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Abstract We present a Chebyshev-Davidson method to compute a few smallest
positive eigenvalues and corresponding eigenvectors of linear response eigenvalue
problems. The method is applicable to more general linear response eigenvalue prob-
lems where some purely imaginary eigenvalues may exist. For the Chebyshev filter,
a tight upper bound is obtained by a computable bound estimator that is provably
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correct under a reasonable condition. When the condition fails, the estimated upper
bound may not be a true one. To overcome that, we develop an adaptive strategy
for updating the estimated upper bound to guarantee the effectiveness of our new
Chebyshev-Davidson method. We also obtain an estimate of the rate of conver-
gence for the Ritz values by our algorithm. Finally, we present numerical results to
demonstrate the performance of the proposed Chebyshev-Davidson method.

Keywords Eigenvalue/eigenvector · Chebyshev polynomial · Davidson type
method · Convergence rate · Linear response · Upper bound estimator

Mathematics Subject Classifications (2010) 65F15 · 15A18

1 Introduction

In computational quantum chemistry and physics, the so-called random phase
approximation (RPA) describes the excitation states (energies) of physical systems
in the study of collective motion of many-particle systems [2, 25, 26]. It has impor-
tant applications in silicon and other nanoscale materials, analysis of interstellar
clouds [2, 3], polarizabilities [20], and finding the electronic excitation spectrum of
a quantum many-fermion system [27]. One important question in RPA is to compute
a few eigenpairs associated with the smallest positive eigenvalues of the following
eigenvalue problem:

H w :=
[

A B

−B −A

] [
u

v

]
= λ

[
u

v

]
, (1.1)

where A, B ∈ R
n×n are both symmetric matrices and

[
A B

B A

]
is positive definite.

Through a similarity transformation, this eigenvalue problem can be equivalently
transformed into [2, 3, 19]

Hz :=
[
0 K

M 0

] [
y

x

]
= λ

[
y

x

]
, (1.2)

where K = A − B and M = A + B. The eigenvalue problem Eq. (1.2) was still
referred to as the linear response eigenvalue problem (LREP) [2, 19, 27] and will be
so in this paper, too.

The condition imposed upon A and B in Eq. (1.1) implies that both K and M are
real symmetric and positive definite [2]. But there are cases where one of them may
be indefinite [17]. Throughout this paper, we consider the more general case:

(1.3)

For this general case, the interested quantities are the first few eigenvalues whose
squares are the smallest few, together with their corresponding eigenvectors.
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For simplicity, in the rest of this paper, we assume that M is positive definite and
K is Hermitian but may be indefinite. Doing so loses no generality because otherwise
we simply interchange the roles of K and M .

From Eq. (1.2), we have Kx = λy and My = λx and they together produce

KMy = λ2y, (1.4a)

MKx = λ2x. (1.4b)

The three eigenvalue problems: (1.2) of H , (1.4a) of KM , and (1.4b) of MK , are
theoretically equivalent. That is, if any one of them is solved, the solutions to theother
two can be constructed from the solved one with little effort [2, Theorem 2.1].

Researches on solving Eq. (1.2), or equivalently Eqs. (1.4a) and (1.4b), have been
very active, see [3, section 1] and references therein. The goal of this paper is to
extend the Chebyshev-Davidson method and its block version proposed in [30, 33]
for symmetric/Hermitian eigenvalue problems. The new method is capable of tack-
ling the more general case (1.3) that may have purely imaginary eigenvalues whereas
previous methods as surveyed in [3, section 1] cannot.

The rest of this paper is organized as follows. In Section 2, we present our algo-
rithm and the convergence rate estimate based on an upper bound estimator. The
computable upper bound estimator for λmax(KM) and the adaptive strategy are
detailed in Section 3. Numerical results of our algorithm are presented in Section 4.
Finally, some conclusions are drawn in Section 5.

Throughout this paper, Kn×m is the set of all n × m matrices with entries in K,
where K is C (the set of complex numbers) or R (the set of real numbers), Kn =
K

n×1, and K = K
1. In (or simply I if its dimension is clear from the context) is the

n × n identity matrix, and ej is its j th column. MATLAB-like convention is adopted
to access the entries of vectors and matrices. For a matrix X, X(:,i:j) denotes the
submatrix consisting the i-th to the j -th columns of X, diag(X) denotes the column
vector of the diagonal entries of X, and eig(X) denotes the spectrum of X. If X

is nonsingular, κ2(X) denotes the spectral condition number of X. The superscript
“·H” takes conjugate transpose while “·T” takes transpose only. The number ᾱ is the
conjugate of the scalar α.

2 Chebyshev filter for LREP

2.1 Chebyshev filter

Chebyshev polynomials play important roles in theoretical analysis of numerical
algorithms as well as in algorithmic design [21]. They are also useful in practice, as a
means of accelerating single vector iterations or projection processes. In [30, 33], the
polynomials are used to magnify the components of the desired eigenvectors while
suppress those of the undesired ones.

The m-th Chebyshev polynomial of the 1st kind is

Tm(t) =
{
cos(m arccos(t)), for −1 ≤ t ≤ 1,
cosh(m arccosh(t)), for |t | ≥ 1.

(2.1)
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It frequently shows up in numerical analysis and computations because of its
numerous nice properties; for example, |Tm(t)| ≤ 1 for |t | ≤ 1 and |Tm(t)| grows
extremely fast1 for |t | > 1. Also important is the associated three-term recurrence
relation: T0(t) = 1, T1(t) = t , and for m ≥ 1

Tm+1(t) = 2tTm(t) − Tm−1(t), (2.2)

which is responsible for the numerical efficiency in its numerous applications.
For an n × n Hermitian matrix A, suppose eig(A) ⊂ [α0, β] and we are interested

in the eigenvalues lying in [α0, α], where α0 < α < β. The basic idea of the Cheby-
shev filtering approach is to use Chebyshev polynomials to magnify the components
of an approximate eigenvector u in the directions of the wanted eigenvectors and at
the same time suppress those in the directions of the unwanted eigenvectors. To this
end, we first transform [α, β] onto [−1, 1] by the following affine mapping:

t ∈ [α, β] → φ(t) = 2t − (α + β)

β − α
∈ [−1, 1]. (2.3)

Then |Tm(φ(t))| ≤ 1 for t ∈ [α, β] and |Tm(φ(t))| grows extremely fast for t �∈
[α, β]. For this reason, Tm(φ(A))u magnify the components of u in the directions of
the eigenvectors associated with eigenvalues in [α0, α) and at the same time suppress
those in the directions of the eigenvectors associated with eigenvalues in [α, β]. The
effect is more dramatic asm increases. The three-term recurrence relation (2.2) yields

Tm+1(φ(A))u = 2φ(A) · Tm(φ(A))u − Tm−1(φ(A))u, (2.4)

making it very efficient to compute Tm(φ(A))u.
What we just described is the basis of the Chebyshev filter in [30] and [33] for the

large scale symmetric/Hermitian eigenvalue problem. But it is not difficult to notice
that the idea can be applied to diagonalize matrices with real spectra. The following
lemma [2] establishes some theoretical results, which show that Eq. (1.2) may be
transformed into eigenvalue problems with real spectra. Therefore we can achieve
acceleration by constructing appropriate Chebyshev filters.

Lemma 2.1 The following statements hold true for any matrices M and K in Cn×n,
where M is positive definite and K is Hermitian.

(a) There exists a nonsingular Y = [y1, y2, . . . , yn] ∈ C
n×n such that

K = Y�2YH, M = XXH, (2.5)

where � = diag(λ1, λ2, . . . , λn), λ21≤ λ22 ≤ · · · ≤ λ2n and X = Y−H =
[x1, x2, . . . , xn].

(b)
[
λiy

H
i , xH

i

]H
is an eigenvector corresponding to λi of the matrix H ,

H

[
λiyi

xi

]
= λi

[
λiyi

xi

]
. (2.6)

1In fact, a result due to Chebyshev himself says that if p(t) is a polynomial of degree no greater than m

and |p(t)| ≤ 1 for −1 ≤ t ≤ 1, then |p(t)| ≤ |Tm(t)| for any t outside [−1, 1] [6, p.65].
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(c) Let (λi, zi) (i = 1, 2) be two eigenpairs of H , and partition zi = [
yH
i , xH

i

]H
.

Then,

(i) if λ1 �= λ̄2, then yH
1 x2 + yH

2 x1 = 0.
(ii) if λ1 �= ±λ2, then yH

1 x2 = yH
2 x1 = 0.

(d) Both KM and MK are diagonalizable. In fact,

KM = Y�2Y−1, MK = X�2X−1.

HereM is assumed to be positive definite. If in additionK is positive semi-definite
or definite, then λ21 ≥ 0 and thus we can make all λi ≥ 0. In this case the eigenvalues
of H are all real ±λi ,

− λn ≤ · · · ≤ −λ2 ≤ −λ1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. (2.7)

When K is indefinite, the first few λ2i may be negative. To define λi unique,
we take λi to be the unique square root of λ2i with nonnegative imaginary part.
Lemma 2.1 was proved for K being positive definite [2], but the proof carries over
for indefinite K with only minor changes.

Often in LREP (1.2), both K and M are definite and the first k smallest positive
eigenvalues λi for i = 1, 2, . . . , k are of interest. They lie in the middle of the spec-
trum of H , a region to which a straightforward application of the scaled Tm(φ(t))

often does not work well. This causes problems for applying Chebyshev filters.
Fortunately, we can apply the squaring technique, noticing that the square of these
eigenvalues are all real and lie in the left end of the spectrum of KM or MK . More-
over, KM and MK are diagonalizable by Lemma 2.1(d). In what follows, we restrict
discussions on constructing Chebyshev filters for KM . Any development after minor
modifications will work for MK as well.

Let v ∈ C
n. It can be expressed in the basis {yi}ni=1 as

v = η1y1 + η2y2 + · · · + ηnyn.

Suppose that we have three scalars α0 < α < β such that

λ2i ∈ [α0, β] for i = 1, 2, . . . , n, with λ2k < α and λ2k+1 ≥ α. (2.8)

In practice, initially α0, α, and β are likely only rough estimates and may violate
(2.8), but they can be refined adaptively to satisfy (2.8) in the end. To amplify the
components of v in yi for i = 1, 2, . . . , k and to suppress those in yi for i ≥ k + 1,
we compute

Tm(φ(KM))v = η1Tm(φ(λ21))y1 + η2Tm(φ(λ22))y2 + · · · + ηnTm(φ(λ2n))yn.

Making |Tm(φ(λ2i ))| ≤ 1 for i > k + 1 while |Tm(φ(λ2i ))| for i = 1, 2, . . . , k are
(potentially much) larger than 1, Tm(φ(KM)) serves the purpose of filtering out the
unwanted eigen-directions in v.

The same filtering idea works when v is replaced by a “block of vectors” V ∈
C

n×	 with a full column rank. Let

pm(t) = Tm(φ(t))

Tm(φ(α0))
, σi = Ti−1(φ(α0))

Ti (φ(α0))
.
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It can be verified that

σ1 = ω/(α0 − γ ),

σi =
(

2

σ1
− σi−1

)−1

for i = 2, 3, . . . ,

where γ = α+β
2 and ω = β−α

2 . The scaled Chebyshev polynomials are defined by

p0(t) = 1, p1(t) = (t − γ )σ1/ω,

pi(t) = 2σi
t−γ
ω

pi−1(t) − σi−1σi pi−2(t) for i = 2, 3, . . . .

Algorithm 2.1 displays the pseudo-code that implements the block version of the
scaled Chebyshev filter for KM . It computes Vnew = pm(KM)V . The parameter α0
in Algorithm 2.1 is mainly used for the purpose of scaling, and hence a crude esti-
mate α0 is usually sufficient. The lower bound α of unwanted eigenvalue interval
can be estimated and refined during an iterative process of a subspace method with
minimal or no extra computational cost. The upper bound β of eig(KM) needs to
be supplied at the beginning. Though β can be bounded by ‖K‖‖M‖ for any con-
sistent matrix norm, it is often too large to make the filtering effective. In Section 3,
we present a (much) tighter bound by constructing an estimator using the Lanczos
biorthogonalization procedure.

2.2 The main algorithm

Let Vnew = pm(KM)V be the output of the Chebyshev filter in Algorithm 2.1.
Naturally the filtered columns Vnew span an approximate invariant subspace of KM .
Due to the equivalence of the eigenvalue problems (1.2) and (1.4a), the column space
of Vnew approximates the subspace spanned by the y-components of the eigenvectors
of H associated with the designed eigenvalues λi , i = 1, 2, . . . , k. To obtain the
subspace spanned by the y-components, we can apply a Chebyshev filter on MK to
get Unew = pm(MK)U , the filtered columns in Unew span an approximate invariant
subspace of MK , which also correspond to λi , i = 1, 2, . . . , k. This works, but it
introduces unnecessary cost. We can utilize the following lemma for a more cost
effective method.

Lemma 2.2 Let Z be an invariant subspace of H and let Z =
[

V

U

]
be the basis

matrix of Z with both V and U having n rows, then span(MV ) = span(U).
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Lemma 2.2 follows from the structure of H . It suggests that if the columns of V

span the y-component of an approximate invariant subspace of H , then the columns
of U := MV should span the x-component of the same approximate invariant
subspace. There are at least two advantages for computing U this way. First, it is eco-
nomical because MV has to be computed in the later projection phase, and second,
W := V HU = V HMV is guaranteed to be symmetric positive definite (SPD). This
SPD property is important in the later projection phase.

Now that we have {span(V ), span(U)} as a pair of approximate deflating sub-
spaces of {K, M}, by [2], the best approximations to the first λi for i = 1, 2, . . . , k
within the pair of approximate deflating subspaces are the eigenvalues of 2

HSR =
[
0 W−H

1 UHKUW−1
1

W−H
2 V HMV W−1

2 0

]
, (2.9)

where W1 and W2 are two nonsingular factors of W as in W = WH
1 W2. This reduced

HSR is closely related to the so-called Rayleigh quotient pair introduced in [29]. By
[2, Theorem 2.9], we know that how W is factorized does not affect eventual approx-
imations to the eigenvalues and the corresponding eigenvectors of H . Therefore we
may take W1 = W2 = R, where W = RHR is its Cholesky decomposition. As a
consequence.

HSR =
[
0 G

I 0

]
, where G = W−H

1 UHKUW−1
1 . (2.10)

Furthermore, if (μ2, q) is an eigenpair of G, then (μ,

[
μq

q

]
) is an eigenpair of

HSR by Lemma 2.1(b). Therefore a corresponding approximate eigenpair of H can
be taken as [2]

(
μ,

[
μV R−1q

UR−1q

] )
. (2.11)

Algorithm 2.2 presents a piece of pseudo-code for a block Chebyshev-Davidson
type method to compute the first nwant eigenpairs of LREP. In the algorithm, we apply
the Chebyshev filter in Algorithm 2.1 to expand subspaces and seek the best approxi-
mate eigenpairs of H by computing the eigenpairs of the small size-2k matrix HSR as
in Eq. (2.10). For convenience, we identify this algorithm by BChebyDLR(	), where
	 is the block size. We prefer this block version because usually block type meth-
ods with relatively small block sizes are more competitive than non-block versions,
especially when the desired eigenvalues have clusters or even multiples.

2This is only true if K is at least positive semi-definite. But later we show numerically that the eigenvalues
of HSR still provide very good approximations to λi for i = 1, 2, . . . , k even when K is indefinite.
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A few remarks regarding Algorithm 2.2 are in order:

1. In our MATLAB implementation, initially we set V0 to a random n × 	 matrix,
e.g., as generated by MATLAB’s randn, for simplicity. But if a better V0 is
known, we should use it.

2. Initially k = s, and then k = s + nc if some of the wanted Ritz pairs have
converged, where nc is the number of converged Ritz pairs (2.11). Converged
Uq and V q are stored in the first nc columns of U and V , respectively.

3. According to Lemma 2.1(c), deflations are done by orthogonalizing the newly
generated block Ṽ against U(:,1:nc) and Ũ against V(:,1:nc). However, in Algo-
rithm 2.2 the orthogonality between the columns of Ũ and those of V(:,1:nc) is
implied due to orthogonalization at step 2, according to Theorem 2.1 below.

4. Algorithm 3.2 in the next section provides an initial crude estimate of α, i.e., low
bound of unwanted eigenvalues of KM , and the parameter α0 for scaling. We
will discuss this estimator in detail later. These estimates α0 and α are updated at
step 14, where median(diag(
)) is the MATLAB built-in function to return the
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median value of the elements in the vector diag(
). Another choice for updating
α was discussed in [30].

5. The estimated β by Algorithm 3.2 is a strict upper bound under a condition as
listed in (3.2). But this condition is not easy to verify without expensive com-
putations. When it is not satisfied, it is possible that the bound β returned from
Algorithm 3.2 may be an underestimate, which can make the filter ineffective if
the upper bound is not updated. In the numerical examples presented in Section 4
and many others we tried, β by Algorithm 3.2 is indeed a strict upper bound.
However, to make the code robust, we need a way to address the case that β hap-
pens to be an underestimate. Fortunately this can be easily done by an adaptive
strategy, as discussed at the end of Section 3. This adaptive strategy is applied in
the numerical tests in Section 4.

6. At step 10, the convergence of a Ritz pair (ρi, ẑi) is tested by checking if its
relative residual norm

‖Hẑi − ρi ẑi‖1
(‖H‖1 + |ρi |)‖ẑi‖1 ≤ tol, (2.12)

where tol is a pre-set tolerance. At the same time, the swap procedure is to
keep the converged Ritz values in the ascending order to make sure no wanted
eigenvalues are missed. If K is indefinite, then pure imaginary Ritz values will
appear. In this case, we sort them by the ascending order of their squares. Once
we have new converged Ritz values, a purging procedure is used to remove the
associated columns of E as well as the diagonal elements of G. This is simply
done at step 12.

Computationally, the matrix spectral norm ‖ · ‖2 is considerably more difficult to
compute that the 	1 matrix-operator norm ‖ · ‖1. It is this consideration that leads us
to use the 	1 vector and matrix norm ‖ · ‖1 in Eq. (2.12). Theoretically, the 	2 vector
and matrix-operator norm ‖ · ‖2 are probably more preferable.

Theorem 2.1 Let U , V be two n × k matrices generated by Algorithm 2.2. Then
V HU = V HMV = Ik .

Proof To distinguish the two U ’s and V ’s, we rewrite the assignments at step 4 as
U = [Uold, Û ] and V = [Vold, V̂ ]. During the first sweep of the while loop, V HU =
I	 at step 4 because of how Û and V̂ are defined at step 3. Therefore V H

oldUold = I
k̃

is ensured from the previous sweep, where k̃ = k − 	. Since V̂ HÛ = I	 (because of
step 3), and V̂ HUold = 0 (because of step 2 and step 3), we have

V H
oldÛ = V H

oldMV̂ = V H
oldM

HV̂ = UH
oldV̂ = 0,

and therefore

V HU =
[

V H
oldUold V H

oldÛ

V̂ HUold V̂ HÛ

]
= Ik,

as expected.
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The eigenpairs of HSR in Eq. (2.10) are obtained by computing the eigenpairs of
G, where G at every step takes the following form:

This form is preserved in the algorithm when refining the basis matrices U and V

at step 8. The new basis matrices UQ and V Q are reassigned to U and V . Refine-
ment of basis matrices usually is applied in the thick restart method [12, 28] when the
dimension of subspace exceeds the pre-set maximum dimension. Here, we refine the
basis matrices U and V at every step. Although extra costs are incurred, eigenvectors
often converge in fewer iterations [18, 22, 33]. Furthermore, the restart is easily exe-
cuted by resetting the integers s and k when the size of G exceeds smax. The restart
at step 7 is to keep the size of U and G under control. There are many ways to spec-
ify smax and skeep. In our numerical examples, we simply choose smax = 2nwant and
skeep = nwant.

2.3 Convergence analysis for λ1

A convergence analysis of the Chebyshev-Davidson method for the Hermitian eigen-
value problem was given in [30, 33]. Here, we analyze the convergence rate of
Algorithm 2.2 per iteration step. Using the technique in [14] for estimating the accu-
racy of the smallest Ritz eigenvalue, we obtain an estimate in Theorem 2.2 below. In
fact, Theorem 2.2 after minor modifications also holds for the Chebyshev-Davidson
method for the Hermitian eigenvalue problem.

Suppose

[
v

u

]
is an approximate eigenvector corresponding to the first eigenvalue

λ1 of H , where u = Mv. We define

ρ(u, v) = uHKu

uHv
.

Basing on the claim we made about the eigenvalues of Eq. (2.9) there, we can
show that

√
ρ(u, v) is the best approximation of λ1 within the pair {u, v}. For proving

Theorem 2.2, we need the following lemma that says ρ(u, v) is an upper bound for
the smallest Ritz value from {span(U), span(V )}.

Lemma 2.3 Let U ∈ C
n×k , V ∈ C

n×k and ρi for 1 ≤ i ≤ k be computed in
Algorithm 2.2, and let u ∈ span(U), v ∈ span(V ), u = Mv and μ2 = min

1≤i≤k
ρ2

i . Then

ρ(u, v) ≥ μ2.
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Proof As we know in Algorithm 2.2, ρ2
i = 
(i,i) for 1 ≤ i ≤ k, where the diagonal

elements of 
 are the eigenvalues of G. Let v = V ṽ, where ṽ ∈ C
k . We have,

μ2 = min
1≤i≤k

ρ2
i = min

g∈Ck

gHGg

gHg
= min

g∈Ck

gHV HMKMVg

gHg
,

ρ(u, v) = uHKu
uHv

= vHMKMv
vHMv

= ṽHV HMKMV ṽ
ṽHV HMV ṽ

= ṽHV HMKMV ṽ
ṽHṽ

.

The last equality holds because of V HMV = Ik by Theorem 2.1. Hence,
ρ(u, v) ≥ μ2.

Theorem 2.2 Let (μj ,

[
vj

uj

]
) be from the j -th iteration of Algorithm 2.2, which is

the j -th approximation of the exact eigenvalue λ1 and eigenvector z1 =
[

λ1y1
x1

]
,

where y1 and x1 are defined by Eq. (2.6). Let αj+1 and βj+1 be the parameters α

and β used in the (j +1)-st Chebyshev filter step, and m the degree of the Chebyshev
polynomial. Define φ(t), similarly to Eq. (2.3), as

φ(t) = 2t − (αj+1 + βj+1)

βj+1 − αj+1
.

Then
μ2

j+1 − λ21

μ2
j − λ21

≤
(
1 − ξ

1 + ξ

)2

+ O(δ2j ), (2.13)

where

ξ = Tm(φ(λ21)) − Tm(φ(λ2
))
Tm(φ(λ21)) − Tm(φ(λ2∗))

with

Tm(φ(λ2∗)) = min
i �=1

Tm(φ(λ2i )), Tm(φ(λ2
)) = max
i �=1

Tm(φ(λ2i )),

and δj → 0, where δj = sin∠M(vj , y1) is the sine of the angle between vj to y1 in
the M-inner product.

Proof Using the same notations as before, we know KM = Y�2XH with Y =
[y1, y2, . . . , yn], X = [x1, x2, . . . , xn], and

vj = μjV q1, uj = Uq1, (2.14)

where q1 is the eigenvector of G corresponding to μj and ‖q1‖2 = 1.
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Let ‖ · ‖M denote the norm induced by the M-inner product. Since My1 = x1 and
yH
1 x1 = 1, we have ‖y1‖M = 1. Set

ṽj = vj

‖vj‖M

= μjV q1

μj

= V q1.

Then ṽj has the decomposition ṽj = γjy1 + δj sj , where sj ∈ span{y2, . . . , yn},
‖sj‖M = 1 and γ 2

j + δ2j = 1. As stated in [30, 33], δj → 0 at least as fast as by the
power method.

By Eq. (2.14), we have uj = Mṽj = γjMy1 + δjMsj , and it is not hard to see
that yH

1 MKMsj = 0 and yH
1 Msj = 0. Therefore,

μ2
j = qH

1 Gq1 = uHj Kuj

= (γjMy1 + δjMsj )
HK(γjMy1 + δjMsj )

= (γjMy1 + δjMsj )
H(λ21γjy1 + δjKMsj )

= γ 2
j λ21 + δ2j s

H
j MKMsj

= λ21 + δ2j (s
H
j MKMsj − λ21). (2.15)

Let v̂j+1 be a linear combination of ṽj and Tm(φ(KM))ṽj , i.e., v̂j+1 = ṽj −
τTm(φ(KM))ṽj for some scalar τ , and let ûj+1 = Mv̂j+1. Then

v̂j+1 = γj [1 − τTm(φ(λ21)))]y1 + δj [I − τTm(φ(KM))]sj ,
ûj+1 = γj [1 − τTm(φ(λ21))]My1 + δjM[I − τTm(φ(KM))]sj .

The best approximation of λ1 within the pair {ûj+1, v̂j+1} is
√

ρ(ûj+1, v̂j+1).
Substituting t1 = 1 − τTm(φ(λ21)) and T̃ = I − τTm(φ(KM)) in ρ(ûj+1, v̂j+1),
we get

ρ(ûj+1, v̂j+1) = ûHj+1Kûj+1

ûHj+1v̂j+1

= γ 2
j t21λ21 + δ2j s

H
j T̃ HMKMT̃ sj

γ 2
j t21 + δ2j s

H
j T̃ HMT̃ sj

= λ21 + δ2j s
H
j T̃ H(MKM − λ21M)T̃ sj

γ 2
j t21 + δ2j s

H
j T̃ HMT̃ sj

= λ21 + (δ2j /t
2
1 )sHj T̃ H(MKM − λ21M)T̃ sj

1 + (δ2j /t
2
1 )(sHj T̃ HMT̃ sj − t21 )

= λ21 + (δ2j /t
2
1 )sHj T̃ H(MKM − λ21M)T̃ sj + O(δ4j ).

Let μj+1 be the (j + 1)-st approximation of λ1 computed by Algorithm 2.2. Then
by Lemma 2.3, we have μ2

j+1 ≤ ρ(ûj+1, v̂j+1). Set

T̂ = I − τTm(φ(�2)), t2τ = max
i �=1

[
1 − τTm(φ(λ2i ))

]2
.
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We have

μ2
j+1 − λ21 ≤ ρ(ûj+1, v̂j+1) − λ21

= (δ2j /t
2
1 )sHj T̃ H(MKM − λ21M)T̃ sj + O(δ4j )

= (δ2j /t
2
1 )sHj XT̂ (�2 − λ21I )T̂ XHsj + O(δ4j )

= (δ2j /t
2
1 )sHj X(�2 − λ21I )

1
2 T̂ T̂ (�2 − λ21I )

1
2 XHsj + O(δ4j )

≤ (t2τ /t21 )δ2j s
H
j X(�2 − λ21I )

1
2 (�2 − λ21I )

1
2 XHsj + O(δ4j )

= (t2τ /t21 )δ2j s
H
j (MKM − λ21M)sj + O(δ4j ) (by Eq. 2.15)

= (t2τ /t21 )(μ2
j − λ21) + O(δ4j ).

Therefore, by Eq. (2.15), we have μ2
j − λ21 = O(δ2j ) and

μ2
j+1 − λ21

μ2
j − λ21

≤ min
τ

t2τ

t21

+ O(δ2j ).

From the definition of tτ , we know that

t2τ = max

{[
1 − τTm(φ(λ2
))

]2
,
[
1 − τTm(φ(λ2∗))

]2}
,

where Tm(φ(λ2∗)) = min
i �=1

Tm(φ(λ2i )) and Tm(φ(λ2
)) = max
i �=1

Tm(φ(λ2i )).

We first consider the case where Tm(φ(λ2
)) + Tm(φ(λ2∗)) ≥ 0. Under this
additional condition,

t2τ =
{ [

1 − τTm(φ(λ2
))
]2

, for τ ≥ 2
/[Tm(φ(λ2
)) + Tm(φ(λ2∗))] or τ ≤ 0,[

1 − τTm(φ(λ2∗))
]2

, for 0 ≤ τ ≤ 2
/[Tm(φ(λ2
)) + Tm(φ(λ2∗))].

For 0 ≤ τ ≤ 2
/[Tm(φ(λ2
)) + Tm(φ(λ2∗))] ,

d(tτ /t1)
2

dτ
= 2

[
Tm(φ(λ21)) − Tm(φ(λ2∗))

] [
τTm(φ(λ21)) − 1

] [
τTm(φ(λ2∗)) − 1

]
[
1 − τTm(φ(λ21))

]4 .

Therefore, if Tm(φ(λ21)) > 0, then
⎧⎪⎨
⎪⎩

d(tτ /t1)
2

dτ
≥ 0, for 0 ≤ τ ≤ 1

/[Tm(φ(λ21))],
d(tτ /t1)

2

dτ
≤ 0, for 1

/[Tm(φ(λ21))] ≤ τ ≤ 2
/[Tm(φ(λ2
)) + Tm(φ(λ2∗))].

Meanwhile, for τ ≥ 2
/[Tm(φ(λ2
)) + Tm(φ(λ2∗))] or τ ≤ 0, it is not hard to prove

⎧⎪⎨
⎪⎩

d(tτ /t1)
2

dτ
≥ 0, for τ ≤ 0,

d(tτ /t1)
2

dτ
≥ 0, for τ ≥ 2

/[Tm(φ(λ2
)) + Tm(φ(λ2∗))].
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When Tm(φ(λ21)) < 0, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(tτ /t1)
2

dτ
≤ 0, for 0 ≤ τ ≤ 2

/[Tm(φ(λ2
)) + Tm(φ(λ2∗))],
d(tτ /t1)

2

dτ
≤ 0, for 1

/
Tm(φ(λ21))] ≤ τ ≤ 0,

d(tτ /t1)
2

dτ
≥ 0, for τ ≤ 1

/
Tm(φ(λ21))],

d(tτ /t1)
2

dτ
≥ 0, for τ ≥ 2

/[Tm(φ(λ2
)) + Tm(φ(λ2∗))].

Therefore

min
τ

t2τ

t21

=
(
1 − 2

Tm(φ(λ2
))+Tm(φ(λ2∗))
Tm(φ(λ2
))

)2
(
1 − 2

Tm(φ(λ2
))+Tm(φ(λ2∗))
Tm(φ(λ21))

)2

=
(
Tm(φ(λ2
)) − Tm(φ(λ2∗))

)2
(
Tm(φ(λ2
)) + Tm(φ(λ2∗)) − 2Tm(φ(λ21))

)2

=
(
1 − ξ

1 + ξ

)2

,

where ξ = [Tm(φ(λ21)) − Tm(φ(λ2
))]
/[Tm(φ(λ21)) − Tm(φ(λ2∗))].

The remaining case where Tm(φ(λ2
)) + Tm(φ(λ2∗)) ≤ 0 can be addressed in a
similar way to derive the same result.

Once the convergence rate for λ1 is established, according to the remark 3 for
Algorithm 2.2, the convergence analysis for other eigenvalues λ2, · · · , λk can be
addressed using the argument of deflation. For example, with a similar argument, the
convergence rate formula for λ2 can be gotten as

μ2
j+1 − λ22

μ2
j − λ22

≤
(
1 − ξ

1 + ξ

)2

+ O(δ2j ), (2.16)

where

ξ = Tm(φ(λ22)) − Tm(φ(λ2
))
Tm(φ(λ22)) − Tm(φ(λ2∗))

with

Tm(φ(λ2∗)) = min
i �=1,2

Tm(φ(λ2i )), Tm(φ(λ2
)) = max
i �=1,2

Tm(φ(λ2i )),

and δj = sin∠M(vj , y2).
Similar convergence estimate appears in the constant-shift stationary Richardson

method for computing the largest eigenvalue of generalized eigenvalue problems
[10]. More convergence estimates for the generalized Davidson method can be found
in [15, 16].
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3 Upper bound for eig(KM)

Theoretically, ‖K‖1‖M‖1 and ‖K‖∞‖M‖∞ are upper bounds of λ2 and they are
easily computable, where λ is an eigenvalue of H , but they are usually too large for
the Chebyshev filter to be effective. A sharper upper bound is needed. The k-step
Lanczos method for computing a sharp upper bound of the spectrum of a symmetric
matrix is proposed in [32]. In this section, we propose a similar technique to compute
an upper bound of the spectrum of KM .

Lemma 3.1 ([5, Theorem 1]) Let 
 be an n × n real diagonal matrix, D a k × k

diagonal matrix with diagonal elements d1 ≤ d2 ≤ · · · ≤ dk , and let Q be an
n × k matrix having full column rank, where 1 ≤ k ≤ n. Then there exist k diagonal
elements μi1 ≤ μi2 ≤ · · · ≤ μik of 
 such that

‖
Q − QD‖2 ≥ max
1≤j≤k

|dj − μij |σmin(Q),

where σmin(Q) is the smallest singular value of Q.

To state the next theorem, we introduce, in addition to the notations in Lemma 2.1,
λi(KM) for 1 ≤ i ≤ n for the eigenvalues of KM in the ascending order, and

λmax(KM) := max
i

λi(KM) = λn(KM) = λ2n.

Theorem 3.1 Let U and V be two n × k matrices with full column rank, HK =
UHKU , and HM = V HMV , where 1 ≤ k ≤ n, and let θ1 ≤ θ2 ≤ · · · ≤ θk be the
eigenvalues of HKHM . Then there exist k eigenvalues λ2i1

≤ λ2i2
≤ · · · ≤ λ2ik

of KM

such that

max
1≤j≤k

|θj − λ2ij | ≤
√

‖M‖2‖H−1
M ‖2 ‖KMV − V HKHM‖2 (3.1a)

≤
√

‖M‖1‖H−1
M ‖1 ‖KMV − V HKHM‖2. (3.1b)

If, in addition,

|λmax(KM) − λmax(HKHM)| = min
1≤i≤n

|λi(KM) − λmax(HKHM)| , (3.2)

where λmax(HKHM) = θk =: θmax, then

λ2n ≤ θmax +
√

‖M‖2‖H−1
M ‖2 ‖KMV − V HKHM‖2 (3.3a)

≤ θmax +
√

‖M‖1‖H−1
M ‖1 ‖KMV − V HKHM‖2. (3.3b)

Proof The inequalities in Eq. (3.3) are consequences of Eq. (3.1) by Eq. (3.2).
So we will prove (3.1) only. By Lemma 2.1(a), we have K = Y�2YH,
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M = XXH, HK = Ỹ�ỸH, and HM = X̃X̃H, where � = diag(θ1, θ2, . . . , θk). We
have

‖KMV − V HKHM‖2 = ‖Y�2XHV − V HKHM‖2
= ‖Y (�2XHV − XHV HKHM)‖2
= ‖Y (�2XHV Ỹ − XHV Ỹ�)X̃H‖2
≥ ‖�2XHV Ỹ − XHV Ỹ�‖2

‖XH‖2‖Ỹ‖2
.

According to Lemma 3.1, there exist λ2i1 ≤ λ2i2
≤ · · · ≤ λ2ik

such that

‖�2XHV Ỹ − XHV Ỹ�‖2 ≥ σmin
(
XHV Ỹ

)
max
1≤j≤k

|θj − λ2ij | = max
1≤j≤k

|θj − λ2ij |.

The last equality holds because of σmin
(
XHV Ỹ

) =
√

λmin
(
ỸHV HXXHV Ỹ

) = 1.
Therefore

‖KMV − V HKHM‖2 ≥ 1

‖XH‖2‖Ỹ‖2
max
1≤j≤k

|θj − λ2ij |.
Now use

‖XH‖2 = √‖M‖2 ≤ √‖M‖1, ‖Ỹ‖2 =
√

‖H−1
M ‖2 ≤

√
‖H−1

M ‖1
to conclude the proof of Eq. (3.1).

The inequality (3.3) provides upper bounds on λ2n. If the eigenvector associated
with θmax is also available, we have the following theorem for an improved bound.

Theorem 3.2 Under the conditions of Theorem 3.1, including (3.2). Let w be an
eigenvector corresponding to the largest eigenvalue θmax of HKHM , normalized such
that wHHMw = 1. Then

λ2n ≤ θmax + √‖M‖2 ‖KMV w − V HKHMw‖2 (3.4a)

≤ θmax + √‖M‖1 ‖KMV w − V HKHMw‖2. (3.4b)

Proof We have

‖KMV w − V HKHMw‖2 = ‖KMV w − θmaxV w‖2
= ‖Y�2XHV w − θmaxV w‖2
= ‖Y (�2 − θmaxIn)X

HV w‖2
≥ ‖(�2 − θmaxIn)X

HV w‖2
‖XH‖2

≥ |wHV HXXHV w|1/2
‖XH‖2 |λ2n − θmax| (by Eq. 3.2)

≥ |wHV HMV w|1/2
‖XH‖2 |λ2n − θmax|.
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Now use ‖XH‖2 = √‖M‖2 ≤ √‖M‖1 to conclude the proof.

The bounds (3.4) can be significantly simplified if the following Lanczos biorthog-
onalization procedure [23, subsection 3.1] is applied to compute θmax. Suppose that
Algorithm 3.1 successfully runs to its completion, i.e., bi �= 0 for all i. Denote
Uk = [u1, u2, . . . , uk], Vk = [v1, v2, . . . , vk], and

Tk =

⎡
⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

. . .
. . .

. . .

bk−2 ak−1 bk−1
bk−1 ak

⎤
⎥⎥⎥⎥⎥⎦

. (3.5)

Then
KUk = VkTk + bkvk+1e

T
k , MVk = Uk,

and also UH
k Vk = Ik , UH

k KUk = Tk , and V H
k MVk = Ik .

Corollary 3.1 In Algorithm 3.1, let Tkw = θmaxw, ‖w‖2 = 1, where θmax is the
largest eigenvalue of Tk . If Eq. (3.2) holds, then

λ2n ≤ θmax + √‖M‖2 ‖bk

(
eTk w

)
vk+1‖2 (3.6a)

≤ θmax + √‖M‖1 ‖bk

(
eTk w

)
vk+1‖2. (3.6b)

With these preparations, we propose Algorithm 3.2 to compute an upper bound for
eig(KM). To test the effectiveness of Algorithm 3.2, we compose 6 test problems,
listed as TEST 1 to TEST 6 in Table 1. The K- and M-matrices of TEST 1 to TEST 3
come from the linear response analysis for Na2, Na4, and silane (SiH4) compound,
respectively. These matrices are generated by the turboTDDFT code in QUAN-
TUMESPRESSO— an electronic structure calculation code that implements density
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Table 1 Test problems

Problem TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 TEST 6

n 1862 2834 5660 5832 5743 74752

K Na2 Na4 SiH4 Na5 SiNa SiO2

M Na2 Na4 SiH4 fv1 fv2 finan512

functional theory (DFT) using plane-waves as the basis set and pseudopotentials [9].
For Na2, Na4 and SiH4, the matrices K and M are symmetric positive definite.
TEST 4 to TEST 6, artificially constructed, consist of matrices from the University
of Florida Sparse Matrix Collection [7] to give K and M . In the case when the two
matrices from the collection have different dimensions, we extract out the leading
principal submatrix of the larger one to give K and M of equal size. For TEST 4 and
TEST 6, the M-matrices are SPD, but the K-matrices are indefinite.

We apply the built-in function eigs of MATLAB with default tolerance tol =
2.22 × 10−16 to compute the largest eigenvalue λn of associated H to the “exact”
eigenvalue bound λ2n. These test problems are also used in the next section to test
BChebyDLR(	) (Algorithm 2.2).

Figure 1 plots the upper bounds by Algorithm 3.2 as kp varies for the six tests,
where the red dotted lines are for the “exact” λ2n, and the blue solid lines are the upper
bounds by Algorithm 3.2. It demonstrates that Algorithm 3.2 is rather efficient and
produces a fairly tight upper bound on λ2n in a few Lanczos steps, such as within 10
steps.

The inequality (3.6b) is proved under the condition of Eq. (3.2) which, neverthe-
less, may fail for the first few Lanczos steps. When it does, it may underestimate λ2n
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Fig. 1 Behavior of the upper bound estimator. The red dotted lines are for the “exact” λ2n, and the blue
solid lines are the upper bounds by Algorithm 3.2
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as shown in Fig. 1. In practice such an underestimation does not cause any problem
and can be overcome by using an adaptive strategy within Algorithm 2.2 to update
the upper bound. Let ρmax be the largest eigenvalue of G in Algorithm 2.2. For any
nonzero g ∈ C

k , where k is the dimension of G, we have

ρmax = max
g∈Ck

gHGg

gHg
= max

g∈Ck

gHV HMKMVg

gHg

= max
g∈Ck

gHV HX�2XHVg

gHg
(by Eq. 2.5)

≤ λ2n max
g∈Ck

gHV HXXHVg

gHg

= λ2n. (3.7)

Let β be computed by Algorithm 3.2. Then by the sign of β − ρmax, we find
whether we need to update the upper bound. Namely, if ρmax > β, then we update
β as β = ρmax. We demonstrate by numerical examples in the next section that this
adaptive strategy upon integrating into BChebyDLR works very well.

4 Numerical results

We present some numerical results of Algorithm 2.2, denoted by BChebyDLR(	), to
compute the first nwant eigenpairs. Recall that the first few λi may be purely imagi-
nary if K is indefinite. A computed eigenpair (ρ, ẑ) is considered as converged when
its relative residual norm is below a user specified tol, which by default is set to
10−8, i.e.,

‖Hẑ − ρẑ‖1
(‖H‖1 + |ρ|)‖ẑ‖1 ≤ tol = 10−8.

The test matrices are TEST 1 to TEST 6 in Table 1. TEST 1 to TEST 3 are real
LREPs from physics, and for the technical reason, the K- and M-matrices are dense
and symmetric positive definite, whereas the matrices of TEST 4 to TEST 6 are sparse
and symmetric with K-matrices being indefinite and M-matrices still being positive
definite. We use these matrices to show the effectiveness of our proposed algorithm
for eigenproblems of form (1.2), and this form includes LREP as a special case.

In all tests, we start with V0 = randn(n, 	), where 	 is the block size. The
parameters nwant and the Chebyshev filter degree m are to be specified. The upper
bound β is obtained by Algorithm 3.2 with kp = 10, and smax = 2nwant when
nwant < 100. But we use smax ≤ ceil(1.5nwant) when nwant ≥ 100. For restart, we
use skeep = nwant.

The hardware used for the numerical computations is a laptop with 8G memory,
the CPU type is Intel core i5-3210M a© 2.50GHz. We use MATLAB version 8.5
(R2015a).

Example 4.1 We first test BChebyDLR(	) on the three problems from the linear
response analysis for Na2, Na4 and SiH4, i.e., TEST 1 to TEST 3. Since bothK andM
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are positive definitive for these problems, we can compare BChebyDLR(	)with the
locally optimal block preconditioned 4-D CG method (LOBP4DCG) and the locally
optimal block 4-D CG method (LOB4DCG) in [3].

For the LOBP4DCG method, we use the generic preconditioner

� =
[
0 M−1

K−1 0

]
. (4.1)

The preconditioned search vectors qi and pi in [3] are computed by using the lin-
ear CG method [8]. Often very crude approximations of qi and pi are good enough.
In this example, the linear CG iterations are set maximal 5 iterations. It is denoted by
LOBP4DCG(5). The initial block size in LOBP4DCG(5) and LOB4DCG are chosen
to be the same as nwant. A deflation procedure is built to purge out converged eigen-
vectors. So the block size decreases as the algorithms progress. As for BChebyDLR,
converged eigenvectors are also deflated from the iteration subspace, and new basis
vectors need to be orthogonalized against the deflated eigenvectors.

We report the total number of matrix-vector products (denoted by “#mvp”), iter-
ation number (denoted by “#iter”), and CPU time in seconds for BChebyDLR,
LOB4DCG and LOBP4DCG(5) in Table 2.

We make a few comments on the two methods applied to these definite LREPs.
First, for the three tests as well as other tests not reported here, BChebyDLR(	)
appears to be close to an order of magnitude faster than LOBP4DCG. However, we
also observe that for some other problems not reported here, the LOBP4DCG can be
an order of magnitude faster than BChebyDLR(	). The main reason for this quite
drastic difference is the conditioning of the KM-matrix. This may be similar to SVD
calculations, e.g., squaring of a matrix makes the smallest singular values harder to
converge to high accuracy. Our algorithm appears to be more sensitive to the con-
ditioning of M . If M is well-conditioned, then generally BChebyDLR(	) is much
faster than LOBP4DCG; while for M that has a relatively large condition number, the
LOBP4DCG is usually much more efficient than BChebyDLR(	). Therefore, the
two methods appear to be complementary to each other. Second, the effectiveness

Table 2 The number of matrix-vector products (#mvp), number of iterations (#iter), and CPU time in
seconds for computing nwant = 180 eigenpairs. For BChebyDLR the filter degree used is m = 25, and
the block size is 	 = 15. For LOB4DCG and LOBP4DCG(5) the initial block size is nwant

BChebyDLR(	) LOB4DCG LOBP4DCG(5)

#mvp #iter CPU #mvp #iter CPU #mvp #iter CPU

TEST 1 26520 34 49.9 40040 120 201.9 48600 61 235.9

TEST 2 71760 92 223.5 63712 812 462.8 56394 239 305.4

TEST 3 37440 48 295.5 109568 233 1028.5 161658 142 2960.2

The maximum subspace dimension used for BChebyDLR is 233, while LOB4DCG and LOBP4DCG(5)
uses a subspace of maximum dimension 3nwant = 540
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of LOBP4DCG is closely related to the preconditioner used. We should note that the
generic preconditioner (4.1) is not the natural preconditioner for TEST 1 to TEST 3.
For plane wave-based calculations, it is more natural to use a proper scaled diagonal-
like preconditioner proposed in [24]. In fact, K and M are not needed explicitly in
plane wave-based calculations and they only exist in certain structural form, but K

and M in our test were output from turboTDDFT runs. In such a case, the scaled
diagonal preconditioner is lost once K and M are output explicitly as matrices. A
future work is to compare them directly in turboTDDFT runs. Third, the advantage
of BChebyDLR(	) is that it does not need to apply preconditioners to solve lin-
ear equations. However, this convenience comes with a cost, namely that the current
method is particularly effective only for the cases in which M is well-conditioned.
Further research is required to make the method also efficient for M that has a
relatively large condition number.

Example 4.2 When the K-matrix is indefinite, LOBP4DCG becomes not applicable.
Therefore we can only report numerical results of Algorithm 2.2 without any com-
parison to LOBP4DCG. Since no other iterative methods seem to exploit the special
structure of (1.2), known eigenvalue algorithms would treat (1.2) as a size 2n × 2n
standard eigenvalue problem, which is clearly an expensive thing to do. Therefore we
do not compare with any general eigensolver here either. Instead, we use this exam-
ple to demonstrate some common properties of BChebyDLR(	), such as the effect
of block sizes (see Fig. 2).

We apply BChebyDLR(	) to the matrices listed as TEST 4, TEST 5, and TEST 6
in Table 1. Since the K-matrix for each of these tests contains negative eigenvalues,
the first few eigenvalues of the simulated LREP of form (1.2) are purely imaginary.
As shown in Fig. 2, BChebyDLR(	) has no difficulty at all with the indefiniteness of
K . This is also true when we vary the polynomial degree m, as shown in part of the
next example (Fig. 3).

It is clear from Fig. 2 that the single vector version (	 = 1) is significantly slower
than its blocked counterparts (	 > 1). However, when nwant is not large, as for the
shown nwant = 90 case, using a too large block size may not lead to improved
efficiency.

Example 4.3 We report the effect of the polynomial degree m in BChebyDLR(	) on
TEST 4 and TEST 6 in Fig. 3. Results on other tests are similar thus omitted. We let m
vary from 8 to 38 with a stride length 3. All other parameters are fixed for these tests.
Figure 3 plots the total CPU time in seconds, total number of iterations (#iter), and
total number of matrix-vector products (#mvp) vs. the polynomial degree m.

As expected, the number of total iterations decreases as m increases, while the
total number of matrix-vector products does not change monotonically with m. The
figure shows that the total #mvp is not a deciding factor on total CPU time. When
m is larger, the method likely uses more #mvp, but the significantly reduced #iter
leads to smaller total CPU time. For these examples, the degree m around 25 to 35
all appear to be cost-effective; further increasing m over 40 usually does not have
as significant effect as increasing m when it is below 15. The least efficient case is
when m is too small. In comparison, the non-filtered case (m = 1), which in theory is
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Fig. 2 Cost in computing the first nwant = 90 eigenpairs of TEST 4 (top), TEST 5 (middle), and TEST 6
(bottom). The filter degree is fixed at m = 25. The block size 	 of BChebyDLR(	) varies from 1 to 28
with a stride length 3

equivalent to the Lanczos method [18, 21, 22], is significantly slower than the filtered
method with a moderate m. For the non-filtered method to be competitive in speed,
one would need to use a much larger dimensional subspace (a number usually much
greater than 2nwant), but the memory constraint can make it impractical for larger
problems.

As seen from Fig. 3, it is rather easy to choose and fix an m for the BChebyDLR
method to be cost-effective, but we mention that [1] contains an interesting idea on
adaptively updating m during the iterations.

Example 4.4 In the previous examples, we use the estimated β by Algorithm 3.2 as
an upper bound for λ2n. It works well in general. However, that β is not guaranteed
to be a true upper bound. It may be smaller than λ2n. Here we test the effectiveness
of the adaptive strategy discussed at the end of Section 3. For this experiment, we
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Fig. 3 Computing the first nwant = 100 eigenpairs of TEST 4 (top) and TEST 6 (bottom). The maximum
subspace dimension used is 130. The filter degree m varies from 8 to 38 with a stride length 3. The block
size 	 = 10 is used for all test runs

purposely begin with a β that underestimates λ2n so that it can be updated by the
adaptive strategy. We denote the resulting algorithm as a-BChebyDLR. Again we
use the test cases TEST 1 to TEST 6. We compare a-BChebyDLR and BChebyDLR
with block size 	 = 15. The upper bound β and the parameters α and α0 obtained in
Algorithm 3.2 are used in BChebyDLR. We purposely choose an initial β := βa =
λmax(Tk), where Tk is symmetric tridiagonal matrix (3.5) computed in Algorithm 3.1,
for a-BChebyDLR. This β is an underestimate, since λmax(Tk)≤ λ2n owing to
Eq. (3.7). Other parameters are fixed to be the same for both schemes. We plot the
number of iterations and matrix-vector products in Fig. 4. This figure shows that
even with an initial filter upper bound that underestimate the largest eigenvalue,
one can readily make BChebyDLR work properly, as demonstrated by the result of
a-BChebyDLR. The main trick is to simply update the filter upper bound to be the
largest Ritz value ρmax (as defined in Eq. (3.7)), when it is found that ρmax > β.

An interesting feature of BChebyDLR is that the total iteration number #iter
can be much smaller than the number of computed eigenpairs nwant, as seen in Table 2
and Figs. 2 and 3. This means that BChebyDLR, with suitable block size 	 and degree
m, can converge more than one eigenpair within one single iteration step. Similar
effects of m and 	 using Chebyshev filters for different applications from LREP were
also observed in [31]. The high efficiency of Chebyshev filters, as constructed in [33,
34] and also here, has attracted attention and contributed to wide spread usage of
Chebyshev filter based methods, e.g., in [4, 11, 13], for large-scale DFT calculations.
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Fig. 4 Comparison of the number of iterations and the number of matrix-vector products by BChebyDLR
and a-BChebyDLR (which employs the adaptive strategy), using the same block size 	 = 15 and the
same polynomial degree m = 25 to compute the first nwant = 180 eigenpairs. The performances by both
are comparable

5 Conclusion

We propose a Chebyshev-Davidson method BChebyDLR for solving the linear
response eigenvalue problem (LREP). This method can effectively calculate the
smallest positive eigenvalues and associated eigenvectors of LREP. In Theorem 2.2
we provide a convergence rate estimate for computing the smallest eigenvalue.

Numerical examples demonstrate that BChebyDLR is competitive to the recently
proposed LOBP4DCG method [2]. BChebyDLR needs an upper bound that is no
smaller than the largest λ2n in order to be effective. Although the bound computed by
Algorithm 3.2 usually works well, it needs conditions as specified in Theorem 3.1 to
guarantee a strict upper bound. These conditions are non-trivial to verify by computa-
tion. We propose a simple adaptive strategy that can obtain an effective upper bound
during the later filtering steps in BChebyDLR if the bound from Algorithm 3.2 is an
underestimate of λ2n for the first filtering step.

We emphasize that the proposed BChebyDLR works for both the definite (both
K and M are positive definite) and indefinite (one of K and M is indefinite) cases
(see Example 4.2), while in contrast LOBP4DCG is applicable only to the definite
LREP.
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