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This paper deals with Lp geominimal surface area and its extension to Lp mixed 
geominimal surface area. We give an integral formula of Lp geominimal surface area 
by the p-Petty body and introduce the concept of Lp mixed geominimal surface area 
which is a natural extension of Lp geominimal surface area. Some inequalities, such 
as, analogues of Alexandrov–Fenchel inequalities, Blaschke–Santaló inequalities, and 
affine isoperimetric inequalities for Lp mixed geominimal surface areas are obtained.
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1. Introduction

The geominimal surface area was first introduced by Petty [27] more than three decades ago. Since then 
this seminal concept and its Lp extensions introduced by Lutwak [19,21], have been served as bridges con-
necting affine differential geometry, relative differential geometry and Minkowski geometry. The basic theory 
concerning geominimal surface area is developed, and a close connection is established between this theory 
and affine differential geometry in [27]. In [21], Lutwak demonstrated that there were natural extensions of 
affine and geominimal surface areas in the Brunn–Minkowski–Firey theory. It motivates extensions of some 
known inequalities for affine surface area and geominimal surface areas to Lp affine surface area and Lp

geominimal surface areas, respectively. These new inequalities of Lp type (p > 1) are stronger than their 
classical counterparts.

Both affine surface area and geominimal surface area are unimodular affine invariant functionals of 
convex hypersurfaces. Isoperimetric inequalities for geominimal surface area are closely related to many 
isoperimetric inequalities for affine surface area and clarify the equality conditions of many of inequalities. 
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The classical affine surface area was introduced by Blaschke in 1923 [1]. The Lp affine surface area was 
first generalized by Lutwak for p > 1 in [21]. Since then, considerable attention has been paid to the 
Lp affine surface area. The Lp affine surface area is one important concept and plays crucial roles in Lp

Brunn–Minkowski theory initialized by Lutwak (cf. [2,3,6,5,8,12,13,16,19–23,25,41]). The Lp affine surface 
area has been further extended to all p ∈ R via geometric interpretations (cf. [26,32,35,37,38]). It was
witnessed that the Lp affine surface area is related closely to the theory of valuation (cf. [15,16]), the 
information theory of convex bodies and the approximation of convex bodies by polytopes (cf. [17,32]). 
Furthermore, the Lp affine surface area has been extended to Lp mixed affine surface area by its integral 
expression (cf. [34,37]), and to more general mixed affine surface area [38].

Unlike the Lp affine surface area, Lp geominimal surface area has no nice integral expression. This leads to 
a big obstacle on extending the Lp geominimal surface area. Recently, Ye [39] introduced the Lp geominimal 
surface area for all −n �= p < 1, which extends the classical geominimal surface area (p = 1) by Petty and 
the Lp geominimal surface area (p > 1) by Lutwak. In [39], Ye extended the Lp geominimal surface area by 
his equivalent formula of the Lp affine surface area. Then he obtained some affine isoperimetric inequalities 
and the Santaló style inequality for all p ∈ R. There are several papers on Lp geominimal surface area, see 
e.g., [19,21,39,40,42,43].

The authors extended the Petty’s theory of Lp geominimal surface area with the information on the 
general Lp affine surface area to any convex body in [43]. From the Petty’s theory for the Lp version (see 
Theorem 3.1), we can know easily that the isoperimetric inequalities for Lp geominimal surface area are 
stronger than the ones for Lp affine surface area. We note that all above isoperimetric inequalities are part 
of the Lp Brunn–Minkowski theory which has applications in analysis (cf. [4,9,10,24]). In general, all these 
analogue concepts and results can be viewed as parts of the Lp valuation theory (cf. [14,17,15,16,30,31,
33–36]).

In this paper, we provide an integral formula for Lp geominimal surface area by p-Petty body (see Propo-
sition 3.1). Moreover, motivated by ideas and results achieved by Lutwak, Yang and Zhang and others in 
affine geometry, we define the Lp mixed geominimal surface area. Then we establish some new Lp affine 
isoperimetric inequalities. Our paper is organized as follows. In Section 2 we provide the necessary back-
ground, such as definitions and known results which will be needed. Section 3 includes the basic theory of 
Lp geominimal surface area. In Section 4, we give the integral definition of Lp geominimal surface area, and 
introduce the Lp mixed geominimal surface area and prove some important properties, such as affine invari-
ant properties. We also obtain analogues of Alexandrov–Fenchel inequalities, Blaschke–Santaló inequalities, 
and affine isoperimetric inequalities for Lp mixed geominimal surface areas. Finally, we investigate the 
ith Lp mixed geominimal surface areas and obtain analogues of Blaschke–Santaló and affine isoperimetric 
inequalities in Section 5.

2. Preliminaries and notions

In this section, we collect some basic well-known facts that we will use in the proofs of our results. For 
more references about the Brunn–Minkowski theory, see [7] and [28].

Let Kn denote the set of convex bodies, that is, compact, convex subsets with non-empty interiors in R
n. 

For the set of convex bodies containing the origin in their interior and the set of convex bodies whose 
centroids lie at the origin, we write Kn

o and Kn
c , respectively. The unit ball in Rn and its surface are denoted 

by B and Sn−1, respectively. The volume of the unit ball B is denoted by ωn = πn/2/Γ (1 + n/2).
For K ∈ Kn

o , its support function hK = h(K, ·) : R
n \ {0} → [0, ∞) is defined by x ∈ R

n \ {0}, 
h(K, x) = max{〈x, y〉 : y ∈ K}, where 〈·, ·〉 is the standard inner product on Rn. Associated with each 
K ∈ Kn

o , one can uniquely define its polar body K∗ ∈ Kn
o by

K∗ =
{
x ∈ R

n : 〈x, y〉 ≤ 1, ∀y ∈ K
}
.
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It is easily verified that Q∗∗ = Q if Q ∈ Kn
o . Let lx is the line through the origin containing x ∈ R

n \ {o}. 
A set L in Rn with origin o ∈ L is star-shaped at o if L ∩ lu is a closed line segment for each u ∈ Sn−1. 
The radial function ρK = ρ(K, ·) : Rn \ {0} → [0, ∞), of a compact star-shaped about the origin K ⊂ R

n, 
is defined by ρ(K, x) = max{λ ≥ 0 : λx ∈ K}. If ρK is positive and continuous, then K is called a star 
body about the origin. Write Sn

o for the set of star bodies in Rn. Two star bodies K and L are dilates of 
one another if ρK(u)/ρL(u) is independent of u ∈ Sn−1.

According to definitions of the polar body for convex body, the support function and radial function, it 
follows that, for K ∈ Kn

o

hK∗(u)ρK(u) = 1, ρK∗(u)hK(u) = 1, for all u ∈ Sn−1.

For real p ≥ 1, λ, μ ≥ 0 (not both zero), the Firey linear combination λ · K +p μ · L of K, L ∈ Kn
o is 

defined by [5]

h(λ ·K +p μ · L, ·)p = λh(K, ·)p + μh(L, ·)p.

For p ≥ 1, the Lp mixed volume, Vp(K, L), of K, L ∈ Kn
o , is defined in [20] by

n

p
Vp(K,L) = lim

ε→0

V (K +p ε · L) − V (K)
ε

, (2.1)

where V (K) denotes the volume of K. There is a polar coordinate formula for volume is

V (K) = 1
n

∫
Sn−1

ρnK(u)dS(u).

In [20], Lutwak proved that for each K ∈ Kn
o , there is a positive Borel measure Sp(K, ·) on Sn−1 such that

Vp(K,L) = 1
n

∫
Sn−1

h(L, u)pdSp(K,u), (2.2)

for each L ∈ Kn
o . The Lp surface area measure Sp(K, ·) is absolutely continuous with respect to the surface 

area S(K, ·) of K, and has Radon–Nikodym derivative

dSp(K, ·)/dS(K, ·) = h(K, ·)1−p. (2.3)

It follows from (2.3) that the measure S1(K, ·) is just the classical surface area measure S(K, ·) of K.
From formula (2.2), it follows immediately that for each K ∈ Kn

o ,

Vp(K,K) = V (K).

For the constant λ > 0, since S(λK, ·) = λn−1S(K, ·), by (2.3) we have Sp(λK, ·) = λn−pSp(K, ·). Thus
together with formula (2.2), we obtain:

Vp(λK,L) = λn−pVp(K,L),

and

Vp(K,λL) = λpVp(K,L). (2.4)
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The Lp Minkowski inequality was given by Lutwak in [21]: If K, L ∈ Kn
o and p ≥ 1, then

Vp(K,L)n ≥ V (K)n−pV (L)p.

With equality for p = 1 if and only if K and L are homothetic, and for p > 1 if and only if K and L are 
dilates.

Together with the Lp Minkowski inequality, an immediate consequence is [21]:

Lemma 2.1. If K, L ∈ Kn
o , and for all Q ∈ Kn

o ,

Vp(K,Q) = Vp(L,Q),

then K = L for n �= p > 1; K = L + x for p = 1 and x ∈ R
n.

Let GL(n) and SL(n) denote the group of nonsingular linear transformations and special linear transfor-
mations, respectively. We write | det(φ)|, φt and φ−1 for the absolute value of the determinant, the transpose 
and the inverse of linear transform φ, respectively.

In [21], Lutwak proved: For K, L ∈ Kn
o , and ε ≥ 0. If p ≥ 1 and φ ∈ GL(n), then

φ(K +p ε · L) = φK +p ε · φL.

Since V (φK) = | det(φ)|V (K), for all K ∈ Kn, and φ ∈ GL(n), it follows from (2.1) that:

Proposition 2.1. If p ≥ 1, and K, L ∈ Kn
o , then for φ ∈ GL(n),

Vp(φK, φL) =
∣∣det(φ)

∣∣Vp(K,L).

3. Lp affine and geominimal surface area

A convex body K ∈ Kn
o is said to have a Lp curvature function fp(K, ·) : Sn−1 → R, if its Lp surface 

area measure Sp(K, ·) is absolutely continuous with respect to spherical Lebesgue measure S, and

dSp(K, ·)/dS = fp(K, ·). (3.1)

For p = 1 and u ∈ Sn−1, f1(K, u) = f(K, u) is just the curvature function of K at u. i.e., the reciprocal of 
the Gauss curvature GK(x) at this point x ∈ ∂K, the smooth boundary of K, that has u = νK(x) as its 
outer normal.

By (3.1) and (2.3), we know that

fp(K,u) = h1−p
K (u)f(K,u), (3.2)

for a convex body K in Rn and u ∈ Sn−1.
Let Fn

o , Fn
c denote sets of bodies in Kn

o , Kn
c , with Lp curvature functions, respectively.

In [21], Lutwak defined the Lp affine surface area as follows: For K ∈ Fn
o and p ≥ 1, the Lp affine surface 

area, Ωp(K), of K is defined by

Ωp(K) =
∫

fp(K,u)
n

n+p dS(u).

Sn−1
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Furthermore, Lutwak introduced the concept of Lp mixed affine surface area: For p ≥ 1, the Lp mixed affine 
surface area, Ωp(K1, . . . , Kn), of K1, . . . , Kn ∈ Fn

o is defined by

Ωp(K1, . . . ,Kn) =
∫

Sn−1

[
fp(K1, u) · · · fp(Kn, u)

] 1
n+p dS(u).

For K ∈ Kn
o and p ≥ 1, the Lp geominimal surface area, Gp(K), is defined in [21] by

ωp/n
n Gp(K) = inf

{
nVp(K,Q)V

(
Q∗)p/n : Q ∈ Kn

o

}
.

Associated with Lp geominimal surface area, Lutwak [21] proved the following Lp affine isoperimetric 
inequality.

Theorem A. If p ≥ 1, and K ∈ Kn
o , then

Gp(K)n ≤ nnωp
nV (K)n−p, (3.3)

with equality if and only if K is an ellipsoid.

Call a body K ∈ Fn
o is of p-elliptic type if the function fp(K, ·) 1

n+p is the support function of a convex 
body in Kn

o ; i.e., K is of p-elliptic type if there exists a body Q ∈ Kn
o such that

fp(K, ·) = h(Q, ·)−(n+p).

In [21], Lutwak defined

Vn
p =

{
K ∈ Fn

o : there exists a Q ∈ Kn
o with fp(K, ·) = h(Q, ·)−(n+p)}.

The Petty’s theory of Lp geominimal surface area with the information on the general Lp affine surface 
area was proved by Lutwak [21].

Theorem B. If p ≥ 1, and K ∈ Fn
o , then

Ωp(K)n+p ≤ (nωn)pGp(K)n, (3.4)

with equality if and only if K ∈ Vn
p .

The case p = 1 of inequality (3.4) was proved by Petty [27] for K ∈ Fn
o and extended by Lutwak [21]

to K ∈ Kn
o . The equality condition of Lutwak’s extension for K ∈ Kn

o is proved by Rolf Schneider recently 
in [29]. The equality condition for (3.4) was only known under the additional assumption that K ∈ Fn

o . 
Lutwak proved the inequality (3.4) for K ∈ Kn

o and p ≥ 1 without the equality condition. In [43], the 
authors proved the inequality (3.4) for any convex body K ∈ Kn

o with the equality condition as follows.

Theorem 3.1. If p ≥ 1, and K ∈ Kn
o , then

Ωp(K)n+p ≤ (nωn)pGp(K)n,

with equality if and only if K ∈ Vn
p .
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Therefore, we may say the isoperimetric inequalities for Lp geominimal surface area are stronger than 
the ones for Lp affine surface area by Theorem 3.1. The main tool of the extension of Theorem 3.1 is the 
following p-Petty body.

For K ∈ Kn, there exists a unique point s(K) in the interior of K, called the Santaló point of K, such 
that

V
((
−s(K) + K

)∗) = min
{
V
(
(−x + K)∗

)
: x ∈ intK

}
,

or equivalently, as the unique s(K) ∈ K, such that∫
Sn−1

uh
(
−s(K) + K,u

)−(n+1)
dS(u) = 0.

Let Kn
s denote the set of convex bodies having their Santaló point at the origin. Thus, we have

K ∈ Kn
s if and only if K∗ ∈ Kn

c .

Let

T n =
{
T ∈ Kn : s(T ) = o, V

(
T ∗) = ωn

}
.

We need the following Lutwak’ result, which is the Proposition 3.3 in [21].

Lemma 3.1. (and Definition.) For each K ∈ Kn
o , and p ≥ 1, there exists a unique body TpK ∈ T n with 

Gp(K) = nVp(K, TpK).

The unique body TpK is called the p-Petty body of K. When p = 1, the subscript will often be suppressed 
and defined by Petty [27].

By Lemma 3.1, (2.2) and (3.1), we have the following integral formula of Gp(K).

Proposition 3.1. For each K ∈ Fn
0 , there exists a unique convex body T = TpK ∈ T n with

Gp(K) =
∫

Sn−1

hp
T (u)fp(K,u)dS(u).

4. The Lp mixed geominimal surface area

Motivated by the definition of Lp mixed affine surface area of Lutwak, we now define the Lp mixed 
geominimal surface area, Gp(K1, . . . , Kn), of K1, . . . , Kn ∈ Fn

o for p ≥ 1 as follow:

Definition 4.1. For each Ki ∈ Fn
o and p ≥ 1, there exists a unique convex body (Petty body of Ki) 

Ti = TpKi ∈ T n (i = 1, . . . , n) with

Gp(K1, . . . ,Kn) =
∫

Sn−1

[
hp
T1

(u)fp(K1, u) · · ·hp
Tn

(u)fp(Kn, u)
] 1

n dS(u).

Let gp(Ki, u) = hp
Ti

(u)fp(Ki, u). Then, the Gp(K1, . . . , Kn) can be written as follows:

Gp(K1, . . . ,Kn) =
∫ [

gp(K1, u) · · · gp(Kn, u)
] 1

n dS(u). (4.1)

Sn−1
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To prove the Lp mixed geominimal surface area is affine invariant, we will need the following propositions.

Proposition 4.1. Suppose K ∈ Kn
o . If p ≥ 1 and φ ∈ GL(n), then

Gp(φK) =
∣∣det(φ)

∣∣n−p
n Gp(K).

The SL(n) case of Proposition 4.1 is due to Lutwak [21]. One can easily find the degree of the homogeneous 
factor follow from SL(n) case.

Proposition 4.2. If p ≥ 1 and K ∈ Kn
o , then for φ ∈ GL(n),

∣∣det(φ)
∣∣ 1
nTpφK = φTpK.

Proof. From the definition of Tp and Proposition 4.1,

nVp(K,TpK) = Gp(K) =
∣∣det(φ)

∣∣ p−n
n Gp(φK) =

∣∣det(φ)
∣∣ p−n

n nVp(φK, TpφK).

By Proposition 2.1, and (2.4),

Vp(K,TpK) =
∣∣det(φ)

∣∣ p−n
n Vp(φK, TpφK)

=
∣∣det(φ)

∣∣−1
Vp

(
φK,

∣∣det(φ)
∣∣ 1
nTpφK

)
= Vp

(
K,φ−1(∣∣det(φ)

∣∣ 1
nTpφK

))
.

The uniqueness part of Lemma 3.1 shows that TpK = φ−1(| det(φ)| 1
nTpφK), which is the desired result. �

The case φ ∈ SL(n) of Proposition 4.2 is due to Lutwak [21]. The case p = 1 and φ ∈ SL(n) of this 
proposition is due to Petty [27].

We now prove that the Lp mixed geominimal surface area is affine invariant.

Proposition 4.3. If p ≥ 1, and K1, . . . , Kn ∈ Fn
o , then for φ ∈ GL(n),

Gp(φK1, . . . , φKn) =
∣∣det(φ)

∣∣n−p
n Gp(K1, . . . ,Kn).

In particular, if φ ∈ SL(n), then Gp(K1, . . . , Kn) is affine invariant, that is,

Gp(φK1, . . . , φKn) = Gp(K1, . . . ,Kn).

Proof. Since K ∈ Fn
o , for φ ∈ GL(n) and any u ∈ Sn−1, there exists a unique x ∈ ∂K such that u = νK(x)

and f(K, u) = 1
GK(x) . By Lemma 12 in [32],

f(K,u) = 1
GK(x) = f(φK, v)

det2(φ)‖φ−t(u)‖n+1
, (4.2)

where v = φ−t(u)
‖φ−t(u)‖ ∈ Sn−1.

On the other hand,

hK(u) = 〈x, u〉 =
〈
φx, φ−t(u)

〉
=

∥∥φ−t(u)
∥∥〈φx, v〉 =

∥∥φ−t(u)
∥∥hφK(v). (4.3)
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By formula (3.2), for p ≥ 1, we have

fp(K,u) =
f(φK, v)h1−p

φK (v)‖φ−t(u)‖1−p

det2(φ)‖φ−t(u)‖n+1
= fp(φK, v)

det2(φ)‖φ−t(u)‖n+p
. (4.4)

Lemma 10 and its proof in [32] show that

f(φK, v)dS(v) =
∣∣det(φ)

∣∣∥∥φ−t(u)
∥∥f(K,u)dS(u).

Together with (4.1), we obtain:
∥∥φ−t(u)

∥∥−n
dS(u) =

∣∣det(φ)
∣∣dS(v). (4.5)

By the (4.3), (4.4) and Proposition 4.2, we have

gp(Ki, u) = hp
TpKi

(u)fp(Ki, u)

=
∥∥φ−t(u)

∥∥php
φTpKi

(v) fp(φKi, v)
det2(φ)‖φ−t(u)‖n+p

=
∣∣det(φ)

∣∣ p−2n
n

hp
TpφKi

(v)fp(φKi, v)
‖φ−t(u)‖n

=
∣∣det(φ)

∣∣ p−2n
n

gp(φKi, v)
‖φ−t(u)‖n .

This together with (4.5) yield:

Gp(K1, . . . ,Kn) =
∫

Sn−1

[
gp(K1, u) · · · gp(Kn, u)

]1/(n)
dS(u)

=
∣∣det(φ)

∣∣ p−2n
n

∫
Sn−1

[gp(φK1, v) · · · gp(φKn, v)]
1
n

‖φ−t(u)‖n dS(u)

=
∣∣det(φ)

∣∣ p−n
n

∫
Sn−1

[
gp(φK1, v) · · · gp(φKn, v)

] 1
n dS(v)

=
∣∣det(φ)

∣∣ p−n
n Gp(φK1, . . . , φKn).

This complete the proof. �
The classical Alexandrov–Fenchel inequalities for mixed volumes (cf. [17,28]) can be written as

m−1∏
i=0

V (K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸
m

) ≤ V (K1, . . . ,Kn)m.

The following inequalities are the analogous Alexandrov–Fenchel inequalities for Lp mixed geominimal 
surface area.

Theorem 4.1. If n �= p > 1, and K1, . . . , Kn ∈ Fn
o , then for 1 ≤ m ≤ n

Gp(K1, . . . ,Kn)m ≤
m−1∏
i=0

Gp(K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸
m

).

Equality holds if the Kj are dilates of each other for j = n −m + 1, . . . , n. If m = 1 equality holds trivially.
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In particular, if m = n, then

Gp(K1, . . . ,Kn)n ≤ Gp(K1) · · ·Gp(Kn), (4.6)

with equality if the Ki are dilates of each other.

Proof. Let H0(u) = [gp(K1, u) · · · gp(Kn−m, u)] 1
n and Hi+1(u) = [gp(Kn−i, u)] 1

n for i = 0, . . . , m − 1. By 
Hölder’s inequality (cf. [11])

Gp(K1, . . . ,Kn) =
∫

Sn−1

[
gp(K1, u) · · · gp(Kn, u)

] 1
n dS(u)

=
∫

Sn−1

H0(u)H1(u) · · ·Hm(u)dS(u)

≤
m−1∏
i=0

( ∫
Sn−1

H0Hi+1(u)mdS(u)
) 1

m

=
m−1∏
i=0

G
1
m
p (K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸

m

).

The equality in Hölder’s inequality holds if and only if H0(u)Hm
i+1(u) = cmijH0(u)Hm

j+1(u) for some cij > 0
and all 0 ≤ i �= j ≤ m − 1. This is equivalent to hp

TpKn−i
(u)fp(Kn−i, u) = cijh

p
TpKn−j

(u)fp(Kn−j , u). From 
Proposition 4.2, TpK = Tp(λK) for a constant λ. Thus, the equality holds if Kn−i and Kn−j are dilates of 
each other. �

Let V (K1, . . . , Kn) be the mixed volume of K1, . . . , Kn ∈ Kn. Then the Minkowski inequality for mixed 
volume is

V (K1, . . . ,Kn)n ≥ V (K1) · · ·V (Kn), (4.7)

with equality if and only if Ki (1 ≤ i ≤ n) are homothetic.
The analogous Minkowski inequality for dual mixed volume Ṽ (K1, . . . , Kn), introduced by Lutwak in 

[18], is

Ṽ (K1, . . . ,Kn)n ≤ V (K1) · · ·V (Kn), (4.8)

with equality if and only if Ki (1 ≤ i ≤ n) are dilates of one another.
Now, we are in the position to prove affine isoperimetric inequalities for Lp mixed geominimal surface 

areas.

Theorem 4.2. Let Ki ∈ Fn
o , 1 ≤ i ≤ n.

(i) For p ≥ 1,

(
Gp(K1, . . . ,Kn)
Gp(B, . . . , B)

)n

≤
(
V (K1)
V (B) · · · V (Kn)

V (B)

)n−p
n

,

with equality if the Ki are ellipsoids that are dilates of each other.
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(ii) For 1 ≤ p ≤ n,

Gp(K1, . . . ,Kn)
Gp(B, . . . , B) ≤

(
V (K1, . . . ,Kn)
V (B, . . . , B)

)n−p
n

,

with equality if the Ki are ellipsoids that are dilates of each other.
In particular, for p = n

Gp(K1, . . . ,Kn) ≤ Gp(B, . . . , B),

with equality if the Ki are ellipsoids that are dilates of each other.
(iii) For p ≥ n,

Gp(K1, . . . ,Kn)
Gp(B, . . . , B) ≤

(
Ṽ (K1, . . . ,Kn)
Ṽ (B, . . . , B)

)n−p
n

,

with equality if the Ki are ellipsoids that are dilates of each other.

Proof. (i) By the Theorem A, we have Gp(B) = nωn, then Gp(B, . . . , B) = Gp(B) = nωn. By the inequality 
(4.6) and (3.3), one gets that for all p ≥ 1,

(
Gp(K1, . . . ,Kn)
Gp(B, . . . , B)

)n

≤ Gp(K1)
Gp(B) · · · Gp(Kn)

Gp(B) ≤
(
V (K1)
V (B) · · · V (Kn)

V (B)

)n−p
n

. (4.9)

Equality holds for the Lp isoperimetric inequality (3.3) if and only if Ki are all ellipsoids, equality holds in 
inequality (4.6) if the Ki are dilates of one another. Thus, equality holds in (4.9) if K1, · · · , Kn are dilated 
ellipsoids of each other.

(ii) If 1 ≤ p ≤ n, then n−p
n ≥ 0. By the inequality (4.7), one gets

[
V (K1) · · ·V (Kn)

]n−p
n ≤

[
V (K1, . . . ,Kn)n

]n−p
n .

Since V (B, . . . , B) = V (B), one gets together with (4.9)

Gp(K1, . . . ,Kn)
Gp(B, . . . , B) ≤

(
V (K1, . . . ,Kn)
V (B, . . . , B)

)n−p
n

,

with equality if the Ki are ellipsoids that are dilates of each other.
(iii) Since p > n implies n−p

n < 0. Thus

[
V (K1) · · ·V (Kn)

]n−p
n ≤

[
Ṽ (K1, . . . ,Kn)n

]n−p
n .

By inequality (4.9) and Ṽ (B, . . . , B) = V (B), one gets

Gp(K1, . . . ,Kn)
Gp(B, . . . , B) ≤

(
Ṽ (K1, . . . ,Kn)
Ṽ (B, . . . , B)

)n−p
n

.

The equality condition can get from the equality condition in inequality (4.9) and (4.8). �
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Corollary 4.1. If Ki ∈ Fn
o are convex bodies in Kn

o with positive absolutely continuous Lp curvature functions,

(i) For 1 ≤ p ≤ n,

Gp(K1, . . . ,Kn)n ≤ nnωp
nV (K1, . . . ,Kn)n−p,

with equality if the Ki are ellipsoids that are dilates of each other.
(ii) For p > n

Gp(K1, . . . ,Kn)n ≤ nnωp
nṼ (K1, . . . ,Kn)n−p,

with equality if the Ki are ellipsoids that are dilates of each other.

5. The ith Lp mixed geominimal surface area

In this section, we will investigate the ith Lp mixed geominimal surface area. For K, L ∈ Fn
o , p ≥ 1 and 

i ∈ R, we define ith Lp mixed geominimal surface area, Gp,i(K, L), of K, L as

Gp,i(K,L) =
∫

Sn−1

gp(K,u)
n−i
n gp(L, u) i

n dS(u). (5.1)

By the Lemma 3.1, we have

Gp(B) = nVp(B, TpB),

since

Gp(B) = nωn = nVp(B,B).

Thus, the above two equations and the uniqueness part of Lemma 3.1 shows that

TpB = B.

Let L = B and write

Gp,i(K,B) = Gp,i(K). (5.2)

By (3.1) we get fp(B, ·) = 1, which together with (5.1), (5.2) and hTpB = hB = 1 yield

Gp,i(K) =
∫

Sn−1

gp(K,u)
n−i
n dS(u).

By (4.1), (5.1) and (5.2), we have:

Gp,0(K) = Gp(K), Gp,i(K,K) = Gp(K), (5.3)

Gp,0(K,L) = Gp(K), Gp,n(K,L) = Gp(L). (5.4)
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We obtain the following cyclic inequality for the ith Lp mixed geominimal surface area.

Theorem 5.1. For K, L ∈ Fn
o , n �= p ≥ 1, i, j, k ∈ R and i < j < k, we have

Gp,i(K,L)k−jGp,k(K,L)j−i ≥ Gp,j(K,L)k−i, (5.5)

with equality if K and L are dilates of each other.

Proof. From definition (5.1) and Hölder’s inequality, it follows that for p ≥ 1,

Gp,i(K,L)
k−j
k−i Gp,k(K,L)

j−i
k−i =

[ ∫
Sn−1

gp(K,u)
n−i
n gp(L, u) i

n dS(u)
] k−j

k−i

×
[ ∫
Sn−1

gp(K,u)
n−k
n fp(L, u) k

n dS(u)
] j−i

k−i

=
{ ∫
Sn−1

[
gp(K,u)

(n−i)(k−j)
n(k−i) gp(L, u)

i(k−j)
n(k−i)

] k−i
k−j

dS(u)
} k−j

k−i

×
{ ∫
Sn−1

[
gp(K,u)

(n−k)(j−i)
n(k−i) gp(L, u)

k(j−i)
n(k−i)

] k−i
j−i

dS(u)
} j−i

k−i

≥
∫

Sn−1

gp(K,u)
n−j
n gp(L, u)

j
n dS(u).

That is,

Gp,i(K,L)
k−j
k−i Gp,k(K,L)

j−i
k−i ≥

∫
Sn−1

gp(K,u)
n−j
n gp(L, u)

j
n dS(u)

= Gp,j(K,L).

We obtain the inequality (5.5). According to the condition of equality in Hölder’s inequality, the equality 
holds in (5.5) if and only if for any u ∈ Sn−1,

gp(K,u)n−i
n gp(L, u) i

n

gp(K,u)n−k
n gp(L, u) k

n

is a constant, that is, gp(K, u)/gp(L, u) is a constant for any u ∈ Sn−1. By the same argument in the proof 
of Theorem 4.1, we conclude that equality holds if K and L are dilates of each other. �

Letting L = B in Theorem 5.1 and using (5.2), we immediately obtain:

Corollary 5.1. If K ∈ Fn
o , n �= p ≥ 1, i, j, k ∈ R and i < j < k, then

Gp,i(K)k−jGp,k(K)j−i ≥ Gp,j(K)k−i,

with equality if K is a ball centered at the origin.
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We then derive the Minkowski inequality for the ith Lp mixed geominimal surface area:

Theorem 5.2. If K, L ∈ Fn
o , n �= p ≥ 1, i ∈ R, then

for i < 0 or i > n,

Gp,i(K,L)n ≥ Gp(K)n−iGp(L)i, (5.6)

for 0 < i < n,

Gp,i(K,L)n ≤ Gp(K)n−iGp(L)i. (5.7)

Each inequality holds as an equality if K and L are dilates of each other. For i = 0 or i = n, (5.6) (or 
(5.7)) is identical.

Proof. (i) For i < 0, let (i, j, k) = (i, 0, n) in Theorem 5.1, we obtain:

Gp,i(K,L)nGp,n(K,L)−i ≥ Gp,0(K,L)n−i,

with equality if K and L are dilates of each other.
From (5.4), we can get the

Gp,i(K,L)n ≥ Gp(K)n−iGp(L)i,

with equality if K and L are dilates of each other.
(ii) For i > n, let (i, j, k) = (0, n, i) in Theorem 5.1, we obtain:

Gp,0(K,L)i−nGp,i(K,L)n ≥ Gp,n(K,L)i,

with equality if K and L are dilates of each other.
From (5.4), we can also get the inequality (5.6).
(iii) For 0 < i < n, let (i, j, k) = (0, i, n) in Theorem 5.1, we obtain:

Gp,0(K,L)n−iGp,n(K,L)i ≥ Gp,i(K,L)n,

with equality if K and L are dilates of each other.
From (5.4), we can get the inequality (5.7).
(iv) For i = 0 (or i = n), by (5.4), one can see (5.6) (or (5.7)) is identical. �
Let L = B in Theorem 5.2, Gp(B) = nωn and (5.2) will lead to the following:

Corollary 5.2. If K ∈ Fn
o , n �= p ≥ 1, i ∈ R, then

for i < 0 or i > n,

Gp,i(K)n ≥ (nωn)iGp(K)n−i; (5.8)

for 0 < i < n,

Gp,i(K)n ≤ (nωn)iGp(K)n−i. (5.9)

Each inequality holds as an equality if K is a ball centered at the origin. For i = 0 or i = n, (5.8) (or (5.9)) 
is identical.
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One of the most important inequalities in convex geometry is the Blaschke–Santaló inequality about 
polar body (cf. [22,27,28]): If K ∈ Kn

c , then

V (K)V
(
K∗) ≤ ω2

n, (5.10)

where the equality holds if and only if K is an ellipsoid. Recently, In [8] Haberl and Schuster showed that 
there is an interesting asymmetric Lp version of (5.10).

In [42], we also proved the following Blaschke–Santaló inequality for the Lp geominimal surface area: If 
K ∈ Kn

c and 1 ≤ p < n, then

Gp(K)Gp

(
K∗) ≤ (nωn)2, (5.11)

with equality if and only if K is an ellipsoid.
In [21], Lutwak proved the following Proposition: If p ≥ 1, and K ∈ Kn

o , then

ωn

(
Gp(K)n

nnV (K)n−p

) 1
p

≤ V (K)V
(
K∗). (5.12)

Inequality (5.12), for K and K∗, immediately yields: If p ≥ 1, and K ∈ Kn
o , then

Gp(K)Gp

(
K∗) ≤ n2V (K)(n+p)/nV (K∗)(n+p)/n

ω
2p/n
n

. (5.13)

The Blaschke–Santaló inequality, in conjunction with inequality (5.13), gives the generalized consequence 
of (5.11): If K ∈ Kn

c and p ≥ 1, then

Gp(K)Gp

(
K∗) ≤ (nωn)2, (5.14)

with equality if and only if K is an ellipsoid.
As the extension of inequality (5.14) we obtain an analogue of Blaschke–Santaló inequality for the ith 

Lp mixed geominimal surface area.

Theorem 5.3. If K, L ∈ Fn
c , n �= p ≥ 1, i ∈ R, and 0 ≤ i ≤ n, then

Gp,i(K,L)Gp,i

(
K∗, L∗) ≤ (nωn)2. (5.15)

The equality holds for 0 < i < n if K and L are dilated ellipsoids of each other. The inequality holds as an 
equality for i = 0 (or i = n) if K (or L) is an ellipsoid.

Proof. For 0 < i < n, via (5.7) and (5.14), we obtain

Gp,i(K,L)nGp,i

(
K∗, L∗)n ≤

[
Gp(K)Gp

(
K∗)]n−i[

Gp(L)Gp

(
L∗)]i

≤ (nωn)2n.

That is,

Gp,i(K,L)Gp,i

(
K∗, L∗) ≤ (nωn)2.

The equality holds if K and L are dilated ellipsoids of each other.
For i = 0 (or i = n), from (5.4) and inequality (5.7), the inequality (5.15) is obviously true, and with 

equality if K (or L) is an ellipsoid. �
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Recall the classical isoperimetric inequality:

(
Area(K)
Area(B)

)n

≥
(
V (K)
V (B)

)n−1

,

the equality holds if and only if K is a ball. Here Area(·) denotes the general surface area.
We now establish generalized isoperimetric inequalities for Gp,i(K).

Theorem 5.4. If K ∈ Fn
o , then

(i) If p ≥ 1 and 0 ≤ i ≤ n,

Gp,i(K)
Gp,i(B) ≤

(
V (K)
V (B)

) (n−p)(n−i)
n2

,

with equality if K is a ball.
(ii) If p ≥ 1 and i ≥ n,

Gp,i(K)
Gp,i(B) ≥

(
V (K)
V (B)

) (n−p)(n−i)
n2

,

with equality if K is a ball.

Proof. (i) For i = 0, by (5.3), we have

Gp(K)
Gp(B) ≤

(
V (K)
V (B)

)n−p
n

.

This is Lutwak’s inequality (3.3).
For i = n, by (5.2), (5.3) and (5.4), the equality holds trivially.
For 0 < i < n, the inequality (5.9) gives

(
Gp,i(K)
Gp,i(B)

)n

≤
(
Gp(K)
Gp(B)

)n−i

,

with equality if K is a ball.
Since Gp,i(B) = Gp(B) = nωn, we obtain the following isoperimetric inequality as a consequence of the 

Lp isoperimetric inequality (3.3).

Gp,i(K)
Gp,i(B) ≤

(
Gp(K)
Gp(B)

)n−i
n

≤
(
V (K)
V (B)

) (n−p)(n−i)
n2

,

with equality if K is a ball.
(ii) For i = n, by (5.2), (5.3) and (5.4), the equality holds trivially. We now prove the case i > n. The 

inequality (5.8) gives

(
Gp,i(K)

)n

≥
(
Gp(K)

)n−i

. (5.16)

Gp,i(B) Gp(B)
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Hence for i > n and p ≥ 1, the Lp affine isoperimetric inequality (3.3) implies that

Gp,i(K)
Gp,i(B) ≥

(
Gp(K)
Gp(B)

)n−i
n

≥
(
V (K)
V (B)

) (n−p)(n−i)
n2

,

with equality if K is a ball. �
Corollary 5.3. If K ∈ Fn

c , then

(i) If p ≥ 1 and 0 ≤ i ≤ n,

Gp,i(K)Gp,i

(
K∗) ≤ (nωn)2

with equality if K is a ball.
(ii) If p ≥ 1 and i ≥ n,

Gp,i(K)Gp,i

(
K∗) ≥ (nωn)2

with equality if K is a ball.

Proof. (i) The inequality Gp,i(K)Gp,i(K∗) ≤ (nωn)2 follows from Theorem 5.3 with L = B.
(ii) By inequalities (5.16) and (5.14), one has for all i ≥ n

(
Gp,i(K)Gp,i(K∗)

Gp,i(B)2

)n

≥
(
Gp(K)Gp(K∗)

Gp(B)2

)n−i

≥ 1,

or equivalently, Gp,i(K)Gp,i(K∗) ≥ (nωn)2, with equality if K is a ball. �
Acknowledgments

The authors would like to thank the anonymous referees, whose invaluable comments and suggestions 
have directly led to an improvement of the original manuscript.

References

[1] W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923.
[2] W. Chen, Lp Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006) 77–89.
[3] K. Chou, X. Wang, The Lp Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 

(2006) 33–83.
[4] A. Cianchi, E. Lutwak, D. Yang, G. Zhang, Affine Moser–Trudinger and Morrey–Sobolev inequalities, Calc. Var. Partial 

Differential Equations 36 (2009) 419–436.
[5] W.J. Firey, p-Means of convex bodies, Math. Scand. 10 (1962) 17–24.
[6] B. Fleury, O. Guédon, G. Paouris, A stability result for mean width of Lp centroid bodies, Adv. Math. 214 (2007) 865–877.
[7] R.J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, 1995.
[8] C. Haberl, F.E. Schuster, General Lp affine isoperimetric inequalities, J. Differential Geom. 83 (2009) 1–26.
[9] C. Haberl, F.E. Schuster, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal. 257 (2009) 641–658.

[10] C. Haberl, F. Schuster, J. Xiao, An asymmetric affine Pólya–Szegö principle, Math. Ann. 352 (2012) 517–542.
[11] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, London, 1934.
[12] C. Hu, X. Ma, C. Shen, On the Christoffel–Minkowski problem of Fiery’s p-sum, Calc. Var. Partial Differential Equations 

21 (2004) 137–155.
[13] M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003) 159–188.
[14] M. Ludwig, General affine surface areas, Adv. Math. 224 (2010) 2346–2360.
[15] M. Ludwig, M. Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999) 138–172.
[16] M. Ludwig, M. Reitzner, A classification of SL(n) invariant valuations, Ann. Math. 172 (2010) 1223–1271.
[17] M. Ludwig, C. Schütt, E. Werner, Approximation of the Euclidean ball by polytopes, Studia Math. 173 (2006) 1–18.

http://refhub.elsevier.com/S0022-247X(14)00859-2/bib426C6173s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib6368656Es1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib6377s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib6377s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib434C595As1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib434C595As1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4669726579s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib666770s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib47617264s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib48535F4A4447s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib48535F4A4641s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib485358s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib484C50s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib484D53s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib484D53s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C75s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C7564s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C7552s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C756452s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C5357s1


B. Zhu et al. / J. Math. Anal. Appl. 422 (2015) 1247–1263 1263
[18] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975) 531–538.
[19] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991) 39–68.
[20] E. Lutwak, The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem, J. Differential Geom. 38 

(1993) 131–150.
[21] E. Lutwak, The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas, Adv. Math. 118 (1996) 244–294.
[22] E. Lutwak, G. Zhang, Blaschke–Santaló inequalities, J. Differential Geom. 47 (1997) 1–16.
[23] E. Lutwak, D. Yang, G. Zhang, Lp affine isoperimetric inequalities, J. Differential Geom. 56 (2000) 111–132.
[24] E. Lutwak, D. Yang, G. Zhang, Sharp affine Lp Sobolev inequalities, J. Differential Geom. 62 (2002) 17–38.
[25] E. Lutwak, D. Yang, G. Zhang, On the Lp Minkowski problem, Trans. Amer. Math. Soc. 356 (2004) 4359–4370.
[26] M. Meyer, E. Werner, On the p-affine surface area, Adv. Math. 152 (2000) 288–313.
[27] C.M. Petty, Geominimal surface area, Geom. Dedicata 3 (1974) 77–97.
[28] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.
[29] R. Schneider, Affine surface area and convex bodies of elliptic type, to appear.
[30] F.E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006) 211–234.
[31] F.E. Schuster, T. Wannerer, GL(n) contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012) 815–826.
[32] C. Schütt, E. Werner, Surface bodies and p-affine surface area, Adv. Math. 187 (2004) 98–145.
[33] A. Stancu, E. Werner, New higher-order equiaffine invariants, Israel J. Math. 171 (2009) 221–235.
[34] W. Wang, G. Leng, Lp-mixed affine surface area, J. Math. Anal. Appl. 335 (2007) 341–354.
[35] E. Werner, On Lp affine surface areas, Indiana Univ. Math. J. 56 (2007) 2305–2323.
[36] E. Werner, D. Ye, New Lp affine isoperimetric inequalities, Adv. Math. 218 (2008) 762–780.
[37] E. Werner, D. Ye, Inequalities for mixed p-affine surface area, Math. Ann. 347 (2010) 703–737.
[38] D. Ye, Inequalities for general mixed affine surface areas, J. Lond. Math. Soc. 85 (2012) 101–120.
[39] D. Ye, On the Lp geominimal surface area and related inequalities, Int. Math. Res. Not. (2014).
[40] D. Ye, B. Zhu, J. Zhou, The mixed Lp geominimal surface areas for multiple convex bodies, arXiv preprint, arXiv:1311.5180, 

2013.
[41] J. Yuan, S. Lv, G. Leng, The p-affine surface area, Math. Inequal. Appl. 3 (2007) 693–702.
[42] B. Zhu, N. Li, J. Zhou, Isoperimetric inequalities for Lp geominimal surface area, Glasg. Math. J. 53 (2011) 717–726.
[43] B. Zhu, J. Zhou, W. Xu, Affine isoperimetric inequalities for Lp geominimal surface area, in: Proceedings of ICMSC 2014, 

Springer, 2014.

http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C753735s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C753931s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C753933s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C753933s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C753936s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C5A3937s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C595A3030s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C595A3032s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4C595A3034s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib4D57s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib50657474793734s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib5363686Es1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib536368753036s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib5357s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib535765726E6572s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib535731s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib574C31s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib57s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib5759s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib575932s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib59s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib5932s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib595A5As1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib595A5As1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib594C4Cs1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib7A6862s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib7A7A78s1
http://refhub.elsevier.com/S0022-247X(14)00859-2/bib7A7A78s1

	Lp mixed geominimal surface area
	1 Introduction
	2 Preliminaries and notions
	3 Lp afﬁne and geominimal surface area
	4 The Lp mixed geominimal surface area
	5 The ith Lp mixed geominimal surface area
	Acknowledgments
	References


