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A WEAK KERNEL FORMULA FOR BESSEL FUNCTIONS

JINGSONG CHAI

Abstract. In this paper, we prove a weak kernel formula of Bessel functions attached to ir-
reducible generic representations of p-adic GL(n). As an application, we show that the Bessel
function defined by Bessel distribution coincides with the Bessel function defined via uniqueness
of Whittaker models on the open Bruhat cell.

1. Introduction

For a generic irreducible smooth representation π of GL(n, F ) with its contragredient π̃, where F
is a p-adic field, there are two ways to attach Bessel functions to π. The first is via Bessel distribution
Bl,l′ , where l, l

′ are Whittaker functionals on π and π̃ respectively. Such distributions were used by
Gelfand and Kazhdan ([14]), and Shalika ([18]) to prove uniqueness of Whittaker functionals. In [2],
for more general quasi-split groups, E.Baruch showed that the restriction of Bl,l′ to the big open
Bruhat cell is given by a locally constant function j0(g).

On the other hand, for Whitaker function W ∈ W(π), where W(π) denotes the Whittaker model
of π, the integral

∫

Nn

W (gu)ψ−1(u)du

converges in the stable sense if g is in the big open cell, and thus defines a function jπ(g) there such
that

jπ(g)W (I) =

∫

Nn

W (gu)ψ−1(u)du

because of uniqueness of Whittaker functionals. This Bessel function jπ was first defined in this way
by David Soudry in [19] for GL(2, F ), and then was generalized by E.Baruch to GL(n, F ). For more
details see [3, 5].

In the case GL(3, F ) (also GL(2, F )), E.Baruch in [1, 4] proved the Bessel function jπ(g) is locally
integrable on the whole group, and gives the Bessel distribution Bl,l′ on GL(3, F ), which implies
that the above two functions j0, jπ are the same.

These Bessel functions and Bessel distributions have many applications to the theory of auto-
morphic forms, to list a few, for example see [6, 7, 8, 10, 11, 17]. Thus it is desirable to generalize
E.Baruch’s important results to more general GL(n, F ). The obstacle is the local integrability of
jπ(g). This is done by E.Baruch in [4] for GL(3, F ) case using Shalika germs, but seems to be very
difficult in general.

In this paper, we generalize some above results to GL(n, F ). More precisely, we proved the fol-
lowing result.
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Theorem 1. If π is irreducible, smooth and generic, then we have

j0(g) = jπ(g)

for all g ∈ NnωnAnNn, where Nn is the upper triangular unipotent subgroup, An is the subgroup
of diagonal matrices, and ωn is the longest element in the Weyl group.

Once we know local integrability of Bessel functions, we can also show Bl,l′ is given by jπ on the
whole group following the method in [4].

We here essentially follow Baruch’s approach, and an important ingredient in the proof is a kernel
formula, which has its own interests and can be stated as follows.

Theorem 2(Theorem 4.2, Theorem 7.1). Assume either π is supercuspidal and W is any Whit-
taker function of π, or π is irreducible smooth and generic and W is the normalized Howe vec-
tors with sufficiently large level(see section 5 for the definition of Howe vectors). For any bωn,
b = diag(b1, ..., bn) ∈ An, and any W ∈ W(π, ψ), we have

W (bωn) =

∫
jπ



bωn




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




−1

W




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−1|
−1dxn−1,1 · · · dxn−1,n−2dan−1

where the right side is an iterated integral, ai is integrated over F× ⊂ F for i = 1, ..., n− 1, xij is
integrated over F for all relevant i, j, and all measures are additive self-dual Haar measures on F .

We remark that in the case of general generic representation π, this kernel formula is expected
to be true for a wide class of Whittaker functions of π(though not all of them), but currently we are
only able to prove it for Howe vectors which is sufficient for the purpose of this paper.

Such formula was first proved by David Soudry in [19] for generic irreducible representations of
GL(2, F ), and then was generalized to GL(3, F ) by E.Baruch in [4]. Due to the lack of local inte-
grability of jπ, we have to write the above integral as an iterated integral.

E.Baruch in [2] showed the existence of j0 for smooth generic irreducible representations of quasi-
split reductive groups over local fields of characteristic zero. Recently E.Lapid and Zhengyu Mao in
[16] defined jπ using uniqueness of Whittaker functionals for split reductive groups. It is interesting
to see if the results here can be generalized to these cases.

The paper is organized as follows. In section 2 and 3, we recall some results about Bessel func-
tions jπ(g) and Bessel distributions Bl,l′ . Section 4 is to prove the weak kernel formula. Section 5
is devoted to prove some properties of Howe vectors, which will be needed later. In section 6 we
show that these two Bessel functions are equivalent in the supercuspidal case. In the last section we
generalize the results to generic case.

Notations.

Let F be a p-adic field with ring of integers O, use | · | to denote the valuation on F . We will
always fix a self-dual Haar measure on F . Let Kn = GL(n,O) and Gn = GL(n, F ), π a generic irre-
ducible smooth admissible representation of Gn, with its contragredient π̃. Let Nn be the maximal
unipotent subgroup of upper triangular matrices. Let An be the group of diagonal matrices. Let
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N̄n be the transpose of Nn. Bn = AnNn, B̄n = AnN̄n.

Let ψ be a nontrivial additive character of F with conductor exactly O. We extend ψ to a char-

acter of Nn by ψ(u) = ψ(
∑n−1

i=1 ui,i+1) if u = (uij) ∈ Nn, and still denote it as ψ.

Use l, l′ to denote the Whittaker functionals on π, π̃ with respect to ψ and ψ−1, respectively. Let

W = W(π, ψ), W̃ = W̃(π̃, ψ−1) be the corresponding Whittaker models.

Let W be the Weyl group of Gn, and use ωn to denote the longest Weyl element in W, i.e.

ωn =



0 1

. .
.

1 0


.

2. Bessel functions

In this section, we review some results about Bessel functions jπ(g) in [5]. For our purpose, we will
restrict to supercuspidal representations, though most of the notions and results can be generalized
to smooth irreducible generic representations. We refer to [5] for more details in general.

So let (π, V ) be an irreducible supercuspidal representation of Gn. If ψ is a nondegenerate
character of Nn, use W = W(π, ψ) to denote the Whittaker model of π w.r.t. ψ. If M > 0 is a
positive constant, let

AMn = {a ∈ An : |
ai
ai+1

| < M for i = 1, 2, ..., n− 1, if a = diag(a1, ..., an)}

Note that as M → ∞, AMn cover An.

We start with the following important result of Baruch.

Proposition 2.1. For any W ∈ W(π, ψ), M > 0, the function on AMn ×Nn defined by

(a, u) →W (aωnu)

is compactly supported in Nn with support independent of a ∈ AMn . That is, if W (aωnu) 6= 0, with
a ∈ AMn , u ∈ Nn, then there exists a compact subset U ⊂ Nn, which is independent of a, such that
u ∈ U .

Proof. This follows from Theorem 5.7 and Lemma 6.1 in [5]. �

The above result allows us to define Bessel functions for supercuspidal representations as follows.
Take W ∈ W . Consider the integrals for g ∈ NnAnωnNn

∫

Yi

W (gu)ψ−1(u)du

where Y1 ⊂ Y2 ⊂ ... ⊂ Yi ⊂ Yi+1 ⊂ ... is an increasing filtration of Nn with compact open subgroups.

By Proposition 2.1, if Yi is large enough, these integrals become stable. The stable limit is
independent of the choices of sequence {Yi}. Use

∫ ∗

Nn
to denote this limit, which defines a nontrivial

Whittaker functional on W . Thus there exists a scalar jπ,ψ(g) such that

∫ ∗

Nn

W (gu)ψ−1(u)du = jπ,ψ(g)W (I)

Definition 2.2. The assignment g → jπ(g) = jπ,ψ defines a function on NnAnωnNn, which is
called the Bessel function of π attached to ωn.
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We extend jπ to Gn by putting jπ(g) = 0 if g /∈ NnAnωnNn, and still use jπ to denote it and call
it the Bessel function of π.

• jπ is locally constant on NnAnωnNn.

• For any u1, u2 ∈ Nn, any g ∈ Gn, we have jπ(u1gu2) = ψ(u1)ψ(u2)jπ(g).

• One may also attach Bessel functions to other Weyl elements. For more details, see [5]. For
Bessel functions defined in this way for split reductive groups, see [16].

For W ∈ W , let W̃ (g) = W (ωn · tg−1), then {W̃ : W ∈ W} is the Whittaker model for the
contragredient π̃ with respect to ψ−1. By Corollary 8.5 in [5], we have the following relation

(2.1) jπ̃,ψ−1(g) = jπ,ψ(g
−1), g ∈ BnωnBn

3. Bessel distributions

In this section, we collect some useful properties about Bessel distributions. Let π be an irreducible
smooth generic representation of Gn. Let π

∗ and π̃∗ denote the linear dual of π and π̃ respectively.
Let f be a locally constant function with compact support on Gn, take l ∈ π∗, l′ ∈ π̃∗. Define π̃(f)l′

as

π̃(f)l′ =

∫

Gn

f(g)π̃(g)l′dg

or equivalently, for any ṽ ∈ π̃,

< π̃(f)l′, ṽ >=

∫

Gn

f(g) < π̃(g)l′, ṽ > dg

=

∫

Gn

f(g) < l′, π̃(g−1)(ṽ) > dg

then π̃(f)l′ is a smooth linear functional on π̃, hence can be identified with a vector vf,l′ ∈ π.

Definition 3.1. Define Bessel distribution Bl,l′(f) as

Bl,l′(f) = l(vf,l′)

• The definition of Bl,l′ depends on l, l
′ and Haar measure dg on Gn.

• When both l, l′ are Whittaker functionals, such Bl,l′ is the Bessel distribution first studied by
Gelfand and Kazhdan ([14]) for GLn in p-adic case, and by Shalika ([18]) in archimedean case, by
Baruch ([2]) for quasi-split groups in both non-archemedean and archemedean cases.

• It was shown in [2] that when both l, l′ are Whittaker functionals with respect to ψ and ψ−1

respectively, Bl,l′ can be represented by a locally constant function in non-archimedean case, and
by a real analytic function in archimedean case, when restricted to the open Bruhat cell. We will
denote this function by j0(g), g ∈ NnAnωnNn.

• When l′ is the Whittaker functional on π̃ with respect to ψ−1, for any Ŵṽ ∈ W(π̃, ψ−1), we
have

< vf,l′ , ṽ >=

∫

Gn

f(g)Ŵṽ(g
−1)dg
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From now on, we will always assume l, l′ are nonzero Whittaker functionals. Fix l on π with

respect to ψ, for W ∈ W(π, ψ), Ŵ ∈ W(π̃, ψ−1), if either W

(
h

1

)
or Ŵ

(
h

1

)
is compactly

supported mod Nn−1, by results in [9], we can normalize l′, so that

< v, ṽ >=

∫

Nn−1\Gn−1

Wv

(
h

1

)
Ŵṽ

(
h

1

)
dh

where the right side integral defines a Pn invariant pairing between π and π̃, here Pn is the so-called
mirabolic subgroup of Gn.

Lemma 3.2. With the above normalization, if Ŵṽ

(
h

1

)
is compactly supported mod Nn−1, we

have for any f ∈ C∞
c (G),

∫

Gn

f(g)Ŵṽ(g
−1)dg =

∫

Nn−1\Gn−1

Bl,l′

(
L

(
h

1

)
.f

)
Ŵṽ

(
h

1

)
dh

where L denotes the left action of Gn on f .

Proof. Let vf,l′ be the vector in π as in Definition 3.1, so Bl,l′(f) = l(vf,l′). For ṽ ∈ π̃, denote

h =

(
h

1

)
, we have

< vL(h)f,l′ , ṽ >=

∫

Gn

f(h−1g) < l′, π̃(g−1)ṽ > dg

=

∫

Gn

f(g) < l′, π̃(g−1)π̃(h−1)ṽ > dg

=< vf,l′ , π̃(h
−1)ṽ >=< π(h)vf,l′ , ṽ >

Thus Bl,l′

(
L

(
h

1

)
.f

)
= l(vL(h)f,l′) = l(π(h)vf,l′) =Wvf,l′

(h).

It follows that the right side in lemma is < vf,l′ , ṽ > by normalization, which equals the left
side. �

4. Kernel formula

In this section, we will prove a weak kernel formula for Bessel functions attached to supercuspidal
representations as in section 1, which is the first main result of this paper. The method of the proof
follows that of Baruch in [4] by generalizing corresponding results there to GL(n).

So through out of this section, π will be an irreducible supercuspidal representation of Gn. Let
Yi be the unipotent part of the parabolic subgroup of Gn associated to the partition (n-i+1,1,...,1),
1 ≤ i ≤ n. Note that Y1 = {In}, Yn = Nn. By Proposition 2.1, we have the following lemma.

Lemma 4.1. For any bωn, b = diag(b1, ..., bn) ∈ An, then as a function of ui ∈ Fn−i, the function

∫

Yi

W


bωnyi



I ui

1
Ii−1




ψ−1(yi)dyi

is compactly supported, where ψ(yi) is the restriction of Whittaker character to Yi ⊂ Nn.
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Proof. By Proposition 2.1, if b ∈ AMn for some constant M > 0, then the function W (bωnu) is
compactly supported as a function u ∈ Nn, with support independent of b ∈ AMn . Then its restriction
to

{yi



I ui

1
Ii−1


 : yi ∈ Yi, ui ∈ Fn−i}

is again compactly supported. Now the lemma follows immediately. �

Theorem 4.2. (weak kernel formula) For any bωn, b = diag(b1, ..., bn) ∈ An, and any W ∈ W, we
have

W (bωn) =

∫
jπ



bωn




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




−1

W




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−1|
−1dxn−1,1 · · · dxn−1,n−2dan−1

where the right side is an iterated integral, ai is integrated over F× ⊂ F for i = 1, ..., n− 1, xij is
integrated over F for all relevant i, j, and all measures are additive self-dual Haar measures on F .

Proof. The proof is based an inductive argument. We begin with the proof of the following identity,
for any bωn,

∫

Yn−1

W (bωnyn−1)ψ(−yn−1)dyn−1 =

(4.1)

∫

F×

jπ

(
bωn

(
a−1
1

In−1

))
W

(
a1

In−1

)
|a1|

−(n−1)da1

where da1 is the additive Haar measure on F . Note that because of Proposition 2.1, the left side
integral is absolutely convergent. Because π is supercuspidal,W is compactly supported mod NnZn,

where Zn is the center of Gn, thenW

(
a1

In−1

)
is compactly supported in F× as a function of a1.

Since jπ is locally constant on the big cell, jπ

(
bωn

(
a−1
1

In−1

))
is also locally constant as a func-

tion of a1, then the right side integral reduces to a finite sum, and hence is also absolutely convergent.

For this consider the following function Mn−1(x) : F → C by

Mn−1(x) =

∫

Yn−1

W


bωnyn−1



1 x

1
In−2




ψ(−yn−1)dyn−1

By Lemma 4.1, this is a compactly supported function in x. Thus its Fourier transform M̂n−1(y)
is also compactly supported, and we have Fourier inversion formula

Mn−1(x) =

∫

F

M̂n−1(y)ψ(yx)dy =

∫

F×

M̂n−1(y)ψ(yx)dy

where the last equality follows from the facts that dy is the additive Haar measure, and F× is of full
measure in F .

Put x = 0, we get
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Mn−1(0) =

∫

F×

M̂n−1(y)dy

Now we compute the Fourier coefficient M̂n−1(y) when y = a1 6= 0.

M̂n−1(a1)

=

∫

F

∫

Yn−1

W


bωnyn−1



1 x

1
In−2




ψ(−yn−1)ψ(−a1x)dyn−1dx

=

∫

F

∫

Yn−1

W


bωnyn−1



1 a−1

1 x
1

In−2




ψ(−yn−1)ψ(−x)|a1|

−1dyn−1dx

=

∫

F

∫

Yn−1

W


bωn

(
a−1
1

In−1

)
yn−1



1 x

1
In−2




(
a1

In−1

)
ψ(−yn−1)ψ(−x)|a1|

−(n−1)dyn−1dx

Put yn = yn−1



1 x

1
In−2


 ∈ Yn = Nn, the above integral becomes

=

∫

Yn

W

(
bωn

(
a−1
1

In−1

)
yn

(
a1

In−1

))
ψ−1(yn)|a1|

−(n−1)dyn

= jπ

(
bωn

(
a−1
1

In−1

))
W

(
a1

In−1

)
|a1|

−(n−1)

where the last equality follows form the identity

∫

Yn

(
π

(
a1

In−1

)
.W

)(
bωn

(
a−1
1

In−1

)
yn

)
ψ−1(yn)dyn =

jπ

(
bωn

(
a−1
1

In−1

))(
π

(
a1

In−1

)
.W

)
(I)

which is the definition of jπ.

Now we get

∫

Yn−1

W (bωnyn−1)ψ(−yn−1)dyn−1

= Mn−1(0) =

∫

F×

M̂n−1(a1)da1

=

∫

F×

jπ

(
bωn

(
a−1
1

In−1

))
W

(
a1

In−1

)
|a1|

−(n−1)da1

which is exactly what we want to show in (4.1).

Now set h2 =




1
x21 a2

In−2


 with x21 ∈ F , a2 ∈ F×, we also use h2 to denote the left upper

corner 2× 2 matrix. We first note the following identity of product of matrices

bωnh
−1
2 =



In−2

1 −bn−1b
−1
n a−1

2 x21
1






In−2

a−1
2

1


 bωn
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Hence

Wv

(
bωnh

−1
2 yn−1h2

)
= Wv





In−2

1 −bn−1b
−1
n a−1

2 x21
1






In−2

a−1
2

1


 bωnyn−1h2




= ψ(−bn−1b
−1
n a−1

2 x21)Wπ(h2)v





In−2

a−1
2

1


 bωnyn−1




and

jπ

(
bωnh

−1
2

(
a−1
1

In−1

))

= jπ





In−2

1 −bn−1b
−1
n a−1

2 x21
1






In−2

a−1
2

1


 bωn

(
a−1
1

In−1

)


= ψ(−bn−1b
−1
n a−1

2 x21)jπ





In−2

a−1
2

1


 bωn

(
a−1
1

In−1

)


Now apply (4.1) to b′ = diag(b1, ..., bn−2, a
−1
2 bn−1, bn), and W =Wπ(h2)v, we will get

∫

Yn−1

Wπ(h2)v (b
′ωnyn−1)ψ(−yn−1)dyn−1 =

∫

F×

jπ

(
b′ωn

(
a−1
1

In−1

))
Wπ(h2)v

(
a1

In−1

)
|a1|

−(n−1)da1

Multiply by ψ(−bn−1b
−1
n a−1

2 x21) on both sides, and then

∫

Yn−1

W
(
bωnh

−1
2 yn−1h2

)
ψ(−yn−1)dyn−1 =

(4.2)

∫

F×

jπ

(
bωnh

−1
2

(
a−1
1

In−1

))
W

((
a1

In−1

)
h2

)
|a1|

−(n−1)da1

Write yn−1 = yn−2



I2 u2

1
In−3


 with u2 a column vector in F 2, then the left side of (4.2) is

(4.3)

∫

Yn−1

W


bωnyn−2



I2 h−1

2 .u2
1

In−3




ψ(−yn−2)ψ



I2 −u2

1
In−3


 |a2|

(n−3)dyn−1

Now put

Mn−2(u2) =

∫

Yn−2

W


bωnyn−2



I2 u2

1
In−3




ψ(−yn−2)dyn−2

By Lemma 4.1, Mn−2(u2) is compactly supported, and its Fourier inversion formula is

Mn−2(u2) =

∫

F 2

M̂n−2(v2)ψ(v2u2)dv2 =

∫

F×F×

M̂n−2(x, y)ψ((x, y)u2)dxdy

if we write v2 = (x, y) as a row vector, with x ∈ F , y ∈ F×, and the last equality follows from the
facts that dxdy are additive Haar measures and F × F× is of full measure in F 2.

Put u2 = 0, we get
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Mn−2(0) =

∫

F×F×

M̂n−2(x, y)dxdy (∗)

Now we compute the Fourier coefficient M̂n−2(x, y) with x = x21 ∈ F , y = a2 6= 0, we have

M̂n−2(x21, a2)

=

∫

F 2

∫

Yn−2

W


bωnyn−2



I2 u2

1
In−3




ψ(−yn−2)ψ(−(x21, a2)u2)dyn−2du2

=

∫

F 2

∫

Yn−2

W


bωnyn−2



I2 u2

1
In−3




ψ(−yn−2)ψ



I2 −h2.u2

1
In−3


 dyn−2du2

=

∫
W


bωnyn−2



I2 h−1

2 .u2
1

In−3




ψ(−yn−2)ψ



I2 −u2

1
In−3


 |a2|

−1dyn−2du2

Thus by (4.3),

|a2|
−(n−2)

∫

Yn−1

W
(
bωnh

−1
2 yn−1h2

)
ψ(−yn−1)dyn−1 = M̂n−2(x21, a2)

and then by (4.2),

|a2|
−(n−2)

∫

F×

jπ

(
bωnh

−1
2

(
a−1
1

In−1

))
W

((
a1

In−1

)
h2

)
|a1|

−(n−1)da1 = M̂n−2(x21, a2)

Plug it into the Fourier inversion formula (∗), we find

∫

Yn−2

W (bωnyn−2)ψ(−yn−2)dyn−2 =Mn−2(0) =

∫

F×F×

∫

F×

(4.4)

jπ


bωn



a1
x21 a2

In−2




−1

W


bωn



a1
x21 a2

In−2




 |a1|

−(n−1)da1|a2|
−(n−2)dx21da2

where we write

(
a1

In−1

)
h2 =



a1
x21 a2

In−2


 .

Inductively, we will have

∫

Y2

W (bωny2)ψ(−y2)dy2 =

∫
jπ



bωn




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




−1

W




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




(4.5) |a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−2|
−2dxn−2,1 · · · dxn−2,n−3dan−2

where the right side is an iterated integral, ai is integrated over F× ⊂ F for i = 1, ..., n− 2, xij is
integrated over F for all relevant i, j here, and all measures are additive self-dual Haar measures on F .
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To prove the weak kernel formula, set

hn−1 =




In−2

xn−1,1 · · · xn−1,n−2 an−1

1




where xn−1,i ∈ F , i = 1, 2, ..., n− 2, an−1 ∈ F×. We also use hn−1 to denote the left upper corner
matrix of size (n− 1)× (n− 1). Note that we have identity

bωnh
−1
n−1 =



1

1 a−1
n−1b

−1
3 b2xn−1,n−2 ... a−1

n−1b
−1
n b2xn−1,1

In−2






1

a−1
n−1

In−2


 bωn

Then we carry out the same argument as we derived (4.2) from (4.1), then by (4.5), we will have

∫

Y2

W (bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 =

∫

jπ



bωnh

−1
n−1




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




−1

W







a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2



hn−1




(4.6) |a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−2|
−2dxn−2,1 · · · dxn−2,n−3dan−2

The left side integral is

(4.7)

∫

Fn−1

W

(
bωn

(
In−1 h−1

n−1.un−1

1

))
ψ

(
In−1 −un−1

1

)
dun−1

Now let

M1(un−1) =W

(
bωn

(
In−1 un−1

1

))

which is a compactly supported function in column vector un−1. Its Fourier inversion formula is

M1(un−1) =

∫

Fn−1

M̂1(vn−1)ψ(−vn−1un−1)dvn−1

=

∫

Fn−2×F×

M̂1(z1, ..., zn−1)ψ(−(z1, ..., zn−1)un−1)dz1...dzn−1

where we write vn−1 = (z1, ..., zn−1), with z1, ..., zn−2 ∈ F , zn−1 ∈ F×, and the last equality follows
from the facts that dz1...dzn−1 is the additive Haar measure and Fn−2×F× is of full measure in Fn−1.

Put un−1 = 0, we get

M1(0) =

∫

Fn−2×F×

M̂1(z1, ..., zn−1)dz1...dzn−1 (∗∗)

We compute the Fourier coefficient M̂1(z1, ..., zn−1), with z1 = xn−1,1, ..., zn−2 = xn−1,n−2 ∈
F, zn−1 = an−1 ∈ F×,
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M̂1(xn−1,1, ..., xn−1,n−2, an−1)

=

∫

Fn−1

W

(
bωn

(
In−1 un−1

1

))
ψ(−(xn−1,1, ..., xn−1,n−2, an−1)un−1)dun−1

=

∫

Fn−1

W

(
bωn

(
In−1 un−1

1

))
ψ

(
−

(
In−1 hn−1.un−1

1

))
dun−1

=

∫

Fn−1

W

(
bωn

(
In−1 h−1

n−1.un−1

1

))
ψ

(
−

(
In−1 un−1

1

))
|a−1
n−1|dun−1

Thus by (4.7), we have

|an−1|
−1

∫

Y2

W (bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 = M̂1(xn−1,1, ..., xn−1,n−2, an−1)

Thus by (4.6),

M̂1(xn−1,1, ..., xn−1,n−2, an−1) = |an−1|
−1

∫

jπ



bωnh

−1
n−1




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




−1

W







a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2



hn−1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−2|
−2dxn−2,1 · · · dxn−2,n−3dan−2

Plug it into (∗∗), we finally find

W (bωn) =

∫
jπ



bωn




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




−1

W




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−1|
−1dxn−1,1 · · · dxn−1,n−2dan−1

where the right side is an iterated integral, ai is integrated over F× ⊂ F for i = 1, ..., n − 1, xij
is integrated over F for all relevant i, j, and all measures are additive Haar measure on F . This
finishes the proof.

�

• Since we don’t have absolute convergence of right side integral, we have to write it as an iterated
integral. If we know the local integrability of jπ, then using the same argument as in Lemma 5.3,
[4], one can show that the right side integral is then absolutely convergent, and it equals

∫

Nn−1\Gn−1

jπ

(
y

(
h−1

1

))
W

(
h

1

)
dh

• The space of functions

{
W

(
g

1

)
:W ∈ W

}
is the Kirillov model of π. Theorem 4.2 gives

the action of the longest Weyl element ωn on this model in terms of Bessel functions. It thus follows
that if we want to show two supercuspidal representations are equivalent, it suffices to show they
have the same Bessel functions.
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• In order to generalize the above argument to generic smooth irreducible representations of
GL(n, F ), we need to know the space W0, as defined in section 5 of [5], is invariant under right
translations by elements like




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1



.

But this is not clear, and we plan to address this issue in future.

Corollary 4.3. Let W̃ (g) =W (ωn · tg−1) ∈ W(π̃, ψ−1), then for any bωn, b ∈ An, we have

W̃ ((bωn)
−1) =

∫
jπ







a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1



bωn



W̃




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−1|
−1dxn−1,1 · · · dxn−1,n−2dan−1

where the right side is an iterated integral, ai is integrated over F× ⊂ F for i = 1, ..., n− 1, xij is
integrated over F for all relevant i, j, and all measures are additive self-dual Haar measures on F .

Proof. Since jπ̃,ψ−1(g) = jπ,ψ(g
−1) for g ∈ BnωnBn, apply the above theorem. �

5. Howe Vectors

In this section, we will discuss Howe vectors, which were introduced first by R.Howe. We will
follow the exposition in [5] closely. Assume π is irreducible and generic.

For a positive integer m, let Km
n = In +Mn(p

m), here p is the maximal ideal of O. Use ̟ to
denote an uniformizer of F . Let

d =




1
̟2

̟4

. . .

̟2n−2




Put Jm = dmKm
n d

−m, Nn,m = Nn∩Jm, N̄n,m = N̄n∩Jm, B̄n,m = B̄n∩Jm. Let An,m = An∩Jm,
then

Jm = N̄n,mAn,mNn,m = B̄n,mNn,m

For j ∈ Jm, write j = b̄jnj with respect to the above decomposition, as in [5], define a character
ψm on Jm by

ψm(j) = ψ(nj)

Definition 5.1. W ∈ W is called a Howe vector of π if for any m large enough, we have

(5.1) W (gj) = ψm(j)W (g)

for all g ∈ Gn, j ∈ Jm.
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For each W ∈ W(π, ψ), let M be a positive constant such that R(KM
n ).W =W where R denotes

the action of right multiplication. For any m > 3M , put

Wm(g) =

∫

Nn,m

W (gu)ψ−1(u)du

then by Lemma 7.1 in [5], we have

Wm(gj) = ψm(j)Wm(g), ∀j ∈ Jm, ∀g ∈ Gn

This gives the existence of Howe vectors when m is large enough. The following lemma establishes
its uniqueness in Kirillov model.

Theorem 5.2. Assume W ∈ W satisfying (5.1). Let h ∈ Gn−1, if

W

(
h

1

)
6= 0

then h ∈ Nn−1B̄n−1,m. Moreover

W

(
h

1

)
= ψ(u)W (I)

if h = ub̄, with u ∈ Nn−1, b̄ ∈ B̄n−1,m.

• Howe vectors were first introduced by R.Howe in an unpublished paper ([15]), in which he proved
certain existence and uniqueness properties of such vectors based on Gelfand-Kazhdan method. We
will below give an elementary proof of this theorem which calculates the Howe vectors in Kirillov
models. This result also provides Howe vector as an candidate for the ‘unramified’ vector other than
new vectors even in the ‘ramified’ representations.

Proof. We will use an inductive argument. Write

h =




h11 · · · h1,n−1

· · ·
hn−1,1 · · · hn−1,n−1




Take

u =

(
In−1 u

1

)
=




1 0 · · · u1
1 0 · · · u2

· · ·
1 un−1

1




∈ Jm

We have

ψ(un−1)W

(
h

1

)
=W

((
h

1

)(
In−1 u

1

))

=W

(
h h.u

1

)
=W

((
In−1 h.u

1

)(
h

1

))

= ψ(
n−1∑

i=1

hn−1,iui)W

(
h

1

)

Since W

(
h

1

)
6= 0, we get

ψ(

n−2∑

i=1

hn−1,iui + (hn−1,n−1 − 1)un−1) = 1
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Note that ui ∈ p(2i−2n+1)m, i = 1, 2, ..., n−1, it follows that hn−1,i ∈ p(2n−1−2i)m, i = 1, 2, ..., n−2,
and hn−1,n−1 ∈ 1 + pm. So we may write

h =

(
In−2 y

1

)(
g
x a

)
=

(
In−2 y

1

)(
g

1

)(
In−2

x a

)

with x = (hn−1,1, ..., hn−1,n−2), a = hn−1,n−1, y = h−1
n−1,n−1

t(h1,n−1, h2,n−1, ..., hn−2,n−1), g =
hn−2 − y · x, where y is a column vector, x is a row vector, and

hn−2 =




h11 · · · h1,n−2

· · ·
hn−2,1 · · · hn−2,n−2




Since j =

(
In−2

x a

)
∈ Jm, and by the assumption on W , we get

W

(
h

1

)
=W





In−2 y

1
1






g

1
1






In−2

x a
1






= ψ(yn−2)ψm(j)W



g

1
1




Note that ψm(j) = 1 and it follows that

W



g

1
1


 6= 0

and now we can argue inductively to get the result. �

• It follows from this lemma that W (I) 6= 0 for Howe vectors, we will normalize it so that
W (I) = 1.

We apply the kernel formula to Howe vector to prove the following result.

Proposition 5.3. Assume π is supercuspidal. Fix b = diag(b1, ..., bn) ∈ An, choose m large enough
so that

(1). R(An,m).jπ(bωn) = jπ(bωn), and L(An,m).jπ(bωn) = jπ(bωn);

(2). bi−1

bi
∈ p−3m, i = 3, ..., n

Then

W (bωn) = vol(B̄n−1,m)jπ(bωn)

Proof. We first note that although we don’t know whether the weak kernel formula is absolutely
convergent, but when applying it to Howe vectors, by Theorem 5.2, Howe vectors have nice compact
support modulo Nn−1 in the Kirillov model, hence in this case the weak kernel formula is absolutely
convergent. Write

x =




1
x21 1

. . .

xn−1,1 · · · xn−1,n−2 1
1




and
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a = diag(a1, a2, ..., an−1, 1)

Apply the kernel formula to Howe vector Wm and by Theorem 5.2, we find

Wm(bωn) =

∫

B̄n−1,m

jπ(bωn(xa)
−1)da1dx21da2 · · · dxn−1,1 · · · dxn−1,n−2dan−1

Note that bωna
−1x−1aωnb

−1 is a upper triangular unipotent matrix and

ψ(bωna
−1x−1aωnb

−1) = ψ(−x21
a1
a2

bn−1

bn
− ...− xn−1,n−2

an−2

an−1

b2
b3
)

then the above integral equals

∫

B̄n−1,m

ψ(−x21
a1
a2

bn−1

bn
−...−xn−1,n−2

an−2

an−1

b2
b3
)jπ(bωna

−1)da1dx21da2 · · · dxn−1,1 · · · dxn−1,n−2dan−1

=

∫

B̄n−1,m

jπ(bωna
−1)da1dx21da2 · · · dxn−1,1 · · · dxn−1,n−2dan−1

since ai ∈ An,m, i = 1, ..., n − 1, bi−1

bi
∈ p−3m, i = 3, ..., n by assumption (2), and xi,i−1 ∈ p3m, i =

2, ..., n− 1.

Now by assumption (1), jπ(bωna
−1) = jπ(bωn), and eventually we have

W (bωn) = jπ(bωn)

∫

B̄n−1,m

da1dx21da2 · · · dxn−1,1 · · · dxn−1,n−2dan−1 = vol(B̄n−1,m)jπ(bωn)

�

6. Bessel distributions and Bessel functions

In this section, we will show for supercuspidal representation π, the Bessel function j0(g) defined
in section 3 via Bessel distribution, is equal to the Bessel function jπ(g), defined in section 2 via
uniqueness of Whittaker functional. We first review some results and constructions in [2], which will
be useful for our purpose.

As in [2], use L(ωn).f to denote the left translation by ωn on f , for f a locally constant com-
pactly supported function of Gn. Then this action induces an action on distributions, still denoted
as L(ωn). We now consider the distribution J = L(ωn).Bl,l′ , where Bl,l′ is the Bessel distribution
defined in section 3. An important result proved in [2] is that, the restriction of J to N̄nAnNn is
given by the locally constant function j0, and the restriction of Bl,l′ to NnωnAnNn is then given by
jπ = L(ωn).j0. We next describe the method used to prove this fact in section 3.3 of [2].

We first transform the distribution J on Y = N̄nAnNn to a distribution σJ on An using the
constructions in [2]. For every f ∈ C∞

c (Y ), define βf ∈ C∞
c (An) by

βf (a) =

∫

N̄n×Nn

f(ū1au2)ψ(−ū1)ψ(−u2)du1du2

where ψ(ū1) = ψ(ωnū1ωn). Then by Proposition 1.12 in [18], the map sending f to βf is a surjective
map from C∞

c (Y ) onto C∞
c (An), and there exists a unique distribution σJ on An with

J(f) = σJ (βf )

Moreover, if the distribution σJ on An is given by a locally constant function φ(a), then the distri-
bution J on Y is given by the locally constant function ψ(ū1)ψ(u2)φ(a)∆

−1(a), where ∆ satisfies
dg = ∆(a)dū1dadu2 on Y .
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To show σJ is given by some locally constant φ(a), we need to introduce the following concept as
in [2], specializing to our case.

Definition 6.1. Let Θ be a distribution on An. Θ is said to be admissible if for any a ∈ An,
there exists some compact open subgroup K (depending on a) of An, such that for every nontrivial
character χ of K we have Θ(χa) = 0, where χa is the function defined on aK by χa(ak) = χ(k),
k ∈ K.

We then have the following lemma.

Lemma 6.2. A distribution Θ on An is admissible if and only if there exists a locally constant
function θ on An such that

Θ(f) =

∫

An

θ(a)f(a)da

for all f ∈ C∞
c (An). Moreover, the value of θ(a) if given by 1

vol(K(a))Θ(1a), where K(a) is any

compact open subgroup of An satisfying Definition 6.1, and 1 denotes the trivial character of K(a).

Proof. This is exactly Lemma 3.2 in [2] applied to our case. �

In view of the above discussion, it suffices to show σJ is admissible, and this is done in section
3.3 of [2]. Moreover fix a = diag(a1, ..., an) ∈ An, choose m large enough. More precisely, let M > 0
be a positive constant as in Corollary 3.5 in [2], we then require m to satisfy that

(1). ψ is trivial on ωnaN̄n,ma
−1ωn and ωna

−1N̄n,maωn;

(2). R(An,m).jπ(aωn) = jπ(aωn), and L(An,m).jπ(aωn) = jπ(aωn).

(3). m ≥M .
As ψ has conductor exactly O, if m is large (1) can then be satisfied. Because jπ is locally constant,
for a given a ∈ An, (2) can be satisfied once m is large. Hence one can choose m large enough
satisfying all the above (1),(2),(3).

Then An,m = An ∩ Jm, which is a compact open subgroup of An, will satisfy Definition 6.1 by
assumption (1) as shown in [2], and then by Lemma 6.2, φ(a) = σJ (

1
vol(An,m)χa) where χa is the

characteristic function of aAn,m.

Now let φ1, φ2 be a multiple of the characteristic function of N̄n ∩Kn, and Nn∩Kn, respectively,
with

∫

N̄n

φ1(ū)ψ(−ωnūωn)dū = 1

and ∫

Nn

φ2(u)ψ(−u)du = 1

then Φa = 1
vol(An,m)φ1χaφ2 is a locally constant compactly supported function on N̄nAnNn. Note

that 1
vol(An,m)χa = βΦa

.

Hence jπ(a) = φ(a)∆−1(a) = σJ (
1

vol(An,m)χa)∆
−1(a) = J(Φa)∆

−1(a). Then

j0(ωna) = jπ(a) = J(Φa)∆
−1(a) = Bl,l′(L(ωn)Φa)∆

−1(a).

Note that L(ωn).Φa belongs to C∞
c (NnωnAnNn), and hence can be viewed as an element in

C∞
c (Gn). Choose another positive integer m1 large enough so that
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(1). L(b̄).L(ωn).Φa = L(ωn).Φa for any b ∈ B̄n−1,m1
;

(2). m1 ≥ m;

(3). ai
ai−1

∈ p−3m1 , i = 3, ..., n.

Since L(ωn).Φa ∈ C∞
c (Gn), hence it is bi-invariant under some open compact subgroup, then (1) is

satisfied if m1 is large. Thus we can choose m1 large enough to satisfy all above (1),(2),(3).

Apply Lemma 3.2 to f = L(ωn)Φa, Ŵ = Ŵm1
the Howe vector, then we find by Theorem 5.2,

the right hand side of Lemma 3.2 is

∫

Nn−1\Gn−1

Bl,l′

(
L

(
h

1

)
.L(ωn).Φa

)
Ŵm1

(
h

1

)
dh

= Bl,l′(L(ωn)Φa)vol(B̄n−1,m1
)

While the left side integral of Lemma 3.2 is
∫
f(g)Ŵm1

(g−1)dg

=
1

vol(An,m)

∫
φ1(ωnu1ωn)ψ(−u1)φ2(u2)ψ(−u2)du1du2

∫

An,m

Ŵm1
(h−1a−1ωn)∆(ah)dh

=
1

vol(An,m)
∆(a)

∫

An,m

Ŵm1
(h−1a−1ωn)∆(h)dh

For any h′ ∈ An,m1
⊂ An,m, h ∈ An,m, since jπ̃(g

−1) = jπ(g), we have

jπ̃(h
′h−1a−1ωn) = jπ(ωnahh

′−1) = jπ(ωnah) = jπ̃(h
−1a−1ωn)

jπ̃(h
−1a−1ωnh

′) = jπ(h
′−1ωnah) = jπ(ωnah) = jπ̃(h

−1a−1ωn)

and hiai
hi−1ai−1

∈ p−3m1 , i = 3, ..., n if h = diag(h1, ..., hn). Hence we can apply Proposition 5.3 to

Ŵm1
(h−1a−1ωn) in the above integral and get

∫
f(g)Ŵm1

(g−1)dg

=
1

vol(An,m)
∆(a)

∫

An,m

jπ̃(h
−1a−1ωn)vol(B̄n−1,m1

)∆(h)dh

=
1

vol(An,m)
∆(a)

∫

An,m

jπ(ωnah)vol(B̄n−1,m1
)dh

where the last equality follows from the facts that jπ̃(g
−1) = jπ(g) and ∆(h) = 1 when restricted to

An,m.

Now by assumption (2) on m, the above equals

∆(a)jπ(ωna)vol(B̄n−1,m1
)

which is the left hand side of Lemma 3.2.

Combining both sides of Lemma 3.2, we get

∆(a)jπ(ωna)vol(B̄n−1,m1
) = Bl,l′(L(ωn)Φa)vol(B̄n−1,m1

)

Note that Bl,l′(L(ωn)Φa) = j0(ωna)∆(a), immediately we have



18 JINGSONG CHAI

Theorem 6.3. Assume π is supercuspidal. For all g ∈ NnAnωnNn, we have

j0(g) = jπ(g)

7. General Case

The aim of this section is to generalize Theorem 6.3 from supercuspidal case to general generic
case. Now assume π is an irreducible admissible smooth generic representation of Gn with Whittaker
model W(π, ψ). The point is to prove a weak kernel formula for Howe vectors of π. This weak kernel
formula is expected to hold for a wider class of Whittaker functions, but currently we are only able
to prove it for Howe vectors, which is sufficient for our purpose.

The proof is essentially the same as the proof of Theorem 4.2 with necessary modifications. Use
Wm to denote the normalized Howe vector of level m of π as in section 5.

Theorem 7.1. (weak kernel formula) For any bωn, b = diag(b1, ..., bn) ∈ An, if m is large enough,
we have

Wm(bωn) =

∫
jπ



bωn




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




−1

Wm




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−1|
−1dxn−1,1 · · · dxn−1,n−2dan−1

where the right side is an iterated integral, ai is integrated over F× ⊂ F for i = 1, ..., n− 1, xij is
integrated over F for all relevant i, j, and all measures are additive self-dual Haar measures on F .

We first noteWm




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




6= 0 if and only if




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




∈ B̄n,m by Theorem 5.2, in which caseWm




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




= 1. This is very

important for our proof in this special case.

Introduce notations hi =




Ii−1

xi,1 ... xi,i−1 ai
In−i


. We also use hi to denote the left up-

per corner i× i matrix when there is no confusion. Note that




a1
x21 a2

. . .

xn−1,1 · · · xn−1,n−2 an−1

1




= h1h2...hn−1.
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Proof. Now let

M1(un−1) =Wm

(
bωn

(
In−1 un−1

1

))

which is a compactly supported function in column vector un−1 by by Theorem 5.7 and Theorem
7.3 in [5] as Wm ∈ W0 if m is large enough. Its Fourier inversion formula is

M1(un−1) =

∫

Fn−1

M̂1(vn−1)ψ(−vn−1un−1)dvn−1

=

∫

Fn−2×F×

M̂1(z1, ..., zn−1)ψ(−(z1, ..., zn−1)un−1)dz1...dzn−1

where we write vn−1 = (z1, ..., zn−1), with z1, ..., zn−2 ∈ F , zn−1 ∈ F×, and the last equality follows
from the facts that dz1...dzn−1 is the additive Haar measure and Fn−2×F× is of full measure in Fn−1.

Put un−1 = 0, we get

(7.1) M1(0) =

∫

Fn−2×F×

M̂1(z1, ..., zn−1)dz1...dzn−1

By the same computations as in section 4, we find

|an−1|
−1

∫

Y2

W (bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 = M̂1(xn−1,1, ..., xn−1,n−2, an−1)

So (7.1) becomes

Wm(bωn) =

∫

Fn−2×F×

M̂1(xn−1,1, ..., xn−1,n−2, an−1)dxn−1,1...dxn−1,n−2dan−1

(7.2) =

∫

Fn−2×F×

|an−1|
−1

∫

Y2

Wm(bωnh
−1
n−1y2hn−1)ψ(−y2)dy2dxn−1,1...dxn−1,n−2dan−1

Claim 1: As a function of hn−1,
∫
Y2

Wm(bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 has support in B̄n,m.

Proof of Claim 1: The proof is similar to Theorem 5.2. Take

u =

(
In−1 u

1

)
=




1 0 · · · u1
1 0 · · · u2

· · ·
1 un−1

1




∈ Jm

then

ψ(un−1)

∫

Y2

Wm(bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 =

∫

Y2

Wm(bωnh
−1
n−1y2hn−1u)ψ(−y2)dy2

=

∫

Y2

Wm(bωnh
−1
n−1y2hn−1uh

−1
n−1hn−1)ψ(−y2)dy2 =

∫

Y2

Wm(bωnh
−1
n−1y2hn−1)ψ(−y2)ψ(hn−1uh

−1
n−1)dy2

where in the last equality we change variable y2hn−1uh
−1
n−1 → y2.

Thus we find that if
∫
Y2

Wm(bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 6= 0, then

ψ(un−1) = ψ(hn−1uh
−1
n−1)

As u ∈ Jm is arbitrary, this forces hn−1 ∈ B̄n,m, which proves the claim.

✷
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Let’s continue the proof of the theorem. Compare (7.2) with the desired formula in theorem and
note the support of Wm and the claim, it suffices to show

∫

Y2

Wm(bωnh
−1
n−1y2hn−1)ψ(−y2)dy2 =

∫

jπ



bωnh

−1
n−1




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




−1

Wm







a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2



hn−1




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−2|
−2dxn−2,1 · · · dxn−2,n−3dan−2

for hn−1 ∈ B̄n,m.

By properties of Howe vectors, this is equivalent to
∫

Y2

Wm(bωnh
−1
n−1y2)ψ(−y2)dy2 =

∫

jπ



bωnh

−1
n−1




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




−1

Wm




a1
x21 a2

. . .

xn−2,1 · · · xn−2,n−3 an−2

I2




(7.3) |a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · |an−2|
−2dxn−2,1 · · · dxn−2,n−3dan−2

for hn−1 ∈ B̄n,m.

To prove (7.3), let

M2(un−2) =

∫

Y2

Wm


bωnh−1

n−1y2



In−2 un−2

1
1




ψ(−y2)dy2

which is compactly supported function in column vector un−2 by Theorem 5.7 and 7.3 in [5]. Its
Fourier inversion formula is

M2(un−2) =

∫

Fn−2

M̂2(vn−2)ψ(−vn−2un−2)dvn−2

=

∫

Fn−3×F×

M̂2(z1, ..., zn−2)ψ(−(z1, ..., zn−2)un−2)dz1...dzn−2

where we write vn−2 = (z1, ..., zn−2), with z1, ..., zn−3 ∈ F , zn−2 ∈ F×, and the last equality follows
from the facts that dz1...dzn−2 is the additive Haar measure and Fn−3×F× is of full measure in Fn−2.

Put un−2 = 0, we get

(7.4) M2(0) =

∫

Fn−2×F×

M̂2(z1, ..., zn−2)dz1...dzn−2

Similar computations as in section 4 shows that

M̂2(xn−2,1, ..., xn−2,n−3, an−2) = |dethn−2|
−2

∫

Fn−2

∫

Y2

Wm


bωnh−1

n−1h
−1
n−2y2



In−2 un−2

1
1


 hn−2


ψ(−y2)ψ


−



In−2 un−2

1
1




 dy2dun−2
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= |dethn−2|
−2

∫

Y3

Wm(bωnh
−1
n−1h

−1
n−2y3hn−2)ψ(−y3)dy3

So (7.4) becomes ∫

Y2

Wm

(
bωnh

−1
n−1y2

)
ψ(−y2)dy2 =

(7.5)

∫

Fn−2×F×

|dethn−2|
−2

∫

Y3

Wm(bωnh
−1
n−1h

−1
n−2y3hn−2)ψ(−y3)dy3dxn−2,1...dan−2

Claim 2: As a function of hn−2,
∫
Y3

Wm(bωnh
−1
n−1h

−1
n−2y3hn−2)ψ(−y3)dy3 has support in B̄n,m.

Proof of the Claim 2 : Take

u =



In−2 un−2

1
1


 ∈ Jm

then argue completely the same as the proof of Claim 1. The details will be omitted.

✷

Compare (7.5) with (7.3) and note the support of Wm and Claim 2, then it suffices to show that
∫

Y3

Wm(bωnh
−1
n−1h

−1
n−2y3hn−2)ψ(−y3)dy3 =

∫

jπ



bωnh

−1
n−1h

−1
n−2




a1
x21 a2

. . .

xn−3,1 · · · xn−3,n−4 an−3

I3




−1

Wm







a1
x21 a2

. . .

xn−3,1 · · · xn−3,n−4 an−3

I3



hn−2




|a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · dxn−2,1 · · · dxn−3,n−4dan−3

for hn−2 ∈ B̄n,m, which is equivalent to
∫

Y3

Wm(bωnh
−1
n−1h

−1
n−2y3)ψ(−y3)dy3 =

∫

jπ



bωnh

−1
n−1h

−1
n−2




a1
x21 a2

. . .

xn−3,1 · · · xn−3,n−4 an−3

I3




−1

Wm




a1
x21 a2

. . .

xn−3,1 · · · xn−3,n−4 an−3

I3




(7.6) |a1|
−(n−1)da1|a2|

−(n−2)dx21da2 · · · dxn−2,1 · · · dxn−3,n−4dan−3

To prove (7.6), inductively, it suffices to show that
∫

Yn−1

Wm

(
bωnh

−1
n−1...h

−1
2 yn−1

)
ψ(−yn−1)dyn−1 =

∫

F×

jπ

(
bωnh

−1
n−1...h

−1
2

(
a−1
1

In−1

))
Wm

(
a1

In−1

)
|a1|

−(n−1)da1

which can be proved completely in the same way as the proof of Theorem 4.2. Thus the proof of
the theorem is finished.

�
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Now use the same method as in section 6 , together with the above weak kernel formula for Howe
vectorsWm with m large enough, we can show that for irreducible generic admissible representation
π of Gn, the Bessel functions jπ defined via uniqueness of Whittaker models, coincide with the
Bessel function j0 defined via Bessel distributions, which generalize Theorem 6.3 to general generic
representations. As the proof is completely the same as Theorem 6.3 we omit the details, and simply
state the result as follows.

Theorem 7.2. If π is an irreducible admissible smooth generic representation of Gn, then for any
g ∈ NnωnAnNn, we have

jπ(g) = j0(g)
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