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A WEAK KERNEL FORMULA FOR BESSEL FUNCTIONS

JINGSONG CHAI

ABSTRACT. In this paper, we prove a weak kernel formula of Bessel functions attached to ir-
reducible generic representations of p-adic GL(n). As an application, we show that the Bessel
function defined by Bessel distribution coincides with the Bessel function defined via uniqueness
of Whittaker models on the open Bruhat cell.

1. INTRODUCTION

For a generic irreducible smooth representation m of GL(n, F') with its contragredient 7, where F’
is a p-adic field, there are two ways to attach Bessel functions to . The first is via Bessel distribution
By i, where [, 1" are Whittaker functionals on 7 and 7 respectively. Such distributions were used by
Gelfand and Kazhdan ([14]), and Shalika ([18]) to prove uniqueness of Whittaker functionals. In [2],
for more general quasi-split groups, E.Baruch showed that the restriction of B to the big open
Bruhat cell is given by a locally constant function jo(g).

On the other hand, for Whitaker function W € W(r), where W(7) denotes the Whittaker model
of m, the integral

/ W (g~ (u)du
N,

converges in the stable sense if g is in the big open cell, and thus defines a function j.(g) there such
that

I (@W (1) = /N W (gu)d (u)du

because of uniqueness of Whittaker functionals. This Bessel function j, was first defined in this way
by David Soudry in [19] for GL(2, F'), and then was generalized by E.Baruch to GL(n, F'). For more
details see [3, 5].

In the case GL(3, F) (also GL(2, F)), E.Baruch in [1, 4] proved the Bessel function j,(g) is locally
integrable on the whole group, and gives the Bessel distribution B; ;s on GL(3, F'), which implies
that the above two functions jg, jr are the same.

These Bessel functions and Bessel distributions have many applications to the theory of auto-
morphic forms, to list a few, for example see [6, 7, 8, 10, 11, 17]. Thus it is desirable to generalize
E.Baruch’s important results to more general GL(n, F'). The obstacle is the local integrability of
j=(g). This is done by E.Baruch in [4] for GL(3, F) case using Shalika germs, but seems to be very
difficult in general.

In this paper, we generalize some above results to GL(n, F'). More precisely, we proved the fol-
lowing result.
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Theorem 1. If 7 is irreducible, smooth and generic, then we have

Jo(g) = j=(9)
for all g € N,,w, A, Ny, where N, is the upper triangular unipotent subgroup, A,, is the subgroup
of diagonal matrices, and w,, is the longest element in the Weyl group.

Once we know local integrability of Bessel functions, we can also show B, is given by j, on the
whole group following the method in [4].

We here essentially follow Baruch’s approach, and an important ingredient in the proof is a kernel
formula, which has its own interests and can be stated as follows.

Theorem 2(Theorem 4.2, Theorem 7.1). Assume either 7 is supercuspidal and W is any Whit-
taker function of m, or 7 is irreducible smooth and generic and W is the normalized Howe vec-
tors with sufficiently large level(see section 5 for the definition of Howe vectors). For any bwy,,
b=diag(by,...,b,) € Ay, and any W € W(w, ), we have

W (bwy) =
-1
ay ay
€21 a2 21 ag
/ g | wn W
Tn—-1,1 " Tp—1n-2 0Ap-—1 Tn—-1,1 - Tpn—1mn—2 0Aan-1
1 1

1|~ Vday|ag| =" Ddzorday - - |an—1|  dzn_11 - drp—1p—2dan 1

where the right side is an iterated integral, a; is integrated over F'’* C F fori =1,...,n —1, a;; is
integrated over F' for all relevant i, j, and all measures are additive self-dual Haar measures on F.

We remark that in the case of general generic representation 7, this kernel formula is expected
to be true for a wide class of Whittaker functions of 7(though not all of them), but currently we are
only able to prove it for Howe vectors which is sufficient for the purpose of this paper.

Such formula was first proved by David Soudry in [19] for generic irreducible representations of
GL(2,F), and then was generalized to GL(3, F') by E.Baruch in [4]. Due to the lack of local inte-
grability of j., we have to write the above integral as an iterated integral.

E.Baruch in [2] showed the existence of jy for smooth generic irreducible representations of quasi-
split reductive groups over local fields of characteristic zero. Recently E.Lapid and Zhengyu Mao in
[16] defined j, using uniqueness of Whittaker functionals for split reductive groups. It is interesting
to see if the results here can be generalized to these cases.

The paper is organized as follows. In section 2 and 3, we recall some results about Bessel func-
tions jr(g) and Bessel distributions By r. Section 4 is to prove the weak kernel formula. Section 5
is devoted to prove some properties of Howe vectors, which will be needed later. In section 6 we
show that these two Bessel functions are equivalent in the supercuspidal case. In the last section we
generalize the results to generic case.

Notations.

Let F be a p-adic field with ring of integers O, use | - | to denote the valuation on F. We will
always fix a self-dual Haar measure on F. Let K,, = GL(n,0) and G,, = GL(n, F'), 7 a generic irre-
ducible smooth admissible representation of G,,, with its contragredient 7. Let N,, be the maximal
unipotent subgroup of upper triangular matrices. Let A, be the group of diagonal matrices. Let
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N,, be the transpose of N,,. B, = A,N,, B, = A, N,,.

Let ¢ be a nontrivial additive character of F' with conductor exactly O. We extend v to a char-

acter of N, by 9(u) = (377 wiiv1) if u = (us;) € Ny, and still denote it as .

Use I,1' to denote the Whittaker functionals on 7, @ with respect to ¥ and 1!, respectively. Let
W = W(r, ), W= W(7,%~1) be the corresponding Whittaker models.

Let W be the Weyl group of G,,, and use w, to denote the longest Weyl element in W, i.e.
0 1

Wy =

2. BESSEL FUNCTIONS

In this section, we review some results about Bessel functions j(g) in [5]. For our purpose, we will
restrict to supercuspidal representations, though most of the notions and results can be generalized
to smooth irreducible generic representations. We refer to [5] for more details in general.

So let (m,V) be an irreducible supercuspidal representation of G,. If ¢ is a nondegenerate
character of N,,, use W = W(m, 1) to denote the Whittaker model of = w.r.t. ¥. If M > 0is a
positive constant, let

Qi

AM —faec A, ;| | <M for i=1,2,...,n—1,if a=diag(ay,...,an)}

Qi1
Note that as M — oo, AM cover A,,.

We start with the following important result of Baruch.

Proposition 2.1. For any W € W(w,), M > 0, the function on AM x N,, defined by

(a,u) = W(awpu)
is compactly supported in N, with support independent of a € AM. That is, if W (awnu) # 0, with
a € AM u € N,, then there exists a compact subset U C N,,, which is independent of a, such that

n

ueU.
Proof. This follows from Theorem 5.7 and Lemma 6.1 in [5]. O

The above result allows us to define Bessel functions for supercuspidal representations as follows.
Take W € W. Consider the integrals for g € N, Apw, Ny,

[ Wi wn

Y;

where Y7 C Yo C ... CY; C Y41 C ... is an increasing filtration of N,, with compact open subgroups.
By Proposition 2.1, if Y; is large enough, these integrals become stable. The stable limit is

independent of the choices of sequence {Y;}. Use || ;, to denote this limit, which defines a nontrivial
Whittaker functional on W. Thus there exists a scalar jr (g) such that

/N* W (gu) (u)du = i ()W (1)

Definition 2.2. The assignment g — jz(g9) = jxu defines a function on N, Anw, Ny, which is
called the Bessel function of m attached to wy,.
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We extend j, to G,, by putting j.(g) =0if g ¢ N,, A,w, Ny, and still use j. to denote it and call
it the Bessel function of .

e j. is locally constant on N, A,w, N,.
e For any uy,uz € N, any g € Gy, we have jr(u1gug) = 1 (u1)(uz)jx(9).

e One may also attach Bessel functions to other Weyl elements. For more details, see [5]. For
Bessel functions defined in this way for split reductive groups, see [16].

For W € W, let W(g) = W(wy - 'g~!), then {W : W € W} is the Whittaker model for the
contragredient 7 with respect to ¢»~!. By Corollary 8.5 in [5], we have the following relation

(21) jﬁ',’lbfl(g) = jﬂ'ﬂll(g_l)a g e anan

3. BESSEL DISTRIBUTIONS

In this section, we collect some useful properties about Bessel distributions. Let 7 be an irreducible
smooth generic representation of GG,,. Let 7* and 7* denote the linear dual of 7 and 7 respectively.
Let f be a locally constant function with compact support on G,,, take [ € 7*, I’ € 7*. Define 7(f)l
as

F = /G F(9)7(g)l'dg

or equivalently, for any o € T,
<HO = [ 1) <T@ > dy
Gn

- / flg) <1 7(g)(®) > dg
G

then 7(f)l’ is a smooth linear functional on 7, hence can be identified with a vector vy € 7.

Definition 3.1. Define Bessel distribution By (f) as

By (f) =1l(vsr)

e The definition of B; ;s depends on [,!’” and Haar measure dg on G,.

e When both [,!’ are Whittaker functionals, such B is the Bessel distribution first studied by
Gelfand and Kazhdan ([14]) for GL,, in p-adic case, and by Shalika ([18]) in archimedean case, by
Baruch ([2]) for quasi-split groups in both non-archemedean and archemedean cases.

e It was shown in [2] that when both [,I’ are Whittaker functionals with respect to ¢ and ¢!
respectively, B can be represented by a locally constant function in non-archimedean case, and
by a real analytic function in archimedean case, when restricted to the open Bruhat cell. We will
denote this function by jo(g), g € NpApw, Np,.

e When ! is the Whittaker functional on 7 with respect to ¢!, for any Wy € W(r, 1), we
have

<Uf,l’75>:/c F9)Wa(g~")dg



A WEAK KERNEL FORMULA FOR BESSEL FUNCTIONS 5

From now on, we will always assume [,!’ are nonzero Whittaker functionals. Fix [ on 7 with
respect to i, for W € W(m, ), W e W(7, 1Y), if either W (h 1) or W (h 1) is compactly

supported mod N,,_1, by results in [9], we can normalize I’, so that

<u,5>=/ W, (h 1>W1~, (h 1>dh
anl\anl

where the right side integral defines a P, invariant pairing between m and 7, here P, is the so-called
mirabolic subgroup of G,,.

Lemma 3.2. With the above normalization, if W (h
have for any f € C(G),

/ F(9)Wilg™")dg =/ By (L (h 1) .f> Wy (h 1) dh
Gn Np—1\Gn-1

where L denotes the left action of G, on f.

1) is compactly supported mod Ny,_1, we

Proof. Let vy be the vector in 7 as in Definition 3.1, so By (f) = l(vsy). For v € 7, denote

h= <h 1>, we have

< v T = / f(hlg) <V, 7(g™)5 > dg
Gn

- /G f(g) < I F (g™ )R > dg

=<wpp, 7 (b )0 >=<m(h)vsy,v >

Thus By i/ (L (h 1) -f) =l(vrmypr) = Ur(R)vpe) = Wy, ,, (R).

It follows that the right side in lemma is < vy;,v > by normalization, which equals the left
side. 0

4. KERNEL FORMULA

In this section, we will prove a weak kernel formula for Bessel functions attached to supercuspidal
representations as in section 1, which is the first main result of this paper. The method of the proof
follows that of Baruch in [4] by generalizing corresponding results there to GL(n).

So through out of this section, 7 will be an irreducible supercuspidal representation of G,,. Let
Y; be the unipotent part of the parabolic subgroup of G,, associated to the partition (n-i+1,1,...,1),
1 <4 < n. Note that Y1 = {I,,}, Y,, = N,,. By Proposition 2.1, we have the following lemma.

Lemma 4.1. For any bw,, b = diag(by, ...,b,) € A, then as a function of u; € F™"~", the function

I (7

/ W bwnys 1 ™ (ys)dy;
¥ Ii 4

is compactly supported, where ¥(y;) is the restriction of Whittaker character to Y; C Ny,.
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Proof. By Proposition 2.1, if b € AM for some constant M > 0, then the function W (bwyu) is
compactly supported as a function u € N,,, with support independent of b € A} . Then its restriction
to

I
{y 1 cy € Yi,u; € FU)
Iiy
is again compactly supported. Now the lemma follows immediately. O

Theorem 4.2. (weak kernel formula) For any bw,, b = diag(by,...,b,) € A,, and any W € W, we

have
W (bw,,) =
-1
ay ay
T21 a2 T21 a2
/j,r bwn, w
Tn—-1,1 " Tp—1n-2 0aAp-—1 Tn-1,1 - Tpn—1n—2 0Aan-1
1 1
—(n—1 —(n—2 —1
|a1| ( )da1|a2| ( )dledaz te |6Ln71| dInfl,l ce dInanfzdanq

where the right side is an iterated integral, a; is integrated over F'* C F fori=1,...,n —1, x;; is
integrated over F' for all relevant i,j, and all measures are additive self-dual Haar measures on F'.

Proof. The proof is based an inductive argument. We begin with the proof of the following identity,
for any bw,,

/Y W (bwntn—1) (—Yn—1)dyn_1 =

Cl,_l aq 1
(4.1) / A N w la1|~ ™ Vda,
Fx Infl Infl

where da; is the additive Haar measure on F'. Note that because of Proposition 2.1, the left side
integral is absolutely convergent. Because 7 is supercuspidal, W is compactly supported mod N,, Z,,,

where Z,, is the center of G,, then W (a1 is compactly supported in F'* as a function of a;.

Infl
-1

Since j is locally constant on the big cell, j. (bwn <a1 I )) is also locally constant as a func-
n—1

tion of a1, then the right side integral reduces to a finite sum, and hence is also absolutely convergent.

For this consider the following function M,,_1(z) : F — C by

1 =z

Mn—l(x):/ w bwnyn—l 1 w(_yn—l)dyn—l
)/nfl In72

By Lemma 4.1, this is a compactly supported function in xz. Thus its Fourier transform ﬂn,l(y)
is also compactly supported, and we have Fourier inversion formula

Mos(o) = [ Maitvoddy = [ Fawotuo)dy

where the last equality follows from the facts that dy is the additive Haar measure, and F* is of full
measure in F.

Put z =0, we get
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—~

M;—1(0) :/ My —1(y)dy
FX
Now we compute the Fourier coefficient ]/\/[\n,l(y) when y = a; # 0.

—~

Mn—l (al)

1 =z
_ / W boyns [ 1 D=1 )(—arz)dynrda
F Ynfl

In72

1 aflx

= // W | bwnyn—1 1 P(=yn-1)¥(=2)|ar| " dy, 1 da
F I Yn—a In—2

1 1 X
= [ [ (e ( . )y | ( . ) (=g (=)ar |~ Dy 1d
FJY, 1 n—1 In—2 n—1

1 =z

Put vy, = yn_1 1 €Y, = N,, the above integral becomes
In72

W (b (@ @ -1 ~(n-1)g
= Wr, Yn ¥ (yn)las Yn
Y Infl In—l
-1
_ . al a1 —(n—l)
(T ()
where the last equality follows form the identity
“ w) (b, (1 ¥ (y)dyn =
. ™ I, 1) n I, Yn Yn )AYn =
-1
. aq aq
(e () () )

which is the definition of j.

Now we get

/Y W (bwntn—1) W (—Yn 1)1

= M,_1(0)= ]/\Zn—l(al)dal
FX

-1
. aq a —(n—1)
Joo (e (")) (g Jmine

which is exactly what we want to show in (4.1).

1
Now set hg = | 221 a2 with zo1 € F, as € F*, we also use hy to denote the left upper
In—2
corner 2 X 2 matrix. We first note the following identity of product of matrices
In_g In—2
bwnhy ' = 1 —bp_1b;tay oy ay by,

1 1
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Hence
In_g In—2
Wy (bwnhy 'yn-—1h2) = W, 1 —bn1bytay o ay’ bwnyn—1ha
1 1
In72
= 1/)(—bn,1b;1a2111721)w7r(h2)v a21 bwnyn,l
1
and
. —1 afl
i (et (7 ,)
In72 In72 —1
_ 1 -1 ay
= I 1 —by_1b, a5 x21 asy bwn< >
In—l
1 1
In72 a—l
= (=bn1b, " ay w21 ay ! bwn< 1 )
1 Infl

Now apply (4.1) to V' = diag(b1, ..., bp_2, a5 ‘bp_1,b,), and W = W (ha)o, We will get

/ Wﬂ'(hz)v (b/wnynfl) 1Z)(_ynfl)dynfl =
Yn-1

-1
. a ai —(n—1
/FX Jr (b’wn ( 1 In1>) W (ha)o ( In1> lay|~ ™ Vday

Multiply by ¢)(—b,_1b;, 'a; "x21) on both sides, and then

/ W (b s g 1hs) ¥(—yn1)dyn—1 =
Yn-1

—1
(4.2) / x (bwnh21 (al ; 1)>W((‘” s 1) h2> lay|~ ™ Vday
FX n— n—

IQ (%)
Write yp—1 = yn—2 1 with ug a column vector in F2, then the left side of (4.2) is
In—3
I h2_1.’U,2 I, —us
(4.3) / W | bwnyn-o 1 G(=yn—2)t) 1 |as| "D dy,
Y1 In73 In—3
Now put
Iy g
My _s(ug) = / W bwnyn—2 1 Y(—Yn—2)dYn—2
}/7172 In73

By Lemma 4.1, M,,_5(us) is compactly supported, and its Fourier inversion formula is

—

My _s(u2) = /F2 M2 (v2)(vauz)dvy = /Fxe M2 (2, y)((z, y)uz)dzdy

if we write vy = (x,y) as a row vector, with « € F, y € F*, and the last equality follows from the
facts that dxdy are additive Haar measures and F x F* is of full measure in F2.

Put us =0, we get
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M,_s(0) = /F V(e y)dedy ()

Now we compute the Fourier coefficient J/\Zn_g(l', y) with x = z91 € F', y = as # 0, we have

M, —o(z21,a2)

IQ uo
= // W bwnyn—2 1 Y(=yn—2)¥(— (221, az)uz)dyn—2dus
F2JYn—2 In—3
IQ uo IQ —hQ.UQ
- / / W bwngnn | 1 B(—yn2) 1 dy o
F2 JYn—2 In—3 In—3
Ig h;l u9 IQ —Uu2
= /W bwnYn—2 1 Y(=Yn—2)¥ 1 |az| ™t dyn—odus
In—3 In—3

Thus by (4.3),

lap| (=2 / W (bwnhy  Yn—1h2) Y(=yn-1)dyn—1 = My_2(w21,a2)
Yn_1

n—

and then by (4.2),

_1 —~
|a2|—(n—2)/ I (bwnth (“1 I )) " ((al I ) h2> jar |7V day = My _a(221,02)
FX n—1 n—1

Plug it into the Fourier inversion formula (x), we find

/ W o) U = Macof0) = L]

-1
ai ai

jﬂ— bwn To1 Q2 W bwn To21 Q2 |a1|_("_1)da1|a2|_("_2)d:621da2
In,Q In72

a “
! 7 hy = | w21 a2
n—1

where we write

In72
Inductively, we will have
W (bwny2)(—y2)dy2 =
Y2
-1
a1 ay
o1 as 21 a2
/jTr buwn, w
Tpn—2,1 *°° Tp—2n-3 0An-2 Tpn—2,1 " Tp—2n—3 0aAn-2
Iy I
(45) |a1|_("_1)da1|a2|_("_2)dx21da2 e |Qn_2|_2d17n_271 e dIn_Qyn_gdCLn_Q

where the right side is an iterated integral, a; is integrated over F* C F for i =1,...,n — 2, x;; is
integrated over F for all relevant 4, j here, and all measures are additive self-dual Haar measures on F'.
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To prove the weak kernel formula, set

where z,_1,;, € F,i1=1,2,...,n—2, a,—1 € F*. We also use h,_; to denote the left upper corner
matrix of size (n — 1) x (n — 1). Note that we have identity

-1 _ -1 ;-1 -1 7-1
bwnhn% = 1 anfle benfl,n72 anflbn b2$n,111 a
In72 In—2

Then we carry out the same argument as we derived (4.2) from (4.1), then by (4.5), we will have

W (bwnhy, b yahn 1) (—y2)dys :/

Y2
-1

aq ay

T21 a2 T21 a2
. —1 .
Jr | bwnh, 4 . w

Tp—2,1 " Tp—2n—3 0aAn-2 Tpn—2,1 *° Tp-2n-3 An-2
IQ 12

(46) |a1|7(”71)da1|a2|7(”72)dx21da2 tee |an,2|72d:17n,271 e dInfgynfgdCLn,Q

The left side integral is

(47) ‘/1:‘7171 1%7%4 (bwn (Inl hnlliun1>) w (Inl _u1n1> dun—l
Infl Un—1
Ml(un_l):W(bwn ( 1 ))

which is a compactly supported function in column vector u, ;. Its Fourier inversion formula is

Mi(up—1) = ) ]\//—71(Un—l)i/f(—vn—lun—l)dvn—l
o

= / ]/\4\1(21,...,zn,l)d)(—(zl,...,zn,l)un,l)dzl...dzn,l
Fn—2xFXx

where we write v,_1 = (21, ..., Zn—1), With 21, ..., 2,2 € F, z,,_1 € F*, and the last equality follows
from the facts that dz;...dz,—_1 is the additive Haar measure and F?~2x F'* is of full measure in F™~!.

Put u,—1 =0, we get
Ml(O) == / J/\/[\l(zl,...,zn,l)dzl...dzn,l (**)
Fn—2x X

A

We compute the Fourier coefficient My (21, ..., 2n—1), with 21 = @p_11, ..., 2n—2 = Tpn_1p-2 €
— X
sznfl—anfleF )
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Mi(Tp—11, s Tn—1,n—2,0n—1)

I, n—
- / W bwn Lo ! 1/}(_(177171,1; -'-aInfl,n72;an71)un71)dunfl
Fn—1 1
/ 1 W <bwn <In1 un11)> 1/} (_ (Inl hnllunl)> dun,1
Fn—
—1
o ) ()

Thus by (4.7), we have

lan—1|7" [ W(bwuh, b yohn 1) (—ya)dys = M (Tp—115 s Tp—1,n—2, Gn—1)

Y2
Thus by (4.6),
—~ .
Mi(Tp-11, s Tn-1,n—2,0n-1) = |@n_1]
-1
ay ay
T21 ag 21 ag
. -1 .
Jr | bwnh, 4 . w
Tp—2,1 " Tp—2n—-3 0aAn-2 Tpn—2,1 *° Tp—2n-3 An-2

IQ 12

a1 |~ Vday |as| =" P daardas - - - |an—o| 2dxn 21 - dn—o,—3da,_o

Plug it into (x), we finally find

W (bwy) =
-1
ay ay
€21 a2 T21 ag
/jTr bwy, w
Tn—-1,1 " Tp—1n-2 0aApn-—1 Tn-1,1 - Tpn—1n—2 0Aan-1
1 1

lar |~ Vday |ag| =" Ddrgrdag - - - |an_1]|  drn 11 - dTy 1 podan
where the right side is an iterated integral, a; is integrated over F'’* C F for i = 1,...,n — 1, x4
is integrated over F' for all relevant ¢, j, and all measures are additive Haar measure on F. This
finishes the proof.

O

e Since we don’t have absolute convergence of right side integral, we have to write it as an iterated
integral. If we know the local integrability of j., then using the same argument as in Lemma 5.3,
[4], one can show that the right side integral is then absolutely convergent, and it equals

fosor (")

e The space of functions {W (g 1) : W e W » is the Kirillov model of m. Theorem 4.2 gives

the action of the longest Weyl element w,, on this model in terms of Bessel functions. It thus follows
that if we want to show two supercuspidal representations are equivalent, it suffices to show they
have the same Bessel functions.
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e In order to generalize the above argument to generic smooth irreducible representations of
GL(n, F), we need to know the space W, as defined in section 5 of [5], is invariant under right
translations by elements like

Tn-1,1 °° Tp—1n-2 0dAn-—1

1

But this is not clear, and we plan to address this issue in future.

Corollary 4.3. Let W(g) = W(w, - 'g~1) € W(F,¢~1), then for any bw,, b € A,, we have

-1
W((bw,) ) =
ay ai
T21 a2 T21 a2
/jﬂ' e bw, | W
Tn—-1,1 " Tp—1n-2 0aApn-—1 Tn—-1,1 " Tp—1n-2 0aAp-—1
1 1
—(n—1 —(n—2 —1
|a1| ( )da1|a2| ( )dZCQldaQ te |6Ln71| dInfl,l ce dInanfzdanq

where the right side is an iterated integral, a; is integrated over F>* C F fori=1,...,n —1, z;; is
integrated over F for all relevant i,j, and all measures are additive self-dual Haar measures on F'.

Proof. Since jz y-1(9) = jry(g ") for g € Bywyn By, apply the above theorem. O

5. HOWE VECTORS

In this section, we will discuss Howe vectors, which were introduced first by R.Howe. We will
follow the exposition in [5] closely. Assume 7 is irreducible and generic.

For a positive integer m, let K" = I,, + M, (p™), here p is the maximal ideal of O. Use @ to
denote an uniformizer of F. Let

2n—2
Put J,, =d"K'd™", Ny = NN, J\_fmm = N,NJp, Bmm = B,NJ,,. Let A = AN,
then

Jm = Nn,mAn,mNn,m = Bn,mNn,m

For j € Jp,, write j = l_)jnj with respect to the above decomposition, as in [5], define a character
Uy, on Jp, by

1/}m(.]) = 1/)(”3)

Definition 5.1. W € W is called a Howe vector of w if for any m large enough, we have

(5.1) W(gj) = ¥m(7)W(g)
forallge Gy, j€ Jp.
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For each W € W(m, ), let M be a positive constant such that R(K2).W = W where R denotes
the action of right multiplication. For any m > 3M, put
Walo) = [ Wiguyi (wdu
then by Lemma 7.1 in [5], we have
Win(95) = Ym(i)Win(9),Vj € Jm, Vg€ Gn

This gives the existence of Howe vectors when m is large enough. The following lemma establishes
its uniqueness in Kirillov model.

Theorem 5.2. Assume W € W satisfying (5.1). Let h € Gp,—1, if

ot )

then h € Nn_an_Lm. Moreover

if h = ub, with w € N,,_1, b€ By_1.m.

e Howe vectors were first introduced by R.Howe in an unpublished paper ([15]), in which he proved
certain existence and uniqueness properties of such vectors based on Gelfand-Kazhdan method. We
will below give an elementary proof of this theorem which calculates the Howe vectors in Kirillov
models. This result also provides Howe vector as an candidate for the ‘unramified’ vector other than
new vectors even in the ‘ramified’ representations.

Proof. We will use an inductive argument. Write

hit -+ hip—t
h =
hp—1,1 Rpn—1,n—1
Take
1 0 Ul
1 0 us
u:(Inl 1{): N EJm
1 Unp—1
1
We have

ot ow () )
) () )
—w(ihnl,iuiw(’l )
wew (V) sovem

n—2
¢(Z hp—1,it; + (hn—1n—1 — Dup—1) =1
i—1
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Note that u; € p(2i=2n+Dm 4 — 1.2 . n—1, it follows that hp—1,i € p@n=1=20m 4 —1 9  n-2
and hyp—1p—1 € 1 4+p™. So we may write

() )-( ) )0 )

; _ _ _ 31 t _
with 2 = (hp-1,1, - hn-1n-2); @ = hp-1n-1, ¥ = b,y o 1" (R1n—1,h2 01, hn—2n-1), g =
hn—o — vy - x, where y is a column vector, x is a row vector, and

hll e h17n72
hn—2 — .
hn72,1 T hn72,n72

) € Jm, and by the assumption on W, we get

a
h In72 Yy g In—2
W < 1) =W 1 1 x a
1 1 1
g
= Y(Yn—2)Ym ()W 1
1
Note that ¢, (j) = 1 and it follows that
g
w 1 #0
1
and now we can argue inductively to get the result. O

e It follows from this lemma that W(I) # 0 for Howe vectors, we will normalize it so that
W(I)=1.

We apply the kernel formula to Howe vector to prove the following result.

Proposition 5.3. Assume 7 is supercuspidal. Fiz b = diag(by,...,b,) € A,,, choose m large enough
so that

(1). R(Ap m)-dr(bwp) = jx(bwy), and L(Ay, m).Jx(bwn) = jr(bwy,);

(2). Bt epdmi=3,..n
Then
W (bwy,) = vol(Bpn—1,m)jx(bwn)
Proof. We first note that although we don’t know whether the weak kernel formula is absolutely
convergent, but when applying it to Howe vectors, by Theorem 5.2, Howe vectors have nice compact
support modulo N,,_; in the Kirillov model, hence in this case the weak kernel formula is absolutely
convergent. Write

and
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a = diag(ay,as, ..., an-1,1)

Apply the kernel formula to Howe vector W,,, and by Theorem 5.2, we find

W (bwy,) = / G (b (za) ™Y )day daor day - - “drp_11 - dTp—1n—2dan_1

anlmn

Note that bw,a 'z~ taw,b~! is a upper triangular unipotent matrix and

1 - _ ay by Qp—2 b2
b e taw,b™) = Y(—x91 — — = Tp 1 =
w( Wnpa T AWp ) "/J( T21 ao bn Tn—1,n 2an71 bg)
then the above integral equals
ay bp—1 an—2 b2, . -1
- 1/)(—$21— .7 Tp—1,n—-2 —)jw(bwna )daldledaz e 'd$n71,1 te dxnfl,n72dan71
Booim az by an—1 b3

= / g (bwpa™Ydaydrardas -+ dry—11 - dry—1 p—2day—1
anl,m

1 bi_1

since a; € Apm,i=1,..,n—1, 2= € p~®™ i = 3,...,n by assumption (2), and z;;—; € p*",i =

2,...,n—1.
Now by assumption (1), jr(bwna™!) = jr(bwy,), and eventually we have

daydzraidasy - - 'd$n71,1 e 'dxnfl,n72dan71 = UOZ(anl,m)jﬂ(bwn)

Bn_1,m

W (bon) = s (bn) [

6. BESSEL DISTRIBUTIONS AND BESSEL FUNCTIONS

In this section, we will show for supercuspidal representation 7, the Bessel function jy(g) defined
in section 3 via Bessel distribution, is equal to the Bessel function j,(g), defined in section 2 via
uniqueness of Whittaker functional. We first review some results and constructions in [2], which will
be useful for our purpose.

As in [2], use L(wy).f to denote the left translation by w, on f, for f a locally constant com-
pactly supported function of G,,. Then this action induces an action on distributions, still denoted
as L(wy). We now consider the distribution J = L(wy,).B; 7, where By is the Bessel distribution
defined in section 3. An important result proved in [2] is that, the restriction of J to N, A, N, is
given by the locally constant function jy, and the restriction of B; ;s to Nywy, A, Ny, is then given by
J= = L(wy).jo. We next describe the method used to prove this fact in section 3.3 of [2].

We first transform the distribution J on Y = N, A4, N,, to a distribution o; on A, using the
constructions in [2]. For every f € C°(Y), define 5y € C°(A,) by

Bf(a):/ﬁ . f(@rauz) (1) (—u2)dur dug

where ¥ (1) = ¥ (w,@i1wy). Then by Proposition 1.12 in [18], the map sending f to §y is a surjective
map from C°(Y) onto C°(A,,), and there exists a unique distribution o; on 4,, with

J(f) =0as(By)
Moreover, if the distribution o; on A,, is given by a locally constant function ¢(a), then the distri-
bution J on Y is given by the locally constant function (1)1 (uz)p(a)A~1(a), where A satisfies
dg = A(a)duidadus on Y.
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To show o is given by some locally constant ¢(a), we need to introduce the following concept as
in [2], specializing to our case.

Definition 6.1. Let © be a distribution on A,. © is said to be admissible if for any a € A,
there exists some compact open subgroup K (depending on a) of A,, such that for every nontrivial
character x of K we have ©(xq) = 0, where x, s the function defined on aK by xq(ak) = x(k),
ke K.

We then have the following lemma.

Lemma 6.2. A distribution © on A, is admissible if and only if there exists a locally constant
function 6 on A, such that

o(f) = /A 6(a) f(a)da

for all f € C°(Ay). Moreover, the value of 6(a) if given by m@(la), where K(a) is any

compact open subgroup of A,, satisfying Definition 6.1, and 1 denotes the trivial character of K(a).
Proof. This is exactly Lemma 3.2 in [2] applied to our case. O

In view of the above discussion, it suffices to show o is admissible, and this is done in section
3.3 of [2]. Moreover fix a = diag(ay, ...,a,) € A,, choose m large enough. More precisely, let M > 0
be a positive constant as in Corollary 3.5 in [2], we then require m to satisfy that

(1). 9 is trivial on w,aN, ma tw, and w,a 1Ny, mawn;
(2). R(An,m)-Jr(awy) = jr(awy), and L(A, m).Jx (awn) = jx(awy,).

(3). m > M.
As 1 has conductor exactly O, if m is large (1) can then be satisfied. Because j, is locally constant,
for a given a € A,, (2) can be satisfied once m is large. Hence one can choose m large enough
satisfying all the above (1),(2),(3).

Then A, ,, = A, N J,,, which is a compact open subgroup of A,,, will satisfy Definition 6.1 by
assumption (1) as shown in [2], and then by Lemma 6.2, ¢(a) = aJ(mxa) where y, is the
characteristic function of a4,, y,.

Now let ¢1, @2 be a multiple of the characteristic function of N, N K,,, and N,, N K,,, respectively,
with

/, o1 (@) (—wntiwy )du = 1
Ny

and

o (W) (~u)du = 1

Ny,
then &, = mqﬁlxagﬁg is a locally constant compactly supported function on N, A, N,,. Note

that mxa = /8{),1-
Hence j+(a) = 6(6)A"1(6) = 0 (rry Xa) A~ (0) = J(@0)A a). Then
Jo(wna) = jr(a) = J(@a)A_l(a) =B (L(wn)@a)A_l(a).

Note that L(w,).®, belongs to C°(Npw,A,Ny), and hence can be viewed as an element in
C°(Gy). Choose another positive integer my large enough so that
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(1). L(b).L(wn). Py = L(wy). P, for any b € Bn—l,m1§
(2). m1 >m;

(3). “%i-ecp ¥ =3 .. n

a;—1
Since L(wy,).®, € C°(Gy,), hence it is bi-invariant under some open compact subgroup, then (1) is
satisfied if my is large. Thus we can choose my large enough to satisfy all above (1),(2),(3).

Apply Lemma 3.2 to f = L(w,)®a, W = Wm1 the Howe vector, then we find by Theorem 5.2,
the right hand side of Lemma 3.2 is

/ By (L (h ) .L(wn).<1>a> Win, (h )dh
anl\anl 1 1

= By (L(wn)Pe)vol(Bp—1,m;)
While the left side integral of Lemma 3.2 is

/f(g)Wml (g ")dg

— m / D1 (wWnt1wn ) (—u1 ) pa (ug) ) (—ug)duy dusg /A N Win, (b a " Ywy ) A(ah)dh

! i -1 -1
= mA(a)/Aanml(h a *wn)A(h)dh

For any h' € Ay, C Anm, h € Ay, since jz(g71) = j(g), we have
jﬁ(h’hflaflwn) = jﬂ(wnahh/fl) = jr(wpah) = j;,(hila*lwn)

ja(h Yo 'wnh') = o (W " rwnah) = jr(wpah) = jz(h ta " w,)
and # € p¥m i =3, ..,nif h = diag(hi,...,h,). Hence we can apply Proposition 5.3 to

Wml (h~'a"'w,) in the above integral and get

/f(g)Wnu(gil)dg
I SV S
= el A )/An,mj”(h 2 )V0L(Br 1,y )A(R)dh

1

= 7A '71- n h anf ma h’
A /A nlnah)uol (B, )

where the last equality follows from the facts that jz (¢~ !) = j.(g) and A(h) = 1 when restricted to
Apom.-

Now by assumption (2) on m, the above equals

A(a)jr (wna)vol(Bp—1,m,)
which is the left hand side of Lemma 3.2.

Combining both sides of Lemma 3.2, we get

A(a)jr (wna)vol(By—1.m,) = Bru(L(wn)®a)vol(By—1.m,)
Note that By (L(wn)®Ps) = jo(wna)A(a), immediately we have
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Theorem 6.3. Assume 7 is supercuspidal. For all g € N,, Awn Ny, we have
Jo(g) = jx(9)

7. GENERAL CASE

The aim of this section is to generalize Theorem 6.3 from supercuspidal case to general generic
case. Now assume 7 is an irreducible admissible smooth generic representation of G,, with Whittaker
model W(m,v). The point is to prove a weak kernel formula for Howe vectors of 7. This weak kernel
formula is expected to hold for a wider class of Whittaker functions, but currently we are only able
to prove it for Howe vectors, which is sufficient for our purpose.

The proof is essentially the same as the proof of Theorem 4.2 with necessary modifications. Use
W, to denote the normalized Howe vector of level m of 7 as in section 5.

Theorem 7.1. (weak kernel formula) For any bw,, b = diag(bi,...,b,) € Ay, if m is large enough,
we have

Wi (bwyp) =
—1
a a
Z21 a2 Z21 a2
/jﬂ' bwn, . W
Tn—1,1 e Tpn—1,n—2 Aan—1 Tp—1,1 e Tn—1,n—2 AaAn—1
1 1

1|~ Vday|ag| =" Ddzgrdag - - |an—1|  dzn—11 - dry—1p—2dan

where the right side is an iterated integral, a; is integrated over F>* C F fori=1,...,n —1, z;; is
integrated over F' for all relevant i,j, and all measures are additive self-dual Haar measures on F.

ai a1
T21 a2 T21 a2
We first note W, . # 0 if and only if
Tp—1,1 e Tn—1,n—2 AaAn—1 Tpn—1,1 *°° Tpn—1,n—2
1
ay
T21 a2
S Bnym by Theorem 5.2, in which case W, = 1. This is very
Tn-1,1 *° Tpn—1n—2 AdAn-—1
1
important for our proof in this special case.
I 1
Introduce notations h; = | x;1 v Tii—1 G4 . We also use h; to denote the left up-
In—i
a
Z21 a2
per corner ¢ X ¢ matrix when there is no confusion. Note that
Tp—1,1 o Tpn—1,n—2 0an—1

= hiho..hp_1.

Gp—1
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Mi(un—1) = Wi, (b“’” <In1 un11>)

which is a compactly supported function in column vector u,_; by by Theorem 5.7 and Theorem
7.3 in [5] as W,,, € WY if m is large enough. Its Fourier inversion formula is

Proof. Now let

Mi(up—1) = ) ]\//—71(Un—l)i/f(—vn—lun—l)dvn—l
e

= / M\l(zl,...,zn_l)w(—(zl,...,zn_l)un_l)dzl...dzn_l
Fn—2xFX

where we write v,—1 = (21, ..., 2n—1), With 21, ..., 2,2 € F, z,,_1 € F*, and the last equality follows
from the facts that dz;...dz,—_1 is the additive Haar measure and F?~2x F'* is of full measure in F™~!.

Put u,—1 =0, we get

(71) Ml(O) = / ]/\/[\1(21,...,zn_l)dzl...dzn_l
Fr—2x FX

By the same computations as in section 4, we find

lan—1]7" [ W(bwnhy ! 1yohn—1)0(—y2)dys = Mi(Tn—11, ., Tn—1,n—2,An_1)
Y>

So (7.1) becomes

—~
Wm(bwn) - / Ml (Infl,lv vy Ipn—1,n—2; anfl)dxnfl,l---dInfl,n72dan71
Frn—2x FX

(72) = / |an—1 |_1 Wm(bwnhgilthn—l)w(_yZ)dy2d$n—l,l '--dxn—l,n—Zdan—l
Frn—2x Fx Yo

Claim 1: As a function of h,_1, fY2 Wm(bwnhgflyghn,l)w(—yg)dyg has support in By, .

Proof of Claim 1: The proof is similar to Theorem 5.2. Take

1 0 --- w1

1 0--- Us

u:(—[n—l ’If): ‘e EJ’ITL
1 Unp—1
1
then
Y(un—1) Wm(bwnhﬁhyzhn—lW(—yz)dyz = Wm(bwnh;i192hn71u)¢(_92)dy2
Y2 Y2
=/ Wi (bwnhy Ly yohn—1uhy L by )i (—y2)dys = y W (bwn iy L yohn 1)t (=y2) ¥ (hn—1uhy, ) dys
2 2

where in the last equality we change variable yghn_luh;il — Yo
Thus we find that if [y, Wi, (bwnhy, ' yahn1)(—y2)dya # 0, then

1Z)(unfl) = 1/)(hn71Uh;E1)

As u € J,, is arbitrary, this forces h,,_1 € Bn,m, which proves the claim.
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Let’s continue the proof of the theorem. Compare (7.2) with the desired formula in theorem and
note the support of W,,, and the claim, it suffices to show

Wm(bwnhgilyzhnq)w(—yz)dyz = /

Y2
-1

ay ay

Z21 a2 Z21 az
. —1 . .
Jr | bwnh,—4 . Wi . hp—1

Tn—2,1 e Tn—2,n—3 aAn—2 Tpn—2,1 Tpn—2,n—3 0aAn—2
I I

|a1|_("_1)da1|a2|_("_2)dx21da2 e |a1n72|_2d$n72,1 s dTp_gp—3da,_o
for h,_1 € Bn,m-

By properties of Howe vectors, this is equivalent to

W (bwr by L y2) 0 (—y2)dya =/

Y2
-1
aq a1
T21 ag €21 a2
Jn bwnh;h Wi
Tpn—2,1 " Tp—2n—-3 0aAn-2 Tp—2,1 *°° Tp—2n—-3 0dAn-2
IQ I2
(73) |a1|7("71)da1|a2|7("72)d:1:21da2 e |an,2|72dxn,2_,1 cee d$n727n,3dan,2
for h,_1 € Bn,m-
To prove (7.3), let
In72 Un—2
Mo (up—2) = / Wi | bwnh tyo 1 P(—y2)dya
Yo 1

which is compactly supported function in column vector u,_o by Theorem 5.7 and 7.3 in [5]. Its
Fourier inversion formula is

Ms(up—2) = ]/\4\2('Un72)1/}(_vn72un72)dvn72
Fn72

= / ]/\4\2(21, ...,Zn,2)1/)(—(21, ...7Zn72)un72)d21...d2n72
Frn=3xFX%

where we write v,—o = (21, ..., Zn—2), With 21,..., 2,3 € F, z,_2 € F* and the last equality follows
from the facts that dz;...dz,_s is the additive Haar measure and F»~3x F'* is of full measure in F"~2.

Put u,—o =0, we get

(74) MQ(O) = / ]/\22(21, ceey Zn,Q)dzl...dZn,Q
Frn—2xFX*

Similar computations as in section 4 shows that
—~ _2
Mo(xn—21, ..., Tn—2mn—3,An_2) = |dethy,_s]

In72 Unp—2 In72 Un—2

/ / Wm bwnhgilh;izyQ 1 hn—2 ¢(—y2)¢ - 1 dyZdun—2
Frn=2JY,



A WEAK KERNEL FORMULA FOR BESSEL FUNCTIONS 21

= dethn—2|* | W (bwnhyLihy pyshn—2)t(=ys)dys
Y3
So (7.4) becomes

W (bwnhy L ya) (—y2)dys =

Yo

(7.5) / ) |dethn 2|72 | Win(bwnh b 1 b toyshn —2)(—y3)dysda, —o.1...da, o
Fn—2xFX Y3

Claim 2: As a function of h,_o, ng Wm(bwnhgi1h;l2y3hn,2)1/)(—y3)dy3 has support in By, .

Proof of the Claim 2: Take
In—2 Up—2
U = 1 € Jm
1

then argue completely the same as the proof of Claim 1. The details will be omitted.

a

Compare (7.5) with (7.3) and note the support of W,,, and Claim 2, then it suffices to show that

Wi (bionhiy B gyshn—2)tb(—ys)dys = /

Y3
—1
ay ay
T21 a2 T21 a2
. -1 ;-1 .
Jr | bwnh, Z 1y, —o . Wi
Tn—3,1 o Tn—3,n—4 aAn—3 Tn—-3,1 *°° Tpn—3,n—4 QaAn—3

I3

|a1|_(n_l)da1|az|_(n_2)d$21da2 cedrp_21 - dTp_3n—4dan_3
for h,_o € Bn,m, which is equivalent to

Wi (bonhi B ys) i —ys )y = /

Y3
—1
a ay
Z21 a2 Z21 a2
. -1 ;-1 .
Jr | bwnhy, — 1y, —o - Wi
Tn—3,1 e Tn—3,n—4 aAn—3 Tn—3,1 e Tn—3,n—4 Qan—3
I3
—(n—1 —(n—2
(76) |a1| ( )da1|a2| ( )dledaz s 'd$n_271 c -d:vn_37n_4dan_3

To prove (7.6), inductively, it suffices to show that

/ W (bwnhy g by yn—1) Y(—yn—1)dyn—1 =
Yn-1

Jr | bwnhytyohy ! o W [ lay| =" Vday
FX T rn—l Infl " In—l

which can be proved completely in the same way as the proof of Theorem 4.2. Thus the proof of
the theorem is finished.
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Now use the same method as in section 6 , together with the above weak kernel formula for Howe
vectors W,,, with m large enough, we can show that for irreducible generic admissible representation
m of G,, the Bessel functions j, defined via uniqueness of Whittaker models, coincide with the
Bessel function jy defined via Bessel distributions, which generalize Theorem 6.3 to general generic
representations. As the proof is completely the same as Theorem 6.3 we omit the details, and simply
state the result as follows.

Theorem 7.2. If w is an irreducible admissible smooth generic representation of G, then for any
g € Npwn Ay Ny, we have
J=(g) = Jo(9)
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