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Abstract—Wepropose an efficient algorithm for solving orthogonal canonical correlation analysis (OCCA) in the form of trace-fractional

structure and orthogonal linear projections. Even though orthogonality has beenwidely used and proved to be a useful criterion for

visualization, pattern recognition and feature extraction, existing methods for solving OCCA problem are either numerically unstable by

relying on a deflation scheme, or less efficient by directly using generic optimizationmethods. In this paper, we propose an alternating

numerical schemewhose core is the sub-maximization problem in the trace-fractional formwith an orthogonality constraint. A

customized self-consistent-field (SCF) iteration for this sub-maximization problem is devised. It is proved that the SCF iteration is globally

convergent to a KKT point and that the alternating numerical scheme always converges. We further formulate a new trace-fractional

maximization problem for orthogonal multiset CCA and propose an efficient algorithmwith an either Jacobi-style or Gauss-Seidel-style

updating scheme based on the SCF iteration. Extensive experiments are conducted to evaluate the proposed algorithms against existing

methods, including real-world applications of multi-label classification andmulti-view feature extraction. Experimental results show that

our methods not only perform competitively to or better than the existingmethods but also aremore efficient.

Index Terms—Canonical correlation analysis, self-consistent-field iteration, orthogonal multiset canonical correlation analysis

Ç

1 INTRODUCTION

CANONICAL correlation analysis (CCA) [1], [2] is a stan-
dard statistical technique and widely-used feature

extraction paradigm for two sets of multidimensional varia-
bles. It finds basis vectors for the two sets of variables such
that the correlations between the projections of the variables
onto these basis vectors are mutually maximized. During
the last decade, CCA has received a renewed interest in the
machine learning community and its applicability has been
demonstrated in various fields [3].

In this paper, we are particularly interested in a variant
of CCA, namely orthogonal CCA (OCCA), in which projec-
tions are constrained to be orthogonal [2], [4]. Distinguished
from the classical CCA, OCCA has its exclusive property of
preserving the covariance of the original data [2]. In addi-
tion, OCCA inherits many advantages such as being less
sensitive to noise, better suited for data visualization and
preserving metrics, brought by various other learning mod-
els for pattern recognition and feature extraction, where the

orthogonality has been proved as an effective learning crite-
rion. For examples, orthogonal linear discriminant analysis
(LDA) is observed to have better performance than the stan-
dard LDA since the orthogonality constraint to some extent
can remove noise [5]; orthogonal neighborhood preserving
projections [6] achieves better representation of the global
structure and is effective for data visualization; orthogonal
locality preserving indexing [7] shares the same locality pre-
serving character as locality preserving indexing and at the
same time requires the basis functions to be orthogonal so
that the metric structure of the document space is pre-
served. OCCA has further been extended for more than two
views [8].

Comparing to CCA, OCCA brings the above-mentioned
advantages for data analysis, but it no longer retains an ana-
lytic solution. A common heuristic approach is to orthogo-
nalize the basis vectors obtained by CCA. However, this
produces a suboptimal solution for the OCCA problem. In
[4], an incremental scheme is employed to produce current
basis vectors with additional constraints to enforce the
orthogonality with the previously computed basis vectors.
We will point out in Section 2 that the incremental scheme
relies on a generalized eigenvalue problem that is numeri-
cally unstable in the sense that the theoretically dominant
eigenvalue, although provably real, could be numerically
computed to be complex and as a result, no real basis vector
can be found and the scheme breaks down. When that hap-
pens, some kind of post-processing step is required to obtain
a feasible solution [4]. In [2], generic optimization methods
for minimizing a smooth function over the product of the
Stiefel manifolds are used for OCCA. These methods usually
converge to a local minimizer but they do not take the trace-
fractional structure of OCCA into consideration. As a result,
they are usually less efficient than custom-made algorithms.
These challenges hinder OCCA from beingwidely used.
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The goal of this paper is to propose new efficient algo-
rithms for solving the OCCA problem with guaranteed the-
oretical convergence and numerical stabilizability. In order
to fully explore the trace-fractional structure of OCCA, we
first uncover the connection of OCCA with an eigenvector-
dependent nonlinear eigenvalue problem (NEPv), and then
naturally come up with a simple iterative method whose
numerical efficiency is guaranteed by a structure-exploiting
self-consistent-field (SCF) iteration. Global convergence
and local convergence of this customized algorithm are
established.

Contributions. The main contributions of this paper are
summarized as follows:

� We propose a novel algorithm OCCA-scf for solving
OCCA in the form of a trace-fractional matrix optimi-
zation problem. The proposed algorithm is built
upon an efficient and effective SCF iteration to solve a
very special trace-ratio sub-maximization problem
through taking the trace-fractional structure into
account. It is proved that the SCF iteration is always
convergent and, as a result, OCCA-scf is guaranteed
to converge. It can also integrate the state-of-the-art
eigensolvers within the iteration framework for large
scale problems. Moreover, it guarantees the orthogo-
nality of the computed basis vectors.

� Wepresent a neworthogonalmultiset CCA (OMCCA)
model with integrated weights for each pair of views
and the trace-fractional objective for correlations
between any two views. By leveraging the same
customized SCF iteration, a novel range constrained
OMCCA algorithm is proposed with an either Jacobi-
style or Gauss-Seidel-style updating scheme.

� Extensive experiments are conducted for evaluating
the proposed algorithms against existing methods in
terms of various measurements, including sensitivity
analysis, correlation analysis, computation analysis,
and data visualization.We further apply ourmethods
for two real world applications: multi-label classifica-
tion and multi-view feature extraction. Experimental
results show that our methods not only perform com-
petitively to or better than baselines but also are more
efficient.

Paper Organization. We first review classical CCA models
and existing OCCA variants in Section 2. In Section 3, we
propose a novel algorithm for solving OCCA problem and
the main theoretical results are presented in Section 4. In
Section 5, we develop a new algorithm for OMCCA by
leveraging the same SCF iteration. Extensive experiments
are conducted in Section 6. Finally, we draw our conclu-
sions in Section 7. All proofs are given in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2020.3012541.

Notation. Rm�n is the set of m� n real matrices and Rn ¼
Rn�1. In 2 Rn�n is the identity matrix, and 1n 2 Rn is the vec-
tor of all ones. kxk2 is the 2-norm of a vector x 2 Rn. For B 2
Rm�n, RðBÞ is the column subspace and its singular values
are denoted by siðBÞ for i ¼ 1; . . . ;minðm;nÞ arranged in the
nonincreasing order. kBk1 (kBk2) is the 1-norm (2-norm) of
matrix B. The thin SVD of B is the one B ¼ USV T such that

S ¼ Diagðs1ðBÞ; . . . ; srðBÞÞ is diagonal with r ¼ rankðBÞ, the
rank of B, and kBktr ¼

Pr
i¼1 siðBÞ is its trace norm (also

known as the nuclear norm). If B is also symmetric, then
eigðBÞ ¼ f�iðBÞgni¼1 denotes the set of its eigenvalues
(counted by multiplicities) arranged in the nondecreasing
order, and B � 0ð� 0Þ means that B is symmetric positive
definite (semi-definite). The Stiefel manifold

On�k ¼ fX 2 Rn�k : XTX ¼ Ikg;

is an embedded submanifold of Rn�k endowed with the
standard inner product hX; Y i ¼ trðXTY Þ for X; Y 2 Rn�k,
where trðXTY Þ is the trace of XTY . The tangent space
T XO

n�k of On�k atX 2 On�k is given by (see, e.g., [9])

T XO
n�k ¼ fH 2 Rn�kjXTH þHTX ¼ 0g (1a)

¼ H 2 Rn�k H ¼ XK þ ðIn �XXTÞJ
8K ¼ �KT 2 Rk�k; J 2 Rn�k

����� �
:

(1b)

2 RELATED WORK

We review the classical CCA and OCCAmethods, as well as
their extensions to multiple sets of variables.

2.1 Classical CCA via SVD

CCA is a two-view multivariate statistical method [1],
where the variables of observations can be partitioned into
two sets, i.e., the two views of the data. Denote the data
matrices S1 2 Rn�q and S2 2 Rm�q from view 1 and view 2
with n and m features, respectively, where q is the number
of samples. Assume both S1 and S2 are centralized, i.e.,
S11q ¼ 0 and S21q ¼ 0; otherwise, we may preprocess Si as

Si  Si � ðSi1qÞ1Tq =q for i ¼ 1; 2. Let x1 2 Rn and x2 2 Rm

be the canonical weight vectors. The canonical variates are
the linear transformations defined as z1 ¼ ST

1 x1; z2 ¼ ST
2 x2:

The canonical correlation between the two canonical vari-
ates is defined as rðx1; x2Þ ¼ zT

1z2=ðjjz1jj2jjz2jj2Þ: CCA aims
to find the pair of canonical weight vectors that maximize
the canonical correlation:

max
x1;x2

rðx1; x2Þ: (2)

It can also be interpreted as the problem of finding the
best pair of canonical weight vectors so that the cosine of
the angle between the two canonical variates is maximized,
that is, the smallest angle in ½0; p2�.

This single-vector CCA (2) has been extended to obtain
the pair of canonical weight matrices, namely, the pair of
canonical weight matrices X1 2 Rn�k and X2 2 Rm�k by
solving the following optimization problem

max
X1;X2

trðXT
1 C1;2X2Þ; s.t. XT

i Ci;iXi ¼ Ik; i ¼ 1; 2; (3)

where Ci;j ¼ SiS
T
j , i; j ¼ 1; 2. Hereafter, (3) is referred to as

the classical CCA, or simply CCA for short. In general, the
closed-form solution of (3) can be obtained by the singular
value decomposition (SVD) [10], and it can be proved that
XT

1 C1;2X2 � 0 for any optimal solution pair ðX1; X2Þ [11,
Theorem III.2].
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2.2 OCCA via Generic Methods Over Matrix
Manifolds

The classical CCA is not suitable for settings where an
orthogonal projection is required in an orthogonal coordi-
nate system, such as for data visualization. This is because
optimal X1 and X2 in (3) usually do not have orthonormal
columns. Although one can always orthogonalize their col-
umns as a post-processing step, the resulting orthogonal
projections are generally suboptimal. For that reason, an
orthogonal CCA (OCCA) is proposed in [2], [4] to maximize
the correlation

fðX1; X2Þ ¼
trðXT

1 C1;2X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXT

1 C1;1X1ÞtrðXT
2 C2;2X2Þ

p ; (4)

directly over orthonormal matrices, i.e.,

max
X12On�k;X22Om�k

fðX1; X2Þ: (5)

As pointed out in [2], OCCA is different from the classical
CCA because OCCA preserves the covariance of the origi-
nal data S1 and S2 by finding orthonormal matrices that
maximize the correlation, while the classical CCA whitens
each dataset and projects them so that the correlation is
maximized.

Generic optimizationmethods forminimizing ormaximiz-
ing a smooth function over the product of the Stiefel mani-
folds are available. Classical optimization algorithms such as
the steepest descent gradient or the trust-regionmethods over
the euclidean space have been extended to the general Rie-
mannian manifolds in [9]. However, besides only guarantee-
ing to converge to a local optimizer at best, these generic
algorithms do not make use of the special trace-fractional
structure in (5), and therefore, they usually are less efficient
than custom-made algorithms for trace-ratio-related optimi-
zations (see [12], [13] for numerical results of trace-ratio
optimizations).

2.3 OCCA via a Greedy Method

The motivation of imposing orthogonality constraints was
also explored in [4]. A greedy method (which we will call
OCCA-SSY for short) is employed to find k pairs of orthogo-
nal vectors, computed one pair at a time. The initial step is the
same as the classical CCA to find the pair of canonical weight
vectors ðxð1Þ1 ; x

ð1Þ
2 Þ that solves (2). Given fðxðtÞ1 ; x

ðtÞ
2 Þg

r
t¼1, the

ðrþ 1Þst step is to solve the following problem

ðxðrþ1Þ1 ; x
ðrþ1Þ
2 Þ ¼ argmax

x1;x2
rðx1; x2Þ

s.t. xTi Ci;ixi ¼ 1; xTi x
ðtÞ
i ¼ 0; i ¼ 1; 2; t ¼ 1; . . . ; r:

Such an approach relies on a deflation scheme, and the pair

ðxðrþ1Þ1 ; x
ðrþ1Þ
2 Þ is claimed to correspond to the dominant

eigenpair of a generalized eigenvalue problem, which, how-

ever, numerically may not have any real eigenpair and thus

is unusable.1

2.4 Classical Multiset CCA

Multiset CCA (MCCA) [14], [15] is proposed to analyze lin-
ear relationships among more than two canonical variates. It
is a generalization of the classical CCA [1]. Here, we briefly
introduce a widely usedmodel [15] by seeking projections to
maximize the sum of the pairwise correlations between any
two canonical variates. Specifically, given ‘ datasets in the
form ofmatrices

Si 2 Rni�q for i ¼ 1; 2; . . . ; ‘; (6)

where ni is the number of features in the ith dataset, and q is
the number of data points in each of the datasets. Without
loss of generality, we may assume that all Si are centered,
i.e., Si1q ¼ 0 for all i. Let Ci;j ¼ SiS

T
j for i; j ¼ 1; . . . ; ‘.

MCCA seeks to find the set of ‘ canonical weight vectors
that solves

max
x1;...;x‘

X‘

i; j¼1
xTi Ci;jxj; (7)

subject to

either
X‘

i¼1
xTi Ci;ixi ¼ 1; (8)

or xTi Ci;ixi ¼ 1; i ¼ 1; . . . ; ‘: (9)

KKT conditions for MCCA under either (8) or (9) can be
found in [15]. In particular, under (8), MCCA (7) is equiva-
lent to a generalized eigenvalue problem [15, p.297], which
can be solved by an eigensolver [10], [16], [17].

2.5 OMCCA via a Greedy Method

In [8], a greedy orthogonal MCCA (OMCCA) (called
OMCCA-SS for short) was proposed. Similar to [4], it goes as
follows. Given fxðtÞi ; 8i ¼ 1; . . . ; ‘g for t ¼ 1; . . . ; r, OMCCA-
SS recursively solves the following subproblems

fxðrþ1Þ1 ; . . . ; x
ðrþ1Þ
‘ g ¼ arg max

x1;...;x‘

X‘

i; j¼1
xTi Ci;jxj;

s.t. ð8Þ and xTi x
ðtÞ
i ¼ 0; i ¼ 1; . . . ‘; t ¼ 1; . . . ; r:

OMCCA-SS inherits the same issues as OCCA-SSY dis-
cussed in Section 2.3.

3 NOVEL ALGORITHM FOR OCCA

In this section we propose a new optimization scheme for
solving the OCCA problem (5) by fully taking the advantage
of its underlying structure.

3.1 Reformulation of OCCA

Following the annotation in Section 2, both views of the data
S1 and S2 are centralized in advance. Define

A ¼ S1S
T
1 2 Rn�n; B ¼ S2S

T
2 2 Rm�m; C ¼ S1S

T
2 2 Rn�m:

Let X 2 On�k and Y 2 Om�k have orthonormal columns,
where 1 � k < minfm;ng (usually k	 minfm;ng). Then we
immediately have the following equivalent reformulation of
OCCA (5):1. Private communications with the authors of [4], 2019.
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max
X2On�k;Y 2Om�k

F ðX;Y Þ :¼ tr2ðXTCY Þ
trðXTAXÞtrðY TBY Þ

� �
(10a)

s.t. trðXTCY Þ 
 0: (10b)

In the next subsection we will present an algorithm to solve
(10). Our algorithm can take the advantage of the specific
structure of the problem with theoretical guarantees of con-
vergence as shown in Section 4. Furthermore, in Section 5,
we show that the algorithm can be extended easily to han-
dle an orthogonal multiview CCAmodel.

3.2 The Proposed Algorithm

We propose the numerical scheme as shown in Algorithm 1
by maximizing F ðX; Y Þ (or equivalently fðX;Y Þ) alterna-
tively with respective toX and Y until convergence.

Algorithm 1.An alternating optimization scheme for (10)

Input: fXð0Þ; Y ð0ÞgwithXð0Þ 2 On�k; Y ð0Þ 2 Om�k.
Output: a solution fXðnÞ; Y ðnÞg to (10).
1: for n ¼ 1; 2; . . . until convergence do
2: solve, subject to trðXTCY ðn�1ÞÞ 
 0,

XðnÞ 2 arg max
X2On�k

F ðX;Y ðn�1ÞÞ; (11)

3: solve, subject to trð½XðnÞ�TCY Þ 
 0,

Y ðnÞ 2 arg max
Y2Om�k

F ðXðnÞ; Y Þ; (12)

4: compute SVD of ðXðnÞÞTCY ðnÞ ¼ eUeS eV T;

5: setXðnÞ  XðnÞ eU and Y ðnÞ  Y ðnÞ eV ;
6: end for
7: return fXðnÞ; Y ðnÞg.

The role of line 4 in Algorithm 1 is to make sure XðnÞ and
Y ðnÞ are always well aligned. It is based on the structure of
the functionF ðX;Y Þ: Given a pair ðXðnÞ; Y ðnÞÞ, the denomina-
tor is unchanged when this pair is changed to ðXðnÞU; Y ðnÞV Þ
for any U; V 2 Ok�k, while the numerator is maximized by
the particular pair ðU; V Þ ¼ ð eU; eV Þ given by

ð eU; eV Þ ¼ arg max
U;V2Ok�k

tr UTðXðnÞÞTCY ðnÞV
� �

;

as can be justified by Lemma 3 in Section 3.3. The maximum
value is

Pk
i¼1 siððXðnÞÞTCY ðnÞÞ. Stopping criteria for line 1

will be discussed later in Section 6.2.
The efficiency of Algorithm 1 relies heavily on solving

the sub-maximization problems (11) and (12). Abstractly,
they are of the following type

max
G2On�k

hðGÞ :¼ tr2ðGTDÞ
trðGTAGÞ ; (13)

subject to trðGTDÞ 
 0, where 0 6¼ D 2 Rn�k and A � 0. In
Section 3.3, we present an SCF iteration that directly aims at
solving (13).

3.3 A novel Algorithm for Solving (13)

It can be seen that the global maximum of (13) is positive
unless D ¼ 0. Moreover, (13) is very much like the trace

ratio (or trace quotient) maximization, i.e., maximizing
trðGTA1GÞ=trðGTA2GÞ over G 2 On�k with given A1; A2 �
0, for which an efficient SCF iteration is available [18], [19],
[20], [21]. It has been proved that the SCF iteration is glob-
ally convergent and the convergence is locally quadratic.
Historically, the SCF iteration was commonly used to solve
the Eigenvector-Dependent Nonlinear Eigenvalue Problem
(NEPv) [18] from the Kohn–Sham density functional theory
in electronic structure calculations [22], [23]. Recently, it has
been attracting a great deal of attention in data science (e.g.,
[12], [13], [18], [24], [25]).

Next, we will first transform the problem (13) into a
novel NEPv that is not quite the same as the KKT condition
of (13), and then apply the SCF iteration to solve the NEPv.
The most challenging part is the convergence analysis of the
resulting SCF iteration, which will be studied in Section 4.

3.3.1 A Nonlinear Eigenvalue Problem

We will first derive the partial derivative @hðGÞ=@G; where
all entries of G are treated as independent variables. Conse-
quently, the gradient gradhðGÞ at G 2 On�k on the Stiefel
manifold On�k is given by

grad hðGÞ ¼ PG
@hðGÞ
@G

� 	
2 T GO

n�k; (14)

where PGðZÞ ¼ Z �G symðGTZÞ for Z 2 Rn�k, see e.g., [9].
By straightforward calculations, we have

@hðGÞ
@G

¼ 2trðGTDÞ
trðGTAGÞ D�

2tr2ðGTDÞ
tr2ðGTAGÞ AG;

and

grad hðGÞ ¼ � 2

�2ðGÞ

n
½AG� �ðGÞD� �GMðGÞ

o
; (15)

where

�ðGÞ ¼ trðGTAGÞ
trðGTDÞ ; MðGÞ ¼ symðGTAG� �ðGÞGTDÞ:

(16)

From (15), we immediately have Lemma 1 below.

Lemma 1. If G is a KKT point of (13), then

AG� �ðGÞD ¼ GMðGÞ: (17)

Note that the condition (17) is a type of nonlinear Syl-
vester equation but with the orthogonality constraintGTG ¼
Ik. To solve it, we will convert it into an NEPv so that the SCF
iteration is applicable. One straightforward way is to use the
constraint GTG ¼ Ik and then rewrite (17) equivalently as
½A� �ðGÞDGT�G ¼ GMðGÞ. However, we notice that the
matrix A� �ðGÞDGT is not necessarily symmetric, even at
a maximizer G. This means that we cannot ensure A�
�ðGÞDGT has real eigenvalues atG 2 On�k. To overcome that
obstacle, we construct the followingNEPv

EðGÞG ¼ G bMðGÞ; (18)
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where bMðGÞ ¼ GTEðGÞG 2 Rk�k and

EðGÞ :¼ A� �ðGÞðDGT þGDTÞ: (19)

Evidently, EðGÞ is always symmetric. The following lemma
establishes a relation between (17) and (18).

Lemma 2. Suppose G 2 On�k. Then G satisfies (17) if and only
if G is an eigenbasis matrix of EðGÞ, i.e., G satisfies (18).

Lemma 2 characterizes any maximizer G of (13) as an
orthonormal eigenbasis matrix of EðGÞ. By (18), we find

eigð bMðGÞÞ ¼ f�p1ðEðGÞÞ; . . .; �pkðEðGÞÞg � eigðEðGÞÞ;

where fp1 � . . . � pkg � f1; 2; . . . ; ng.

3.3.2 Eigenspace Associated With a Global Maximizer

Even though our maximization problem (13) is very much
like the trace ratio problem [19], unfortunately, it does not
enjoy some nice properties as the trace ratio problem. For
example, it is shown that any local maximizer of the trace
ratio problem is also a global solution. The problem (13) in
general admits local but non-global maximizers (see Exam-
ple A in the supplementary material available online). The
following theorem provides a necessary condition for the
local maximizer in terms of the NEPv in (18).

Theorem 1. If G is a local maximizer of (13), then RðGÞ is an
eigenspace of EðGÞ associated with eigenvalues �p1ðEðGÞÞ �
. . . � �pkðEðGÞÞ satisfying p1 � k.

Theorem 1 indicates that for any local maximizer G, the
smallest eigenvalue associated with the eigenspace RðGÞ
must be no bigger than �kðEðGÞÞ. This offers a necessary con-
dition for a KKT point to be a local maximizer. As a much
stronger version, the next theorem says that any global maxi-
mizer G must be an eigenbasis matrix associated with the k
smallest eigenvalues ofEðGÞ.

Theorem 2. If Gopt is a global maximizer of (13), then Gopt is an
orthonormal eigenbasis matrix associated with the k smallest
eigenvalues of EðGoptÞ. Moreover, the matrix GT

optD is sym-
metric and positive semidefinite.

Algorithm 2. A SCF iteration for solving (13)

Input: Gð0Þ 2 On�k;
Output: approximate maximizer G to (13).
1: for n ¼ 1; 2; . . . until convergence do
2: construct EðnÞ ¼ EðGðn�1ÞÞ as in (18);
3: compute an orthonormal eigenbasis matrix GðnÞ associated

with the k smallest eigenvalues of EðnÞ;
4: compute SVD: GT

ðnÞD ¼ USV T;
5: update GðnÞ  GðnÞUV

T;
6: end for
7: return GðnÞ.

3.3.3 A Self-Consistent-fiezld (SCF) Iteration

Suppose Gopt is a global maximizer of (13). NEPv (18),
equipped with the necessary condition in Theorem 2, implic-
itly defines a fixed point mappingwhichmaps the eigenspace
RðGoptÞ associated with the k smallest eigenvalues ofEðGoptÞ

to itself. To find this eigenspace numerically, the SCF iteration
is a natural techniquewhich is outlined inAlgorithm 2.

Remark 1. We have three comments for Algorithm 2.

(a) Comparing with the standard SCF iteration [18]
for a general NEPv, our proposed SCF version for
(18) has an additional step at lines 4 and 5, which
aims to maximally push up the value of objective
function h in (13) for an (arbitrarily) chosen ortho-
normal eigenbasis matrix GðnÞ 2 On�k of EðGðn�1ÞÞ
associated with its k smallest eigenvalues. We
note that an eigenbasis matrix is not unique. In
fact, bGðnÞ ¼ GðnÞP for any P 2 Ok�k is also one.

Since trð bGT
ðnÞA

bGðnÞÞ 
 trðGT
ðnÞAGðnÞÞ but trð bGT

ðnÞDÞ 6
¼ trðGT

ðnÞDÞ in general, it makes sense to update

GðnÞ to bGðnÞ so that trð bGT
ðnÞDÞ is maximized over P 2

Ok�k. That is when Lemma 3 below comes to help.
(b) The goal of Algorithm 2 is to seek a maximizer of

(13) and at a maximizerG, gradhðGÞ ¼ 0 in theory.
Considering roundoff errors in evaluating gradh
according to (15), a reasonable stopping criterion
to use at line 1 of Algorithm 2 is

��2ðGðnÞÞ
kgradhðGðnÞÞk1

kAk1 þ �ðGðnÞÞkDk1
� �scf ;

where �scf is a preset tolerance. In our later experi-
ments, we use �scf ¼ 10�5 and as a safe guard, we
set 30 as the maximum number of iterations
allowed. Here k � k1 is the ‘1-matrix norm which
works equally well for all practical purposes as to
thematrix-spectral norm thatwe should use ideally
but the latter ismore expensive to compute. A good
initial guess Gð0Þ is the orthogonal factor in the
polar decomposition of D, which maximizes the
numerator of hðGÞ among all G such that RðGÞ ¼
RðDÞ. (An additional modification is required
when rankðDÞ < k.)

(c) At line 3, we need to compute an orthonormal
eigenbasis matrix GðnÞ of EðnÞ which is n� n. For
modest n, say up to a few hundred, we may sim-
ply call, e.g., MATLAB’s eig, to compute a full
eigen-decomposition of EðnÞ which costs Oðn3Þ
flops, but for large n, Oðn3Þ is too much and we
should use an iterative eigensolver. More discus-
sions will come later.

Lemma 3. Let W 2 Rk�k. Then jtrðWÞj �
Pk

i¼1 siðWÞ: If
jtrðWÞj ¼

Pk
i¼1 siðWÞ; thenW is symmetric and is either pos-

itive semidefinite when trðWÞ 
 0, or negative semidefinite
when trðW Þ � 0.

According to Lemma 3, lines 4 and 5 of Algorithm 2
ensures

trðGT
ðnÞDÞ ¼ max

P2Ok�k
trððGðnÞP ÞTDÞ ¼

Xk
i¼1

siðGT
ðnÞDÞ 
 0;

and also GT
ðnÞD � 0 for all n 
 1.
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4 MAIN THEORETICAL RESULTS

4.1 Brief Sketch

In this section, we shall establish the convergence of both the
outer-loop alternating optimization scheme of Algorithm 1
and the inner core SCF iteration of Algorithm 2 for the sub-
problem (13). Our analysis reveals that the inner SCF itera-
tion converges monotonically (Theorem 4(ii)), and generally,
any limit point is a KKT point satisfying the necessary opti-
mality condition given in Theorem 2 for the global maxi-
mizer (Theorem 4(v)). Moreover, the linear convergence rate
of the SCF iteration is discussed (Theorem 5). Based on the
inner SCF solver for the subproblem (13), the monotonic con-
vergence of the outer-loop alternating optimization scheme
of Algorithm 1 is guaranteed (Theorem 3).

4.2 Analysis for Algorithm 1

We first mention that our specialized SCF iteration Algo-
rithm 2 with the additional procedure in lines 4 and 5 brings
another nice property for the sequence fðXðnÞ; Y ðnÞÞg1n¼1, that
is, ðXðnÞÞTCY ðnÞ is symmetric and positive semidefinite,
which is a necessary condition for any global solution pair
ðXopt; YoptÞ (see Theorem 3(i)). Moreover, by using the effec-
tive solvers for (11) and (12), Algorithm 1 always converges.
We summarize these results in the following theorem.

Theorem 3. Let ðXopt; YoptÞ be an optimal solution pair to (10)
and ðXðnÞ; Y ðnÞÞ be the n-th approximation by Algorithm 1. Then

(i) XT
optCYopt is symmetric and positive semidefinite.

(ii) ðXðnÞÞTCY ðnÞ is symmetric and positive semidefinite
for n 
 1, and thus for any limit pair ðX; Y Þ of
fðXðnÞ; Y ðnÞÞg1n¼1, XTCY is symmetric and positive
semidefinite.

(iii) The sequence fF ðXðnÞ; Y ðnÞÞg1n¼1 is monotonically
increasing and converges.

4.3 Analysis for Algorithm 2

Before our discussion on the convergence of the SCF iteration
(Algorithm 2), we first provide the following two lemmas.

Lemma 4. For any G; bG 2 On�k, if bGTD ¼ DT bG � 0 and

trð bGTEðGÞ bGÞ � trðGTEðGÞGÞ; (20)

then hð bGÞ 
 hðGÞ. Furthermore, if the inequality in (20) is
strict, then hð bGÞ > hðGÞ.

The action at line 3 of Algorithm 2 can now be justified by
Lemma 4. In fact, the chosen GðnÞ satisfies

trðGT
ðnÞEðGðn�1ÞÞGðnÞÞ � trðGT

ðn�1ÞEðGðn�1ÞÞGðn�1ÞÞ;

and thus hðGðnÞÞ 
 hðGðn�1ÞÞ, implying monotonic increase
of fhðGðnÞÞg.

As an eigenbasis matrix is not unique, one may ask if GðnÞ
at lines 4 and 5 of Algorithm 2 is well-defined. The next
lemma addresses this issue.

Lemma 5. At line 3 of Algorithm 2, if the eigenvalue gap

zn�1 ¼ �kþ1ðEðGðn�1ÞÞÞ � �kðEðGðn�1ÞÞÞ > 0;

then any two orthonormal eigenbasis matrices bGðnÞ and eGðnÞ
associated with the k smallest eigenvalues of EðGðn�1ÞÞ satisfyeGðnÞ ¼ bGðnÞQ for some orthogonal matrix Q 2 Ok�k. Further-
more, if additionally rankðDT bGðnÞÞ ¼ k, then the next approxi-
mationGðnÞ from line 4 of Algorithm 2 is uniquely determined.

We next provide basic convergence properties of the SCF
iteration Algorithm 2 for solving the problem (13).

Theorem 4. Let the sequence fGðnÞg be generated by the SCF
iteration (Algorithm 2). Then

(i) For each n 
 1, DTGðnÞ � 0 and trðGT
ðnÞDÞ ¼Pk

j¼1 sjðGT
ðnÞDÞ;

(ii) The sequence fhðGðnÞÞg is monotonically increasing
and convergent;

(iii) If

trðGT
ðnÞEðGðn�1ÞÞGðnÞÞ
< trðGT

ðn�1ÞEðGðn�1ÞÞGðn�1ÞÞ;
(21)

then hðGðn�1ÞÞ < hðGðnÞÞ;
(iv) fGðnÞg has a convergent subsequence fGðnÞgn2I ;
(v) Let fGðnÞgn2I be any convergent subsequence of fGðnÞg

with the accumulation point G� satisfying

z ¼ �kþ1ðEðG�ÞÞ � �kðEðG�ÞÞ > 0: (22)

Then G� satisfies the first order optimality condition in
Lemma 1 and also the necessary condition for a global
maximizer in Theorem 2.

Remark 2. We have three comments for Theorem 4.

(a) Item (iii) of Theorem 4 implies that, to only guaran-
tee monotonicity of fhðGðnÞÞg, the partial eigen-
decomposition at line 3 of Algorithm 2 can be inex-
act. In particular, we can choose any approxima-
tion GðnÞ 2 On�k satisfying (21), and then refine
it by line 4 to ensure DTGðnÞ � 0; by Lemma 4,
hðGðnÞÞ > hðGðn�1ÞÞ still holds. This facilitates us to
employ sophisticated eigensolvers [26] for the
computation task at line 3.

(b) Item (iv) is rather obvious because fGðnÞg is a
bounded sequence in Rn�k. It is explicitly listed to
substantiate part of the assumption in item (v). A
stronger claim in Theorem 5 later says the entire
sequence fGðnÞg converges under amild condition.

(c) Item (v) shows one of advantages of our SCF itera-
tion over the generic Riemannian optimization
methods for solving the core subproblem (13). In
particular, as our SCF iteration is built upon the
necessary conditions of a global maximizer, besides
the general KKT conditions, the convergent point
also fulfills the necessary conditions for being a
globalmaximizer.

To further analyze the convergence of the sequence
fGðnÞg, we now consider the sequence fRðGðnÞÞg of subspa-
ces. For this purpose, we denote by k � kui any unitarily
invariant norm [27], and introduce the distance measure
between two subspaces G andY of dimension k [28, p.95]
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distuiðG;YÞ :¼ k sinQðG;YÞkui (23)

in terms of the matrix of the canonical angles between G
and Y:

QðG;YÞ ¼ Diagðu1ðG;YÞ; . . .; ukðG;YÞÞ:

Let G ¼ RðGÞ and Y ¼ RðY Þ, where G; Y 2 Rn�k with
GTG ¼ Y TY ¼ Ik. The canonical angles u1ðG;YÞ 
 � � � 

u1ðG;YÞ are defined by

0 � uiðG;YÞ :¼ arccos siðGTY Þ � p

2
for 1 � i � k:

The collection of all k-dimensional subspaces in Rn is the so-
called Grassmann manifold G kðRnÞ, and the distance mea-
sure (23) is a unitarily invariant metric [28, p.95] on G kðRnÞ.
For the trace norm, also known as the nuclear norm, we have

disttrðG;YÞ ¼
Xk
j¼1

sin ujðG;YÞ:

Using the metric disttrðG;YÞ, we have the following conver-
gence result for the sequence fGðnÞg by the SCF iteration in
Algorithm 2.

Theorem 5. Let the sequence fGðnÞg be generated by the SCF
iteration (Algorithm 2), and let G� be an accumulation point of
fGðnÞg. Suppose that RðG�Þ is an isolated accumulation point
(in the metric (23)) of fRðGðnÞÞg1n¼0. Then

(i) fRðGðnÞÞg1n¼0 converges toRðG�Þ;
(ii) if also rankðGT

�DÞ ¼ k and if (22) holds, then fGðnÞg1n¼0
converges to G� (in the standard euclidean metric), and
for sufficiently large n,

disttrðRðG�Þ;RðGðnþ1ÞÞÞ � c0kGðnÞ �G�ktr;
(24)

where

c0 ¼
3kDk2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kAkðkÞ
hðG�Þ

s
þ 2k

kAk2 þ
ffiffiffiffiffiffiffiffiffiffi
kAkðkÞ
hðG�Þ

r
kDk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðG�ÞvkðAÞ
p

0BB@
1CCA;

with kAkðkÞ ¼
Pk

j¼1 sjðAÞ, vkðAÞ ¼
Pk

j¼1 sn�jþ1ðAÞ.

What is remarkable about Theorem 5 is that we start with
an accumulation point G� which always exists because On�k

is a bounded set in Rn�k and thus is compact, and end up
with the conclusions that fRðGðnÞÞg1n¼0 converges to RðG�Þ
and that fGðnÞg1n¼0 converges to G� under mild conditions.

5 ALGORITHMIC EXTENSION FOR OMCCA

We propose a new formulation of OMCCA and then solve it
by extending our algorithms in Section 3.

Analogously to (5), our new formulation of OMCCA nat-
urally arises:

max
fXi2Oni�kg

fðfXigÞ: (25)

where 1 � k � minfn1; . . . ; n‘; qg, and

fðfXigÞ ¼
X‘

i; j ¼ 1
i 6¼ j

rij
trðXT

i Ci;jXjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXT

i Ci;iXiÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðXT
j Cj;jXjÞ

q
(26)

with weighting factors rij 
 0. Ideally, the optimal weights
should be learned fromdata, but this is out of the scope of this
paper. Here, we employ some heuristic weighting schemes.
To beginwith, we define

brij ¼PrankðCi;jÞ
r¼1 srðCi;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCi;iÞtrðCj;jÞ

p ; for i; j ¼ 1; . . . ; ‘: (27)

It is known 0 � brij � 1 [29, (3.5.22) on p.212]. Envision a
graph of ‘ nodes corresponding to datasets Si, respectively,
with every two nodes connected with an edge whose weight
is to be determined. We take three heuristic strategies:

1) uniform weighting: rij ¼ 1; 8 i; j ¼ 1; . . . ; ‘.
2) tree weighting: find the minimal spanning tree of the

graph with the edge ði; jÞ having weight 1� brij,
record the spanning tree with its edge weights reset
back to brij and weights brij for all other edges not in
the tree reset to 0.

3) top-p weighting: find the p largest weights among brij
for i > j, and reset all other weights brij to 0.

For the last two strategies, we apply the soft-max func-
tion over those reset weights brij with a bandwidth parame-
ter (e.g., 20 used in our experiments) to yield rij to use
in (26). As a by-product, the sum of all rij is 1.

Based on the machinery we have built in Section 3, we
propose to optimize fðfXigÞ cyclically over each matrix var-
iable Xi in the styles similar to either the Jacobi or the
Gauss-Seidel iteration for the linear system of equations [30].
Specifically, we establish an inner-outer iterative method to
solve (25). The most outer iteration – each step called a cycle
– generates from the current approximation fXðnÞi g

‘
i¼1 to the

next fXðnþ1Þi g‘i¼1 of the maximizer set of (25); each cycle can
be of an either the Jacobi-style or Gauss-Seidel-style updat-
ing scheme that relies on the proposed novel SCF iteration
for solving a series of subproblems in the form of (13).

Some denominators in f in (26) may vanish if rankðCi;iÞ þ
k � ni, which is possible when q	 ni for some i. When it
does happen, numerical difficulties may arise. To circum-
vent them, we propose to add range constraints

RðXiÞ � RðSiÞ for i ¼ 1; 2; . . . ; ‘: (28)

In what follows, we describe an SVD-based implementa-
tion. Let the SVDs of Si be

Si ¼ UiSiV
T
i ; Ui 2 Rni�ri ; Vi 2 Rq�ri ; Si 2 Rri�ri ; (29)

where ri ¼ rankðSiÞ. With the SVDs in (29), we have

XT
i SiS

T
j Xj ¼ XT

i UiSiV
T
i VjSjU

T
j Xj ¼: bXT

i SiV
T
i VjSj

bXj;

where bXi ¼ UT
i Xi 2 Rri�k. Under (28), we will have Xi ¼

Ui
bXi: The function fðfXigÞ is then transformed into
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X
i6¼j

rij
trð bXT

i SiV
T
i VjSj

bXjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð bXT

i S
2
i
bXiÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð bXT

j S
2
j
bXjÞ

q ¼: gðf bXigÞ;

and

max
Xi2Oni�k;RðXiÞ�RðSiÞ; 8i

fðfXigÞ ¼ maxbXi2Ori�k; 8i
gðf bXigÞ:

The key step to maximize gðf bXigÞ by either the Jacobi- or
Gauss-Seidel-style updating scheme is to maximize it, for
any s 2 f1; � � � ; ‘g, over bXs while freezing all other bXj ðj 6¼
sÞ. That is equivalent to

maxbXs2Ons�k

trð bXT
s DsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trð bXT
s S

2
s
bXsÞ

q ; (30)

where

Dsðf bXigi6¼sÞ ¼ SsV
T
s

X
j6¼s

rsj
VjSj

bXjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð bXT

j S
2
j
bXjÞ

q : (31)

Problem (30) is equivalent to

maxbXs2Ons�k

tr2ð bXT
s DsÞ

trð bXT
s S

2
s
bXsÞ

; (32)

subject to trð bXT
s DsÞ 
 0, which takes the same form as (13),

and has been studied in Section 3.3.
For the ease of reference, we name the above proposed

extension algorithm for OMCCA as Range Constrained
OMCC (RCOMCCA). More details are presented in part III
of the supplementary material available online. It is worth
noting that RCOMCCA allows two updating schemes and
is capable of integrating various weighting schemes. Hence,
we name the variants of RCOMCCA by suffixing “-G” for
Gauss-Seidel-style and “-J” for the Jacobi-style, together
with three weighting schemes shown in bracket. As a result,
there are six variants of RCOMCCA in total (as listed in the
first column of Table 4 in Section 6).

6 EXPERIMENTS

6.1 Implementation Details and Complexity

First we note that the function f in (4) is well-defined when
its denominator never vanishes. This is guaranteed if
rankðC1;1Þ þ k > n and rankðC2;2Þ þ k > m. The same can
be said about the function F in (10). Otherwise, numerical
difficulty may arise, and some kind of pre-cautionary mea-
sure such as the range constraint discussed in Section 5
must be taken. For simplicity, we will focus our discussion
here on the case without such a pre-cautionary measure
(which, in fact, is not needed for all datasets used in this sec-
tion, except yeast_ribosomal in Table 3). Indeed, our discus-
sion can be minorly modified if there is one.

Our SCF-based algorithm for solving OCCA (10), referred
as OCCA-scf for short hereafter, is Algorithm 1 that uses
Algorithm 2 as its workhorse to solve all involved subpro-
blems in the form of (13). Current implementation for line 3
of Algorithm 2, when n � 500, calls MATLAB’s mex version

mexeig of LAPACK’s [31] eigen-decomposition subroutine
dsyevd

2 to compute GðnÞ. For n > 500, it uses the locally
optimal block preconditioned conjugate gradient method3

(LOBPCG) (see [32], [33]) with the diagonal preconditioner.
As LOBPCG searches an approximate GðnÞ by optimizing
the Rayleigh quotient initially in a subspace containing
RðGðn�1ÞÞ, the condition (21) is always met, implying that the
sequence fhðGðnÞÞg is monotonically increasing and conver-
gent (Theorem 4).

To get an idea of how the overall computational com-
plexity in flops is, we let nalt be the number of full alternat-
ing iterations taken by Algorithm 1 and nscf be the average
number of SCF iterative steps taken by Algorithm 2. The
overall complexity is roughly

naltnscf ½costeig þOðnk2 þmk2 þ k3Þ�;

where Oðnk2 þmk2 þ k3Þ is for the SVD and updating at
lines 4 and 5 of Algorithm 2, and costeig is the cost for exe-
cuting its line 3. For using full eigen-decomposition such as
dsyevd, costeig ¼ Oðn3 þm3Þ, but for using an iterative
solver such as LOBPCG, costeig ¼ Oðnk2 þmk2Þ. Both nalt

and nscf are capped at 30. In the case when n � m � q, over-
all computational complexity is Oðn3Þ for n � 500 and
Oðnk2Þ for n > 500 for the current implementation.

6.2 Comparisons With Generic Optimization
Methods

We conduct extensive experiments to compare OCCA-scf
with three generic optimization methods over Stiefel mani-
folds implemented in LDR toolbox [2]4. They are stiefel,
stiefel trust, and stiefel trust prod for solving problem (5)
(i.e., ‘ ¼ 2). stiefel and stiefel trust are based on the alternat-
ing scheme as in Algorithm 1 except that all involved sub-
problems (13) are solved by the generic Riemannian
steepest descent method and the Riemannian trust-region
method [9], respectively. stiefel trust prod is the plain Rie-
mannian Trust-Region (RTR) of [9] applied to (5) directly.
We use the default settings of these three algorithms coded
in the LDR toolbox, in which stiefel; stiefel trust stop when-
ever the number of alternating steps n > 100 or

fðXðnÞ; Y ðnÞÞ � fðXðn�1Þ; Y ðn�1ÞÞ
fðXðnÞ; Y ðnÞÞ

���� ���� � �alt; (33)

with �alt ¼ 10�8 and f is given by (4), whereas stiefel trust prod
uses the default setting of RTR [34] in the package manopt.
OCCA-scf is terminated if n > 30 or (33).

Our experiments are performed over synthetic data with
m ¼ n ¼ 1000 for varying k 2 ½3; 100�, and the yeast data
shown in Table 1 with m ¼ 101; n ¼ 14 for varying k 2
½2; 14�. Following [2], we generate synthetic data with q ¼
104 and two views controlled by two sets of latent variables
W and Z as follows:

2. mexeig (available at: www.math.nus.edu.sg/�matsundf/)
is a MATLAB interface to call LAPACK eigen-decomposition subrou-
tine dsyevd of a real symmetric matrix.

3. The MATLAB version of LOBPCG is available at: http://cn.
mathworks.com/matlabcentral/fileexchange/48-lobpcg-m.

4. https://github.com/cunni/ldr
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dz ¼
maxðm;nÞ

2


 �
; dw ¼

2maxðm;nÞ
5


 �
;

SX ¼ PXZ þQXW þ �EX; SY ¼ PY Z þQYW þ �EY ;

where Z 2 Rdz�q, W 2 Rdw�q, PX 2 Rm�dz , QX 2 Rm�dw ,
PY 2 Rn�dz , QY 2 Rn�dw , EX 2 Rm�q, and EY 2 Rn�q are
matrices whose entries are i.i.d. sampled from a normal dis-
tribution with zero mean and unit standard deviation, and
� ¼ 2� 10�4.

The performance is evaluated in terms of the following
three measurements:

1) Computational complexity measured by CPU time;
2) Correlation difference: they are computed by sub-

tracting the objective value by the three stiefel meth-
ods from the one by OCCA-scf. The larger the
difference is, the better OCCA-scf performs;

3) The 2-norm grad norm of the Riemannian gradient (4)
of f on the manifold On�k � Om�k at an approximate
solution.

Fig. 1 shows the numerical results obtained by four differ-
ent methods (all starting with the initial guess ðXð0Þ; Y ð0ÞÞ ¼
ðIn;k; Im;kÞwhere In;k 2 Rn�k consists of the first k columns of
In). We have the following observations:

1) For small k, OCCA-scf converges much faster than
others. The CPU time by OCCA-scf is similar to
stiefel, while stiefel trust is most expensive among all.

2) OCCA-scf obtains similar correlation values on both
datasets to stiefel trustand stiefel trust prod. stiefel is
worst. Correlation values of stiefel trust prod shows
opposite trend as k increasing. This implies that
stiefel is sensitive to k and input data.

3) Among the three stiefel-related methods, stiefel is
fastest but is too inaccurate to be in the competition,
and stiefel trust achieves competitive accuracy but is
too expensive to use. This leaves stiefel trust prodas
the only one for further considerations.

4) Between OCCA-scf and stiefel trust prod, on the syn-
thetic data, the former beats the latter, but on the yeast
data the comparison is mixed: stiefel trust prod is
slightly more accurate at an expense of about 10 times
slower. Another advantage of OCCA-scf over
stiefel trust prod is that the former can be easily
extended to solve the multi-view problem, the
OMCCA model (25), whose gradient over all of its
arguments is rathermessy and expensive to compute,
making applying stiefel trust prod cumbersome.

5) OCCA-scf, stiefel, and stiefel trust all adopt the same
alternating scheme, except for their difference in how
all involved subproblems (13) are solved. Yet, the lat-
ter two performmiserably. Themajor reasonwe think
is the way how Algorithm 2 is designed: directly
drive the Riemannian gradient to 0 while efficiently
push up the objective.

So far as to nalt, the number of full alternating iterations
taken by OCCA-scf, we observed that the stopping crite-
rion (33) is satisfied with nalt � 8 on the synthetic data for
all tested k. On the yeast data, however, for several k 2
½2; 14� the maximum number 30 of alternating iterations is
reached, as shown in Fig. 2. Despite that, the plots clearly
show that the objective function has visually converged in
these hard cases. In fact, Fig. 1 demonstrates that the overall
solution accuracy by OCCA-scf compares favorably with
the generic optimization solvers.

6.3 Correlation Analysis and Data Visualization

In this section, we first explore the embedded subspaces
obtained by three different CCA methods: the classical
CCA, OCCA-SSY and OCCA-scf. For data visualization, the
orthogonal spaces of 2-D and 3-D are the main focus. As
aforementioned, the classical CCA method does not gener-
ate the orthonormal basis matrices for projection, and
OCCA-SSY also does not guarantee to generate the ortho-
normal basis matrices either because of its numerical insta-
bility as mentioned before.

We first investigate the quality of orthonormal basis matri-
ces obtained by baselinemethods in terms of correlation score.

Fig. 1. Comparison of four optimization methods on synthetic data and
multi-label classification data yeast in terms of three different criteria. The
plots in the second row are for the differences: subtracting the objective
value by each of the three stiefel methods from the one by OCCA� scf.

TABLE 1
Datasets for Multi-Label Classification

Dataset Samples Attributes labels

birds 645 260 19
Corel5k 5000 499 374
emotions 593 72 6
scene 2407 294 6
yeast 2417 101 14
Bibtex 7395 1836 159
Mediamill 43903 120 101
Delicious 16105 500 983
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To obtain orthonormal basis matrices, we post-orthogonalize
the columns of the basis matrices obtained by CCA and
OCCA-SSY. (Note that the post-orthogonalization step is only
applied in this experiment for studying the orthonormal prop-
erty and data visualization.) If the matrices is rank deficient,
we set the correlation to 0 since the number of orthogonal
basis vectors is smaller than requested. Fig. 3 shows the com-
parisons of three CCA methods in terms of the correlation
score over eight real datasets in Table 1 for multi-label classifi-
cation (detailed description is presented in Section 6.4.1). It
can be seen that our proposed OCCA-scf achieves the best
performance among all. More importantly, our method never
encounters thematrix rank deficient issue, while it happens to
CCA and OCCA-SSY on some datasets, such as Bibtex and
Delicious.

We then explore the embeddings in 2-D and 3-D spaces
and examine the correlations between the input data and its
multi-label outputs. Since each sample may have multiple
labels, we transform the multi-label classification problem
into the multi-class classification problem using the label

powerset approach [35] for the purpose of data visualization.
The set of multiclass labels consists of all unique label combi-
nations found in the data. For example, the data scene has 6
labels, and there are 15 unique label combinations in total.
Fig. 4 shows the embeddings of both input and output in 2-D
and 3-D spaces colored by unique classes. Since multiple
data points are assigned to the same unique class, there are
only 15 embedded output points. In the cases of both 2-D
and 3-D, our OCCA-scf method shows the best alignments
between input data and output labels, for example, the
majority of classes such as the red, green and blue ones are
aligned best in the reduced spacewith the input data clouds.

6.4 Applications

We evaluate our proposed methods on two real-world
applications for multi-label classification and multi-view
feature extraction, where various CCA methods have been
explored in the literature [4], [8], [36], [37], [38].

6.4.1 Multi-Label Classification

Multi-label classification [39] is a variant of the classification
problem, where one instance may have various number of
labels from a set of predefined categories, i.e., a subset of
labels. It is different from multi-class classification, where
each instance only has a single label. In general, the output
class labels of one instance are represented by the indicator
vector of sizem wherem is the number of class labels. If the
cth label is assigned to the instance, the cth element of the
indicator vector is 1, and otherwise 0. Let S1 2 Rn�q be the q
instances of size n and S2 2 Rm�q be comprised of the q

Fig. 2. Convergence curves of Algorithm 1 on the multi-label classifica-
tion data yeast.

Fig. 3. Correlations obtained by three CCA methods in the 2-D and 3-D
orthogonal spaces. The higher the bar is, the better themethod performs.

Fig. 4. Comparisons of three OCCA methods on the scene data in terms
of 2-D and 3-D embeddings. Colors represent classes. The markers cir-
cle and square represent input data points and output classes. There
are 15 classes extracted from 6 multiple labels.
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indicator vectors of size m. The popular use of CCA for
multi-label classification is to treat X as one view and S2 as
the other view [36], [37], [38].

The multi-label classification datasets used in our experi-
ments are the ones shown in Table 1. All datasets are publicly
available5. Following [36], we take CCA as a supervised
dimensionality reduction step for multi-label classification so
that the embeddings obtained by CCA methods can encode
certain correlations among input data and labels. Hence, it
expects to have better performance for multi-label classifica-
tion. Since some datasets have a small number of output
labels, the reduced dimension is upper bounded by the num-
ber of output labels due to the inherent property of CCA. To
alleviate the limitation from CCA and improve classification
performance for general datasets, we propose to augment the
learned embeddings using the original input data through a
simple concatenation over two sets of features.

In this paper, we choose to use ML-kNN6 as our backend
multi-label classifier [40], which has demonstrated good per-
formance over various datasets. We compare our OCCA-scf
with other CCA methods including OCCA-SSY [4], LS-CCA
[36] and classical CCA. All CCA-based methods take ML-
kNN as the base classifier and corresponding augmentation
approach for each CCA method is indicated by the suffix
“-aug”.We randomly split the data into 40 percent for training
and 60 percent for testing and tune the neighborhood parame-
ter within the set f1; 3; 5; 7; 9; 13; 15g for ML-kNN. Following
[40], we report the best results and their standard deviations
over 10 random train/test splits in terms of the following five
measurements:

� HammingLoss: the average number of times an
instance-label pair is misclassified.

� RankingLoss: the average fraction of label pairs that
are reversely ordered for the instance.

� OneError: the average number of times the top-
ranked label is not in the set of proper labels of the
instance

� Coverage: on the average how far we need to go
down the list of labels in order to cover all the proper
labels of the instance.

� Average_Precision: the average precision of labels
ranked above a particular label in the same label set.

Except Average_Precision, the first four measurements
show good performances of multi-label classification if the
measurement value is small.

Table 2 shows the results obtained by the compared meth-
ods over the five datasets in terms of the five measurements.
We observe that our OCCA-scf and OCCA-scf-aug show the
best results on almost all the fivemeasurements except Avera-
ge_Precision on Scene by OCCA-SSY-aug. For datasets scene
and yeast, OCCA-scf-aug shows better results thanOCCA-scf.
This implies that our augmentation approach is effective
when the features obtained by dimensionality reduction
method such as CCA somehow lose the information that is
also useful for multi-label classification although the
correlations remain. It is worth noting that our methods out-
perform ML-kNN over all experimented datasets. These

observations imply that OCCAwith orthogonality constraints
improves ML-kNN for multi-label classification and our pro-
posedOCCA-scfmethods outperform other CCAmethods.

6.4.2 Multi-View Feature Extraction

Previous experiments focus on problems with only two
views. Here, we aim to evaluate our proposed RCOMCCA
in terms of multi-view feature extraction [4], [8]. Following
[4], we employ the serial fusion strategy to concatenate
embeddings from all views for classification based on 1-near-
est neighbor classifier. Since LDR-based CCA and LS-CCA
are not easy to be extended for learning with multiple views,
we compare our proposed RCOMCCAwithMCCA [14], [15]
and OMCCA-SS [8]. For the top-p weighting scheme, p 2
f1; 3; 6g is used, except that p 2 f1; 3g is used for dataset
yeast_ribosomal.

The datasets with relevant statistics are shown in Table 3.
For image datasets such as Caltech1017 [41] and Scene158

[42], we apply various feature descriptors to extract features
of views including CENTRIST [43], GIST [44], LBP [45], his-
togram of oriented gradient (HOG), color histogram (CH),
and SIFT-SPM [42]. Note that we drop CH for Scene15 due
to the gray-level images. mfeat is the handwritten numeral
data9 [46] with 6 views including 76 Fourier coefficients of
the character shapes, 216 profile correlations, 64 Karhu-
nen-Love coefficients, 240 pixel averages in 2� 3 win-
dows, 47 Zernike moments, and 6 morphological features.
The Berkeley genomic dataset yeast_ribosomal10 is used
where three aspects of the protein are considered as the
views including Pfam HMM, Hydrophobicity FFT and
Gene expression for binary classification, e.g., ribosomal
versus non-ribosomal.

We use 1-nearest neighbor classifier as the base classifier
for evaluating the performance of multi-view feature extrac-
tion. We run CCA methods to generate embeddings by
varying k 2 f3; 4; 5; 6g for mfeat, and k 2 f3; 5; 10; 15;
20; 25; 30; 35; 40; 45; 50g for other datasets. We split the data
into training and testing with the ratio 30/70. Classification
accuracy is used as the performance evaluation criterion.
Experimental results are reported in terms of the average of
10 randomly drawn splits.

We first compare eight variants of CCA methods and the
classifiers based on each single view using all input fea-
tures. Table 4 shows the results over five multi-view data-
sets with the best k shown in bracket for each method. From
Table 4, we have the following observations:

1) CCA-based methods can achieve competitive or bet-
ter results using a small set of features comparing
with the best single view of the input features.

2) OCCA methods including RCOMCCA (top-p) and
OMCCA-SS generally show better results than classi-
cal MCCA. This implies that orthogonality constraints
added toMCCA can improve learning performance.

3) Our proposed RCOMCCA methods with the top-p
weighting scheme demonstrates much better results

5. http://mulan.sourceforge.net/datasets-mlc.html
6. http://lamda.nju.edu.cn/files/MLkNN.rar

7. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
8. https://figshare.com/articles/15-Scene_Image_Dataset/7007177
9. https://archive.ics.uci.edu/ml/datasets/Multiple+Features
10. https://noble.gs.washington.edu/proj/sdp-svm/
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than MCCA and OMCCA-SS can by large margins.
Except for yeast_ribosomal, RCOMCCA-G (top-p)
and RCOMCCA-J (top-p) outperform the classifier of
the best single view on the other four datasets.

4) RCOMCCA with the top-p weighting scheme out-
performs RCOMCCA with other two weighting
schemes. This implies that pairs of views can contrib-
ute differently to the downstreaming classification
problem.

5) For the same weighting schemes, our proposed
RCOMCCA methods with Gauss-Seidel-style and
Jacobi-style yield almost similar results. It is recom-
mended to take the problem structure into account
for selecting the proper solver for efficiency as dis-
cussed in Section 5.

We also compare eight variants of CCAmethods in terms
of three other measurements including the sensitivity of
parameter k, CPU time, and sampling ratio of training and

TABLE 3
Multi-View Datasets

Dataset Samples Multiple views classes

mfeat 2000 216;76;64;6;240;47 10
Caltech101-7 1474 254;512;1180;1008;64;1000 7
Caltech101-20 2386 254;512;1180;1008;64;1000 20
Scene15 4310 254;512;531;360;64;1000 15
yeast_ribosomal 1040 3735;4901;441 2

TABLE 2
Results in Terms of the 5 Measurements on the Five Datasets (40% for Training and 60% for Testing Over 10 Random Splits)

dataset method HammingLoss RankingLoss OneError Coverage Average_Precision

birds

OCCA-scf 0.0503 � 0.0035 0.2173� 0.0062 0.4964� 0.0201 2.8866 � 0.1580 0.5452 � 0.0118
OCCA-scf-aug 0.0545 � 0.0026 0.3045� 0.0047 0.7101� 0.0136 3.8597 � 0.1754 0.3942 � 0.0107
CCA 0.1167 � 0.0095 0.3509� 0.0197 0.8110� 0.0302 4.2028 � 0.2954 0.3087 � 0.0192
CCA-aug 0.0545 � 0.0026 0.3046� 0.0046 0.7101� 0.0136 3.8602 � 0.1745 0.3942 � 0.0107
LS-CCA 0.1167 � 0.0095 0.3509� 0.0197 0.8110� 0.0302 4.2028 � 0.2954 0.3084 � 0.0191
LS-CCA-aug 0.0545 � 0.0026 0.3046� 0.0046 0.7101� 0.0136 3.8602 � 0.1745 0.3942 � 0.0107
OCCA-SSY 0.0618 � 0.0049 0.2669� 0.0150 0.5978� 0.0269 3.4499 � 0.2146 0.4722 � 0.0182
OCCA-SSY-aug 0.0545 � 0.0026 0.3046� 0.0046 0.7101� 0.0136 3.8607 � 0.1752 0.3942 � 0.0108
ML-kNN 0.0545 � 0.0026 0.3046� 0.0046 0.7101� 0.0136 3.8607 � 0.1752 0.3942 � 0.0108

emotions

OCCA-scf 0.2283 � 0.0064 0.2016� 0.0091 0.3258� 0.0201 1.9643 � 0.0456 0.7640 � 0.0118
OCCA-scf-aug 0.2716 � 0.0057 0.2799� 0.0098 0.3989� 0.0171 2.3862 � 0.0573 0.6959 � 0.0085
CCA 0.2395 � 0.0090 0.2204� 0.0138 0.3497� 0.0169 2.0736 � 0.0730 0.7443 � 0.0126
CCA-aug 0.2718 � 0.0059 0.2801� 0.0094 0.3986� 0.0168 2.3860 � 0.0595 0.6960 � 0.0082
LS-CCA 0.2346 � 0.0084 0.2088� 0.0149 0.3385� 0.0182 2.0096 � 0.0930 0.7553 � 0.0154
LS-CCA-aug 0.2719 � 0.0056 0.2795� 0.0099 0.3983� 0.0172 2.3848 � 0.0572 0.6964 � 0.0085
OCCA-SSY 0.2577 � 0.0141 0.2543� 0.0198 0.3860� 0.0274 2.2309 � 0.0916 0.7190 � 0.0172
OCCA-SSY-aug 0.2719 � 0.0057 0.2800� 0.0095 0.3986� 0.0170 2.3862 � 0.0589 0.6958 � 0.0084
ML-kNN 0.2720 � 0.0057 0.2798� 0.0097 0.3983� 0.0169 2.3862 � 0.0589 0.6960 � 0.0085

Scene

OCCA-scf 0.1214 � 0.0024 0.1375� 0.0070 0.3329� 0.0073 0.7772 � 0.0360 0.7902 � 0.0060
OCCA-scf-aug 0.0941 � 0.0016 0.0817� 0.0028 0.2428� 0.0081 0.4981 � 0.0154 0.8557 � 0.0041
CCA 0.1267 � 0.0032 0.1448� 0.0068 0.3451� 0.0087 0.8153 � 0.0369 0.7810 � 0.0065
CCA-aug 0.0949 � 0.0020 0.0820� 0.0035 0.2440� 0.0080 0.4999 � 0.0194 0.8555 � 0.0044
LS-CCA 0.1228 � 0.0028 0.1401� 0.0059 0.3361� 0.0085 0.7909 � 0.0326 0.7873 � 0.0058
LS-CCA-aug 0.0948 � 0.0021 0.0821� 0.0034 0.2440� 0.0082 0.5003 � 0.0187 0.8553 � 0.0044
OCCA-SSY 0.1183 � 0.0030 0.1302� 0.0055 0.3226� 0.0086 0.7405 � 0.0314 0.7979 � 0.0063
OCCA-SSY-aug 0.0943 � 0.0020 0.0818� 0.0025 0.2431� 0.0090 0.4981 � 0.0137 0.8558 � 0.0042
ML-kNN 0.0949 � 0.0020 0.0823� 0.0033 0.2442� 0.0085 0.5009 � 0.0188 0.8554 � 0.0042

Corel5k

OCCA-scf 0.0094 � 0.0000 0.1365� 0.0015 0.7252� 0.0055 116.3179 � 1.2727 0.2529 � 0.0034
OCCA-scf-aug 0.0094 � 0.0000 0.1373� 0.0016 0.7309� 0.0067 116.9343 � 1.3411 0.2474 � 0.0031
CCA 0.0094 � 0.0000 0.1396� 0.0012 0.7519� 0.0079 117.9406 � 1.1541 0.2339 � 0.0035
CCA-aug 0.0094 � 0.0000 0.1381� 0.0016 0.7327� 0.0056 117.3671 � 1.2944 0.2436 � 0.0031
LS-CCA 0.0095 � 0.0000 0.1379� 0.0015 0.7432� 0.0082 116.8526 � 1.3332 0.2463 � 0.0027
LS-CCA-aug 0.0094 � 0.0000 0.1376� 0.0015 0.7323� 0.0082 117.1294 � 1.2682 0.2459 � 0.0039
OCCA-SSY 0.0094 � 0.0000 0.1365� 0.0015 0.7263� 0.0085 116.4133 � 1.3187 0.2522 � 0.0038
OCCA-SSY-aug 0.0094 � 0.0000 0.1371� 0.0016 0.7304� 0.0054 116.8367 � 1.2580 0.2481 � 0.0032
ML-kNN 0.0094 � 0.0000 0.1381� 0.0019 0.7323� 0.0062 117.5434 � 1.4205 0.2434 � 0.0035

yeast

OCCA-scf 0.2080 � 0.0021 0.1838� 0.0039 0.2538� 0.0066 6.5615 � 0.0736 0.7445 � 0.0049
OCCA-scf-aug 0.1997 � 0.0033 0.1735� 0.0034 0.2356� 0.0075 6.3870 � 0.0859 0.7556 � 0.0041
CCA 0.2108 � 0.0031 0.1894� 0.0056 0.2539� 0.0069 6.6438 � 0.0969 0.7364 � 0.0054
CCA-aug 0.2011 � 0.0026 0.1762� 0.0035 0.2398� 0.0068 6.4152 � 0.0827 0.7512 � 0.0040
LS-CCA 0.2077 � 0.0038 0.1855� 0.0044 0.2518� 0.0092 6.5928 � 0.1040 0.7436 � 0.0054
LS-CCA-aug 0.2012 � 0.0028 0.1760� 0.0036 0.2405� 0.0060 6.4096 � 0.0864 0.7511 � 0.0038
OCCA-SSY 0.2097 � 0.0035 0.1871� 0.0052 0.2526� 0.0058 6.6265 � 0.1023 0.7403 � 0.0055
OCCA-SSY-aug 0.1997 � 0.0033 0.1740� 0.0033 0.2356� 0.0074 6.3907 � 0.0984 0.7554 � 0.0036
ML-kNN 0.2017 � 0.0029 0.1759� 0.0036 0.2397� 0.0067 6.4075 � 0.0831 0.7512 � 0.0036

Best results are in bold.
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testing data. The results are shown in Fig. 5. It is clear to see
that

1) Accuracies of all CCAmethods increase with k. How-
ever, MCCA on Caltech101-7 and OMCCA-SS on
yeast_ribosomal behave abnormally since their per-
formances degrade significantly after a few small k.

2) RCOMCCA generally is the most efficient method
among the threemethods. Due to its incremental opti-
mization scheme, OMCCA-SS takes linear computa-
tional complexity with k, and so its CPU time
increases with k. MCCA becomes less efficient if the
total number of features in all views are large, for
example yeast_ribosomal, because it has to solve the

generalized eigenvalue problem whose size is the
sumof the numbers of features in all views. As shown
in Fig. 5, MCCA on yeast_ribosomal takes more than
10 times longer than RCOMCCA.

3) All methods show better performances when the
number of training data increases. One notable excep-
tion is MCCA on yeast_ribosomal, which does not
show much gain as training data ratio increases sig-
nificantly. All orthogonally constrained CCA meth-
ods do not show this issue.

These observations demonstrate that our proposed
RCOMCCA not only can achieve noticeably better perfor-
mance but also is much faster than OMCCA-SS and MCCA
for multi-view feature extraction.

7 CONCLUSION

In this paper, we start by proposing an efficient way for solv-
ing CCAwith orthogonality constraints, called the orthogonal
CCA (OCCA). Then to model the data with more than two
views, we present a novel weighted multiset CCA again with
orthogonality constraints (OMCCA). Our algorithms rely on
the solution of a subproblem with trace-fractional structure,
which is solved by a newly proposed SCF iteration. Theoreti-
cally, we perform a global and local convergence analysis.
Extensive experiments are conducted to evaluate the pro-
posed algorithms against existingmethods in terms of various
measurements, such as parameter sensitivity, correlation,
computational time, and data visualization. We further apply
our methods to real-world applications for multi-label classi-
fication and multi-view feature extraction. Experimental
results show that our methods not only perform competi-
tively to or significantly better than baselines in terms of accu-
racy but also are more efficient. This work focuses on the
linear orthogonal projection. In the future, we would like to
explore similar ideas for nonlinear CCA and other variants of
CCAmethodswith orthogonality constraints.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable comments and suggestions to improve

TABLE 4
Means and Standard Deviations of Accuracy Obtained by 1-Nearest Neighbor Classifier on Each View and Embeddings

Obtained by Three CCA Methods Over 10 Random Draws From Each Dataset (30% Training and 70% testizng)

mfeat Caltech101-7 Caltech101-20 Scene15 yeast_ribosomal

view1 0.9513� 0.0053 0.9259� 0.0049 0.7659� 0.0046 0.5766� 0.0091 0.8553 � 0.0472
view2 0.7604� 0.0104 0.9443� 0.0051 0.8257� 0.0064 0.5269� 0.0070 0.8831 � 0.0072
view3 0.9293� 0.0043 0.9415� 0.0070 0.8226� 0.0106 0.5528� 0.0081 0.9856 � 0.0046
view4 0.6780� 0.0064 0.9287� 0.0105 0.7968� 0.0118 0.4609� 0.0079 -
view5 0.9630� 0.0025 0.7759� 0.0133 0.6042� 0.0122 0.6946� 0.0130 -
view6 0.7814� 0.0077 0.9152� 0.0059 0.7645� 0.0128 - -

MCCA 0.8679� 0.0073 (6) 0.8865 � 0.0072 (15) 0.8620� 0.0072 (40) 0.6851� 0.0043 (35) 0.8155� 0.0139 (3)
OMCCA-SS 0.8298� 0.0089 (6) 0.9493 � 0.0024 (45) 0.8527� 0.0057 (50) 0.7030� 0.0081 (50) 0.8379� 0.0110 (5)
RCOMCCA-G (uniform) 0.7634� 0.0134 (5) 0.8880 � 0.0052 (50) 0.7150� 0.0075 (45) 0.4866� 0.0044 (50) 0.8639� 0.0291 (40)
RCOMCCA-G (top-p) 0.9696� 0.0035 (5) 0.9664 � 0.0060 (35) 0.8887� 0.0077 (25) 0.7542� 0.0054 (30) 0.8756� 0.0095 (45)
RCOMCCA-G (tree) 0.9566� 0.0031 (6) 0.9392 � 0.0043 (45) 0.7882� 0.0078 (50) 0.4004� 0.0063 (30) 0.8678� 0.0161 (45)
RCOMCCA-J (uniform) 0.7540� 0.0121 (5) 0.8868 � 0.0068 (30) 0.7350� 0.0091 (50) 0.4995� 0.0059 (50) 0.8492� 0.0201 (35)
RCOMCCA-J (top-p) 0.9692� 0.0038 (5) 0.9649 � 0.0029 (15) 0.8893� 0.0074 (25) 0.7574� 0.0077 (30) 0.8782� 0.0071 (35)
RCOMCCA-J (tree) 0.9581� 0.0055 (6) 0.9474 � 0.0041 (45) 0.7799� 0.0084 (50) 0.4188� 0.0123 (35) 0.8678� 0.0099 (25)

Parameter k used by CCA methods to achieve the best accuracy is shown in the bracket. The symbol “-” is for the non-existence of the view.

Fig. 5. Accuracy and CPU time of three MCCA methods on four datasets
for varying the reduced dimension k and the training ratio.
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