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Abstract
A trace ratio optimization problem over the Stiefel manifold is investigated from
the perspectives of both theory and numerical computations. Necessary conditions in
the form of nonlinear eigenvalue problem with eigenvector dependency (NEPv) are
established and a numerical method based on the self-consistent field (SCF) iteration
with a postprocessing step is designed to solve the NEPv and the method is proved
to be always convergent. As an application to multi-view subspace learning, a new
framework and its instantiated concrete models are proposed and demonstrated on real
world data sets. Numerical results show that the efficiency of the proposed numerical
methods and effectiveness of the neworthogonalmulti-view subspace learningmodels.
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1 Introduction

We are concerned with the following trace ratio maximization problem

max
XTX=Ik

fθ (X), (1.1a)

where 1 ≤ k < n, Ik is the k × k identity matrix, and

fθ (X) = trace(XTAX + XTD)

[trace(XTBX)]θ , (1.1b)

A, B ∈ R
n×n are symmetric and B is positive semi-definite with rank(B) > n − k,

D ∈ R
n×k , matrix variable X ∈ R

n×k , and parameter 0 ≤ θ ≤ 1. The condition that
rank(B) > n − k ensures the denominator of fθ (X) is always positive for any X such
that XTX = Ik .

Problem (1.1) is a maximization problem on the Stiefel manifold [1]:

O
n×k = {X ∈ R

n×k : XTX = Ik}.

Previously studied special cases include 1) D = 0 and θ = 1 from Fisher’s linear
discriminant analysis (LDA) [31, 46, 47] in the setting of supervisedmachine learning;
2) A = 0 and θ = 1/2 from orthogonal canonical correlation analysis (OCCA) [48];
3) B = In or θ = 0 for which (1.1) is a fundamental problem in numerical linear
algebra, optimization, and applied statistics [5, 8, 12–14, 16, 18, 28, 32, 49–51]. For
our purpose in Sect. 5, problem (1.1) will appear as a subproblem that has to be solved
repeatedly for a novel orthogonal multi-view subspace learning framework.

Our goal is to investigate problem (1.1) as a maximization problem on the Stiefel
manifoldO

n×k in both theory and numerical computation. Ourmajor contributions are
as follows: (1)We transform theKKTcondition of (1.1)with respect to the Stiefelman-
ifold equivalently into a nonlinear eigenvalue problem with eigenvector dependency
(NEPv), a term that was coined in [6]; (2) We establish crucial necessary conditions,
beyond the KKT condition, of local and global maximizers in terms of the extreme
eigenvalues of the NEPv; (3) We characterize the role of D in how precisely it pins
maximizers down, which is important because when D = 0, any maximizer repre-
sents a class of many associated with an element of the Grassmann manifold Gk(R

n),
the set of all k dimensional subspaces of R

n ; (4) A numerical method based on the
self-consistent field (SCF) iteration for the NEPv with post-processing is proposed to
efficiently solve (1.1) as a consequence of our theoretical results, and the method is
always convergent; 5) As an application, we establish a new orthogonal multi-view
subspace learning framework and solve it alternatingly with our method for (1.1)
serving as the computational workhorse.

The rest of this paper is organized as follows. In Sect. 2, we derive the KKT
condition, its associated NEPv, and important theoretical issues to lay the foundation
for the rest of the paper. In Sect. 3, we investigate the role of D in pining down the
maximizers. In Sect. 4, we propose our SCF method for problem (1.1) and conduct
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Trace ratio optimization with an application… 99

a detailed convergence analysis. An application to multi-view subspace learning is
carried out in Sect. 5. Results of numerical experiments are reported in Sect. 6. Finally,
we draw our conclusions in Sect. 7.

Notation. R
m×n is the set of m × n real matrices and R

n = R
n×1. In ∈ R

n×n is
the identity matrix, and 1n ∈ R

n is the vector of all ones. ‖x‖2 is the 2-norm of vector
x ∈ R

n . For B ∈ R
m×n , R(B) is the column subspace and its singular values are

denoted by σi (B) for i = 1, . . . ,min{m, n} arranged in the nonincreasing order, and

‖B‖2 = σ1(B), ‖B‖F =
√
√
√
√

rank(B)
∑

i=1

[σi (B)]2, ‖B‖trace =
rank(B)
∑

i=1

σi (B)

are the spectral norm, the Frobenius norm, and the trace norm (also known as the
nuclear norm) of B, respectively. For a symmetric matrix A ∈ R

n×n , eig(A) =
{λi (A)}ni=1 denotes the set of its eigenvalues (counted by multiplicities) arranged in
the nonincreasing order; A � 0 (� 0)means that A is positive definite (semi-definite).
MATLAB-like notation is used to access the entries of a matrix: X(i : j,k:�) to denote
the submatrix of a matrix X , consisting of the intersections of rows i to j and columns
k to �, and when i : j is replaced by :, it means all rows, similarly for columns.

2 KKT condition and associated NEPv

We start by finding out the first order optimality condition, also known as the KKT
condition, for problem (1.1). To that end, we will need to find the gradient of fθ on
Stiefel manifold O

n×k . It is known that the gradient of fθ on the manifold at X is
given by [1, (3.35)], [8, Corollary 1]

grad fθ |On×k (X) = ΠX

(
∂ fθ (X)

∂X

)

= ∂ fθ (X)

∂X
− X sym

(

XT ∂ fθ (X)

∂X

)

, (2.1)

where ΠX (Z) := Z − X sym(XTZ) and sym(XTZ) = (XTZ + ZTX)/2. With (2.1),
computing the gradient is just a matter of computing the partial derivative ∂ fθ (X)/∂X
for which all entries of X are treated as independent variables. We have

∂ fθ (X)

∂X
= 2

[trace(XTBX)]θ
[

AX + D

2
− θ f1(X)BX

]

,

where f1(X) is simply fθ (X) in (1.1b) with θ = 1. Finally, we obtain the KKT
condition grad fθ |On×k (X) = 0, or equivalently,

2

[trace(XTBX)]θ
[

AX + D

2
− θ f1(X)BX

]

= XΛ̂, (2.2a)

X ∈ O
n×k, Λ̂T = Λ̂ ∈ R

k×k . (2.2b)
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100 L. Wang et al.

An explicit expression for Λ̂ can be obtained by pre-multiplying Eq. (2.2a) by XT.
Equation (2.2a) does not appear in the form of an NEPv because of the isolated term
D. Next, we introduce

E(X) = 2

[trace(XTBX)]θ
[

A + DXT + XDT

2
− θ f1(X)B

]

(2.3)

and consider the following NEPv

E(X)X = XΛ, X ∈ O
n×k . (2.4)

Pre-multiply (2.4) by XT to get Λ = XTE(X)X , which is always symmetric.

Remark 2.1 A KKT condition equivalent to (2.2) can also be obtained by working
with ln fθ (X) = ln(trace(XTAX + XTD)) − θ ln(trace(XTBX)).

Our first theorem establishes an equivalency relation between the KKT condition
(2.2) and NEPv (2.4).

Theorem 2.1 X ∈ O
n×k is a KKT point of (1.1), i.e., it satisfies (2.2), if and only if it

is an orthonormal basis matrix of a k-dimensional invariant subspace of E(X) and
XTD is symmetric.

Proof Suppose that X satisfies (2.2). Pre-multiply (2.2a) by XT and then solve for
XTD to conclude that XTD is symmetric. Next, upon using XTX = Ik , we have

E(X)X = XΛ̂ + 1

[trace(XTBX)]θ XDTX = X

(

Λ̂ + DTX

[trace(XTBX)]θ
)

=: XΛ,

which gives (2.4). On the other hand, suppose that (2.4) holds and XTD is symmetric.
We expand (2.4) and rearrange the terms to get

LHS of (2.2a) = − 1

[trace(XTBX)]θ XDTX + XΛ

= X

(

Λ − DTX

[trace(XTBX)]θ
)

=: XΛ̂,

which gives (2.2a) and also Λ̂ is symmetric because both Λ and DTX are symmetric.

��
The following lemma plays a key role in our analysis later in this paper, where and

henceforth

gθ (X) = trace(XTAX)

[trace(XTBX)]θ . (2.5)

123



Trace ratio optimization with an application… 101

Lemma 2.1 For X , X̂ ∈ O
n×k , if

trace(X̂TE(X)X̂) ≥ trace(XTE(X)X), (2.6)

then

fθ (X) + γ ≤ gθ (X̂) + trace(X̂TDXT X̂)

[trace(X̂TB X̂)]θ , (2.7)

where α = trace(XTAX), δ = trace(XTD), β = trace(XTBX),
β̂ = trace(X̂TB X̂), and

γ = α + δ

β̂θβ

[

(1 − θ)β + θβ̂ − β1−θ β̂θ
]

. (2.8)

Furthermore, if inequality (2.6) is strict, then so is inequality (2.7).

Proof It can be verified that

trace(XTE(X)X) = 2(1 − θ) fθ (X).

Let α̂ = trace(X̂TAX̂). By assumption (2.6), we have

2(1 − θ) fθ (X) ≤ trace(X̂TE(X)X̂)

≤ 2

βθ

[

α̂ + trace(X̂TDXT X̂) − θ f1(X)β̂
]

,

(1 − θ) fθ (X)βθ ≤ α̂ + trace(X̂TDXT X̂) − θ f1(X)β̂,

(1 − θ) fθ (X)
βθ

β̂θ
≤ α̂

β̂θ
+ trace(X̂TDXT X̂)

β̂θ
− θ fθ (X)

β̂1−θ

β1−θ
,

implying

gθ (X̂) + trace(X̂TDXT X̂)

β̂θ
≥ fθ (X) + γ,

where

γ = (1 − θ) fθ (X)
βθ

β̂θ
+ θ fθ (X)

β̂1−θ

β1−θ
− fθ (X)

= (1 − θ)
α + δ

β̂θ
+ θ

α + δ

β
β̂1−θ − α + δ

βθ

= α + δ

β̂θβ

[

(1 − θ)β + θβ̂ − β1−θ β̂θ
]

.

This proves inequality (2.7), and it is strict if inequality (2.6) is strict. ��
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102 L. Wang et al.

Lemma2.1 is rather general and valid for all θ ∈ R actually.As thefirst consequence
of Lemma 2.1, we have the next theorem, where 0 ≤ θ ≤ 1 is imposed to ensure γ

of (2.8) is nonnegative. It lays the foundation of our SCF iteration for NEPv (2.4) in
Sect. 4, which iterates from the current approximation X to the next one X̃ , while the
objective value is increased.

Theorem 2.2 Given X ∈ O
n×k , suppose either θ ∈ {0, 1}, or trace(XTAX+XTD) ≥

0 when 0 < θ < 1. If (2.6) holds for X̂ ∈ O
n×k , then

fθ (X) ≤ gθ (X̂) + trace(X̂TDXT X̂)

[trace(X̂TB X̂)]θ (2.9)

≤ gθ (X̂) + ‖X̂TD‖trace
[trace(X̂TB X̂)]θ = fθ (X̃), (2.10)

where X̃ = X̂(UV T) defined in terms of SVD X̂TD = UΣV T [15]. Furthermore, if
inequality (2.6) is strict, then so is the first inequality in (2.9).

Proof In Lemma 2.1, we note γ ≡ 0 in the case θ ∈ {0, 1}, and in the case 0 < θ < 1
we will have γ ≥ 0 because α + δ = trace(XTAX + XTD) ≥ 0 by assumption and1

(1 − θ)β + θβ̂ − β1−θ β̂θ ≥ 0. Hence inequality (2.9) holds. To prove the inequality
in (2.10), we note, by von Neumann’s trace inequality [42] (see also [17, p. 182], [36,
6.81]), that

trace(X̂TDXT X̂) ≤
k

∑

i=1

σi (X̂
TD)σi (X

T X̂) ≤
k

∑

i=1

σi (X̂
TD) = ‖X̂TD‖trace,

yielding the inequality in (2.10). To see the equality in (2.10), we notice that
X̃TD = VUT X̂TD = VΣV T yielding trace(X̃TD) = ‖X̂TD‖trace, and that the
trace is invariant with respect to similarity transformations. ��
Remark 2.2 In Theorem 2.2, if also X̂TD � 0, then U = V and X̃ = X̂ .

The proof of the inequality in (2.10) above can be adapted to yield the next lemma.

Lemma 2.2 Given X ∈ O
n×k , we have

max
Q∈Ok×k

fθ (XQ) = gθ (X) + ‖XTD‖trace
[trace(XTBX)]θ ,

and Qopt = UV T is a global maximizer, where U , V ∈ O
k×k are from the SVD

XTD = UΣV .

1 This is a classical inequality. A quick proof goes as follows. Suppose β > 0 (otherwise the inequality
clearly holds). Let x = β̂/β. It suffices to show (1 − θ) + θx ≥ xθ for all x ≥ 0. Since xθ is concave
for 0 < θ < 1, the curve of xθ as a function of x is at or below its tangent line at x = 1 and hence
xθ ≤ 1 + θ(x − 1), as was to be shown.
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Lemma 2.3 ([48, Lemma 3]) For any H ∈ R
k×k , we have | trace(H)| ≤ ∑k

i=1 σi (H).

If | trace(H)| = ∑k
i=1 σi (H), then either H � 0 when trace(H) ≥ 0, or H � 0 when

trace(H) ≤ 0.

Our next theorem presents necessary conditions for local or global maximizers of
(1.1).

Theorem 2.3 Let Xopt ∈ O
n×k be a local or global maximizer of (1.1).

(a) If Xopt is a global maximizer, then XT
optD � 0;

(b) If XT
optD � 0, and if also trace(XT

optAXopt + XT
optD) ≥ 0 in the case when

0 < θ < 1, then Xopt is an orthonormal basis matrix of the invariant subspace
associated with the k largest eigenvalues of E(Xopt).

Proof If Xopt ∈ O
n×k is a global maximizer, then by Lemma 2.2

fθ (Xopt) = max
Q∈Ok×k

fθ (XoptQ) = gθ (Xopt) + ‖XT
optD‖trace

[trace(XT
optBXopt)]θ

,

implying trace(XT
optD) = ‖XT

optD‖trace, which in turn implies XT
optD � 0 by

Lemma 2.3. This proves item (a).
Next we prove item (b). Since Xopt is a KKT point of problem (1.1),R(Xopt) is an

invariant subspace of E(Xopt) byTheorem 2.1. Therefore there is an orthogonalmatrix
Q such that the columns of XoptQ ≡ [v1, v2, . . . , vk] are eigenvectors of E(Xopt)

associated with its eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μk .
Let E(Xopt) = UΛUT be the eigen-decomposition of E(Xopt), where U =

[u1, u2, . . . , un], UTU = In , Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn .
Further, we can choose this eigen-decomposition such that v j = ui j and μ j = λi j
for 1 ≤ j ≤ k. It goes as follows: i1 = min{i : λi = μ1} and recursively,
i j = min{i : λi = μ j , i > i j−1} for j = 2, . . . , k. Thus,

Xopt = [ui1, . . . , uik−1 , uik ]QT. (2.11)

Assume, to the contrary, that R(Xopt) is not an eigenspace associated with the k
largest eigenvalues of E(Xopt). Then μk = λik < λk . Necessarily ik > k. At least one
of u j for 1 ≤ j ≤ k does not appear among v j = ui j for 1 ≤ j ≤ k and let u� be
such one. Consider for 0 < ε < 1

Xε =
[

ui1, . . . , uik−1,
√

1 − ε2uik + ε s u�

]

QT (2.12)

which goes to Xopt as ε goes to 0, where s = ±1 such that s uT� Dqk ≥ 0 and qk is the
last column of Q. It can be verified that XT

ε Xε = Ik and

trace(XT
ε E(Xopt)Xε) =

k
∑

j=1

λi j + ε2(λ� − λik )
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104 L. Wang et al.

≥ trace(XT
optE(Xopt)Xopt) + ε2(λk − λik )

> trace(XT
optE(Xopt)Xopt). (2.13)

By Lemma 2.1 and noticing that γ = 0 for θ ∈ {0, 1} and γ ≥ 0 for 0 < θ < because
trace(XT

optAXopt + XT
optD) ≥ 0 is assumed for the case, we have

fθ (Xopt) < gθ (Xε) + trace(XT
ε DXT

optXε)

[trace(XT
ε BXε)]θ . (2.14)

We get from (2.11) and (2.12) that

XT
optXε = Q[ui1 , . . . , uik−1 , uik ]T

[

ui1 , . . . , uik−1 ,
√

1 − ε2uik + ε s u�

]

QT

= Q diag(1, 1, . . . , 1,
√

1 − ε2)
︸ ︷︷ ︸

=:Ω
QT,

and

trace(XT
ε DXT

optXε) = trace(XT
ε DQΩQT) = trace(QTXT

ε DQΩ)

=
k−1
∑

j=1

(

QTXT
ε DQ

)

( j, j) +
√

1 − ε2
(

QTXT
ε DQ

)

(k,k), (2.15)

where
(

QTXT
ε DQ

)

( j, j) denotes the ( j, j)th entry of QTXT
ε DQ. Next, we note

XT
ε D = XT

optD + Q

⎡

⎢
⎢
⎢
⎢
⎣

0
...

0

− ε2

1+√
1−ε2

uTik D + ε s uT� D

⎤

⎥
⎥
⎥
⎥
⎦

,

QTXT
ε DQ = QTXT

optDQ +

⎡

⎢
⎢
⎢
⎢
⎣

0
...

0

− ε2

1+√
1−ε2

uTik D + ε s uT� D

⎤

⎥
⎥
⎥
⎥
⎦

Q

=

⎡

⎢
⎢
⎢
⎣

uTi1D
...

uTik−1
D

uTik D

⎤

⎥
⎥
⎥
⎦
Q +

⎡

⎢
⎢
⎢
⎢
⎣

0
...

0

− ε2

1+√
1−ε2

uTik D + ε s uT� D

⎤

⎥
⎥
⎥
⎥
⎦

Q. (2.16)

Recall that XT
optD � 0, and thus QTXT

optDQ � 0 and, as a result, its (k, k)th entry
(

QTXT
optDQ

)

(k,k) = uTik Dqk ≥ 0. There are two cases to consider
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1. Case
(

QTXT
optDQ

)

(k,k) = uTik Dqk > 0. Then we have

lim
ε→0+

(

QTXT
ε DQ

)

(k,k) = (

QTXT
optDQ

)

(k,k) > 0,

implying
(

QTXT
ε DQ

)

(k,k) > 0 for sufficiently tiny ε;

2. Case
(

QTXT
optDQ

)

(k,k) = uTik Dqk = 0. It follows from (2.16) that

(

QTXT
ε DQ

)

(k,k) = ε s uT� Dqk ≥ 0

by the choice of s we made earlier.

In summary, we always have
(

QTXT
ε DQ

)

(k,k) ≥ 0 for sufficiently tiny ε. Therefore,
for sufficiently tiny ε > 0, we have by (2.15)

trace(XT
ε DXoptXε) ≤

k
∑

j=1

(

QTXT
ε DQ

)

( j, j)

= trace(QTXT
ε DQ) = trace(XT

ε D). (2.17)

Combine (2.14) and (2.17) to get fθ (Xopt) < fθ (Xε) for sufficiently tiny ε > 0,
contradicting that Xopt is a local maximizer. ��
Remark 2.3 Our proof for Theorem 2.3(b) is quite laborious, chiefly because we take
care of both local and global maximizers with the same argument. Just for the case of
a global maximizer alone, it can be significantly simplified. In fact, by Theorem 2.2
and Lemma 2.2, we have from (2.13)

fθ (Xopt) < gθ (Xε) + ‖XT
ε D‖trace

[trace(XT
ε BXε)]θ = max

Q∈Ok×k
fθ (XεQ),

contradicting that Xopt ∈ O
n×k is a global maximizer.

3 The role ofD

When D = 0, fθ (XQ) ≡ fθ (X) for any X ∈ O
n×k and Q ∈ O

k×k , as in the LDA case
for which θ = 1 as well. In such a case, fθ is actually a function on the Grassmann
manifold Gk(R

n), the collection of all k-dimensional subspaces in R
n . Any global

maximizer Xopt is a representative of a class

Xopt := {XoptQ : Q ∈ O
k×k} (3.1)

of maximizers. As a result, maximizers are not unique. Fortunately, often any maxi-
mizer is just as good as another in applications such as LDA.
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106 L. Wang et al.

In general if D �= 0, then fθ (XQ) �≡ fθ (X). The global maximizers of (1.1) cannot
be characterized as simple as we just did for the case D = 0. Our goal in this section is
to characterize the maximizers of (1.1) for a general D. In particular, our main result
imply that if Xopt is a global maximizer and if rank(XT

optD) = k, then Xopt is the
unique maximizer within Xopt in (3.1) in the sense that

fθ (X) < fθ (Xopt) for any X ∈ Xopt but X �= Xopt.

To achieve our goal, we will investigate, for a given X∗ ∈ Gk(R
n),

max
X∈On×k ,R(X)=X∗

fθ (X). (3.2)

Lemma 3.1 Given X ∈ Gk(R
n), the singular values of XTD are independent of the

choice of X ∈ O
n×k subject toR(X) = X , and as a result, rank(XTD) is a constant

for any X ∈ O
n×k satisfying R(X) = X .

Proof Pick a particular X0 ∈ O
n×k such thatR(X0) = X . Any X ∈ O

n×k satisfying
R(X) = X takes the form X0Q for some Q ∈ O

k×k . The conclusion is a simple
consequence of [(X0Q)TD]T[(X0Q)TD] = [XT

0 D]T[XT
0 D], which has nothing to do

with Q. ��
Owing to this lemma, we define the D-rank of X ∈ Gk(R

n) with respect to D ∈
R
n×k by

rankD(X ) = rank(XTD),

for any X ∈ O
n×k satisfyingR(X) = X . Ourmain result in this section is Theorem3.1

below whose proof is deferred to the end of this section after we develop a concrete
version of it in Theorem 3.2.

Theorem 3.1 Given X∗ ∈ Gk(R
n), let r = rankD(X∗). The maximizer Xopt of (3.2)

admits the decomposition

Xopt = XX∗ + YX∗ , (3.3)

where XX∗ having rank(XX∗) = r is unique while YX∗ with rank(YX∗) = k − r has
a freedom of O

(k−r)×(k−r).

To make Theorem 3.1 concrete, we will explicitly construct XX∗ and YX∗ in (3.3).
To this end, we pick a particular X∗ ∈ O

n×k such that R(X∗) = X∗ and keep it
fixed. Then any X ∈ O

n×k satisfyingR(X) = X∗ takes the form X = X∗Q for some
Q ∈ O

k×k and vice versa. With this X∗, (3.2) can be equivalently reformulated as

max
Q∈Ok×k

fθ (X∗Q). (3.4)
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Lemma 3.2 Let S ∈ R
k×k with SVD S = UΣV T, where U , V ∈ O

k×k and

Σ = diag(μ1 Ik1 , . . . , μt−1 Ikt−1 , μt Ikt ) with (3.5a)

μ1 > . . . > μt−1 > μt ≥ 0,
t

∑

i=1

ki = k. (3.5b)

Let r = rank(S), which is k if μt > 0 or k − kt if μt = 0. The maximizers of

max
Q∈Ok×k

trace(QTS) (3.6)

are given by

Qopt = U(:,1:r)V T
(:,1:r) +U(:,r+1:k)WV T

(:,r+1:k), (3.7)

where2 W ∈ O
(k−r)×(k−r) is arbitrary.

Proof By von Neumann’s trace inequality [42],

trace(QTS) ≤
k

∑

j=1

σ j (Q
T)σ j (S) =

k
∑

j=1

σ j (S) = ‖S‖trace = ‖QTS‖trace,

where for the equality to hold, by Lemma 2.3, we need QTS � 0 and vice versa. Any
such Q which we will characterize in a moment is a maximizer of (3.6). Now for any
Q ∈ O

k×k such that QTS � 0, we have

V T(QTS)V = V TQTU
︸ ︷︷ ︸

Σ =: ZΣ � 0.

In particular, ZΣ is symmetric, i.e., ZΣ = (ZΣ)T = ΣZT, fromwhich we get, upon
using Z ∈ O

k×k ,

ZΣZ = (ZΣ)Z = (ΣZT)Z = Σ,

ZΣ2 = (ZΣ)Σ = (ΣZT)Σ = (ΣZT)(ZΣZ) = Σ2Z ,

i.e., Σ2 and Z commute, which implies Z = diag(Z1, . . . , Zt ), where Zi ∈ O
ki×ki .

Again use ZΣ = ΣZT to conclude ZT
i = Zi for 1 ≤ i ≤ t − 1 and ZT

t = Zt too if
μt > 0. Furthermore

0 � ZΣ = diag(μ1Z1, . . . , μt−1Zt−1, μt Zt )

2 By convention, when r = k,W is a null matrix and the termU(:,r+1:k)WVT
(:,r+1:k) disappears from (3.7)

altogether.
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yields that Zi � 0 for 1 ≤ i ≤ t − 1 and Zt � 0 too if μt > 0. Hence Zi = Iki
for 1 ≤ i ≤ t − 1, and Zt = Ikt too if μt > 0 but otherwise Zt ∈ O

kt×kt arbitrary.
Specifically,

Z =
{

Ik, if r = k,

diag(Ir , Zt ), if r < k,
(3.8)

where Zt ∈ O
(k−r)×(k−r) in the case r < k is arbitrary. Finally any maximizer of (3.6)

is given by Q = UZTV T with Z as characterized in (3.8). ��
Remark 3.1 The decomposition of Qopt as the sum of two terms in (3.7) is constructed
in terms of the SVD of S as specified in the lemma. As they appear, both terms are
SVD-dependent! However, they are not. In fact, the first term U(:,1:r)V T

(:,1:r) is the
subunitary factor of the polar decomposition of S and the factor is unique [23, 25, 27],
independent of any variation in SVD S = UΣV T so long asΣ(1:r ,1:r) � 0. The second
term represents a set of matrices of the form U⊥WV T⊥ , where W ∈ O

(k−r)×(k−r) is
arbitrary, andU⊥, V⊥ ∈ O

k×(k−r) are any orthonormal basismatrices of the subspaces
R(S)⊥, R(ST)⊥, respectively.

With the help of Lemma 3.2, we present a concrete version of Theorem 3.1 in
Theorem 3.2 below.

Theorem 3.2 Given X∗ ∈ O
n×k , let XT∗ D = UΣV T be the SVD of XT∗ D, where

U , V ∈ O
k×k and Σ(1:r ,1:r) � 0, where r = rank(XT∗ D). For any maximizer Qopt of

(3.4),

X∗Qopt = X∗U(:,1:r)V T
(:,1:r) + X∗U(:,r+1:k)WV T

(:,r+1:k), (3.9)

for which the first term X∗U(:,1:r)V T
(:,1:r) has rank r and the second term has rank k−r

and a freedom in W ∈ O
(k−r)×(k−r). Moreover,

[X∗Qopt]TD = VΣV T � 0, trace([X∗Qopt]TD) = ‖XT∗ D‖trace.

Proof By Lemma 2.2, we have

max
Q∈Ok×k

fθ (X∗Q) = gθ (X∗) + trace([X∗Q]TD)

[trace(XT∗ BX∗)]θ .

Hence the optimizers of (3.4) are the same as those of

max
Q∈Ok×k

trace([X∗Q]TD) = max
Q∈Ok×k

trace(QTXT∗ D).

By Lemma 3.2 with S = XT∗ D, Qopt takes the form of (3.7), yielding (3.9). The rest
of claims of the theorem are simple consequences. ��

Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1 For any particularly chosen X∗ ∈ O
n×k satisfyingR(X∗) = X∗,

adopting the notation of Theorem 3.2, we find Xopt = X∗Qopt as given by (3.9). We
claim that the first term X∗U(:,1:r)V T

(:,1:r) is independent of choices of X∗, although it
is constructed by a particularly chosen X∗. First we note r = rank(XT∗ D) depends on
X∗ only by Lemma 3.1. Second, the product U(:,1:r)V T

(:,1:r) does not change with the
inherent variations in SVD, as we argued in Remark 3.1. Third, suppose a different
X̃∗ ∈ O

n×k satisfyingR(X̃∗) = X∗ is chosen. Then X̃∗ = X∗ Q̃ for some Q̃ ∈ O
k×k .

We have

X̃T∗ D = (X∗ Q̃)TD = Q̃TXT∗ D = (Q̃TU )ΣV T.

As we just argued that the product “U(:,1:r)V T
(:,1:r) does not change with the inherent

variations in SVD”, we conclude that the first term in (3.9) corresponding to X̃∗ is
given by

X̃∗(Q̃TU )(:,1:r)V T
(:,1:r) = (X∗ Q̃)(Q̃TU(:,1:r))V T

(:,1:r) = X∗U(:,1:r)V T
(:,1:r),

having nothing to do with Q̃, as expected. ��
The last terms in (3.3) and its concrete version in (3.9) disappear altogether if

r := rankD(X∗) = k. Hence we have the following corollary.

Corollary 3.1 Problem (3.2) has a unique maximizer if rankD(X∗) = k.

4 Self-consistent field iteration

In what follows we will limit problem (1.1) to the case:

there exists X ∈ O
n×k such that trace(XTAX + XTD) ≥ 0. (4.1)

This assumption ensures that, at optimality, the objective value is nonnegative when
0 < θ < 1 but not really needed for our results to hold when θ ∈ {0, 1}, however. It
evidently holds if A � 0, because trace(XTAX + XTD) ≥ 0 for X = UV T where
U , V are from the SVD of D = UΣV T.

We argue that having (4.1) doesn’t lose much generality even for θ ∈ {0, 1}. In fact,
it can be verified that for X ∈ O

n×k

f0(X) = trace(XT[A + α In]X + XTD) − kα,

f1(X) = trace(XT[A + αB]X + XTD)

trace(XTBX)
− α.

By choosing a sufficiently large α > 0, we can make A + α In � 0 and A + αB � 0
(assuming B � 0 otherwise it may be possible that A + αB � 0 for any α > 0)
and hence transform problem (1.1) for θ ∈ {0, 1} to an equivalent one that satisfies
assumption (4.1).
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4.1 SCF

Based on the KKT condition in Theorem 2.1, the monotonicity claims in Theorem 2.2
and Lemma 2.2, and the necessary conditions in Theorem 2.3 for a local/global max-
imizer, an SCF iteration as outlined in Algorithm 4.1 is rather natural.

Algorithm 4.1 SCF iteration for problem (1.1) satisfying (4.1)

Input: X0 ∈ O
n×k , such that trace(XT

0 AX0 + XT
0 D) ≥ 0 if 0 < θ < 1 but otherwise not required;

Output: a maximizer of (1.1).
1: for i = 1, 2, . . . until convergence do
2: construct Ei = E(Xi−1) as in (2.3);
3: compute the partial eigen-decomposition Ei X̂i = X̂iΛi−1 for the k largest eigenvalues of Ei

and their associated eigenvectors, or simply some X̂i ∈ O
n×k such that trace(X̂T

i Ei X̂i ) >

trace(XT
i−1Ei Xi−1);

4: compute SVD: X̂T
i D = UiΣi V

T
i ;

5: Xi = X̂iUi V
T
i ;

6: end for
7: return the last Xi as a maximizer of (1.1).

A few comments are in order for Algorithm 4.1.

(1) It is required initially trace(XT
0 AX0 + XT

0 D) ≥ 0 if 0 < θ < 1 but not necessary
for θ ∈ {0, 1}, in order to ensure that { fθ (Xi )}∞i=0 is monotonically increasing (see
Theorem 4.2 in the next subsection).
The case when A � 0 can be easily dealt with as follows: 1) compute SVD
XT
0 D = UΣV T, and update X0 to X0(UV T). With the updated X0, we have

trace(XT
0 AX0 + XT

0 D) = trace(XT
0 AX0)+ trace(Σ) ≥ 0. This case is ubiquitous

in data science applications such as multi-view learning in Sect. 5 that motivates
our study in the first place, where A is often some type of variances and hence
positive semidefinite. In general, when A is just symmetric and possibly indefinite,
what can we do if we don’t have such an initial X0 but (4.1) is known to hold in the
case 0 < θ < 1? One remedy is to set θ = 0 (or 1) and iterate until some Xi with
trace(XT

i AXi + XT
i D) ≥ 0 and then switch back to the original θ . But we caution

that this remedy could still fail because even with θ = 0 (or 1), the algorithm does
not guarantee to find a global maximizer, i,e., there is no guarantee to have some
Xi with trace(XT

i AXi + XT
i D) ≥ 0. When that happens, we may have to try with

one or more random X0 as the last resort to increase chance of success.
(2) At line 3, we offer two options to obtain X̂i . Evidently, X̂i associated with the

k largest eigenvalues of Ei maximizes trace(X̂T
i Ei X̂i ). But as we will show

later in Theorem 4.2 that the objective value will still increase as long as
trace(X̂T

i Ei X̂i ) > trace(XT
i−1Ei Xi−1). This is an important observation, espe-

cially for a large scale problemwhere an iterativemethod has to be used to compute
the partial eigen-decomposition of Ei and the convergence to a very accurate par-
tial eigen-decomposition may not be cost effective. When that is the case, we can
afford to compute partial eigen-decompositions with gradually increased accuracy
as the for-loop progresses, namely, use less accurate partial eigen-decompositions
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at the beginning many for-loops to save work and more and more accurate partial
eigen-decompositions as Xi comes closer and closer to the target. Such an adaptive
strategy is a delicate issue and often the best strategy is problem-dependent. Further
study on this is out of the scope of this paper and should be pursued elsewhere.

(3) Lines 4 and 5 execute maxQ f (X̂i Q) yielding Xi according to Theorem 3.2 (with
W = I in (3.7) always). Xi is not uniquely defined if rank(X̂T

i D) < k. But that
non-uniqueness doesn’t affect the corresponding objective value.

(4) A natural stopping criterion to end the for-loop is to use the normalized residual
of NEPv (2.4):

[trace(XT
i BXi )]θ

2
√
k

· ‖E(Xi )Xi − Xi (XT
i E(Xi )Xi )‖F

‖A‖2 + θ | f1(Xi )| ‖B‖2 + ‖D‖2 ≤ tol, (4.2)

where tol is a preset tolerance. For computational convenience, it will be just fine
to replace the spectral norms ‖A‖2, ‖B‖2, and ‖D‖2 in (4.2) by their corresponding
1-norm.

Theorem 4.1 below presents two properties about approximation Xi .

Theorem 4.1 Let {Xi }∞i=0 be generated by Algorithm 4.1.

(a) XT
i D � 0 and trace(XT

i D) = ‖XT
i D‖trace for i ≥ 0.

(b) If the eigenvalue gap

λk(E(Xi−1)) − λk+1(E(Xi−1)) > 0,

then any two orthonormal eigenbasis matrices X̂i and Ŷi associated with k largest
eigenvalues of E(Xi−1) satisfy Ŷi = X̂i Q for some Q ∈ O

k×k . Furthermore,
if, additionally, rank(DT X̂i ) = k (which is independent of Q), then the next
approximation Xi from line 5 of Algorithm 4.1 is uniquely determined regardless
of any inherent freedom in SVD.

Proof The conclusions in item (a) follows from XT
i D = ViΣi V T

i .
Consider item (b). Since the eigenvalue gap is positive, the eigenspace associated

with the k largest eigenvalues of E(Xi−1) is unique [38, p. 244], and thus the first
claim Ŷi = X̂i Q follows. The second claim is a consequence of Theorem 3.2. ��

4.2 Convergence analysis

Much of our analysis is similar to the one for the OCCA case [48]: A = 0 and θ = 1/2.
But the complete characterization on what the limits of Xi may look like in the rank-
deficient situation, i.e., rank(XT∗ D) < k, in Theorem 4.3 is entirely new even for the
OCCA case.

Theorem 4.2 Let the sequence {Xi }∞i=0 be generated by Algorithm 4.1. The following
statements hold.

(a) The sequence { fθ (Xi )}∞i=0 is monotonically increasing and convergent;
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(b) If

trace(X̂T
i E(Xi−1)X̂i ) > trace(XT

i−1E(Xi−1)Xi−1), (4.3)

then fθ (Xi−1) < fθ (Xi );
(c) Let {Xi }i∈I be any convergent subsequence of {Xi }∞i=0, converging to X∗. Then X∗

satisfies the first order optimality condition in (2.2) and the necessary condition
in Theorem 2.3 for a global maximizer: XT∗ D � 0 and X∗ is an orthonormal
basis matrix of the invariant subspace associated with the k largest eigenvalues
of E(X∗).

Proof In Algorithm 4.1, we require initially trace(XT
0 AX0 + XT

0 D) ≥ 0 for the case
0 < θ < 1 so that all subsequent trace(XT

i AXi + XT
i D) ≥ 0 for the case 0 < θ < 1.

As a result, { fθ (Xi )}∞i=0 is monotonic increasing for all 0 ≤ θ ≤ 1. In fact, for i = 1,
by Theorem 2.2 we conclude that

fθ (X0) ≤ gθ (X̂1) + ‖X̂T
1 D‖trace

[trace(X̂T
1 B X̂1)]θ

= fθ (X1).

As a consequence, it guarantees trace(XT
1 AX1 + XT

1 D) ≥ 0 when 0 < θ < 1. In
particular,

trace(X̂T
1 E(X0)X̂1) > trace(XT

0 E(X0)X0) ⇒ fθ (X0) < fθ (X1).

Inductively, we conclude that trace(XT
i AXi + XT

i D) ≥ 0 for all i when 0 < θ < 1
and that { fθ (Xi )}∞i=0 is monotonically increasing for all 0 ≤ θ ≤ 1, and, furthermore,
that if (4.3) holds then fθ (Xi−1) < fθ (Xi ). This proves items (a) and (b).

To prove item (c), we consider the subsequence {Xi+1}i∈I, which, as a bounded
sequence in R

n×k , has a convergent subsequence {Xi+1}i ∈̂I, where Î ⊆ I. Let

Z = lim
Î�i→∞

Xi+1 ∈ O
n×k .

As a result, by Theorem 4.1(a) ZTD � 0 which we will need in a moment. According
to E(Xi )Xi+1 = Xi+1(QT

i+1Λi Qi+1) for i ∈ Î where Qi+1 = Ui+1V T
i+1, it holds

that

E(X∗)Z = ZM, M = ZTE(X∗)Z . (4.4)

Also, from Theorem 4.1(a), we know Y TD = DTY � 0 for Y ∈ {X∗, Z}, and

fθ (X∗) = lim
Î�i→∞

fθ (Xi ) = lim
Î�i→∞

fθ (Xi+1) = fθ (Z). (4.5)

Since E(Xi )Xi+1 = Xi+1(QT
i+1Λi Qi+1) and Xi+1 associates with the k largest

eigenvalues of E(Xi ), we conclude that Z is an orthonormal eigenbasis matrix of
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E(X∗) associated with its k largest eigenvalues. We claim that X∗ is also one, too,
because, otherwise, we would have

trace(ZTE(X∗)Z) > trace(XT∗ E(X∗)X∗).

which, by Theorem 2.2 and Remark 2.2 (recall ZTD � 0), yields fθ (Z) > fθ (X∗),
contradicting (4.5). Hence X∗ is indeed an orthonormal eigenbasis matrix of E(X∗)
associated with its k largest eigenvalues, implying

E(X∗)X∗ = X∗Λ∗

for some k × k symmetric Λ∗ whose eigenvalues consists of the k largest eigenvalues
of E(X∗). Consequently, by Theorem 2.1, X∗ satisfies the first order optimality in
(2.2). Regarding the necessary conditions in Theorem 2.3 for a global maximizer, we
notice that XT∗ D � 0 is a result of Theorem 4.1(a) and we have already shown that X∗
is an orthonormal eigenbasis matrix of E(X∗) associatedwith its k largest eigenvalues.

��
To further analyze the convergence of the sequence {Xi }∞i=0, we now introduce the

distance metric on Grassmann manifold Gk(R
n). Let X = R(X) and Y = R(Y ),

where X , Y ∈ R
n×k with XTX = Y TY = Ik . The canonical angles θ1(X ,Y) ≥

· · · ≥ θk(X ,Y) between X and Y are defined by

0 ≤ θi (X ,Y) := arccos σi (X
TY ) ≤ π

2
for 1 ≤ i ≤ k,

and accordingly, Θ(X ,Y) = diag(θ1(X ,Y), . . . , θk(X ,Y)). It is known that

dist2(X ,Y) := ‖ sinΘ(X ,Y)‖2 (4.6)

is a unitarily invariant metric on Gk(R
n) [40, p. 95].

The following lemma is an equivalent restatement of [30, Lemma 4.10] (see also
[19, Proposition 7]) in the context of Grassmann manifold Gk(R

n).

Lemma 4.1 ([30, Lemma 4.10]) Let X∗ ∈ Gk(R
n) be an isolated accumulation point

of the sequence {Xi ∈ Gk(R
n)}∞i=0, in themetric (4.6), such that, for every subsequence

{Xi }i∈I converging toX∗, there is an infinite subset Î ⊆ I satisfying dist2(Xi ,Xi+1) →
0 as Î � i → ∞. Then the entire sequence {Xi }∞i=0 converges to X∗.

Theorem 4.3 Let the sequence {Xi }∞i=0 be generated by Algorithm 4.1, and let X∗
be an accumulation point of {Xi }∞i=0. Let 0 � XT∗ D = VΣV T be the SVD of XT∗ D
such that Σ(1:r ,1:r) � 0, where r := rank(XT∗ D). Suppose that R(X∗) is an isolated
accumulation point of {R(Xi )}∞i=0 in the metric (4.6), and that the eigenvalue gap
assumption,

λk(E(X∗)) − λk+1(E(X∗)) > 0, (4.7)

holds.
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(a) The entire sequence {R(Xi )}∞i=0 converges toR(X∗).
(b) If r = k, then {Xi }∞i=0 converges to X∗ (in the standard Euclidean metric).
(c) In general for r < k, {Xi }∞i=0 converges to the set

X∗ =
{

X∗V(:,1:r)VT
(:,1:r) + X∗V(:,r+1:k)WVT

(:,r+1:k) : W ∈ O
(k−r)×(k−r)

}

(4.8)

in the sense that

min
X∈X∗

‖Xi − X‖2 → 0 as i → ∞. (4.9)

Proof Suppose that {Xi }i∈I is a subsequence converging to X∗. {Xi+1}i∈I, as a bounded
sequence in R

n×k , has a convergent subsequence {Xi+1}i ∈̂I, where Î ⊂ I. Let

Z = lim
Î�i→∞

Xi+1 ∈ O
n×k .

It can be seen that {R(Xi )}i∈I converges to R(X∗) and {R(Xi+1)}i ∈̂I converges to
R(Z) in the metric (4.6). As in the proof of Theorem 4.2, we will have (4.4) and
conclude that both X∗ and Z are orthonormal eigenbasis matrices associated with the
k largest eigenvalues of E(X∗), andR(Z) = R(X∗) by the eigenvalue gap assumption
(4.7). Hence

lim
Î�i→∞

dist2(R(Xi ),R(Xi+1)) = dist2(R(X∗),R(Z)) = 0.

By Lemma 4.1, {R(Xi )}∞i=0 converges toR(X∗). This proves item (a).
With additionally rank(XT∗ D) = k and the conclusion we just proved, we know

that the limit of any convergent subsequence of {Xi }∞i=0 takes the form of X∗Q for
some Q ∈ O

k×k because all limits share the same column space R(X∗). Moreover,
Theorem 4.2(a) implies that fθ (X∗) = fθ (X∗Q). Noticing that

fθ (X∗) = gθ (X∗) + trace(XT∗ D)

[trace(XT∗ BX∗)]θ , fθ (X∗Q) = gθ (X∗) + trace(QTXT∗ D)

[trace(XT∗ BX∗)]θ ,

we find trace(QTXT∗ D) = trace(XT∗ D) = ‖XT∗ D‖trace since XT∗ D � 0, i.e., this
Q ∈ O

k×k maximizes trace(GT(XT∗ D)) over G ∈ O
k×k , and thus, by Lemma 3.2, Q

is the unitary polar factor of XT∗ D, yielding Q = Ik . This completes the proof of item
(b).

We now prove item (c). Let X∗⊥ ∈ O
n×(n−k) such that [X∗, X∗⊥] is orthogonal.

We expand Xi as

Xi = X∗(XT∗ Xi ) + X∗⊥(XT∗⊥Xi ) =: X∗Ci + X∗⊥Si . (4.10)

It can be seen that ‖Si‖2 = ‖ sin(R(Xi ),R(X∗))‖2 → 0 as i → ∞ by item (a).
The singular values of Ci are the cosines of the canonical angles betweenR(Xi ) and
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R(X∗), which all go to 1 as i → ∞ by item (a). In other words, CiCT
i → Ik as

i → ∞. So we can write

CiC
T
i = Ik + F (1)

i , lim
i→∞ F (1)

i = 0. (4.11)

By how Xi are defined in the algorithm and by (4.10), we have

0 � XT
i D = CT

i X
T∗ D + STi X

T∗⊥D = CT
i V(:,1:r)Σ(1:r ,1:r)V T

(:,1:r) + STi X
T∗⊥D.

Since STi X
T∗⊥D → 0 as i → ∞, we conclude that

lim
i→∞CT

i V(:,1:r)Σ(1:r ,1:r)V T
(:,1:r) = lim

i→∞ XT
i D = XT∗ D = V(:,1:r)Σ(1:r ,1:r)V T

(:,1:r)

which implies limi→∞ CT
i V(:,1:r) = V(:,1:r). So we can write

CT
i V(:,1:r) = V(:,1:r) + F (2)

i , lim
i→∞ F (2)

i = 0. (4.12)

As a result, we get V(:,1:r) = CT
i V(:,1:r) − F (2)

i and

CiV(:,1:r) = CiC
T
i V(:,1:r) − Ci F

(2)
i

= V(:,1:r) + F (1)
i V(:,1:r) − Ci F

(2)
i =: V(:,1:r) + F (3)

i , (4.13)

and limi→∞ F (3)
i = 0. Using (4.11) and (4.13), we get

[CT
i V(:,r+1:k)]TV(:,1:r) = V T

(:,r+1:k)CiV(:,1:r) = V T
(:,r+1:k)F

(3)
i , (4.14)

[CT
i V(:,r+1:k)]T[CT

i V(:,r+1:k)] = V(:,r+1:k)CiC
T
i V(:,r+1:k)

= Ik + V(:,r+1:k)F (1)
i V(:,r+1:k). (4.15)

The distance between two subspaces R(CT
i V(:,r+1:k)) and R(V(:,r+1:k)) can be given

by [24, Lemma 2.1], [39, Chapter 1]

∥
∥
∥
∥

{

[CT
i V(:,r+1:k)]T[CT

i V(:,r+1:k)]
}−1/2[CT

i V(:,r+1:k)]TV(:,1:r)
∥
∥
∥
∥
2

which goes to 0 as i → ∞ by (4.14) and (4.15), i.e.,

lim
i→∞R(CT

i V(:,r+1:k)) = R(V(:,r+1:k)) (4.16)

in the metric (4.6). Equation (4.16) together with (4.15) imply

CT
i V(:,r+1:k) = V(:,r+1:k)WT

i + F (4)
i for some Wi ∈ O

(k−r)×(k−r), (4.17)
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and limi→∞ F (4)
i = 0. As a result, we get V(:,r+1:k) = CT

i V(:,r+1:k)Wi − F (4)
i Wi and

CiV(:,r+1:k) = CiC
T
i V(:,r+1:k)Wi − Ci F

(4)
i Wi

= V(:,r+1:k)Wi + F (1)
i V(:,r+1:k)Wi − Ci F

(4)
i Wi

=: V(:,r+1:k)Wi + F (5)
i , (4.18)

and limi→∞ F (5)
i = 0. With (4.11)–(4.18) in mind, we have from (4.10) and

V(:,1:r)V T
(:,1:r) + V(:,r+1:k)V T

(:,r+1:k) = Ik that

Xi = X∗CiV(:,1:r)V T
(:,1:r) + X∗CiV(:,r+1:k)V T

(:,r+1:k) + X∗⊥Si

= X∗V(:,1:r)V T
(:,1:r) + X∗V(:,r+1:k)WiV

T
(:,r+1:k) (4.19a)

+ X∗F (3)
i V T

(:,1:r) + X∗F (5)
i V T

(:,r+1:k) + X∗⊥Si . (4.19b)

The sum of the two terms in (4.19a) belongs to X∗ of (4.8) and each of the three terms
in (4.19b) goes to 0 and hence the limiting equation (4.9) holds. ��

What is remarkable about Theorem 4.3 is that we start with an accumulation
point X∗ which always exists because O

n×k is a bounded set in R
n×k and thus

is compact, and end up with the conclusions that {R(Xi )}∞i=0 converges to R(X∗)
and that {Xi }∞i=0 converges to X∗ under the conditions that rank(XT∗ D) = k and
λk(E(X∗)) > λk+1(E(X∗)). In general, Xi arbitrarily approaches X∗ of (4.8) as
i → ∞. The set X∗ is uniquely determined by R(X∗), independent of a particular
accumulation point X∗.

A quantitative convergence estimate like [48, ineq. (24)] can be derived, in a similar
way there, to obtain

dist2(R(Xi+1),R(X∗)) ≤ c0‖Xi − X∗‖trace,

where c0 is a constant dependent on A, B, and D, and itwill be inevitably overestimated
to be too big to be of much use, as for [48, ineq. (24)]. For that reason, we will
simply skip it. Recently, the authors of [3] proposed an approach to estimate the
true SCF convergence rate for an NEPv satisfying the invariance property E(XQ) ≡
E(X) for any X ∈ O

n×k and Q ∈ O
k×k . The approach is not straightforwardly

applicable to our NEPv (2.4) because E(·) in (2.3) does not have this invariance
property. In what follows, we explain an idea from the forthcoming paper [29] for
the case when XT∗ D � 0. It is much more complicated to deal with the general case
when XT∗ D � 0 (see [29] for detail). If XT∗ D � 0, then XTD is nonsingular for
any X ∈ O

n×k such that ‖ sinΘ(R(X),R(X∗))‖2 is sufficiently tiny, which is a
reasonable assumption for studying local convergence rate. Suppose, in the rest of this
paragraph, ‖ sinΘ(R(X),R(X∗))‖2 is sufficiently tiny such that XTD is nonsingular.
Then XTD has a unique polar decomposition [23, 25, 27], and hence

Ẽ(X) := E(XΓ (XTD)),
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is well-defined, where Γ (XTD) is the orthogonal polar factor of XTD. It can be seen
that the usual SCF, Ẽ(Xi−1)Xi = XiΛi on Ẽ(X), is same as the SCF in Algorithm 4.1
if starting with the same initial X0. It can be proved nontrivially [29] that Ẽ(XQ) ≡
Ẽ(X) for any Q ∈ O

k×k and X ∈ O
n×k such that XTD is nonsingular. Therefore the

results in [3] can be applied.

5 Application tomulti-view learning

Different from classicalmachine learning,multi-view learning aims to learn frommul-
tiple views of the same object in order to leverage their complementary and redundant
information to boost learning performances [4]. For example, in the classification of
Internet advertisement on Internet pages [20], the geometry of the image (if available)
as well as phrases occuring in the URL, the image’s URL and alt text, the anchor
text, and words occurring near the anchor text are considered as different views of
a page. Due to the heterogeneity of multiple views, learning from multi-view data is
challenging, even though they conceal more information. Multi-view subspace learn-
ing is the most popularly studied methodology designed to narrow the heterogeneity
gap [35] by learning proper representations of the multiple views in a common latent
subspace. In what follows, we will first briefly introduce the problem formulation of
multi-view subspace learning and related works, and then propose our new learning
model and an efficient alternating iterative method based on our earlier SCF iteration
in Algorithm 4.1 to numerically solve the model.

5.1 Problem formulation and related work

Multi-view subspace learning seeks a common latent space via some unknown trans-
formation on each view so that certain learning criteria over the given multi-view data
set are optimizedwith respect to these transformations. Let {(z(1)i , . . . , z(v)

i , yi )}mi=1 be

a multi-view data set of v views and m instances, where the i th data points z(s)i ∈ R
ns

of all views (1 ≤ s ≤ v) share the same class label yi ∈ {0, 1}c of c classes, whose
r th entry ( yi )(r) = 1 if the i th data points belong to class r and otherwise ( yi )(r) = 0.
Linear transformations are often used to perform feature extraction. Specifically, we
look for projection matrix Ps ∈ R

ns×k for view s to transform z(s)i from R
ns to its

latent representation u(s)
i = PT

s z(s)i in the common space R
k .

Represent the m data points of view s by Zs = [z(s)1 , . . . , z(s)m ] ∈ R
ns×m , its latent

representation by Us = [u(s)
1 , . . . , u(s)

m ] = PT
s Zs ∈ R

k×m , and pack the projection
matrices Ps to get

P = [PT
1 , PT

2 , . . . PT
v ]T with Ps ∈ R

ns×k for 1 ≤ s ≤ v. (5.1)

We will require 1 ≤ k ≤ mins ns due to the orthogonality constraints to be imposed
on each Ps later.
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Several existing methods [7, 37, 41] in the literature explored both the inter-view
correlations and the intra-view class separability from the labeled multi-view data.
Some important statistical quantities are summarized as follows:

1. the sample cross-covariance matrices Cs,t = 1
m ZsHm ZT

t , and, in particular, the
covariance matrices Cs,s = 1

m Zs Hm ZT
s ,

2. the between-class scatter matrices S(s)
b = Zs(Y TΓ −1Y − 1

m 1m1
T
m)ZT

s ,

3. the within-class scatter matrices S(s)
w = Zs(Im − Y TΓ −1Y )ZT

s ,
4. the class centers scatter matrices across views Ms,t = ZsY TΓ −1HcΓ

−1Y ZT
t ,

where centering matrix Hm = Im − 1
m 1m1

T
m , label matrix Y = [ y1, . . . , ym], and

Γ = YY T.
Most existing methods are often formulated as a trace maximization problem in the

form

max
PTΨ P=Ik

trace(PTΦP) (5.2)

which is equivalent to a generalized eigenvalue problem (GEP) for matrix pencil
Φ − λΨ [10, 15], where Φ = ΦT and Ψ = Ψ T � 0 have the following block
structures

Φ =

⎡

⎢
⎢
⎢
⎣

n1 n2 ··· nv

n1 Φ1,1 Φ1,2 . . . Φ1,v
n2 Φ2,1 Φ2,2 . . . Φ2,v
...

...
...

...

nv Φv,1 Φv,2 . . . Φv,v

⎤

⎥
⎥
⎥
⎦

, Ψ =

⎡

⎢
⎢
⎢
⎣

n1 n2 ··· nv

n1 Ψ1
n2 Ψ2
...

. . .

nv Ψv

⎤

⎥
⎥
⎥
⎦

, (5.3)

with Φs,t and Ψs taken to be Cs,t , Ms,t , S
(s)
b , and S(s)

w , depending on different learning
objectives:

– multiset canonical correlation analysis (MCCA) [43] is (5.2) withΦs,t = Cs,t and
Ψs = Cs,s,∀s, t ,

– generalized multi-view analysis (GMA) [37] is (5.2) with Φs,t = αCs,t ,∀s �= t ,
Φs,s = S(s)

b , and Ψs = S(s)
w ,∀s,

– multi-view linear discriminant analysis (MLDA) [41] is (5.2) with Φs,t =
αCs,t ,∀s �= t , Φs,s = S(s)

b , and Ψs = Cs,s,∀s, and
– multi-viewmodular discriminant analysis (MvMDA) [7] is (5.2) withΦs,t = Ms,t

and Ψs = S(s)
w ,∀s, t ,

where α ≥ 0 is a pre-defined parameter to weigh the importance of class separability.
In these methods, only Ψ � 0 is guaranteed, and there is a possibility that Ψ may be
singular. When that happens, often Ψ is regularized by adding γ I with a tiny γ to
it. In MCCA, Φ � 0 always holds, but it may be indefinite for the other three. In all
of these methods, the diagonal blocks of Φ are always positive semi-definite, i.e., all
Φs,s � 0, which makes the first point in our previous comments for Algorithm 4.1 a
non-issue.
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5.2 Proposedmodel and alternating iteration

We propose a new formulation for supervised multi-view subspace learning as

max
{Ps∈Ons×k }vs=1

φθ (P) with φθ (P) := trace(PTΦP)

[trace(PTΨ P)]θ , (5.4)

an orthogonal multi-view subspace learning model (OMvSL), where Φ and Ψ gen-
erally will have the block structures as in (5.3) with each block taken to be Cs,t ,
Ms,t , S

(s)
b , or S(s)

w , depending on learning scenarios as the above existing methods,
and 0 ≤ θ ≤ 1 is an adjustable parameter that can be fine tuned to yield the best
contrastive effect between trace(PTΦP) and trace(PTΨ P). It is noted that θ = 0
means no contrastive comparison at all, θ = 1 means the other extreme as in LDA,
while 0 < θ < 1 means comparing trace(PTΦP) against trace(PTΨ P) fractionally.
Function φθ (P) is well-defined if at least one of the inequalities rank(Ψs) > ns − k
for 1 ≤ s ≤ v is valid.

Comparing with (5.2), the new model (5.4) possesses two unique properties:

1. Linear projection matrices Ps are orthonormal for s = 1, . . . , v. This is a preferred
property for metric preservation and data visualization, and has been explored
for unsupervised learning in, e.g., [9, 48]. However, orthogonality constraints are
incompatible with constraint in (5.2) if both are imposed. A workaround in the past
is to compute a solution P to (5.2) and orthogonalize each corresponding portion
of P to generate a projection matrices for the view, but it may produce suboptimal
performance [9].

2. Trace ratio formulation (5.4) is a more essential formulation for general feature
extraction problem than ratio trace formulation (5.2) [44] since it naturally solves
the above-mentioned incompatibility issue. The introduced θ , as a super-parameter,
can adjust the relative importance of trace(PTΦP) against that of trace(PTΨ P).
In our later numerical experiments, we will investigate the impact of θ in terms of
classification accuracy.

Model (5.4) is a maximization problem over the Cartesian product of v Stiefel
manifoldsO

ns×k . The KKT conditions can be derived straightforwardly by examining
the partial gradients with respect to each Ps on O

ns×k along the line of derivations in
Sect. 2. In fact, for any fixed s and fixed Ps′ for s′ �= s, the objective of (5.4) becomes
a function of Ps alone:

χs;θ (Ps) := trace(PT
s As Ps) + trace(PT

s Ds)

[trace(PT
s Bs Ps)]θ , (5.5a)

where, with αs = trace(PT[s]Φ[s]P[s]) and βs = ∑

s′ �=s trace(P
T
s′ Ψs′ Ps′),

As = Φss + (αs/k)Ins , Bs = Ψs + (βs/k)Ins , Ds = 2
∑

s′ �=s

Φs,s′ Ps′ , (5.5b)
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Φ[s] is Φ after crossing out its sth block-row and sth block-column, and P[s] is P of
(5.1) after crossing out its sth block. The dependency of As , Bs , and Ds on Ps′ for
s′ �= s is suppressed for clarity. The KKT conditions of (5.4) can be made to consist
of v coupled NEPv:

Es(Ps) Ps = PsΛs, Ps ∈ O
ns×k for 1 ≤ s ≤ v, (5.6a)

where

Es(Ps) = 2

[trace(PT
s Bs Ps)]θ

[

As + Ds PT
s + PsDT

s

2
− θχs;1(Ps)Bs

]

. (5.6b)

They are coupled because of the dependency of As , Bs , and Ds on Ps′ for s′ �= s.
Individually, (5.6) is the KKT condition for

max
Ps∈Ons×k

χs;θ (Ps), givenPs′ fors
′ �= s. (5.7)

Along the line of reasoning in Sect. 2, we can get the next theorem, as an extension
of Theorem 2.3.

Theorem 5.1 Let {Popt
s ∈ O

ns×k}vs=1 be a local or global maximizer of (5.4) and let

As, Bs , and Ds in (5.6) be evaluated at {Popt
s }vs=1.

(a) If {Popt
s }vs=1 is a global maximizer, then

(

Popt
s

)T
Ds � 0 for 1 ≤ s ≤ v;

(b) Suppose φθ ({Popt
s }vs=1) ≥ 0 when 0 < θ < 1 but otherwise not required for

θ ∈ {0, 1}. If (Popt
s

)T
Ds � 0, then Popt

s is an orthonormal basis matrix of the

invariant subspace associated with the k largest eigenvalues of Es(P
opt
s ).

Proof If {Popt
s }vs=1 is a global maximizer, then Popt

s for a fixed s is a global maximizer

of (5.7). Item (a) is a consequence of Theorem 2.3(a). Notice that φθ ({Popt
s }vs=1) ≥ 0

implies trace([Popt
s ]TAs P

opt
s )+ trace([Popt

s ]TDs) ≥ 0. Apply Theorem 2.3(b) to (5.7)
to conclude the proof of item (b). ��

5.3 Alternating iteration

Similar to Sect. 4, in what follows we will limit problem (5.4) to the case:

there exists {Ps ∈ O
ns×k}vs=1 such that trace(P

TΦP) ≥ 0. (5.8)

This assumption is automatically satisfied if all Φs,s � 0, as in all existing multi-view
learning methods reviewed in Sect. 5.1, because

trace(PTΦP) =
v

∑

s=1

trace(PT
s Φs,s Ps) ≥ 0.
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Algorithm 5.1 OMvSLθ : Orthogonal Multi-view Subspace Learning via θ -Trace
Ratio
Input: Φ and Ψ as in (5.3), 1 ≤ k ≤ mins ns , and tolerance ε;
Output: {Ps ∈ O

ns×k }vs=1 that approximately solves (5.4).

1: pick {P(0)
s ∈ O

ns×k }vs=1 satisfying trace([P(0)]TΦP(0)) ≥ 0 if 0 < θ < 1 but otherwise not required

for θ ∈ {0, 1}, where P(0) = [

(P(0)
1 )T, . . . , (P(0)

v )T
]T;

2: i = 0, and evaluate the objective of (5.4) at {P(0)
s }vs=1 to φ;

3: repeat
4: for s = 1 to v do
5: form (5.7) with either Ps′ = P(i)

s′ , ∀ s′ �= s for the Jacobi-style updating, or Ps′ = P(i+1)
s′ , 1 ≤

s′ < s and Ps′ = P(i)
s′ , s < s′ ≤ v for the Gauss-Seidel-style updating;

6: solve (5.7) by Algorithm 4.1 (with P(i)
s as an initial guess) for its maximizer P(i+1)

s ;
7: end for
8: φ0 = φ, and evaluate the objective of (5.4) at {P(i+1)

s }vs=1 to φ;
9: i = i + 1;
10: until |φ − φ0| ≤ εφ;

11: return the last {P(i)
s ∈ O

ns×k }vs=1.

Again assumption (5.8) is not really needed for our results to hold in the case when
θ ∈ {0, 1}. Generic optimization methods for optimizing a smooth function over the
Cartesian product of the Stiefel manifolds O

ns×k are available and can be applied. For
example, classical optimization algorithms such as the steepest ascent or trust-region
methods over the Euclidean space have been extended to the general Riemannian
manifolds in, e.g., [1]. But thesemethods do notmake use of the special trace-fractional
structure. In what follows, we propose to solve (5.4) by maximizing its objective
alternatingly over {Ps ∈ O

ns×k}vs=1 in either the Jacobi-style or Gauss–Seidel-style
updating as outlined in Algorithm 5.1, where the SCF iteration in Algorithm 4.1 serves
as the computational engine to solve each subproblem (5.7) over just one Ps at line 6.

Algorithm 5.1 requires initially trace([P(0)]TAP(0)) ≥ 0 if 0 < θ < 1 but oth-
erwise not required for θ ∈ {0, 1}, similarly to what we previously remarked for
Algorithm4.1.Note that trace([P(0)]TAP(0)) ≥ 0 is guaranteed to hold if allΦs,s � 0.
The condition guarantees that the objective (5.4) is monotonically increasing for the
Gauss–Seidel-style updating. In cases when we don’t have an initial guess P(0) satis-
fying trace([P(0)]TΦP(0)) ≥ 0 for the case 0 < θ < 1, we suggest to set θ = 0 (or 1)
and iterate until some P(i) such that trace([P(i)]TΦP(i)) ≥ 0 and then switch back to
the original θ . Unfortunately, it is not clear if the monotonicity property in the objec-
tive holds for the Jacobi-style updating even with trace([P(0)]TΦP(0)) ≥ 0. In all of
our numerical experiments in Sect. 6.2, we simply take P(0)

s to be the first k columns
of Ins for reproducibility and didn’t encounter any convergence issue nonetheless for
both the Jacobi-style and Gauss-Seidel-style updating. In practice, we may simply
take random {P(0)

s }vs=1 if no better one is known.

Remark 5.1 Later in Sect. 6, Algorithm 5.1 will be applied with the blocks ofΦ andΨ

realized as in the multi-view learning methods GMA [37], MLDA [41], and MvMDA
[7]. The resulting (5.4) will be referred to as OGMA, OMLDA, and OMvMDA,
respectively.
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Nextwewill discuss the convergence ofAlgorithm 5.1.With the Jacobi-style updat-
ing, Algorithm 5.1 generates a sequence

{{P(i)
s }vs=1

}∞
i=0 and the same can be said

for with the Gauss–Seidel-style updating. But for the convenience of convergence
analysis, we shall expand the sequence by inserting v − 1 additional intermediate
approximations

{P(i+1)
1 , . . . , P(i+1)

s , P(i)
s+1, . . . , P

(i)
v }, s = 1, 2, . . . , v − 1

into between {P(i)
s }vs=1 and {P(i+1)

s }vs=1 in the case of theGauss–Seidel-style updating.

We then re-index the expanded sequence and still denote it by
{{P(i)

s }vs=1

}∞
i=0.

Theorem 5.2 Let the sequence
{{P(i)

s }vs=1

}∞
i=0 be generated by Algorithm 5.1, and let

{P(∗)
s }vs=1 be an accumulation point of

{{P(i)
s }vs=1

}∞
i=0. Evaluate As, Bs, and Ds in

(5.6) at {P(∗)

s′ , s′ �= s} for each s to A(∗)
s , B(∗)

s , and D(∗)
s , respectively.

(a) (P(∗)
s

)T
D(∗)
s � 0 for 1 ≤ s ≤ v.

(b) {φθ ({P(i)
s }vs=1)}∞i=0 is monotonically increasing in the case of the Gauss-Seidel-

style updating and thus convergent.

Proof Item (a) holds because (P(i)
s

)T
Ds � 0 is designed to hold in Algorithm 4.1.

Because of our expansion in the sequence of approximations in notation for theGauss–
Seidel-style updating, {P(i)

s }vs=1 differs from {P(i+1)
s }vs=1 in just one of the P(i)

s , and

that particular P(i)
s is updated byAlgorithm 4.1 so that the objective value is increased.

Hence item (b) holds. ��
We caution that the monotonicity in objective value is only proved for the case of

the Gauss–Seidel-style updating but not the Jacobi-style updating. As a tradeoff in
the for-loop of Algorithm 5.1, the v subproblems (5.7) for the Jacobi-style updating
are completely independent and can be solved in parallel, while those for the Gauss–
Seidel-style updating have to be solved sequentially.

We introduce a metric for the Cartesian product of v Grassmann manifolds:

dist2({Ps}vs=1, {Qs}vs=1) =
v

∑

s=1

‖ sinΘ(Ps,Qs)‖2 (5.9)

for (P1, . . . ,Pv), (Q1, . . . ,Qv) ∈ Gk(R
n1) × · · · × Gk(R

nv ). Again the following
lemma, similar to Lemma 4.1, is an equivalent restatement of [30, Lemma 4.10]
(see also [19, Proposition 7]) in the context of the Cartesian product of Grassmann
manifolds Gk(R

ns ).

Lemma 5.1 ([30, Lemma 4.10]) Let {P(∗)
s ∈ Gk(R

ns )}vs=1 be an isolated accumulation

point of the sequence
{{P(i)

s ∈ Gk(R
ns )}vs=1

}∞
i=0, in the metric (5.9), such that, for

every subsequence
{{P(i)

s }vs=1

}

i∈I converging to {P(∗)
s }vs=1, there is an infinite subset

Î ⊆ I satisfying dist2({P(i)
s }vs=1, {P(i+1)

s }vs=1) → 0 as Î � i → ∞. Then the entire

sequence
{{P(i)

s }vs=1

}∞
i=0 converges to {P(∗)

s }vs=1.
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Theorem 5.3 To the conditions of Theorem 5.2 add these: {R(P(∗)
s )}vs=1 is an isolated

accumulation point of
{{R(P(i)

s )}vs=1

}∞
i=0 in the metric (5.9) and the eigenvalue gaps

λk(E
(∗)
s (P(∗)

s )) − λk+1(E
(∗)
s (P(∗)

s )) > 0 for 1 ≤ s ≤ v,

where each E (∗)
s (P(∗)

s ) is defined as in (5.6b) with A(∗)
s , B(∗)

s , and D(∗)
s , and

also3 {φθ ({P(i)
s }vs=1)}∞i=0 is convergent for the Jacobi-style updating. Let rs :=

rank(
(

P(∗)
s

)T
D(∗)
s ) for 1 ≤ s ≤ v.

(a) The entire sequence
{{R(P(i)

s )}vs=1

}∞
i=0 converges to {R(P(∗)

s )}vs=1.

(b) If rs = k for all 1 ≤ s ≤ k, then
{{P(i)

s }vs=1

}∞
i=0 converges to {P(∗)

s }vs=1 (in the
metric of the Cartesian product of the Euclidean spaces R

ns×k).
(c) In general, for each s, let

[

P(∗)
s

]T
D(∗)
s = VsΣsV T

s be the singular value decom-
position such that (Σs)(1:rs ,1:rs ) � 0, and define

P
(∗)
s =

{

P(∗)
s (Vs)(:,1:rs )(Vs)T(:,1:rs )

+P(∗)
s (Vs)(:,rs+1:k)Ws(Vs)

T
(:,rs+1:k) : Ws ∈ O

(k−rs )×(k−rs )
}

.

Then
{{P(i)

s }vs=1

}∞
i=0 converges to the product P

(∗)
1 ×· · ·×P

(∗)
v of sets, in the sense

that

min
Ps∈P(∗)

s ∀s

∑

s

‖P(i)
s − Ps‖2 → 0 as i → ∞.

Proof Suppose that
{{P(i)

s }vs=1

}

i∈I is a subsequence converging to {P(∗)
s }vs=1. Note that

{{P(i+1)
s }vs=1

}

i∈I, as a bounded sequence in R
n1×k × · · · × R

nv×k , has a convergent

subsequence
{{P(i+1)

s }vs=1

}

i ∈̂I, where Î ⊂ I. Let

Zs = lim
Î�i→∞

P(i+1)
s ∈ O

ns×k for 1 ≤ s ≤ v.

It can be seen that
{{R(P(i)

s )}vs=1

}

i∈I converges to {R(P(∗)
s )}vs=1 and

{{R(P(i+1)
s )}vs=1

}

i ∈̂I converges to {R(Zs)}vs=1 in the metric (5.9).

For each s, we have Es(P
(i)
s )P(i+1)

s = P(i+1)
s

[(

Q(i+1)
s

)T
Λ

(i)
s Q(i+1)

s
]

or possibly

P(i+1)
s = P(i)

s in the case of theGauss–Seidel-style updating. Now letting Î � i → ∞,
we get Es(P

(∗)
s )Zs = ZsMs or possibly P(∗)

s = Zs . For the latter, we obviously have
R(P(∗)

s ) = R(Zs), and, for the former, as we argued in the proof of Theorem 4.2, we
will also have R(P(∗)

s ) = R(Zs). Hence for each s

lim
Î�i→∞

dist2(R(P(i)
s )),R(P(i+1)

s )) = dist2(R(P(∗)
s ),R(Zs)) = 0.

3 {φθ ({P(i)
s }vs=1)}∞i=0 is guaranteed convergent for the Gauss–Seidel-style updating by Theorem 5.2(b).
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By Lemma 5.1, the entire sequence
{{R(P(i)

s )}vs=1

}∞
i=0 converges to {R(P(∗)

s )}vs=1.
This proves item (a).

With, additionally, rank(
(

P(∗)
s

)T
D(∗)
s ) = k and the conclusion we just proved,

we know that the limit of any convergent subsequence of
{{P(i)

s }vs=1

}∞
i=0 takes the

form of {P(∗)
s Qs}vs=1 for some Qs ∈ O

k×k because all limits share the same column

spaces, respectively.Moreover, since {φθ ({P(i)
s }vs=1)}∞i=0 is convergent (by assumption

for the Jacobi-style updating or guaranteed for the Gauss–Seidel-style updating by
Theorem 5.2(b)), we must have

φθ ({P(∗)
s }vs=1) = φθ ({P(∗)

s Qs}vs=1).

It follows from (5.5) that

trace(QT
s

[

P(∗)
s

]T
D(∗)
s ) = trace(

[

P(∗)
s

]T
D(∗)
s ) = ‖[P(∗)

s

]T
D(∗)
s ‖trace.

Hence Qs ∈ O
k×k maximizes trace(GT

[

P(∗)
s

]T
D(∗)
s ) over G ∈ O

k×k and therefore

Qs is the unitary polar factor of
[

P(∗)
s

]T
D(∗)
s , yielding Qs = Ik . This completes

the proof of item (b). A proof of item (c) can be given in a similar way to that of
Theorem 4.3(c). Detail is omitted. ��

6 Numerical experiments

In this section, wewill perform two sets of numerical experiments. The first set demon-
strates the basic behavior of the SCF iteration in Algorithm 4.1 for problem (1.1) on
synthetic examples, and the second set demonstrates the effectiveness of our multi-
view subspace learningmodel (5.4) solved by the alternating iteration inAlgorithm 5.1
which uses Algorithm 4.1 as its computational workhorse. We compare ours against
the state-of-the-art methods in machine learning for multi-view feature extraction on
five real world data sets. All experiments were conducted in MATLAB 2018a on
an Mac laptop using macOS Mojave with Intel Core i9 CPU (2.9 GHz) and 32 GB
memory.

6.1 Experiments on synthetic problems

Wefirst report numerical results on problem (1.1) solved by our proposed SCF iteration
in Algorithm 4.1 on synthetic examples, where matrices A, B and D are randomly
generated with varying n ∈ [1000, 4000] and k ∈ {50, 100}. Specifically, for a given
pair (n, k), matrices A and D are synthesized in MATLAB as

X = randn(n, n); X = (X+X’)./2; [U,˜] = eig(X);
v = rand(n,1) + 1e-6; A = U * diag(v) * U’; D = randn(n, k);

and B is generated similarly to A. With an increase of n by 1000 in the given interval,
we generated 8 synthetic examples in total. Also varying θ ∈ [0, 1] with an increase
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Fig. 1 Convergence curves of objective value and of normalized NEPv residual, defined as the left-hand
side of (4.2), by Algorithm 4.1 on 8 synthetic examples for θ ∈ {0, 0.3, 0.5, 0.8}

Fig. 2 CPU time and the estimated linear convergence rate by Algorithm 4.1 on 8 synthetic examples for
θ ∈ [0, 1]

by 0.1, we tested Algorithm 4.1 on a total of 88 problems (1.1). The stopping tolerance
tol = 10−7 in (4.2) and the maximum number of iterations is set to 103.

Figure 1 displays the convergence curves of both objective function value and
normalized NEPv residual, defined as the left-hand side of (4.2), by Algorithm 4.1 on
8 synthetic examples with selected θ ∈ {0, 0.3, 0.5, 0.8}. As can be observed, most of
the curves of normalized NEPv residual reach the preset tolerance tol = 10−7 much
earlier than the preset maximum number of iterations. For these synthetic examples,
fewer numbers of iterations are required for smaller θ than larger ones. We point out
that the tolerance 10−7 is often considered too tiny in machine learning applications.
Also observe that all objective value curves are very much flat in fewer than 50 SCF
iterations.

Figure 2 plots the CPU times by Algorithm 4.1 again on the 8 synthetic examples
as θ varies. These times are well correlated with the size n. The larger n is, the
more CPU time is consumed. For θ < 0.2, the CPU times are comparable for all
examples. As θ becomes large, more CPU times are consumed for the same (n, k).
This observation is consistentwith our estimated rates of linear convergence, which are
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always under 1 (demonstrating always convergence) but increase as θ does for those
synthetic examples (demonstrating more iterations are needed for a larger θ than a
smaller one). We caution the reader that in general, the rate of linear convergence by
Algorithm 4.1 is unlikely an increasing function of θ for given A, B, and D.

6.2 Experiments onmulti-view data for feature extraction

We will specialize the blocks of Φ and Ψ in (5.3) according to supervised multi-
view subspace learning models GMA [37], MLDA [41], and MvMDA [7] as detailed
in Sect. 5.1, yielding three different orthogonal MvSL (OMvSL) models in the form
(5.4) that will be referred to, accordingly, as OGMA, OMLDA, and OMvMDA, where
prefix “O” is for “Orthogonal” (as previously for OCCA [48]). Each of them can be
solved by Algorithm 5.1 with either the Jacobi-style or Gauss–Seidel-style updating,
leading to six OMvSL methods that will be distinguished further by a suffix “-J” or “-
G”. For example, OGMA-J and OGMA-G are OMvSL (5.4) with Φ and Ψ specialied
as in GMA and solved by Algorithm 5.1 with the Jacobi-style and Gauss–Seidel-style
updating, respectively.

We evaluate the model (5.4) for multi-view feature extraction. Five data sets in
Table 1 are used to evaluate the performance of the three proposed concrete models
solved by the two updating schemes: OGMA-G, OGMA-J, OMLDA-G, OMLDA-J,
OMvMDA-G, and OMvMDA-J, in terms of multi-view feature extraction by com-
paring them against their baseline counterparts: GMA, MLDA and MvMDA. We
apply various feature descriptors to extract features of views, including CENTRIST
[45], GIST [34], LBP [33], histogram of oriented gradient (HOG), color histogram
(CH), and SIFT-SPM [21], from image data sets: Caltech101 [22] and Scene15 [21].
Multiple Features (mfeat) and Internet Advertisements (Ads) are publicly available
from the UCI machine learning repository [11]. Dataset mfeat contains handwritten
numeral data with six views including profile correlations (fac), Fourier coefficients
of the character shapes (fou), Karhunen-Love coefficients (kar), morphological fea-
tures (mor), pixel averages in 2 × 3 windows (pix), and Zernike moments (zer). Ads
is used to predict whether or not a given hyperlink (associated with an image) is an
advertisement and has three views: features based on the terms in the images URL,
caption, and alt text (url+alt+caption), features based on the terms in the URL of the
current site (origurl), and features based on the terms in the anchor URL (ancurl).

Except for MvMDA and its new variant: OMvMDA, all other models share the
same trade-off parameter α to balance the pairwise correlations and supervised infor-
mation. In our experiments, we tune α ∈ {0.01, 0.1, 1, 10, 100} for proper balancing
in supervised setting. To prevent possible singularity, we add a small value, e.g., 10−8,
to the diagonals of Ψs ∀s. For our proposed methods, an additional parameter θ is
varied from 0 to 1 with an increase of 0.1. We also set the maximum number of
iterations to 50 for both the SCF iteration of Algorithm 4.1 and the Jacobi-style or
Gauss-Seidel-style updating of Algorithm 5.1. It is more of an empirical threshhold
observed as a good enough setting for multi-view feature extraction.

To evaluate the classification performance of compared methods, the 1-nearest
neighbor classifier as the base classifier is employed. We run each method to
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Table 1 Real world data sets, where the number of features for each view is shown inside the parentheses
and ‘–’ for views not applicable

mfeat Caltech101-7 Caltech101-20 Scene15 Ads

Samples 2000 1474 2386 4310 3279

Classes 10 7 20 15 2

View 1 fac(216) CENTRIST(254) CENTRIST(254) CENTRIST(254) url+alt+caption(588)

View 2 fou(76) GIST(512) GIST(512) GIST(512) origurl(495)

View 3 kar(64) LBP(1180) LBP(1180) LBP(531) ancurl(472)

View 4 mor(6) HOG(1008) HOG(1008) HOG(360) –

View 5 pix(240) CH(64) CH(64) SIFT-SPM(1000) –

View 6 zer(47) SIFT-SPM(1000) SIFT-SPM(1000) – –

Table 2 Classification accuracy (± standard deviation) of multi-view feature extraction on the five real
world data sets in Table 1 with 10% training and 90% testing over 10 random splits. The best θ is shown in
the parentheses

Methods mfeat Caltech101-7 Caltech101-20 Scene15 Ads

GMA 93.99 ± 0.87 93.25 ± 1.04 81.16 ± 0.94 61.41 ± 1.30 92.59 ± 1.76

OGMA-J 96.81 ± 0.46(0.4) 95.14 ± 0.59(0.4) 86.48 ± 1.02(0.6) 79.90 ± 0.80(1.0) 94.69 ± 0.75(0.8)

OGMA-G 96.80 ± 0.44(0.4) 95.07 ± 0.56(0.5) 86.60 ± 1.11(0.5) 79.90 ± 1.02(1.0) 94.91 ± 0.67(0.8)

MLDA 92.01 ± 1.74 92.18 ± 0.95 77.79 ± 1.01 59.02 ± 0.94 92.50 ± 2.06

OMLDA-J 96.74 ± 0.40(0.8) 94.68 ± 0.48(0.8) 86.23 ± 1.16(0.9) 81.42 ± 1.07(1.0) 94.79 ± 0.65(0.8)

OMLDA-G 96.82 ± 0.38(0.8) 94.59 ± 0.62(0.3) 86.09 ± 1.22(0.9) 80.68 ± 0.88(1.0) 94.76 ± 0.74(0.8)

MvMDA 93.78 ± 0.91 92.14 ± 0.68 79.27 ± 1.71 57.33 ± 1.18 78.51 ± 2.96

OMvMDA-J 96.62 ± 0.31(0.5) 95.11 ± 0.72(0.4) 85.69 ± 0.87(0.4) 77.98 ± 1.24(0.9) 94.02 ± 1.54(0.6)

OMvMDA-G 96.63 ± 0.37(0.4) 94.95 ± 0.56(0.5) 85.76 ± 1.00(0.4) 78.07 ± 0.83(0.9) 93.52 ± 0.59(0.0)

learn projection matrices with varying dimension of the common latent subspace
k ∈ {2, 3, 5 : 5 : 30} for all data sets except k ∈ {2, 3, 4, 5, 6} for mfeat due to its
smallest view mor having only 6 features. We split each data set into training and
testing with ratio 10/90. The learned projection matrices are used to transform both
training and testing data into the latent common space, and then the classifier is trained
and tested in this space. Following [48], we employ the serial feature fusion strategy
by concatenating projected features from all views. Classification accuracy is used
to measure learning performance. Experimental results are reported in terms of the
average and standard deviation over 10 randomly drawn splits.

Table 2 shows the classification accuracies and standard deviations of 9 multi-view
feature extraction methods on five real world data sets over 10 random splits with 10%
training and 90% testing. We have observed the following:

(i) Our proposed methods consistently outperform their counterparts on all five data
sets. The least improvement is about 2% on Ads, while the largest improvement
about 20% occurs on Scene15.
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Fig. 3 Accuracies of compared methods on three data sets for k ∈ {2, 3, 4, 5, 6} and θ ∈ [0, 1]

(ii) The Jacobi-style and Gauss–Seidel-style updating on the same model achieve
similar classification accuracies with differences within 0.8%.
This is great news for the Jacobi-style updating for which there is no guarantee that
the objective value is monotonically increasing, unlike for the Gauss–Seidel-style
updating.

(iii) MvMDA on Ads fails to produce a proper latent representation since its accuracy
is 14% less than those of GMA and MLDA. However, both OMvMDA-J and
OMvMDA-G perform very well on the same data set.

(iv) Accuracies by all three proposed models solved by two updating schemes are
comparable and very good.
This is likely due to our trace ratio formulation with its orthogonality constraints in
(5.4) that are known for their robustness [9, 48] as well as varying θ for weighting.

In Fig. 3 (the 1st row), we also report the classification accuracies of 9 methods
with varying θ ∈ [0, 1]. On Caltech101-7, Caltech101-20 and mfeat, the best results
of our proposed methods are roughly around θ = 0.5. However, different behaviors
are found on Scene15 and Ads. θ does not show significantly impact on Ads, but we
see better accuracy on Scene15 as θ increases. For almost all θ , our proposed methods
consistently outperform baselines. This demonstrates that θ introduced in (5.4) can be
useful to find better projection matrices for multi-view feature extraction. We further
show the trend of classification accuracy by compared methods as the dimension
k of common latent space increases in Fig. reffig:thetaspsk (the 2nd row). For any
fixed k, our proposed methods outperform their counterparts. Importantly, all of our
proposedmethods nearly reach their best performances at fairly small k, while baseline
methods have to use larger k to match that. This can be plausibly explained, namely,
orthonormal bases retain less redundant information than non-orthonormal ones. We
also observe that MvMDA behaves unstably for large k on Caltech101-7 and Scene15
since the accuracy suffers a significant drop, which does not happen to OMvMDA-G
and OMvMDA-J. In summary, our proposed models not only demonstrate superior
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performances to baseline methods but also are more robust to data noise and can
achieve the same or better performance at smaller k. Small k implies fast computations
if an iterative eigen-solver [2, 15, 26] is used in Algorithm 4.1 and that is extremely
useful for large scale real world applications, such as cross-modal retrieval [7], for
a fast response time due to less cost for computing pairwise distances in a lower
dimensional latent space.

7 Conclusions and remarks

We have conducted an investigation, both in theory and numerical solutions, of the
trace ratio maximization problem

max
XTX=Ik

trace(XTAX + XTD)

[trace(XTBX)]θ . (7.1)

At least three special cases of it have been well studied in the past decades because
of their immediate applications to data science. Our main results include an NEPv
(nonlinear eigenvalue problem with eigenvector dependency, a term coined in [6])
formulation of its KKT condition, necessary conditions for its local and global max-
imizers, a complete picture of the role played by D on the maximizers, a guaranteed
convergent self-consistent-field (SCF) iteration and its convergent analysis. As an
application of these results, we propose a novel orthogonal multi-view subspace
framework and experiment on its three instantiated models OGMA, OMLDA, and
OMvMDA in either supervised or unsupervised setting. Numerical results demon-
strate the new models outperform existing baselines.

Our convergence analysis results on the SCF-type iteration for the NEPv arising
from the trace ratiomaximization problem (7.1) are qualitative rather than quantitative,
i.e., lacking a quantitative estimation on the actual rate of convergence, unfortunately.
At the end of Sect. 4, we briefly commented on how to extend the approach in [3]
which deals with NEPv with a unitarily invariance property to the NEPv here, that in
general do not have the property, but only for the case when XT∗ D is positive definite.
In general when XT∗ D is singular, it is much more involved. Looking ahead, in [29]
we will develop a local convergence theory that covers the latter case and can yield
quantitative estimations on the actual rate of convergence.

Although we have been limiting our discussion on real matrices, the developments
in this paper can be straightforwardly extended to complex matrices with minor mod-
ifications, namely, replace all R by C (the set of complex numbers) and all transposes
t by complex conjugate transposes h.

Acknowledgements The authors wish to thank the two anonymous referees for their constructive sugges-
tions that greatly improved the presentation of this paper.

Author Contributions LW, L-HZ, R-CL All authors contribute equally.

Fundings Research was supported in part by United States National Science Foundation DMS-1719620
and DMS-2009689, and by the National Natural Science Foundation of China NSFC-12071332.

Data Availibility Statement All used data are public available online.

123



130 L. Wang et al.

Code Availability Available upon request.

Declaration

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms On Matrix Manifolds. Princeton
University Press, Princeton (2008)

2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the solution of
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

3. Bai, Z., Li, R.C., Lu, D.: Sharp estimation of convergence rate for self-consistent field iteration to solve
eigenvector-dependent nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 43(1), 301–327
(2022)

4. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE
Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

5. Borg, I., Lingoes, J.: Multidimensional Similarity Structure Analysis. Springer, New York (1987)
6. Cai, Y., Zhang, L.H., Bai, Z., Li, R.C.: On an eigenvector-dependent nonlinear eigenvalue problem.

SIAM J. Matrix Anal. Appl. 39(3), 1360–1382 (2018)
7. Cao, G., Iosifidis, A., Chen, K., Gabbouj,M.: Generalizedmulti-view embedding for visual recognition

and cross-modal retrieval. IEEE Trans. Cybern. 48(9), 2542–2555 (2018)
8. Chu, M.T., Trendafilov, N.T.: The orthogonally constrained regression revisited. J. Comput. Graph.

Stat. 10(4), 746–771 (2001)
9. Cunningham, J.P., Ghahramani, Z.: Linear dimensionality reduction: survey, insights, and generaliza-

tions. J. Mach. Learn. Res. 16, 2859–2900 (2015)
10. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
11. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
12. de Geer, J.P.V.: Linear relations among k sets of variables. Psychometrika 49, 70–94 (1984)
13. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints.

SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)
14. Eldén, L., Park, H.: A procrustes problem on the Stiefel manifold. Numer. Math. 82, 599–619 (1999)
15. Golub,G.H.,VanLoan,C.F.:MatrixComputations, 4th edn. JohnsHopkinsUniversity Press,Baltimore

(2013)
16. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, New York (2004)
17. Horn, R.A., Johnson, C.R.: Topics inMatrix Analysis. Cambridge University Press, Cambridge (1991)
18. Hurley, J.R., Cattell, R.B.: The Procrustes program: producing direct rotation to test a hypothesized

factor structure. Behav. Sci. 7, 258–262 (1962)
19. Kanzow, C., Qi, H.D.: AQP-free constrained Newton-typemethod for variational inequality problems.

Math. Program. 85, 81–106 (1999)
20. Kushmerick, N.: Learning to remove internet advertisements. In: Proceedings of the Third Annual

Conference on Autonomous Agents, pp. 175–181 (1999)
21. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramidmatching for recognizing

natural scene categories. In: 2006 IEEEComputer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, pp. 2169–2178. IEEE (2006)

22. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1),
59–70 (2007)

23. Li, R.C.: A perturbation bound for the generalized polar decomposition. BIT 33, 304–308 (1993)
24. Li, R.C.: On perturbations of matrix pencils with real spectra. Math. Comput. 62, 231–265 (1994)
25. Li, R.C.: New perturbation bounds for the unitary polar factor. SIAMJ.MatrixAnal. Appl. 16, 327–332

(1995)
26. Li, R.C.: Rayleigh quotient based optimization methods for eigenvalue problems. In: Bai, Z., Gao, W.,

Su, Y. (eds.) Matrix Functions and Matrix Equations, Series in Contemporary Applied Mathematics.

123

http://archive.ics.uci.edu/ml


Trace ratio optimization with an application… 131

Lecture summary for 2013 Gene Golub SIAM Summer School vol. 19, pp. 76–108. World Scientific,
Singapore (2015)

27. Li, W., Sun, W.: Perturbation bounds for unitary and subunitary polar factors. SIAM J. Matrix Anal.
Appl. 23, 1183–1193 (2002)

28. Liu,X.G.,Wang,X.F.,Wang,W.G.:Maximization ofmatrix trace function of product Stiefelmanifolds.
SIAM J. Matrix Anal. Appl. 36(4), 1489–1506 (2015)

29. Lu, D., Li, R.C.: Convergence of SCF for NEPv without unitary invariance property (2022). Work-in-
progress

30. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Statist. Comput. 4(3), 553–572
(1983)

31. Ngo, T., Bellalij, M., Saad, Y.: The trace ratio optimization problem for dimensionality reduction.
SIAM J. Matrix Anal. Appl. 31(5), 2950–2971 (2010)

32. Nie, F., Zhang, R., Li, X.: A generalized power iteration method for solving quadratic problem on the
Stiefel manifold. Sci. China Info. Sci. 60, 112101:1-112101:10 (2017)

33. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture clas-
sification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

34. Oliva,A., Torralba,A.:Modeling the shape of the scene: a holistic representation of the spatial envelope.
Int. J. Comput. Vis. 42(3), 145–175 (2001)

35. Peng, Y., Qi, J.: CM-GANs: cross-modal generative adversarial networks for common representation
learning. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 15(1), 1–24 (2019)

36. Seber, G.A.F.: A Matrix Handbook for Statisticians. Wiley, New York (2007)
37. Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: a discriminative

latent space. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2160–2167.
IEEE (2012)

38. Stewart, G.W.: Matrix Algorithms, Vol. II: Eigensystems. SIAM, Philadelphia (2001)
39. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, Boston (1990)
40. Sun, J.G.: Matrix Perturbation Analysis. Academic Press, Beijing (1987). (In Chinese)
41. Sun, S., Xie, X., Yang, M.: Multiview uncorrelated discriminant analysis. IEEE Trans. Cybern. 46(12),

3272–3284 (2016)
42. von Neumann, J.: Some matrix-inequalities and metrization of matrix-space. Tomck. Univ. Rev. 1,

286–300 (1937)
43. Vía, J., Santamaría, I., Pérez, J.: A learning algorithm for adaptive canonical correlation analysis of

several data sets. Neural Netw. 20(1), 139–152 (2007)
44. Wang, H., Yan, S., Xu, D., Tang, X., Huang, T.: Trace ratio vs. ratio trace for dimensionality reduction.

In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
45. Wu, J., Rehg, J.M.: Where am i: Place instance and category recognition using spatial pact. In: 2008

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
46. Zhang, L.H., Liao, L.Z., Ng, M.K.: Fast algorithms for the generalized Foley–Sammon discriminant

analysis. SIAM J. Matrix Anal. Appl. 31(4), 1584–1605 (2010)
47. Zhang, L.H., Liao, L.Z., Ng, M.K.: Superlinear convergence of a general algorithm for the generalized

Foley–Sammon discriminant analysis. J. Optim. Theory Appl. 157(3), 853–865 (2013)
48. Zhang, L.H., Wang, L., Bai, Z., Li, R.C.: A self-consistent-field iteration for orthogonal canonical

correlation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 890–904 (2022). https://doi.org/
10.1109/TPAMI.2020.3012541

49. Zhang, L.H.,Yang,W.H., Shen,C.,Ying, J.:An eigenvalue-basedmethod for the unbalancedProcrustes
problem. SIAM J. Matrix Anal. Appl. 41(3), 957–983 (2020)

50. Zhang, Z., Du, K.: Successive projection method for solving the unbalanced procrustes problem. Sci.
China Math. 49(7), 971–986 (2006)

51. Zhao,H.,Wang, Z., Nie, F.: Orthogonal least squares regression for feature extraction.Neurocomputing
216, 200–207 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.1109/TPAMI.2020.3012541
https://doi.org/10.1109/TPAMI.2020.3012541

	Trace ratio optimization with an application to multi-view learning
	Abstract
	1 Introduction
	2 KKT condition and associated NEPv
	3 The role of D
	4 Self-consistent field iteration
	4.1 SCF
	4.2 Convergence analysis

	5 Application to multi-view learning
	5.1 Problem formulation and related work
	5.2 Proposed model and alternating iteration
	5.3 Alternating iteration

	6 Numerical experiments
	6.1 Experiments on synthetic problems
	6.2 Experiments on multi-view data for feature extraction

	7 Conclusions and remarks
	Acknowledgements
	References




