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Abstract—Wepresent an unsupervisedmulti-view partial least squares (PLS) by learning a common latent space from givenmulti-view

data. Although PLS is a frequently used technique for analyzing relationships between two datasets, its extension to more than two views

in unsupervised setting is seldom studied. In this article, we fill up the gap, and our model bears similarity to the extension of canonical

correlation analysis (CCA) to more than two sets of variables and is built on the findings from analyzing PLS, CCA, and its variants. The

resulting problem involves a set of orthogonality constraints on view-specific projectionmatrices, and is numerically challenging to

existingmethods that may have numerical instabilities and offer no orthogonality guarantee on view-specific projectionmatrices. To solve

this problem, we propose a stable deflation algorithm that relies on proven numerical linear algebra techniques, can guarantee the

orthogonality constraints, and simultaneously maximizes the covariance in the common space.We further adapt our algorithm to

efficiently handle large-scale high-dimensional data. Extensive experiments have been conducted to evaluate the algorithm through

performing two learning tasks, cross-modal retrieval, andmulti-view feature extraction. The results demonstrate that the proposed

algorithm outperforms the baselines and is scalable for large-scale high-dimensional datasets.

Index Terms—Partial least squares, unsupervised subspace learning, multi-view learning

Ç

1 INTRODUCTION

IN real-world applications, data are often collected in multi-
ple views. They are for the same object but from different

perspectives. Multi-view data provide more information, but,
at the same time, they create difficulties due to large discrep-
ancies among views. In the cross-modal retrieval [1], [2], it is
needed to perform classification and retrieval on the gallery
and query data in text and image that represent different
views. These tasks are challenging since text and image are
two heterogeneous concepts (views) from different feature
spaces and there generally lacks a meaningful priori to
directly compare two heterogeneous views. Multi-view learn-
ing [3], [4], [5] is designed to overcome such challenges by
exploiting the consensual and complementary information
among different views. A popular and natural approach [6],
[7] is to first learn view-specific projections for all views – one
projection for one view – and then project the original multi-
view data from different views onto a common space by the
view-specific projections tomake comparison possible.

Several multi-view learning approaches have been stud-
ied in the literature (see survey papers [3], [4], [5] for
details). Among them, subspace learning methods have
been extensively explored and successfully applied to various
learning scenarios, such as sparse low-rank approximation

for incomplete data [8], online method for streaming multi-
view data [9], adaptive graph learning for multi-view cluster-
ing and semi-supervised learning [10], multi-view data repre-
sentation learning for supervised learning [11], sparse
learning [12], and deep representation learning for multi-
view data [13]. In this paper, we seek to study multi-view
learning through an approach of unsupervised subspace
learning using multivariate analysis techniques. Specifically,
we assume that all views are generated from a common latent
space and no label information is available during learning
process.

Common unsupervised subspace learning approaches for
two views include the classical canonical correlation analysis
(CCA) [6] and partial least squares (PLS) [7]. CCA attempts
to learn view-specific projections by maximizing the correla-
tion between two views. It has been the workhorse for learn-
ing a common latent space, as evidenced by its successful
applications in various domains [14]. CCA does not produce
orthonormal projectionmatrices in the first place, but orthog-
onality is a preferred property for data visualization and
metric preservation [15], [16], [17]. Due to the special struc-
ture of CCA, the orthogonality can be obtained by whitening
the original view data as a preprocessing step [18]. Unfortu-
nately, the covariance of the original views is no longer pre-
served after the whitening. Orthogonal CCA (OCCA) is
proposed to solve the above issue by maximizing correlation
between two views and simultaneously imposing orthogo-
nality constraints on each individual view-specific projection
matrices [18], [19], [20], [21]. Themerit of OCCA compared to
CCA is that the orthogonal projection matrices are obtained
to maximize correlation while the original covariances are
preserved. PLS [7] maximizes the covariance of two views in
the common space based on the assumption that information
is over-represented so they can be reduced. Some appealing
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properties brought by PLS are its abilities to handle datasets
in which the numbers of features are more than the number
of samples and there are massive colinearities between two
sets of variables [22]. PLS has been successfully used in
many applications such as cross-modal retrieval and pose
estimation of face images [23]. An alternative interpretation
of PLS is that it simultaneously maximizes the correlation
and view-specific variances [24]. This explains the connec-
tions of PLS to CCA and OCCA: they are based on the same
criterion of maximizing correlation but with different con-
straints on variances or covariance of the original data.

Due to the modeling variability for data with more than
two views, various formulations can be used. The extension
of CCA to more than two views, called the multiset CCA
(MCCA), has been extensively studied with various learning
criteria, including maximizing the sum of correlations [25],
maximizing the sum of the squared correlations, minimizing
the smallest eigenvalue or the determinant of the correlation
matrix [26], maximizing the sum of all the pairwise correla-
tions and the high-order correlation [27], and exploiting Hes-
sian for intrinsic local geometry [28]. In [29], twenty variants
are proposed based on four types of constraints and five dif-
ferent objective functions. An OCCA extension to more than
two views has also been explored [30]. However, the exten-
sion of PLS to more than two views is seldom studied. We
notice that the recent work [24] explored PLS for more than
two views for the multivariate regression problem, in which
the regressors are represented in terms of multiple views
and the response is required so that the covariance between
a linear combination of regressors and the response in the
common space is maximized. Hence, the work [24] targets at
a regression model and is different from the study of this
work for unsupervised subspace learning.

To fill up the gap of PLS for handling more than two
views in unsupervised learning, we will first explain a
connection of PLS to CCA and OCCA, and then propose
our Unsupervised Multi-view Partial Least Squares
(UMvPLS), a multi-view variant of PLS. It bears similarity
to the extensions of CCA and OCCA to their multi-view
versions. The resulting problem is numerically challenging
due to the set of orthogonality constraints. To solve the
problem, we propose a stable deflation algorithm so that
the orthogonality constraints are automatically satisfied
while simultaneously the covariance in the common space
is being maximized. We notice that existing methods in
[19], [24], [30] cannot guarantee orthonormality of com-
puted projection matrices and can even breakdown, more
often than one might think, due to their numerical instabil-
ity. The proposed algorithm resolves all these issues.
Moreover, we adapt our algorithm to efficiently handle
large-scale high-dimensional data. Extensive experiments
have been conducted to evaluate our algorithm while con-
ducting two learning tasks: cross-modal retrieval and multi-
view feature extraction. The experimental results show that
our proposed method outperforms CCA, OCCA and their
multi-view extensions, especially when the common space
has a small dimension, and runs much faster than CCA
methods for large-scale high-dimensional data.

The rest of this paper is organized as follows. We first
review the existing methods that are most related to this
work in Section 2. In Section 3, we present an extension of

PLS for unsupervised multi-view subspace learning and
propose novel optimization algorithms for large-scale high-
dimensional data. Extensive experiments are conducted in
Section 4. Finally, we draw our conclusions in Section 5.

Notation. Rm�n is the set of m� n real matrices, Rn ¼
Rn�1, and On�k ¼ fX 2 Rn�k : XTX ¼ Ikg, where Ik 2 Rk�k

is the identity matrix. 1n 2 Rn is the vector of all ones. kxk2
is the 2-norm of vector x 2 Rn. For B 2 Rm�n, RðBÞ is the
column space and, when B is square, trðBÞ is the trace of B.

2 RELATED WORK

We review some existing methods such as CCA, OCCA,
and PLS for unsupervised multi-view learning. Denote the ‘
datasets associated with the multiple views, in terms of data
matrices, by

Si 2 Rni�q for i ¼ 1; 2; . . . ; ‘; (1)

where ni is the number of features of the ith view and q is
the number of samples. Without loss of generality, assume
that each dataset is centered, i.e., Si1q ¼ 0; otherwise they
can be preprocessed by

Si  Si Iq � 1

q
1q1

T
q

� �
¼ Si � 1

q
ðSi1qÞ1Tq 8i: (2)

2.1 CCA

CCA is a two-view multivariate statistical method [6],
where the variables of observations can be partitioned into
two sets, leading to the two views of the data, S1 and S2,
and its goal is to find a common subspace so that two views
are maximally correlated within the subspace. Let Yi 2
Rni�k; 8i ¼ 1; 2, be the projection matrices and Xi ¼ Y T

i Si 2
Rk�q be the embedded points in the common subspace. The
correlation between two views in the common subspace is
naturally defined as

trðX1X
T
2 Þ

kX1kFkX2kF
; (3)

where k � kF is the matrix Frobenius norm. By maximizing
the correlation (3), the optimization problem of the CCA
model is formulated as

max
Y1;Y2

rðfYigÞ :¼ trðY T
1 S1S

T
2 Y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trðY T
1 S1S

T
1 Y1ÞtrðY T

2 S2S
T
2 Y2Þ

p( )
: (4)

Problem (4) can be solved by the singular value decomposi-
tion (SVD) [31]. Specifically, let

Y1 ¼ ðS1S
T
1 Þ�

1
2C1; Y2 ¼ ðS2S

T
2 Þ�

1
2C2: (5)

Problem (4) can be equivalently reformulated as the SVD
problem:

max
C1;C2

trðCT
1WC2Þ s.t. CT

1C1 ¼ Ik;C
T
2C2 ¼ Ik; (6)

where W ¼ ðS1S
T
1 Þ�

1
2S1S

T
2 ðS2S

T
2 Þ�

1
2. The optimal C1 and C2

are the left and right singular vector matrices of W corre-
sponding to its top k singular values [32, p.195]. After (6) is
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solved, the optimal solutions Y1 and Y2 can be recovered
according to (5).

2.2 OCCA

According to (5) and (6), it is clear that the columns of C1

and C2 form two orthonormal bases, but the columns of Y1

and Y2 usually do not unless data points as the columns of
both S1 and S2 are orthogonal, respectively. However, this
case seldom happens in the real world. Another interpreta-
tion is that the classical CCA whitens dataset matrices S1

and S2, and then orthogonally projects these whitened data
into a common space such that correlation is maximized
[18]. This whitening step causes the change of correlation of
the original data. To overcome this issue, an OCCA [18] is
proposed to maximize the correlation of two views in the
common space with orthogonality constraints:

max
Y1;Y2

rðfYigÞ s.t. Y T
1 Y1 ¼ Ik; Y

T
2 Y2 ¼ Ik: (7)

In (7), the original covariance of two views is maintained.
Problem (7) is no longer solvable by SVD, unlike CCA. Sev-
eral methods were proposed to solve this problem, includ-
ing generic optimization methods on matrix manifolds [18],
and a method (which we will call OCCA-SSY) in [19] via
deflation that somewhat solves (7).

2.3 PLS

PLS was originally developed as a method for supervised
multivariate analysis [7]. It aims to find orthonormal bases
so that the variances and correlation are all maximized in a
common space. Specifically, PLS is to solve the following
problem

max
Y1;Y2

rðfYigÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðY T

1 S1ST
1 Y1ÞtrðY T

2 S2ST
2 Y2Þ

q
s.t. Y T

1 Y1 ¼ Ik; Y
T
2 Y2 ¼ Ik:

(8)

According to (3), the objective function of (8) is the same as
the covariance matrix between the projected input and out-
put data, that is, trðY T

1 S1S
T
2 Y2Þ. In other words, PLS is

equivalent to the following problem

max
Y1;Y2

trðY T
1 S1S

T
2 Y2Þ s.t. Y T

1 Y1 ¼ Ik; Y
T
2 Y2 ¼ Ik: (9)

Mathematically, this is the same as (6), explicitly solvable by
the SVD of S1S

T
2 .

In what follows, we consider PLS as an unsupervised
subspace learning method since two views are equivalently
treated with no distinction for regressors and responses as
commonly used in regression models. In this case, PLS not
only maximizes correlation and variances, but also directly
produces the orthonormal projection matrices, in contrast to
CCA.

2.4 CCA and OCCA for Multiple Sets of Variables

Multiset CCA (MCCA) is an extension of CCA for mult-var-
iables. Different from two views, multi-view data leads to
modeling flexibility for MCCA. Here, we briefly introduce
one widely used variant by seeking projections to maximize
the sum of the pairwise correlations between any two

canonical variates given by

max
ðY1;...;Y‘Þ2Y

X‘

i;j¼1
trðY T

i SiS
T
j YjÞ; (10)

where Y is some feasible set of projection matrices. Two
commonly used ones are [29]:

Y :¼
n
ðY1; . . . ; Y‘Þ :

X‘

i¼1
Y T
i SiS

T
i Yi ¼ Ik

o
; (11)

Y :¼
n
ðY1; . . . ; Y‘Þ : Y T

i SiS
T
i Yi ¼ Ik; 8i ¼ 1; . . . ; ‘

o
:

(12)

MCCA (10) with condition (11) can be turned into a general-
ized eigenvalue problem [29].

Similarly, OCCA is extended for multi-variables in [30]
and the extension does not directly solve (10). For the ease
of reference, we name the extension as OMCCA-SS [30].

3 UNSUPERVISED MULTI-VIEW PLS

3.1 Motivation and Contributions

PLS has the advantages of having the variances maximized
and producing orthonormal projection matrices in contrast
to CCA, and having the covariance maximized instead of
maintaining covariance as modeled by OCCA [18]. How-
ever, the extension of PLS to multiset variables is seldom
studied. We notice that in the most recent work [24] it is pro-
posed to extend supervised PLS for multi-view learning
where the relationships between the response and the
weighted combination of multi-view regressors are mod-
eled. In addition, the optimization method proposed in [24]
cannot guarantee that projection matrices are orthonormal
and also its convergence analysis is questionable.

In what follows, we will formulate a multi-view PLS for
unsupervised subspace learning – UMvPLS, and propose
two algorithms for its robust and efficient implementations
with Algorithm 1 geared towards modest-scale multi-view
data while Algorithm 2 towards large-scale multi-view
data. Because they are built upon well-developed numerical
linear algebra techniques, both algorithms are free from
any numerical instability issues previously witnessed for
OCCA-SSY [19] and OMCCA-SS [30], and they can prov-
ably guarantee that computed projection matrices fYig are
orthonormal.

3.2 Formulation of Unsupervised Multi-View PLS

Let n ¼P‘
i¼1 ni. By concatenating all ‘ data matrices verti-

cally, we have the following compact representation:

S ¼
S1

S2

..

.

S‘

26664
37775 2 Rn�q; S 1q ¼

S11q
S21q

..

.

S‘1q

26664
37775 ¼ 0: (13)

We further partition the covariance matrix S S T and projec-
tion matrix Y as
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S S T ¼ A ¼

C11 C12 � � � C1‘

C21 C22 � � � C2‘

..

. ..
. . .

. ..
.

C‘1 C‘2 � � � C‘‘

266664
377775; Y ¼

Y1

Y2

..

.

Y‘

266664
377775; (14)

where Cij ¼ SiS
T
j and Yi 2 Rni�k; 8i; j ¼ 1; . . . ; ‘.

Following the modeling process of MCCA, we propose
our unsupervised multi-view PLS (UMvPLS) model as the
following optimization problem

max
fYig

fðfYigÞ :¼ trðY TA Y Þ� �
s.t. Y T

i Yi ¼ Ik; 8i ¼ 1; . . . ; ‘:
(15)

The difference between (15) and OMCCA-SS [30] is in their
feasible sets of projections, analogously to that between PLS
and OCCA as discussed in Section 2. As a result, problem (15)
is also not an easy optimization problem to solve. Its KKT con-
dition is given by amulti-parameter eigenvalue problem

A

Y1

Y2

..

.

Y‘

266664
377775 ¼

Y1L1

Y2L2

..

.

Y‘L‘

266664
377775; (16)

where LT
i ¼ Li 2 Rk�k for 1 � i � ‘. By (16), we have for

(15)

fðfYigÞ ¼
X
i

trðLiÞ: (17)

It is not clear how to find the solution to (16) that maximizesP
i trðLiÞ. The multi-parameter eigenvalue problem (16) is

numerically challenging and there is no existing numerical
linear algebra technique that can readily solve it, even for
the case k ¼ 1. For this reason, in what follows, we will pro-
pose efficient algorithms to approximately solve (15).

3.3 An Incremental Algorithm for UMvPLS

Due to the difficulty in solving the multi-parameter eigen-
value problem (16), we seek to compute one column of Y at
a time with the help of a deflation idea that traces back to
[33] so that the ‘ orthogonality constraints in (15) are satis-
fied, RðYiÞ � RðSiÞ 8i (thus range constrained), and at the
same time fðfYigÞ is decently maximized. The approach is
incremental in nature and we shall call it an incremental
algorithm for UMvPLS.

The building block of our overall algorithm can be best
described by the case k ¼ 1 of (15). Instead of solving (15)
directly, we consider a simpler problem

max
fzig

fðfzigÞ � max
z

zTA z s.t.
X
i

zTi zi � zTz ¼ 1; (18)

where zT ¼ ½zT1 ; zT2 ; . . . ; zT‘ 	T. This problem is equivalent to
the standard eigenvalue problem

A z ¼ �z: (19)

Let �maxðA Þ be the largest eigenvalue of A and zopt the cor-
responding unit eigenvector. Then zopt is a maximizer of
(18) and fðzoptÞ ¼ �maxðA Þ. It is worth noting that problem

(18) is not equivalent to problem (15) with k ¼ 1. The key
part of the proposed algorithm is to transform the solution
zopt to the simpler problem (18) to an approximate solution
yopt to problem (15) for k ¼ 1 as follows: first partition zopt

conformally as

zopt ¼
zopt1

zopt2

..

.

zopt‘

26664
37775 with zopti 2 Rni ;

and let

gi ¼ kzopti k2; yopti ¼ zopti =gi; yopt ¼
yopt1

yopt2

..

.

yopt‘

26664
37775: (20)

Evidently,
P

i g
2
i ¼ 1. This yopt will be regarded as an

approximate maximizer of (15) for the case k ¼ 1. Since

�maxðA Þzopti ¼
X
j

Cijz
opt
j ¼ Si

X
j

ST
j z

opt
j 2 RðSiÞ; (21)

we conclude that yopti ¼ zopti =gi 2 RðSiÞ 8i.
In terms of the singular value decomposition (SVD), zopt

is also the top left singular vector of S associated with the
largest singular value smaxðS Þ of S , i.e., kS Tzoptk2 ¼
smaxðS Þ. In fact,

A ¼ S S T; �maxðA Þ ¼ ½smaxðS Þ	2:
From the numerical point of view, computing zopt via calcu-
lating the top left singular vector of S is both more accurate
and economical (especially when

P
i ni 
 q or � q) [34],

[35]. Hence, the proposed method is extremely helpful for
solving UMvPLS for large-scale data or high-dimension
data in cases when either there are a large number of views
or there some views residing in very high-dimensional
spaces.

The set fyopti g well represents the first set of most corre-
lated unit vectors for the ‘ datasets, and it gives the first col-
umn of Y . For the next set of unit vectors representing the
second most significant ones, each of which is orthogonal to
the corresponding one in the set just computed, we propose
to use a classical deflation idea [33] from numerical linear
algebra:

1) update each Si by

Si  
�
Ini � yopti ðyopti ÞT

�
Si ¼ Si � yopti

�ðyopti ÞTSi

�
; (22)

2) use these updated Si to form S as in (13) and com-
pute its top left singular vector ẑopt ¼ ½ẑopti 	;

3) post-process ẑopt like in (20) to yield ŷopt ¼ ½ŷopti 	 for
the next column of Y .

We claim that the orthogonality between each ŷopti and
the corresponding yopti is guaranteed. To see it, we let bSi

denote the updated Si in (22), i.e., bSi ¼ Si � yopti

�ðyopti ÞTSi

�
.

It can be verified that

ðyopti ÞT bSi ¼ ðyopti ÞT
�
Ini � yopti ðyopti ÞT

�
Si ¼ 0:
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By the range constraining property in (21), ŷopti ¼ bSiwi for
some vector wi and consequently

ðyopti ÞTŷopti ¼ ðyopti ÞT bSiwi ¼ 0:

We summarize our algorithm for UMvPLS in Algorithm 1.

Algorithm 1. UMvPLS: An Incremental Algorithm

Input: fSi 2 Rni�qg (each Si is centered), integer 1 � k � min
fn1; . . . ; n‘; qg;

Output: fYi 2 Oni�kg, the set of most correlated orthonormal
projection matrices.

1: compute the most dominant left singular vector z ¼ ½zT1 ; . . . ;
zT‘ 	T of S in (13), where zi 2 Rni ;

2: y
ð1Þ
i ¼ zi=kzik2 for i ¼ 1; 2; . . . ; ‘;

3: for j ¼ 1; 2 . . . ; k� 1 do
4: update Si  Si � y

ðjÞ
i ½yðjÞi 	TSi

	 

for i ¼ 1; 2; . . . ; ‘;

5: compute the most dominant left singular vector z ¼ ½zT1 ; . . . ;
zT‘ 	T of S in (13) with the updatedSi, where zi 2 Rni ;

6: y
ðjþ1Þ
i ¼ zi=kzik2 for i ¼ 1; 2; . . . ; ‘;

7: end for
8: Yi ¼ ½yð1Þi ; . . . ; y

ðkÞ
i 	 for i ¼ 1; 2; . . . ; ‘;

9: return fYi 2 Oni�kg.

The brackets in the last expression of (22), as well as these
at line 4 of Algorithm 1, shall be respected for numerical
efficiency. Algorithm 1 as stated is suitable for a small to
medium scale UMvPLS problem. Later in Section 3.4, we
will explain how it can be adapted for large scale multi-
view data.

Theorem 1 below shows that the solution returned by
Algorithm 1 satisfies the orthogonality constraints in prob-
lem (15).

Theorem 1. Let fYig be the output of Algorithm 1. Then
Y T
i Yi ¼ Ik andRðYiÞ � RðSiÞ 8i.

Proof. Denote the jth updated Si at line 4 of Algorithm 1 by
S
ðjÞ
i , and S

ð0Þ
i ¼ Si is the input one. Similarly,

Y
ðjÞ
i ¼ ½yð1Þi ; . . . ; y

ðjÞ
i 	: (23)

We will prove

ðY ðjÞi ÞTY ðjÞi ¼ Ij; RðY ðjÞi Þ � RðSiÞ 8i; (24)

by induction on j. Evidently, the claims in (24) hold for
j ¼ 1, based on our discussions leading to Algorithm 1 in
this section. Suppose they are true for j � t. We have to
prove them for j ¼ tþ 1. To this end, we note

S
ðtÞ
i ¼

Yt
j¼1

Ini � y
ðjÞ
i ½yðjÞi 	T

	 

Si ¼ Ini � Y

ðtÞ
i ðY ðtÞi ÞT

h i
Si;

because ðY ðtÞi ÞTY ðtÞi ¼ It. Immediately,

RðSðtÞi Þ � RðSiÞ þ RðY ðtÞi Þ � RðSiÞ:

By construction, y
ðtþ1Þ
i 2 RðSðtÞi Þ and thus y

ðtþ1Þ
i ¼ S

ðtÞ
i wi

for some vector wi. Therefore,

ðY ðtÞi ÞTyðtþ1Þi ¼ ðY ðtÞi ÞTSðtÞi wi

¼ ðY ðtÞi ÞT Ini � Y
ðtÞ
i ðY ðtÞi ÞT

h i
Siwi ¼ 0;

leading to (24) for j ¼ tþ 1. tu

3.4 Scalable Algorithm for UMvPLS
on Large-Scale Data

Algorithm 1 is not scalable for large-scale data since all Si

there are likely dense and computing a full SVD is an expen-
sive operation. At lines 1 and 5 of Algorithm 1, if a full
dense SVD is computed by, e.g., MATLAB’s svd which is
based on LAPACK [36], as a way to extract the top left sin-
gular vector, the cost is Oðminfnq2; n2qgÞ flops, where n ¼P

i ni. Fortunately, only the top left singular vectors are
required at both lines. Therefore a Krylov subspace type
iterative method based on the Golub-Kahan bidiagonliza-
tion [35], [37], [38] can get the job done in OðnqÞ flops for
each top left singular vector. The saving will be even greater
when original data matrices Si (unlikely centered however)
are sparse.

Algorithm 2. UMvPLS: An Incremental Algorithm (Scal-
able Version)

Input: fSraw
i 2 Rni�qg (each Sraw

i is not necessarily centered),
integer 1 � k � minfn1; . . . ; n‘; qg;

Output: fYi 2 Oni�kg, the set of most correlated orthonormal
projection matrices.

1: Y
ð0Þ
i ¼ ½	 for i ¼ 1; 2; . . . ; ‘;

2: call MATLAB’s svds to compute the most dominant left sin-
gular vector z ¼ ½zT1 ; . . . ; zT‘ 	T of S ð0Þ, where zi 2 Rni , and
matrix-vector products by S ð0Þ and by ðS ð0ÞÞT are calculated
according to (27) and (28), respectively;

3: y
ð1Þ
i ¼ zi=kzik2 and Y

ð1Þ
i ¼ y

ð1Þ
i for i ¼ 1; 2; . . . ; ‘;

4: for j ¼ 1; 2 . . . ; k� 1 do
5: call MATLAB’s svds to compute the most dominant left

singular vector z ¼ ½zT1 ; . . . ; zT‘ 	T of S ðjÞ, where zi 2 Rni ,
and matrix-vector products by S ðjÞ and by ðS ðjÞÞT are cal-
culated according to (27) and (28), respectively;

6: y
ðjþ1Þ
i ¼ zi=kzik2 and Y

ðjþ1Þ
i ¼ ½Y ðjÞi ; y

ðjþ1Þ
i 	 for i ¼ 1; 2; . . . ; ‘;

7: end for
8: Yi ¼ Y

ðkÞ
i for i ¼ 1; 2; . . . ; ‘;

9: return fYi 2 Oni�kg.

A key requirement of these Krylov subspace methods
[35, chapter 10] is the ability to compute matrix-vector prod-
ucts, in our case,

S ðjÞx; ðS ðjÞÞTy; (25)

fast, for any given x 2 Rq and y 2 Rn, where S ðjÞ is given by
(13) with Si replaced by S

ðjÞ
i (introduced in the proof of The-

orem 1). We now explain how these two matrix-vector
products should be done for an efficient scalable implemen-
tation of Algorithm 1. Recall that Si (denoted by S

ðjÞ
i hereaf-

ter) at line 4 there can be written as

S
ðjÞ
i ¼ Ini � Y

ðjÞ
i ðY ðjÞi ÞT

h i
Sraw
i Iq � 1

q
1q1

T
q

� �
; (26)
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where Sraw
i represents the original raw data matrix that may

not even be centered, and Y
ðjÞ
i is given by (23). An efficient

computation of S ðjÞx ¼: z � ½zT1 ; zT2 ; . . . ; zT‘ 	T is as follows:

1) compute

x x� ½ð1Tq xÞ=q	1q; (27a)

2) for i ¼ 1; 2; . . . ; ‘ do

zi  Sraw
i x; (27b)

zi  zi � Y
ðjÞ
i

�ðY ðjÞi ÞTxi

�
; (27c)

where (27b) and (27c) are executed in order.
Likewise, z :¼ ðS ðjÞÞTy should be done as follows: parti-

tion y ¼ ½yT1 ; yT2 ; . . . ; yT‘ 	T with yi 2 Rni , and then

1) for i ¼ 1; 2; . . . ; ‘ do

yi  yi � Y
ðjÞ
i

�ðY ðjÞi ÞTyi
�
; (28a)

yi  ðSraw
i ÞTyi; (28b)

where (28a) and (28b) are executed in order;
2) compute

y 
X‘

i¼1
yi; z y� ½ð1Tq yÞ=q	1q: (28c)

It is very important to notice that during (27) and (28),
Sraw
i as the raw input matrices are never changed.
In our implementation of the incremental algorithm for

UMvPLS for large scale (possibly sparse) multi-view data,
we take advantage of MTALAB’s svds, an implicit-
restarted Lanczos type method based on the Golub-Kahan
bidiagonlization. For more details about the mathematics
and algorithm of svds, the reader is referred to [38], [39].
Algorithm 2 summarizes our current implementation for
large-scale multi-view data.

Compared to the deflation method used in [30] for
OMCCA-SS,Algorithms 1 and 2 have threemajor advantages:

1) Our algorithms are robust and efficient because they
use proven numerical linear algebra techniques as
building blocks;

2) They do not require any Cii to be positive definite
because it relies on solving the standard symmetric
eigenvalue problem like (19).

3) Algorithm 2 is scalable in handling large-scale high-
dimensional multi-view data.

4 EXPERIMENTS

We conduct experiments to compare the proposed UMvPLS
(solved by our incremental algorithm) with baseline meth-
ods on various datasets in terms of two applications: cross-
modal retrieval and multi-view feature extraction. As
UMvPLS is devised for multi-view data, it is expected to
work well for two view data, as well as data of more than
two views. In the following, we will first evaluate UMvPLS
for cross-modal retrieval due to its inherent problem of two
views, and then conduct extensive experiments for multi-
view feature extractions with various number of views.

4.1 Experimental Settings

Datasets used in the experiments are shown in Table 1. The
first three datasets [40]: TVGraz, Wikipedia, and Pascal,
each of which consists of pairs of image and text, are used
for the task of cross-modal retrieval. Specifically, there are
2058 pairs from 10 categories in TVGraz, 2866 pairs from 10
categories in Wikipedia, and 1000 pairs from 20 categories
in Pascal. Images are represented by the bag-of-words
(BOW) model using SIFT descriptors quantized with the
1024 visual word codebook [41] and texts are represented
by the probabilities of text words under 100 hidden topics
from latent Dirichlet allocation model [42]. As discussed in
[40], the three datasets have different properties: Wikipedia
contains high quality images and texts, but the image intra-
class variability is large because of the broad class catego-
ries, so the classification accuracy is generally low on
images; TVGraz has good correlations of image and text to
the narrow object classes, so accuracies on both image and
text are acceptable; Pascal is the most challenging visual
datasets, where the added text features are not semantically
rich, so accuracies on both image and text are low.

The rest six datasets in Table 1 are used for the task of
multi-view feature extraction. We apply various feature
descriptors to extract features of views for image datasets:
Caltech1011[43], Scene152 [44], CENTRIST [45], GIST [46],
LBP [47], histogram of oriented gradient (HOG), color histo-
gram (CH), and SIFT-SPM [44]. Note that we drop CH for
Scene15 due to the gray-level images. Multiple-Features is

TABLE 1
Data Sets Used in the Experiments, Where the Number of Features for Each View is Shown Inside the Bracket

samples

Data set training testing class view 1 view 2 view 3 view 4 view 5 view 6

TVGraz 500 1558 10 Text (100) Image (1024) - - - -
Wikipedia 693 2173 10 Text (100) Image (1024) - - - -
Pascal 300 700 20 Text (100) Image (1024) - - - -

Multiple-Features 2000 10 fac (216) fou (76) kar (64) mor (6) pix (240) zer (47)
Caltech101-7 1474 7 CENTRIST (254) GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)
Caltech101-20 2386 20 CENTRIST (254) GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)
Scene15 4310 15 CENTRIST (254) GIST (512) LBP (531) HOG (360) SIFT-SPM (1000) -
NUSWIDEOBJ 30000 31 CH (65) CM (226) CORR (145) EDH (74) WT (129) -
Reuters 18758 6 English(21531) France (24892) German (34251) Italian (15506) Spanish (11547) -

1. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
2. https://figshare.com/articles/15-Scene_Image_Dataset/7007177
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handwritten numeral data3 [48] with six views including
profile correlations (fac), Fourier coefficients of the character
shapes (fou), Karhunen-Love coefficients (kar), morphologi-
cal features (mor), pixel averages in 2� 3 windows (pix),
and Zernike moments (zer). NUSWIDEOBJ contains 30,000
images from 31 categories, where five precomputed features
are used: color moment (CM), CH, color correlation
(CORR), edge distribution (EDH) and wavelet texture (WT)
[49]. Reuters is a multi-view text categorization test collec-
tion dataset containing feature characteristics of documents
originally written in five languages (English, French,
German, Italian, and Spanish) and their translations over a
common set of six categories (C15, CCAT, E21, ECAT,
GCAT, and M11). Only a subset of Reuters, those written in
English and their translations in other four languages, is
used. The six datasets show different properties such as
Retuters has high-dimensional features for each of five
views and NUSWIDEOBJ consists of a large number of sam-
ples with a small number of related features for each view.

To demonstrate the effectiveness of Algorithm 2, we
compare UMvPLS with existing methods CCA [6] and
CCA-SSY [50] for the two-view datasets (the first three in
Table 1), and MCCA with the SUMCOR model [29] and
OMCCA-SS [30] for the multi-view datasets (the last six in
Table 1). Except for the dimension k of the reduced space,
all methods do not have any other hyper-parameter. In
addition to the task-specific performance, we will also
report the performance of the compared methods by vary-
ing the dimension k of the reduced space. All views of each
dataset are mapped to the common space. Finally, the learn-
ing methods and evaluation approaches are conducted in
the common space.

4.2 Cross-Modal Retrieval

Because of the rapid growth of multimedia data that usually
contain mixtures of things, such as documents with both
texts and images, any capability of decent cross-modal
retrieval is significant and, as a result, cross-modal retrieval
is attracting more and more attention. However, the incon-
sistency between different media types makes it challenging

to measure the cross-media similarity of instances [51]. In
overcoming the heterogeneity gap, CCA has become the
standard approach by seeking a common representation for
different media types [1], [2], [52].

Following [1], we consider two tasks given a set of pairs
of text and image. One is the text retrieval using an image
query, and the other is the image retrieval using a text
query. For both tasks, the mean average precision (MAP) is
used to measure the performance of the ranking produced
by each CCA model. Note that MAP is a widely used mea-
sure in the image retrieval literature. The larger the MAP is,
the better the model performs. Three distances, the L1 dis-
tance, the normalized correlation (NC) and the L2 distance,
are evaluated by computing the similarity between a query
and its retrieved object mapped into the common space pro-
duced by CCA and its variants.

Table 2 shows the best MAP and average scores for k 2
½2; 3; 5 : 5 : 90	 by CCA, OCCA-SSY, and UMvPLS for the
two tasks on the datasets Wikipedia, TVGraz, and Pascal.
From Table 2, we have the following observations:

� Both OCCA-SSY and UMvPLS outperform CCA on
Wikipedia and Pascal. UMvPLS is significantly more
accurate than any of the two CCA-based methods
for both tasks, especially on the most challenging
data Pascal. This demonstrates that UMvPLSA is
most effective for cross-modal retrieval.

� OCCA-SSY performs worst on TVGraz. Its MAP
scores for both tasks are equally bad. One of the reason
is that OCCA-SSY encountered numerical instability
and, as a result, cannot obtain proper orthonormal pro-
jection matrices for both views. But UMvPLS does not
face this issue. This empirically verifies the theoretical
results in Section 3.3.

� Among all three methods with three distance met-
rics, UMvPLS shows the best results for both tasks.

� The MAP scores with NC for all three methods are
the best among with any of the three metrics. This is
consistent with the observations in [1]. Additionally,
the ones by UMvPLS are the best among all three
methods and that further proves that UMvPLS can
maximize the correlation between image and text
better.

TABLE 2
MAP Scores of CCA, OCCA-SSY, and UMvPLS in Terms of Three Metrics and Two Settings: Image Query and Text Query

CCA OCCA-SSY UMvPLS

data metric Image Query Text Query Average Image Query Text Query Average Image Query Text Query Average

Wikipedia
L2 0.1255 (15) 0.1121 (10) 0.1188 0.1188 (1) 0.1553 (20) 0.1370 0.1499 (2) 0.1702 (4) 0.1601
L1 0.1254 (20) 0.1121 (11) 0.1187 0.1188 (1) 0.1484 (20) 0.1336 0.1495 (2) 0.1614 (4) 0.1554
NC 0.1163 (2) 0.1121 (5) 0.1142 0.1908 (20) 0.1573 (20) 0.1740 0.2445 (3) 0.1773 (6) 0.2109

TVGraz
L2 0.1132 (14) 0.1154 (3) 0.1143 0.1116 (1) 0.1116 (1) 0.1116 0.1772 (3) 0.2290 (9) 0.2031
L1 0.1132 (16) 0.1157 (3) 0.1144 0.1116 (1) 0.1116 (1) 0.1116 0.1718 (3) 0.2135 (8) 0.1926
NC 0.1123 (4) 0.1158 (1) 0.1141 0.1116 (1) 0.1116 (1) 0.1116 0.2764 (9) 0.2494 (9) 0.2629

Pascal
L2 0.0653 (3) 0.0584 (5) 0.0619 0.0863 (3) 0.1252 (3) 0.1058 0.1102 (3) 0.1208 (6) 0.1155
L1 0.0645 (5) 0.0586 (20) 0.0616 0.0853 (3) 0.1205 (3) 0.1029 0.1064 (3) 0.1128 (5) 0.1096
NC 0.0655 (20) 0.0599 (2) 0.0627 0.1576 (19) 0.1274 (19) 0.1425 0.1662 (4) 0.1320 (4) 0.1491

The average MAP scores over the two settings are also reported. The best average scores over the three methods and three metrics are printed in bold, where the
reduced dimension corresponding to the MAP score is shown in the bracket.

3. https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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We also demonstrate the robustness of the three methods
as the dimension k of the reduced space varies. Fig. 1 illus-
trates the average MAP scores of the compared methods
over two tasks on the three datasets with respect to metrics
NC, L2, and L1. In all cases, CCA performs very poorly and
is a noncontender, compared to the better one of UMvPLS
and OCCA-SSY. On TVGraz, UMvPLS outperforms OCCA-
SSY by wide margins; On Wikipedia, UMvPLS achieves sig-
nificantly better results than OCCA-SSY for smaller tested
ks but their performance gap starts to shrink as k increases;
On Pascal, UMvPLS holds an edge over OCCA-SSY for
small ks (k � 50 for NC, k � 30 for L2, and k � 25 for L1).
The peak average MAP scores of UMvPLS can generally be
obtained for k 2 ½2; 30	, but OCCA-SSY often requires larger
k for decent average MAP scores. Hence, UMvPLS is more
suitable than OCCA-SSY for retrieval and achieves faster
responses since computing similarity between two points in
reduced spaces of lower-dimensions is much cheaper.

4.3 Multi-View Feature Extraction

Weevaluate the performance of UMvPLS and two otherCCA-
based multi-view learning methods, MCCA and OMCCA for

the multi-view feature extraction task in terms of classifica-
tion. By following the experimental settings in [30], we divide
each experiment in four steps: 1) split data into training and
testing data with certain ratio, 2) learn the mapping function
from the training data to map the data of each view to a
reduced common space, 3) obtain the representations of
multi-view data points for both training and testing data via
the serial feature fusion strategy [19], and 4) predict/evaluate
the labels of testing data via the 1-nearest neighbor (1NN) clas-
sifier learned from the training data. In the experiments, we
use the euclidean distance as the distance metric in the 1NN
classifier and classification accuracy to measure learning per-
formance. As in our cross-modal retrieval experiments, we
also investigate the impact of the dimension k of the reduced
space.Moreover, we study the influence of the ratio of training
and testing data split. To achieve statistically meaningful
results, we repeat each experiment with 10 random splits of
training and testing data and report the mean accuracies with
the associated standard deviations. In addition, we evaluate
the performance of the 1NN classifier using its results on each
single view as the baselines. It is worth noting that Reuters
contains large-scale high-dimensional data. MCCA and
OMCCA-SS cannot handle such high-dimensional data due to
the high computational complexity of eigen-decomposition
and large memory requirement. To make them feasible and
use their results as the baselines for Reuters, we apply PCA to
each of its view and to reduce their dimensions to 1000. Since
UMvPLS is efficient for and can tackle data of very high
dimensions (even more so when all Sraw

i are sparse), we don’t
need and don’t do such a preprocessing stepwhen it comes to
UMvPLS.

The classification accuracies of MCCA, OMCCA-SS, and
UMvPLS on six multi-view datasets are shown in Table 3,
together with the classification results obtained by each of
the single-view data, respectively. From Table 3, we have
the following observations:

� The classification results based on each single view
data can be very different viewwise. MCCA achieves
better accuracies on four out of the six datasets than
the best single-view classifier results. On the other
two datasets, Multiple-features and Caltech101-7,
MCCA is still better than the worst single-classifier.

� OMCCA-SS also achieves better accuracies on four out
of the six datasets than the best single-view classifier,
but not all of the four datasets on which OMCCA-SS
performs better are the same as the four datasets on
which MCCA performs better. Overall, OMCCA-SS

Fig. 1. Average MAP scores of CCA, OCCA-SSY, and UMvPLS over two
tasks on datasets: Wikipedia, TVGraz, and Pascal with respect to NC,
L2, and L1.

TABLE 3
Classification Accuracy of MCCA, OMCCA-SS, UMvPLS, and the Single-View Classifier With 20 percent Training and 80 percent

Testing Split on Data

Multiple-features Caltech101-7 Caltech101-20 NUSWIDEOBJ Scene15 Reuters

view1 0.9434 � 0.0056 0.9214 � 0.0049 0.7543 � 0.0056 0.1597 � 0.0023 0.5537 � 0.0108 0.5019 � 0.0312
view2 0.7396 � 0.0105 0.9312 � 0.0064 0.8023 � 0.0056 0.1733 � 0.0033 0.5100 � 0.0099 0.4784 � 0.0271
view3 0.9133 � 0.0081 0.9359 � 0.0065 0.8017 � 0.0066 0.1915 � 0.0019 0.5385 � 0.0051 0.4537 � 0.0453
view4 0.6731 � 0.0124 0.9080 � 0.0126 0.7760 � 0.0126 0.1698 � 0.0022 0.4478 � 0.0072 0.4556 � 0.0318
view5 0.9530 � 0.0059 0.7504 � 0.0082 0.5816 � 0.0118 0.2011 � 0.0013 0.6484 � 0.0174 0.4503 � 0.0282
view6 0.7731 � 0.0110 0.9111 � 0.0061 0.7404 � 0.0121 - - -
MCCA 0.8666 � 0.0064(6) 0.8750 � 0.0099(15) 0.8427 � 0.0070(40) 0.2130 � 0.0037(30) 0.6696 � 0.0095(30) 0.7616 � 0.0040(25)
OMCCA-SS 0.8198 � 0.0077(6) 0.9390 � 0.0083(45) 0.8329 � 0.0057(50) 0.1190 � 0.0000(3) 0.6792 � 0.0085(50) 0.7825 � 0.0026(45)
UMvPLS 0.9599 � 0.0037(5) 0.9525 � 0.0049(10) 0.8621 � 0.0079(20) 0.2737 � 0.0025(10) 0.6801 � 0.0067(15) 0.7949 � 0.0028(30)
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and MCCA are comparable and, in fact, each method
beats the other on three out of the six datasets. It is also
clear to see that OMCCA-SS can achieve much better
result than MCCA on Caltech101-7, but it performs
worse onMultiple-features.

� UMvPLS obtains the best accuracies over all six data-
sets. It not only demonstrates the ability to improve
the best single-view classifier, but also shows signifi-
cantly better results than MCCA and OMCCA-SS.
Another interesting phenomenon is that the peak
performance of UMvPLS as k varies is often achieved
at a relatively small k. That leads to an important
practical consequence, i.e., to use UMvPLS with a
relatively small k for the best performance and yet at
the lowest cost.

These observations demonstrate that UMvPLS improves
classification performance for multi-view feature extraction
over MCCA, OMCCA-SS, and the single-view classifier.
Compared to OMCCA-SS, UMvPLS can obtain better accu-
racies possibly for two reasons: 1) UMvPLS can better maxi-
mize variance matrices, and 2) OMCCA-SS has a numerical
instability issue and indeed it fails on Multiple-features.
UMvPLS is built on proven numerical linear algebra techni-
ques and guarantees to produce numerically orthonormal
projection matrices (Theorem 1).

We further investigate the influence of three important
factors to the multi-view feature extraction, including:

1) how does the reduced dimension k affect the classifi-
cation performance?

2) how does the size of training data relative to whole
data affect the classification performance?

3) how does the reduced dimension k affect the CPU
time?

Fig. 2 displays our numerical results with respect to these
three factors on five of the six datasets.

First, we observe that accuracy increases when the ratio of
training data increases, as onemight expect. On some datasets
such as Caltech101-7 and Caltech101-20 (view 5), the accura-
cies obtained by the single-view classifier from some of the
views are noticeably lower than from other views. These
views may be considered as weak views for the purpose. The
improvements of MCCA and OMCCA-SS over the single-
view classifier are quite dramatic on Reuters, for which the
accuracies by the single-view classifier on each view are all
much poorer. UMvPLS produces the best results over all data-
sets and the tested training ratios, except for the single-view
classifier on view 5 for Scene15 with training ratio larger than
60 percent. These results confirm that multi-view feature
extraction using subspace learning can work better, and often
much better, than the best single-view classifier.

Second, the accuracies of MCCA, OMCCA-SS, UMvPLS
behave very differently from one another as k varies.
UMvPLS often obtains the peak accuracy at a relatively
small k, while CCA and OMCCA-SS need a large reduced
dimension k in order to achieve reasonable accuracies that
are still worse than UMvPLS at a much smaller k. In particu-
lar, OMCCA-SS fails on NUSWIDEOBJ.

Third, UMvPLS takes much less CPU time on high-
dimensional data, except for NUSWIDEOBJ for a good rea-
son to be explained in a moment. As discussed in Section 3.4,
UMvPLS has a computational complexity that is linear in
the number of input samples, so the reported CPU times are
consistent with the observed computational times on NUS-
WIDEOBJ. On the other hand, UMvPLS is also linear in the
input dimension of the sample points, so it is much cheaper
than Oðn3Þ, the computational complexity of MCCA, and
Oðkn3Þ, the computational complexity of OMCCA-SS,
where n ¼P‘

i¼1 ni. As observed, UMvPLS runs fastest on
the rest of the four datasets.

We now explain why UMvPLS uses more time on
NUSWIDEOBJ than the other two methods. In fact, for

Fig. 2. Accuracies with respect to the ratio of training data over all tested ks (the first row), the dimension k with 20 percent training data (the second
row), as well as the empirical computational cost in CPU time on five multi-view datasets (the third row).
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NUSWIDEOBJ, the total number of features n ¼P
i ni in all

views is 639 while the number q of samples in each view is
30,000which ismuch bigger than 639. In such a case, themore
efficient way is to form covariance matrix A ¼ S S T 2 Rn�n

explicitly once and for all at a costOðn2qÞ and then work with
A exclusively afterwards at a costOðn2Þ. This idea helps only
when n is modest and n� q. But for n so large that storing
n� n densematrices becomes an issue, the ideawill not work
even if n� q. In this latter case, UMvPLS (solved by Algo-
rithm 2) can still get the job done if all Sraw

i are sparse.
In summary, the proposed method UMvPLS not only out-

performs baseline methods, but also runs faster on and are
feasible for high-dimensional data. It is scalable for unsuper-
vised subspace learning on large-scale high-dimensional
multi-view data because of its linear computational complex-
ity in the number of nonzero entries in the given dataset.

5 CONCLUSION

In this paper, we study an extension of the partial least
squares (PLS) method for multi-view data in the unsuper-
vised setting. A new method called the unsupervised multi-
view partial least squares (UMvPLS) method is presented
and it is inspired by the analogous study to CCA and its
variants. To solve the resulting challenging optimization
problem, we propose a stable deflation approach with theo-
retical guarantee and further adapt it to efficiently handle
large-scale high-dimensional data, based on well-developed
matrix computational techniques. Our experimental results
for two learning tasks, cross-modal retrieval and multi-view
feature extraction, show that our new method outperforms
existing methods and is scalable for multi-view data.
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