
1/3+ε for squarefree N (Harcos and Templier [HT13], 2013);

– ‖f‖∞ �λ,ε N
1/6+εN

1/6
1 for general N (Saha [Sah17], 2017).

The case D a division algebra
The ‘trivial bound’ is again ‖f‖∞ �λ,ε N

1/2+ε. The following improved bounds have been proved
so far:

– ‖f‖∞ �λ,ε N
1/2−1/24+ε for general N (Templier [Tem10], 2010);

– ‖f‖∞ �λ,ε N
1/2+ε
1 for general N (Marshall [Mar16], 2016);

– ‖f‖∞ �λ,ε N
1/24+εN

1/2−1/12
1 for general N (Saha [Sah20], 2020).

Our main focus in this paper is on a natural subcase of the level aspect, known as the depth
aspect, where one takes N = pn with p a fixed prime and n varying. In this aspect, the best
currently known bound for the sup-norm is

‖f‖∞ �λ,p,ε p
(n/4)(1+ε), (1)

as is clear from the list of previous results above; indeed, the bound (1) in the case D = M2(Q)
follows from work of the second-named author [Sah17] and in the case when D is a division
algebra it follows from work of Marshall [Mar16]. More pertinently, the bound (1) coincides with
the level-aspect local bound (which is stronger than the trivial bound4), which states in general
that

‖f‖∞ �λ,ε N
1/2+ε
1 . (2)

When we restrict ourselves to the depth aspect, we have N1 � √
N as N = pn → ∞ and so

(1) is essentially equivalent to (2) in this aspect. In contrast, for squarefree levels N , we have
N1 = N , and the best currently known bounds in that case, due to Harcos and Templier [HT13]
for D = M2(Q) and Templier [Tem10] for D a division algebra, successfully beat the local bound
by a positive power of N , as evidenced from the list of previous results quoted earlier. However,
despite considerable recent activity on the sup-norm problem, the local bound in the depth
aspect for newforms has not been improved upon so far. We refer the reader to the end of the

3 We do not attempt to survey other sup-norm results, such as the various recent works concerning lower bounds,
hybrid bounds, holomorphic forms, general multiplier systems, general number fields, higher rank groups, exotic
vectors at the ramified places, function field analogues, and so on and so forth. We refer the reader to the
introductions of [BHMM20, Sah20] for brief discussions of some of these related results.
4 The level-aspect local bound is the immediate bound emerging from the adelic pre-trace formula where the local
test function at each ramified prime is chosen to be essentially best possible. For a detailed discussion about local
bounds in a more general context, and its relationship with the trivial bound, see § 1.4 of [Sah20].
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introduction of [Sah20] for a brief discussion of why the usual methods are not sufficient to beat
the local bound in this case.

In this paper, we improve upon (1) for the first time. For this, we introduce a new technique
to attack the sup-norm problem which relies on quantifying the decay of local matrix coefficients
at the ramified primes along a filtration of compact subsets. To avoid dealing with behaviour
at the cusps and Whittaker expansions, we restrict ourselves here to the case of D a division
algebra (though we have no doubt that our results can be extended to the case of GL2 with some
additional technical work). We prove the following result.

Theorem A (See Corollary 4.9). Let D be a fixed indefinite quaternion division algebra over

Q and p be an odd prime coprime to the discriminant of D. Then, for any L2-normalized Maass

newform f of Laplace eigenvalue λ on ΓD0 (pn)\H, we have

‖f‖∞ �λ,p,ε p
n(5/24+ε).

Remark 1.1. Corollary 4.9 of this paper is more general than Theorem A in that it allows for
general composite levels (and the implied constant is polynomial in the product of primes dividing
the level). Corollary 4.9 also includes the case of holomorphic forms f . Corollary 4.9 is itself a
very special case of the master theorem of this paper, Theorem 4.6, which applies to any family
of automorphic forms on D×(A) satisfying certain hypotheses on decay of matrix coefficients.

We will explain the main ideas behind the proof of Theorem A later in this introduction, but,
first, let us describe an interesting application of this theorem to the subconvexity problem for
central L-values. The key idea, going back to Sarnak (see the nice exposition in § 4 of [Sar93]),
is that the conjectured strongest bounds for the sup-norms of automorphic forms often imply
the Lindelöf hypothesis in certain aspects for their associated L-functions. This leads to the
question of whether one can use non-trivial sup-norm bounds to deduce subconvexity bounds for
L-functions. In this context, Iwaniec and Sarnak pointed out (see Remark D of [IS95]) that their
sup-norm result leads via Eisenstein series to a t-aspect subconvexity result for the Riemann zeta
function. In fact, sup-norm bounds for Eisenstein series proved in [You18] and [Blo18] directly
imply subconvexity bounds in the t-aspect for the Dedekind L-functions of imaginary quadratic
fields (this follows by considering the values taken by the Eisenstein series at CM points). Very
recently, uniform sup-norm bounds (with a dependence on the point of evaluation) have been
used in [Nor20] to prove hybrid subconvexity bounds in the t and m aspects for L-functions of
ideal class characters of quadratic fields of discriminant m.

However, the above-mentioned subconvexity results are only for GL1 L-functions and use sup-
norm bounds in the eigenvalue aspect. Regarding the level-aspect sup-norm problem for cusp
forms on the upper-half plane and its connection to the subconvexity problem, see the discussion
on page 647 of [BH10], which points out that to prove any level-aspect subconvexity bound for an
associated L-function by directly substituting a sup-norm bound into a period formula typically
requires very strong5 sup-norm bounds. In particular, for level-aspect subconvexity, one needs
to beat the exponent 1/4 for the sup-norm problem. Theorem A represents the first result that
achieves this. Therefore, in this paper, we are finally able to carry out this strategy to deduce a

5 This is not surprising for at least two reasons: (a) sup-norm bounds hold for the whole space while period
formulas only involve the values at a certain set of points or a submanifold, (b) substituting a sup-norm bound
onto a period formula cannot detect any additional cancellation in the integral or sum involved in the formula.
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depth-aspect subconvexity bound from Theorem A. We give below a special case of the result
we are able to obtain.

Theorem B (see Theorem 6.2, Corollaries 6.3 and 6.6). Let D be a fixed indefinite quaternion

division algebra over Q and let p be an odd prime coprime to the discriminant of D. Let K be a

quadratic number field such that p splits in K and all primes dividing the discriminant of D are

inert in K. Let χ be a Hecke character of K such that χ|A× = 1 and such that the ramification

set of χ does not intersect the places above disc(D). Let θχ be the automorphic form6 on GL2

obtained as the theta lift of χ. Let f be a Maass newform of Laplace eigenvalue λ on ΓD0 (pn)\H.

Then

L(1/2, f × θχ) �p,K,χ,λ,ε (C(f × θχ))5/24+ε,

where L(s, f × θχ) denotes the Rankin–Selberg L-function normalized to have functional

equation s 	→ 1 − s, and C(f × θχ) �χ p
2n denotes the (finite part of the) conductor of

L(s, f × θχ).

Remark 1.2. The classical construction of the theta lift θχ goes back to Hecke and Maass. This
was generalized in the representation-theoretic language by Shalika and Tanaka [ST69]; see also
[HK91, § 13] for a more modern treatment. For an explicit formula for θχ under certain assump-
tions, see also page 61 of [IK04] for the holomorphic case and Appendix A.1 of [HK20] for the
Maass case. The automorphic representation corresponding to θχ is precisely the global auto-
morphic induction AI(χ) of χ from A×

K to GL2(A). This is a special instance of the Langlands
correspondence, as explained nicely in Gelbart’s book [Gel75, 7.B].

Remark 1.3. Thanks to the Jacquet–Langlands correspondence, we may equivalently take f in
Theorem B to be a newform on GL2 (of level equal to disc(D)pn). Theorem B may be viewed
as a (depth-aspect) subconvexity result for L(1/2, f × g), where g = θχ is fixed and f varies.
Subconvexity for the Rankin–Selberg L-function on GL2 × GL2 (with one of the GL2 forms
fixed) in the level aspect was first approached by Kowalski et al. [KMV02] and a complete
solution was obtained by Harcos and Michel [HM06]. Uniform subconvexity in all aspects was
subsequently proved in ground-breaking work of Michel and Venkatesh [MV10], who showed
that L(1/2, f × g) �g,ε C(f × g)1/4−δ for general f and g and some δ > 0. There have also been
recent works, notably by Wu, that make the (unspecified) exponent δ of Michel and Venkatesh
explicit in various cases. We also remark that

L(1/2, f × θχ) = L(1/2, fK × χ), (3)

where fK denotes the base change of f to K; so Theorem B may also be viewed as a special
instance of subconvexity on GL2(AK) × GL1(AK) with the character on GL1(AK) fixed. We
further note that in the special case that χ = 1 is trivial, the L-function factors as L(1/2,
f × θ1) = L(1/2, f × ρK)L(1/2, f), where ρK is the quadratic Dirichlet character associated
to K.

As the above discussion makes clear, subconvexity in the setup of Theorem B is not new.
However, the exponent 5/24 (corresponding to δ = 1/24) we obtain appears to be the current

6 The condition χ|A× = 1 implies that θχ corresponds to a Maass form of weight 0 and Laplace eigenvalue � 1/4
if K is real, and a holomorphic modular form of weight � 1 if K is imaginary; moreover, θχ is a cusp form if and
only if χ2 �= 1.
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strongest bound in this particular setting. As a point of comparison, the exponent that can be
extracted in our setting from the general bound given in Corollary 1.6 of [WA18], followed by
an application of (3), corresponds to δ = (1 − 2θ)/32 < 1/24.

The proof of Theorem B uses an explicit version of Waldspurger’s famous formula [Wal85]
relating squares of toric periods and central L-values. We emphasize that the proof follows
immediately upon substituting the bound from Theorem A into this formula and does not need
any additional ingredients.

We now explain the main ideas behind Theorem A and how they can be put into a general
framework. The usual strategy7 to prove a sup-norm bound in the level aspect is to use the
amplification method. This involves choosing a suitable global test function (a product of local
test functions over all places) and then estimating the geometric side of the resulting pre-trace
formula by counting the number of lattice points that lie in the support of the test function,
as the level varies. This strategy successfully works to beat the local bound in the squarefree
level aspect, where one can choose the local test functions at the ramified primes to be the
indicator function (modulo the centre) of the local Hecke congruence subgroups. This strategy
also works very well for families of automorphic forms corresponding to highly localized vectors
at the ramified places, such as the minimal vectors or the p-adic microlocal lifts; the corresponding
sup-norm bounds in these cases were proved in [Sah20].

Unfortunately, this strategy on its own fails to beat the local bound in the depth aspect for
newforms. The reason is that local newvectors are not sufficiently localized in the depth aspect
and consequently the support of the ‘best’ test function modulo the centre, as far as the depth
aspect is concerned, is essentially the entire maximal compact subgroup. Therefore, the support
does not involve many congruence conditions, and congruences are essential for achieving saving
via counting. If we were to reduce the support of our ramified test functions further and thus
force new congruences, the resulting saving via counting would be eclipsed by the resulting loss
due to the fact that we will be averaging over more cusp forms.

The key new contribution of this paper is that we focus not merely on the support of the test
function, but instead quantify how fast the test function (which is essentially the matrix coeffi-
cient of the local newvector) decays within the support. Roughly speaking, our method divides
up the geometric side of the (amplified) pre-trace formula into multiple pieces, corresponding to a
filtration of the support of the local test function. These pieces are estimated separately to obtain
a general theorem that gives a sup-norm bound in the level aspect which is stronger than what
can be obtained by existing methods. To illustrate our technique in the setting of Theorem A, for
each level N = pn consider the filtration of compact subgroupsK∗(j) ⊂ K∗(j − 1) ⊂ · · · ⊂ K∗(1)
of GL2(Zp), where j � n/8 and K∗(i) is equal to the subgroup that looks like

( ∗ 0
0 ∗

)
modulo pi.

The support of the test function at the prime p is K∗(1). We break up the geometric side of
the pre-trace formula into j pieces, with piece i (for 1 � i � j) corresponding to the matrices
whose local component at p lies in K∗(i) but not in K∗(i+ 1) (where we let K∗(j + 1) denote
the empty set). Now we prove that these local matrix coefficients have a proper decay property,
due to which the size of the test function at each matrix in piece i is bounded8 by pi/2−n/4.
Therefore, for each piece, we get a saving from two sources: (a) from the size of the test function,
(b) from counting lattice points. The saving from source (a) is large when i is small, which is

7 A notable exception being a recent preprint of Sawin [Saw19] that treats the function field analogue of the
level-aspect sup-norm problem using a very different geometric method.
8 In fact, for the purpose of Theorem A, we only need the weaker bound that the size at piece i is bounded by
p2i−n/4.
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precisely when the saving from source (b) is small. Conversely, when i is large, the saving from
source (a) is small and the saving from source (b) is large. We emphasize that we are still using
an amplified pre-trace formula, but with the extra ingredient described above, which leads to
the bound in Theorem A.

The reader may have noticed that our exponent 5/24 in Theorem A coincides with the
exponent obtained by Iwaniec and Sarnak in [IS95]. In hindsight, our filtration strategy at a
place p is analogous to the argument used by Iwaniec and Sarnak in [IS95, Lemmas 1.1–1.3]
for the test function at infinity in their classic work on the eigenvalue aspect of the sup-norm
problem. Crucially, our bound for the size of p-adic matrix coefficients, and that of Iwaniec and
Sarnak for the archimedean matrix coefficient, both involve showing that the coefficient decays
away from a torus. The relation between the sup-norm problem and subconvexity is also similar.
In particular, when χ is fixed in Theorem B, the local bound agrees with the convexity bound
for the central L-value, and the automorphic period we consider is a sum over a fixed collection
of points if K is imaginary (respectively, a sum of integrals over closed geodesics if K is real),
and subconvexity follows from any improvement over the local bound with no cancellation in
the sum being required. This is analogous to what happens on applying the Iwaniec–Sarnak
bound for Eisenstein series, where one obtains a t-aspect subconvexity result for the Riemann
zeta function (see Remark D of [IS95]).

On the other hand, the required bounds for the archimedean matrix coefficient used by
Iwaniec and Sarnak (see Lemma 1.1 of [IS95]) follow in an elementary manner using integration
by parts. However, our p-adic matrix coefficient is more subtle and so we need quantitative
results on the decay across a sequence of compact subsets of matrix coefficients associated to local
newvectors. Such results do not appear to be available in the literature; indeed, existing results
on decay of matrix coefficients (see, e.g., [Oh02]) typically give the decay for the torus component
of the elements (in the sense of the Cartan decomposition) going to infinity, which are completely
orthogonal to what we require. In Theorem 5.4(1), we provide a general quantitative statement
about the decay of these matrix coefficients of the sort we need, which may be of independent
interest. The proof of Theorem 5.4 is carried out in § 5 (which can be read independently of the
rest of the paper) and uses the stationary phase method in the p-adic context. A key role in the
proof is played by a useful formula9 for the Whittaker newvector in terms of a family of 2F1

hypergeometric integrals, which allows us to use the p-adic stationary phase method.
The idea outlined above can be phrased in a more general context (without any need

to restrict ourselves to newforms) to prove an improved sup-norm bound whenever suitable
results on decay of local matrix coefficients along a filtration of compact subsets are available.
We develop a suitable language for such a result in §§ 3 and 4.1 leading to Theorem 4.6, which
may be regarded as the ‘master theorem’ of this paper. Theorem 4.6 gives a strong sup-norm
bound for any family of automorphic forms of powerful levels for which certain local hypothe-
ses are satisfied. Thus, it reduces the question of proving these bounds to checking these local
hypotheses, and Theorem 5.4, described earlier, is essentially the statement that these local
hypotheses are satisfied by the family of local newvectors of odd conductor and trivial central
character. The proof of Theorem 4.6 is carried out in § 4.3 and uses as a main ingredient a
lattice-point counting result proved in [Sah20].

We end this introduction with a few remarks about possible extensions of this work. It should
be possible to extend the argument to prove a non-trivial hybrid bound (simultaneously in the
depth and eigenvalue aspects) for the sup-norm; however, we do not attempt to do so here.

9 For some history of this type of formula, see Remark 2.20 of [CS18].

2373

https://doi.org/10.1112/S0010437X20007460 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007460


Y. Hu and A. Saha

The method of this paper can be combined with the Fourier/Whittaker expansion at various
cusps in the adelic context (the necessary machinery for which is now available thanks to recent
work of Assing [Ass19] building on earlier work of the second author [Sah16, Sah17]) to give a
depth-aspect sub-local bound in the case D = M2(Q) (possibly with a different exponent than
in Theorem A due to some differences in the counting argument). Finally, this paper provides
a general strategy of how one should go about improving the local bound in the level aspect
in cases where the local vectors are not sufficiently localized. Essentially, the message is that
one needs to combine a counting argument with a ‘decay of matrix coefficients’ argument to
successfully attack this problem for a wide array of local and global families.

2. Preliminaries

2.1 Basic notation
The basic notation used in this paper is by and large the same as that in [Sah20], but for
convenience we recall it here.

Generalities. Let f denote the finite places of Q (which we identify with the set of primes)
and ∞ the archimedean place. We let A denote the ring of adeles over Q and Af the ring of
finite adeles. Given an algebraic group H defined over Q, a place v of Q, a subset of places U of
Q, and a positive integer M , we denote Hv := H(Qv), HU :=

∏
v∈U Hv, HM :=

∏
p|M Hp. Given

an element g in H(Q) (respectively, in H(A)), we will use gp to denote the image of g in Hp

(respectively, the p-component of g); more generally, for any set of places U , we let gU denote
the image of g in HU .

Given two integers a and b, we use a|b to denote that a divides b, and we use a|b∞ to denote
that a|bn for some positive integer n. For any real number α, we let 
α� denote the greatest
integer less than or equal to α and we let �α denote the smallest integer greater than or equal
to α. For any integer A =

∏
p∈f p

ap , we write

A1 =
∏
p∈f

p�ap/2�. (4)

In other words, A1 is the smallest integer such that A divides A2
1.

All representations of (topological) groups are assumed to be continuous and over the field
of complex numbers.

Quaternions, orders, and groups. Throughout this paper, we fix an indefinite quaternion
division algebra D over Q. We fix once and for all a maximal order Omax of D. All constants
in the bounds in this paper will be allowed to depend on D without explicit mention. We let d
denote the reduced discriminant of D, i.e. the product of all primes such that Dp is a division
algebra. We let nr be the reduced norm on D×.

We denote G = D× and G′ = PD× = D×/Z, where Z denotes the centre of D×. For each
prime p, let Kp = (Omax

p )× and let K ′
p denote the image of Kp in G′

p. Given an order O of D,
we define a compact open subgroup of G(Af ) by

KO =
∏
p∈f

O×
p .

For each place v that is not among the primes dividing d, fix once and for all an isomorphism
ιv : Dv

∼=−→M(2,Qv). We assume that these isomorphisms are chosen such that for each finite
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prime p � d, we have ιp(Op) = M(2,Zp). By abuse of notation, we also use ιv to denote the
composition map D(Q) → Dv →M(2,Qv).

For any lattice L ⊆ Omax of D, we get a local lattice Lp of Dp by localizing at each prime p.
These collections of lattices satisfy

L = {g ∈ D : gp ∈ Lp for all primes p}. (5)

Conversely, if we are given a collection of local lattices {Lp}p∈f such that Lp ⊆ Omax
p for all p

and Lp = Omax
p for all but finitely many p, then there exists a unique lattice L ⊆ Omax of D

defined via (5) and whose localizations at primes p are precisely the Lp. We will refer to L as
the global lattice corresponding to the collection of local lattices {Lp}p∈f . More generally, given
a finite subset S ⊆ f and a collection of local lattices {Lp}p∈S , we can construct the (unique)
lattice whose localization at a prime p equals Lp if p ∈ S and equals Omax

p if p /∈ S; we will refer
to this lattice as the global lattice corresponding to {Lp}p∈S .

Let L be a lattice in D such that L ⊆ Omax. We say that L is tidy in Omax if L contains 1 and
M2

3 divides N = [Omax : L], where (M1,M2,M3) is the unique triple of positive integers such that
M1|M2|M3 and Omax/L � (Z/M1Z) × (Z/M2Z) × (Z/M3Z). Note that sinceN = M1M2M3,M2

3

divides N if and only if N divides (M1M2)2 if and only if M3 divides M1M2. Let Lp be a lattice
of Dp such that Lp ⊆ Omax

p . We say that Lp is tidy in Omax
p if 1 ∈ Lp and m3 � m1 +m2,

where (m1,m2,m3) is the unique triple of non-negative integers such that m1 � m2 � m3 and
Omax
p /Lp � (Zp/pm1Zp) × (Zp/pm2Zp) × (Zp/pm3Zp). It is clear that a global lattice L is tidy in

Omax if and only if all the corresponding local lattices Lp are tidy in Omax
p .

For each g ∈ G(Af ) and a lattice L of D, we let gL denote the lattice whose localization at
each prime p equals gpLpg−1

p . Note that if g ∈ KOmax and L is tidy in Omax, then gL is also tidy
in Omax.

Haar measures. We fix the Haar measure on each group Gp such that vol(Kp) = 1. We fix
a Haar measure on Q×

p such that vol(Z×
p ) = 1. This gives us resulting Haar measures on each

group G′
p such that vol(K ′

p) = 1. Fix any Haar measure on G∞ and take the Haar measure on
R× to be equal to dx/|x|, where dx is the Lebesgue measure. This gives us a Haar measure on
G′∞. Take the measures on G(A) and G′(A) to be given by the product measure.

For each continuous function φ on the space G(A), we let R(g) denote the right-regular
action, given by (R(g)φ)(h) = φ(hg). If a continuous function φ on G(A) satisfies that |φ| is left
Z(A)G(Q) invariant, define

‖φ‖2 =
( ∫

G′(Q)\G′(A)
|φ(g)|2 dg

)1/2

. (6)

Note above that G′(Q)\G′(A) is compact, so convergence of the integral is not an issue.

Asymptotic notation. We use the notation A�x,..,y B to signify that there exists a quantity
C depending only on x, .., y (and possibly on any objects fixed throughout the paper) so that
|A| � C|B|. We use A �x,..y B to mean that A�x,..y B and B �x,..y A. The symbol ε will
denote a small positive quantity whose value may change from line to line; a statement such as
A�ε,x,.. B should be read as ‘For all small ε > 0, there is a quantity C that depends only on
ε, x, .., and on any objects fixed throughout the paper such that |A| � C|B|.’ An assertion such
as A�x,..y D

O(1)B means that there is a constant C such that |A| �x,..y |D|C |B|.
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2.2 A counting result
Let u(z1, z2) = |z1 − z2|2/4 Im(z1) Im(z2), which is a function of the usual hyperbolic distance
on H. For the convenience of the reader, we recall a counting result from [Sah20] that will be
used later.

Proposition 2.1. For a compact subset J of H and a tidy lattice L ⊆ Omax with [Omax : L] =
N , the following bounds hold for all z ∈ J :

∑
1�m�L

|{α ∈ L : nr(α) = m,u(z, ι∞(α)z) � δ}| �ε,δ,J LεN ε

(
L+

L2

N

)
, (7)

∑
1�m�L

|{α ∈ L : nr(α) = m2, u(z, ι∞(α)z) � δ}| �ε,δ,J LεN ε

(
L+

L3

N

)
. (8)

Proof. This is an immediate corollary of [Sah20, Proposition 2.8 and Remark 2.11]. Note that
Proposition 2.8 of [Sah20] has the additional assumption 1 � L � NO(1). However, as is clear
from the proof of that proposition, the assumption was used there for the sole purpose of replacing
any Lε factors by N ε. Here, we have removed that assumption and instead included additional
factors of Lε on the right-hand sides of each of (7) and (8). �

Remark 2.2. The above result is the main reason why we introduced the concept of ‘tidy’. For
non-tidy lattices, the counting result gets more complicated, as demonstrated in Proposition 2.8
of [Sah20].

3. Local families

For each prime p ∈ f , we let Π(Gp) denote the set of isomorphism classes of representations π of
Gp that are irreducible, admissible, unitary, and, if p � d, also infinite dimensional. Let

Ap = {(Cv, π) : π ∈ Π(Gp), 0 �= v ∈ Vπ}.

Definition 3.1. A local family (over Gp) is a subset of Ap.

We will typically use Fp to denote a local family over Gp and sometimes write the elements
of Fp as Fp = {(Cvi,p, πi,p)i∈Sp}, where Sp denotes an indexing set.

Definition 3.2. For each p ∈ f , we let Fur
p denote the local family consisting of all the pairs

(Cv, π) such that π ∈ Ap has the unique Kp-fixed line Cv.

For each p � d, π ∈ Π(Gp), let a(π) ∈ Z�0 denote the exponent in the conductor of π. We
write a1(π) = �a(π)/2.

Definition 3.3. A nice local family over Gp is a subset Fp of Ap with the following properties.

(i) If p|d, then Fp = Fur
p .

(ii) If p � d, then
Fp ∩ {(Cv, π) : π ∈ Π(Gp), a(π) = 0} = Fur

p .

Definition 3.4. A nice collection of local families (or, simply, a nice collection) is a tuple of
the form F = (Fp)p∈f such that for each prime p ∈ f , Fp is a nice local family over Gp.
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Remark 3.5. Note that a nice local family does not have any ‘old vectors’ originating from
spherical (i.e.Kp-fixed) vectors. Furthermore, nice collections have no complications at the places
dividing d. We will restrict to nice families/collections for technical convenience and to get a
cleaner statement of our main global theorem later on.

The following definition quantifies the decay of a matrix coefficient along a filtration of
compact subsets, needed for our main theorem.

Definition 3.6. Let η1, η2, δ be non-negative real numbers such that η1 � η2. Let F = (Fp)p∈f

be a nice collection and, for each p ∈ f , write Fp = {(Cvi,p, πi,p)i∈Sp}, where Sp is any indexing
set for Fp. We say that F is controlled by (η1, δ; η2) if there exists c � 0 (c depending only
on F , η1, η2) and, furthermore, for each p � d and i ∈ Sp such that a(πi,p) > 0, there exists an
element gi,p ∈ Gp, so that using the shorthand

v′i,p := πi,p(gi,p)vi,p, Φ′
i,p(g) =

〈πi,p(g)v′i,p, v′i,p〉
〈v′i,p, v′i,p〉

,

the conditions (1) and (2) below hold for each p ∈ f , p � d, i ∈ Sp for which a(πi,p) > 0.

(1) There exists a tidy order Oi,p ⊆ Omax
p such that:

(a) [Omax
p : Oi,p] � pη1a1(πi,p)+c(η2−η1);

(b) the πi,p-action of O×
i,p on v′i,p generates an irreducible representation of dimension

� pδa1(πi,p).
(2) For each η satisfying η1 < η � η2, there exists a tidy lattice Lηi,p ⊆ Oi,p such that:

(a) Lη′i,p ⊆ Lηi,p for all η1 < η � η′ � η2;
(b) pηa1(πi,p)−c � [Omax

p : Lηi,p] � pηa1(πi,p)+c;
(c) if g ∈ O×

i,p, g /∈ Lηi,p, we have |Φ′
i,p(g)| � pc+(η−η2)a1(πi,p).

Remark 3.7. Suppose we have a collection F which is controlled by (η1, δ; η2). Then it is trivially
true that F is controlled by (η1, δ; η′2) for any η1 � η′2 � η2. Therefore, whenever we assert that
F is controlled by some (η1, δ; η2), we will try and ensure that we choose η2 as large as possible
(for those particular values of η1 and δ).

Remark 3.8. Suppose that F is controlled by (η1, δ; η2). Let us explore the possible range of
values that η1, η2, δ can take. We assume for the purpose of this remark that for each prime p
either Fp = Fur

p or the set {a(πi,p) : i ∈ Sp} is unbounded.
We first focus on the implications of condition (1). Let i ∈ Sp with a(πi,p) > 0. Then condition

(1) implies that ∫
O×

i,p

|Φ′
i,p(g)|2 dg � p(−δ−η1)a1(πi,p)−c(η2−η1). (9)

Now it can be shown (by formal degree considerations) that for πi,p discrete series, the left-hand
side above is � p−a1(πi,p). In fact, an explicit computation (performed in [Sah17]) shows that
the same holds for principal series. Therefore (by letting i→ ∞), we obtain the inequality

η1 + δ � 1. (10)

This inequality is sharp in the sense that there exist several collections F that satisfy condition
(1) for some η1, δ with η1 + δ = 1. Indeed, for many natural collections (including those that
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correspond locally to newvectors of trivial character, minimal vectors, and p-adic microlocal
lifts) one can choose the order Oi,p = Omax

p to ensure that the condition (1) of Definition 3.6
holds with η1 = 0, δ = 1; see Proposition 2.13 of [Sah17], § 1.4 and Remark 3.2 of [Sah20], and
Corollary A.3 of [HN18].

Next we explore what is the possible range of values that η2 can take given η1 and δ. Com-
bining (9) with condition (2) of Definition 3.6 and the triangle inequality, a simple computation
leads to

η2 � η1 + δ. (11)

On the other hand, suppose we have a collection F satisfying condition (1) of Definition 3.6 for
some η1, δ. Then it is trivially true that F is controlled by (η1, δ; η1).

So, to summarize, if a collection F satisfies condition (1) of Definition 3.6 for some η1, δ,
then (10) holds, and if we then want to find some η2 such that F is controlled by (η1, δ; η2), then
any such η2 must lie in the range [η1, η1 + δ]. In this range, η2 = η1 always works.

Remark 3.9. In relation to the last remark, the main result of [Sah20] tells us that whenever
a collection satisfies condition (1) of Definition 3.6 with η1 = η2 and η1/3 + δ/2 < 1

2 , then we
can break the local bound for the sup-norms of the corresponding global automorphic forms.
Unfortunately it is not always true that naturally occurring collections have this property.

The crucial new ingredient in this paper is represented by condition (2), which posits a linear
decay result for the matrix coefficient associated to a suitable translate of vi,p. Whenever we can
prove a quantitative decay of local matrix coefficients so that F is controlled by (η1, δ; η2) for
some η2 > η1, it will allow us (in our main global theorem, Theorem 4.6 below) to improve upon
the sup-norm estimate obtained from condition (1) alone.

Remark 3.10. The assumption that the relevant lattices/orders in Definition 3.6 are tidy is in
order to get a cleaner statement of Theorem 4.6 later on. However, this is not essential for our
method and one could in principle omit from Definition 3.6 the condition that the lattices are
tidy. However, in that case, Proposition 2.1 would need to be modified and Theorem 4.6 below
would get more complicated.

Remark 3.11. One could refine Definition 3.6 by including the constant c among the ‘controlling’
parameters, or by replacing c with a function of i and p. Any such hybrid definition can be used
to make a refinement of Theorem 4.6 below without much additional work. We avoid doing this
in this paper in the interest of simplicity and because our main focus is in the depth aspect.

Example 3.12. For each p � 2d, define the local family Fmin,∗
p to be the union of Fur

p and all pairs
(Cv, π) such that π is a twist-minimal supercuspidal representation of Gp satisfying a(π) �≡ 2
(mod 4) and v is a minimal vector in π in the sense of [HN18]. For p|2d, define Fmin,∗

p = Fur
p . Let

Fmin,∗ be the corresponding nice collection. Then, by the results of [HN18], Fmin,∗ is controlled
by (1, 0; 1). Furthermore, it follows from Remark 3.2 of [Sah20] that Fmin,∗ is controlled by
(γ, 1 − γ; 1) for all 0 � γ � 1. So, this is an example where equality is attained in both (10)
and (11).

Definition 3.13. Let p � d be a prime. Define the nice local family Fnew,∗
p to consist of all pairs

(Cv, π) with π varying over the representations in Π(Gp) with unramified central character, and
Cv equal to the (unique) line generated by the local newvector.
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The following result will follow from our work in § 5 of this paper.

Proposition 3.14. Let G = {Gp} be the nice collection given by:

(i) Gp = Fnew,∗
p if p � 2d;

(ii) Gp = Fur
p if p|2d.

Then G is controlled by (0, 1; 1
2).

Remark 3.15. Roughly speaking, Proposition 3.14 asserts (among other things) that for each
fixed odd prime p and each local representation πp of GL2(Qp) with a1(πp) = n1, there is a
certain translate v′ of the newform whose associated matrix coefficient Φ′(g) is bounded by
p−n1/2 [Omax

p : Lηp] at matrices g /∈ Lηp, where {Lηp}0�η�1
2

is a suitable filtration of lattices in

Omax
p such that [Omax

p : Lηp] � pηn1+O(1).
However, what we will end up proving in § 5 is the stronger statement that the matrix

coefficient Φ′(g) is bounded by p−n1/2 [Omax
p : Lηp]1/4 at such matrices.

Unfortunately, this stronger bound does not help in improving the exponent 5/24 in
Theorem A. This is essentially because both the above bounds coincide when [Omax

p : Lηp] � 1.

Remark 3.16. Let k0 be some fixed non-negative integer. For each prime p not dividing 2d,
consider the subset of Fnew,∗

p consisting of the pairs (Cvi, πi) ∈ Fnew,∗
p , where a(πi) � k0. Then,

letting gi,p = ι−1
p

(
pa1(πi)

1

)
and Lηi,p = Omax

i,p , we see that the conditions in Definition 3.6 hold
(trivially) for η1 = 0, δ = 1, η2 = 1

2 with the constant c equal to k0/2. So, in order to prove
Proposition 3.14, it suffices to restrict our attention only to representations πi with a(πi) > k0.
We will use this with k0 = 2 in § 5 when we prove the above proposition.

Furthermore, for the proof of Proposition 3.14, it suffices to restrict ourselves only to the pairs
(Cv, π) ∈ Fnew,∗

p where πi has trivial central character. This is because any unitary representation
of GL2(Qp) with unramified central character can be twisted by |det(g)|sp for some suitable
s ∈ iR to make it have trivial central character; the twisting action in this case takes newforms
to newforms, and the matrix coefficients, etc., remain the same.

Remark 3.17. We suspect that Proposition 3.14 continues to hold for the larger collection where
we allow (a) p = 2, and (b) replace the condition of unramified central character with more
general central characters. However, for simplicity, we restrict ourselves to this case.

4. The main global result

Throughout this section, we will use the notation defined in §§ 2.1 and 3.

4.1 Global families
We let Π(G) denote the set of irreducible, unitary, cuspidal automorphic representations of G(A).
For any π = ⊗vπv in Π(G), we let C(π) =

∏
p�d p

a(πp) denote the conductor10 of ⊗p�dπp, and we
identify Vπ with a (unique) subspace of functions on G(A) so that π(g) coincides with the right-
regular representation R(g) on that subspace. We define the integer C1(π) as in (4); i.e. C1(π)

10 The conductor of π equals C(π)
∏

p|d pa(πp); thus, C(π) denotes the ‘away from d’ part of the conductor of π.

For p|d, a(πp) can be defined via the local Jacquet–Langlands correspondence; in particular, this gives a(πp) = 1
if p|d and πp is one dimensional.
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is the smallest integer such that C(π) divides C1(π)2. For any π ∈ Π(G), define

S(π) = {p ∈ f : p|C(π)} = {p ∈ f : p � d, πp has no Kp-fixed line},

C ′(π) =
∏

p∈S(π)

p.

We denote

A(G) = {(Cφ, π) : π ∈ Π(G), 0 �= φ ∈ Vπ}.
If φ is a function such that (Cφ, π) ∈ A(G), then |φ| is left Z(A)G(Q) invariant and hence we
define ‖φ‖2 as in (6). For any such φ, we say that φ is factorizable if φ corresponds to a pure
tensor under the isomorphism11 π � ⊗vπv, in which case we write φ = ⊗vφv with φv a vector
in πv.

Definition 4.1. For (Cφ, π) ∈ A(G) and T > 0, we say that the archimedean parameters of
(Cφ, π) are bounded by T if the following two conditions hold: (a) the analytic conductor
q∞(π∞) (see [IK04, p. 95] for the definition) of π∞ satisfies q∞(π∞) � T , and (b) the weight-
vector decomposition of φ under the action of ι−1∞ (SO(2)) involves only weights k such that
|k| � T .

Remark 4.2. Let φ be a cuspidal automorphic form on G(A) that generates some representation
π ∈ Π(G). Then it is easy to see that (Cφ, π) has its archimedean parameters bounded by some
T (since the usual definition of an automorphic form implies that φ is K∞-finite).

Definition 4.3. Given a nice collection F = (Fp)p∈f of local families, we define the correspond-
ing global family of automorphic forms A(G;F) as follows:

A(G;F) = {(Cφ, π) ∈ A(G) : φ = ⊗vφv is factorizable, (Cφp, πp) ∈ Fp for all p ∈ f}.

Definition 4.4. For each T > 0, we let A(G;F , T ) ⊂ A(G;F) consist of all the (Cφ, π) in
A(G;F) whose archimedean parameters are bounded by T .

Remark 4.5. Suppose that F is a nice collection and (Cφ, π) ∈ A(G;F , T ). Then our definition
of a nice collection implies that

{p ∈ f : φp is not Kp-fixed} = S(π).

4.2 Statement of the main theorem
We can now state the master theorem of this paper.

Theorem 4.6. Let η1, η2, δ be non-negative real numbers such that η1 � η2. Let F = (Fp)p∈f

be a nice collection that is controlled by (η1, δ; η2). Then there is a non-negative constant x

depending only on F , η1, η2 (we can take x = 0 if η1 = η2) such that for all (Cφ, π) ∈ A(G;F , T ),
we have

sup
g∈G(A)

|φ(g)| �T,ε C
′(π)xC1(π)δ/2+η1/2−η2/6+ε‖φ‖2.

11 Such an isomorphism is unique up to scalar multiples, and we fix a choice of isomorphism once and for all.
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The above theorem can be viewed as a generalization of Theorem 1 of [Sah20], which dealt
with the special case12 η1 = η2; in this special case, condition (2) of Definition 3.6 is vacuous and
does not play any part.

Remark 4.7. In previous sup-norm papers such as [HNS19, Sah16], we often restricted to auto-
morphic forms which corresponded classically to Hecke eigenforms that are either Maass cusp
forms of weight 0 or holomorphic cusp forms of weight k. Definition 4.1 above (see also
Remark 4.2) allows us to state Theorem 4.6 for much more general automorphic forms.

Remark 4.8. As mentioned earlier, for many nice collections, condition (1) of Definition 3.6 holds
with η1 = 0, δ = 1. This gives us the ‘local bound’

sup
g∈G(A)

|φ(g)| �T,ε C1(π)1/2+ε‖φ‖2 (12)

for any φ belonging to the corresponding global family of automorphic forms. Theorem 4.6 gives
us a pathway to go beyond (12) in this case whenever we can prove the existence of some η2 > 0
for which condition (2) of Definition 3.6 holds.

That this can indeed be done (with η2 = 1
2) for the collection corresponding to global new-

forms of odd conductor and trivial character is precisely the content of Proposition 3.14. This
leads to the following corollary.

Corollary 4.9. Let G be as in Proposition 3.14. Let C be a positive integer such that (C, 2d)
= 1, and let C ′ be the product of all the primes dividing C. Let (Cφ, π) ∈ A(G;G) and assume

that:

(i) C(π) = C;

(ii) φ∞ is a vector of weight k in π∞.

Then we have

sup
g∈G(A)

|φ(g)| �k,π∞,ε (C ′)O(1)C
5
24

+ε‖φ‖2. (13)

Proof. Clearly, φ belongs to A(G;G, T ) for G as given by Proposition 3.14 and T depending
only on π∞ and k. By Proposition 3.14, G is controlled by (0, 1; 1

2). Now the result follows from
Theorem 4.6. �

Remark 4.10. It will be clear from the results of § 5 that the exponent of C ′ implicit in
Corollary 4.9 is effective and can be written down explicitly.

4.3 The proof of Theorem 4.6
In this subsection, we complete the proof of Theorem 4.6. The case η1 = η2 is a direct corollary
of Theorem 1 of [Sah20]. So throughout this proof we will assume that η2 > η1.

Let F be a nice collection that is controlled by (η1, δ; η2). Let (Cφ, π) ∈ A(G;F , T ) be such
that 〈φ, φ〉 = 1. Furthermore, we assume without loss of generality that φ is a weight vector, i.e.
there exists some integer k such that |k| � T and, for all g ∈ G(A),

φ

(
g

(
ι−1
∞

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)))
= eikθφ(g). (14)

12 Note however that in [Sah20] we did not assume that the relevant orders are tidy.
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Henceforth, we drop the index i (since we are dealing with a particular φ). Thus, for each
prime p ∈ S(π), the vector vi,p occurring in Definition 3.6 is the vector φp in πp in the current
setup. We let φ′p be the local translate of φp that corresponds to v′i,p from Definition 3.6 for
p ∈ S(π); we define φ′p = φp for p /∈ S(π). We let φ′ be the automorphic form on G(A) under
the fixed isomorphism π = ⊗vπv. Then the automorphic form φ′ is just a translate of φ by a
certain element of G(Af ). Therefore, ‖φ′‖2 = ‖φ‖2 = 1 and supg∈G(A) |φ′(g)| = supg∈G(A) |φ(g)|.
Henceforth, we will just work with φ′.

Given some p ∈ S(π) and some ηp such that η1 < ηp � η2, let Op and Lηp
p satisfy the relevant

conditions of Definition 3.6. For notational convenience, we henceforth denote Lη1p = Op for each
p ∈ S(π), so that Lηp

p makes sense for the entire range η1 � ηp � η2.
Let O be the global order in D corresponding to the collection of local orders {Op}p∈S(π).

For any S(π)−tuple H = (ηp)p∈S(π) with each ηp chosen such that η1 � ηp � η2, let LH be the
global lattice such that (LH)p = Lηp

p if p ∈ S(π) and (LH)p = Omax
p if p /∈ S(π). Note that LH ⊆

O ⊆ Omax and the lattice gLH is tidy in Omax for all choices of H and all g ∈ KOmax . We put
N = [Omax : O], NH = [Omax : LH ] and note that NH = N if ηp = η1 for all p ∈ S(π). By our
assumptions (see Definition 3.6), we have

NH � C ′(π)O(1)C1(π)ηp , N/NH � C ′(π)O(1)C1(π)η1−ηp . (15)

Let J be a fixed (compact) fundamental domain for the action of

ΓOmax = {γ ∈ ι∞(Omax), det(γ) = 1}

on H. In order to prove Theorem 4.6, it suffices to prove that

|φ′(g)| �T,ε C
′(π)O(1)C1(π)δ/2+η1/2−η2/6+ε (16)

for all g =
∏
v gv ∈ G(A) satisfying

gp ∈ Kp for all p ∈ f , det(ι∞(g∞)) > 0 and ι∞(g∞)(i) ∈ J . (17)

This is because any element of G(A) can be left multiplied by a suitable element of Z(A)G(Q)
so that g has the above property.

The rest of this subsection is devoted to proving (16).

Test functions. We define a test function κ on G(A), which will be essentially the same as the
one used in [Sah20]. Let S = S(π) ∪ {p ∈ f : p|d}. Let ur = f \ S be the set of primes not in S.
We will choose κ of the form κ = κSκurκ∞. For convenience, we denote GS =

∏
p∈S Gp, Q×

S =∏
p∈S Q×

p , and O×
S =

∏
p∈S O×

p . By assumption, the action of O×
S on φ′ generates an irreducible

representation of dimension �ε C1(π)δ+ε.
We define the function κS on GS as follows:

κS(gS) =

⎧⎨
⎩

0 if gS /∈ Q×
SO×

S ,

ω−1
π (z)〈φ′, π(k)φ′〉 if gS = zk, z ∈ Q×

S , k ∈ O×
S .

Then, as in § 4.1 of [Sah20], we have

R(κS)φ′ :=
∫

Q×
S \GS

κS(g)(π(g)φ′) dg = λSφ
′, where λS �ε

1
NC1(π)δ+ε

. (18)
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Next we move on to the primes in ur. We define κur exactly as in § 4.1 of [Sah20]. The
definition of κur depends on a parameter Λ that we will fix later. As shown in [Sah20],

R(κur)φ′ = λurφ
′, λur �ε Λ2−ε. (19)

Finally, we consider the infinite place. As we are not looking for a bound in the archimedean
aspect, the choice of κ∞ is unimportant. However, for definiteness, let us fix the function κ∞ as
follows. Let f : R�0 → [0, 1] be a smooth non-increasing function such that f(x) = 1 if x ∈ [0, 1

2 ]
and f(x) = 0 if x � 1. Let g ∈ GL2(R)+ and define u(g) = |g(i) − i|2/4 Im(g(i)). Define

κ∞(g) = f(u(g))〈φ′, π(g)φ′〉

for g ∈ GL2(R)+ and define κ∞ to be equal to identically zero on GL2(R)−. Then we have that

κ∞(g) �= 0 ⇒ det(ι∞(g∞)) > 0, u(ι∞(g∞)) � 1

and furthermore the operator R(κ∞) satisfies

R(κ∞)φ′ = λ∞φ′, λ∞ �T 1. (20)

We define the automorphic kernel Kκ(g1, g2) for g1, g2 ∈ G(A) via

Kκ(g1, g2) =
∑

γ∈G′(Q)

κ(g−1
1 γg2).

Now, as in § 4.2 of [Sah20], we get

|φ′(g)|2 �T,ε NC1(π)δ+εΛ−2+εKκ(g, g). (21)

On the other hand, we have by construction

Kκ(g, g) �
∑

1���16Λ4

y�
�1/2

∑
γ∈G′(Q)
κ�(γ) 	=0

κ∞(g−1∞ γ∞g∞) 	=0

∣∣κS(g−1
S γSgS)

∣∣, (22)

where the y� satisfy

|y�| �

⎧⎪⎨
⎪⎩

Λ, � = 1,

1, � = �1�2 or � = �21�
2
2 with �1, �2 ∈ P,

0, otherwise

(23)

with P = {� : � prime, � ∈ ur, Λ � � � 2Λ} and where κ� =
∏
p∈ur κ�,p is a function on∏

p∈urG(Qp) that is defined in § 3.5 of [Sah17] (see also § 4.1 of [Sah20]); we recall that κ�,p
is supported on Q×

p Op(�), where Op(�) = {α ∈ Op : nr(α) ∈ �Z×
p }.

Let us look at (22) more carefully. First of all, note that if κ�(γ)κ∞(g−1∞ γ∞g∞) �= 0, then:

(a) γp ∈ Q×
p Op(�) ∀p ∈ ur;
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(b) det(ι∞(γ∞)) > 0, u(z, ι∞(γ∞)z) � 1, where z = g∞i.

Looking at the primes p|d, we see that κS(g−1
S γSgS) �= 0 implies that:

(c) γp ∈ Q×
p O×

p ∀p|d.
(We remind the reader here that Op = Omax

p if p ∈ ur or if p|d.)
Consider the primes p ∈ S(π). If κp(g−1

p γpgp) �= 0, then clearly g−1
p γpgp ∈ Q×

p O×
p or, equiv-

alently, γp ∈ Q×
p (gO)×p . So far, we have not at all used condition (2) of Definition 3.6. We now

do so. For each prime p ∈ S(π), define rp = a1(πp) + 1. Define Rp = {1, . . . , rp} and let R be the
set-theoretic product

∏
p∈S(π)Rp. For each u = (up)p∈S(π) ∈ R, where each up ∈ Rp, associate

another tuple Hu = (ηp,up)p∈S(π) as follows: ηp,1 = η1 and ηp,i = η1 + (i− 1)((η2 − η1)/a1(πp))
for all 1 � i � rp.

Now consider a γ ∈ G′(Q) which satisfies (a)–(c) above and such that γp ∈ Q×
p (gO)×p for each

p ∈ S(π). It is clear that for any such γ, there exists a unique tuple u ∈ R such that:

(d) g−1
p γpgp ∈ Q×

p (Lηp,up
p ∩ O×

p ), g−1
p γpgp /∈ Q×

p (Lηp,up+1
p ∩ O×

p ) ∀p ∈ S(π).

Above, we adopt the convention that Lηp,rp+1
p is the empty set for each p ∈ S(π), so that the

second part of condition (d) is automatic for the primes where up = rp.
It is clear from the above discussion that the contribution to the right-most sum in (22) only

comes from those γ for which the conditions (a)–(d) above are satisfied for some tuple u ∈ R.
Furthermore, whenever the conditions (a)–(d) above are satisfied for a particular u, condition
2(c) of Definition 3.6 implies that

∣∣κS(g−1
S γSgS)

∣∣ � C ′(π)O(1)
∏

p∈S(π)

p(η2−η1)(up−a1(πp)).

For each tuple u, recall the definition of the lattice LHu , which is precisely the global lattice
corresponding to the collection of local lattices {Lηp,up

p }p∈S(π). Define

gLHu(�; z, 1) = {α ∈ gLHu : nr(α) = �, u(z, ι∞(α)z) � 1}.

By Proposition 4.2 of [Sah20], the number of γ ∈ G′(Q) satisfying (a)–(d) above is bounded by
the size of |gLHu(�; z, 1)|.

Therefore, we conclude that

Kκ(g, g) � C ′(π)O(1)
∑
u∈R

∑
1���16Λ4

y�
�1/2

|gLHu(�; z, 1)|
∏

p∈S(π)

p(η2−η1)(up−a1(πp)). (24)

Now, using the facts that the lattice gLHu is tidy in Omax and has index NHu in Omax, we
use Proposition 2.1 and (15) to obtain for each 1 � L � C(π)O(1),

∑
1�m�L

|gLHu(m; z, 1)| �ε C(π)ε
(
L+ C ′(π)O(1) L2

N
∏
p∈S(π) p

(η2−η1)(up−1)

)
, (25)

∑
1�m�L

|gLHu(m2; z, 1)| �ε C(π)ε
(
L+ C ′(π)O(1) L3

N
∏
p∈S(π) p

(η2−η1)(up−1)

)
. (26)

2384

https://doi.org/10.1112/S0010437X20007460 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007460


Sup-norms of eigenfunctions in the level aspect

Combining (23), (24), (25), and (26), we get

Kκ(g, g) �ε C
′(π)O(1)C(π)ε

(
Λ +

Λ4

NC1(π)η2−η1

) ∑
u∈R

1

�ε C
′(π)O(1)C(π)ε

(
Λ +

Λ4

NC1(π)η2−η1

)
(27)

since |R| �ε C(π)ε.
From (21) and (27), we obtain the pivotal inequality

|φ′(g)|2 �T,ε C1(π)η1+δ+εC ′(π)O(1)

(
1
Λ

+
Λ2

C1(π)η2

)
. (28)

Now, putting Λ = C1(π)η2/3, we immediately obtain (16), as required.

5. Some p-adic stationary phase analysis

This section will be purely local. The results here will complete the proof of Proposition 3.14.

5.1 Notation
The following notation will be used throughout § 5. We let F be a non-archimedean local field
of characteristic zero. We assume throughout that F has odd residue cardinality q. Let o be its
ring of integers and p its maximal ideal. Fix a uniformizer � of o (a choice of generator of p).
Let |.| denote the absolute value on F normalized so that |�| = q−1. For each x ∈ F×, let v(x)
denote the integer such that |x| = q−v(x). For a non-negative integer m, we define the subgroup
Um of o× to be the set of elements x ∈ o× such that v(x− 1) � m.

Let ψ be a fixed non-trivial additive character of F and let a(ψ) be the smallest integer such
that ψ is trivial on pa(ψ). For χ a multiplicative character of F , let a(χ) be the smallest integer
such that χ is trivial on Ua(χ). We recall the following well-known lemma (see, e.g., Lemma 2.37
of [Sah16]).

Lemma 5.1. Let χ be a multiplicative character over F with a(χ) � 2. Then there exists αχ ∈
F× such that v(αχ) = −a(χ) + a(ψ) and

χ(1 + Δx) = ψ(αχΔx) (29)

for any Δx ∈ p�a(χ)/2�.

Throughout this section, we denote O = M2(o), G = GL2(F ), and K = GL2(o). Define
subgroups N = {n(x) : x ∈ F}, A = {a(y) : y ∈ F×}, Z = {z(t) : t ∈ F×}, B1 = NA, and
B = ZNA = G ∩ [ ∗ ∗∗ ] of G. For each non-negative integer r, s, denote

K0(r) = K ∩
( ∗ ∗

pr ∗
)
, K∗(r, s) = K ∩

( ∗ ps

pr ∗
)
,

O(r) = O ∩
( ∗ pr

pr ∗
)
, K∗(r) = K∗(r, r) = (O(r))×.

We note our normalization of Haar measures. The measure dx on the additive group F

assigns volume 1 to o and transports to a measure on N . The measure d×y on the multiplicative
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group F× assigns volume 1 to o× and transports to measures on A and Z. We obtain a left Haar
measure dLb on B via dL(z(u)n(x)a(y)) = |y|−1 d×u dx d×y. Let dk be the probability Haar
measure on K. The Iwasawa decomposition G = BK gives a left Haar measure dg = dLb dk

on G.
Let π be an irreducible, infinite-dimensional, unitary representation of G with trivial central

character. We define a(π) to be the smallest non-negative integer such that π has aK0(a(π))-fixed
vector. Let 〈, 〉 denote a G-invariant inner product on Vπ (which is unique up to multiples).

We will use the following notation:

– n = a(π);
– n1 := �n2 ;
– n0 := n− n1 = 
n2 �.
We let vπ denote a newform in the space of π, i.e. a non-zero vector fixed by K0(pn); it is

known that vπ is unique up to multiples. Put v′π = π(a(�n1))vπ. Note that v′π is the unique (up
to multiples) non-zero vector in π that is invariant under the subgroup a(�n1)K0(n)a(�−n1).
Define matrix coefficients Φπ, Φ′

π on G as follows:

Φπ(g) =
〈vπ, π(g)vπ〉
〈vπ, vπ〉 ,

Φ′
π(g) = Φπ(a(�−n1)ga(�n1)) =

〈v′π, π(g)v′π〉
〈v′π, v′π〉

.

These definitions are independent of the choice of vπ or of the inner product.

5.2 A reformulation of Proposition 3.14
For the rest of § 5, let π, vπ, v′π, Φ′

π be as above and assume that a(π) > 2 and π has triv-
ial central character. This is sufficient for the purpose of proving Theorem 3.14, as noted in
Remark 3.16.

Proposition 5.2. For each representation π as above, the following hold.

(a) The subrepresentation of π|K∗(1) generated by v′π is irreducible of dimension � qn0 .

(b) Let j � n1. Then, for all g ∈ K∗(1), g /∈ K∗(j + 1), we have |Φ′
π(g)| � q(j−n1)/2+O(1).

Before starting on the proof of Proposition 5.2, we explain how it implies Proposition 3.14.

Proof that Proposition 5.2 implies Proposition 3.14. Let η1 = 0, η2 = 1/2, δ = 1. Let p be an
odd prime not dividing d and consider Proposition 5.2 with F = Qp. We need to show that the
conditions (1) and (2) of Definition 3.6 hold. In the context of Definition 3.6, πi,p = π, vi,p = vπ,
where π and vπ are as defined in the beginning of this section. We define gi,p = ι−1

p

(
a1(πi)

1

)
and Oi,p = ι−1

p (O(1)). The vector v′i,p from Definition 3.6 is then the vector v′π defined above.
Now condition (1) of Definition 3.6 follows immediately from part (a) of Proposition 5.2.

In order to verify condition (2), let 0 � η � 1
2 . Define j = 
n1η/2� and put Lηi,p = ι−1

p

(O(j + 1)). Now condition (2) of Definition 3.6 is an immediate consequence of part (b) of
Proposition 5.2. �

2386

https://doi.org/10.1112/S0010437X20007460 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007460


Sup-norms of eigenfunctions in the level aspect

Remark 5.3. For the purpose of verifying condition (2) in the proof above, we could have selected
j to be any non-decreasing integer-valued function of η ∈ [0, 1

2 ] satisfying n1η/2 −O(1) � j �
2n1η +O(1).

5.3 Proof of part (a) of Proposition 5.2
Let us prove part (a) of Proposition 5.2. Let V1 be the vector space generated by the action
of K∗(1) on v′π. First we show that the action of K∗(1) on V1 is irreducible. If not, then there
exists a direct sum decomposition V1 = V2 + V3 into non-zero subspaces V2 and V3 which each
admit an action of K∗(1). Since v′π generates V1, its projections along V2 and V3 give two linearly
independent vectors which are both fixed by the subgroup a(�n1)K0(n)a(�−n1) ⊆ K∗(1) (recall
that a(π) � 2). This contradicts newform theory, thus showing the irreducibility of V1.

Next, we need to show that dim(V1) � qn1 . Let V2 be the vector space generated by the
action of K∗(0, n1 − n0) on v′π. Since K∗(1) is a subgroup of K∗(0, n1 − n0), it follows that
dim(V1) � dim(V2). On the other hand, Proposition 2.13 and Lemma 2.18 of [Sah17] show that
dim(V2) � qn0 . This completes the proof.

5.4 A refinement of part (b)
In this subsection, we state a refinement of assertion (b) of Proposition 5.2 in terms of a theorem
that involves the matrix coefficient associated to the newvector.

Theorem 5.4. Let y, z in F× and m ∈ F .

(i) Suppose that n0 < i < n− 1. Then we have∣∣∣∣Φπ

((
y m

0 z

)(
1 0
�i 1

))∣∣∣∣ � q(i−n)/2+O(1) (30)

and, furthermore, for such i as above, we have

Φπ

((
y m

0 z

)(
1 0
�i 1

))
�= 0 ⇒ v(y) = v(z) = v(m) + n− i. (31)

(ii) Suppose that n− 1 � i � n. Then we have

Φπ

((
y m

0 z

)(
1 0
�i 1

))
�= 0 ⇒ v(y) = v(z) � v(m) + 1. (32)

Before starting on the proof of Theorem 5.4, we explain how it implies Proposition 5.2.

Proof that Theorem 5.4 implies Proposition 5.2. Let j, g be as in Proposition 5.2. Since we have
the trivial upper bound of 1 on |Φ′

π(h)| for all h, and since g ∈ K∗(1), we may assume that
1 � j < n0 − 1. Furthermore, by decreasing j if necessary, we may assume that g ∈ K∗(j). So,
putting g =

(
a b
c d

)
, we have min(v(b), v(c)) = j. Note that Φ′

π(g) = Φπ

((
a b′
c′ d

))
, where c′ = c�n1 ,

b′ = b�−n1 . We consider two cases.

Case I: v(c) = j. In this case we have v(c′) = n1 + j. Since v(d) = 0, a direct calculation shows
that (

a b′

c′ d

)
∈ B(F )

(
1 0

�j+n1 1

)
K0(pn).

Therefore, (30) tells us that
∣∣Φπ

((
a b′
c′ d

))∣∣ � q(j+n1−n)/2+O(1) � q(j−n1)/2+O(1), as required.
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Case II: v(c) > j. In this case we have v(b) = j. As before, we have v(b′) = j − n1, v(c′) =
v(c) + n1, and Φ′

π(g) = Φπ

((
a b′
c′ d

))
. We can see from a direct calculation that

(
a b′

c′ d

)
∈

(
y m

0 z

)(
1 0
�r 1

)
K0(pn)

for some m ∈ F , y ∈ o×, z ∈ o×, and r = min(n, v(c) + n1). Note that v(b′) � v(m).
We claim that Φπ

((
a b′
c′ d

))
= 0. Suppose not. Suppose first that v(c) < n0 − 1. Then r =

v(c) + n1 and using (31) we see that v(m) = v(c) − n0. This gives us j − n1 = v(b′) � v(m) =
v(c) − n0 and hence that v(c) � j, which is a contradiction. Next, suppose that v(c) � n0 − 1.
Then n � r � n− 1 and using (32) we see that j − n1 = v(b′) � v(m) � −1. So, j � n1 − 1,
which contradicts our earlier assumption that j < n0 − 1. �

5.5 The proof of Theorem 5.4
The assertions (31) and (32) of Theorem 5.4 have already been proven in [Hu18, Proposition 3.1].
So, we only need to prove the upper bound part in Theorem 5.4, i.e. (30).

For simplicity, denote

Φ(i)
π (a,m) = Φπ

((
a m

0 1

) (
1 0
�i 1

) )
. (33)

For the rest of this section, we fix an additive character ψ of F such that a(ψ) = 0 and consider
the Whittaker model of π with respect to this character. Using the usual inner product in the
Whittaker model, it follows that

Φ(i)
π (a,m) =

∫
v(x)=0

ψ(mx)W (i)(ax) d×x, (34)

whereW (i)(x) = Wπ

((
x 0
0 1

)(
1 0
i 1

))
andWπ is the local Whittaker newform (see, e.g., § 3 of [Hu18]

for more details).
The basic tool to analyse such integrals is the p-adic stationary phase analysis. Roughly

speaking, we will rewrite this integral and break it up into pieces, and we will prove (using
orthogonality of characters) that most of these pieces vanish. The required bounds will follow by
counting the number of non-vanishing pieces. Since n > 2 and q is odd, there are two possibilities
for π: principal series representations and dihedral supercuspidal representations. We deal with
each below.

5.5.1 Principal series representation. Let π = π(μ1, μ2) be a principal series representation.
In this case n is even and we take μ2 = μ−1

1 = μ, a(μ) = n1 = n0 = n/2. Denote

C0 =
∫
u∈o×

μ(u)ψ(−�−n0u) du. (35)

Using the usual interpretation as a Gauss sum (see, e.g., [Sah16, (6)]), we see that |C0| � 1/qn0/2.
By [Hu17, Lemma 2.12], we have the following lemma.

Lemma 5.5. When n0 < i � n, W (i)(x) is supported on x ∈ o× and for x ∈ o× we have

W (i)(x) = C−1
0

∫
u∈o×

μ(1 + u�i−n0)μ(xu)ψ(−�−n0xu) du. (36)
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Note that the condition a(π) � 3 implies that a(μ) � 2. Let α be the constant associated
to μ by Lemma 5.1. Then v(α) = −n0.

By the results of [Hu18], Φ(i)
π (a,m) is supported on v(a) = 0 and v(m) = i− n > −n0. Then,

by (34),

Φ(i)
π (a,m) = C−1

0

∫
v(x)=0

ψ(mx)
∫
u∈o×

μ(1 + u�i−n0)μ(axu)ψ(−�−n0axu) du d×x

= C−1
0

∫∫
v(x)=v(u)=0

ψ(mxu)μ(1 + u−1�i−n0)μ(ax)ψ(−�−n0ax) du d×x. (37)

The idea is to break the above integral into small intervals, on each of which we can apply
Lemma 5.1 to analyse the integral and get easy vanishing for most of the small intervals. This
is the exact analogue of the archimedean stationary phase analysis. In the integrand in (37),
write u = u0(1 + Δu) for u0 ∈ o×/(1 + p�(n−i)/2�) and Δu ∈ p�(n−i)/2�, and x = x0(1 + Δx) for
x0 ∈ o×/(1 + p�n0/2�) and Δx ∈ p�n0/2�. Using Lemma 5.1 and the invariance properties of ψ and
μ, we get

Φ(i)
π (a,m) = C−1

0

∑
x0,u0

ψ(mx0u0)μ(1 + u−1
0 �i−n0)μ(ax0)ψ(−�−n0ax0)

×
∫

p�(n−i)/2�

∫
p�(n0)/2�

ψ
(
mu0x0Δx+mx0u0Δu

− α
�i−n0u−1

0

1 +�i−n0u−1
0

Δu+ αΔx−�−n0ax0Δx
)
dΔx dΔu. (38)

For the innermost integral involving Δx, Δu to be non-zero, we must have that

mu0x0 + α−�−n0ax0 ≡ 0 mod �−�n0/2�, (39)

mx0u0 − α
�i−n0u−1

0

1 +�i−n0u−1
0

≡ 0 mod �−�(n−i)/2�. (40)

From the first equation, we get that

x0 ≡ − α

mu0 −�−n0a
mod �
n0/2�. (41)

So, there is a unique x0 mod �
n0/2� for each u0 mod ��(n−i)/2� satisfying the above. As a
trivial consequence, there are at most q solutions of x0 mod ��n0/2� for each u0 mod ��(n−i)/2�.

Next, by computing (39)×mu0 – (40)× (mu0 −�−n0a), we get the following necessary
condition for non-vanishing:

α

(
mu0 +

�i−n0u−1
0 (mu0 −�−n0a)

1 +�i−n0u−1
0

)
≡ 0 mod �−�(n−i)/2�−n0 . (42)

Here we have used that −�n0/2 + i− n � −�(n− i)/2 − n0. This congruence is equivalent to

mu2
0 + 2�i−n0mu0 −�i−na ≡ 0 mod �−�(n−i)/2�, (43)

as v(α) = −n0. Note that v(mu2
0) = v(�i−na) = i− n < v(2�i−n0mu0). So, this quadratic

equation is not degenerate when p �= 2, and we can solve for at most two solutions of u0

mod �
(n−i)/2� and consequently at most 2q solutions of u0 mod ��(n−i)/2�.
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In summary, we have that there are � 2q2 pairs (x0, u0) contributing to (38) and so we get

|Φ(i)
π (a,m)| � |C−1

0 |2q2Vol(Δx)Vol(Δu) � q(i−n)/2+O(1), (44)

as required.

Remark 5.6. By going through the proof above more carefully (and looking at the cases n0 odd
and n0 even) the implied constant in O(1) in (30) can be worked out more explicitly. In particular,
when there are O(q) solutions of x0 and/or u0, the sums in x0, u0 can be reduced to sums over
the residue field and we expect complete square-root cancellation. The same comment applies
to the supercuspidal representation case below.

5.5.2 Supercuspidal representations. When 2 � q, π is associated by compact induction theory
to a character θ over a quadratic field extension E/F with ramification index eE . Their relations
are given explicitly as follows (see [BH06]).

(i) a(π) = n = 2n0 corresponds to eE = 1 and a(θ) = n0.
(ii) n = 2n0 + 1 corresponds to eE = 2 and a(θ) = 2n0.

In the following we shall give uniform formulations and estimates for both of these cases, which
one can verify case by case according to this classification. For simplicity, let E = F (

√
D) with

vF (D) = eE − 1. We let oE denote the ring of integers of E, �E denote a uniformizer of E, and
pE = �EoE . Let ψE = ψ ◦ trE/F . It is easy to check that a(ψE) = −eE + 1 since a(ψ) = 0. Let

C0 =
∫
vE(u)=−a(θ)−eE+1

θ−1(u)ψE(u) d×u. (45)

Again, by the usual interpretation as a Gauss sum, we get |C0| � 1/qa(π)/2. Checking case by
case, one can also see that for u in the domain of the integral,

v(NE/F (u)) = −n. (46)

The following lemma is a reformulation of [Ass19, Lemma 3.1].

Lemma 5.7. When i > n0, W
(i)(x) is supported on v(x) = 0 and, on the support,

W (i)(x) = C−1
0

∫
vE(u)=−a(θ)−eE+1

θ−1(u)ψ
(
−1
x
�iNE/F (u)

)
ψE(u) d×u. (47)

Again by [Hu18] the matrix coefficient Φ(i)
π (a,m) is supported on v(a) = 0, v(m) = i− n

when n0 < i < n− 1. On the support, by the above lemma and (34),

Φ(i)
π (a,m) = C−1

0

∫
v(x)=0

ψ(mx)
∫
vE(u)=−a(θ)−eE+1

θ−1(u)ψ
(
− 1
ax
�iNE/F (u)

)
ψE(u) d×u d×x

= C−1
0

∫
v(x)=0

ψ

(
m

1
x

) ∫
vE(u)=−a(θ)−eE+1

θ−1(u)ψ
(
−x
a
�iNE/F (u)

)
ψE(u) d×u d×x.

(48)

Since a(π) � 3, we have a(θ) � 2. Let α ∈ E× be the constant associated to θ by
Lemma 5.1; then vE(α) = −a(θ) + a(ψE) = −a(θ) − eE + 1. As θ|F× is essentially the central
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character wπ, which is trivial, we can assume that α is purely imaginary in E×. In the integrand
in (48), write x = x0(1 + Δx) with x0 ∈ o×/(1 + p�(n−i)/2�), Δx ∈ p�(n−i)/2�, and

u = u0(1 + Δu) = (a0 +
√
Db0)(1 + Δa+

√
DΔb)

for u0 ∈ (�−a(θ)−eE+1
E oE/�

−
a(θ)/2�−eE+1
E oE)×, Δu = Δa+

√
DΔb ∈ �

�a(θ)/2�
E oE .

Then

Φ(i)
π (a,m) = C−1

0

∑
x0,u0

ψ

(
m

x0

)
θ−1(u0)ψ

(
−x0

a
�iNE/F (u0)

)
ψE(u0)

×
∫∫

Δx∈p�(n−i)/2�

Δu∈p
�a(θ)/2�
E

Fx0,u0(Δx,Δu) dΔx dΔu, (49)

where Fx0,u0(Δx,Δu) = ψ(−(m/x0)Δx− 2α
√
DΔb− (x0/a)�iNE/F (u0)(Δx− 2Δa) + 2a0Δa+

2Db0Δb) for Δu = Δa+
√
DΔb with Δa, Δb in o. Here we have used that

θ−1(1 + Δu) = ψE(−αΔu) = ψE(−αΔa− α
√
DΔb) = ψ(−2α

√
DΔb),

ψE(u0Δu) = ψ(2a0Δa+ 2Db0Δb).

Using the fact that a(ψ) = 0, we observe that in order for the integral in (49) to be non-
zero, we need the following conditions to hold: For all x1, a1, b1 in o such that x1 ∈ p�(n−i)/2�,
a1 +

√
Db1 ∈ p

�a(θ)/2�
E , we have

(
m

x0
+
x0

a
�iNE/F (u0)

)
x1 ∈ o, (50)

(
a0 − x0

a
�iNE/F (u0)

)
a1 ∈ o, (51)

(Db0 − α
√
D) b1 ∈ o. (52)

Now, using a very similar analysis as in the principal series case, we shall see that the number
of pairs (x0, u0) satisfying (50), (51), and (52) is � qO(1).

Consider the number of b0 satisfying (52) first. When eE = 1, or eE = 2 and a(θ)/2 is odd, we
can choose a1, b1 in o such that a1 +

√
Db1 ∈ p

�a(θ)/2�
E , b1 ∈ �

�a(θ)/2�−eE+1
E o×E ∩ o, which combined

with (52) gives us

b0 ≡ α√
D

mod p
−�a(θ)/2�−eE+1
E (53)

while by the definition of u0, b0
√
D is well defined up to p

−
a(θ)/2�−eE+1
E . Thus,

�{b0 satisfying (52)} � qO(1). (54)

When eE = 2 and a(θ)/2 is even, we can choose b1 ∈ �
�a(θ)/2�
E o×E ∩ o and this time (52) gives

us b0 ≡ (α/
√
D) mod p

−�a(θ)/2�−2eE+2
E . By the same argument as above, (54) still holds in this

case.
Similarly, for each fixed u0, there exist solutions for x0 from (50) if and only if

− am

�iNE/F (u0)
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is a square modulo �
(n−i)/2�. In that case we obtain

x0 ≡ ±
√
− am

�iNE/F (u0)
mod �
(n−i)/2�. (55)

Here we have used that p �= 2. So, by the definition of x0,

�{x0 satisfying (50) for fixed u0} � qO(1). (56)

Finally, we come to counting a0. When eE = 1, or eE = 2 and a(θ)/2 is even, we can choose a1,
b1 so that a1 ∈ �

�a(θ)/2�
E o×E ∩ o, a1 +

√
Db1 ∈ p

�a(θ)/2�
E , so that from (51) we now deduce that

a0 − x0

a
�iNE/F (u0) ≡ 0 mod �−�a(θ)/2�

E . (57)

Note that if vE((x0/a)�iNE/F (u0)) = eE(i− n) � −�a(θ)/2, we get a unique solution a0 ≡ 0

mod �−�a(θ)/2�
E and by the definition of a0 and the previous results,

�{(a0, b0, u0) satisfying (50)–(52)} � qO(1). (58)

Otherwise when eE(i− n) < −�a(θ)/2, (57) is a non-trivial congruence relation and v(a0) =
i− n. As p �= 2, we have for any solution a0,

a0 +
x0

a
�iNE/F (u0) ≡ 0 mod �i−n.

Multiplying it with (57) and substituting (55), we get

a2
0 ≡ −m

a
�iNE/F (u0) = −m

a
�i(a2

0 − b20D) mod �−�a(θ)/2�
E �i−n. (59)

One can get at most two solutions of a0 mod �−�a(θ)/2�
E for each fixed b0. So, (58) is still

true.
If eE = 2 and a(θ)/2 is odd, we can instead choose a1 ∈ �

�a(θ)/2�+1
E o×E ∩ o in the argument

above (57). The rest of the discussions are similar and (58) still holds.
In conclusion, we get that

|Φ(i)
π (a,m)| � qO(1)|C−1

0 |Vol(Δx)Vol(Δu) � 1
q(n−i)/2+O(1)

, (60)

as required.

6. An application to subconvexity

In this section, we explain how Corollary 4.9 leads to a subconvexity result for certain central
L-values.

6.1 The setup and the main result
Throughout this section, we will go back to the global setting and freely use the notation defined
in §§ 2.1 and 4.1. Recall that we have fixed an indefinite quaternion division algebra D over Q

of discriminant d. In addition, for this section, we fix:

– a squarefree integer P such that (P, 2d) = 1;
– a quadratic number field K/Q such that:
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* all primes dividing P are split in K;
* all primes dividing d are inert in K.

Let SP denote the set of irreducible, unitary, cuspidal, automorphic representations π = ⊗vπv
of G(A) with the following properties:

(i) π has trivial central character;
(ii) if � is a prime such that � � P , then π� is spherical (i.e. has a non-zero K�-fixed vector).

Note that (using the notation of § 4.1), for any π ∈ SP , we have C ′(π) divides P and hence
C(π) is divisible only by primes dividing P . We remind the reader that C(π) denotes the ‘away-
from-d-part’ of the conductor of π (the conductor of π equals dC(π)). We let OK denote the ring
of integers of K and ρK the quadratic character on Q×\A× associated to the extension K/Q.

Remark 6.1. By the Jacquet–Langlands correspondence, the set SP is in functorial bijection
with the set of irreducible, unitary, cuspidal, automorphic representations on PGL2(A) whose
conductor equals dC for some C|P∞.

Given π ∈ SP and a character χ of K×\A×
K such that χ|A× = 1, we are interested in

the central L-value L(1/2, π ×AI(χ)) of the Rankin–Selberg L-function. Here AI(χ) denotes
the global automorphic induction of χ from A×

K to GL2(A), whose existence follows either
from the converse theorem (see Chapter 7 of [Gel75]) or more explicitly via the theta corre-
spondence [ST69]. By purely local calculations [Roh94, (a2)], it can be seen that the conductor
of AI(χ) equals disc(K)N(cond(χ)).

Theorem 6.2. Let P , K, and SP be as above. Let χ be a character of K×\A×
K such that

χ|A× = 1 and such that gcd(C(χ), d) = 1, where C(χ) = N(cond(χ)) equals the absolute norm

of the conductor of χ. Then, for any π ∈ SP , we have

L(1/2, π ×AI(χ)) �K,P,π∞,χ∞,ε C(π)5/12+εC(χ)1/2+ε.

The above theorem immediately implies a subconvexity result for L(1/2, π ×AI(χ)) for fixed
χ and varying π ∈ SP .

Corollary 6.3. Let P , K, χ, and SP be as in Theorem 6.2. Then, for π ∈ SP , we have

L(1/2, π ×AI(χ)) �K,P,π∞,χ,ε

(
C(π ×AI(χ))

)5/24+ε
,

where C(π ×AI(χ)) denotes the (finite part of the) analytic conductor of L(s, π ×AI(χ)).

Proof. Any ‘conductor dropping’ for π ×AI(χ) is only potentially possible at primes p|P for
which vp(C(χ)) = vp(C(π)) > 0. More precisely, let P1 be the set of prime numbers p such that
p|C(χ) and vp(C(χ)) = vp(C(π)). Then, using Proposition 3.4 of [Tun78], we see that

C(π ×AI(χ)) = d2disc(K)2
lcm(C(π)2, C(χ)2)∏

p∈P1
ptp

,

where the tp are non-negative integers satisfying tp � 2vp(C(χ)). It follows immediately that

C(π ×AI(χ)) �χ C(π)2. (61)

The desired result follows from (61) and Theorem 6.2. �
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Remark 6.4. By definition, L(s, π ×AI(χ)) is the finite part of the Langlands L-function
attached to the automorphic representation π � AI(χ) on D× × GL2. It is immediate that
L(s, π ×AI(χ)) = L(s, π′ ×AI(χ)), where π′ is the automorphic representation on GL2(A) asso-
ciated to π via the Jacquet–Langlands correspondence. Hence, L(s, π ×AI(χ)) can be viewed
as an L-function on GL2(A) × GL2(A).

We remark that G′ = PD× is isomorphic to an orthogonal group SO(V ), where V is a
three-dimensional quadratic space. So, π can be regarded as an automorphic representation of
SO(V ). Moreover, Q×\K× � SO(W ), where W ⊂ V is a two-dimensional quadratic space; this
allows us to view χ as an automorphic representation π0 on SO(W ). Under this viewpoint,
L(s, π ×AI(χ)) = L(s, π � π0) is the standard L-function on SO(V ) × SO(W ), which puts it
into the Gross–Prasad framework.

Finally, we have that

L(s, π ×AI(χ)) = L(s, πK × χ),

where πK denotes the base change of π to G(AK). Thus, L(s, π ×AI(χ)) can also be viewed as
an L-function on D×(AK) × A×

K or on GL2(AK) × A×
K .

Thus, Theorem 6.2 can be regarded as a subconvexity result for any of the groups G(A) ×
GL2(A), GL2(A) × GL2(A), SO(V )(A) × SO(W )(A), G(AK) × GL1(AK), and GL2(AK) ×
GL1(AK). We also note that if χ = 1 is the trivial character, then L(s, π ×AI(1)) =
L(s, π)L(s, π × ρK). In this special case, we suspect that other existing methods may give a
superior exponent in the setting of Theorem 6.2.

Remark 6.5. The representation AI(χ) can be seen to be generated by the classical theta series
(due to Hecke and Maass) associated to Hecke characters on K×\A×

K . More precisely, we can
identify a Hecke character χ on K of conductor m with a character on the group of fractional
ideals of K coprime to m. This allows us to write down explicitly an automorphic newform θχ
that generates AI(χ). For example, suppose that K = Q(

√
M) is an imaginary quadratic field

with M < 0 a fundamental discriminant. Suppose also that χ∞(α) = (α/|α|)� where � ∈ Z�0

and denote Q = N(m). Then θχ is the holomorphic newform13 of weight �+ 1, level |MQ|, and
character (M/·) given by the sum over ideals a as

θχ(z) =
∑

a⊂OK

χ(a)(N(a))�/2e(N(a)z).

We can write down a similar formula when K is real; see Appendix A.1 of [HK20]. In this case
the hypothesis χ|A× = 1 implies that θχ is a weight 0 Maass form.

For the convenience of the reader, we give a version of Theorem 6.2 that avoids any mention
of quaternion algebras and that focusses on a single prime (‘depth aspect’) for simplicity.

Corollary 6.6. Let p be an odd prime, and d �= 1 a positive squarefree integer with an even

number of prime factors. Assume that (p, d) = 1. Let M < 0 be a fundamental discriminant

and put K = Q(
√
M). Assume that (M/p) = 1 and (M/q) = −1 for all primes q dividing d.

Let χ be a character of K×\A×
K such that χ|A× = 1 and such that gcd(C(χ), d) = 1, where

C(χ) = N(cond(χ)). Let f be either a holomorphic cuspform of weight k � 2 or a Maass cuspform

of weight 0 and eigenvalue λ with respect to the subgroup Γ0(dpn) and assume that f is a newform

13 θχ is a cusp form if and only if χ does not factor through the norm map; this happens if and only if χ2 �= 1.
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(of trivial nebentypus). Then we have

L(1/2, f × θχ) �d,p,M,χ∞,λ/k,ε (pn)5/12+εC(χ)1/2+ε.

Proof. Let π′ be the automorphic representation attached to f . Note that π′ is (up to a twist) a
Steinberg representation at each prime dividing d. We let D be the indefinite quaternion division
algebra of reduced discriminant d. Then π′ transfers to an automorphic representation π ∈ Sp
on D×(A). The corollary now follows immediately from Theorem 6.2. �

6.2 An explicit version of Waldspurger’s formula
We now begin the proof of Theorem 6.2. We assume the conditions of Theorem 6.2 for the rest of
this section. Let π = ⊗vπv ∈ SP . Then, for all finite primes p, πp has a χp-Waldspurger model;
this follows, e.g., from the calculations of § 5 of [Gro88]. We may further assume that π∞ has
a χ∞-Waldspurger model, since otherwise the global ε-factor ε(π ×AI(χ)) would equal −1 and
we would have L(1/2, π ×AI(χ)) = 0, making Theorem 6.2 trivial.

Since all primes dividing d are inert in K, it follows that K embeds in D. We fix an embed-
ding Φ : K ↪→ D and let T = Φ(K×) � K× be the corresponding torus inside G. We henceforth
consider χ as a character of A×T (Q)\T (A×). Given any φ ∈ Vπ, consider the period integral

P (φ) =
∫

A×T (Q)\T (A)
φ(t)χ−1(t) dt,

where dt is the product of local Tamagawa measures. Also, for this section only, we let the
measure on G(A) be the product of the local Tamagawa measures and define 〈φ, φ〉 with respect
to this measure. A beautiful formula of Waldspurger [Wal85] states that

|P (φ)|2
〈φ, φ〉 = ζ(2)

L(1/2, π ×AI(χ))
L(1, π,Ad)

∏
v

αv(K,χ, φ),

where the αv(K,χ, φ) are local integrals which equal 1 at almost all places v. There have been
several papers which have explicitly computed these local integrals at the remaining (ramified)
places under certain assumptions, leading to an explicit Waldspurger formula in those cases. We
will need such an explicit formula which applies to our setup, due to File et al. [FMP17].

To state the formula, let us first set up some notation. First of all, we choose the embedding
Φ : K ↪→ D such that OK embeds in Omax optimally, i.e. Φ(K) ∩ Omax = Φ(OK). Note that for
each prime p we have Φ(Kp) ∩ Omax

p = Φ(OK,p), where Kp = K ⊗Q Qp and OK,p = OK ⊗Z Zp.
Next, we need to specify the automorphic form φ = ⊗vφv. For each finite prime p that does not
divide C(π)C(χ), we let φp be the (unique up to multiples) non-zero vector in πp that is fixed
by Kp.

Next, let p be a prime that divides C(χ) but does not divide C(π). Define mp to be the
largest positive integer such that pmp |C(χ) and put cp = �mp/2. (In fact, mp is always even,
but we will not need this fact). Note that the character χp on K×

p is trivial on the subgroup
Z×
p + pcpOK,p. Now, by § 3 of [Gro88], there exists a maximal order Rp of Dp such that Rp ∩

Φ(Kp) = Zp + pcpΦ(OK,p). We let φp be the unique (up to multiples) vector in πp that is fixed by
R×
p . Note that R×

p is conjugate to Kp; hence, φp is a Gp-translate of the unique (up to multiples)
Kp-fixed vector (spherical vector) in πp.

Next, let p be a prime that divides C(π). Note that Kp � Qp ⊕ Qp. Define cp as above and
define np = a(πp), so that np is the largest positive integer such that pnp |C(π). Let K0(np)
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be as usual the subgroup of GL2(Zp) consisting of matrices that are upper triangular modulo
pnp . Take gp ∈ Gp such that ιp(g−1

p T (Qp)gp) is the diagonal subgroup of GL2(Qp). Define the
subgroup K ′

0(np) of Gp via

K ′
0(np) = gpι

−1
p

((
1 −p−cp
0 1

)
K0(np)

(
1 p−cp
0 1

))
g−1
p

and let φp be the unique (up to multiples) vector in πp that is fixed by K ′
0(np). Note that φp is

a Gp-translate of the unique (up to multiples) newvector in πp.
Finally, we define φ∞. Let K∞ be a maximal compact connected subgroup of D∞ whose

restriction to T (R) is a maximal compact connected subgroup of T (R). Let φ∞ be a vector of
minimal (non-negative) weight such that π∞(t∞)φ∞ = χ∞(t∞)φ∞ for all t∞ ∈ K∞ ∩ T (R).

Put φ = ⊗vφv. For brevity, put N = C(π), Q = C(χ). Then we have the following explicit
version of Waldspurger’s formula due to File et al. (Theorem 1.1 of [FMP17]), simplified to our
setting:

|P (φ)|2
〈φ, φ〉 =

C∞ζ(2)
2
√
Qdisc(K)

∏
p|Q

L(1, ρK,p)2
∏
p|N

(
1 +

1
p

) ∏
p|d

(
1 − 1

p

)
LNd(1/2, π ×AI(χ))

LNd(1, π,Ad)
. (62)

Above, LNd denotes the L-functions where we omit the Euler factors at primes dividing Nd,
ρK denotes the quadratic character associated to K/Q, and the quantity C∞ is a positive real
number written down explicitly in [FMP17, 7B] that depends only on π∞ and χ∞.

6.3 The proof of Theorem 6.2
We continue to use the notation N = C(π), Q = C(χ). The explicit formula (62) immediately
implies the asymptotic inequality

(supg∈G(A) |φ(g)|
‖φ‖2

)2

� 1
(vol(A×T (Q)\T (A))2

|P (φ)|2
〈φ, φ〉

�K,P,π∞,χ∞,ε
1√
Q

(QN)−εL(1/2, π ×AI(χ)). (63)

On the other hand, our choice of φ implies that φp is a translate of the local newvector at all
primes p. Hence, φ = R(g)φ′, where g ∈ G(Af ) and (Cφ′, π) ∈ A(G,G) with G as in Proposition
3.14. Furthermore, φ∞ = φ′∞ is a vector of weight k, where k depends only on χ∞. Since the
sup-norm does not change under translation, we have, using Corollary 4.9,

(supg∈G(A) |φ(g)|
‖φ‖2

)2

=
(supg∈G(A) |φ′(g)|

‖φ′‖2

)2

�π∞,χ∞,P,ε N
5/12+ε. (64)

Combining (63) and (64), we obtain

L(1/2, π ×AI(χ)) �K,P,π∞,χ∞,ε N
5/12+εQ1/2+ε,

as desired.
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number fields, J. Eur. Math. Soc. (JEMS) 22 (2020), 1–53.

BH10 V. Blomer and R. Holowinsky, Bounding sup-norms of cusp forms of large level, Invent. Math.
179 (2010), 645–681.

BH06 C. J. Bushnell and G. Henniart, The local Langlands conjecture for GL(2) (Springer, Berlin,
2006).

CS18 A. Corbett and A. Saha, On the order of vanishing of newforms at cusps, Math. Res. Lett.
25 (2018), 1771–1804.

FMP17 D. File, K. Martin and A. Pitale, Test vectors and central L-values for GL(2), Algebra Number
Theory 11 (2017), 253–318.
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