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Abstract. In this paper, we establish a number of Lp-affine isoperimetric
inequalities for Lp-geominimal surface area. In particular, we obtain a Blaschke–
Santaló type inequality and a cyclic inequality between different Lp-geominimal surface
areas of a convex body.
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1. Introduction and main results. Geominimal surface area was introduced by
Petty [26] more than three decades ago. Since then it has become apparent that this
seminal concept and its general Lp extensions, which are due to Lutwak [15, 17], serve
as bridges connecting affine differential geometry, relative differential geometry and
Minkowski geometry. Isoperimetric inequalities involving geominimal surface area
are not only closely related to many affine isoperimetric inequalities involving affine
surface area (see e.g. [9, 10, 12, 15, 17, 24, 25, 30–35]), but, in fact, clarify the equality
conditions of many of these inequalities. A comprehensive theory on Lp affine and
geominimal surface area was first established in a remarkable work of Lutwak [17]. We
note that all these isoperimetric inequalities are part of a new Lp Brunn–Minkowski
theory initialized by Lutwak (see e.g. [2, 5, 15–18, 22, 35]) which has found a number of
applications in analysis (see e.g. [1, 6, 7, 19]). In general, all these works can be viewed
as parts of the Lp valuation theory (see e.g. [12, 13, 28, 29]). For a very recent progress
towards an Orlicz Brunn–Minkowski theory developed by Lutwak, Yang and Zhang,
which is more general than the Lp Brunn–Minkowski theory, we refer to [4, 11, 20, 21].

Following an important line of research in affine geometry, this paper is devoted
to the isoperimetric inequalities for Lp geominimal surface areas, which can be derived
from the Blaschke–Santaló inequality, the Lp centro-affine inequality and the Lp Petty
projection inequality. Moreover, a cyclic inequality between different Lp geominimal
surface areas of a convex body and a Brunn–Minkowski-type inequality for Lp

geominimal surface area of the Lp Blaschke-sum of convex bodies are also established.

∗ This research was supported in part by NSFC(10801140) and by NSFC(10971167).
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Let Kn denote the set of convex bodies (compact, convex subsets with non-empty
interior) in �n. For the set of convex bodies containing the origin in their interior and
the set of convex bodies centred at the origin (i.e. symmetric about the origin), we write
Kn

o andKn
s , respectively. The unit ball in �n and its surface will be denote by B and Sn−1,

respectively. The volume of the unit ball B will be denoted by ωn = πn/2/�(1 + n/2).
If K ∈ Kn, then its support function hK = h(K, ·) : �n \ {0} → [0,∞) is defined by

x ∈ �n \ {0}
h(K, x) = max{x · y : y ∈ K}.

For real p ≥ 1, λ,μ ≥ 0 (not both zero), the Firey linear combination λ · K +p μ · L
of K, L ∈ Kn

o is defined by (see [3])

h(λ · K +p μ · L, ·)p = λh(K, ·)p + μh(L, ·)p.

For p ≥ 1, the Lp mixed volume, Vp(K, L), of K, L ∈ Kn
o, was defined in [16] by

n
p

Vp(K, L) = lim
ε→0

V (K +p ε · L) − V (K)
ε

.

For K ∈ Kn
o and p ≥ 1, the Lp geominimal surface area, Gp(K), was defined in [17]

(the case p = 1 defined in [26]) by

ωp/n
n Gp(K) = inf

{
nVp(K, Q)V (Q∗)p/n : Q ∈ Kn

o

}
, (1.1)

where Q∗ is the polar body of Q defined by

Q∗ = {x ∈ �n : x · y ≤ 1,∀y ∈ Q}.
It is easily verified that Q∗∗ = Q.

One of the most important inequalities in convex geometry is the Blaschke–Santaló
inequality about polar body (see e.g. [22, 24, 27]): if K ∈ Kn

s , then

V (K)V (K∗) ≤ ω2
n (1.2)

with equality if and only if K is an ellipsoid. Recently, Haberl and Schuster [5] showed
that there is an interesting asymmetric Lp version of (1.2).

For p ≥ 1, define ωp = πp/2/�(1 + p/2). The Lp projection body, �pK , of K ∈ Kn
o

is defined [18] by

hp
�pK (u) = 1

nωncn−2,p

∫
Sn−1

|u · v|pdSp(K, v),

where cn,p = ωn+p/ω2ωnωp−1 and u, v ∈ Sn−1. Sp(K, ·) is a positive Borel measure on
Sn−1, called the Lp surface area measure of K . We note that the constant cn−2,p in
the definition of the Lp projection body is chosen so that for the unit ball B we have
�pB = B.

It was shown by Lutwak [16] that corresponding to each K ∈ Kn
o, the Lp surface

area measure, Sp(K, ·) is absolutely continuous with respect to the surface area S(K, ·)
of K , and has Radon–Nikodym derivative

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p. (1.3)
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A convex body K ∈ Kn
o will be said to have an Lp curvature function fp(K, ·) :

Sn−1 → �, if Sp(K, ·) is absolutely continuous with respect to spherical Lebesgue
measure, S, and

dSp(K, ·)
dS

= fp(K, ·).

We will denote by Fn
o the set of all bodies in Kn

o that have an Lp curvature function.
For K ∈ Fn

o , the Lp affine surface area of K , �p(K), was defined by Lutwak [17] as

�p(K) =
∫

Sn−1
fp(K, u)n/(n+p)dS(u). (1.4)

The radial function ρK = ρ(K, ·) : �n \ {0} → [0,∞), of a compact star-shaped
(about the origin) K ⊂ �n, is defined for x ∈ �n \ {0} by

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}.
If ρK is positive and continuous, K will be called a star body (about the origin).

Write Sn
o for the set of star bodies in �n.

Motivated by Leichtweiß [9], Lutwak [17] introduced the Lp affine surface area,
�p(K), of K ∈ Kn

o, by

n−p/n�p(K)(n+p)/n = inf
{
nVp(K, Q∗)V (Q)p/n : Q ∈ Sn

o

}
, (1.5)

where

Vp(K, Q∗) = 1
n

∫
Sn−1

ρ
−p
Q dSp(K, u).

It was also shown in [17] that if K ∈ Kn
o has Lp curvature function, then the

definition (1.5) gives the integral formula (1.4).
Two essential results for this general Lp affine surface area of a convex body in Kn

o
are the following.

THEOREM A. (see [17]) If K ∈ Kn
o with its centroid lying in the origin, then for p ≥ 1

�p(K)�p(K∗) ≤ (nωn)2,

with equality if and only if K is an ellipsoid.

THEOREM B. (see [17]) If K ∈ Kn
o and 1 ≤ p < q < r, then

�q(K)(n+q)(r−p) ≤ �p(K)(n+p)(r−q)�r(K)(n+r)(q−p).

In this paper, we establish the following results for the Lp geominial surface area
of a convex body in Kn

o. It will be shown that two of our main theorems will strengthen
Theorems A and B presented above. The following are our main results:

THEOREM 1. If K ∈ Kn
s and p ≥ 1, then

Gp(K)n ≤ nnωn−p
n V (�pK)p, (1.6)

with equality if and only if K is an ellipsoid.
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THEOREM 2. If K ∈ Kn
s and 1 ≤ p < n, then

Gp(K)Gp(K∗) ≤ (nωn)2, (1.7)

with equality if and only if K is an ellipsoid.

THEOREM 3. If K ∈ Kn
o, 1 ≤ p < q < r, then

Gq(K)(r−p) ≤ Gp(K)(r−q)Gr(K)(q−p). (1.8)

A very important observation is the relationship between the Lp affine surface area
and Lp geominimal surface areas due to Lutwak [17]: if K ∈ Kn

o and p ≥ 1, then

�p(K)n+p ≤ (nωn)pGp(K)n (1.9)

with equality if and only if K is an ellipsoid.
Therefore, in view of equation (1.9), Theorem 2 strengthens Theorem A for origin-

symmetric convex bodies, and Theorem 3 strengthens Theorem B for each convex body
with the origin in its interior. Moreover, from Theorem 1 we can get the following Lp

affine projection inequality (see [23]).

COROLLARY 1. If K ∈ Kn
o and p ≥ 1, then

�p(K)n+p ≤ nn+pωn
nV (�pK)p,

with equality if and only if K is an ellipsoid.

2. Preliminaries. In this section, we collect some basic well-known facts that we
will use in the proofs of our results. For references about the Brunn–Minkowski theory,
see [3, 27].

According to the definitions of the polar body, the support function and radial
function, it follows for K ∈ Kn

o that

hK∗ = 1
ρK

, ρK∗ = 1
hK

. (2.1)

As defined in Section 1, for p ≥ 1, the Lp-mixed volume, Vp(K, L), of K, L ∈ Kn
o

is given by

n
p

Vp(K, L) = lim
ε→0+

V (K +p ε · L) − V (K)
ε

.

Lutwak [16] proved that corresponding to each K ∈ Kn
o, there is a positive Borel

measure, Sp(K, ·), on Sn−1 such that

Vp(K, L) = 1
n

∫
Sn−1

h(L, u)pdSp(K, u) (2.2)

for each L ∈ Kn
o. The measure S1(K, ·) is just the classical surface area measure, S(K, ·),

of K .
From the formula (2.2), it follows immediately that for each K ∈ Kn

o,

Vp(K, K) = V (K). (2.3)
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It is well known that the polar coordinate formula for volume reads:

V (K) = 1
n

∫
Sn−1

ρn
K (u)dS(u). (2.4)

For n �= p ≥ 1 and K, L ∈ Kn
s , the Blaschke Lp-combination K+̌pL ∈ Kn

s is defined
by (see [17])

dSp(K+̌pL, ·) = dSp(K, ·) + dSp(L, ·), (2.5)

where dSp(K, ·) denotes the Lp− surface area measure of K . For p = 1, equation (2.5)
is just the classical Blaschke combination K+̌L.

It was shown in [17] that if p ≥ 1 and K ∈ Kn
o, then there exists a unique body

TpK ∈ Kn
o such that

Gp(K) = nVp(K, TpK) and V (T∗
p K) = ωn. (2.6)

TpK is called the Lp-Petty body of K . Here T∗
p K denotes the polar body of TpK (rather

than (TpK)∗).
Finally, we will say two star bodies K and L to be dilates (of one another) if

ρK (u)/ρL(u) is independent of u ∈ Sn−1.

3. Proof of the main Theorems. To prove the Theorems presented in Section 1,
we still need some additional lemmas.

LEMMA 1. (see [23]) If K, L ∈ Kn
o, then for p ≥ 1,

Vp(K,�pL) = Vp(L,�pK). (3.1)

For p = 1, the identity of equation (3.1) was obtained in [14].

LEMMA 2. (see [17]) If p ≥ 1, and K ∈ Kn
0, then

Gp(K)n ≤ nnωp
nV (K)n−p, (3.2)

with equality if and only if K is an ellipsoid.

LEMMA 3. (see [18]) If K ∈ Kn
o, then for p ≥ 1,

V (K)(n−p)/pV (�∗
pK) ≤ ωn/p

n , (3.3)

with equality if and only if K is an ellipsoid centred at the origin.

Proof of Theorem 1. From definition (1.1), it follows that for Q ∈ Kn
o,

ωp
nGp(K)n ≤ nnVp(K, Q)nV (Q∗)p.

Suppose L ∈ Kn
o. Take �pL for Q, to get

ωp
nGp(K)n ≤ nnVp(K,�pL)nV (�∗

pL)p.
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Thus, by equation (3.1), and the Lp-Petty projection inequality (3.3), we obtain

ωp
nGp(K)n ≤ nnωn

nVp(L,�pK)nV (L)−(n−p),

with equality implying that L is an ellipsoid. Now take �pK for L, use equation (2.3),
and the result is the desired inequality (1.6). Note that equality in equation (1.6) implies
that �pK is an ellipsoid.

Suppose there is equality in equation (1.6). Hence,

Gp(K)n = nnωn−p
n V (�pK)p.

and �pK is a centred ellipsoid. ThusV (�pK)V (�∗
pK) = ω2

n. From definition (1.1), it
follows that for all Q ∈ Kn

o,

nnωn
nV (�pK)p = ωp

nGp(K)n ≤ nnVp(K, Q)nV (Q∗)p.

Take K ∈ Kn
s for Q, using equation (2.3), to get,

ωn
nV (�pK)p ≤ V (K)nV (K∗)p.

The Blaschke–Santaló inequality (1.2) now shows that

ωn
nV (�pK)p ≤ ω2p

n V (K)n−p.

But, as noted previously, V (�pK)V (�∗
pK) = ω2

n. Hence the last inequality is

ωn/p
n ≤ V (K)(n−p)/pV (�∗

pK)p.

The equality conditions of the Lp-Petty projection inequality (3.3) show that K must
therefore be an ellipsoid. �

Proof of Theorem 2. By applying Lemma 2 and the Blaschke–Santaló inequality
(1.2), we obtain

Gp(K)nGp(K∗)n ≤ n2nω2p
n V (K)n−pV (K∗)n−p

≤ n2nω2p
n ω2n−2p

n

= (nωn)2n.

Thus

Gp(K)Gp(K∗) ≤ (nωn)2.

This is just (1.7). By the equality conditions of the Blaschke–Santaló inequality and
equation (3.2), equality in Theorem 2 holds if and only if K is an ellipsoid. �

Proof of Theorem 3. The desired inequality follows immediately from the definition
of Lp geominimal surface area once the following fact is established: given Q1, Q2 ∈ Kn

o,
there exists a Q3 ∈ Kn

o such that

[Vq(K, Q3)V (Q∗
3)

q
n ]r−p ≤ [Vp(K, Q1)V (Q∗

1)
p
n ]r−q[Vr(K, Q2)V (Q∗

2)
r
n ]q−p.
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To show this, define Q3 ∈ Kn
o by

h−q(r−p)
Q3

= h−p(r−q)
Q1

h−r(q−p)
Q2

,

i.e.

ρ
q(r−p)
Q∗

3
= ρ

p(r−q)
Q∗

1
ρ

r(q−p)
Q∗

2
.

Since

ρn
Q∗

3
= ρ

np(r−q)/q(r−p)
Q∗

1
ρ

nr(q−p)/q(r−p)
Q∗

2
,

the Hölder inequality (see [8]) and the polar coordinate formula for volume give

V (Q∗
3)q(r−p) ≤ V (Q∗

1)p(r−q)V (Q∗
2)r(q−p).

Since

hq
Q3

h1−q
K = [hp

Q1
h1−p

K ](r−q)/(r−p)[hr
Q2

h1−r
K ](q−p)/(r−p),

the Hölder inequality, together with equations (1.3) and (2.2), yield

Vq(K, Q3)r−p ≤ Vp(K, Q1)r−qVr(K, Q2)q−p.

When the last two inequalities are combined, the desired inequality is obtained. �

4. Additional inequalities. The notion of Lp centroid body was introduced by
Lutwak and Zhang (see [22]). For each compact star-shaped (about the origin) K in
�n and for real number p ≥ 1, the polar Lp centroid body �∗

pK of K is defined by

ρ
−p
�∗

p K (u) = 1
cn,pV (K)

∫
K

|u · x|pdx, (4.1)

where the integration is with respect to Lebesgue measure. The normalization above
is chosen so that for the unit ball, B, we have �∗

pB = B. In [18] the authors proved the
following Lp centro-affine inequality.

THEOREM C. If K ∈ Sn
o , then for p ≥ 1,

V (K)V (�∗
pK) ≤ ω2

n, (4.2)

with equality if and only if K is an ellipsoid centred at the origin .
By equation (2.6), we can easily obtain:

LEMMA 4. If K ∈ Kn
o, and p ≥ 1, then

ωp
nGp(K)n = nnVp(K, TpK)nV (T∗

p K)p. (4.3)

Next, we combine Theorem C with the definition of Lp-geominimal surface area
Gp(K) to obtain the following result.
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THEOREM 4. If K ∈ Kn
o, and L ∈ Sn

o , p ≥ 1, then

V (L)pGp(K)n ≤ nnVp(K, �pL)nωp
n, (4.4)

with equality if and only if K and L are dilatable ellipsoid centred at the origin.

Proof. From definition (1.1), it follows that for Q ∈ Kn
o,

ωp
nGp(K)n ≤ nnVp(K, Q)nV (Q∗)p.

Suppose L ∈ Sn
o . Take �pL for Q, to get

ωp
nGp(K)n ≤ nnVp(K, �pL)nV (�∗

pL)p, (4.5)

with equality in equation (4.5) if and only if TpK and �pL are dilates by Lemma 4.
From an application of Theorem C, we obtain

ωp
nGp(K)n ≤ nnVp(K, �pL)nω2p

n V (L)−p.

Thus,

V (L)pGp(K)n ≤ nnVp(K, �pL)nωp
n.

By the equality conditions of the inequalities (4.2) and (4.5), equality holds in equation
(4.4) if and only if K and L are dilated ellipsoids centred at the origin. �

COROLLARY 2. If L ∈ Kn
o, p ≥ 1, then

V (L)pGp(�pL)n ≤ nnV (�pL)nωp
n, (4.6)

with equality if and only if L is an ellipsoid centred at the origin.

Proof. Put K = �pL in inequality (4.4), and use equation (2.3) to see that
inequality (4.6) immediately is obtained. By the equality conditions of equation (4.4)
and Theorem 4, equality holds in equation (4.6) if and only if L is an ellipsoid centred
at the origin. �

Finally, we obtain a Brunn–Minkowski-type inequality for the Lp-geominimal
surface area of an Lp- Blaschke combination of two convex bodies.

THEOREM 5. If K, L ∈ Kn
o, and p ≥ 1, then

Gp(K+̌pL) ≥ Gp(K) + Gp(L), (4.7)

with equality if and only if K and L are dilates.

Proof. For K, L ∈ Kn
o, p ≥ 1, by equation (2.2) and (2.5), for all Q ∈ Kn

o, we have

Vp(K+̌pL, Q) = Vp(K, Q) + Vp(L, Q). (4.8)



ISOPERIMETRIC INEQUALITIES FOR Lp GEOMINIMAL SURFACE AREA 725

From the definition (1.1), we have

ωp/n
n Gp(K+̌pL) = inf

{
nVp(K+̌pL, Q)V (Q∗)p/n : Q ∈ Kn

o

}
= inf

{
n[Vp(K, Q) + Vp(L, Q)]V (Q∗)p/n : Q ∈ Kn

o

}
≥ inf

{
nVp(K, Q)V (Q∗)p/n : Q ∈ Kn

o

}
+ inf

{
nVp(L, Q)V (Q∗)p/n : Q ∈ Kn

o

}
= ωp/n

n Gp(K) + ωp/n
n Gp(L).

This shows that

Gp(K+̌pL) ≥ Gp(K) + Gp(L).

The equality of equation (4.7) holds if and only if K+̌pL are dilates with K and L,
respectively. That is K and L are dilates. �
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8. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities (Cambridge University Press,

London, 1934).
9. K. Leichtweiß, On the history of the affine surface area for convex bodies, Results Math.

20 (1991), 650–656.
10. G. Leng, Affine surface areas of curvature images for convex bodies, Acta. Math. Sin.

45(4) (2002), 797–802 (in Chinese).
11. M. Ludwig, General affine surface areas, Adv. Math. 224 (2010), 2346–2360.
12. M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv. Math. 147

(1999), 138–172.
13. M. Ludwig and M. Reitzner, A classification of SL(n) invariant valuations, Ann. Math.

172 (2010), 1223–1271.
14. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232–261.
15. E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39–68.
16. E. Lutwak, The Brunn–Minkowski–Firey theory I: Mixed volumes and the Minkowski

problem, J. Differ. Geom. 38 (1993), 131–150.
17. E. Lutwak, The Brunn–Minkowski-Firey theory II: Affine and geominimal surface

areas, Adv. Math. 118 (1996), 244–294.
18. E. Lutwak, D. Yang and G. Y. Zhang, Lp affine isoperimetric inequalities, J. Differ.

Geom. 56 (2000), 111–132.
19. E. Lutwak, D. Yang and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Differ. Geom.

62 (2002), 17–38.



726 BAOCHENG ZHU, NI LI AND JIAZU ZHOU

20. E. Lutwak, D. Yang and G. Zhang, Orlicz projection bodies, Adv. Math., 223 (2010),
220–242.

21. E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Differ. Geom. 84 (2010),
365–387.

22. E. Lutwak and G. Y. Zhang, Blaschke–Santaló inequalities, J. Differ. Geom. 47 (1997),
1–16.

23. S. Lv and G. Leng, The Lp-curvature images of convex bodies and Lp-projection bodies,
Proc. Indian Acad. Sci. Math. Sci. 118 (2008), 413–424.

24. C. M. Petty, Affine isoperimetric problems, Ann. N. Y. Acad. Sci. 440 (1985), 113–127.
25. C. M. Petty, Isoperimetric problems, in Proceedings of the Conference on Convexty and

Combinatorial Geometry (University of Oklahoma, Norman, OK, 1971, 1972), pp. 26–41.
26. C. M. Petty, Geominimal surface area, Geom. Dedicata 3 (1974), 77–97.
27. R. Schneider, Convex bodies: the Brunn–Minkowski theory, (Cambridge University

Press, Cambridge, UK, 1993.
28. F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika

53 (2006), 211–234.
29. F. E. Schuster, Convolutions and multiplier transformations of convex bodies, Trans.

Amer. Math. Soc. 359 (2007), 5567–5591.
30. F. E. Schuster and T. Wannerer, GL(n) contravariant Minkowski valuations, Trans.

Amer. Math. Soc., to appear.
31. A. Stancu and E. Werner, New higher-order equiaffine invariants, Isr. J. Math. 171

(2009), 221–235.
32. W. Wang and G. Leng, Some affine isoperimetric inequalities associated with Lp-affine

surface area, Houston J. Math. 34 (2008), 443–453.
33. E. Werner, On Lp-affine surface areas, Indiana Univ. Math. J. 56 (2007), 2305–2323.
34. E. Werner and D. Ye, New Lp affine isoperimetric inequalities, Adv. Math. 218 (2008),

762–780.
35. J. Yuan, L. Lv and G. Leng, The p-affine surface area, Math. Ineq. Appl. 3 (2007),

693–702.


