
Numerische Mathematik (2022) 152:587–629
https://doi.org/10.1007/s00211-022-01322-y

Numerische
Mathematik

Maximizing sum of coupled traces with applications

Li Wang1 · Lei-Hong Zhang2 · Ren-Cang Li1,3

Received: 27 November 2021 / Revised: 29 May 2022 / Accepted: 3 October 2022 /
Published online: 14 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper concerns maximizing the sum of coupled traces of quadratic and linear
matrix forms. The coupling comes from requiring the matrix variables in the quadratic
and linear matrix forms to be packed together to have orthonormal columns. At a
maximum, the KKT condition becomes a nonlinear polar decomposition (NPD) of
a matrix-valued function with dependency on the orthogonal polar factor. A self-
consistent-field iteration, along with a locally optimal conjugate gradient (LOCG)
acceleration, are proposed to compute the NPD. It is proved that both methods are
convergent and it is demonstrated numerically that the LOCG acceleration is very
effective. As applications, we demonstrate our methods on the MAXBET subproblem
and the multi-view partially shared subspace learning (MvPS) subproblem, both of
which sit at the computational kernels of two multi-view subspace learning models.
In particular, we also demonstrate MvPS on several real world data sets.

Keywords Coupled traces · Stiefel manifold · Nonlinear polar decomposition ·
NPD · SCF · Multi-view subspace learning

Mathematics Subject Classification 58C40 · 65F30 · 65H17 · 65K05 · 90C26 · 90C32

B Ren-Cang Li
rcli@uta.edu

Li Wang
li.wang@uta.edu

Lei-Hong Zhang
longzlh@suda.edu.cn

1 Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington,
TX 76019-0408, USA

2 School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu 215006, China

3 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-022-01322-y&domain=pdf

588 L. Wang et al.

1 Introduction

In this paper, we investigate the following maximization problem for the sum of
coupled traces:

max
XTX=Ik

{
f (X) :=

�∑
j=1

[
tr(XT

j A j X j) + 2 tr(XT
j D j)

]}
, (1.1a)

where A j ∈ R
n×n for 1 ≤ j ≤ � are symmetric and Dj ∈ R

n×k j for 1 ≤ j ≤ �,
the optimizing variable X ∈ R

n×k is partitioned as X = [X1, X2, . . . , X�] with
X j ∈ R

n×k j for 1 ≤ j ≤ �, and k =∑�
j=1 k j . The coupledness in (1.1) is caused by

the constraint that X composed of X j for 1 ≤ j ≤ � associated with different traces
has orthonormal columns. Necessarily 1 ≤ k ≤ n, but usually k � n in applications.

Without loss of generality, in the rest of this paper, we will assume

A j � 0, i.e., positive semi-definite, for 1 ≤ j ≤ �. (1.1b)

Otherwise, we may consider maximizing

fα(X) :=
�∑

j=1

[
tr(XT

j [A j + α j In]X j) + 2 tr(XT
j D j)

]
= f (X) +

�∑
j=1

k jα j ,

instead, where α j for 1 ≤ j ≤ � are constants such that A j + α j In � 0. Clearly, any
α j ≥ −λmin(A j), the opposite of the smallest eigenvalue of A j , suffices. It can be
seen that the same maximizers optimize both f (X) and fα(X). Numerically, α j can
be estimated cheaply [66].

Compactly, the objective function of (1.1) can be written as

f (X) = tr(XTA (X)) + 2 tr(XTD), (1.2a)

where, for X ∈ R
n×k partitioned as above,

A (X) := [A1X1, . . . , A�X�] ∈ R
n×k, D := [D1, D2, . . . , D�] ∈ R

n×k . (1.2b)

There are two well-known special cases. The first special case is that all A j are the
same, say A j = A = AT ∈ R

n×n for all j , and D = 0. Then (1.1) becomes

max
XTX=Ik

tr(XTAX), (1.3)

which admits an analytic solution in terms of the eigendecomposition of A, and is
known as Ky Fan’s trace maximization principle [16] [21, p.248]. Namely, the optimal
objective value is the sum of the first k largest eigenvalues of A, and a corresponding
global maximizer X can be any orthonormal eigenbasis matrix of A associated with its

123

Maximizing sum of coupled traces with applications 589

k largest eigenvalues. There are infinitely many maximizers, but their column spaces
are the same if the kth largest eigenvalue of A is strictly bigger than its (k + 1)st
largest eigenvalue. There are many efficient numerical linear algebra techniques, and
software packages as well, to solve (1.3) [2, 3, 13, 33, 44, 47], regardless of its scale
– small, medium, or large. The second special case is that still all A j are the same,
say A j = A = AT ∈ R

n×n for all j , but D �= 0. Then (1.1) becomes the MAXBET
subproblem

max
XTX=Ik

tr(XTAX) + 2 tr(XTD). (1.4)

MAXBET is a statistical term that appeared first in [53] in 1984 and then in [52], and
more detail can be found in Sect. 5.1 later. Simply because D �= 0, problem (1.4)
does not admit analytic solutions any more. Problem (1.4) is a fundamental one in
optimization and applied statistics [11, 14]. The unbalanced Procrustes problem [11,
14, 15, 19, 23, 64]

min
X∈On×k

‖CX − B‖2F (1.5)

can be equivalently turned into (1.4) with A = −CTC and D = CTB. Numerically
solving the MAXBET problem [35, 53] via an alternating scheme has (1.4) at its core
as subproblems. Both (1.4) and (1.5) can also be found inmany real world applications
including the orthogonal least squares regression (OLSR) for feature extraction [39,
65], themultidimensional similarity structure analysis (SSA) [8, Chapter 19]. Recently
in [63], for its numerical solution (1.4) is turned into an equivalent nonlinear eigenvalue
problem with eigenvector dependency (NEPv), a term that was first coined in [10].

Another not-so-common case is when � = k, all k j = 1, and all Dj = 0. Adopting
the convention of using lower-case letters for vectors, we rewrite (1.1) for this case as

max
XTX=Ik

k∑
j=1

xxxTj A jxxx j . (1.6)

Its objective was called in [7] the sum of heterogeneous quadratic form [7]. It does
not admit analytic solutions in general either. In [7], the authors established the KKT
condition for (1.6) and presented an iterative method. More recently, in [5, 6, 46]
problem (1.6)was used as an illustrative example for optimization onStiefelmanifolds.

Optimization problem (1.1) is one of many over the Stiefel manifold

O
n×k = {X ∈ R

n×k : XTX = Ik}.

There is enormous interest in optimization on manifolds, especially over the last two
decades. Generic constrained optimization methods [41] can be readily applied [12],
but they often perform not so well as their variations adapted particularly for optimiza-
tion on Riemannian manifolds (see [1, 9, 14, 17, 54, 56] and references therein). On
the other hand, customized optimization methods through taking advantage of struc-
tures in objective functions such as f (X) in (1.1) and leveraging mature numerical
linear algebra techniques and software packages can gain even more efficiency (see
[29, 35, 60–63] and references therein). Our goal in this paper is to design customized

123

590 L. Wang et al.

optimization methods that can solve (1.1) much more efficiently than existing adapted
methods. In particular, we will provide numerical comparisons among our methods
and solvers from manopt [9] and STOP [17, 54], twowidely usedMALAB toolboxes
written by experts for optimization on manifolds, to demonstrate superiority of our
customized optimization methods.

The rest of this paper is organized as follows. In Sect. 2, we derive the KKT con-
dition, its associated nonlinear polar decomposition (NPD), and necessary conditions
for a global maximizer beyond the standard first order conditions. In Sect. 3, we pro-
pose our SCF iteration for problem (1.1) and conduct a detailed convergence analysis
of the method. In Sect. 4, we propose an acceleration technique to speedup the SCF
iteration. Two applications of (1.1), namely the MAXBET subproblem and the MvPS
subproblem, are discussed in Sect. 5 with numerical demonstrations and applications
to multi-view subspace learning. Finally, we draw our conclusions in Sect. 6.

Notation. R
m×n is the set of m × n real matrices, and R

n = R
n×1 and R = R

1.
In ∈ R

n×n is the identity matrix. BT stands for the transpose of a matrix/vector.R(B)

is the column subspace of B, spanned by its columns. For B ∈ R
m×n , unless otherwise

explicitly stated, its SVD is referred to the one B = UΣV T with

Σ = diag(σ1(B), σ2(B), . . . , σs(B)) ∈ R
s×s, U ∈ O

m×s, V ∈ O
n×s,

where s = min{m, n}, and the singular values σ j (B) are always arranged decreasingly
as

σ1(B) ≥ σ2(B) ≥ · · · ≥ σs(B) ≥ 0.

‖B‖2, ‖B‖F, and ‖B‖tr are its spectral, Frobenius, and trace norms:

‖B‖2 = σ1(B), ‖B‖F =
(s∑

i=1

[σi (B)]2
)1/2

, ‖B‖tr =
s∑

i=1

σi (B),

respectively. For a symmetric matrix A ∈ R
n×n , eig(A) = {λi (A)}ni=1 denotes the set

of its eigenvalues (counted by multiplicities) arranged in the decreasing order as well.
A matrix A 	 0 (� 0) means that it is symmetric and positive definite (semi-definite),
and accordingly A ≺ 0 (� 0) if −A 	 0 (� 0).

2 KKT condition and nonlinear polar decomposition

In the rest of this paper, as a convention and often without explicitly stating it, any
matrix X ∈ R

n×k may be partitioned into � column blocks, with the j th column block
denoted by X j ∈ R

n×k j , in accordance with the way the objective function of (1.1) is
defined.

It can be seen that the partial derivative of f with respect to X ∈ R
n×k is

∂ f (X)

∂X
= 2A (X) + 2D =: 2B(X), (2.1)

123

Maximizing sum of coupled traces with applications 591

where A (X) is as defined in (1.2b). Let

ΠX (Z) := Z − X sym(XTZ) for Z ∈ R
n×k,

where sym(XTZ) = (XTZ + ZTX)/2. The gradient of f with respect to the Stiefel
manifold O

n×k at X is then given by [1, (3.35)]

grad f|On×k (X) = ΠX

(
∂ f (X)

∂X

)
= ∂ f (X)

∂X
− X sym

(
XT ∂ f (X)

∂X

)

= 2A (X) + 2D − 2XΛ

= 2
[
B(X) − XΛ

]
, (2.2)

whereΛ ∈ R
k×k is symmetric and its explicit form, althoughavailable, is not important

to us. Finally, the KKT condition, also known as the first order optimality condition,
is grad f|On×k (X) = 0, or equivalently,

B(X) = XΛ, X ∈ O
n×k, (2.3a)

ΛT = Λ ∈ R
k×k . (2.3b)

Pre-multiply the first equation in (2.3a) by XT to get Λ = XTB(X) in terms of X and
B(X). Also (2.3a) implies R(B(X)) ⊆ R(X).

Inwhat follows,wewill establish somenecessary conditions for a globalmaximizer,
keyond the KKT condition (2.3). Recall assumption (1.1b) that A j � 0 for 1 ≤ j ≤ �.

Lemma 2.1 ([62, Lemma 3]) For H ∈ R
m×m, we have | tr(H)| ≤ ‖H‖tr. If | tr(H)| =

‖H‖tr, then H is symmetric and is either positive semi-definite when tr(H) ≥ 0, or
negative semi-definite when tr(H) ≤ 0.

Remark 2.1 As a corollary of Lemma 2.1, for any H ∈ R
m×m , if H � 0, then

tr(H) < ‖H‖tr . Now let H = UΣV T be the SVD of H [18], and set Q = UV T.
Then QTH = VΣV T � 0 and tr(QTH) = ‖H‖tr > tr(H).

Lemma 2.2 For X ≡ [X1, X2 . . . , X�] ∈ O
n×k and Y ≡ [Y1,Y2 . . . ,Y�] ∈ O

n×k , we
have

�∑
j=1

tr(Y T
j A j X j) ≤ 1

2

�∑
j=1

[
tr(Y T

j A jY j) + tr(XT
j A j X j)

]
. (2.4)

Proof Inequality (2.4) is unlikely new. It is implied in [7] (for all k j = 1). For com-
pleteness, we provide a proof here. It suffices to prove for each j ,

tr(Y T
j A j X j) ≤ 1

2

[
tr(Y T

j A jY j) + tr(XT
j A j X j)

]
. (2.5)

Recall A j � 0. Without loss of generality we may assume A j 	 0; otherwise we shift
A j to A j +ε In 	 0 for some ε > 0 and then letting ε → 0. To prove (2.5) for the case

123

592 L. Wang et al.

A j 	 0, we note that tr(Y T
j A j X j) can be regarded as an inner-product on the matrix

space R
n×k j between X j and Y j , and hence, by the Cauchy–Bunyakovsky-Schwarz

inequality, we have

tr(Y T
j A j X j) ≤

√
tr(Y T

j A jY j)

√
tr(XT

j A j X j) ≤ 1

2

[
tr(Y T

j A jY j) + tr(XT
j A j X j)

]
,

as expected. ��
Lemma 2.3 Given X ∈ O

n×k , let XTB(X) = WΣV T be its SVD, and let X̃ =
XWV T ∈ O

n×k . Then

f (X̃) ≥ f (X) + 2
[
‖XTB(X)‖tr − tr(XTB(X))

]
. (2.6)

Furthermore, f (X̃) > f (X), unless XTB(X) � 0, for which case X̃ = X.

Proof We note that

X̃TB(X) = VWTXTB(X) = VΣV T � 0.

Hence tr(X̃TB(X)) = ‖XTB(X)‖tr ≥ tr(XTB(X)). We have, by Lemma 2.2,

2‖XTB(X)‖tr = 2 tr(X̃TB(X))

= 2
�∑

j=1

tr(X̃T
j A j X j) + 2 tr(X̃TD)

≤
�∑

j=1

tr(X̃T
j A j X̃ j) +

�∑
j=1

tr(XT
j A j X j) + 2 tr(X̃TD)

≤ f (X̃) + f (X) − 2 tr(XTD), (2.7)

and also

2 tr(XTB(X)) = 2 tr(XTA (X)) + 2 tr(XTD) = 2 f (X) − 2 tr(XTD). (2.8)

Subtracting equation (2.8) from the inequality (2.7) yields (2.6).
By Lemma 2.1, ‖XTB(X)‖tr − tr(XTB(X)) ≥ 0 always, and it is equal to 0 if

and only if XTB(X) � 0, for which case XTB(X) = VΣV T and hence X̃ = X . ��
In the theorem below, we present some necessary conditions for a global maximizer

beyond the KKT condition (2.3).

Theorem 2.1 If X∗ = [X∗1, . . . , X∗�] ∈ O
n×k is a global maximizer of (1.1), then

B(X∗) = X∗[XT∗B(X∗)], XT∗B(X∗) � 0, XT∗ j D j � 0 for 1 ≤ j ≤ �. (2.9)

123

Maximizing sum of coupled traces with applications 593

Proof X∗ must be a KKT point and hence it satisfies (2.3). We have to show Λ∗ :=
XT∗B(X∗) � 0 and with all XT∗ j D j � 0 for 1 ≤ j ≤ �.

Suppose, to the contrary, that XT∗i Di � 0 for some i . Let Qi ∈ O
ki×ki such that

QT
i X

T∗i Di � 0. We have

tr(QT
i X

T∗i Di) = ‖XT∗i Di‖tr > tr(XT∗i Di)

by Lemma 2.1 (see Remark 2.1). Hence f (Y) > f (X∗) for Y ≡ [Y1,Y2 . . . ,Y�] ∈
O

n×k with Y j = X∗ j for j �= i and Yi = X∗i Qi , a contradiction. Therefore XT∗ j D j �
0 for 1 ≤ j ≤ �.

Suppose, to the contrary, that Λ∗ � 0. Then there exists Q ∈ O
k×k such that

QTΛ∗ � 0 and

tr(XT∗B(X∗)) = tr(Λ∗) < ‖Λ∗‖tr = tr(QTΛ∗) = tr(QTXT∗B(X∗)).

Now use Lemma 2.3 to conclude f (X∗Q) > f (X∗), contradicting that X∗ is a global
maximizer. ��

Asa result of this theorem, at a globalmaximizer X∗, X∗Λ∗ is a polar decomposition
ofB(X∗) and the decomposition is unique if rank(B(X∗)) = k [30–32].We call (2.3)
with Λ � 0 a nonlinear polar decomposition (NPD) ofB(·) which is a matrix-valued
function of its orthogonal polar factor.

The necessary conditions in (2.9) demand much more on X∗ than being just a KKT
point of optimization problem (1.1), as given by (2.3), in that: 1) Λ � 0, and 2)
XT

j D j � 0 for 1 ≤ j ≤ �. These extra conditions turn out to be powerful ones that
numerical solutions by our later methods satisfy and compare favorably to existing
general optimization methods on manifolds such as the solvers from manopt [9]
and STOP [17, 54]. For example, as shown in Table 1, a better maximizer in terms
of larger objective value is found by our methods than the ones obtained by solvers
from manopt and STOP. Also in Remark 3.1(vi) later, we use a simple example to
illustrate the importance of having XT

j D j � 0.

3 SCF for nonlinear polar decomposition

Theorem 2.1 provides us with important necessary conditions for a global maximizer
of (1.1). In this section, we will first present a self-consistent-field (SCF) iteration for
solving (2.3) with post-processing to maximally increase the objective function value
and then perform a convergence analysis of the method. For that purpose, we first
investigate how to drive up the objective value of (1.1) and by at least how much.

Lemma 3.1 For X , Y ∈ O
n×k , we have

f (Y) ≥ f (X) + 2η(Y), (3.1)

where
η(Y) := tr(Y TB(X)) − tr(XTB(X)). (3.2)

123

594 L. Wang et al.

In particular, f (Y) ≥ f (X) if η(Y) ≥ 0.

Proof Recall B(X) = A (X) + D. We have, by Lemma 2.2,

tr(XTB(X)) = tr(XTD) + tr(XTA (X)), (3.3)

tr(Y TB(X)) = tr(Y TD) + tr(Y TA (X))

= tr(Y TD) +
�∑

j=1

tr(Y T
j A j X j)

≤ tr(Y TD) + 1

2

�∑
j=1

[
tr(Y T

j A jY j) + tr(XT
j A j X j)

]

= tr(Y TD) + 1

2
tr(Y TA (X)) + 1

2
tr(XTA (X)). (3.4)

Hence by (3.2)

tr(Y TD) + 1

2
tr(Y TA (X)) + 1

2
tr(XTA (X)) ≥ tr(XTB(X)) + η(Y)

= tr(XTD) + tr(XTA (X)) + η(Y),

which yields (3.1) after rearrangement and upon noting (1.2a). ��
What this theorem says is that to increase the objective value f (X), we will need

to find some Y ∈ O
n×k such that η(Y) > 0, but how?

For any Y ∈ O
n×k , let Y⊥ ∈ O

n×(n−k) such that [Y ,Y⊥] is orthogonal. Then

[Y ,Y⊥]TB(X) =
[
Y TB(X)

Y T⊥B(X)

]
=:
[
B1(Y)

B2(Y)

]
.

Hence by Lemma 2.1

tr(Y TB(X)) = tr(B1(Y)) ≤
k∑

i=1

σi (B1(Y)) (3.5)

≤
k∑

i=1

σi ([Y ,Y⊥]TB(X)) (3.6)

=
k∑

i=1

σi (B(X)) = ‖B(X)‖tr, (3.7)

where (3.5) is an equality if and only if B1(Y) = Y TB(X) � 0, and (3.6) is an
equality if and only if B2(Y) = Y T⊥B(X) = 0. As a corollary of (3.5), (3.6), and
(3.7), we know tr(XTB(X)) ≤ ‖B(X)‖tr upon letting Y = X , and also the largest
η(Y) in (3.2) is ‖B(X)‖tr − tr(XTB(X)) ≥ 0, achieved by any Y ∈ O

n×k such that

123

Maximizing sum of coupled traces with applications 595

R(B(X)) ⊆ R(Y) (which ensures B2(Y) = Y T⊥B(X) = 0) and Y TB(X) � 0. One
such Y is given by Y = UV T, where B(X) = UΣV T is the SVD of B(X). Hence,
we have the following lemma.

Lemma 3.2 Let η(Y) be defined as in Lemma 3.1. Then

max
Y∈On×k

η(Y) = ‖B(X)‖tr − tr(XTB(X)) ≥ 0,

and the maximum is attained by Yopt = UV T, where U and V come from the SVD
B(X) = UΣV T. Furthermore the maximum is strictly positive, unless XTB(X) � 0
and R(B(X)) ⊆ R(X), under which it is 0.

3.1 SCF iteration

Lemmas 3.1 and 3.2 point to a way to maximally increase the objective function value
at a point X ∈ O

n×k . Namely, compute SVD B(X) = UΣV T and let Y = UV T.
Then we have

tr(Y TB(X)) = tr(Σ) = ‖B(X)‖tr ≥ tr(XTB(X)),

where the last inequality is strict if XTB(X) � 0 or ifR(B(X)) � R(X). As a result,
we have η(Y) ≥ 0 in (3.1) and (3.2). A further improvement on Y ≡ [Y1,Y2, . . . , Y�],
made possible by Lemma 2.1 (see Remark 2.1), is as follows: Let Y T

j D j = UjΣ j V T
j

be the SVD of Y T
j D j , and set X (new) ≡ [X (new)

1 , X (new)
2 , . . . , X (new)

�] ∈ O
n×k with

X (new)
j = Y j (UjV T

j) for 1 ≤ j ≤ �. We will then have

f (X (new)) = f (Y) + 2
�∑

j=1

[
‖Y T

j D j‖tr − tr(Y T
j D j)

]
(3.8)

≥ f (X) + 2
[
‖B(X)‖tr − tr(XTB(X))

]
+ 2

�∑
j=1

[
‖Y T

j D j‖tr − tr(Y T
j D j)

]
.

(3.9)

The ideawediscussed so far is similar to [7],where there are no Dj -terms. Formally,we
summarize these into Algorithm 1, whose overall complexity is1 O(n2k+nk2+k3) =
O(n2k) per SCF iterative step.

Remark 3.1 Regarding Algorithm 1, there are a few comments in order.

(i) The purpose of Line 1 is to make sure (X (0)
j)TDj � 0 initially. Thus it can be

dropped if it is known (X (0)
j)TDj � 0 already upon entry. With Lines 5 and 6,

we always make sure (X (i)
j)TDj � 0 at the end of each for-loop.

1 Computing the SVD of an n × k matrix takes 6nk2 + 20k3 flops [18, p.493].

123

596 L. Wang et al.

Algorithm 1 NPDvSCF: NPD (2.3) solved by SCF

Input: A j � 0 and Dj for 1 ≤ j ≤ �, and X (0) ≡ [X (0)
1 , X (0)

2 , . . . , X (0)
�

] ∈ O
n×k ;

Output: a maximizer of (1.1) by solving NPD (2.3).

1: for 1 ≤ j ≤ �, compute SVD (X (0)
j)TDj = UjΣ j V

T
j and reset X (0)

j to X (0)
j (Uj V

T
j);

2: for i = 0, 1, . . . until convergence do
3: compute Bi = B(X (i)) ∈ R

n×k and its SVD Bi = UiΣi V
T
i ;

4: Y (i) ≡ [Y (i)
1 , Y (i)

2 , . . . , Y (i)
�

] = Ui V
T
i ∈ O

n×k ;

5: compute SVD (Y (i)
j)TDj = WjΣ j Q

T
j for 1 ≤ j ≤ �;

6: compute X (i+1) ≡ [X (i+1)
1 , X (i+1)

2 , . . . , X (i+1)
�

] with X (i+1)
j = Y (i)

j (Wj Q
T
j) for 1 ≤ j ≤ �;

7: end for
8: return the last X (i).

(ii) For each for-loop, (3.8) and (3.9) hold with X = X (i), Y = Y (i), and X (new) =
X (i+1).

(iii) Lines 5 and 6 are to ensure that one of the necessary conditions: XT∗ j D j � 0 for
1 ≤ j ≤ � is satisfied at convergence.

(iv) A reasonable stopping criterion at Line 2 is

εKKT+εsym := ‖B(X) − X [XTB(X)]‖F
β

+
∥∥[XTB(X)] − [XTB(X)]T‖F

β
≤ ε,

(3.10a)
where ε is a given tolerance, and

β =
�∑

j=1

(
‖A j‖F + 2‖Dj‖F

)
. (3.10b)

The significance of both εKKT and εsym is rather self-explanatory. In fact, we
will call εKKT and εsym the normalized residual for the KKT equation (2.3a)
and the normalized residual for the symmetry equation (2.3b) in Λ = XTB(X),
respectively.

(v) It is interesting to look at whether f (X (i0+1)) = f (X (i0)) can possibly happen
for some i0 in Algorithm 1. By the inequality in (3.9), if f (X (i0+1)) = f (X (i0))

happens, then X∗ := X (i0) satisfies (2.9), i.e., X (i0) is a KKT point and satisfies
the neceaary coniditons for a global maximizer in Theorem 2.1, and hence X (i0)

should be and is usually accepted as a solution to (1.1). This in general is too
good a case and almost never happens in actual computations.

(vi) Algorithm 1, taken out Lines 5 and 6 and then applied to the special case (1.4),
appeared in [35, 39]. However, Lines 5 and 6 can be critical in steering away
from some stationary points that are not global maximizers. Here is a simple
example:

A =
[
4 0
0 3

]
, D =

[−1 0
0 −1

]
.

123

Maximizing sum of coupled traces with applications 597

For any X ∈ O
2×2, it can be seen that tr(XTAX) = 7 and tr(XTD) ≤ ‖D‖tr = 2,

attainable at X = −I2, and hence

max
X∈O2×2

tr(XTAX) + 2 tr(XTD) = 7 + 4 = 11

with a global maximizer Xopt = −I2. However, if with X (0) = I2, Algorithm 1,
without Lines 5 and 6 (i.e., simply let X (i+1) = Y (i)), will find that B0 =
diag(3, 2), Y (0) = I2 and hence X (1) = I2. Inductively, X (i) = X (0) for i ≥ 1
and

tr((X (i))TAX (i)) + 2 tr((X (i))TD) = 7 − 4 = 3.

On the other hand, with Lines 5 and 6, i.e., Algorithm 1 as stated, will find
X (1) = −I2 and X (i) = −I2 thereafter, reaching the global maximizer in just
one iterative step! Note that for both I2 and −I2,

A · I2 + D = I2 · Λ ≡ I2 ·
[
3 0
0 2

]
, A · (−I2) + D

= (−I2) · Λ ≡ (−I2) ·
[
5 0
0 4

]

satisfying the KKT condition (2.3), and the necessary condition XT∗B(X∗) � 0
in Theorem 2.1, except that the last necessary condition XT∗ D � 0 is violated
by I2: IT2 · D ≺ 0, but satisfied by −I2: (−I2)T · D 	 0. Hence Lines 5 and 6 of
Algorithm 1 can be critical, not to mention that the objective value gains from
them, as shown in (3.8).

3.2 Convergence analysis

For the first special case (1.3), Algorithm 1 is equivalent to subspace iteration (also
known as the power method). It converges to the eigenspace of A associated with its
k largest eigenvalues if A � 0, and even if A is indefinite, it still converges but to the
eigenspace of A associated with its k largest eigenvalues in magnitude [13, 49].

In this subsection, we will perform a convergence analysis on Algorithm 1 in its
generality under the assumption (1.1b). In view of Remark 3.1(v), we will exclude the
case f (X (i0+1)) = f (X (i0)) for some i0 from consideration.

Theorem 3.1 Let the sequence {X (i)}∞i=0 be generated by Algorithm 1, and let Y (i)

be an orthogonal polar factor of B(X (i)) as defined in the algorithm. Suppose that
f (X (i+1)) �= f (X (i)) for all i ≥ 0. The following statements hold.

123

598 L. Wang et al.

(a) For i ≥ 0,

f (X (i+1)) − f (X (i)) ≥ 2
[∥∥B(X (i))

∥∥
tr − tr((X (i))TB(X (i)))

]

+ 2
�∑

j=1

[
‖(Y (i)

j)TDj‖tr − tr((Y (i)
j)TDj)

]
≥ 0.

(3.11)

The right-hand side of (3.11) is strictly positive if

R(B(X (i))) � R(X (i)), or (X (i))TB(X (i)) � 0, or (Y (i)
j)TDj � 0 for some j .

(3.12)
(b) The sequence { f (X (i))}∞i=0 is monotonically increasing and convergent.
(c) If

rank(B(X (i))) = k, and rank((Y (i)
j)TDj) = k j for 1 ≤ j ≤ �, (3.13)

then X (i+1) is uniquely determined by the procedure of Algorithm 1.
(d) Any accumulation point X∗ of the sequence {X (i)}∞i=0 satisfies the necessary con-

ditions in (2.9) for a global maximizer.

Proof Item (a) is a corollary of (3.9). Hence the sequence { f (X (i))}∞i=0 is monoton-

ically increasing. It is also bounded from above because f (X) ≤ ∑�
j=1

[‖A j‖tr +
‖Dj‖tr

]
for any X ∈ O

n×k . Therefore the sequence { f (X (i))}∞i=0 is convergent. This
proves item (b).

For item (c), since rank(B(X (i))) = k, Y (i) at Line 4 of Algorithm 1 as the orthogo-
nal polar factor ofB(X (i)) is unique [30]. For the same reason,Wj QT

j at Line 6 as the

orthogonal polar factor of (Y (i)
j)TDj is unique. Hence X (i+1) is uniquely determined.

We now prove item (d). There is a subsequence {X (i)}i∈I that converges to X∗, i.e.,

lim
I�i→∞ ‖X (i) − X∗‖F = 0, (3.14)

where I is an infinite subset of {1, 2, . . .}. Since (X (i)
j)TDj � 0 for 1 ≤ j ≤ � and

i ≥ 0, we conclude that XT∗ j D j � 0 for 1 ≤ j ≤ � by letting I � i → ∞. It remains

to show B(X∗) = X∗Λ∗ and XT∗B(X∗) � 0, or, equivalently, R(B(X∗)) ⊆ R(X∗)
and XT∗B(X∗) � 0. Assume, to the contrary, that either R(B(X∗)) � R(X∗) or
XT∗B(X∗) � 0 (or both). Then

δ := ‖B(X∗)‖tr − tr(XT∗B(X∗))
= (‖B(X∗)‖tr − ‖XT∗B(X∗)‖tr

)+ (‖XT∗B(X∗)‖tr − tr(XT∗B(X∗))
)

> 0,

123

Maximizing sum of coupled traces with applications 599

because ‖B(X∗)‖tr−‖XT∗B(X∗)‖tr > 0 ifR(B(X∗)) � R(X∗), or ‖XT∗B(X∗)‖tr−
tr(XT∗B(X∗)) > 0 if XT∗B(X∗) � 0. Since ‖B(X)‖tr , tr(XTB(X)), and f (X) are
continuous in X ∈ O

n×k , it follows from (3.14) that there is an i0 ∈ I such that

∣∣∣‖B(X∗)‖tr − ‖B(X (i0))‖tr
∣∣∣ < δ/3, (3.15a)

∣∣∣ tr((X (i0))TB(X (i0))) − tr(XT∗B(X∗))
∣∣∣ < δ/3, (3.15b)

f (X∗) − δ/3 < f (X (i0)) ≤ f (X∗). (3.15c)

Using (3.11) and (3.15), we have

f (X (i0+1)) ≥ f (X (i0)) + 2
[∥∥B(X (i0))

∥∥
tr − tr((X (i0))TB(X (i0)))

]

> f (X∗) − δ

3
+ 2
[
‖B(X∗)‖tr − δ

3
− tr(XT∗B(X∗)) − δ

3

]

= f (X∗) + δ

3
> f (X∗),

contradicting f (X (i)) ≤ lim j→∞ f (X (j)) = f (X∗) for all i . ��

It is interesting to check what happens if

R(B(X (i))) ⊆ R(X (i)), (X (i))TB(X (i)) 	 0, (X (i)
j)TDj 	 0 for 1 ≤ j ≤ �,

(3.16)
which is not exactly the opposite of (3.12), however. The first two conditions in (3.16)
imply that B(X (i)) = X (i)[(X (i))TB(X (i))] is a polar decomposition of B(X (i)),
and the decomposition is also unique [30] because of rank(B(X (i))) = k. Hence
Y (i) = X (i). By the last condition in (3.16), we conclude thatWj QT

j = Ik j for all j at

Line 6, implying X (i+1) = X (i). By induction, X (t) = X (i) for all t ≥ i + 1, implying
f (X (i+1)) = f (X (i)). Hence the case (3.16) cannot happen under the assumption
f (X (i+1)) �= f (X (i)) for all i ≥ 0 in Theorem 3.1.
As a corollary of Theorem 3.1, we establish a sufficient condition for NPD (2.3) to

have a solution.

Corollary 3.1 Under the condition (1.1b), NPD (2.3) is solvable, i.e., there exists X ∈
O

n×k such that Λ = XTB(X) � 0 and (2.3) holds.

To further analyze the convergence of the sequence {X (i)}∞i=0, we now introduce a
distance measure on Grassmann manifold Gk(R

n), the collection of all k-dimensional
subspaces in R

n . Let X = R(X) and Y = R(Y) be two points in Gk(R
n), where

X , Y ∈ O
n×k . The canonical angles θ1(X ,Y) ≥ · · · ≥ θk(X ,Y) between X and Y

are defined by

0 ≤ θi (X ,Y) := arccos σi (X
TY) ≤ π

2
for 1 ≤ i ≤ k,

123

600 L. Wang et al.

and accordingly, Θ(X ,Y) = diag(θ1(X ,Y), . . . , θk(X ,Y)). It is known that

dist2(X ,Y) := ‖ sinΘ(X ,Y)‖2 (3.17)

is a unitarily invariant metric on Grassmann manifold Gk(R
n) [50, p.99].

The following lemma is an equivalent restatement of [38, Lemma 4.10] (see also
[25, Proposition 7]) in the context of a metric space.

Lemma 3.3 ([38, Lemma 4.10]) Let G be a metric space with metric dist(·, ·), and
let {xxxi }∞i=0 be a sequence in G . If xxx∗ ∈ G is an isolated accumulation point of the
sequence such that, for every subsequence {xxxi }i∈I converging to xxx∗, there is an infinite
subset Î ⊆ I satisfying dist(xxxi , xxxi+1) → 0 as Î � i → ∞, then the entire sequence
{xxxi }∞i=0 converges to xxx∗.

In applying this lemma, on Grassmann manifold Gk(R
n), we will use the unitarily

invariant metric in (3.17), and, on matrix space R
n×k , we will use ‖X − Y‖2 as the

metric.

Theorem 3.2 Let the sequence {X (i)}∞i=0 be generated by Algorithm 1, and let X∗ be
an accumulation point of the sequence.

(a) R(X∗) is an accumulation point of the sequence {R(X (i))}∞i=0.
(b) IfR(X∗) is an isolated accumulation point of {R(X (i))}∞i=0 and if rank(B(X∗)) =

k, then the sequence {R(X (i))}∞i=0 converges toR(X∗).
(c) If X∗ is an isolated accumulation point of {X (i)}∞i=0 and if rank(B(X∗)) = k and

rank(XT∗ j D j) = k j for 1 ≤ j ≤ �, then the sequence {X (i)}∞i=0 converges to X∗.

Proof Let {X (i)}i∈I be a subsequence that converges to X∗. Then it can be seen that
[50, pp.125-127]

0 ≤ dist2(R(X (i)),R(X∗)) ≤ ‖X (i) − X∗‖2 → 0 as I � i → ∞, (3.18)

i.e., R(X∗) is an accumulation point of the sequence {R(X (i))}∞i=0. This proves
item (a).

Recall the associated sequence {Y (i)}∞i=0. Consider {Y (i)}i∈I for which there is a
convergent subsequence {Y (i)}i ∈̂I, converging to Y∗, where Î ⊆ I. Further, {X (i+1)}i ∈̂I
has a convergent subsequence {X (i+1)}i ∈̃I, converging to X̃∗, where Ĩ ⊆ Î ⊆ I. In
particular,

lim
Ĩ�i→∞

dist2(R(X (i+1),R(X̃∗)) = 0. (3.19)

We claim that

Y T∗ B(X∗) � 0, tr(Y T∗ B(X∗)) = ‖B(X∗)‖tr, (3.20a)

R(X̃∗) = R(Y∗). (3.20b)

Since tr((Y (i))TB(X (i))) = ‖B(X (i)))‖tr and (Y (i))TB(X (i)) � 0, letting Î � i →
∞ yields (3.20a). Since R(X (i+1)) = R(Y (i)), letting Ĩ � i → ∞ yields (3.20b).

123

Maximizing sum of coupled traces with applications 601

It follows from (3.20a) that B(X∗) = Y∗(Y T∗ B(X∗)) is a polar decomposi-
tion of B(X∗). Next, by Theorem 3.1(d), we know B(X∗) = X∗[XT∗B(X∗)]
and XT∗B(X∗) � 0. This also gives a polar decomposition of B(X∗). Because
rank(B(X∗)) = k,B(X∗) has a unique polar decomposition [30] and hence X∗ = Y∗,
which, together with (3.20b), lead toR(X∗) = R(X̃∗). Therefore, as Ĩ � i → ∞, by
(3.19) we have

dist2(R(X (i),R(X (i+1)) ≤ dist2(R(X (i),R(X∗)) + dist2(R(X̃∗),R(X (i+1)) → 0.

Now use Lemma 3.3 to conclude that the entire sequence {R(X (i))}∞i=0 converges to
R(X∗). This completes the proof of item (b).

Consider now item (c). All the arguments in the proof above for item (b) remain
valid as the condition that R(X∗) is an isolated accumulation point of {R(X (i))}∞i=0
is only used at the very end when Lemma 3.3 is invoked. For the current case, it
suffices to prove X̃∗ = X∗. By design, X (i+1)

j = Y (i)
j Z (i)

j where Z (i)
j ∈ O

k j×k j is the

orthogonal polar factor of (Y (i)
j)TDj . By assumption rank(XT∗ j D j) = k j and hence

XT∗ j D j 	 0. Note that

(Y (i)
j)TDj → Y T∗ j D j = XT∗ j D j as Ĩ � i → ∞,

since Y∗ = X∗ has already been proved. By the continuity of the orthogonal polar
factor [30, 31], the orthogonal polar factor Z (i)

j of (Y (i)
j)TDj converges to the one of

XT∗ j D j 	 0, i.e., Ik j as Ĩ � i → ∞. Hence taking limit on X (i+1)
j = Y (i)

j Z (i)
j as

Ĩ � i → ∞ yields X̃∗ j = Y∗ j which is the same as X∗ j for 1 ≤ j ≤ �, i.e., X̃∗ = X∗,
as expected. ��

Item (a) of the theorem is very much a trivial conclusion, but it is remarkable that
each of item (b) and item (c) startswith an isolated accumulation point and ends upwith
the conclusion that the isolated accumulation point is the limit of the entire sequence.
Still there is a technical detail to address, namely how to verify that an accumulation
point is an isolated accumulation point in a simple manner. At this point, we do not
have an answer to it. In item (c), it is also assumed that each XT∗ j D j 	 0, which
fails when rank(Dj) < k j . In particular, if Dj = 0 then the objective value f (X∗) is
invariant with respect to changing X∗ j to X∗ j Q j for any Q j ∈ O

k j×k j , suggesting that
in practice it is unlikely the sequence {X (i)}∞i=0 converges in R

n×k but {R(X (i))}∞i=0
may as stated in item (b). These questions warrant continuing investigations.

Remark 3.2 Theorem 3.2 essentially says that Algorithm 1 always converges, but it
says little quantitatively on its rate of convergence. Our rough discussion in what
follows provides some insights, but further investigation is needed. Using perturbation
results on the polar decomposition [32, p.21.9] applied to

B(X (i)) = Y (i)Λi , B(X∗) = X∗Λ∗,

123

602 L. Wang et al.

where Λi � 0 and Λ∗ � 0, we have

‖Y (i) − X∗‖F ≤ ‖B(X (i)) − B(X∗)‖F
σk(B(X (i))) + σk(B(X∗))

(3.21)

≤
(∑�

j=1 ‖A j‖22
)1/2

σk(B(X (i))) + σk(B(X∗))
‖X (i) − X∗‖F. (3.22)

To proceed, we will have to relate Y (i) to X (i+1). For that purpose, we noted X (i+1)
j =

Y (i)
j Z (i)

j where Z (i)
j ∈ O

k j×k j is the orthogonal polar factor of (Y (i)
j)TDj . We expect

Z (i)
j to be close to I j under certain conditions, aswe argued in the proof of Theorem3.2,

but bounding Z (i)
j − I j in general could be messy because we have to deal with cases:

1) Dj = 0; 2) (Y (i)
j)TDj has full rank; 3) (Y (i)

j)TDj is rank-deficient. But still it
is reasonable to conjecture a local linear rate of convergence that is no bigger than(∑�

j=1 ‖A j‖22
)1/2/[2σk(B(X∗))].

4 Acceleration by LOCG

Although Algorithm 1, an SCF iteration for solving NPD (2.3), is proved always
convergent to KKT points, it may take many SCF iterations to converge to a solution
with desired accuracy and that can be costly for large scale problems. In this section,we
will explain an idea to speed things up. The idea is inspired by locally optimal conjugate
gradient methods (LOCG) from optimization [45, 51] and has been increasingly used
in numerical linear algebra for linear systems and eigenvalue problems [24, 26, 33,
58].

4.1 A variant of LOCG for acceleration

Without loss of generality, let X (−1) ∈ O
n×k be the approximate maximizer of (1.1)

from the very previous iterative step, and X ∈ O
n×k the current approximate maxi-

mizer. We are now looking for the next approximate maximizer X (1), along the line
of LOCG, according to

X (1) = arg max
Y∈On×k

f (Y), s.t. R(Y) ⊆ R([X ,R(X), X (−1)]), (4.1)

where

R(X) := 1

2
grad f|On×k (X) = B(X) − X · 1

2

[
XTB(X) + B(X)TX

]
(4.2)

by (2.2) withB(X) as in (2.1).

123

Maximizing sum of coupled traces with applications 603

Algorithm 2 LOCGvNPD: LOCG with (4.3) solved by Algorithm 1

Input: A j � 0 and Dj for 1 ≤ j ≤ �, and X (0) ≡ [X (0)
1 , X (0)

2 , . . . , X (0)
�

] ∈ O
n×k ;

Output: a maximizer of (1.1).

1: for 1 ≤ j ≤ �, compute SVD (X (0)
j)TDj = UjΣ j V

T
j and reset X (0)

j to X (0)
j (Uj V

T
j);

2: X (−1) = []; % null matrix
3: for i = 0, 1, . . . until convergence do
4: compute W ∈ O

n×m such that R(W) = R([X (i),R(X (i)), X (i−1)]);
5: compute Ã j , D̃ j according to (4.3b);

6: solve (4.3c) for Zopt by Algorithm 1 with initially Z (0) being the first k columns of Im ;

7: X (i+1) = WZopt;
8: end for
9: return the last X (i).

Initially for the first iteration, we don’t have X (−1) ∈ O
n×k and it is understood

that X (−1) is absent from (4.1), i.e., simplyR(Y) ⊆ R([X ,R(X)]).
We have to numerically solve (4.1). For that purpose, letW ∈ O

n×m be an orthonor-
mal basis matrix of subspaceR([X ,R(X), X (−1)]). Generically,m = 3k butm < 3k
can happen. It can be implemented by the Gram-Schmit orthogonalization process,
starting with the columns of R(X) against X since X ∈ O

n×k already. In MATLAB,
to fully take advantage of its optimized functions, we simply setW = [R(X), X (−1)]
(or W = R(X) for the first iteration) and then do

W=W-X*(X’*W); W=orth(W); W=W-X*(X’*W); W=orth(W);
W=[X,W];

where the first line performs the classical Gram-Schmit orthonormalization twice to
ensure that the resulting columns of W are fully orthogonal to the columns of X at
the end of the first line, and orth is a MATLAB function for orthogonalization. It is
important to note that the first k columns of the final W are the same as those of X .

Now it follows fromR(Y) ⊆ R([X ,R(X), X (−1)]) = R(W) that in (4.1)

Y = WZ for Z ∈ O
m×k . (4.3a)

Partition Z ≡ [Z1, Z2, . . . , Z�] with Z j ∈ R
m×k j , similarly to X as in (1.1), and let

Ã j = WTA jW � 0, D̃ j = WTDj for 1 ≤ j ≤ �. (4.3b)

Problem (4.1) becomes

Zopt = arg max
Z∈Om×k

{
f̃ (Z) := f (WZ) =

�∑
j=1

[
tr(ZT

j Ã j Z j)+2 tr(ZT
j D̃ j)

]}
, (4.3c)

and X (1) = WZopt. This is of the same type as (1.1), except its dimensionality n is
drastically reduced to m. Algorithm 1 can be simply applied to solve (4.3c), and we
denote the resulting method, outlined in Algorithm 2, by LOCGvNPD.

123

604 L. Wang et al.

Algorithm 2 outlines an overall inner-outer iterative scheme for (1.1), where at
Line 6 any other method, if known, can be inserted to replace Algorithm 1 to solve
(4.3c). Later when we consider the MAXBET subproblem (1.4), we will test Algo-
rithm 2 with a method different from Algorithm 1.

Remark 4.1 There are a few comments in order, regarding Algorithm 2.

(i) It is important to computeW at Line 4 in such a way, as explained moments ago,
that its first k columns are exactly the same as those of X (i). This is because as
X (i) converges, X (i+1) changes little from X (i) and hence Zopt is increasingly
close to the first k columns of Im . This explains the choice of Z (0) at Line 6.

(ii) At Line 5, portions of Ã j and D̃ j have already been computed. For example,
A j X (i) and [X (i)]TA j X (i) are needed, and, after Line 7, we may use

A j X
(i+1) = (A jW)Zopt, [X (i+1)]TA j X

(i+1) = ZT
opt(W

TA jW)Zopt

to compute the next A j X (i+1) and [X (i+1)]TA j X (i+1) at the costs O(nk2) and
O(k3), respectively, instead of O(n2k) by reusing (A jW) and (WTA jW).

(iii) At Line 6, Algorithm 1 may take many SCF iterative steps to solve (4.3c). But
since m ≤ 3k, the cost of each iterative step is still O(k3).

(iv) Another area of improvement is to solve (4.3c) with an accuracy, comparable
but fractionally better than the current X (i) as an approximate solution of (1.1).
Specifically, if we use (3.10) at Line 3 to stop the for-loop: Lines 3–8, with
tolerance ε, then instead of using the same ε for Algorithm 1 at Line 6, we can
use a fraction, say 1/4, of εKKT + εsym evaluated at the current approximation
X = X (i) as stopping tolerance.

The overall complexity of Algorithm 2 per outer iterative step is still O(n2k),
the same as Algorithm 1 per SCF iterative step, assuming k � n. But Algorithm 2
may take many fewer outer iterative steps than the number of SCF iterative steps
required by Algorithm 1 if applied directly to solve (1.1). Example 4.1 below presents
a random example to illustrate this point. We also ran three general-purpose solvers
for optimization on manifold: steepest-descent (SD) and trust-regions (RTR) methods
from manopt2 [9] and the multiplier correction method (FOForth) from STOP3 [17,
54] for a brief comparison to demonstrate that specially designed solvers like ours can
outperform general-purpose ones. It is noted that, except RTR, all methods are first-
ordermethods.More details can be found online at theweb sites ofmanopt andSTOP.
Usually second-order methods converge faster and are more efficient than first-order
methods for problems of modest scales, but for problems of large scales, second-order
methods may suffer too high complexity per iterative step. Hence, in general methods
of the same order are compared against each other for fairness. Another general-
purpose solver is OPtM [56] which was extensively compared against STOP in [17]
where it was concluded that STOP holds an edge in performance.

2 A MATLAB toolbox for OPTimization on MANifolds available online at https://www.manopt.org/.
3 A toolbox for STiefel manifold OPtimization available online at https://stmopt.gitee.io/.

123

https://www.manopt.org/
https://stmopt.gitee.io/

Maximizing sum of coupled traces with applications 605

Fig. 1 Example 4.1: convergence history ofAlgorithms1 (left) andAlgorithm2 (right).Various performance
statistics by both methods, along with solvers from manopt and STOP, are listed in Table 1. We see
tremendous speedups by Algorithm 2

Example 4.1 This is a random example in MATLAB: n = 1000, � = 10, all k j = 2
and hence k = 2� = 20, and A j and Dj are generated as

C j = randn(n), A j = C jC
T
j , Dj = randn(n, k j). (4.4)

With tolerance ε = 10−10 in (3.10), Fig. 1 plots the normalized residuals εKKT + εsym

in (3.10) evaluated at each approximation X (i), by Algorithm 1 and Algorithm 2,
respectively, while various important quantities measuring the performance of each
method at convergence are displayed in Table 1, where “# itn” and “CPU”4 refer to
the number of outer-iterative steps and the CPU time (in seconds); “sol. err.” and “obj.
err” refer to the relative error in the computed maximizer and the objective value by
any other algorithm against the ones returned by Algorithm 1 as

‖Xcomputed − Xalg. 1‖F
‖Xalg. 1‖F ,

fcomputed − falg. 1

falg. 1
;

and “residual” is for the sum of normalized residuals εKKT + εsym at computed X by
an algorithm.

In Table 1, we also include performance statistics for SD and RTR from manopt
[9] and FOForth from STOP both with 10000 as the maximally allowed number of
iterations and tolerance 10−10 on the gradient norm. Both SD and FOForthwere forced
to stop at iteration 10000. We highlight the following observations:

1. The last row for “residual” determines the quality of computed solutions as KKT
points. Judging from it, we find that all methods compute some KKT points but
the one by manopt’s SD is least accurate while the second-order method RTR is

4 All numerical demonstrations in this paper were done in MATLAB on a laptop with Intel(R) Core(TM)
i7-1165G7 CPU 2.80GHz and 32GB memory, except those in Sect. 5.2.2 which were performed on an
EXXACT workstation (www.exxactcorp.com).

123

www.exxactcorp.com

606 L. Wang et al.

Table 1 Performance statistics (Example 4.1)

Algorithm 1 Algorithm 2 manopt [9] STOP

NPDvSCF LOCGvNPD SD RTR FOForth

itn 2560 115 104 30 104

CPU 9.0711 2.0115 668.94 43.783 250.58

sol. err. 2.15 × 10−7 1.09 1.09 1.09

obj. err. −7.98 × 10−15 −1.67 × 10−4 −1.67 × 10−4 −1.67 × 10−4

Residual 9.96 × 10−10 8.31 × 10−11 7.23 × 10−7 7.45 × 10−17 3.96 × 10−10

most accurate. The KKT points by the other three methods have about the same
accuracy.

2. The row for “sol. err.” is calculated with the solution byNPDvSCF as the reference.
Hencewewill see a large error if amethod computes a different KKT point.We find
that NPDvSCF and LOCGvNPD compute the same KKT point, which is surely
different from the ones by SD and RTR from manopt and by FOForth from STOP.

3. The row for “obj. err.” is calculated with the objective value by NPDvSCF as
the reference. A negative entry implies a smaller objective value returned by the
correspondingmethod, and hence a worsemaximizer. NPDvSCF and LOCGvNPD
produce essentially the same objective value that is larger (i.e., better) than the one
by any of the other three methods.

4. Lastly, LOCGvNPD is fastest, about 4.5 times faster than the secondbestNPDvSCF
in terms of CPU time. The acceleration by LOCG really helps, reducing the number
of iterations from 2560 by NPDvSCF to 115 by LOCGvNPD. Both NPDvSCF and
LOCGvNPD decidedly outperform the other three solvers, even the second-order
RTR, by wide margins.

In summary, LOCGvNPD is the best method measured in terms of speed, accuracy in
KKT points, and quality in maximizer.

Example 4.2 In this example, we investigate how the CPU time changes when k or n
is varied. Specifically, we let � = 10, all k j = k̂ and hence k = k̂�, and generate A j

and Dj as in (4.4). For our methods, we use tolerance ε = 10−6 in (3.10), and also use
10−6 on the gradient norm for the solvers from manopt and STOP. The maximally
allowed number of iterations are set at 10,000 for all methods. We checked that, with
these tolerances, residuals as defined in (3.10) at the returned solutions by all methods
are about 10−6 to 10−7, except for manopt’s RTR whose scaled residuals are about
10−12 or smaller as one might expect from a second-order method.

For each random problem, the same initial guess is used by all methods.
Table 2 displays the CPU time consumed by each method for a typical run for

n = 2000 with k j = k̂ ∈ {1, 3, 5, 7, 9}. In this particular run, manopt’s SD was
forced to stop at iteration 10000 each time, except for k = 10 for which it only took
1566 iterations. It seems that this particular random problem for k = 10 is an easy one.
In general (as we observed from many runs), LOCGvNPD is the best, and NPDvSCF
and LOCGvNPD easily outperform the solvers from manopt and STOP.

123

Maximizing sum of coupled traces with applications 607

Table 2 CPU time for n = 2000
while k varies (Example 4.2)

k Algorithm 1 Algorithm 2 manopt [9] STOP

NPDvSCF LOCGvNPD SD RTR FOForth

10 11.530 1.6620 417.98 28.400 14.444

30 15.412 4.6623 2871.2 209.21 196.87

50 35.621 13.655 2914.5 313.75 203.74

70 35.140 15.377 3014.4 319.44 205.84

90 58.568 21.710 3060.4 448.52 326.54

Table 3 CPU time for k = 20 while n varies (Example 4.2)

n Algorithm 1 Algorithm 2 manopt [9] STOP

NPDvSCF LOCGvNPD SD RTR FOForth

1000 5.2726 1.1855 764.47 37.365 26.200

1200 21.528 4.7167 1083.8 45.735 35.630

1400 5.8807 1.5276 1384.3 79.075 92.361

1600 12.602 2.5251 1760.0 89.325 85.393

1800 13.501 3.1630 2242.4 110.09 113.95

2000 14.255 2.8914 2621.5 325.10 199.70

Table 3 displays the CPU time consumed by each method for a typical run for fixed
k j = 2 giving k = 20 as n varies from 1000 to 2000. Once again, manopt’s SD was
forced to stop at iteration 10000. LOCGvNPD is indisputably the best method and
together with NPDvSCF, they are the top 2 performers. We point out that the CPU
times in both Tables 2 and 3 vary from one run to another as they are for randomly
generated problems, but the overall behavior remains the same. This comment applies
to all our later experiments for the MAXBET subproblem in Sect. 5.1 and the MvPS
subproblem in Sect. 5.2.

4.2 Convergence analysis

In this subsection,wewill performa convergence analysis ofAlgorithm2.Wefirst con-
sider an ideal situation that at its Line 6, Zopt is computed to be an exact maximizer
of (4.3) for simplicity, and then discuss situations when Zopt is computed approxi-
mately. We point out that the seemingly ideal situation is not completely unrealistic.
In actual computation, as we explained in Remark 4.1(iv), the computed Zopt should
be sufficiently more accurate as an approximation solution for (4.3) than X (i) as an
approximation one for the original problem (1.1) at that moment.

Beforewe state ourmain results, let us again look atwhether f (X (i0+1)) = f (X (i0))

can possibly happen for some i0 in Algorithm 2. Suppose that is case. Then there will
be no increase in the objective value at Line 6 for (4.3). By (3.8) and (3.9), we conclude
that, for i = i0 at Line 6,

123

608 L. Wang et al.

B̃(WZ (0)) = Z (0)Λ for some Λ � 0.

Equivalently, 0 = WT
[
B(WZ (0)) − WZ (0)Λ

] = WTR(X (i0)) because WZ (0) =
X (i0). Since R(W) ⊇ R(R(X (i0))), we have R(X (i0)) = 0. This, together with
(X (i0)

j)TDj � 0 for 1 ≤ j ≤ � already, implying X (i0) is a KKT point of (1.1) and
satisfies the necessary conditions in (2.9) for a global maximizer. This in general is
too good a scenario and almost never happens in actual computation. For that reason,
in our analysis below, we will exclude such a situation from consideration.

Theorem 4.1 Let the sequence {X (i)}∞i=0 be generated by Algorithm 2 in which, it is
assumed that Zopt is an exact maximizer of (4.3). Suppose that f (X (i+1)) �= f (X (i))

for all i ≥ 0. The following statements hold.

(a) (X (i))TB(X (i)) � 0 for i ≥ 1, and (X (i)
j)TDj � 0 for 1 ≤ j ≤ � and i ≥ 1.

(b) The sequence { f (X (i))}∞i=0 is monotonically increasing and convergent.
(c) Any accumulation point X∗ of the sequence {X (i)}∞i=0 is a KKT point of (1.1) and

satisfies the necessary conditions in (2.9) for a global maximizer.

Proof Similarly to (1.2b) and (2.1), introduce for (4.3)

Ã (Z) := [Ã1Z1, . . . , Ã�Z�] ∈ R
m×k, D̃ := [D̃1, D̃2, . . . , D̃�] ∈ R

m×k,

B̃(Z) := Ã (Z) + D̃ ∈ R
m×k .

It can be seen that Ã (Z) = WTA (WZ) and B̃(Z) = WTB(WZ). Hence, by the
assumption that Zopt is an exact maximizer of (4.3), we have at the end of Line 6

0 � ZT
optB̃(Zopt) = ZT

optW
TB(WZopt) = (X (i+1))TB(X (i+1)),

0 � ZT
opt, j D̃ j = ZT

opt, jW
TDj = (X (i+1)

j)TDj , (4.5)

proving item (a). Let Z be the first k columns of Im . Then f̃ (Z) = f (X (i)) in (4.3),
and thus

f (X (i+1)) = f (WZopt) = f̃ (Zopt) ≥ f̃ (Z) = f (X (i)).

This proves item (b).
Next, we prove item (c). Let {X (i)}i∈I be a subsequence that converges to X∗ ≡

[X∗1, . . . , X∗�]. Letting I � i → ∞ in the inequalities in item (a) immediately yields
XT∗B(X∗) � 0 and XT∗ j D j � 0 for 1 ≤ j ≤ �.

It remains to show B(X∗) = X∗Λ∗, where Λ∗ = XT∗B(X∗). Suppose, to the
contrary, thatB(X∗) �= X∗Λ∗. Since R(·) of (4.2) is continuous, we have

R∗ := lim
I�i→∞R(X (i)) = R(X∗) = B(X∗) − X∗Λ∗ �= 0, (4.6)

where R∗ �= 0 is due to the assumption B(X∗) �= X∗Λ∗ we just made.

123

Maximizing sum of coupled traces with applications 609

In this paragraph, we will establish some general results for X ∈ O
n×k sufficiently

close to X∗ and they will be used later with X set to some particular X (i) to complete
our proof. It can be seen that there exists γ1 > 0 such that for any X ∈ O

n×k

‖R(X) − R(X∗)‖F ≤ γ1‖X − X∗‖F,
where γ1 is independent of X . Given X ∈ O

n×k , let for t ∈ R

G(t) = X + tR(X) = X∗ + t R∗ +
{
X − X∗ + t[R(X) − R∗]

}
(4.7a)

from which we have

‖G(t) − X∗‖F ≤ |t |(‖R∗‖F + γ1) + ‖X − X∗‖F for ‖X − X∗‖F ≤ 1. (4.7b)

It is not too hard to verify that if

|t | < min

{
1,

1

2(‖R∗‖F + γ1)

}
=: τ1, ‖X − X∗‖F <

1

2
=: δ1, (4.8)

then ‖G(t) − X∗‖F < 1. Hence under (4.8), G(t) has full column rank and thus

Y (t) = G(t)[G(t)TG(t)]−1/2

is well-defined. Again because of (4.7), there exist τ2 and δ2, satisfying 0 < τ2 ≤ τ1
and 0 < δ2 ≤ δ1, such that, whenever |t | < τ2 and ‖X − X∗‖F < δ2,

Y (t) = X∗ + t R∗ +
{
X − X∗ + t[R(X) − R∗]

}
+ h1(t, X), (4.9a)

‖h1(t, X)‖F ≤ γ2(‖X − X∗‖2F + t2), (4.9b)

where γ2 is a constant, independent of X and t . On the other hand f (X) is differentiable
with respect to X ∈ O

n×k . Therefore there exists δ3, satisfying 0 < δ3 ≤ δ2 and
independent of X , such that, whenever ‖X − X∗‖F < δ3,

f (X) = f (X∗) + 1

2
tr((X − X∗)TR(X∗)) + h2(X), |h2(X)| ≤ γ3‖X − X∗‖2F,

(4.10)
where constant γ3 is independent of X . We claim that if

‖X − X∗‖F < δ4 := δ3

2(1 + γ2)
< δ3, |t | < τ4 := min

{
1,

δ3

2(‖R∗‖F + γ1 + γ2)

}
,

(4.11)
then ‖Y (t) − X∗‖F < δ3. In fact, it follows from (4.7) and (4.9) that under (4.11)

‖Y (t) − X∗‖F ≤ |t |‖R∗‖F + ‖X − X∗‖F + |t |γ1‖X − X∗‖F + γ2(‖X − X∗‖2F + t2)

≤ |t |(‖R∗‖F + γ1 + γ2) + ‖X − X∗‖F(1 + γ2)

< δ3, (4.12)

123

610 L. Wang et al.

as expected. Let

τ = min

{
τ4,

tr(RT∗ R∗)
32γ3(‖R∗‖F + γ1 + γ2)2

,
tr(RT∗ R∗)
8γ2‖R∗‖F

}
> 0, (4.13a)

ε = min

⎧
⎨
⎩δ4,

√
τ tr(RT∗ R∗)

32γ3(1 + γ2)2
,

τ tr(RT∗ R∗)
8‖R∗‖F(1 + τγ1 + γ2)

⎫
⎬
⎭ > 0, (4.13b)

where τ > 0 is due to the assumption R∗ �= 0 in (4.6).
Since subsequence {X (i)}i∈I converges to X∗, there is an i0 ∈ I such that ‖X (i0) −

X∗‖F < ε. Now let X in the previous paragraph be X (i0) and t = τ . We have

R(Y (τ)) ⊆ R([X (i0),R(X (i0))]) ⊆ R([X (i0),R(X (i0)), X (i0−1)]),

and hence by (4.10)

f (X (i0+1)) ≥ f (Y (τ)) = f (X∗) + 1

2
tr((Y (τ) − X∗)TR∗) + h2(Y (τ)). (4.14)

We now estimate each of the last two terms in (4.14). By (4.12) we have

|h2(Y (τ))| ≤ γ3

[
τ(‖R∗‖F + γ1 + γ2) + ‖X (i0) − X∗‖F(1 + γ2)

]2

≤ 2γ3
[
τ 2(‖R∗‖F + γ1 + γ2)

2 + ε2(1 + γ2)
2
]

≤ 1

8
τ tr(RT∗ R∗), (4.15)

where we have used (4.13) to derive the last inequality. Next we estimate tr((Y (τ) −
X∗)TR∗) which, upon using (4.9) and then (4.7), is

1

2
tr
([

τ R∗ + (X (i0) − X∗) + τ(R(X (i0)) − R∗) + h1(τ, X
(i0))
]T

R∗
)

≥ 1

2
τ tr(RT∗ R∗) − 1

2
‖X (i0) − X∗‖F(1 + τγ1 + γ2)‖R∗‖F − 1

2
γ2τ

2‖R∗‖F

≥ 1

2
τ tr(RT∗ R∗) − 1

8
τ tr(RT∗ R∗), (4.16)

where we again have used (4.13) to derive the last inequality. Combine (4.14), (4.15),
and (4.16) to get

f (X (i0+1)) ≥ f (X∗) + 1

2
τ tr(RT∗ R∗) − 1

8
τ tr(RT∗ R∗) − 1

8
τ tr(RT∗ R∗)

= f (X∗) + 1

4
τ tr(RT∗ R∗) > f (X∗),

123

Maximizing sum of coupled traces with applications 611

contradicting f (X∗) ≥ f (X (i)) for all i because f (X∗) is the limit of the monoton-
ically increasing sequence { f (X (i))}∞i=0. Hence R∗ = 0, or equivalently, B(X∗) =
X∗Λ∗, as was to be shown. ��

One of the consequences of requiring that Zopt is an exact maximizer of (4.3) in
Theorem 4.1 is the first claim in its item (a): (X (i))TB(X (i)) � 0 for i ≥ 1. It is
a sensible thing to do because the reduced problem (4.3) is of a much smaller scale
than the original problem (1.1), but our current implementation for computing Zopt
approximately follows Remark 4.1(iv). Theoretically, for obtaining a convergence
theorem similar to Theorem 4.1, we can use a (crude) approximate solution Z ′

opt to

(4.3) at Line 6 and let X (i+1) = WZ ′
opt, replacing Line 7 of Algorithm 2, so long as

that Z ′
opt is obtained by executing at least one for-loop iteration in Algorithm 1 on

(4.3) that increases the value of f̃ , with an additional safe-guard step (Line 7a below).
Specifically, we can replace Lines 6 and 7 of Algorithm 2 with

6: compute a (crude) approximate solution Z ′
opt to (4.3c) byAlgorithm1with initially

Z (0) being the first k columns of Im in such a way that at least one for-loop iteration
in Algorithm 1 is executed;

7: X (i+1) = WZ ′
opt;

7a: if f (X (i+1)) = f (X (i)), then execute one for-loop iteration in Algorithm 1 on
(1.1) with X (i) as the initial and overwrite X (i+1) by the output.

For such modified Algorithm 2, we claim that all conclusions of Theorem 4.1, except
(X (i))TB(X (i)) � 0 for i ≥ 1, remain valid. In fact, except (4.5) which is no longer
true, the proof of Theorem 4.1 above remains valid. Additionally, we need to take
care of the case when the test in Line 7a above holds true. Then for the overwritten
X (i+1), either f (X (i+1)) > f (X (i)) or still f (X (i+1)) = f (X (i)). For the former, the
execution of the modified Algorithm 2 continues, and for the latter we fall back to
Remark 3.1(v) to conclude the whole iteration.

5 Applications

In this section, we describe two applicationswhere special cases of (1.1) arise naturally
as computational subproblems that have to be solved repeatedly.

5.1 MAXBET subproblem

Without going into too much detail, we may state compactly the MAXBET problem
[52, 53] arising from applied multivariate statistical analysis and data mining as

max
Qi∈Oni×k ∀i

{
g({Qi }vi=1) :=

v∑
i, j=1

tr(QT
i Φi j Q j)

}
, (5.1)

where Φi j ∈ R
ni×n j such that Φ = [Φi j] ∈ R

N×N is symmetric, and N = ∑v
i=1 ni .

Necessarily, k ≤ ni for all i and usually k � N . Without loss of generality, we may
assume

123

612 L. Wang et al.

Φi i � 0 for 1 ≤ i ≤ v;

otherwise each Φi i may be shifted to Φi i + αi Ini by some constant αi ≥ −λmin(Φi i)

without affecting the maximizers of (5.1). Numerically, αi can be estimated cheaply
[66].

TheMAXBET problem includes a generalization of the classical canonical correla-
tion analysis (CCA) [12, 20, 22] for the multi-view (also known as multi-set) analysis,
and the special case k = 1 is referred to as the maximal correlation problem (MCP)
in the literature. There are a few numerical methods designed to solve (5.1) but no
single one is better than any other with guarantee. Generic optimization methods on
the product of Stiefel manifolds such as the Riemannian trust-region method [1, 59]
are too slow to be practical for large N [36]. Recently, Liu, Wang, and Wang [35]
investigated a few interesting ideas but its most ambitious one, which aims to find a
global maximizer of (5.1), is again too expensive and still without any guarantee.

Often a general framework for solving (5.1) is an inner-outer iterative scheme to
repeatedly update {Qi }vi=1 in a manner similar to either the Jacobi or Gauss-Seidel
updating scheme for a linear system of equations. By either scheme, it has to solve
repeatedly, in its computational kernel, a problem of the form (1.4), i.e.,

max
X∈On×k

tr(XTAX) + 2 tr(XTD), ((1.4))

a special case of (1.1): all A j = A ∈ R
n×n are symmetric positive semidefinite. For

that reason, (1.4) is often called theMAXBET subproblem. According to the theory in
Sect. 2, the KKT condition for (1.4) is

AX + D = XΛ, X ∈ O
n×k, ΛT = Λ ∈ R

k×k . (5.2)

Our previous developments in Sects. 2–4 are immediately applicable. For example, as
a corollary of Theorem 2.1, we have

Theorem 5.1 Any global maximizer X∗ ∈ O
n×k of (1.4) satisfies (5.2) and XT∗ D � 0.

Proof The theorem is a consequence of Theorem 2.1 and that XTD � 0 implies
XT(AX + D) � 0 because A � 0. ��

Algorithm 1 (SCF for NPD (2.3)) straightforwardly applies. Possibly it may take
many SCF iterative steps to reach a prescribed tolerance as before, and again Algo-
rithm 2 comes to rescue. For MAXBET subproblem (1.4),

B(X) ≡ A (X) + D = AX + D. (5.3)

The authors in [63] showed that its KKT condition (5.2) is equivalent to the following
NEPv (nonlinear eigenvalue problem with eigenvector dependency):

H (X)X :=
[
A + (D XT + X DT)

]
X = XΩ, X ∈ O

n×k, (5.4)

123

Maximizing sum of coupled traces with applications 613

Algorithm 3MBSvSCF: MAXBET subproblem solved by SCF [63]

Input: A � 0 and D, and X (0) ∈ O
n×k ;

Output: a maximizer of (1.4) by solving NEPv (5.4).
1: compute SVD (X (0))TD = WΣVT and reset X (0) to X (0)(WVT);
2: for i = 0, 1, . . . until convergence do
3: compute a partial eigendecomposition: H (X (i))X̂ (i+1) = X̂ (i+1)Ωi+1, where X̂ (i+1) ∈ O

n×k

and eig(Ωi+1) consists of the k largest eigenvalues of H (X (i));
4: compute SVD (X̂ (i+1))TD = Wi+1Σi+1V

T
i+1, and let X

(i+1) = X̂ (i+1)(Wi+1V
T
i+1);

5: end for
6: return the last X (i).

and devised an SCF iteration, as outlined in Algorithm 3, to compute a maximizer.
By now, we have several ways to solve MAXBET subproblem (1.4): Algorithms 1,

2, 3 [63], andAlgorithm 2/3 (bywhichwemean, at Line 6 of Algorithm 2, Algorithm 1
is replaced by Algorithm 3). It follows from (5.3) that

XTB(X) = XTAX + XTD

and hence it is symmetric positive semidefinite if XTD � 0, which is guaranteed for
any of the approximations by all methods just mentioned. In order to get a sense how
these methods perform against each other, we performed two experiments on random
problems in Examples 5.1 and 5.2.

Example 5.1 This is a random MAXBET subproblem (1.4) experimented in MAT-
LAB: n = 1000, k = 10, and

C = randn(n), A = CCT, D = 10.0 × randn(n, k). (5.5)

This random problem is first generated and savedwith an initial guess for reproducibil-
ity. With tolerance ε = 10−10 in (3.10), Fig. 2 plots the sum of normalized residual
εKKT + εsym in (3.10) evaluated at each approximation X (i), by Algorithms 1, 2, 3,
and Algorithm 2/3. Table 4 displays important performance statistics at convergence,
including those by SD and RTR from manopt [9], FOForth from STOP (both with
10,000 as the maximally allowed number of iterations and tolerance 10−10 on the gra-
dient norm), and by the generalized power iteration (GPI) of [39] which is essentially
Algorithm 1 with its Lines 5 and 6 simply replaced by X (i+1) = Y (i) (recalling � = 1
for the MAXBET subproblem (1.4)). We highlight the following observations:

1. We can tell from the last row for “residual” in Table 4 that all methods compute
some KKT points but the one by GPI is much worse than the others.

2. In terms of objective value,MBSvSCF yields the largest one, and the second largest
value comes fromNPDvSCF, LOCGvNPD,MBSvLOCG, andmanopt’s RTRand
STOP’s FOForth.
Despite of taking 10,000 iterations, GPI [39] still produces the smallest objective
value among all and that is not competitive at all.
For GPI, Fig. 3 plots its iterative history in objective value and normalized residuals
εKKT and εsym. Although the curve for objective value signals convergence, it

123

614 L. Wang et al.

Fig. 2 Example 5.1: convergence history of Algorithm 1 (top left), Algorithm 2 (top right), Algorithm 3
(bottom left), and Algorithm 2/3 (bottom right). Various performance statistics by all methods, along with
solvers from manopt and STOP, are listed in Table 4. We see tremendous speedups by Algorithm 2 and
Algorithm 2/3

Table 4 Performance statistics (Example 5.1)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 2/3 manopt [9] STOP GPI [39]

NPDvSCF LOCGvNPD MBSvSCF MBSvLOCG SD RTR FOForth

itn 3157 115 128 119 104 31 1144 104

CPU 1.52 0.38 9.56 0.26 79.8 2.95 3.28 4.72

sol. err. 9.4×10−8 6.2×10−1 1.3×10−7 1.7×10−5 2.2×10−7 2.5×10−7 2.0×10−2

obj. err. 7.7×10−15 2.7×10−4 −2.1×10−15 −1.5×10−13 1.9×10−16 3.7×10−16 −1.9×10−2

Residual 1.0×10−10 8.9×10−11 9.4×10−11 9.5×10−11 9.7×10−9 1.2×10−15 1.1×10−11 5.7×10−6

is misleading because both normalized residuals εKKT and εsym are stuck at an
elevated level compared to the first four methods (see Fig. 2).

3. The row for “sol. err.” is calculated with the solution byNPDvSCF as the reference.
Hence we will see a large error if a method computes a different KKT point. We
find that NPDvSCF, LOCGvNPD, MBSvLOCG, and manopt’s RTR and STOP’s

123

Maximizing sum of coupled traces with applications 615

Fig. 3 Example 5.1: convergence history for GPI [39] (Algorithm 1 with its Lines 5 and 6 simply replaced
by X (i+1) = Y (i)) for objective value (left) and normalized residuals εKKT and εsym (right). Both are stuck
at an elevated level at iteration 4000

FOForth compute the same KKT point, which is surely different from the one by
MBSvSCF. GPI may be too far from convergence to draw any conclusion.

4. Lastly, MBSvLOCG is fastest but LOCGvNPD is not too far behind in terms of
CPU time. The acceleration by LOCG again really helps, reducing the number of
iterations from 3157 by NPDvSCF to 115 by LOCGvNPD,
and in the case of the NEPv approach (Algorithm 3 [63]), LOCG barely reduces
the number of iterations, but it dramatically reduces the sizes of the involved NEPv
and saves the CPU time from 9.56 (seconds) required by MBSvSCF to 0.26 (sec-
onds) required by MBSvLOCG. We point out that the long CPU time required by
MBSvSCF can be reduced by using an iterativemethod instead ofMATLAB’seig
in our current implementation.

Overall, LOCGvNPD and MBSvLOCG are the best methods measured in terms of
speed, accuracy in KKT points, and quality in maximizer.

Example 5.2 In this example, we investigate how the CPU time changes when k or n
is varied. Random problems are created as in (5.5). For our methods, we use tolerance
ε = 10−6 in (3.10), and use 10−6 on the gradient norm for the solvers from manopt
and fromSTOP. Themaximally allowed number of iterations is set at 104.We checked
that, with these tolerances, the scaled residuals as defined in (3.10) at the returned
solutions are about O(10−5) for SD and GPI, O(10−12) or smaller for RTR (once
again due to the fact that it is a second-order method), and O(10−6) for all other
methods.

For each random problem, the same initial guess is used by all methods.
Table 5 displays the CPU time consumed by each method for a typical run for

n = 2000 with k varying from 10 to 90. It can be observed that MBSvLOCG is the
best while LOCGvNPD and MBSvSCF compete to be the second best. Both SD and
GPI were forced to stop at iteration 10,000.

Table 6 displays theCPU time consumedby eachmethod for a typical run for k = 20
with n varying from 1000 to 2000. MBSvLOCG is still the best while LOCGvNPD is
the second best, unlike in Table 5. NPDvSCF comes in third place. Noticeably, RTR

123

616 L. Wang et al.

Table 5 CPU time for n = 2000 while k varies (Example 5.2)

k Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 2/3 manopt [9] STOP GPI [39]

NPDvSCF LOCGvNPD MBSvSCF MBSvLOCG SD RTR FOForth

10 3.1705 0.3672 3.5994 0.2234 289.11 20.259 31.817 18.033

30 3.3152 0.9879 5.0598 0.6347 339.09 37.109 43.386 41.324

50 13.941 4.0063 5.3259 1.5063 400.77 67.389 59.789 71.602

70 58.808 14.890 9.7731 3.8846 518.82 88.315 112.50 118.17

90 37.621 10.948 6.4539 3.9183 572.31 124.18 74.650 157.37

Table 6 CPU time for k = 20 while n varies (Example 5.2)

n Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 2/3 manopt [9] STOP GPI [39]

NPDvSCF LOCGvNPD MBSvSCF MBSvLOCG SD RTR FOForth

1000 1.7730 0.6110 28.490 0.4212 94.862 6.0573 4.4660 8.9887

1200 2.4189 0.7503 7.4116 0.3949 68.245 3.1151 2.4801 10.185

1400 1.9557 0.5044 9.5028 0.5643 165.76 9.7379 6.6982 17.459

1600 5.2386 0.6107 29.796 0.5643 188.46 7.1918 4.9768 20.347

1800 2.5541 0.6439 49.740 0.4864 258.72 9.3432 5.8275 23.124

2000 5.5881 1.1475 129.09 0.7447 294.55 14.195 9.3191 27.479

and FOForth perform reasonably well in this experiment, but still fall far behind the
first four methods in the table.

5.2 Multi-view subspace learning with both view-specific and shared projections

Today more and more data sets in real-world applications are collected with multiple
heterogeneous features from different perspectives (views). Each view represents a
different aspect of the same object, and thus can and will possess its own characteris-
tics. Multi-view learning is a methodology to make good use of all views for effective
learning [34]. Most multi-view subspace learning methods aim to obtain a latent sub-
space shared by multiple views with an assumption that all views are generated from
the latent subspace. Recently in [37], the authors proposed a novel multi-view partially
shared subspace learning (MvPS)model that allows the co-existence of both common-
ality among views and individuality within each view. The idea of the co-existence is
rather natural, of course, but the question is how to exploit it. Without going into too
much detail, we may state the general MvPS model [37] as

max g({Qi , Pi }vi=1) :=
v∑

i, j=1

tr(QT
i Φi j Q j) +

v∑
i=1

tr(PT
i Ψi i Pi) (5.6a)

s.t. [Qi , Pi] ∈ O
ni×(κ0+κi) ∀i, (5.6b)

123

Maximizing sum of coupled traces with applications 617

where Qi ∈ R
ni×κ0 , Pi ∈ R

ni×κi for 1 ≤ i ≤ v, and

Φ =

⎡
⎢⎢⎢⎣

n1 n2 nv

n1 Φ11 Φ12 . . . Φ1v
n2 Φ21 Φ22 . . . Φ2v

...
...

...

nv Φv1 Φv2 . . . Φvv

⎤
⎥⎥⎥⎦, Ψ =

⎡
⎢⎢⎢⎣

n1 n2 nv

n1 Ψ11
n2 Ψ22

. . .

nv Ψvv

⎤
⎥⎥⎥⎦

are of N × N and symmetric, and N = ∑v
i=1 ni . Necessarily, κ0 + κi ≤ ni for all i .

This model determines projection matrices [Qi , Pi] that will be used to project any
instance {xxx (i)}vi=1 of v data points xxx (i) ∈ R

ni for 1 ≤ i ≤ v, one from each view, to
(QT

i xxx
(i), PT

i xxx
(i)) ∈ R

κ0 × R
κi , where QT

i xxx
(i) represents the commonality among all

xxx (i) while PT
i xxx

(i) the individuality particular to view i .
Without loss of generality, we may assume

Φi i � 0, Ψi i � 0 for 1 ≤ i ≤ v;

otherwise eachΦi i andΨi i may be shifted toΦi i +αi Ini andΨi i +βi Ini , respectively,
by some constants αi ≥ −λmin(Φi i) and βi ≥ −λmin(Ψi i) without affecting the
maximizers of (5.6). Numerically, αi and βi can be estimated cheaply [66].

5.2.1 MvPS subproblem

Similarly to MAXBET (5.1), MvPS (5.6) can be solved by the same general frame-
work, an inner-outer iterative scheme, to repeatedly update {[Qi , Pi]}vi=1 in a manner
similar to either the Jacobi or Gauss-Seidel updating scheme. Either scheme relies on
the following computational kernel

max
X∈On×k

2∑
i=1

tr(XT
i Ai Xi) + 2 tr(XT

1 D1), (5.7)

which is again a special case of (1.1): � = 2 and D2 = 0, where X = [X1, X2] ∈ O
n×k

with Xi ∈ R
n×ki and k = k1 + k2. For that reason, we will call (5.7) the MvPS

subproblem. According to the theory in Sect. 2, the KKT condition for (5.7) is

B(X) := [A1X1 + D1, A2X2] = XΛ, X ∈ O
n×k, (5.8a)

ΛT = Λ ∈ R
k×k . (5.8b)

Our previous developments in Sects. 2–4 are immediately applicable.
Next we use randomMvPS subproblems to demonstrate the performances byAlgo-

rithm 1 and Algorithm 2, compared with solvers from manopt and STOP.

123

618 L. Wang et al.

Fig. 4 Example 5.3: convergence history ofAlgorithms1 (left) andAlgorithm2 (right).Various performance
statistics by both methods, along with solvers from manopt and STOP, are listed in Table 7. We see
tremendous speedups by Algorithm 2

Table 7 Performance statistics (Example 5.3)

Algorithm 1 Algorithm 2 manopt [9] STOP

NPDvSCF LOCGvNPD SD RTR FOForth

itn 2258 103 104 23 3614

CPU 1.8008 0.3709 169.81 7.2650 21.511

sol. err. 6.8 × 10−8 8.2 × 10−1 8.2 × 10−1 8.2 × 10−1

obj. err. 3.4 × 10−15 −4.3 × 10−5 −4.3 × 10−5 −4.3 × 10−5

residual 9.9 × 10−11 1.0 × 10−10 3.0 × 10−6 3.9 × 10−16 5.2 × 10−12

Example 5.3 This is a random MvPS subproblem (5.7) experimented in MATLAB:
n = 1000, k1 = 6, k2 = 4 and hence k = 10, and each A j and D1 are generated as

C j = randn(n), A j = C jC
T
j , D1 = randn(n, k1). (5.9)

This random problem is first generated and savedwith an initial guess for reproducibil-
ity. With tolerance ε = 10−10 in (3.10), Fig. 4 plots the sum of normalized residuals
εKKT+εsym in (3.10) evaluated at each approximation X (i), by Algorithm 1 and Algo-
rithm 2. Table 7 displays important performance statistics at convergence, including
those by SD and RTR from manopt [9] and FOForth from STOP (both with 10,000
as the maximally allowed number of iterations and tolerance 10−10 on the gradient
norm).

Notice that X2 in (5.7) is clearly not uniquely determined because the objective
function there is invariant under the transformation X2 → X2Q for any Q ∈ O

n×k2 ,
while X1 is unique under the assumption that XT

1 D1 	 0. For that reason, we calculate
the difference in computed maximizers, from the one returned by Algorithm 1, as

123

Maximizing sum of coupled traces with applications 619

Table 8 CPU time for n = 2000
while k varies (Example 5.4)

k Algorithm 1 Algorithm 2 manopt [9] STOP

NPDvSCF LOCGvNPD SD RTR FOForth

10 2.5783 0.4711 583.59 21.997 21.539

30 11.367 2.0754 598.63 43.845 54.214

50 10.252 3.5555 698.51 59.922 26.979

70 52.790 27.816 790.08 155.90 53.707

90 52.202 16.610 873.49 78.870 53.388

Table 9 CPU time for k1 = k2 = 10 while n varies (Example 5.4)

n Algorithm 1 Algorithm 2 manopt [9] STOP

NPDvSCF LOCGvNPD SD RTR FOForth

1000 1.4528 0.3342 177.64 11.089 5.2429

1200 1.5477 0.4710 245.54 15.153 12.913

1400 3.1492 0.6224 314.78 20.760 23.827

1600 6.0870 0.8025 393.49 37.752 33.479

1800 3.7702 0.7494 491.62 47.288 51.752

2000 3.8998 0.7376 611.88 73.058 81.513

‖X1 − X1;alg. 1‖F
‖X1;alg. 1‖F +

‖X2 − X2;alg. 1(XT
2;alg. 1X2)‖F

‖X2;alg. 1‖F .

Algorithm 2 (LOCGvNPD) significantly outperforms Algorithms 1 (NPDvSCF) and
all other methods. Similar observations to those for Example 4.1 can be made here.

Example 5.4 In this example, we investigate how the CPU time changes when k or n
is varied. Random problems are created as in (5.9). For our methods, we use tolerance
ε = 10−6 in (3.10), and also use 10−6 on the gradient norm for the solvers from
manopt and STOP. The maximally allowed number of iterations are set at 10,000
for all methods. We checked that, with these tolerances, residuals as defined in (3.10)
at the returned solutions by all methods are about 10−6, except for manopt’s RTR
whose scaled residuals are about 10−11 or smaller. For each random problem, the same
initial guess is used by all methods.

Table 8 displays the CPU time consumed by each method for a typical run for
n = 2000 with k varying from 10 to 90 and k1 = k/2, including performance statistics
for SD and RTR from manopt [9] and FOForth from STOP. SD was forced to stop
at iteration 10,000 each time. It can be observed that LOCGvNPD is the best while
NPDvSCF is the second best.

Table 9 displays theCPU time consumedby eachmethod for a typical run for k = 20
with n varying from 1000 to 2000. Again LOCGvNPD is the best and NPDvSCF is
the second best.

123

620 L. Wang et al.

5.2.2 An MvPSmodel

Given a multi-view data set {xxx (1)
i , . . . , xxx (v)

i , yi }Mi=1 with v views and M instances,

where each xxx (s)
i ∈ R

ns resides in an ns-dimensional space and yi ∈ {1, . . . , c} is the
class label of c classes.MvPS (5.6)will learn orthonormal projectionmatrices [Qs, Ps]
where Qs ∈ O

ns×κ0 and Ps ∈ O
ns×κs , which project data point xxx (s) of view s into

(QT
s xxx

(s), PT
s xxx

(s)) ∈ R
κ0 × R

κs of shared subspace R
κ0 and view-specific subspace

R
κs . In our experiments, for simplicity, we fix the total dimension of the shared and

view-specific spaces as k: κ0 = m and κs = k − m for 1 ≤ s ≤ v.
Let5 Xs = [xxx (s)

1 , . . . , xxx (s)
n] ∈ R

ns×M , the data matrix of view s. The shared embed-

ding of Xs is Z
(s)
share = QT

s Xs while the view-specific embedding is Z (s)
view = PT

s Xs .
Finally, the combined embedding for view s and that of all views are given by

Z (s) =
[
Z (s)
view

Z (s)
share

]
∈ R

k×M ∀s, Z =

⎡
⎢⎢⎢⎢⎣

Z (1)
view
...

Z (v)
view

1
v

∑v
s=1 Z

(s)
share

⎤
⎥⎥⎥⎥⎦

∈ R
[v(k−m)+m]×M , (5.10)

respectively.
The general MvPSmodel (5.6) can be versatile and instantiated according to needs.

Here for demonstration of our algorithms only, we will use the one in [37] in the spirit
of PCA, i.e., for 1 ≤ s, t ≤ v,

Φst = 1

v
XsHM XT

t , Ψss = XsHM XT
s , (5.11)

where HM = IM − 1
M111M111TM is the centering matrix. The resulting MvPS (5.6) will

then be solved by an alternating updating: either the Jacobi-style or Gauss-Seidel-
style updating, with each subproblem in the form of (5.7) solved by Algorithm 2,
as outlined in Algorithm 4. For references, we name the methods as MvPS-J and
MvPS-G, respectively.

We evaluate the MvPS model solved by MvPS-J and MvPS-G on four real-world
data sets. Two image data sets, Caltech101 [28] and Scene15 [27], are used. Six
views are extracted from each data set according to the feature descriptors: CEN-
TRIST (CENT) [57], GIST [43], LBP [42], histogram of oriented gradient (HOG),
CH, and SIFT-SPM (SS) [27]. For Caltech101, two subsets are used: one contains
7 labels (Caltech101-7) and the other contains 20 labels (Caltech101-20). Note that
CH is not included for Scene15 due to its gray-level images. A text data set Internet
Advertisements (Ads) is used, which is for predicting whether or not a given hyperlink
(associated with an image) is an advertisement, and has three views: features based
on the terms in the images URL, caption, and alt text (UAC), features based on the
terms in the URL of the current site (origurl), and features based on the terms in the
anchor URL (ancurl). The statistics of the four data sets are shown in Table 10.

5 Up to this point, X j as in (1.1) has been used for an orthonormal projection matrix. For the rest of this
section, we will use them as data matrices as is done conventionally. Hopefully, no confusion will arise.

123

Maximizing sum of coupled traces with applications 621

Ta
bl
e
10

D
at
a
se
ts
(i
ns
id
e
th
e
br
ac
ke
ti
s
th
e
nu
m
be
r
of

fe
at
ur
es

fo
r
th
e
vi
ew

)

D
at
a
se
t

M
c

V
ie
w
1

V
ie
w
2

V
ie
w
3

V
ie
w
4

V
ie
w
5

V
ie
w
6

C
al
te
ch
10

1-
7

14
74

7
C
E
N
T
(2
54
)

G
IS
T
(5
12
)

L
B
P
(1
18
0)

H
O
G

(1
00
8)

C
H

(6
4)

SS
(1
00
0)

C
al
te
ch
10

1-
20

23
86

20
C
E
N
T
(2
54
)

G
IS
T
(5
12
)

L
B
P
(1
18
0)

H
O
G

(1
00
8)

C
H

(6
4)

SS
(1
00
0)

Sc
en
e1
5

43
10

15
C
E
N
T
(2
54
)

G
IS
T
(5
12
)

L
B
P
(5
31
)

H
O
G

(3
60
)

SS
(1
00
0)

–

A
ds

32
79

2
U
A
C

(5
88
)

or
ig
ur
l(
49
5)

an
cu
rl
(4
72
)

–
–

–

123

622 L. Wang et al.

Algorithm 4MvPS (5.6) solved by NPD with LOCG acceleration
Input: Φ and Ψ as in (5.11), 1 ≤ κ0 + κs ≤ mins ns , and tolerance ε;
Output: {[Qs , Ps] ∈ O

ns×(κ0+κs)}vs=1 that approximately solves (5.6).

1: pick initial guess {[Q(0)
s , P(0)

s] ∈ O
ns×(κ0+κs)}vs=1;

2: i = 0, and evaluate the objective function of (5.6) at {[Q(0)
s , P(0)

s]}vs=1 to f ;
3: repeat
4: for s = 1 to v do
5: A1 = Φss , A2 = Ψss ;

6: D1 =∑t �=s Φst Q
(i)
t for the Jacobi-style updating, or D1 =∑t<s Φst Q

(i+1)
t +∑t>s Φst Q

(i)
t

for the Gauss-Seidel-style updating;

7: solve (5.7) by Algorithm 2 (with [Q(i)
s , P(i)

s] as an initial guess) for its maximizer

[Q(i+1)
s , P(i+1)

s];
8: end for
9: f0 = f , and evaluate the objective function of (5.6) at {[Q(i+1)

s , P(i+1)
s]}vs=1 to f ;

10: i = i + 1;
11: until | f − f0| ≤ ε f ;

12: return the last {[Q(i)
s , P(i)

s] ∈ O
ns×(κ0+κs)}vs=1.

We conduct two sets of experiments to demonstrate different aspects of our MvPS
model. First, we show that the shared subspace learned by MvPS can boost the view-
specific classification performance on each view. Second, we show that MvPS can
be more effective than methods either without view-specific subspace or with only
view-specific subspace in terms of multi-view feature extraction.

The importance of shared embedding MvPS (5.6) instantiated with (5.11) extends
PCA from single-view learning to multi-view learning through introducing a subspace
shared by all views in addition to individual view-specific subspaces. Therefore, it is
important to show that the shared subspace can improve learning performance on each
view individually.

To empirically validate the above hypothesis, we set up our experiments with the
following settings for a fair comparison.Wewill use PCAas the baseline, forwhich,we
first apply it to each view and get its embedding in the k-dimensional space, and then
use the one-nearest-neighbor classifier to evaluate the performance of the embedding
for the view. For ourMvPS, there are two embeddings for each view: shared embedding
Z (s)
share in R

m and view-specific embedding Z (s)
view in R

(k−m). Their concatenation Z (s)

in (5.10) leads to a k-dimensional embedding for the view,which is analogous to that of
PCA.Hence, view-wise, the sameevaluation approach asPCAcanbe applied toMvPS.
To obtain quantitative evaluation, we first randomly split the input data into 30% for
training and 70% for testing and then learn the projection matrices of PCA and MvPS
from the training data. With the learned projection matrices, the low-dimensional
embeddings are obtained for both training and testing sets. The one-nearest-neighbor
classifier is trained on the low-dimensional embeddings of the training data for each
view and evaluated on that of the testing data of the view.We repeat the experiment 10
times and report the average classification accuracy with standard deviation. In those
experiments, we fix k = 20 and vary m ∈ [0, 20] for MvPS.

View-wise classification accuracy with standard deviation obtained by the three
methods is shown in Table 11. We have the following observations: (i) MvPS sig-

123

Maximizing sum of coupled traces with applications 623

Ta
bl
e
11

V
ie
w
-s
pe
ci
fic

cl
as
si
fic
at
io
n
ac
cu
ra
cy

w
ith

st
an
da
rd

de
vi
at
io
n

M
et
ho
d

V
ie
w
1

V
ie
w
2

V
ie
w
3

V
ie
w
4

V
ie
w
5

V
ie
w
6

C
al
te
ch
10

1-
7
(k

=
20

,3
0%

tr
ai
ni
ng

da
ta
)

PC
A

75
.8
7

±
4.
89

51
.8
2

±
17

.6
8

47
.9
6

±
8.
96

52
.6
8

±
21

.0
9

50
.7
6

±
6.
93

34
.4
7

±
31

.4
9

M
vP

S-
J

92
.9
1

±
0.
55

94
.4
3

±
0.
59

94
.6
1

±
0.
59

94
.9
1

±
0.
48

79
.5
5

±
1.
14

96
.2
4

±
0.
50

M
vP

S-
G

92
.9
3

±
0.
56

94
.3
4

±
0.
60

94
.6
1

±
0.
47

95
.0
5

±
0 .
52

79
.4
6

±
1.
03

96
.2
5

±
0.
42

C
al
te
ch
10

1-
20

(k
=

20
,3
0%

tr
ai
ni
ng

da
ta
)

PC
A

44
.7
5

±
18

.8
3

38
.2
5

±
23

.7
5

26
.3
6

±
16

.0
4

15
.4
9

±
12

.9
6

28
.9
6

±
11

.4
5

24
.3
1

±
16

.4
8

M
vP

S-
J

78
.7
7

±
0.
62

82
.4
9

±
0.
66

83
.4
4

±
0.
76

82
.2
7

±
0.
65

62
.2
4

±
1.
25

87
.5
9

±
1.
16

M
vP

S-
G

78
.6
6

±
0.
82

82
.4
3

±
0.
55

83
.3
8

±
0.
63

82
.0
8

±
0.
50

62
.3
0

±
0.
91

87
.6
8

±
0.
94

M
et
ho
d

V
ie
w
1

V
ie
w
2

V
ie
w
3

A
ds

(k
=

20
,3

0%
tr
ai
ni
ng

da
ta
)

PC
A

79
.2
4

±
4.
26

69
.5
5

±
17

.5
4

67
.2
4

±
27

.0
9

M
vP

S-
J

93
.5
1

±
0.
55

91
.3
7

±
0.
29

95
.2
8

±
0.
46

M
vP

S-
G

93
.5
1

±
0.
49

91
.3
7

±
0.
23

95
.3
4

±
0.
51

M
et
ho
d

vV
ie
w
1

V
ie
w
2

V
ie
w
3

V
ie
w
4

V
ie
w
5

Sc
en
e1
5
(k

=
20

,3
0%

tr
ai
ni
ng

da
ta
)

PC
A

9.
53

±
4.
69

14
.6
1

±
9.
93

24
.7
8

±
15

.0
3

20
.4
9

±
7.
82

13
.4
8

±
4.
43

M
vP

S-
J

58
.7
6

±
1.
29

55
.0
5

±
0.
75

57
.3
8

±
0.
50

47
.3
8

±
0.
74

83
.8
4

±
0.
78

M
vP

S-
G

58
.9
6

±
0.
84

55
.0
1

±
0.
50

57
.0
0

±
0.
70

47
.3
5

±
0.
69

83
.8
4

±
0.
67

123

624 L. Wang et al.

nificantly outperforms PCA on all individual views; (ii) MvPS-J and MvPS-G show
similar performances; (iii) PCA shows large variance among the 10 random experi-
ments,while theMvPSmethods demonstrate robust resultswith small variances. These
observations demonstrate that it is absolutely beneficial to include a shared subspace
even for view-specific classification, noting that PCA is always view-specific and does
not take any shared information among views into consideration.
Combining shared and view-specific embeddings for feature extractionMoments ago,
we demonstrated that shared embeddings can boost the accuracy of view-specific
classification. Next, we will show that the combination of shared embeddings over all
views and view-specific embeddings can boost the performance of multi-view feature
extraction at very low training over testing ratios.

In terms of unsupervised feature extraction, we will compare our methods MvPS-J
andMvPS-G against five existing methods: GMPCA [48], PLS (partial least-squares),
MCCA [40], MvPCA (which averages the embeddings by PCA applied to each view
independently), and UMvPLS [55]. These methods will be used to transform the input
data of each view to latent spaces of dimension k ∈ {3, 5, 10, 15, 20}. Since these five
methods do not actually produce view-specific embeddings, the average of projected
embeddings of all views in the latent space is used as the fused embedding for classifi-
cation. But for MvPS-J and MvPS-G, the embeddings in the k-dimensional space are
given as Z in (5.10) with shared dimension m being tuned in the range of [1, k]. For
each data set, we randomly draw 10% for training and leave the rest for testing and
perform one experiment. We repeat the experiment 10 times, and report the average
accuracy with standard deviation by each method in Table 12. Against MvPCA, it
can be seen that including shared embedding by MvPS can significantly increase the
classification accuracy for multi-view feature extraction from 2–27%. Overall, MvPS
that also takes advantage of view-specific embeddings, compared with the best out-
comes by the five existing methods with only shared embedding, always improves the
classification accuracy, e.g., by 2% on Caltech101-20 and 10% on Scene15. These
observations demonstrate that the combination of view-specific and shared embed-
dings is worth doing for better multi-view feature extraction.

6 Concluding remarks

We have developed a self-consistent-field (SCF) iteration to solve the nonlinear polar
decomposition (NPD) arising from the first order optimality condition, combined with
somecriticalmaximizer necessary conditions, for the followingmaximization problem
of the sum of coupled traces over the Stiefel manifold:

max
XTX=Ik

�∑
j=1

[
tr(XT

j A j X j) + 2 tr(XT
j D j)

]
. (6.1)

In the extreme special case: all A j = A and Dj = 0, the SCF iteration degenerates to
the usual powermethod and hence it may converge slowly. To overcome possible slow-
ness in convergence, we introduce a local optimal CG (LOCG) acceleration technique

123

Maximizing sum of coupled traces with applications 625

Ta
bl
e
12

C
la
ss
ifi
ca
tio

n
ac
cu
ra
cy

w
ith

st
an
da
rd

de
vi
at
io
n
(1
0%

tr
ai
ni
ng
,9
0%

te
st
in
g)

D
at
a

G
M
PC

A
PL

S
M
C
C
A

M
vP

C
A

U
M
vP

L
S

M
vP

S-
J

M
vP

S-
G

A
ds

92
.8
4

±
1.
01

92
.2
3

±
1.
06

83
.3
0

±
1.
98

91
.8
2

±
0.
81

92
.3
1

±
0.
93

93
.5
4

±
0.
78

93
.4
8

±
0.
82

C
al
te
ch
10

1-
7

93
.6
6

±
0.
88

92
.8
8

±
0.
62

78
.8
8

±
3.
59

84
.8
0

±
4.
94

92
.5
6

±
0.
69

94
.1
1

±
0.
58

94
.0
8

±
0.
50

C
al
te
ch
10

1-
20

81
.3
3

±
0.
93

81
.3
3

±
0.
93

50
.9
2

±
2.
43

70
.9
6

±
1.
83

81
.0
2

±
0.
73

83
.6
2

±
1.
08

83
.6
4

±
1.
02

Sc
en
e1
5

61
.9
4

±
1.
38

61
.9
4

±
1.
38

30
.7
2

±
1.
91

44
.8
2

±
2.
47

59
.7
6

±
2.
30

72
.1
3

±
1.
44

72
.1
2

±
1.
40

123

626 L. Wang et al.

to speed up the iteration. Numerical experiments indeed show significant speedups. It
is proved that the SCF iteration with or without LOCG is always convergent. Numer-
ical results indicate that both the SCF iteration and its accelerated version via LOCG
converge linearly, but their precise rates of convergence remains to be investigated
further. Perhaps, something along the lines of the recent paper [4] could be done.

Numerical comparisons with two solvers from manopt [9] and one from STOP
[17, 54], two widely used MATLAB toolboxes for optimization on manifolds, are
presented to demonstrate the effectiveness of our customized methods compared to
general-purpose solvers that are carefully adapted from constrained optimization and
well written by experts. The two solvers from manopt are the steepest-descent (SD)
and trust-regions (RTR) methods, and the one from STOP is the multiplier correction
method (FOForth), where SD and FOForth are first-order methods like ours, while
RTR is a second-order method. It is observed that our customized methods are far
superior to these general-purpose ones (even the second-order RTR).

Two machine learning applications, MAXBET [35, 53] and MvPS [37], both of
which have their optimization subproblems as special cases of (6.1) in their compu-
tational kernels, are investigated. In particular, we experiment with MvPS on four
real-world data sets and show that properly exploiting both shared latent space and
view-specific spaces pays dividends for multi-view learning.

In studying the optimization problem (6.1), we have limited ourselves to real sym-
metric matrices A j and real matrices Dj , in part motivated by targeted applications.
Mathematically, our development in this paper works equally well for Hermitian
matrices A j and complex matrices Dj , upon straightforward modifications, namely
replacing all transposes of vectors/matrices by their complex conjugate transposes.

Acknowledgements The authors wish to thank the two anonymous referees for their constructive sugges-
tions that greatly improved the presentation of this paper. They are indebted to Prof.M.Overton ofNewYork
University for his numerous minor but important corrections across the manuscript. Wang was supported
in part by NSF DMS-2009689; Zhang was supported in part by the National Natural Science Foundation
of China NSFC-12071332; Li was supported in part by NSF DMS-1719620 and DMS-2009689.

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton (2008)

2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling,
S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACKUsers’ Guide, 3rd edn. SIAM, Philadelphia
(1999)

3. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)

4. Bai, Z., Li, R.C., Lu, D.: Sharp estimation of convergence rate for self-consistent field iteration to solve
eigenvector-dependent nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 43(1), 301–327
(2022)

5. Balogh, J., Csendes, T., Rapcsá, T.: Some global optimization problems on Stiefel manifolds. J. Glob.
Optim. 30, 91–101 (2004)

6. Birtea, P., Caşu, I., Comănescu, D.: First order optimality conditions and steepest descent algorithm
on orthogonal Stiefel manifolds. Opt. Lett. 13, 1773–1791 (2019)

123

Maximizing sum of coupled traces with applications 627

7. Bolla, M., Michaletzky, G., Tusnády, G., Ziermann, M.: Extrema of sums of heterogeneous quadratic
forms. Linear Algebra Appl. 269(1), 331–365 (1998). https://doi.org/10.1016/S0024-3795(97)00230-
9

8. Borg, I., Lingoes, J.: Multidimensional Similarity Structure Analysis. Springer-Verlag, New York
(1987)

9. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on
manifolds. J. Mach. Learn. Res. 15(42), 1455–1459 (2014)

10. Cai, Y., Zhang, L.H., Bai, Z., Li, R.C.: On an eigenvector-dependent nonlinear eigenvalue problem.
SIAM J. Matrix Anal. Appl. 39(3), 1360–1382 (2018)

11. Chu, M.T., Trendafilov, N.T.: The orthogonally constrained regression revisited. J. Comput. Graph.
Stat. 10(4), 746–771 (2001)

12. Cunningham, J.P., Ghahramani, Z.: Linear dimensionality reduction: survey, insights, and generaliza-
tions. J. Mach. Learn. Res. 16, 2859–2900 (2015)

13. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
14. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints.

SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)
15. Eldén, L., Park, H.: A procrustes problem on the Stiefel manifold. Numer. Math. 82, 599–619 (1999)
16. Fan, K.: On a theorem of Weyl concerning eigenvalues of linear transformations. I. Proc. Natl. Acad.

Sci. USA 35(11), 652–655 (1949)
17. Gao, B., Liu, X., Chen, X., Yuan, Y.X.: A new first-order algorithmic framework for optimization

problems with orthogonality constraints. SIAM J. Optim. 28(1), 302–332 (2018). https://doi.org/10.
1137/16M1098759

18. Golub,G.H.,VanLoan,C.F.:MatrixComputations, 4th edn. JohnsHopkinsUniversity Press,Baltimore
(2013)

19. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, New York (2004)
20. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overviewwith appli-

cation to learning methods. Neural Comput. 16, 2639–2664 (2004)
21. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)
22. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3–4), 321–377 (1936)
23. Hurley, J.R., Cattell, R.B.: The Procrustes program: producing direct rotation to test a hypothesized

factor structure. Comput. Behav. Sci. 7, 258–262 (1962)
24. Imakura, A., Li, R.C., Zhang, S.L.: Locally optimal and heavy ball GMRESmethods. Jpn. J. Ind. Appl.

Math. 33, 471–499 (2016)
25. Kanzow, C., Qi, H.D.: AQP-free constrained Newton-typemethod for variational inequality problems.

Math. Program. 85, 81–106 (1999)
26. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned

conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)
27. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramidmatching for recognizing

natural scene categories. In: 2006 IEEEComputer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, pp. 2169–2178. IEEE (2006)

28. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an
incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1),
59–70 (2007)

29. Li, L., Zhang, Z.: Semi-supervised domain adaptation by covariance matching. IEEE Trans. Pattern
Anal. Mach. Intell. 41(11), 2724–2739 (2019). https://doi.org/10.1109/TPAMI.2018.2866846

30. Li, R.C.: New perturbation bounds for the unitary polar factor. SIAMJ.MatrixAnal. Appl. 16, 327–332
(1995)

31. Li, R.C.: Relative perturbation bounds for the unitary polar factor. BIT 37, 67–75 (1997)
32. Li, R.C.: Matrix perturbation theory. In: Hogben, L., Brualdi, R., Stewart, G.W. (eds.) Handbook of

Linear Algebra, 2nd edn, Chapter 21. CRC Press, Boca Raton (2014)
33. Li, R.C.: Rayleigh quotient based optimization methods for eigenvalue problems. In: Bai, Z., Gao, W.,

Su, Y. (eds.) Matrix Functions and Matrix Equations, Series in Contemporary Applied Mathematics,
vol. 19, pp. 76–108. World Scientific, Singapore (2015)

34. Li, Y., Yang, M., Zhang, Z.: A survey of multi-view representation learning. IEEE Trans. Knowl. Data
Eng. 31(10), 1863–1883 (2018)

35. Liu,X.G.,Wang,X.F.,Wang,W.G.:Maximization ofmatrix trace function of product Stiefelmanifolds.
SIAM J. Matrix Anal. Appl. 36(4), 1489–1506 (2015)

123

https://doi.org/10.1016/S0024-3795(97)00230-9
https://doi.org/10.1016/S0024-3795(97)00230-9
https://doi.org/10.1137/16M1098759
https://doi.org/10.1137/16M1098759
https://doi.org/10.1109/TPAMI.2018.2866846

628 L. Wang et al.

36. Ma, X., Shen, C., Wang, L., Zhang, L.H., Li, R.C.: A self-consistent-field iteration for MAXBET with
an application to multi-view feature extraction. Adv. Comput. Math. 48, 13 (2022)

37. Ma, X., Wang, L., Zhang, L.H., Shen, C., Li, R.C.: Multi-view partially shared subspace learning
(2021). Submitted

38. Moré, J., Sorensen, D.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)
39. Nie, F., Zhang, R., Li, X.: A generalized power iteration method for solving quadratic problem on the

Stiefel manifold. Sci. China Inf. Sci. 60, 1–10 (2017)
40. Nielsen, A.A.: Multiset canonical correlations analysis and multispectral, truly multitemporal remote

sensing data. IEEE Trans. Image Process. 11(3), 293–305 (2002)
41. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer (2006)
42. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture clas-

sification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
43. Oliva,A., Torralba,A.:Modeling the shape of the scene: a holistic representation of the spatial envelope.

Int. J. Comput. Vis. 42(3), 145–175 (2001)
44. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia,: This SIAM edition is an

unabridged, corrected reproduction of theworkfirst published byPrentice-Hall Inc, p. 1980.Englewood
Cliffs, New Jersey (1998)

45. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)
46. Rapcsák, T.: On minimization on Stiefel manifolds. Eur. J. Oper. Res. 143(2), 365–376 (2002)
47. Saad,Y.:NumericalMethods forLargeEigenvalueProblems.ManchesterUniversityPress,Manchester

(1992)
48. Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: a discriminative

latent space. In: IEEEConference on Computer Vision and Pattern Recognition, pp. 2160–2167 (2012)
49. Stewart, G.W.: Matrix Algorithms, Eigensystems, vol. II. SIAM, Philadelphia (2001)
50. Sun, J.G.: Matrix Perturbation Analysis. Graduate Texts (Academia, Sinica), 2nd edn. Science Pub-

lisher, Beijing (2001). (in Chinese)
51. Takahashi, I.: A note on the conjugate gradient method. Inf. Process. Jpn. 5, 45–49 (1965)
52. Ten Berge, J.M.F.: Generalized approaches to the MAXBET problem and the MAXDIFF problem,

with applications to canonical correlations. Psychometrika 53(4), 487–494 (1984)
53. Van de Geer, J.P.: Linear relations among k sets of variables. Psychometrika 49(1), 70–94 (1984)
54. Wang, L., Gao, B., Liu, X.: Multipliers correction methods for optimization problems over the Stiefel

manifold. CSIAM Trans. Appl. Math. 2(3), 508–531 (2021). https://doi.org/10.4208/csiam-am.SO-
2020-0008

55. Wang, L., Li, R.C.: A scalable algorithm for large-scale unsupervised multi-view partial least squares.
IEEE Trans. Big Data (2020). https://doi.org/10.1109/TBDATA.2020.3014937

56. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program.
142(1–2), 397–434 (2013)

57. Wu, J., Rehg, J.M.: Where am I: place instance and category recognition using spatial pact. In: 2008
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

58. Yang, M., Li, R.C.: Heavy ball flexible GMRES method for nonsymmetric linear systems. J. Comput.
Math. (2021). To appear

59. Zhang, L.H.: Riemannian trust-region method for the maximal correlation problem. Numer. Funct.
Anal. Optim. 33(3), 338–362 (2012)

60. Zhang, L.H., Li, R.C.: Maximization of the sum of the trace ratio on the Stiefel manifold, I: theory.
Sci. China Math. 57(12), 2495–2508 (2014)

61. Zhang, L.H., Li, R.C.: Maximization of the sum of the trace ratio on the Stiefel manifold, II: compu-
tation. Sci. China Math. 58(7), 1549–1566 (2015)

62. Zhang, L.H., Wang, L., Bai, Z., Li, R.C.: A self-consistent-field iteration for orthogonal canonical
correlation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 890–904 (2022). https://doi.org/
10.1109/TPAMI.2020.3012541

63. Zhang, L.H.,Yang,W.H., Shen,C.,Ying, J.:An eigenvalue-basedmethod for the unbalancedProcrustes
problem. SIAM J. Matrix Anal. Appl. 41(3), 957–983 (2020)

64. Zhang, Z., Du, K.: Successive projection method for solving the unbalanced procrustes problem. Sci.
China Math. 49(7), 971–986 (2006)

65. Zhao,H.,Wang, Z., Nie, F.: Orthogonal least squares regression for feature extraction.Neurocomputing
216, 200–207 (2016)

123

https://doi.org/10.4208/csiam-am.SO-2020-0008
https://doi.org/10.4208/csiam-am.SO-2020-0008
https://doi.org/10.1109/TBDATA.2020.3014937
https://doi.org/10.1109/TPAMI.2020.3012541
https://doi.org/10.1109/TPAMI.2020.3012541

Maximizing sum of coupled traces with applications 629

66. Zhou, Y., Li, R.C.: Bounding the spectrum of large Hermitian matrices. Linear Algebra Appl. 435,
480–493 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

	Maximizing sum of coupled traces with applications
	Abstract
	1 Introduction
	2 KKT condition and nonlinear polar decomposition
	3 SCF for nonlinear polar decomposition
	3.1 SCF iteration
	3.2 Convergence analysis

	4 Acceleration by LOCG
	4.1 A variant of LOCG for acceleration
	4.2 Convergence analysis

	5 Applications
	5.1 MAXBET subproblem
	5.2 Multi-view subspace learning with both view-specific and shared projections
	5.2.1 MvPS subproblem
	5.2.2 An MvPS model

	6 Concluding remarks
	Acknowledgements
	References

