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1. Introduction

One of the most fundamental quadratic matrix equations in the quasi-birth-and-death 
(qbd) process is

A0 + A1X + A2X
2 = X, (1.1)

where A0, A1 and A2 are blocks in an infinite block-tridiagonal transition matrix 
[1, Chapter 8] and are n ×n nonnegative matrices. In the application, I −A0 −A1 −A2
is also irreducible and singular, and, in particular,

(A0 + A1 + A2)111n = 111n, (1.2)

where 111n (often simply 111 when its dimension is clear from the context) is the column 
n-vector of all ones. It is known that (1.1) has a minimal nonnegative solution Φ for 
which Φ111 ≤ 111 [1, pp. 168–172]. By a minimal nonnegative solution, we mean it is a 
solution to (1.1) and also satisfies entrywise

0 ≤ Φ ≤ X for any nonnegative solution X to (1.1).

This solution Φ is the one of interest. By definition such a minimal nonnegative solution Φ
is necessarily unique. In the qbd process, the entries of Φ represent probabilities of events. 
Larger entries correspond to frequent events, while rare events result in tiny entries. 
Usually frequent events are more important than less frequent ones, but sometimes rare 
events can be practically significant, too, and hence getting tiny entries right can be 
critically useful. There are examples in which the entries of Φ vary from as tiny as 
O(10−50) to O(1). On the other hand, conventional wisdom suggests that any entries that 
are of O(10−16) have little chance to be computed to even a single correct decimal digit 
in the IEEE double precision floating point environment. That is bad news. Fortunately, 
as we will demonstrate in this paper, the qbd equation (1.1) is special enough that we 
can compute Φ in a clever way by the doubling algorithm to high entrywise relative 
accuracy as warranted by the data.

Our work here is inspired by recent studies on M -matrix algebraic Riccati equations 
(MARE) [2–4] and by Ye’s highly accurate implementation of the Latouche-Ramaswami 
algorithm [5,6].

Current methods for the qbd equation include the Latouche-Ramaswami algorithm 
[5,6], the method of cyclic reductions [7–9], Newton’s method [10], and a few other 
fixed point iterative methods (see, e.g., [11,12] and references therein). The fixed point 
iterative methods are usually linearly convergent and sometimes can be very slow, and 
for this reason we will not discuss them hereafter. All other methods are quadratically 
convergent unless the involved qbd equation is in the critical case (see section 4 for 
definition). Because there is a generalized Sylvester equation to solve in each Newton’s 
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iterative step, which, unfortunately, can be as expensive as solving the qbd equation 
itself by other methods, Newton’s method is not competitive. As far as computational 
cost is concerned, the method of cyclic reduction is comparable, but a highly accurate 
implementation has not yet been developed. Ye’s highly accurate implementation of 
Latouche-Ramaswami algorithm appears to be the only method known today to be able 
to compute Φ entrywise accurately.

Throughout the rest of this paper, we will broadly consider the quadratic matrix 
equation of form (1.1) that includes the original ones from the qbd process as special 
cases. Specifically, we assume, besides Ai ≥ 0 for 0 ≤ i ≤ 2 throughout the rest of this 
paper, that either

I −A0 −A1 −A2 is a nonsingular M -matrix, (1.3a)

or

I − A0 − A1 − A2 is an irreducible singular M -matrix 
and A0 and A2 are nonzero matrices.

(1.3b)

We will call any equation (1.1) that satisfies (1.3) a qbd equation. The case when one 
of A0 and A2 is zero can be considered trivial. In fact, if A0 = 0, then X = 0 is clearly 
the minimal nonnegative solution; if A2 = 0, then (1.1) becomes (I −A1)X = A0 which 
has a unique solution whenever I −A1 is nonsingular.

Equation (1.1) originally from the qbd process falls into (1.3b), but not (1.3a). The 
Latouche-Ramaswami algorithm [13,5,6] with minor modifications will work for the case 
(1.3). More comments will come later in section 9.

It can be verified that (1.1) is equivalent to

A

[
I

X

]
:=
[ 0 I

A0 A1 − I

] [
I

X

]
=
[
I 0
0 −A2

] [
I

X

]
M =: B

[
I

X

]
M, (1.4)

where M ∈ Rn×n. Necessarily, M = X. Now if also I − A1 is nonsingular, then we can 
set

P1 =
[
I 0
0 −(I −A1)−1

]
, P2 =

[
I −I
0 I

]
.

We have

A0 := P2P1A =
[ (I −A1)−1A0 0
−(I −A1)−1A0 I

]
=:

⎡⎣
n n

n E0 0

n −X I

⎤⎦, (1.5a)

0
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B0 := P2P1B =
[
I −(I −A1)−1A2

0 (I −A1)−1A2

]
=:

⎡⎣
n n

n I −Y0

n 0 F0

⎤⎦ (1.5b)

which is in the first standard form, (SF1) in short, as defined in [14] (see also [15]). 
Moreover, pre-multiply (1.4) by P2P1 to get

A0

[
I

X

]
= B0

[
I

X

]
X. (1.6)

Now that the matrix pencil A0 − λB0 is in (SF1), it is natural for us to apply the 
doubling algorithm for (SF1) [14] to solve (1.6).

The goals of this paper are twofold: to analyze the convergence of the doubling al-
gorithm for (SF1) on solving (1.6) and to present a highly accurate implementation of 
it to compute the minimal nonnegative solution Φ to (1.1) to high entrywise relative 
accuracy in the sense that each entry of Φ, regardless of its magnitude, will be computed 
to almost full machine accuracy. This is important, because in the qbd process, Φ is used 
later to determine a matrix-geometric stationary distribution [16]. A highly entrywise 
accurate Φ will lead to a highly entrywise accurate stationary distribution.

Many results regarding the qbd equation (1.1) itself and its associated polynomial 
φ(λ) := det(A0 + λ(A1 − I) + λ2A2) are not altogether new, but we attempt to present 
them in a coherent way based on matrix analysis techniques for easy access by the 
numerical linear algebra community.

The rest of this paper is organized as follows. In section 2 we state a few basic re-
sults on nonnegative and M -matrices, relevant to our later developments. We present 
an elementary proof about the existence of the minimal nonnegative solution in sec-
tion 3. Section 4 characterizes the spectral properties of the associated matrix pencil 
A − λB defined in (1.4). The plain doubling algorithm for the qbd equation and its 
convergence analysis are given in sections 5 and 6, respectively. Section 7 introduces a 
new entrywise relative residual that will be demonstrated more appropriate than the 
usual normalized residual, similar to the same concept in [3] for MARE. In section 8, we 
present our highly accurate doubling algorithm for the qbd equation (1.1), following the 
same line as accadda of [3]. Numerical examples are given in section 9 to demonstrate 
our points made in the previous sections. Conclusions are made in section 10. Finally, 
in appendix Appendix A we investigate the sparsity pattern in approximations by the 
doubling algorithm.

Notation. Rm×m is the set of all m ×m real matrices, Rn = Rn×1, and R = R1. When 
R is replaced by C, these sets are understood as in the field of complex numbers. In (or 
simply I if its dimension is clear from the context) is the n × n identity matrix. The 
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superscript “·T” takes transpose. For X ∈ Rm×n, X(i,j) refers to its (i, j)th entry, |X| is 
in Rm×n with its (i, j)th entry |X(i,j)|. Inequality X ≤ Y means X(i,j) ≤ Y(i,j) for all 
(i, j), and similarly for X < Y , X ≥ Y , and X > Y . In particular, X ≥ 0 means that X
is entrywise nonnegative. For a matrix X, R(X) and N (X) are the column space and the 
null space of X, respectively. When X is square, we denote by ρ(X) its spectral radius 
and by eig(X) its spectrum. Given A, B ∈ Cn×n such that A − λB is a regular matrix 
pencil,4 we denote by eig(A, B) := {μ ∈ C : det(A − μB) = 0} the spectrum of the 
matrix pencil. 111n ∈ Rn is the n-vector of all ones and 111m×n ∈ Rm×n is the m ×n matrix 
of all ones. The symbol u is the unit machine roundoff, and it is 2−53 ≈ 1.1 × 10−16 for 
the IEEE double precision.

2. Preliminaries

In this section, we collect a few important results on nonnegative matrices and 
M -matrices. These results are well-known and can be found in, e.g., [18,19]. They lay 
the foundation of our technical arguments.

A matrix A ∈ Rm×n is nonnegative, denoted by A ≥ 0, if all of its entries are 
nonnegative, and positive, denoted by A > 0, if all its entries are positive. The same 
understanding goes to vectors. In Theorem 2.1, we summarize a few relevant results on 
nonnegative matrices. They are parts of the Perron-Frobenius theory.

Theorem 2.1. Let A ∈ Rn×n be a nonnegative matrix.

(a) The spectral radius, ρ(A), is an eigenvalue of A. If A is also irreducible, then ρ(A)
is a simple eigenvalue and positive.

(b) There exist a nonnegative right eigenvector xxx and a nonnegative left eigenvector yyy
associated with the eigenvalue ρ(A): Axxx = ρ(A)xxx and yyyTA = ρ(A)yyyT. If A is also 
irreducible, then xxx > 0 and yyy > 0.

(c) Let B ∈ Rn×n. If B ≥ A, then ρ(B) ≥ ρ(A). If B is also irreducible and B �= A, 
then ρ(B) > ρ(A).

(d) If Axxx ≤ βxxx for some xxx > 0, then ρ(A) ≤ β. If, in addition, also Axxx �= βxxx, then 
ρ(A) < β.

(e) If xxx is a positive eigenvector of A, then xxx corresponds to ρ(A).

A matrix A ∈ Rn×n is called a Z-matrix if A(i,j) ≤ 0 for all i �= j. Any 
Z-matrix A can be written as sI − N with N ≥ 0, and it is called an M -matrix
if s ≥ ρ(N). Specifically, it is a singular M -matrix if s = ρ(N), and a nonsingular 
M -matrix if s > ρ(N). Theorem 2.2 lists four equivalent statements for a nonsingular 
M -matrix.

4 I.e., det(A − λB) �≡ 0 for λ ∈ C [17].
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Theorem 2.2. Let A ∈ Rn×n be a Z-matrix. Then the following statements are equiva-
lent:

(a) A is a nonsingular M -matrix;
(b) A−1 ≥ 0;
(c) Auuu > 0 for some positive vector uuu ∈ Rn;
(d) All eigenvalues of A are in the open right half plane.

Two other results on M -matrices that are useful to us are stated in the next theorem.

Theorem 2.3. Let A ∈ Rn×n be an M -matrix.

(a) If A is singular and irreducible, then 0 is a simple eigenvalue and its corresponding 
eigenvector vvv can be taken positive.

(b) Let B ∈ Rn×n be a Z-matrix. If A is nonsingular and B ≥ A, then B is also a 
nonsingular M -matrix.

The key ingredient in recent work [2,3,6] to achieve high entrywise relative accuracy 
in solving certain nonlinear matrix equations is the GTH-like algorithm for inverting a 
nonsingular M -matrix due to Alfa, Xue, and Ye [20]. It is made possible by a brilliant 
idea of theirs: that is to represent a nonsingular M -matrix A in an alternative way, the 
so-called triplet representation of A. In particular, the representation determines A−1

entrywise to high relative accuracy. The reader is referred to [21, section 2] for a brief 
survey.

An M -matrix A can have infinite many triplet representations, but for the purpose 
of computation, any one is just as good as any other. A triplet representation {NA, uuu, vvv}
of the M -matrix A ∈ Rn×n consists of

NA = diag(A) −A, 0 < uuu ∈ Rn, and vvv = Auuu ≥ 0,

where diag(A) is the diagonal matrix obtained from extracting the diagonal part of 
A. For convenience, we will not distinguish A from its triplet representation and write 
A = {NA, uuu, vvv} whenever it is more convenient to do so.

The main theoretical contribution in [22] is that if all entries of NA, uuu, and vvv are 
known to high entrywise relative accuracy, then all entries of A−1 are determined to a 
comparable high relative accuracy, or equivalently the solution xxx to Axxx = bbb for any bbb ≥ 0
is determined to a comparable high entrywise relative accuracy. Numerically, using the 
trick of [23], Alfa, Xue, and Ye [20] presented the GTH-like algorithm to compute the 
LU decomposition of A = {NA, uuu, vvv}, via the Gaussian elimination without pivoting, 
without any cancellation and, consequently, to compute the solution xxx of Axxx = bbb ≥ 0 to 
the claimed accuracy. For more detail, the reader is referred to [14].
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3. Minimal nonnegative solution

Earlier, we mentioned that in the qbd application,5 (1.1) has a unique minimal non-
negative solution. In this section, we will show that it is still true under, more generally, 
(1.3).

The following observation, as a result of the assumption (1.3), plays a critical role in 
the argument that follows. Since I−A0−A1−A2 is either a nonsingular M -matrix or an 
irreducible and singular M -matrix, by Theorems 2.2 and 2.3(a), there exists a positive 
vector uuu > 0 in Rn such that

vvv = (I −A0 −A1 −A2)uuu
{
> 0, in the case of (1.3a),
= 0, in the case of (1.3b).

(3.1)

Throughout the rest of this paper, vvv and uuu are reserved for the ones here. For the qbd

equation (1.1) originally from the qbd process, uuu = 111n and vvv = 0.

Lemma 3.1. Suppose (1.3). Then I −A1 is a nonsingular M -matrix. In particular, (I −
A1)−1 ≥ 0.

Proof. Since I − A1 ≥ I − A0 − A1 − A2, I − A1 is a nonsingular M -matrix under 
(1.3a) by Theorem 2.3(b). Under (1.3b), we have (A0 +A1 +A2)uuu = uuu by (3.1) and thus 
ρ(A0 + A1 + A2) = 1 by Theorem 2.1. Since

A1 ≤ A0 + A1 + A2 and A1 �= A0 + A1 + A2,

it follows from Theorem 2.1(c) that ρ(A1) < 1, which implies that I − A1 is also a 
nonsingular M -matrix under (1.3b). �

Part of next theorem for the case of (1.3b) was well known in the qbd application. 
The theorem as a whole is also implied by [24, Theorem 2.3]. However, it seems to be 
the first time that the inequality (3.2) is explicitly formulated.

Theorem 3.2. Under the assumption (1.3), the quadratic equation (1.1) has a unique 
minimal nonnegative solution Φ. Moreover, it holds that Φ ≥ X0 and

Φuuu ≤ uuu− (I −A1)−1vvv, (3.2)

where X0 = (I −A1)−1A0 is as defined in (1.5a).

5 In the application, Ai ≥ 0 for i = 0, 1, 2 and I − A0 − A1 − A2 is irreducible and singular, and (1.2)
holds.
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Proof. We still present the following constructive proof because some part of the proof 
is needed later for concluding important solution properties.

Because of Lemma 3.1, the following matrix-valued function

G(X) = (I −A1)−1(A0 + A2X
2)

from Rn×n to Rn×n is well-defined. Now construct the sequence {Zk}∞k=0 by

Z0 = 0 and Zk+1 = G(Zk) for k ≥ 0. (3.3)

This is essentially a special case of a more general traditional iterative scheme [16, (1.2.19) 
on p. 13] (see also [25, (6.7) on p. 144]) for solving a nonlinear matrix equation in a 
Markov chain. In particular, Z1 = X0. We claim that for k ≥ 0

0 ≤ Zk ≤ Zk+1 and Zkuuu ≤ uuu− (I −A1)−1vvv. (3.4)

To see this, we note Z1 = (I −A1)−1A0 ≥ 0 = Z0 and

uuu− (I −A1)−1vvv = (I −A1)−1 [(I −A1)uuu− vvv]

= (I −A1)−1(A0 + A2)uuu

≥ 0 = Z0uuu.

That is the inequalities in (3.4) are valid for k = 0. Now suppose that they hold for 
k = �. We have

Z�+2 − Z�+1 = (I −A1)−1A2(Z2
�+1 − Z2

� ) ≥ 0,

because Z2
�+1 − Z2

� = Z�+1(Z�+1 − Z�) + (Z�+1 − Z�)Z� ≥ 0. Thus, Z�+2 ≥ Z�+1 ≥
Z� ≥ 0, which gives the first part of (3.4) for k = � + 1. Also, we have, upon using 
Z�uuu ≤ uuu− (I −A1)−1vvv ≤ uuu,

Z�+1uuu = (I −A1)−1(A0 + A2Z
2
� )uuu

≤ (I −A1)−1A0uuu + (I −A1)−1A2uuu

= (I −A1)−1(A0 + A2)uuu

= (I −A1)−1 [(I −A1)uuu− vvv]

= uuu− (I −A1)−1vvv,

which proves the second part of (3.4) for k = � + 1. This completes the proof of (3.4) for 
k ≥ 0.

By (3.4), the sequence {Zk}∞k=0 is monotonically increasing and bounded from above. 
So it converges. Let Φ be the limit. Evidently, it is nonnegative and X0 = Z1 ≤ Φ. 
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Letting k → ∞ in Zk+1 = G(Zk), we find that Φ is a nonnegative solution of (1.1). 
Letting k → ∞ in (3.4), we find that Φ satisfies (3.2).

Lastly, we claim that it is minimal among all nonnegative solutions of (1.1). To this 
end, let X be any nonnegative solution of (1.1). First, Z0 = 0 ≤ X. Suppose Zk ≤ X

holds for k = �. Then

Z�+1 −X = (I −A1)−1(A0 + A2Z
2
� −A0 −A2X

2)

= (I −A1)−1A2(Z2
� −X2) ≤ 0.

By the induction principle, Zk ≤ X for all k ≥ 0. Let k → ∞ in Zk ≤ X conclude 
Φ ≤ X, i.e., Φ is the minimal nonnegative solution of (1.1). �
Lemma 3.3. Suppose (1.3a), i.e., I − A0 − A1 − A2 is a nonsingular M -matrix. Then 
ρ(X) �= 1 for any nonnegative solution X of (1.1).

Proof. Suppose, to the contrary, that ρ(X) = 1, where X is a nonnegative solution of 
(1.1). Then according to Theorem 2.1(b), there exists a nonzero and nonnegative vector 
zzz ∈ Rn such that Xzzz = zzz and thus

(A0 + A1X + A2X
2)zzz = Xzzz = zzz

to give (I −A0 −A1 −A2)zzz = 0. This contradicts the assumption that I −A0 −A1 −A2
is nonsingular. �

We end this section by introducing the dual equation of (1.1):

A2 + A1Y + A0Y
2 = Y. (3.5)

It differs from (1.1), which we will call the primal equation, slightly in that the roles of 
A0 and A2 are switched. Since our main assumption (1.3) is symmetrical with respect 
to the roles of A0 and A2. Theorem 3.2 is applicable to (3.5). In particular, this dual 
equation (3.5) also has a unique minimal nonnegative solution, denoted by Ψ hereafter. 
For convenience, we summarize in Theorem 3.4 below some of the important results that 
will be useful to us later, but point out that item (c) will be expanded with more detail 
later in Theorems 4.5 and 4.6.

Theorem 3.4. Suppose (1.3), and let Φ and Ψ be the minimal nonnegative solutions to 
(1.1) and (3.5), respectively. The following statements hold.

(a) We have

0 ≤ X0 = (I −A1)−1A0 ≤ Φ, Φuuu ≤ uuu− (I −A1)−1vvv, (3.6a)

0 ≤ Y0 = (I −A1)−1A2 ≤ Ψ, Ψuuu ≤ uuu− (I −A1)−1vvv. (3.6b)
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(b) ρ(Φ) < 1 and ρ(Ψ) < 1 under (1.3a).
(c) ρ(Φ) ≤ 1 and ρ(Ψ) ≤ 1 under (1.3b).
(d) I − ΦΨ and I − ΨΦ are M -matrices and they are nonsingular under (1.3a).

Proof. Item (a) is a consequence of Theorem 3.2.
We have Φuuu ≤ uuu by (3.6a). Since uuu > 0, we conclude ρ(Φ) ≤ 1 by Theorem 2.1(d), 

and thus item (c).
It can be verified that ΦΨuuu ≤ uuu and ΨΦuuu ≤ uuu and thus both I −ΦΨ and I −ΨΦ are 

M -matrices. In the case of (1.3a), we know ρ(Φ) �= 1 because of Lemma 3.3 and thus 
ρ(Φ) < 1. Since (I−A1)−1 ≥ 0 and vvv > 0, we deduce from (3.6) that Φuuu < uuu and Ψuuu < uuu. 
Therefore, ΦΨuuu ≤ Φuuu < uuu and ΨΦuuu ≤ Ψuuu < uuu. Consequently, ρ(ΦΨ) = ρ(ΨΦ) < 1, 
implying that I − ΦΨ and I − ΨΦ are nonsingular M -matrices because they are clearly 
Z-matrices. �

It can be verified that (3.5) is equivalent to

A

[
Y
I

]
N = B

[
Y
I

]
, (3.7)

where A − λB is the same as the one defined in (1.4). Necessarily, N = Y in (3.7). 
Because of the way A0 − λB0 in (1.5) is constructed, we also have

A0

[
Y
I

]
N = B0

[
Y
I

]
. (3.8)

In [14], the dual equation is introduced through the so-called dual matrix pencil of 
A0 − λB0 defined as

A
(d)
0 − λB

(d)
0 := ΠT(B0 − λA0)Π with Π =

[
0 In
In 0

]
. (3.9)

With it, (3.8) becomes

A
(d)
0

[
I
Y

]
= B

(d)
0

[
I
Y

]
N. (3.8’)

One implication of (3.9) is that the eigenvalues of A (d)
0 −λB

(d)
0 are exactly the reciprocals 

of those of A0 − λB0.
Henceforward, notations Φ and Ψ are reserved for the minimal nonnegative solutions, 

if exist, to (1.1) and (3.5), respectively.

4. Spectrum of A − λB

Let A − λB be defined by (1.4), which is a linearization of the quadratic eigenvalue 
problem (QEP) [26]
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[A0 + λ(A1 − I) + λ2A2]xxx = 0. (4.1)

We will assume that A − λB is regular,6 i.e., det(A − λB) �≡ 0 for λ ∈ C. We have

det(A − λB) = (−1)n det(A0 + λ(A1 − I) + λ2A2) = (−1)nφ(λ), (4.2)

where φ(λ) := det(A0 + λ(A1 − I) + λ2A2). To see this, we note

(A − λB)
[
In In
0 λIn

]
=
[
−λIn In
A0 A1 − In + λA2

] [
In In
0 λIn

]
=
[
−λIn 0
A0 A0 + λ(A1 − I) + λ2A2

]
.

Take their determinants to get

λn det(A − λB) = (−λ)n det(A0 + λ(A1 − I) + λ2A2),

leading to (4.2). This means that the eigenvalues of the matrix pencil A − λB are the 
same as those of QEP (4.1), which are the zeros of φ(λ) defined in (4.2). In the case 
when A2 is singular, by convention that is widely used to treat a regular matrix pencil 
such as A −λB here with a singular B [17], ∞ is counted as a zero with an appropriate 
algebraic multiplicity so that the total number of zeros of φ(λ) is always 2n.

Theorem 4.1. Suppose (1.3a). Then A − λB has exactly n eigenvalues in the open unit 
disk and n eigenvalues outside of the closed unit disk; so do A0 − λB0 in (1.5) and 
A

(d)
0 − λB

(d)
0 in (3.9).

Proof. Let Φ and Ψ be the minimal nonnegative solution to (1.1) and (3.5), respectively. 
By Theorem 3.4(d), both I − ΦΨ and I − ΨΦ are invertible and thus

[
I Ψ
Φ I

]−1

=
[ (I − ΨΦ)−1 −Ψ(I − ΦΨ)−1

−(I − ΦΨ)−1Φ (I − ΦΨ)−1

]
.

On the other hand, we have (1.4) with X = Φ and (3.7) with Y = Ψ, yielding

A

[
I Ψ
Φ I

] [
I 0
0 Ψ

]
= B

[
I Ψ
Φ I

] [
Φ 0
0 I

]
. (4.3)

This implies that eig(A , B) is the multiset union of eig(Φ) and {1/λ : λ ∈ eig(Ψ)}. The 
conclusion follows because ρ(Φ) < 1 and ρ(Ψ) < 1 by Theorem 3.4(b). �
6 This is the same as requiring φ(λ) �≡ 0 for λ ∈ C. This requirement does not follow from the assump-

tions in (1.3) because they do not exclude the situation, e.g., where A0, A1, and A2 all have two parallel 
columns/rows, although such a situation cannot happen in any practical qbd process.
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Complication for characterizing eig(A , B) arises for the case (1.3b). We recall the 
positive vector uuu in (3.1) which satisfies

(A0 + A1 + A2)uuu = uuu. (4.4a)

Therefore A0 + (A1 − I) + A2 is singular and thus φ(1) = 0 and 1 ∈ eig(A , B). By 
Theorem 2.1, there is a positive vector zzz in Rn such that

zzzT(A0 + A1 + A2) = zzzT. (4.4b)

Define

μ = zzzT(A2 −A0)uuu. (4.5)

Since the qbd process can be viewed as an M/G/1-type Markov chain or a 
G/M/1-type Markov chain [25, p. 127], the spectral analysis in [27] can be applied 
to lead to a complete description on how the zeros of φ(λ) distribute relative to the unit 
circle, depending on the quantity [28, p. 541]

max
{

integer k ≥ 0
∣∣∣∣ z−n/k det(A0 + z1/k(A1 − I) + z2/kA2)
is single-valued in |z| ≤ 1

}
. (4.6)

For the same purpose, [25, Theorem 5.20 on p. 128] presents a complete description under 
two conditions, Conditions 5.1 and 5.2 on [25, pp. 110–111]. However, the quantity in 
(4.6) is not intuitive and difficulty to find out numerically (if at all possible). At the same 
time, it will take quite some page space to clearly explain Condition 5.2 to someone who 
does not work in the area of Markov chains. For this reason and in order to well serve 
the numerical linear algebra community, in what follows, we will adopt a matrix analysis 
approach to investigate the zeros of φ(λ), under mild assumptions. Some results are not 
completely new, however.

Two results in Lemmas 4.2 and 4.4 from [16, section 1.3] form the foundation of the 
approach. Let

χ(t) = ρ(A0 + tA1 + t2A2) for 0 < t ≤ 1. (4.7)

We claim that lnχ(e−s) is convex for 0 < s < ∞ [16, p. 15]. This is because the (i, j)th 
entry of A0 + tA1 + t2A2 is either identically 0 or take the form α0 + α1t + α2t

2, where 
αi (0 ≤ i ≤ 1) are nonnegative and at least one of them is positive. We have

d2

ds2 ln(α0 + α1e
−s + α2e

−2s) = α0α1e
−s + α1α2e

−3s + 4α2α0e
−2s

[α0 + α1e−s + α2e−2s]2 > 0.

By [29, Corollary 1], lnχ(e−s) is convex for 0 < s < ∞.
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Lemma 4.2 ([16, p. 17]). Suppose (1.3b) and consider the equation

t = χ(t) for 0 < t ≤ 1. (4.8)

The equation has at least a root 1 but at most two roots, and also 1 ∈ eig(A , B). 
Specifically,

(a) if μ ≤ 0, then t = 1 is the only root;
(b) if μ > 0 and if ρ(A0) > 0, then it has a second root t0, where 0 < t0 < 1.

Proof. We provide a proof in order to fill in some additional detail for being more 
rigorous. Without loss of generality, we may scale zzz or uuu such that zzzTuuu = 1. Then

zzzT(A0 + A1 + A2)uuu = zzzTuuu = 1.

The derivative of χ(t) at t = 1 from the left is [30]

χ′(1−) = zzzT(A1 + 2A2)uuu = zzzT(A1 + 2A2)uuu− [zzzT(A0 + A1 + A2)uuu− 1] = 1 + μ.

The rest of the proof is essentially the same as the proof of [16, Lemma 1.3.4] on p. 17 
but with additional detail. In fact, the equation (4.8) is, upon substitution t = e−s, 
equivalent to s = − lnχ(e−s) for s ≥ 0. It has a root s = 0. We know that − lnχ(e−s) is 
concave (i.e., convex down) for s > 0 and its right derivative at s = 0 is 1 + μ.

If μ < 0, then as s increases from s = 0, the graph of − lnχ(e−s) moves below the 
bisectrix line s in the first quadrant. Thus s = 0 is the only solution to s = − lnχ(e−s)
for s ≥ 0.

If μ = 0, then the graphs of − lnχ(e−s) and the bisectrix line s are tangent to each 
other at s = 0. We claim that the two graphs will break away from each other as 
soon as s becomes positive, i.e., the only intersection is at s = 0. Otherwise, suppose 
s0 = − lnχ(e−s0) for some 0 < s0 < ∞. Then s = − lnχ(e−s) for all 0 ≤ s ≤ s0
because − lnχ(e−s) is concave, or equivalently, t = χ(t) for t0 := e−s0 ≤ t ≤ 1. Note 
0 < t0 = e−s0 < 1. This implies φ(t) = 0 for all t ∈ [t0, 1] and thus [t0, 1] ⊂ eig(A , B), 
a contradiction because eig(A , B) contains at most 2n distinct points on the extended 
complex plane (the complex plane with infinities).

If μ > 0, then as s increases from 0, − lnχ(e−s) increases and moves above the 
bisectrix line s for sufficiently tiny s. But as s → ∞, − lnχ(e−s) increases to its horizontal 
asymptote − lnχ(0) = − ln ρ(A0) and thus the graph of − lnχ(e−s) will intersect with 
the bisectrix line s at another point s0 (0 < s0 < ∞), giving the second root t0 = e−s0

(0 < t0 < 1). �
Remark 4.3. In [16, Lemma 1.3.4], ρ(A0) = 0 is allowed in the case of μ > 0, but then 
a condition that the derivative of − lnχ(e−s) is less than 1 at some point s = s1 > 0 is 
added. For simplicity, we go with ρ(A0) > 0.
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The next lemma is a corollary of Lemma 1.3.5 of [16, p. 18] which dealt with a more 
general Markov chain.

Lemma 4.4 ([16, Lemma 1.3.5]). Suppose (1.3b). If ρ(Φ) > 0, then ρ(Φ) which is no 
bigger than 1 is the smallest positive root of the equation t = χ(t).

Proof. We provide a proof for being self-contained. Let 0 < t0 ≤ 1 be the smallest 
positive root. Then Â := A0 + A1t0 + A2t

2
0 ≥ 0 and it is irreducible. Let ûuu > 0 be such 

that Âûuu = ρ(Â)ûuu = t0ûuu. Now instead of the iteration scheme (3.3), we use the following 
one [16]

Z0 = 0 and Zk+1 = A0 + A1Zk + A2Z
2
k for k ≥ 0.

We claim that Zk ≤ Φ and Zkûuu ≤ t0ûuu for all k. This can be proved by induction. 
Evidently, Z0 = 0 ≤ Φ and Z0ûuu = 0 ≤ t0ûuu. Suppose that Zk ≤ Φ and Zkûuu ≤ t0ûuu. We 
have Z2

k ≤ Φ2, Z2
kûuu ≤ t20ûuu, and thus

Zk+1 = A0 + A1Zk + A2Z
2
k ≤ A0 + A1Φ + A2Φ2 = Φ,

Zk+1ûuu ≤ (A0 + A1t0 + A2t
2
0)ûuu = Âûuu = t0ûuu,

completing the induction proof. The sequence {Zk}∞k=0 is monotonically increasing and 
thus convergent. Let the limit be Φ′. By letting k go to ∞, we find that Φ′ is also a 
nonnegative solution to (1.1) and at the same time Φ′ ≤ Φ. Hence Φ′ = Φ because 
Φ is the minimal nonnegative solution. On the other hand, Φûuu = Φ′ûuu ≤ t0ûuu, yielding 
0 < ρ(Φ) ≤ t0. Since ρ(Φ) is also a root of the equation t = χ(t), it must hold that 
ρ(Φ) = t0, as was to be shown. �
Theorem 4.5. Suppose (1.3b). The following statements hold.

(a) If μ > 0 and if ρ(A0) > 0, then ρ(Φ) < 1 and ρ(Ψ) = 1. Moreover, φ(λ) has n zeros 
in the open unit disk, one simple zero equal to 1, and the other n − 1 zeros on or 
outside the unit circle (1 is not one of them).

(b) If μ < 0 and if ρ(A2) > 0, then ρ(Φ) = 1 and ρ(Ψ) < 1. Moreover, φ(λ) has n zeros 
outside the unit disk, one simple zero equal to 1, and the other n − 1 zeros on or 
inside the unit circle (1 is not one of them).

In both cases, I − ΦΨ and I − ΨΦ are nonsingular M -matrices.

Proof. We first prove item (a). Since Φ ≥ A0, we have ρ(Φ) ≥ ρ(A0) > 0 by Theo-
rem 2.1(c). Now use Lemmas 4.2(b) and 4.4 to conclude ρ(Φ) < 1. We claim that[

I Ψ]
is nonsingular. (4.9)
Φ I
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This is because the columns of 
[
I
Φ

]
form a basis of the eigenspace of A −λB associated 

with its eigenvalues in eig(Φ), all inside the unit circle since ρ(Φ) < 1, while those of 
[
Ψ
I

]
form a basis of its eigenspace associated with its eigenvalues in {1/λ : λ ∈ eig(Ψ)}, all on 
or outside the unit circle since ρ(Ψ) ≤ 1. Consequently, their column vectors together are 
linearly independent, implying (4.9). The Schur complement of I at the top-left corner 
of the matrix in (4.9) is I − ΦΨ which has to be nonsingular; so is I − ΨΦ. Because 
ΦΨuuu ≤ Φuuu ≤ uuu and ΨΦuuu ≤ uuu by Theorem 3.4(a), both I − ΦΨ and I − ΨΦ are also 
M -matrices and thus they are nonsingular M -matrices by definition.

On the other hand, by (4.3) and (4.9), we conclude that

1 ∈ eig(A ,B) = eig(Φ) ∪ {1/λ : λ ∈ eig(Ψ)} ⇒ 1 ∈ {1/λ : λ ∈ eig(Ψ)}.

Hence 1 ∈ eig(Ψ). We already know ρ(Ψ) ≤ 1 and thus ρ(Ψ) = 1.
It remains to show that 1 is a simple zero of φ(λ), or equivalently, a simple eigenvalue 

of A −λB. To this end, we will prove dim ker(A −B) = 1, and that there is no Jordan 
block of size bigger than 1 for eigenvalue 1. The kernel ker(A −B) consists of all vectors [
xxx
yyy

]
∈ R2n such that

[−I I

A0 A1 − I + A2

] [
xxx

yyy

]
= 0,

where xxx, yyy ∈ Rn. Equivalently, xxx = yyy and

(A0 + A1 + A2)xxx = xxx.

Since A0 + A1 + A2 is nonnegative and irreducible, we have xxx = αuuu for some scalar α. 
Therefore dim ker(A − B) = 1. Suppose, to the contrary, that there is a Jordan block 

of size bigger than 1 for eigenvalue 1. Then the second vector 
[
xxx
yyy

]
∈ R2n in its Jordan 

chain must satisfy the following equation

A

[
xxx
yyy

]
= B

[
xxx
yyy

]
+ B

[
uuu
uuu

]
. (4.10)

Equivalently, (4.10) gives

yyy = xxx + uuu, A0xxx + (A1 − I + A2)yyy = −A2uuu.

Substituting the first equation into the second equation and noticing (4.4a), we obtain

(A0 + A1 + A2 − I︸ ︷︷ ︸)xxx = (A0 −A2)uuu. (4.11)

=:C
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We claim that this equation is not solvable, i.e., it has no solution. To see this, we need 
to prove (A0 − A2)uuu /∈ R(C) = N (CT)⊥. Recalling (4.4b), we have CTzzz = 0, i.e., 
zzz ∈ N (CT). Since zzzT(A0 −A2)uuu = −μ < 0, we conclude that (A0 −A2)uuu /∈ N (CT)⊥, as 
expected.

By switching the roles of A0 and A2, we find that item (b) is a corollary of item (a). �
In general, the case μ = 0 is more difficult to deal with, and the next theorem provides 

a partial description on the distribution of eig(A , B). More comments come after the 
theorem.

Theorem 4.6. Suppose (1.3b) and μ = 0. Then 1 is a zero of φ(λ), and it is an eigenvalue 
of A −λB with geometric multiplicity 1 and algebraic multiplicity at least 2. Also A −λB

has7 at least n eigenvalues in the closed unit disk and at least n eigenvalues on or outside 
the unit circle. Moreover, the following statements hold.

(a) If ρ(A0) > 0, then ρ(Φ) = 1, 1 ∈ eig(Φ), and Φuuu = uuu;
(b) If ρ(A2) > 0, then ρ(Ψ) = 1, 1 ∈ eig(Ψ), and Ψuuu = uuu.

In particular, if both ρ(A0) > 0 and ρ(A2) > 0, then both I−ΦΨ and I−ΨΦ are singular 
and, moreover, (I − ΦΨ)uuu = (I − ΨΦ)uuu = 0.

Proof. Previously, we already commented that φ(1) = 0 and 1 ∈ eig(A , B). Our argu-
ment in the proof of Theorem 4.5 for proving dim ker(A − B) = 1 remains valid here, 
i.e., the geometric multiplicity of the eigenvalue 1 is 1. In order to claim its algebraic 
multiplicity is at least 2, it suffices to show that the associated Jordan chain of vectors 
has length at least 2. It follows from the proof of Theorem 4.5 that we can take the 

eigenvector associated with the eigenvalue 1 to be 
[
uuu
uuu

]
. The second vector 

[
xxx
yyy

]
∈ R2n

in its Jordan chain must satisfy (4.10), yielding yyy = xxx + uuu with xxx determined by (4.11). 
We claim that (4.11) now is solvable, i.e., it has a solution. To see this, we need to prove 
that (A0 −A2)uuu is in R(C). Recalling (4.4b), we have CTzzz = 0, i.e., zzz ∈ N (CT). It can 
be argued that dimN (CT) = 1 since −C is irreducible, and so N (CT) = R(zzz). On the 
other hand, it follows from zzzT(A0 −A2)uuu = 0 that (A0 −A2)uuu ⊥ zzz. Therefore

(A0 −A2)uuu ∈ R(zzz)⊥ = N (CT)⊥ = R(C).

Thus (4.11) has a solution xxx. Finally, we have

A

[
uuu xxx
uuu xxx + uuu

]
= B

[
uuu xxx
uuu xxx + uuu

] [
1 1
0 1

]
.

7 This is not the same as saying it has n eigenvalues in the closed unit disk and the other n eigenvalues 
on or outside the unit circle, as we would like to be able to show.
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The vectors 
[
uuu
uuu

]
and 

[
xxx

xxx + uuu

]
are the first two vectors in a Jordan chain of A − λB

associated with the eigenvalue 1. That A − λB has at least n eigenvalues in the closed 
unit disk and at least n eigenvalues on or outside the unit circle are consequences of the 
equations:

A

[
I
Φ

]
= B

[
I
Φ

]
Φ and ρ(Φ) ≤ 1, A

[
Ψ
I

]
Ψ = B

[
Ψ
I

]
and ρ(Ψ) ≤ 1.

For item (a), we note ρ(Φ) ≥ ρ(A0) > 0. By Lemmas 4.2 and 4.4, we conclude ρ(Φ) = 1
and thus 1 ∈ eig(Φ) because Φ ≥ 0. Let ûuu ≥ 0 be an eigenvector of Φ corresponding to 
its eigenvalue 1, i.e., Φûuu = ûuu and ûuu �= 0. Post-multiply Φ = A0 + A1Φ + A2Φ2 by ûuu to 
get

(A0 + A1 + A2)ûuu = ûuu,

i.e., ûuu is a nonnegative eigenvector of A0 + A1 + A2, which is assumed irreducible, cor-
responding to its top eigenvalue 1. Therefore ûuu = αuuu for some α > 0, implying Φuuu = uuu, 
as expected.

Item (b) is a corollary of item (a) upon switching the roles of A0 and A2.
Finally if both ρ(A0) > 0 and ρ(A2) > 0, then Φuuu = uuu and Ψuuu = uuu, yielding 

(I − ΦΨ)uuu = (I − ΨΦ)uuu = 0. �
A couple of comments are in order. When μ �= 0, we have

eig(A ,B) = eig(Φ) ∪ {1/λ : λ ∈ eig(Ψ)} and eig(Φ) ∩ {1/λ : λ ∈ eig(Ψ)} = ∅,
(4.12)

as guaranteed by Theorem 4.5, where the union is in the sense of the multiset union 
which allows same value appears two or more times, representing different eigenvalues 
having the same value. Theorem 4.6 provides a partial description on the distribution 
of eig(A , B) for the case μ = 0. In particular, the second relation in (4.12) is no longer 
true because 1 is an eigenvalue of multiplicity at least 2 and it belongs to both eig(Φ)
and eig(Ψ). However, it is not clear whether the first equation in (4.12) remains valid or 
not.

Previously, we mentioned that in [25, p. 128] a complete description on the zeros of 
φ(λ) relative to the unit disk is given even for the case μ = 0 but with conditions8 that 
would take a couple of pages to explain. Using the description, one would be able to 
conclude that, under the conditions, φ(λ) has n − 1 zeros in the open unit disk, one 
zero of multiplicity two equal to 1, and n − 1 zeros outside the closed unit disk. In 
general, however, without assuming the conditions, φ(λ) may have two or more different 

8 They are Conditions 5.1 and 5.2 on [25, pp. 110–111] we previously mentioned.
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eigenvalues on the unit circle! The following example is provided by an anonymous 
referee.

A0 = A2 = 1
4

[
0 1
1 0

]
, A1 = 1

2I2, and Φ = Ψ =
[
0 1
1 0

]
(4.13)

for which it can be calculated that

φ(λ) = −1
4(λ + 1)2(λ− 1)2, eig(Φ) = eig(Ψ) = {±1},

and A − λB has two 2 × 2 Jordan blocks associated with its multiple eigenvalues 1 and 
−1:

A

⎡⎢⎣1 1 1 1
1 1 −1 −1
1 2 −1 0
1 2 1 0

⎤⎥⎦ = B

⎡⎢⎣1 1 1 1
1 1 −1 −1
1 2 −1 0
1 2 1 0

⎤⎥⎦
⎡⎢⎣1 1 0 0

0 1 0 0
0 0 −1 1
0 0 0 −1

⎤⎥⎦ .

Lemma 4.7. We have ρ(A1 + A2Φ + A2) < 1 under (1.3a), and ρ(A1 + A2Φ + A2) ≤ 1
under (1.3b), μ �= 0, ρ(A0) > 0 and ρ(A2) > 0.

Proof. Consider the case (1.3a). We have

(A1 + A2Φ)uuu ≤ (A1 + A2)uuu ≤ (A0 + A1 + A2)uuu = uuu− vvv < uuu,

since vvv > 0 and thus ρ(A1+A2Φ) < 1. Write K = I−(A1+A2Φ), which is a nonsingular 
M -matrix. It can be verified that

A0 + λ(A1 − I) + λ2A2 = (λA2 + A2Φ + A1 − I)(λI − Φ) (4.14)

= −(K − λA2)(λI − Φ)

= −(I − λA2K
−1)K(λI − Φ).

By Theorem 4.1, we conclude that eig(Φ) consists of exactly the n eigenvalues of A −
λB in the open unit disk, while reciprocals of those in eig(A2K

−1) give exactly the n
eigenvalues of A − λB outside of the closed unit disk. In particular, ρ(A2K

−1) < 1 and 
I −A2K

−1 is a nonsingular M -matrix. On the other hand,

I −A2K
−1 = (K −A2)K−1 = [I − (A1 + A2Φ + A2)]K−1,

yielding [I−(A1+A2Φ +A2)]−1 = K−1(I−A2K
−1)−1 ≥ 0. Evidently, I−(A1+A2Φ +A2)

is a Z-matrix. By Theorem 2.2, it is a nonsingular M -matrix and thus ρ(A1+A2Φ +A2) <
1.

Now turn to the case (1.3b). Define A0(t) = tA0 and A2(t) = tA2 for t ≤ 1. Consider 
the matrix equation
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A0(t) + A1X + A2(t)X2 = X, (4.15)

taking the same form as (1.1) but falling into the case (1.3a) when t < 1 because

0 ≤ (A0(t) + A1 + A2(t))uuu = uuu + (t− 1)(A0 + A2)uuu ≤ uuu

but the equality sign does not hold. Note that A0(t) + A1 + A2(t) is irreducible. Hence, 
by Theorem 2.1(d), ρ(A0(t) +A1+A2(t)) < 1 for t < 1. The equation (4.15) has a unique 
nonnegative minimal solution, denoted by Φ(t) and satisfying

ρ(A1 + A2(t)Φ(t) + A2(t)) < 1. (4.16)

Now we if we can prove that Φ(t) goes to Φ(1) = Φ as t → 1−, then letting t → 1− will 
complete the proof.

Similarly to what we had before, corresponding to (4.15), we have a matrix pencil 
A (t) − λB(t) defined in the same as in (1.4) but with A0(t), A1, and A2(t). Let Φ(t)
be the minimal nonnegative solution to (4.15), and Ψ(t) be that to the dual equation of 
(4.15). We will also have as in (4.12), for t < 1,

eig(A (t),B(t)) = eig(Φ(t)) ∪ E(t) and eig(Φ(t)) ∩ E(t) = ∅,

where E(t) = {1/λ : λ ∈ eig(Ψ(t))}, and moreover, eig(Φ(t)) lies inside the unit circle 
while E(t) lies outside the unit circle. Since the eigenvalues of a regular matrix pencil 
are continuous functions of the matrix entries [31,17], in consideration of Theorem 4.5
and (4.12), we find that as t → 1−, the elements of eig(Φ(t)) goes to those of eig(Φ) and 
the elements of E(t) goes to those of E := {1/λ : λ ∈ eig(Ψ)}. On the other hand,[

I
Φ(t)

]
,

[
I
Φ

]
are the basis matrices of the unique eigenspace of A (t) − λB(t) associated with its n
eigenvalues in eig(Φ(t)) and that of A − λB associated with its n eigenvalues in eig(Φ), 
respectively. Because the eigenspace associated with a cluster of eigenvalues is continuous 
in the metric of the canonical angles [32, Theorem 5.7], Φ(t) goes to Φ as t → 1−, as was 
to be shown. �

Define the linear operator

LΦ : X → X − (A1 + A2Φ)X −A2XΦ (4.17a)

whose matrix presentation is given by

P = I2n − In ⊗ (A1 + A2Φ) − ΦT ⊗A2. (4.17b)
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Theorem 4.8. P , which is defined as in (4.17b), is a nonsingular M -matrix under (1.3a)
or under (1.3b) with μ �= 0, ρ(A0) > 0 and ρ(A2) > 0.

Proof. By (4.2) and (4.14), the eigenvalues of A −λB is the multiset union of eig(Φ) and 
eig(A2Φ +A1−I, −A2). The two sets of eigenvalues have no intersection by Theorems 4.1
and 4.5. Therefore LΦ is an invertible linear operator. Using the Schur decompositions 
[17, p. 276] of ΦT and (A1 + A2Φ) − λA2, we find that

eig(In ⊗ (A1 + A2Φ) + ΦT ⊗A2) =
⋃

λ∈eig(Φ)

eig(A1 + A2Φ + λA2),

which was also used in the proof of [8, Theorem 5.1]. Since |λ| ≤ 1 for λ ∈ eig(Φ), we 
also have ρ(A1 + A2Φ + λA2) ≤ ρ(A1 + A2Φ + A2) ≤ 1, where the last inequality is a 
consequence of Lemma 4.7. Therefore

ρ(In ⊗ (A1 + A2Φ) + ΦT ⊗A2) ≤ 1. (4.18)

Combining this with the fact that P is a nonsingular Z-matrix, we conclude that (4.18)
must be a strict inequality, i.e., P is a nonsingular M -matrix under the conditions of the 
theorem. �
5. Structure-preserving doubling algorithm

Geometrically, (1.6) says that the column space R(
[
I
X

]
) is an eigenspace of the ma-

trix pencil A0 −λB0 associated with its eigenvalues that are given by eig(X). The same 
statement can be made for (1.4). The basic idea of the structure-preserving doubling 
algorithm for (SF1) [33,14] for solving (1.6) is to recursively construct a sequence of 
matrix pencils Ak − λBk for k ≥ 1 that have the same block structure (thus structure-
preserving) as A0 − λB0:

Ak =
[ n n

n Ek 0
n −Xk I

]
, Bk =

[ n n

n I −Yk

n 0 Fk

]
for k = 1, 2, . . . (5.1)

and at the same time

Ak

[
I
X

]
= Bk

[
I
X

]
M2k

for k = 0, 1, . . .,

where M = X because of (1.4). Now if also ρ(M) < 1 (as we see later, ρ(M) = 1 is 
allowed, too), then we will have

Ak

[
I
X

]
→ 0 as k → ∞,
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provided that {‖Bk‖}∞k=0 is bounded, and as a consequence Xk → X, a solution of 
(1.6) and thus of (1.4), too. We outline the doubling algorithm as Algorithm 5.1. The 
interested reader is referred to [14] for how it is derived.

Algorithm 5.1 Doubling algorithm for (SF1) [14].
Input: X0, Y0, E0, F0 ∈ Rn×n.
Output: X∞ as the limit of Xk if it converges.

1: for k = 0, 1, . . ., until convergence do
2: compute Ek+1, Fk+1, Xk+1, Yk+1 according to

Ek+1 = Ek(In − YkXk)−1
Ek, (5.2a)

Fk+1 = Fk(In − XkYk)−1
Fk, (5.2b)

Xk+1 = Xk + Fk(In − XkYk)−1
XkEk, (5.2c)

Yk+1 = Yk + Ek(In − YkXk)−1
YkFk. (5.2d)

3: end for
4: return Xk at convergence as the computed solution.

Moments ago, we mentioned that Xk is intended to approach a solution to (1.6) (and 
thus (1.1)). As a by-product, the matrix Yk approaches to something interesting, too. 
That is a solution to (3.8) (and thus (3.5)). Indeed, we also have

Ak

[
Y
I

]
N2k

= Bk

[
Y
I

]
for k = 0, 1, . . .,

where N = Y because of (3.7). Now if also ρ(N) < 1 (as we see later, ρ(N) = 1 is 
allowed, too), then we will have

Bk

[
Y
I

]
→ 0 as k → ∞,

provided that {‖Ak‖}∞k=0 is bounded, and as a consequence Yk → Y , a solution to (3.8).
The next section is devoted to the convergence analysis of Algorithm 5.1 for solving 

the qbd equation (1.1) under the assumption (1.3).

6. Convergence analysis

We start by noting that under (1.3), (I − A1)−1 ≥ 0 as guaranteed by Lemma 3.1. 
Immediately, we conclude that X0, Y0, E0, and F0 are well-defined as in (1.5) and they 
are all nonnegative. As we will soon see, a major inequality that governs the speed of 
convergence of Xk and Yk to their respective targets Φ and Ψ is

lim sup ‖Φ −Xk‖1/2k

, lim sup ‖Ψ − Yk‖1/2k ≤ ρ(Φ)ρ(Ψ), (6.1)

k→∞ k→∞
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where ‖ · ‖ is any matrix norm. This inequality is only useful when ρ(Φ)ρ(Ψ) < 1 which 
indicates that the convergence is at least quadratic; otherwise it does not guarantee 
convergence, not to mention revealing anything about the convergence speed.

Previously in section 4, we show that

ρ(Φ)ρ(Ψ) < 1 if either (1.3a) holds or {μ �= 0, ρ(A0) > 0 and ρ(A2) > 0} in the case 
of (1.3b), where μ is defined by (4.5), but ρ(Φ)ρ(Ψ) = 1 if μ = 0, ρ(A0) > 0 and 
ρ(A2) > 0 in the case of (1.3b).

This, combined with (6.1), suggest that Xk and Yk generated by Algorithm 5.1 converge 
quadratically to Φ and Ψ, respectively, under (1.3a) or {μ �= 0, ρ(A0) > 0 and ρ(A2) > 0} 
in the case of (1.3b), provided all Ek, Fk, Xk, Yk are well-defined. It turns out that for 
the case μ = 0, convergence to the minimal nonnegative solution still happens but is 
linear at the rate of 1/2 under a condition on the Jordan eigen-structure (see (6.11)
below).

We observe that as long as Ek, Fk, Xk, Yk are well-defined (so are Ak and Bk), we 
will have

Ak

[
I
Φ

]
= Bk

[
I
Φ

]
Φ2k

, Ak

[
Ψ
I

]
Ψ2k

= Bk

[
Ψ
I

]
,

where Ak and Bk are defined as in (5.1). Or, equivalently,

Φ −Xk = FkΦ2k+1, Ek = (I − YkΦ)Φ2k

, (6.2a)

Ψ − Yk = EkΨ2k+1, Fk = (I −XkΨ)Ψ2k

. (6.2b)

The next theorem is essentially [33, Theorem 4.1] which was proved in the case of the 
M -matrix algebraic Riccati equation (MARE). The only difference lies in how initially 
(E0, F0, X0, Y0) is defined for MARE there and the qbd equation here. We still present 
a proof here because some part of the proof is needed in the proof of Theorem 6.2.

Theorem 6.1. Under (1.3a), the sequence {(Ek, Fk, Xk, Yk)}∞k=0 in Algorithm 5.1 is well-
defined and, moreover, for k ≥ 0,

(a) Ek = (I − YkΦ)Φ2k ≥ 0,
(b) Fk = (I −XkΨ)Ψ2k ≥ 0,
(c) I −XkYk and I − YkXk are nonsingular M -matrices,
(d) 0 ≤ Xk ≤ Xk+1 ≤ Φ, 0 ≤ Yk ≤ Yk+1 ≤ Ψ, and

0 ≤ Φ −Xk ≤ Ψ2k

ΦΦ2k

, 0 ≤ Ψ − Yk ≤ Φ2k

ΨΨ2k

. (6.3)

As a consequence, the inequality (6.1) holds.
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Proof. We start by proving item (c), which implies that {(Ek, Fk, Xk, Yk)}∞k=0 is well-
defined, and for all k ≥ 0

Ek ≥ 0, Fk ≥ 0, 0 ≤ Xk ≤ Φ, 0 ≤ Yk ≤ Ψ, (6.4)

by mathematical induction. By (1.5) and Theorem 3.4, we see that (6.4) holds for k = 0. 
Therefore,

I −X0Y0 ≥ I − ΦΨ, I − Y0X0 ≥ I − ΨΦ.

By Theorem 3.4(d), both I − ΦΨ and I − ΨΦ are nonsingular M -matrices; so are I −
X0Y0 and I − Y0X0 according to Theorem 2.3(b). This completes the proof of (6.4) and 
item (c) for k = 0. Suppose that they hold for k = �. Hence E�+1, X�+1, F�+1, Y�+1 are 
well-defined by (5.2), which, together with the induction hypothesis, guarantee that

E�+1 ≥ 0, F�+1 ≥ 0, 0 ≤ X� ≤ X�+1, 0 ≤ Y� ≤ Y�+1. (6.5)

On the other hand, (6.2) for k = � + 1 says

Φ −X�+1 = F�+1Φ2�+1+1 ≥ 0, Ψ − Y�+1 = E�+1Ψ2�+1+1 ≥ 0.

So we have (6.4) for k = � + 1, and thus

I −X�+1Y�+1 ≥ I − ΦΨ, I − Y�+1X�+1 ≥ I − ΨΦ.

By the same reasoning above, we conclude that I − X�+1Y�+1 and I − Y�+1X�+1 are 
nonsingular M -matrices. This is item (c) for k = � + 1. This completes the proof of item 
(c) and (6.4).

We deduce from (6.2) that

0 ≤ Φ −Xk = (I −XkΨ)Ψ2k

ΦΦ2k ≤ Ψ2k

ΦΦ2k

,

0 ≤ Ψ − Yk = (I − YkΦ)Φ2k

ΨΨ2k ≤ Φ2k

ΨΨ2k

.

That gives (6.3). The rest of the claims, except (6.1), are immediate consequences of 
(6.4), item (c), (6.2), and the recursive formulas in (5.2). It remains to show (6.1) which 
implies that Xk and Yk converge quadratically to Φ and Ψ, respectively, as k → ∞. 
Since all matrix norms on Rn×n are equivalently, meaning each can be bounded by 
another modulo a constant factor depending only on n, without loss of generality, we 
may consider any consistent matrix norm that is monotonic on nonnegative matrices, 
e.g., the �1-operator norm. We get
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‖Φ −Xk‖1/2k ≤ ‖Ψ2k‖1/2k‖Φ‖1/2k‖Φ2k‖1/2k

,

‖Ψ − Yk‖1/2k ≤ ‖Φ2k‖1/2k‖Ψ‖1/2k‖Ψ2k‖1/2k

.

Letting k → ∞, we arrive at (6.1). �
Next, we consider the case of (1.3b). Recall E0 = (I−A1)−1A0 and F0 = (I−A1)−1A2

from (1.5).

Theorem 6.2. Suppose (1.3b) and9

either E0uuu > 0 or F0uuu > 0. (6.6)

Then all conclusions of Theorem 6.1 are valid and, in addition, for k ≥ 0,

either Ekuuu > 0 if E0uuu > 0, or Fkuuu > 0 if F0uuu > 0. (6.7)

Proof. A proof can be given by simply modifying the induction argument in the proof 
of Theorem 6.1 to also include (6.7). Note that in (1.5) E0 = X0 and F0 = Y0. Hence 
E0uuu > 0 implies Φuuu ≥ X0uuu = E0uuu > 0, and similarly F0uuu > 0 implies Ψuuu > 0. In 
particular, we have Φmuuu > 0 and Ψmuuu > 0 for any integer m ≥ 1.

For k = 0, we have (6.4) and (6.7), but the argument there for claiming that I−X0Y0
and I − Y0X0 are nonsingular M -matrices no longer works because now I − ΦΨ and 
I − ΨΦ are singular (as stated in Theorem 6.3 below). We will have to do something 
different. Suppose that E0uuu > 0. Then it follows from the second equation in (6.2a) that

0 < E0uuu = (I − Y0Φ)uuu. (6.8)

Because I − Y0Φ is also a Z-matrix, it is a nonsingular M -matrix by (6.8) and Theo-
rem 2.2(c). Now I−Y0X0 is also a Z-matrix and I−Y0X0 ≥ I−Y0Φ. By Theorem 2.3(b), 
I − Y0X0 is a nonsingular M -matrix; so is I −X0Y0 because ρ(X0Y0) = ρ(Y0X0). Simi-
larly, we can deal with the case F0v > 0.

Suppose that item (c), (6.4), and (6.7) hold for k = �. Hence E�+1, X�+1, F�+1, and 
Y�+1 are well-defined, and for the same reasoning as in the proof of Theorem 6.1, we have 
(6.4) for k = � +1 and (6.5). As to (6.7) for k = � +1, we observe that E�uuu > 0 is equivalent 
to that no row of E� is zero. Thus if E�uuu > 0 then E�+1uuu = E�(I − Y�X�)−1E�uuu > 0, 
and if F�uuu > 0 then F�+1uuu = F�(I − X�Y�)−1F�uuu > 0. It remains to show item (c) for 
k = � + 1. For that purpose, we note that (6.2) for k = � + 1 says

Φ −X�+1 = F�+1Φ2�+1+1 ≥ 0, Ψ − Y�+1 = E�+1Ψ2�+1+1 ≥ 0. (6.9)

9 The assumption (6.6) is weaker than either A0uuu > 0 or A2uuu > 0.
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Suppose now E�uuu > 0 and then E�+1uuu > 0 as we just argued. It follows from the second 
equation in (6.2a) that

0 < E�+1uuu = (I − Y�+1Φ)Φ2�+1
uuu. (6.10)

Because I−Y�+1Φ is a Z-matrix and Φ2�+1
uuu > 0, it is a nonsingular M -matrix by (6.10)

and Theorem 2.2(c). Noting (6.9) and by the same reasoning above, we conclude that 
both I−Y�+1X�+1 and I−X�+1Y�+1 are nonsingular M -matrices. Similarly, we can deal 
with the case F�uuu > 0. �

Theorem 6.2 doesn’t guarantee that the convergence of Xk to Φ and/or the con-
vergence of Yk to Ψ for the case μ = 0 and ρ(A0) > 0 and ρ(A2) > 0 because then 
ρ(Φ) = ρ(Ψ) = 1 by Theorem 4.6 and thus Ψ2k and Φ2k do not go to 0 as k → ∞. It 
turns out that such a case falls into the so-called critical case for (1.6) studied in [14, 
section 3.8]. In what follows, we will cite the result for the current situation.

Suppose (1.3b), μ = 0, ρ(A0) > 0 and ρ(A2) > 0, where μ is defined as in (4.5). 
By Theorem 4.6, A − λB (and thus A0 − λB0, too) always have a multiple eigenvalue 
1 and, as the example in (4.13) shows, it may have other multiple eigenvalues on the 
unit circle, too. Unfortunately, Theorem 4.6 fails to reveal a complete picture as how 
the eigenvalues of A0 − λB0 distribute relative to the unit circle. In order to apply 
the convergence analysis of [14, Theorem 3.26 on p. 42], we will make the following 
assumption [14, (3.82) on p. 40].

the partial multiplicities for all eigenvalues of A0 − λB0 on the 
unit circle are even, i.e., the sizes of all Jordan blocks associated 
with its eigenvalues on the unit circle are even.

(6.11)

Then Φ and Ψ can also be constructed from the Weierstrass canonical forms [34, p. 28]
of A0 − λB0 and B0 − λA0, respectively, as in [14, pp. 40–41] because of the equivalent 
relation between the solution to the quadratic matrix equation (1.1) and the eigenvalue 
problem (1.6) and the equivalent relation between the solution to the dual quadratic 
matrix equation (3.5) and the eigenvalue problem (3.8’), combined with the existence of 
the nonnegative solutions Φ and Ψ with ρ(Φ) ≤ 1 and ρ(Ψ) ≤ 1 by Theorem 3.2.

Finally, we state the following theorem, as a corollary of [14, Theorem 3.26 on p. 42].

Theorem 6.3. To the conditions of Theorem 6.2 add these: μ = 0, ρ(A0) > 0 and 
ρ(A2) > 0. Suppose (6.11). Then, besides all conclusions of Theorem 6.2, we have

(i) max{‖Ek‖, ‖Fk‖} ≤ O(2−k), as k → ∞,
(ii) ‖Φ −Xk‖, ‖Ψ − Yk‖ ≤ O(2−k), as k → ∞,
(iii) I−XkYk and I−YkXk approach singular matrices I−ΦΨ and I−ΨΦ. Furthermore,

(I − ΨΦ)uuu = 0 and (I − ΦΨ)uuu = 0.
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7. Entrywise relative residual

Given an approximation Φ̃ ≈ Φ, the following normalized residual in norm (NRes):

NRes(Φ̃) = ‖A0 + A1Φ̃ + A2Φ̃2 − Φ̃‖
‖Φ̃‖(‖A2‖‖Φ̃‖ + ‖A1 − I‖) + ‖A0‖

(7.1)

is the commonly used legacy measure to gauge how accurate Φ̃ may be, because of its 
computational availability, where ‖ ·‖ is some matrix norm, such as the �1 operator norm 
‖ · ‖1 which is the one we will use later for its computational convenience. NRes usually 
works well in the situation where only normwise accuracy is concerned. Although not 
guaranteed, often the relative error in norm (RErr), defined by

RErr(Φ̃) = ‖Φ̃ − Φ‖
‖Φ̃‖

, (7.2)

correlates well with NRes(Φ̃) in the sense that both are tiny together. But NRes is 
not a good indicator on entrywise relative accuracy in general, unless all entries of Φ
have comparable magnitudes. To overcome this shortcoming, we propose the so-called 
entrywise relative residual (ERRes) for the qbd equation (1.1)

ERRes(Φ̃) = max
i,j

|(A0 + A1Φ̃ + A2Φ̃2) − Φ̃|(i,j)
Φ̃(i,j)

, (7.3)

following the similar practice in [3]. Theorem 7.1 shows that ERRes is tiny, comparable to 
the entrywise accuracy in the entries of Φ̃. To state the theorem, we adopt the following 
floating point arithmetic model

fl(α� β) = (α� β)(1 + ε), |ε| ≤ u for � ∈ {+,−,×,÷}, (7.4)

where fl( · ) is the computed result of an expression. All today’s commercially significant 
machines run the IEEE floating point arithmetic [35,36] and thus conform to (7.4).

Theorem 7.1. Suppose that all entries of the coefficient matrices Ai for i = 0, 1, 2 are 
floating point numbers and suppose that

Φ̃(i,j) = Φ(i,j)(1 + εij) with |εij | ≤ δ < 1 for all i, j.

Then fl(A0 + A1Φ̃ + A2Φ̃2) = Φ̃ + Ẽ with

|Ẽ| ≤ [2n2u + 3δ + O(u2 + δ2 + δu)]Φ̃.
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Proof. Keeping in mind that Ai for 0 ≤ i ≤ 2 and Φ̃ are nonnegative, we have

fl(A0 + A1Φ̃ + A2Φ̃2) = A0 + A1Φ̃ + A2Φ̃2 + E,

with |E| ≤ [2n2u + O(u2)](A0 + A1Φ̃ + A2Φ̃2). Also we notice

A0 + A1Φ̃ + A2Φ̃2 = A0 + A1Φ + A2Φ2 + Ê = Φ + Ê

with |Ê| ≤ [2δ +O(δ2)](A0 +A1Φ̃ +A2Φ̃2) = [2δ +O(δ2)]Φ. Write Φ̃ = Φ +F . We have

fl(A0 + A1Φ̃ + A2Φ̃2) = Φ + Ê + E = Φ̃ + Ê + E − F =: Φ̃ + Ẽ,

where

|Ẽ| = |Ê + E − F | ≤ [2δ + O(δ2)]Φ + [2n2u + O(u2)]Φ + δΦ

= [2n2u + 3δ + O(u2 + δ2 + δu)]Φ̃,

as expected. �
The next theorem says that if ERRes(Φ̃) is sufficiently tiny, then some multiple of it 

by a constant factor, also called the condition number but in the entrywise sense, can 
tell entrywise relative accuracy in Φ̃ as an approximation to Φ, much like the role played 
by NRes in telling the relative error (7.2) of Φ̃ in norm.

Theorem 7.2. Let Φ̃ ≈ Φ such that Φ̃ and Φ share the same entrywise nonzero pattern. 
Suppose the qbd equation (1.1) is not in the critical case, i.e., either (1.3a) or {μ �= 0, 
ρ(A0) > 0 and ρ(A2) > 0}. If ERRes(Φ̃) ≤ ε and if ε is sufficiently tiny, then

|(Φ − Φ̃) � Φ| ≤ εΥ � Φ + O
(
ε2)

≤ γε111n×n + O
(
ε2) , (7.5)

where � denotes the entrywise division, Υ and γ are defined by

(I −A1 −A2Φ)Υ −A2ΥΦ = Φ, γ = max
i,j

(Υ � Φ)(i,j).

Proof. Write ΔΦ = Φ − Φ̃ and A0 + A1Φ̃ + A2Φ̃ = Φ̃ + E. By the definition (7.3),

|E| ≤ ε Φ̃ = εΦ + ε (ΔΦ).

Then Φ̃ = Φ − ΔΦ and

A0 + A1(Φ − ΔΦ) + A2(Φ − ΔΦ)2 = Φ − ΔΦ + E,
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which, after rearrangement, becomes

(I −A1 −A2Φ)(ΔΦ) −A2(ΔΦ)Φ = E −A2(ΔΦ)2. (7.6)

Define the linear operator LΦ as in (4.17a) which is invertible and L −1
Φ is nonnegative 

in the sense that it maps nonnegative matrices into nonnegative ones by Theorem 4.8. 
Following Stewart’s argument [17, p. 242], we use the following iteration

Z0 = 0, Zi+1 = L −1
Φ (E −A2Z

2
i ) for i ≥ 0

to conclude that for sufficiently tiny ε, (7.6) has a unique solution ΔΦ = O(ε). Therefore

|ΔΦ| ≤ L −1
Φ
(
|E| + O(ε2)

)
= εL −1

Φ
(
Φ
)

+ O(ε2) = εΥ + O(ε2)

which yields (7.5) since Φ and Φ̃ are assumed to have the same entrywise nonzero pat-
tern. �

One of the conditions of Theorem 7.2 is that Φ̃ and Φ have the same entrywise nonzero 
pattern. In section Appendix A of the appendix, some sufficient conditions are given for 
the approximations by the doubling algorithms to have the same entrywise nonzero 
pattern as the exact Φ.

Example 7.1. Here we will use an example from [8] to numerically illustrate the superi-
ority of ERRes over NRes in revealing the entrywise relative error

ERErr(Φ̃) = max
i,j

|(Φ̃ − Φ)(i,j)|
Φ(i,j)

. (7.7)

In this example, n = 24, and the matrices A0, A1, and A2 are set up as follows. We first 
define 24 × 24 matrices A′

0, A
′
1 and A′

2 by

(A′
0)ij =

{
192(1 − i/24), i = j,

0, i �= j,
(A′

2)ij =
{

192ρd, i = j,

0, i �= j,

(A′
1)ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αr(β − i)/β, i− j = −1,
ir, i− j = 1,
ξi, i− j = 0,
0, elsewhere,

where 0 ≤ i, j ≤ 23, α, r, β and ρd are parameters, and all ξi are determined by (A′
0 +

A′
1 + A′

2)111 = 0. Then let

A0 = −(A′
1)−1A′

0, A1 = 0, A2 = −(A′
1)−1A′

2.
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Fig. 7.1. Example 7.1. Left: Entries of Φ, many of which are much tinier than the machine roundoff u ≈ 10−16; 
Right: ERRes and ERErr move in sync, whereas NRes and RErr remain “constant”. The curves for ERRes
and ERErr indistinguishably collapse together.

Here we just consider one set of parameters: β = 512, r = 1/300, α = 18.244 and 
ρd = 0.280. We compute the “exact” solution Φ by the computerized algebra system 
Maple with 100 decimal digits and we find that

8.6097 · 10−47 ≤ Φ(i,j) ≤ 9.9868 · 10−1.

In fact, many entries of Φ are much tinier than the machine roundoff u = 2−53 ≈ 10−16, 
as is clear from the left plot in Fig. 7.1. We purposely perturb this Φ to get Φ̃ such 
that (1) ‖Φ̃−Φ‖1 is always about O(u) and (2) ERErr varies from O(u) to about 10−8. 
Specifically, we let in MATLAB

Φ̃ = Φ + sign(randn(n)). ∗ min(Phimax ∗ rand(n) ∗ eps, (Phi ∗ eta). ∗ rand(n)),

where Phimax = 9.9868 · 10−1 is the largest entry in Φ, eta varies from 10−14 to 10−8

so as to make ERErr vary from 10−15 to 10−8, and sign(randn(n)) is to make sure 
the entries of Φ are perturbed randomly up or down. Fig. 7.1 shows how NRes, RErr, 
ERRes, and ERErr change as eta varies. It clearly shows that ERRes and ERErr move 
in sync, whereas NRes and RErr remain “constant”. This numerically demonstrates the 
capability of ERRes in revealing the entrywise relative accuracy in an approximation 
Φ̃, in addition to the theoretical justification we have in Theorem 7.2. In practice, since 
ERErr is not available because exact Φ is not known, ERRes is the perfect candidate to 
use because it is easily computable, just as we commonly use NRes (or some comparable 
quantities) in various numerical linear algebra problems. �
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8. Highly accurate implementation

In this section, we will extend the idea in [3] to present a highly accurate implemen-
tation of Algorithm 5.1 for solving (1.1). It is made possible by the GTH-like algorithm 
of Alfa, Xue, and Ye [20] to invert nonsingular M -matrices

I −A1, I −XkYk, I − YkXk (8.1)

to almost full entrywise relative accuracy. For that purpose, we will need to generate 
entrywise accurate triplet representations for these matrices in (8.1). A key prerequisite 
for being able to do that is knowing A0, A1, A2, and the vectors uuu and vvv in (3.1) to 
almost full entrywise relative accuracy, which we will assume.

To begin with, we have for I −A1

v̂vv := (I −A1)uuu = vvv + (A0 + A2)uuu (8.2)

which can be computed without cancellation to give a triplet representation

I −A1 = {NI−A1 ,uuu, v̂vv}

to almost full entrywise relative accuracy, where NI−A1 is the opposite in sign of off-
diagonal part of I − A1. Thus (I − A1)−1 can be computed to almost full entrywise 
relative accuracy by the GTH-like algorithm. Consequently, X0, Y0, E0, and F0 defined 
by (1.5) can be computed to almost full entrywise relative accuracy. Let[

www
(0)
1

www
(0)
2

]
:=
[
uuu
uuu

]
−
[
E0 Y0
X0 F0

] [
uuu
uuu

]
(8.3)

=
[
uuu− (E0 + Y0)uuu
uuu− (X0 + F0)uuu

]
=
[
uuu− (I −A1)−1(A0 + A2)uuu
uuu− (I −A1)−1(A0 + A2)uuu

]
=
[
(I −A1)−1(I −A1 −A0 −A2)uuu
(I −A1)−1(I −A1 −A0 −A2)uuu

]
=
[
(I −A1)−1vvv
(I −A1)−1vvv

]
≥ 0. (8.4)

Here (8.3) defines www(0)
i for i = 1, 2 but their actual computation is done according 

to (8.4) to almost full entrywise relative accuracy, for the same reason as we just ar-
gued.

The constructions of triplet representations for I − XkYk and I − YkXk are exactly 
the same as in [3]. The next theorem is essentially [3, Theorem 3.2], except for the case 
k = 0.
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Theorem 8.1. Suppose (1.3a), or suppose (1.3b) with (6.6). Let {Ek, Fk, Xk, Yk}∞k=0 be 
generated by Algorithm 5.1. Then[

Ek Yk

Xk Fk

] [
uuu
uuu

]
≤
[
uuu
uuu

]
for k ≥ 0. (8.5)

Moreover, they are equalities if vvv = 0.

Proof. The inequality (8.5) holds for k = 0 and it is an equality if vvv = 0, because of 
(8.4). The proof for k ≥ 1 is exactly the same as that of [3, Theorem 3.2]. �

As in [3], we define [
www

(k)
1

www
(k)
2

]
:=
[
uuu
uuu

]
−
[
Ek Yk

Xk Fk

] [
uuu
uuu

]
. (8.6)

It is nonnegative by Theorem 8.1. We emphasize that (8.6) is for definition only. A can-
cellation-free way to compute www(k)

i to almost full entrywise relative accuracy is detailed 
in the next theorem.

Theorem 8.2 ([3]). Let www(k)
i (i = 1, 2) be defined by (8.6). Then

www
(k+1)
1 = www

(k)
1 + Ek(I − YkXk)−1

[
www

(k)
1 + Ykwww

(k)
2

]
, (8.7a)

www
(k+1)
2 = www

(k)
2 + Fk(I −XkYk)−1

[
Xkwww

(k)
1 +www

(k)
2

]
. (8.7b)

Finally, we have [3],

I − YkXk = {NI−YkXk
,uuu,vvv

(k)
1 }, (8.8a)

I −XkYk = {NI−XkYk
,uuu,vvv

(k)
2 }, (8.8b)

where

vvv
(k)
1 ≡ (I − YkXk)uuu = www

(k)
1 + Ekuuu + Yk

[
Fkuuu +www

(k)
2

]
≥ 0, (8.9a)

vvv
(k)
2 ≡ (I −XkYk)uuu = www

(k)
2 + Fkuuu + Xk

[
Ekuuu +www

(k)
1

]
≥ 0. (8.9b)

With all these, we outline our highly accurate doubling algorithm as in Algorithm 8.1
to solve (1.1). Except in its initialization phase at lines 1 – 3, Algorithm 8.1 is exactly 
the same as [3, Algorithm 5.1]

Our discussion below on when to stop at line 10 is essentially the same as the third 
comment in [3, p. 753] for MARE. There are three viable options for use as stopping 
criteria:
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Algorithm 8.1 accdaqbd: highly accurate doubling algorithm for qbd equation (1.1).
Input: Ai for i = 0, 1, 2 and the vectors uuu and vvv as in (3.1);
Output: minimal nonnegative solutions Φ and Ψ (if needed).
1: compute a triplet representation of I − A1 = {NI−A1 , uuu, ̂vvv} according to (8.2);
2: compute E0, F0, X0 and Y0 according to (1.5) by the GTH-like algorithm using the triplet representation 

for I − A1;
3: compute www(0)

1 and www(0)
2 according to (8.4) by the GTH-like algorithm using the triplet representation 

for I − A1;
4: k = −1;
5: repeat
6: k = k + 1;
7: compute vvv(k)

1 and vvv(k)
2 as defined in (8.9) and generate the triplet representations for I − YkXk and 

I − XkYk as in (8.8);
8: compute Ek+1, Fk+1, Xk+1 and Yk+1 according to (5.2) by the GTH-like algorithm using the triplet 

representations for I − YkXk and I − XkYk

9: compute www(k+1)
1 and www(k+1)

2 according to (8.7) (reuse Ek(I − YkXk)−1 and Fk(I − XkYk)−1 that 
appear in implementing line 8 to reduce work);

10: until convergence;
11: return the last Xk and Yk as approximations to Φ and Ψ, respectively.

|Xk+1 −Xk| ≤ ε ·Xk+1, (8.10a)

ERRes(Xk+1) ≤ ε, (8.10b)

(Xk+1 −Xk)2(i,j)
(Xk −Xk−1)(i,j) − (Xk+1 −Xk)(i,j)

≤ ε · (Xk+1)(i,j) for all i and j, (8.10c)

where ε is a pre-selected tolerance. The first one (8.10a) is the simplest and also cheapest 
one to use, the second one (8.10b) is based on our newly proposed entrywise relative 
residual (7.3), and the third one (8.10c) is Kahan’s stopping criterion, previously in 
[37,21,4]. Both the simple (8.10a) and Kahan’s stopping criterion (8.10c) can be too 
conservative in the case of a monotonically quadratically convergent sequence in the 
sense that they stop iterations unnecessarily late, wasting the last one or two iterations. 
With the same ε, (8.10a) is even more conservative than (8.10c) because, in the phase 
of quadratic convergence,

(Xk −Xk−1)(i,j) − (Xk+1 −Xk)(i,j) ≈ (Xk −Xk−1)(i,j) � (Xk+1 −Xk)(i,j),

and when Xk+1 − Xk = O([Xk − Xk−1]2), the left hand side of (8.10c) is O([(Xk+1 −
Xk)(i,j)]3/2) which is much tinier than (Xk+1 −Xk)(i,j). Another shortcoming for both 
is a possible pitfall: false-convergence in the sense that the iteration may be stopped 
due to a period of very slow moving Xk. The second stopping criterion (8.10b) is most 
expensive to use among the three, especially ERRes(Xk+1) is not needed in the doubling 
iteration kernel. But it does not have the pitfall mentioned above.

In view of this discussion, we propose to use Kahan’s stopping criterion (8.10c) with 
a safeguard, in the sense that when Kahan’s stopping criterion is satisfied we check if 
(8.10b) (probably with a different ε) is also satisfied to avoid possible false-convergence. 
After numerous numerical experiments, we find that in the non-critical case ε about 
10−10 to 10−12 works the best for computed solution to achieve its deserved entrywise 
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relative accuracy about O(10−15) without wasting the last iteration step (although not 
guaranteed). But in the critical case, ε should be set to about 10−14 to 10−16 because of 
linear convergence.

9. Numerical examples

In this section, we will present five numerical examples to illustrate the superior 
performance of Algorithm 8.1 in delivering entrywise accuracy in computed Φ̃ as an 
approximation to the exact solution Φ. Four algorithms will be tested.

1. daqbd: the plain doubling algorithm, i.e., Algorithm 5.1 with inputs X0, Y0, E0, F0 ∈
Rn×n determined by (1.5). It simply uses the usual Gaussian elimination with partial 
pivoting, such as MATLAB’s operators “\” and “/”, to carry out all the inversions 
in (1.5) and (5.2).

2. accdaqbd: Algorithm 8.1.
3. accdaqbd-lite: a lite version of Algorithm 8.1. It simply sets, in view of (8.9),

vvv
(k)
1 = (I − YkXk)uuu, vvv

(k)
2 = (I −XkYk)uuu (9.1)

to replace line 7 there.
4. acclrqbd: Ye’s highly accurate implementation of the Latouche-Ramaswami algo-

rithm [6, Algorithm 3]. It is a highly accurate implementation of the logarithmic 
reduction algorithm of Latouche and Ramaswami [5]. Basically what it does is to 
carry out all inversions of the original Latouche-Ramaswami algorithm by the GTH-
like algorithm. However, this algorithm only works for qbd equations with uuu = 111n
and vvv = 0, and with minor modifications,10 it can be made to work for those with 
vvv = 0 but uuu �= 111n. Latouche-Ramaswami algorithm without changes does work for 
vvv �= 0 and uuu = 111n [13], but Ye’s implementation remains to be extended. For this 
reason, we will not test the Latouche-Ramaswami algorithm for the case when vvv �= 0
and leave it for future study.

As stated in [3], the use of (9.1) may render some entries of computed vvv(k)
i (i = 1, 2)

negative, albeit tiny, due to roundoff errors, especially in the critical case where (I −
YkXk)uuu and (I −XkYk)uuu are known to converge to 0. Since in theory vvv(k)

i ≥ 0, if there 
are negative entries in the computed vvv(k)

i by (9.1) then the value of such an entry must 
be comparable to the roundoff error in evaluating it. For this reason, as a safe-guard, we 
reset all negative entries, if any, in the computed vvv(k)

i to 0.
At convergence, daqbd, accdaqbd-lite and accdaqbd output both Φ and Ψ (even 

though Ψ, the minimal nonnegative solution of the dual equation (3.5), may not 

10 Replace all Ai by D−1AiD, where D = diag(uuu), and finally at convergence recover the solution as 
D−1XD, where X is the computed solution with the modified Ai.



34 C. Chen et al. / Linear Algebra and its Applications 583 (2019) 1–45
be needed), while acclrqbd computes Φ only. Per iterative step, each of daqbd, 
accdaqbd-lite and accdaqbd requires two matrix inversions and eight matrix multi-
plications, while acclrqbd uses one matrix inversion and six matrix multiplications and 
thus costs less. But the original acclrqbd as is does not work for the case vvv �= 0.

In reporting numerical results, we will plot iterative history curves for entrywise rel-
ative residual ERRes defined by (7.3), normalized residual NRes defined by (7.1), and 
entrywise relative error ERErr defined by (7.7) which is not available in practice but 
made available here for testing purposes. In fact, in what follows, Φ is known explicitly 
only for the first example and for all other examples, it is computed by the computerized 
algebra system Maple with 100 decimal digits for our testing purpose.

All computations are done in MATLAB. We will use Kahan’s stopping criterion (8.10c)
for the purpose to achieve Xk+1 ≈ Φ entrywise. We set ε = 10−14 for Example 9.1
(because it is in the critical case), and ε = 10−12 for all others.

Example 9.1 ([38]). Consider the qbd equation (1.1) with

A0 =
[
0.25 0
0.25 0

]
, A1 =

[
0.25 0.25
0.25 0.25

]
, A2 =

[
0 0.25
0 0.25

]
.

Its exact minimal nonnegative solution is

Φ =
[
1 0
1 0

]
.

Fig. 9.1 plots the convergence history for Example 9.1 (data points appear in the plot only 
when they are positive). This figure clearly shows linear convergence for all methods, but 
there is a major difference. All ERRes and NRes curves reach about O(10−15) at iterative 
step 24 or 25. But the ERErr curves for daqbd and accdaqbd-lite behave differently 
from those for accdaqbd and acclrqbd in that the ones for daqbd and accdaqbd-lite
refuse to move below O(10−9) while the ones for accdaqbd and acclrqbd move down all 
the way to O(10−15). Also, the ERErr curve for daqbd starts to wobble at iteration 26, 
while that for accdaqbd-lite starts to flatten out at iteration 27. Evidently, ε = 10−14 is 
too tiny for the doubling iterations in both daqbd and accdaqbd-lite to stop. In fact, 
their computed Φ at convergence are

daqbd :
[0.999999998798091 0
0.999999998798091 0

]
,

accdaqbd-lite :
[0.999999993661981 0
0.999999993661981 0

]
,

accdaqbd :
[0.999999999999993 0
0.999999999999993 0

]
,

acclrqbd :
[0.999999999999993 0
0.999999999999993 0

]
,
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Fig. 9.1. Convergence history curves for Example 9.1. Both accdaqbd and acclrqbd can compute Φ to 
full entrywise relative accuracy, while daqbd and accdaqbd-lite cannot. Some NRes and ERRes values are 
accidentally computed to 0.0 by roundoff and they are revealed by no markers shown.

respectively. We note all get11 0 exactly, but the accuracies in approximating the entry 1
are different, with daqbd and accdaqbd-lite getting errors of just O(

√
u). This difference 

is caused by with or without using the GTH-like algorithm for inversions. The same 
phenomenon occurred to numerical solutions of MARE in [3]. �

As in Example 9.1, daqbd and accdaqbd-lite always perform no better, if not sig-
nificantly worse, than accdaqbd in all our tests, including many not reported here. For 
this reason and in order to save space, in what follows, we will omit reporting numerical 
results by daqbd and accdaqbd-lite.

11 These entries start with 0 and never get touched during the doubling iterative process.



36 C. Chen et al. / Linear Algebra and its Applications 583 (2019) 1–45
Table 9.1
Ranges of Φ for Example 9.2 (all maxi,j Φ(i,j) ≈ 1.0).

r = 1/300, α = 18.244, ρd = 0.280
β 64 256 1024 4096 16384 65536

min
i,j

Φ(i,j) 6.4 · 10−59 2.0 · 10−57 4.1 · 10−57 5.0 · 10−57 5.2 · 10−57 5.3 · 10−57

r = 1/100, α = 18.244, β = 512
ρd 0.075 0.1 0.18 0.26 0.29 0.29568

min
i,j

Φ(i,j) 2.5 · 10−55 7.7 · 10−54 4.5 · 10−50 2.4 · 10−47 1.6 · 10−46 2.2 · 10−46

Table 9.2
Example 9.2 (r = 1/300, α = 18.244, ρd = 0.280).

β accdaqbd acclrqbd

Iter ERErr Iter ERErr

64 18 9.7875 × 10−15 17 8.0522 × 10−15

256 20 8.4767 × 10−15 19 6.5757 × 10−15

1024 22 8.9616 × 10−15 21 8.3499 × 10−15

4096 24 8.7352 × 10−15 23 1.4428 × 10−15

16384 27 7.6983 × 10−15 26 7.9121 × 10−15

65536 34 1.2750 × 10−14 33 1.4831 × 10−14

Table 9.3
Example 9.2 (r = 1/100, α = 18.244, β = 512).

ρd accdaqbd acclrqbd

Iter ERErr Iter ERErr

0.075 13 1.4158 × 10−14 12 7.1819 × 10−15

0.1 14 1.3486 × 10−14 13 3.1512 × 10−14

0.18 16 3.3683 × 10−15 15 2.7801 × 10−15

0.26 19 4.1455 × 10−15 18 3.9467 × 10−15

0.29 21 6.6874 × 10−15 20 6.8350 × 10−15

0.29568 30 7.6001 × 10−15 29 4.2545 × 10−15

Example 9.2 ([8]). This is a revisit of Example 7.1. We will perform two groups of 
tests with varying parameters. In our first group of tests, we vary β while keeping r =
1/300, α = 18.244 and ρd = 0.280, and for our second group, we vary ρd while keeping 
r = 1/100, α = 18.244 and β = 512. The entries of the “exact” solutions Φ vary wildly 
in magnitude, as shown in Table 9.1.

In Tables 9.2 and 9.3, we recorded the numbers of iterations (Iter) needed for solving 
the associated qbd equations for different parameter choices, along with ERErr at con-
vergence, by accdaqbd and acclrqbd. We find that both accdaqbd and acclrqbd are 
able to deliver Xk with ERErr of O(10−15), and acclrqbd uses one fewer iteration than 
accdaqbd.

Fig. 9.2 plots the convergence history curves for the two most difficult cases: β = 65536
or ρd = 0.29568, respectively. We see very slow convergence at the beginning, especially 
for ERErr, but eventually quadratic convergence near the end. �
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Fig. 9.2. Convergence history curves for Example 9.2. The top two are for β = 65536 while r = 1/300, α =
18.244 and ρd = 0.280. The bottom two are for ρd = 0.29568 while r = 1/100, α = 18.244 and β = 512.

The next example is about the case vvv = (I −A0 −A1 −A2)uuu = 0 but uuu �= 111n.

Example 9.3. We modify Example 9.2 to generate a qbd equation with vvv = 0 but uuu �= 111n. 
Specifically, we take uuu = [1, 2, · · · , 24]T, transform all Ai to DAiD

−1, and again reassign 
the resulting matrices to Ai for notational simplicity, where D = diag(uuu). It is not hard 
to see that (A0 + A1 + A2)uuu = uuu for the updated Ai. For this example, acclrqbd

is not directly applicable because it was designed for uuu = 111, but, as we commented 
before, a minor modification that essentially undoes what we just did in constructing 
this example will solve the issue. In fact, the modification turns this example back into 
Example 9.2. Hence, numerically acclrqbd on this example is essentially the same as 
itself on Example 9.2, as we observed. We also observed that accdaqbd performs very 
much the same as itself on the previous example. For this reason, we omit the detail.
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Table 9.4
Numbers of iterations (Iter) and ERErr for Example 9.4.

n Method δ

10−2 10−4 10−6 10−8

64 accdaqbd Iter 11 17 23 29
ERErr 2.2 × 10−15 1.2 × 10−15 8.8 × 10−16 3.5 × 10−15

acclrqbd Iter 10 16 22 28
ERErr 1.8 × 10−15 2.6 × 10−15 8.8 × 10−16 3.5 × 10−15

Fig. 9.3. Convergence history curves for Example 9.4 with (δ, n) = (64, 10−2) (top two plots) and (δ, n) =
(64, 10−8) (bottom two plots).

Example 9.4 ([8,9]). Let A0 = R+ δI, A1 = A2 = R ∈ Rn×n, where R has null diagonal 
entries but constant off-diagonal entries, and 0 < δ < 1. To ensure (I−A0−A1−A2)111 = 0, 
we find the value of the off-diagonal entries of R to be 1−δ

3(n−1) . We will test accdaqbd

and acclrqbd for four different values of δ and n = 64.
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Fig. 9.4. Convergence history curves for Example 9.5 with (δ, n) = (64, 10−2) (left plot) and (δ, n) =
(64, 10−8) (right plot).

Table 9.5
Numbers of iterations (Iter) and ERErr for Example 9.5.

n Method δ

10−2 10−4 10−6 10−8

64 accdaqbd Iter 5 5 5 5
ERErr 1.3 × 10−15 1.2 × 10−15 1.7 × 10−15 5.2 × 10−15

Table 9.4 displays the numbers of iterations (Iter) and ERErr by accdaqbd and 
acclrqbd. Again, we find that both accdaqbd and acclrqbd deliver Xk with ERErr of 
O(10−15), almost full entrywise relative accuracy in the working precision. In addition, 
acclrqbd takes one fewer iteration than accdaqbd. Fig. 9.3 shows the convergence 
history curves for (δ, n) = (64, 10−2) and for (δ, n) = (64, 10−8). Quadratic convergence 
clearly shows. �

Finally, we present an example for the case vvv = (I −A0 −A1 −A2)uuu > 0, in contrast 
to all examples so far. It is a simple modified version of Example 9.4.

Example 9.5. Let Ai for 0 ≤ i ≤ 3 have the same form as in Example 9.4. To make sure 
vvv = (I −A0 −A1 −A2)111 > 0 (and thus uuu = 111), we take the constant off-diagonal entries 
of R to be 1−δ

4(n−1) which is less than 1−δ
3(n−1) , the value used in Example 9.4. Analogously, 

we will test accdaqbd for four different values of δ with n = 64. acclrqbd as is does 
not work for this example because vvv > 0.

Table 9.5 reports the numbers of iterations (Iter) and ERErr by accdaqbd on 
this example. accdaqbd delivers Xk with ERErr of O(10−15), almost full entrywise 
relative accuracy in the working precision. Fig. 9.4 shows convergence histories for 
(δ, n) = (64, 10−2) and for (δ, n) = (64, 10−8). Quadratic convergence again clearly 
shows. �
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10. Conclusions

The structure-preserving doubling algorithm for the first standard form (SF1) [14] is 
extended to compute the minimal nonnegative solutions of a type of quadratic matrix 
equations that include the ones from the quasi-birth-and-death (qbd) process as a special 
case. It is shown that the approximations generated by the algorithm are globally and 
monotonically convergent, and the convergence is quadratical, except in the critical case 
where the convergence is only linear but with a respectable linear rate 1/2.

A highly accurate implementation of the algorithm, mostly along the lines in [3], is 
presented. The implementation resorts the GTH-like algorithm to invert all nonsingu-
lar M -matrices I − XkYk and I − YkXk in the doubling iteration kernel without any 
substraction and, consequently, can compute the minimal nonnegative solution to high 
entrywise relative accuracy for entries, large and small, as warranted by the input data.

We also proposed a new entrywise relative residual (7.3) whose magnitude reflects the 
entrywise relative error (7.7), while the usually legacy normalized residual (7.1) can only 
reflect the relative error in norm (7.2) well.

Several numerical examples are presented to demonstrate the capability of the highly 
accurate implementation in delivering highly entrywise accurate solutions.
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Appendix A. Sparsity of Ek, Fk, Xk, Yk

In this section, we investigate the nonzero patterns in Ek, Fk, Xk, Yk generated by 
the doubling iteration (5.2). The main result is stated in Theorem Appendix A.5, which 
presents sufficient conditions under which the iterative approximations Xk and Yk by the 
doubling algorithm have the same zero-and-nonzero pattern as the minimal nonnegative 
solution Φ of the qbd equation (1.1) and as the minimal nonnegative solution Ψ of the 
dual qbd equation (3.5), respectively.

Xue and Li [3] introduced a partial ordering on nonnegative matrices with respect 
to their entrywise nonzero patterns. Let P ≥ 0, Q ≥ 0 be of the same size, we say 
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that Q majorizes P with respect to the entrywise nonzero pattern, written as P
0
� Q, if 

Q(i,j) = 0 implies P(i,j) = 0, and, Q and P are the same with respect to the entrywise 

nonzero pattern, written as P 0= Q if P
0
� Q and Q 

0
� P .

Evidently, 0 ≤ P ≤ Q implies P
0
� Q, but not the other way around. Lemma Ap-

pendix A.1 is rather straightforward.

Lemma Appendix A.1 ([3]).

(a) If 0 ≤ Pi ≤ Qi for i = 1, 2, all having the same size, then P1 + P2
0
� Q1 + Q2 and 

P1P2
0
� Q1Q2.

(b) If P
0
� Q, then P + Q 

0= Q.

The next three lemmas are also taken from [3].

Lemma Appendix A.2 ([3]). Let P, Q be nonsingular M -matrices, which are split as

P = DP −NP , DP = diag(P ),

Q = DQ −NQ, DQ = diag(Q).

If NP

0
� NQ, then P−1 0

� Q−1. In particular, if NP
0= NQ, then P−1 0= Q−1.

Lemma Appendix A.3 ([3]). For a nonsingular M -matrix P , P−1 0= P−k for k ≥ 1, and 

(αI − P−1)−1 0= P−1 for α > ρ(P−1).

Lemma Appendix A.4 ([3]). Let P be a nonsingular M -matrix and Q ≥ 0, which are 
split P, Q as

P = DP −NP , DP = diag(P ),

Q = DQ + ÑQ, DQ = diag(Q).

If Q(i,i) > 0 for all i and ÑQ

0
� NP , then P−1Q 

0= P−1.

Our main result in this section is the next theorem.

Theorem Appendix A.5. Let E0, F0, X0, Y0 be as in (1.5) and let Ek, Fk, Xk, Yk be 
produced by the doubling iteration (5.2). Split A0, A1, A2 as

A0 = DA0 + ÑA0 , DA0 = diag(A0),

A1 = DA1 + ÑA1 , DA1 = diag(A1),

A2 = DA2 + ÑA2 , DA2 = diag(A2).
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If (A0)(i,i) > 0 and (A2)(i,i) > 0 for all i and if ÑA0

0
� ÑA1 , ÑA2

0
� ÑA1 , then for k ≥ 0[

Ek+1 Yk+1
Xk+1 Fk+1

]
0
�
[
Ek Yk

Xk Fk

]
, (A.1)

Xk+1
0= Xk

0= Φ, and Yk+1
0= Yk

0= Ψ.

Proof. It is clear that Xk

0
� Xk+1 and Yk

0
� Yk+1 because of (5.2c) and (5.2d). So if (A.1)

is proven true, then we will immediately have Xk+1
0= Xk

0= Φ and Yk+1
0= Yk

0= Ψ.
We will prove (A.1) by induction.
Consider first the base case k = 0. Note that (A0)(i,i) > 0 for all i and thus

E0 = X0 = (I −A1)−1A0
0= (I −A1)−1(I + ÑA0) = (I −A1)−1 + (I −A1)−1ÑA0 .

Therefore, immediately, E0 = X0
0
� (I −A1)−1. On the other hand, we also have

E0 = X0
0
� (I −A1)−1 + (I −A1)−1A1

0= (I −A1)−1.

Together, we get

E0 = X0 = (I −A1)−1A0
0= (I −A1)−1. (A.2a)

In exactly the same way, we can also get

F0 = Y0 = (I −A1)−1A2
0= (I −A1)−1. (A.2b)

Let Q = (I −A1)−1 ≥ 0. It follows from (A.2a), (A.2b), and Lemma Appendix A.3 that

E0 = X0
0= F0 = Y0

0= (αI −Q)−1, α > ρ(Q),

from which we conclude that[
E0 Y0
X0 F0

]
0=
[
(αI −Q)−1 (αI −Q)−1

(αI −Q)−1 (αI −Q)−1

]
=: P. (A.3)

In particular, [
0 Y0
X0 0

]
0
� P,

[
E0 0
0 F0

]
0
� P. (A.4)

By Lemmas Appendix A.1 and Appendix A.3, we have

P k 0= P for all k ≥ 1. (A.5)
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In addition, since I
0
� (αI −Q)−1 = 1

α (I + 1
αQ + 1

α2Q
2 + · · · ), we have[

I 0
0 I

]
0
� P. (A.6)

By Lemma Appendix A.2, (A.3), (A.5) and (A.6), we have[
I −Y0

−X0 I

]−1

=
([

I 0
0 I

]
−
[

0 Y0
X0 0

])−1

0
�
([

γI 0
0 γI

]
−
[
E0 Y0
X0 F0

])−1

= 1
γ

∞∑
i=0

(
1
γ

[
E0 Y0
X0 F0

])i

0=
∞∑
i=0

P i 0= P (A.7)

for γ large enough. Combine (A.7) and (A.4) to get[
E1 Y1
X1 F1

]
=
[

0 Y0
X0 0

]
+
[
E0 0
0 F0

] [
I −Y0

−X0 I

]−1 [
E0 0
0 F0

]
0
� P + P 3

0= P + P

0= P

0=
[
E0 Y0
X0 F0

]
,

which implies (A.1) for k = 0.
Now suppose (A.1) holds for k = �. Notice[

E�+1 0
0 F�+1

]
0
�
[
E� 0
0 F�

]
,

[
0 Y�+1

X�+1 0

]
0
�
[

0 Y�

X� 0

]
,[

I −Y�+1
−X�+1 I

]−1 0
�
[

I −Y�

−X� I

]−1

,

and in exactly the same way, we use[
E�+2 Y�+2
X�+2 F�+2

]
=
[

0 Y�+1
X�+1 0

]
+
[
E�+1 0

0 F�+1

] [
I −Y�+1

−X�+1 I

]−1 [
E�+1 0

0 F�+1

]
,

and Lemma Appendix A.1 to prove (A.1) for k = � + 1. By mathematical induction, 
(A.1) holds for all k ≥ 0. �
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