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Various trace minimization principles have interplayed with 
numerical computations for the standard eigenvalue and gen-
eralized eigenvalue problems in general, as well as impor-
tant applied eigenvalue problems including the linear response 
eigenvalue problem from electronic structure calculation and 
the symplectic eigenvalue problem of positive definite matrices 
that play important roles in classical Hamiltonian dynam-
ics, quantum mechanics, and quantum information, among 
others. In this paper, Ky Fan’s trace minimization princi-
ple is extended along the line of the Brockett cost func-
tion tr(DXHAX) in X on the Stiefel manifold, where D of 
an apt size is positive definite. Specifically, we investigate 
infX tr(DXHAX) subject to XHBX = Ik (the k× k identity 
matrix) or XHBX = Jk, where Jk = diag(±1). We establish 
conditions under which the infimum is finite and when it is 
finite, analytic solutions are obtained in terms of the eigen-
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Brockett cost function
Linear response eigenvalue problem
Symplectic eigenvalue problem of 
positive definite matrix

values and eigenvectors of the matrix pencil A − λB, where 
B is possibly indefinite and possibly singular, and D is also 
possibly indefinite.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Quadratic optimization problems with matrix arguments are drawing tremendous at-
tentions lately in data science, and they often involve traces of certain quadratic forms, 
for example, the trace ratio maximization problem from the linear discriminant anal-
ysis (LDA) [1–6], the correlation maximization from the canonical correlation analysis 
(CCA) and its variants [7–11]. Trace minimizations are special quadratic optimization 
formulations that have played important interconnecting roles between theory and nu-
merical computations. Some formulations admit analytical solutions in terms of matrix 
eigenvalue/singular value decompositions, but most don’t. Among those that do admit 
analytical solutions, the most well-known one is perhaps Ky Fan’s trace minimization 
principle [12] [13, p. 248]

min
XHX=Ik

tr(XHAX) =
k∑

i=1
λi, (1.1)

where tr( · ) is the trace of a square matrix, Ik is the k×k identity matrix, and A ∈ Cn×n

is Hermitian and its eigenvalues are denoted by λi (i = 1, 2, . . . , n) and arranged in the 
ascending order:

λ1 ≤ λ2 ≤ · · · ≤ λn. (1.2)

Moreover for any minimizer Xopt of (1.1), i.e., tr(XH
optAXopt) =

∑k
i=1 λi, its columns 

span A’s invariant subspace associated with the first k eigenvalues λi, i = 1, 2, . . . , k. 
The minimization principle (1.1) can be straightforwardly extended to

min
XHBX=Ik

tr(XHAX) =
k∑

i=1
λi, (1.3)

where A, B ∈ Cn×n are Hermitian and B is positive definite, and now λi are the eigenval-
ues of matrix pencil A −λB and ordered as in (1.2). Essentially, (1.3) is no more general 
than (1.1). In fact, upon substitutions: X ← B1/2X and A ← B−1/2AB−1/2, (1.3)
reduces to (1.1). Both (1.1) and (1.3) have played roles of bridges between elegant math-
ematical theory and efficient numerical computations for large scale eigenvalue problems 
(see, e.g., [14–21] and references therein).

A nontrivial extension of (1.1) and (1.3) is [22,23]
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inf
XHBX=Jk

tr(XHAX) =
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i (1.4)

for a positive semi-definite matrix pencil5 A − λB, where λ±
i are finite eigenvalues of 

A − λB and are arranged in the order as

λ−
n− ≤ · · · ≤ λ−

1 ≤ λ+
1 ≤ · · · ≤ λ+

n+
, (1.5)

n− and n+ are the numbers of negative and positive eigenvalues of B, respectively, and

0 ≤ k± ≤ n±, k = k+ + k−, Jk =
[
Ik+

−Ik−

]
∈ Ck×k. (1.6)

The result (1.3) is immediately applicable to two important applied eigenvalue prob-
lems: one is the linear response eigenvalue problem from electronic structure calculation 
[24–26], and the other is the symplectic eigenvalues of positive definite matrices that play 
important roles in classical Hamiltonian dynamics, quantum mechanics, and quantum 
information, among others [27,28]. These applications will be outlined in appendix A to 
quickly derive two known trace minimization principles for the two eigenvalue problems, 
which have played foundational roles of bridges between theory and numerical compu-
tations for a few applied eigenvalue problems [24,25,29–32], respectively. Based on the 
principle (1.4), extensions of the eigensolver LOBPCG [16] to general definite pencils 
[33,34] were also worked out.

Recently, Liu, So, and Wu [35] laboriously analyzed how to solve

min
XHX=Ik

tr(DXHAX) (1.7)

by numerical optimization techniques, where A ∈ Cn×n and D ∈ Ck×k are Hermitian but 
D may be indefinite. Its objective function tr(DXHAX) in X on the Stiefel manifold 
{X ∈ Rn×k : XHX = Ik} is known as the Brockett cost function in the case when 
D is diagonal and positive semi-definite, and optimizing it has often been used as an 
illustrative example for optimization on the Stiefel manifold [36, p. 80], [37,38].

Our goal in this paper is to go beyond the Brockett cost function to investigate, as 
an extension of (1.1),

inf
X

tr(DXHAX), (1.8)

subject to XHBX = Ik or −Ik or Jk, where both B and D are possibly indefinite. Our 
first main result is an analytical solution to (1.8) for positive definite B (for which only 

5 A, B ∈ Cn×n are Hermitian and there exists λ0 ∈ R such that A − λ0B is positive semi-definite [23, 
Definition 1.1]. A brief review for the spectral properties of a positive semi-definite matrix pencil will be 
given at the beginning of section 3.
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XHBX = Ik can be used as a constraint) in terms of the eigen-decompositions of D
and matrix pencil A −λB and the solution lends itself to be computed by more efficient 
numerical linear algebra techniques [39–41,18]. In particular, this result yields an elegant 
solution to the widely studied (1.7) [36,35]. Our second main result is for a more general 
setting that B is indefinite and possibly singular and A − λB is a positive semi-definite 
matrix pencil. We show that the infimum in (1.8), subject to XHBX = Ik or −Ik, is 
finite if and only if D is positive semi-definite and establish analytical solutions to it 
when the infimum is finite.

Note that under the constraint either XHBX = Ik or XHBX = −Ik, whether D is 
diagonal or not is inconsequential so long that it is Hermitian because we can always 
perform an eigen-decomposition D = QΩQH to get

min
XHBX=±Ik

tr(DXHAX) = min
X̃HBX̃=±Ik

tr(ΩX̃HAX̃),

where X and X̃ are related by X̃ = XQ, Q is unitary and Ω is the diagonal matrix of 
the eigenvalues of D. So far, we have been focusing on “minimization”, but these for-
mulations admit straightforward restatements for “maximization” by simply considering 
−A instead.

The rest of this paper is organized as follows. We state our main results for (1.8)
in section 2 for positive definite B (and with XHBX = Ik) and in section 3 for the 
more general setting that B is genuinely indefinite. The proofs for the main results are 
presented in sections 4 and 5, respectively. We draw our conclusion in section 6. In 
appendix A, we demonstrate how easy it is to apply the trace minimization principle 
(1.4) to two applied eigenvalue problems: the linear response eigenvalue problem and the 
symplectic eigenvalue problem of positive definite matrices.

Notation. Throughout this paper, Cn×m is the set of all n × m complex matrices, 
Cn = Cn×1, and C = C1. R is the set of all real numbers. In (or simply I if its 
dimension is clear from the context) is the n ×n identity matrix. For a matrix X ∈ Cm×n, 
N (X) = {x ∈ Cn : Xx = 0} and R(X) = {Xx : x ∈ Cn} are the null space and the 
range of X, respectively. XT and XH are the transpose and the conjugate transpose 
of a vector or matrix, respectively. A � 0 (A � 0) means that A is Hermitian positive 
(semi-)definite, and A ≺ 0 (A � 0) if −A � 0 (−A � 0). A1/2 is the unique positive 
semi-definite square root of a positive semi-definite matrix A � 0.

2. Positive definite B

Throughout this section and section 4, A, B ∈ Cn×n and D ∈ Ck×k are Hermitian 
and B is positive definite. Then A − λB admits the following eigen-decomposition

UHAU = Λ ≡ diag(λ1, λ2, . . . , λn), UHBU = In, (2.1)
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where λi are the eigenvalues of A − λB and are, without loss of generality, arranged in 
the ascending order as in (1.2), and U = [u1, u2, . . . , un] is the eigenvector matrix and 
B-unitary: Aui = λiBui for all i and UHBU = In. Let the eigen-decomposition of D be

QHDQ = Ω ≡ diag(ω1, ω2, . . . , ωk), (2.2a)

where Q ∈ Ck×k is unitary and, without loss of generality,

ω1 ≥ · · · ≥ ω� ≥ 0 ≥ ω�+1 ≥ · · · ≥ ωk. (2.2b)

The case � = 0 or � = k corresponds to when D has no positive eigenvalues, i.e., D � 0, 
or no nonnegative eigenvalues, i.e., D � 0, respectively.

Our main result of this section is Theorem 2.1 below.

Theorem 2.1. Suppose that A, B ∈ Cn×n and D ∈ Ck×k are Hermitian and B is positive 
definite, admitting the eigen-decompositions in (2.1) and (2.2). Then

min
XHBX=Ik

tr(DXHAX) =
�∑

i=1
ωiλi +

k∑
i=�+1

ωiλi+n−k. (2.3)

Furthermore, any minimizer Xopt has the following characterizations:

(a) If D is nonsingular, then R(XoptQ) is the eigenspace of A − λB [42, p. 303], asso-
ciated with the � smallest and k− � largest eigenvalues of A − λB. If also all ωi are 
distinct, then

(XoptQ)HAXoptQ = diag(λ1, λ2, . . . , λ�︸ ︷︷ ︸
�

, λn−k+�+1, . . . , λn︸ ︷︷ ︸
k−�

).

(b) Suppose that D is possibly singular and has �+ positive eigenvalues and �− negative 
eigenvalues, and let Q̂ ∈ Ck×(�++�−) be the one obtained from Q by keeping its first 
�+ and last �− columns. Then R(XoptQ̂) is the eigenspace of A −λB associated with 
its �+ smallest and �− largest eigenvalues. If also the nonzero eigenvalues of D are 
distinct, then

(XoptQ̂)HAXoptQ̂ = diag(λ1, λ2, . . . , λ�+︸ ︷︷ ︸
�+

, λn−�−+1, . . . , λn︸ ︷︷ ︸
�−

).

There are a couple of remarks in order. Firstly, the minimization extracts out the 
extreme eigenvalues of A −λB from both ends. Secondly, if all ωi are distinct and nonzero, 
then the columns of XoptQ are the associated eigenvectors. Thirdly, if D does have 0
as some of its eigenvalues, then in the notation of Theorem 2.1(b), those eigenvalues 0
can be matched to any λi (�+ + 1 ≤ i ≤ n − �−), other things being equal, to still yield 
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the same objective value as the optimal one in the right-hand side of (2.3). Fourthly, 
upon replacing A by −A, we can obtain immediately parallel results on maximizing 
tr(DXHAX) subject to XHBX = Ik. The proof of Theorem 2.1 occupies a few pages 
and is deferred to section 4.

3. Genuinely indefinite B

Throughout this section and section 5, A − λB ∈ Cn×n is a positive semi-definite 
matrix pencil, i.e., A and B are Hermitian and there exists λ0 ∈ R such that A −λ0B �
0, and B is genuinely indefinite in the sense that B has both positive and negative 
eigenvalues. We are interested in (1.8):

inf
X

tr(DXHAX) subject to XHBX = Ik or −Ik or Jk, (1.8)

where Jk is as given in (1.6).
Before we investigate (1.8), we review some of the related concepts and results about 

a positive semi-definite matrix pencil A − λB [23]. Let the integer triplet (n+, n0, n−)
be the inertia of B, meaning B has n+ positive, n0 zero, and n− negative eigenvalues, 
respectively. Necessarily

r := rank(B) = n+ + n−. (3.1)

We say μ �= ∞ is a finite eigenvalue of A − λB if

rank(A− μB) < max
λ∈C

rank(A− λB), (3.2)

and x ∈ Cn is a corresponding eigenvector if x /∈ N (A) ∩N (B) satisfies

Ax = μBx, (3.3)

or equivalently, x ∈ N (A − μB)\(N (A) ∩ N (B)). It is known [23] that a positive semi-
definite pencil A − λB has only r = rank(B) finite eigenvalues all of which are real. 
Denote these finite eigenvalues by λ±

i ordered as (1.5). It has been proved that for all 
i, j

λ−
i ≤ λ0 ≤ λ+

j . (3.4)

As in section 2, let D have its eigen-decomposition given by (2.2):

QHDQ = Ω ≡ diag(ω1, ω2, . . . , ωk), ω1 ≥ ω2 ≥ · · · ≥ ωk.

Our first main result of the section is Theorem 3.1 below.
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Theorem 3.1. Suppose that A, B ∈ Cn×n and D ∈ Ck×k are Hermitian, A �= 0 and B
is genuinely indefinite, k ≤ n+, and the matrix pencil A − λB is positive semi-definite. 
Then

inf
XHBX=Ik

tr(DXHAX) > −∞

if and only if D � 0, in which case

inf
XHBX=Ik

tr(DXHAX) =
k∑

i=1
ωiλ

+
i . (3.5)

The infimum can be attained, when A −λB is diagonalizable, by X such that the columns 
of XQ are the eigenvectors of A − λB associated with its eigenvalues λ+

i for 1 ≤ i ≤ k, 
respectively.

Our proof of this theorem is rather involved and will be given in section 5. Apply 
Theorem 3.1 to the matrix pencil A − (−λ)(−B), we immediately conclude a parallel 
result on minimizing tr(DXHAX) subject to XHBX = −Ik. Our second main result 
stated in Theorem 3.2 below is for the more general constraint XHBX = Jk, whose 
proof is deferred to section 5 as well.

Theorem 3.2. Suppose that A, B ∈ Cn×n and D± ∈ Ck±×k± are Hermitian, A �= 0 and 
B is genuinely indefinite, k± ≤ n±, and the matrix pencil A −λB is positive semi-definite. 
Let

Jk =
[
Ik+

−Ik−

]
, D =

[ k+ k−

k+ D+
k− D−

]
,

and denote by ω+
1 ≥ · · · ≥ ω+

k+
and ω−

1 ≥ · · · ≥ ω−
k−

the eigenvalues of D+ and D−, 
respectively. If D± � 0, then

inf
XHBX=Jk

tr(DXHAX) =
k+∑
i=1

ω+
i λ

+
i −

k−∑
i=1

ω−
i λ

−
i . (3.6)

The infimum can be attained when A − λB is diagonalizable.

Equation (3.6) for k− = 0 reduces to (3.5). Comparing Theorem 3.2 with Theorem 3.1, 
one may be tempted to conjecture that in Theorem 3.2 if both D± � 0 is also a necessary 
condition for infXHBX=Jk

tr(DXHAX) > −∞, a question whose answer eludes us.
One important comment that we would like to emphasize about the conditions of 

Theorem 3.2 is that matrix D has to take the same block-diagonal structure as Jk. In 
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fact, Example 3.1 below shows that if D doesn’t have the same block-diagonal structure 
as Jk, the infimum may not be able to be expressed simply as some sum of the products 
of the eigenvalues between D and A − λB.

Example 3.1. Let μ = 2 and δ = 1/4, and

γ = 1 − δ

1 + δ
= 3

5 , ν = 1 − μ

1 + μ
= −1

3 ,

σ =

√√√√1
2

(
ν

γ

√
1 − γ2

1 − ν2 + 1
)

=
√

18 − 6
√

2
6 ≈ .5141.

Consider

A =
[
1

μ

]
, B =

[
1

−1

]
, J2 = B, (3.7a)

Ω =
[
1

δ

]
� 0, Q =

[√
1 − σ2 −σ
σ

√
1 − σ2

]
, D = QHΩQ � 0. (3.7b)

A − λB is positive definite pencil because A − 0 · B = A � 0. The two eigenvalues of 
A − λB are λ−

1 = −μ, λ+
1 = 1. D doesn’t have the same block structure as J2 since 

σ �= 0. We claim that

inf
XHBX=J2

tr(DXHAX) < min{1 + δμ, μ + δ} = 1 + δμ = 3
2 , (3.8)

implying that the infimum cannot be simply expressed as any of the two possible sums 
of products: 1 + δμ and μ + δ, between the eigenvalues of A −λB and of D. To see (3.8), 
we consider

t =

√√√√1
2

(√
1 − ν2

1 − γ2 − 1
)

= 15
√

2 − 18
6 ≈ .2988, Y =

[√
1 + t2 t
t

√
1 + t2

]
.

It can be verified that Y HBY = J2, and hence

inf
XHBX=J2

tr(DXHAX) ≤ tr(DY HAY ) =
√

2 ≈ 1.4142 <
3
2 ,

as expected.

4. Proof of Theorem 2.1

We start with three lemmas as preparation. The first lemma is about a result from 
majorization [43,13]. Given two multisets of real numbers {αi}mi=1 and {βi}mi=1, we say 
that {βi}mi=1 majorizes {αi}mi=1 if



X. Liang et al. / Linear Algebra and its Applications 656 (2023) 483–509 491
j∑
i=1

α↓
i ≤

j∑
i=1

β↓
i , for j = 1, 2, . . . ,m

with equality holds for j = m, where {α↓
i }mi=1 is from re-ordering {αi}mi=1 in the decreas-

ing order, i.e.,

α↓
1 ≥ α↓

2 ≥ · · · ≥ α↓
m

(similarly for {β↓
i }mi=1). We also use notation α↑

i obtained from re-ordering {αi}mi=1 as 
well but in the increasing order.

Lemma 4.1. Let γ1 ≥ γ2 ≥ · · · ≥ γm. If {βi}mi=1 majorizes {αi}mi=1, then

m∑
i=1

γiβ
↑
i ≤

m∑
i=1

γiαi ≤
m∑
i=1

γiβ
↓
i . (4.1)

Furthermore, if all γi are distinct, then the first inequality becomes an equality if and only 
if αi = β↑

i for all i. Similarly, if all γi are distinct, then the second inequality becomes 
an equality if and only if αi = β↓

i for all i.

The first part of the lemma is exactly the same as [17, Lemma 2.3], except that here 
it is not required that all γi ≥ 0. The second part on the inequalities becoming equalities 
was not explicitly stated there, but it follows from the proof there straightforwardly. 
This lemma likely appeared elsewhere6 but an explicit reference is hard to find. As a 
corollary, we have

m∑
i=1

γiβ
↑
i ≤

m∑
i=1

γiβi ≤
m∑
i=1

γiβ
↓
i

because clearly {βi}mi=1 majorizes {βi}mi=1 itself.

Proof of Lemma 4.1. Without loss of generality, we may assume γm > 0; otherwise we 
can always pick a scalar ξ such that γm + ξ ≥ 0, and let

γ̃i := γi + ξ > 0 for 1 ≤ i ≤ m.

By assumption, we have 
∑m

i=1 αi =
∑m

i=1 βi =
∑m

i=1 β
↑
i =

∑m
i=1 β

↓
i =: η, and thus

m∑
i=1

γiβ
↑
i = −ξη +

m∑
i=1

γ̃iβ
↑
i ,

m∑
i=1

γiαi = −ξη +
m∑
i=1

γ̃iαi,

m∑
i=1

γiβ
↓
i = −ξη +

m∑
i=1

γ̃iβ
↓
i .

It suffices to prove the lemma for γ̃1 ≥ γ̃2 ≥ · · · ≥ γ̃m > 0, instead.

6 After the paper was accepted, we found that Lemma 4.1 in fact had appeared in [13, Lemma 4.3.51 on 
p. 255] and Lemmas 4.2 and 4.3 had appeared in [13, Theorem 4.3.45 on p. 249].
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The argument below up to (4.3) appears in the proof of [17, Lemma 2.3]. It is repeated 
here for the purpose of arguing when the equality signs in (4.1) are attained. Suppose 
γ1 ≥ γ2 ≥ · · · ≥ γm > 0 and set

pj =
j∑

i=1
β↑
i , sj =

j∑
i=1

αi, tj =
j∑

i=1
β↓
i , p0 = s0 = t0 = 0.

Since {βi}mi=1 majorizes {αi}mi=1, we have

pj ≤ sj ≤ tj , pm = sm = tm

and thus
m∑
i=1

γiαi =
m∑
i=1

(si − si−1)γi

=
m∑
i=1

siγi −
m∑
i=2

si−1γi

= smγm +
m−1∑
i=1

si(γi − γi+1)

≤ tmγm +
m−1∑
i=1

ti(γi − γi+1)

=
m∑
i=1

γiβ
↓
i , (4.2)

m∑
i=1

γiαi = smγm +
m−1∑
i=1

si(γi − γi+1)

≥ pmγm +
m−1∑
i=1

pi(γi − γi+1)

=
m∑
i=1

γiβ
↑
i , (4.3)

as required. To figure out when any of the inequalities above is an equality, we look 
at (4.2), for an example. We notice that there is only one inequality sign during the 
derivation in (4.2). In order for the inequality to become an equality, assuming all γi are 
distinct, we will have to have si = ti for all i and consequently, αi = β↓

i for all i. �
The next two lemmas relate the diagonal entries of a Hermitian matrix with its eigen-

values.

Lemma 4.2 ([43, Exercise II.1.12, p. 35]). The multiset of the diagonal entries of a 
Hermitian matrix is majorized by the multiset of its eigenvalues.
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Lemma 4.3. For a Hermitian matrix, if the multiset of its diagonal entries is the same 
as the multiset of its eigenvalues, then it is diagonal.

Proof. This lemma is probably known, but we could not find a reference to it. For 
completeness, we provide a quick proof. Let A = [aij ] ∈ Cn×n be such a Hermitian 
matrix with eigenvalues {λi}ni=1. By the assumption,

‖A‖2
F =

n∑
i,j=1

|aij |2 =
n∑

i=1
|λi|2 =

n∑
i=1

|aii|2,

where ‖A‖F denotes the Frobenius norm of A. Hence |aij|2 = 0 for all i �= j, as ex-
pected. �

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Recall the eigen-decomposition (2.1) with (1.2) for A − λB and 
the eigen-decomposition (2.2) for D. Consider first that D is nonsingular, i.e., all ωi �= 0.

Introducing

Y = U−1XQ ⇒ X = UY QH, (4.4)

we find that the left-hand side of (2.3) can be transformed to

min
XHBX=Ik

tr(DXHAX) = min
Y HY =Ik

tr(ΩY HΛY ),

and any minimizer of one yields a minimizer of the other according to (4.4).
For any given Y ∈ Cn×k with Y HY = Ik, denote the eigenvalues of Y HΛY by

μ1 ≤ μ2 ≤ · · · ≤ μk,

where we suppress the dependency of μi on Y for clarity. Cauchy’s interlacing inequalities 
say that

λi+n−k ≥ μi ≥ λi for all 1 ≤ i ≤ k. (4.5)

Denote the diagonal entries of Y HΛY by (Y HΛY )(i,i) for i = 1, 2, . . . , k, and let αi be 
the reordering of (Y HΛY )(i,i) in the increasing order, i.e.,

α1 ≤ α2 ≤ · · · ≤ αk.

Evidently, {(Y HΛY )(i,i)}ki=1 is majorized by {αi}ki=1 because they are the same up to a 
permutation. By Lemma 4.2, {αi}ki=1 is majorized by {μi}ki=1. We have
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tr(ΩY HΛY ) =
k∑

i=1
ωi(Y HΛY )(i,i) (use Lemma 4.1)

≥
k∑

i=1
ωiαi (use Lemma 4.1)

≥
k∑

i=1
ωiμi

=
�∑

i=1
ωiμi +

k∑
i=�+1

ωiμi (use (4.5))

≥
�∑

i=1
ωiλi +

k∑
i=�+1

ωiλi+n−k. (4.6)

Since Y is arbitrary, we have

min
Y HY =Ik

tr(ΩY HΛY ) ≥
�∑

i=1
ωiλi +

k∑
i=�+1

ωiλi+n−k. (4.7)

Taking Y = [e1, e2, . . . , e�, en−k+�+1, en−k+�+2, . . . , en] where ei is the ith column of In, 
we see that tr(ΩY HΛY ) is equal to the right-hand side of (4.7). Therefore we have (2.3).

Suppose now all ωi are distinct and Yopt is a minimizer. We must have

tr(ΩY H
optΛYopt) =

k∑
i=1

ωi(Y H
optΛYopt)(i,i)

=
k∑

i=1
ωiαi (4.8)

=
k∑

i=1
ωiμi (4.9)

=
�∑

i=1
ωiλi +

k∑
i=�+1

ωiλi+n−k, (4.10)

where α1 ≤ α2 ≤ · · · ≤ αk are the reordering of (Y H
optΛYopt)(i,i), and μ1 ≤ μ2 ≤ · · · ≤ μk

are the eigenvalues of Y H
optΛYopt. For the equalities in (4.8) – (4.10) to hold, we must 

have for all i

(Y H
optΛYopt)(i,i) = αi = μi = λi for 1 ≤ i ≤ �,

(Y H
optΛYopt)(i,i) = αi = μi = λn−k+i for � + 1 ≤ i ≤ k,
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and Y H
optΛYopt = diag(α1, α2, . . . , αk) = diag(λ1, λ2, . . . , λ�, λn−k+�+1, . . . , λn). Now use 

the relation (4.4) to conclude the proof for the case when D is nonsingular.
Return to the case when D is singular, i.e., some of its eigenvalues ωi = 0. Let Q̂

be as the one defined in item (b) and Q̂⊥ be the columns of Q not in Q̂. The eigen-
decomposition (2.2) of D can be rewritten as

D = [Q̂, Q̂⊥]
[
Ω̂ 0
0 0

]
[Q̂, Q̂⊥]H,

where Ω̂ = diag(ω1, . . . , ω�+ , ωk−�−+1, . . . , ωk) composed of all nonzero eigenvalues of D. 
It can be verified that

tr(DXHAX) = tr(Ω̂Ŷ HAŶ ), (4.11)

where Ŷ = XQ̂. If XHBX = Ik, then Ŷ HBŶ = Q̂HXHBXQ̂ = Q̂HQ̂ = I�++�− . On 
the other hand, given Ŷ ∈ Cn×(�++�−) such that Ŷ HBŶ = I�++�− , we can expand it to 
Y = [Ŷ , Ŷc] ∈ Cn×k such that Y HBY = Ik and then let X = Y [Q̂, Q̂⊥]H for which it 
can be seen that (4.11) holds. This proves

min
XHBX=Ik

tr(DXHAX) = min
Ŷ HBŶ =I�++�−

tr(Ω̂Ŷ HAŶ ), (4.12)

and a minimizer for one leads to a minimizer for the other. The right-hand side of (4.12)
is a minimization problem belonging to the case of nonsingular D that we just dealt 
with. �
5. Proof of Theorems 3.1 and 3.2

The next two lemmas will be needed in our later proofs.

Lemma 5.1 ([44, Corollary 5.12]). Let Jm = diag(In+ , −In−) and m = n+ + n−. A set 
of vectors u1, . . . , uk in Cm satisfying uH

i Jnuj = ±δij for i, j = 1, . . . , k can be com-
plemented to a basis {u1, . . . , um} of Cm satisfying uH

i Jmuj = ±δij for i, j = 1, . . . , m, 
where δij is the Kronecker delta which is 1 for i = j and 0 otherwise, and the numbers 
of 1 and −1 among uH

i Jmui for 1 ≤ i ≤ n are n+ and n−, respectively.

Lemma 5.2 ([44, Example 6.3]). Let Jm = diag(In+ , −In−) and m = n+ +n−. A matrix 
X ∈ Cm×m satisfies XHJmX = Jm if and only if it is of the form

X =
[
(In+ + WWH)1/2 W

WH (In− + WHW )1/2
] [

V+
V−

]
, (5.1)

where V+ ∈ Cn+×n+ and V− ∈ Cn−×n− are unitary, and W ∈ Cn+×n− .
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Lemma 5.1 can also be found in many classical monographs, e.g., [45,46], and 
Lemma 5.2 can be found in [47,22], where (5.1) is called a (hyperbolic) polar decom-
position of X.

Proof of Theorem 3.1. We may assume, without loss of generality, that A � 0; Other-
wise, noticing

tr(DXHAX) = tr(DXH(A− λ0B)X) + λ0 tr(D), (5.2)

we may consider tr(DXH(A − λ0B)X), instead.
In what follows, we will suppose A � 0 and also λ0 = 0.
By [23, Lemma 3.8], A − λB admits the following eigen-decomposition: there exists a 

nonsingular matrix U ∈ Cn×n such that

UHAU =

⎡⎢⎢⎢⎣
n+−m0 n−−m0 2m0 n0

n+−m0 Λ+
n−−m0 −Λ−

2m0 Λb
n0 Λ∞

⎤⎥⎥⎥⎦ =:
[ r n0

r Λr

n0 Λ∞

]
=: Λ � 0, (5.3a)

UHBU =

⎡⎢⎢⎢⎣
n+−m0 n−−m0 2m0 n0

n+−m0 In+−m0

n−−m0 −In−−m0

2m0 Jb
n0 0

⎤⎥⎥⎥⎦ =:
[ r n0

r Jr
n0 J∞

]
=: Jn, (5.3b)

where 0 ≤ m0 ≤ min{n+, n−}, and7

U =
[ n+−m0 n−−m0 2m0 n0

U+ U− Ub U∞

]
=:

[ r n0

Ur U∞

]
, (5.3c)

Λ+ = diag(λ+
m0+1, . . . , λ

+
n+

), Λ− = diag(λ−
n− , . . . , λ

−
m0+1), (5.3d)

Λ0 =
[
0 0
0 1

]
, F2 =

[
0 1
1 0

]
, (5.3e)

Jb = diag(F2, . . . , F2︸ ︷︷ ︸
m0

), Λb = diag(Λ0, . . . ,Λ0︸ ︷︷ ︸
m0

), Λ∞ � 0. (5.3f)

Both Λ in (5.3a) and Jn in (5.3b) are diagonal if m0 = 0, i.e., in the absence of blocks 
Λb, Jb, and Ub. For the case, we say that A − λB is diagonalizable. It can be seen from 
(5.3) that the finite eigenvalues of A − λB are given by

7 Recall the simplification due to (5.2). In general, Λ0 in (5.3e) takes the form 
[ 0 λ0
λ0 1

]
, and thus 

λ−
m0

= · · · = λ−
1 = λ0 = λ+

1 = · · · = λ+
m0

.



X. Liang et al. / Linear Algebra and its Applications 656 (2023) 483–509 497
λ−
n− ≤ · · · ≤ λ−

m0+1 ≤ 0 = · · · = 0︸ ︷︷ ︸
m0

= 0 = · · · = 0︸ ︷︷ ︸
m0

≤ λ+
m0+1 ≤ · · · ≤ λ+

n+
,

which, compared to (3.4), implies λ−
m0

= · · · = λ−
1 = 0 = λ+

1 = · · · = λ+
m0

, and they 
come from Λb − λJb.

Letting Y = U−1XQ, we can transform (1.8) for the case XHBX = Ik into

inf
XHBX=Ik

tr(DXHAX) = inf
Y HJnY =Ik

tr(ΩY HΛY ), (5.4)

where k ≤ n+.
First we deal with the case when the matrix B is singular, i.e., n0 > 0 in (5.3). 

Partition Y =
[ k

r Yr

n0 Y∞

]
, and then

inf
Y HJnY =Ik

tr(ΩY HΛY ) = inf
Y H
r JrYr=Ik

[
tr(ΩY H

r ΛrYr) + tr(ΩY H
∞Λ∞Y∞)

]
= inf

Y H
r JrYr=Ik

tr(ΩY H
r ΛrYr) + inf

Y∞
tr(ΩY H

∞Λ∞Y∞). (5.5)

We will examine the two terms in (5.5) separately. Constraint Y HJnY = Ik yields 
Y H
r JrYr = Ik, leaving Y∞ ∈ Cn0×k arbitrary. Restricting Y∞ to a rank-1 matrix xyH, 

we find

inf
Y∞

tr(ΩY H
∞Λ∞Y∞) ≤ inf

rank(Y∞)≤1
tr(ΩY H

∞Λ∞Y∞)

= inf
y,x

tr(ΩxyHΛ∞yxH)

= inf
y,x

(xHΩx)(yHΛ∞y).

There are three cases.

1. Ω � 0 and Λ∞ �= 0: we have infy,x(xHΩx)(yHΛ∞y) = −∞, which leads to that the 
second infimum in (5.5) is −∞.

2. Ω � 0 and Λ∞ = 0: we have Y H
∞Λ∞Y∞ = 0, which leads to that the second infimum 

in (5.5) is 0. But our later proof for nonsingular B shows that for the case the first 
infimum in (5.5) is −∞.

3. Ω � 0: we have Y H
∞Λ∞Y∞ � 0, and tr(ΩY H

∞Λ∞Y∞) ≥ 0 and tr(ΩY H
∞Λ∞Y∞) = 0 for 

Y∞ = 0, which leads to that the second infimum in (5.5) is 0.

The first infimum in (5.5): infY H
r JrYr=Ik tr(ΩY H

r ΛrYr), falls into the case when the matrix 
B is nonsingular, which we are about to investigate.

Suppose now that B is nonsingular, i.e., n0 = 0 in (5.3).
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Consider first that m0 = 0, namely the pencil A − λB is also diagonalizable. Then 
Jn = diag(In+ , −In−). Since Y HJnY = Ik, by Lemma 5.1 we can complement Y to 
Ỹ = [Y Yc ] ∈ Cn×n such that Ỹ HJnỸ = Jn. By Lemma 5.2, Ỹ has a hyperbolic polar 
decomposition

Ỹ =
[
(In+ + Σ̃Σ̃H)1/2 Σ̃

Σ̃H (In− + Σ̃HΣ̃)1/2

] [
Ṽ+

Ṽ−

]
, (5.6)

where Ṽ+ ∈ Cn+×n+ and Ṽ− ∈ Cn−×n− are unitary, and Σ̃ ∈ Cn+×n− . Let Σ̃ = W+ΣWH
−

be the singular value decomposition of Σ̃, where

Σ =
[
Σ0
0

]
if n+ ≥ n−, or Σ = [0 Σ0 ] if n+ < n−.

Hence plug Σ̃ = W+ΣWH
− into (5.6) to turn Ỹ = WSV H, where

W =
[ n+ n−

n+ W+
n− W−

]
, V =

[ n+ n−

n+ V+
n− V−

]
:=

[ n+ n−

n+ Ṽ H
+ W+

n− Ṽ H
− W−

]
, (5.7a)

and

S =
[
(In+ + ΣΣH)1/2 Σ

ΣH (In− + ΣHΣ)1/2
]

=

⎡⎣(I + Σ2
0)1/2 0 Σ0

0 I|n+−n−| 0
Σ0 0 (I + Σ2

0)1/2

⎤⎦ . (5.7b)

Noticing Y = Ỹ In;k where In;k =
[
Ik
0

]
∈ Cn×k, we have from (5.4)

inf
Y HJnY =Ik

tr(ΩY HΛY ) = inf
Ỹ HJnỸ =Jn

tr(ΩIH
n;kỸ

HΛỸ In;k)

= inf
Σ0�0 diagonal

V+,V−,W+,W− unitary

tr(In;kΩIH
n;kV SWHΛWSV H)

= inf
Σ0�0 diagonal

V+,V−,W+,W− unitary

tr(Ω̃V SΛWS), (5.8)

where Ω̃V = V HIn;kΩIH
n;kV and ΛW = WHΛW . Use (5.7a) to see

Ω̃V =
[ n+ n−

n+ Ω̃+,V

n− 0

]
, ΛW =

[ n+ n−

n+ Λ+,W

n− −Λ−,W

]
,
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where Ω̃+ =
[ k n+−k

k Ω
n+−k 0

]
, Ω̃+,V = V H

+ Ω̃+V+, Λ+,W = WH
+ Λ+W+, and Λ−,W =

WH
−Λ−W−. As a result, tr(Ω̃V SΛWS) can be given by

tr(
[

Ω̃+,V

0

][ (In++ΣΣH)1/2 Σ
ΣH (In−+ΣHΣ)1/2

]
×

[
Λ+,W

Λ−,W

][ (In++ΣΣH)1/2 Σ
ΣH (In−+ΣHΣ)1/2

]
)

= tr(
[

Ω̃+,V (In++ΣΣH)1/2 Ω̃+,V Σ
0 0

][ Λ+,W (In++ΣΣH)1/2 Λ+,W Σ
Λ−,W ΣH Λ−,W (In−+ΣHΣ)1/2

]
)

= tr(Ω̃+,V

[
(In+ + ΣΣH)1/2Λ+,W (In+ + ΣΣH)1/2 − ΣΛ−,WΣH]

).

The last infimum in (5.8) becomes

inf
Σ0�0 diagonal

V+,V−,W+,W− unitary

tr(Ω̃V SΛWS)

= inf
Σ0�0 diagonal

V+,W+,W− unitary

tr(Ω̃+,V [(In+ + ΣΣH)1/2Λ+,W (In+ + ΣΣH)1/2 − ΣΛ−,WΣH]).

(5.9)

This infimum is −∞ if Ω � 0. In fact, suppose Ω̃+x+ = ωkx+ where ωk < 0, and x+ is 
a unit eigenvector. Construct V̂+ = [x+ V+,c ] ∈ Cn+×n+ that is unitary. Thus, upon 
restrictions V+ = V̂+, W+ = I, W− = I, Σ0 = diag(σ, 0, . . . , 0), we have by (5.9)

inf
Σ0�0 diagonal

V+,V−,W+,W− unitary

tr(Ω̃V SΛWS) ≤ inf
σ

tr(V̂ H
+ Ω̃+V̂+[Λ+ + σ2(λ+

n+
− λ−

n−)e1e
H
1 ])

= inf
σ

σ2(λ+
n+

− λ−
n−) tr(V̂ H

+ Ω̃+V̂+e1e
H
1 ) + tr(V̂ H

+ Ω̃+V̂+Λ+)

= inf
σ

σ2(λ+
n+

− λ−
n−)(eH

1 V̂
H
+ Ω̃+V̂+e1) + tr(V̂ H

+ Ω̃+V̂+Λ+)

= inf
σ

σ2(λ+
n+

− λ−
n−)(xH

+Ω̃+x+) + tr(V̂ H
+ Ω̃+V̂+Λ+)

= inf
σ

σ2(λ+
n+

− λ−
n−)ωk + tr(V̂ H

+ Ω̃+V̂+Λ+)

= −∞,

as long as Λ+ �= 0 or Λ− �= 0, which is equivalent to A �= 0, where e1 is the first column 
of the identity matrix.

So far, we have shown that if Ω � 0, A �= 0, the infimum is −∞, for any positive 
semi-definite pencil A − λB with B genuinely indefinite, except the case A − λB is not 
diagonalizable, to which we will return.
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In what follows, suppose that Ω � 0. Then

inf
Σ0�0 diagonal

V+,V−,W+,W− unitary

tr
(
Ω̃+,V [(I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2 − ΣΛ−,WΣH]

)
= inf

V±,W± unitary
inf

Σ0�0 diagonal
tr

(
Ω̃+,V [(I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2 − ΣΛ−,WΣH]

)
.

(5.10)

Note that Ω̃+,V , Λ+,W , −Λ−,W are positive semi-definite. In the following, we will show 
that the “infimum” in (5.10) is 

∑k
i=1 ωiλ

+
i and is attained at Σ = 0.

Firstly, since Ω̃+,V � 0 and Σ(−Λ−,W )ΣH � 0, we have by Theorem 2.1

tr(−Ω̃+,V ΣΛ−,WΣH) = tr(Σ(−Λ−,W )ΣH) ≥ 0. (5.11)

Secondly, we claim that

tr
(
Ω̃+,V (I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2

)
≥

k∑
i=1

ωiλ
+
i . (5.12)

Denote the eigenvalues of (I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2 by δ1 ≤ δ2 ≤ · · · ≤ δn+ . By 
Ostrowski’s theorem [13, p. 283], we know

λ+
i ≤ δi ≤ (1 + ‖Σ‖2

2)λ+
i for 1 ≤ i ≤ n+, (5.13)

where ‖Σ‖2 is the spectral norm of Σ. Let In+;k =
[
Ik
0

]
∈ Cn+×k. We have

tr
(
Ω̃+,V (I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2

)
= tr

(
V H

+ In+;kΩIH
n+;kV+(I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2

)
= tr

(
Ω(V H

+ In+;k)H(I + ΣΣH)1/2Λ+,W (I + ΣΣH)1/2(V H
+ In+;k)

)
≥

k∑
i=1

ωiδi (by Theorem 2.1)

≥
k∑

i=1
ωiλ

+
i , (5.14)

where we have used (5.13) in the last step. This is (5.12). It is not hard to see that the 
equality in (5.14) is attained at Σ = 0 and appropriately chosen V+ and W+. Combining 
(5.9), (5.10), (5.11), and (5.12) completes the proof of the theorem for the case when 
A − λB is diagonalizable.

Consider now that m0 > 0, namely the pencil A − λB is not diagonalizable. We 
perturb A − λB to (A + εE) − λB with ε > 0, where
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E = U−H diag(0, 0, Eb, 0)U−1, Eb = diag(E0, . . . , E0︸ ︷︷ ︸
m0

), E0 =
[
1 0
0 0

]
.

Clearly (A + εE) � 0 and the pencil is diagonalizable. Letting ε → 0+ leads to the 
desired result, based on the case for diagonalizable A − λB. �

Applying Theorem 3.1 to the matrix pencil A − (−λ)(−B), we immediately conclude 
the following corollary.

Corollary 5.3. Suppose the conditions of Theorem 3.1, except now k ≤ n−. Then

inf
XHBX=−Ik

tr(DXHAX) > −∞

if and only if D � 0, in which case

inf
XHBX=−Ik

tr(DXHAX) = −
k∑

i=1
ωiλ

−
i . (5.15)

The infimum can be attained, when A −λB is diagonalizable, by X such that the columns 
of XQ are the eigenvectors of A − λB associated with its eigenvalues λ−

i for 1 ≤ i ≤ k, 
respectively.

With the help of Theorem 3.1 and Corollary 5.3, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Partition X = [X+ X− ] with X+ ∈ Cn×k+ , and let D± =
Q±Ω±QH

± be the eigen-decompositions of D+ and D−, respectively. First consider the 
case that A − λB is diagonalizable. We have

min
XHBX=Jk

tr(DXHAX) = min
XH

±BX±=±Ik±
XH

+BX−=0

tr(D+X
H
+AX+ + D−X

H
−AX−)

≥ min
XH

+BX+=Ik+

tr(D+X
H
+AX+) + min

XH
−BX−=−Ik−

tr(D−X
H
−AX−)

=
k+∑
i=1

ω+
i λ

+
i −

k−∑
i=1

ω−
i λ

−
i ,

of which the last equality holds by making the columns of X±Q± be the eigenvectors 
of A − λB associated with its eigenvalues λ±

i for 1 ≤ i ≤ k±, respectively. This proves 
(3.6).

For the case that A − λB is not diagonalizable, (3.6) also holds, by using the same 
technique at the end of the proof of Theorem 3.1 above. �
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6. Conclusion

Previously, the classical Ky Fan’s trace minimization principle on minX tr(XHAX)
subject to XHX = Ik for a Hermitian matrix A has been extended to about

min
XHBX=Ik

tr(XHAX) for positive definite B, or more generally

inf
XHBX=Jk

tr(XHAX) for genuinely indefinite B,

where Jk is diagonal with diagonal entries ±1. The extension for a positive definite B is 
rather straightforward, but quite complicated when B is genuinely indefinite [22,23]. In 
fact, the infimum can be −∞ for the last case.

Our extensions in this paper are along the line of the Brockett cost function: 
tr(DXHAX) in X satisfying XHX = Ik, when D is Hermitian and positive semi-definite. 
Specifically, we present elegant analytic solutions, in terms of eigenvalues and eigenvec-
tors of matrix pencil A − λB, to

min
XHBX=Ik

tr(DXHAX) for positive definite B, (6.1a)

inf
XHBX=Jk

tr(DXHAX) for genuinely indefinite B, (6.1b)

where D is no longer assumed to be positive semi-definite. Our analytic solutions are 
concise and our algebraic technique compares favorably to previously laborious effort for 
the case B = I via the usual optimization technique [35].

Each of earlier trace minimization principles (1.1), (1.3), (1.4), and the two principles 
in the appendices have inspired efficient numerical methods for corresponding large scale 
eigenvalue problems. The potential implications of the new ones established in this paper 
for (6.1) remain to be seen.
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Appendix A. Two applications of (1.4)

In this section, we outline two applications of the trace minimization principle (1.4)
[22,23] to two important applied eigenvalue problems. The applications will lead to two 
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known results but the goal is to demonstrate how easy (1.4) can be put into good use. 
Recall:

inf
XHBX=Jk

tr(XHAX) =
k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i , (1.4)

where A − λB is a positive semi-definite matrix pencil with the inertia of B being 
(n+, n0, n−), λ±

i are finite eigenvalues of A − λB (cf. section 3) and are arranged in the 
order as

λ−
n− ≤ · · · ≤ λ−

1 ≤ λ+
1 ≤ · · · ≤ λ+

n+
, (1.5)

and 0 ≤ k± ≤ n±, k = k+ + k−.

A.1. Linear response eigenvalue problem

The linear response eigenvalue problem from electronic structure calculations [24,25,
31,26] (and references therein) is the eigenvalue problem for[

0 K
M 0

]
− λI2n, (A.1)

where K, M ∈ Cn×n are Hermitian positive definite. This eigenvalue problem is equiv-
alent to the one for

A− λB :=
[
M 0
0 K

]
− λ

[
0 In
In 0

]
(A.2)

in the sense that both have the same eigenvalues and eigenvectors. It can be seen that 
B has n eigenvalues +1 and n eigenvalues −1, and all eigenvalues of A − λB are finite 
and can be divided into two groups: n of the positive-type and n of the negative type as 
in (1.5). In fact, it is proved [24,25] that (A.1) (hence (A.2) by equivalency) has 2n real 
eigenvalues ±λi with

0 < λ1 ≤ λ2 ≤ · · · ≤ λn,

and thus in the notation of (1.5): λ−
i = −λi and λ+

i = λi for 1 ≤ i ≤ n. Furthermore, 
there exists a nonsingular V ∈ Cn×n such that8

K = V Λ2V H, M = UUH, (A.3)

8 In [24,25], it was primarily stated in terms of the real number field R, but was commented that all 
results hold for the complex number field C after minor modifications [24, section 6].
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where Λ = diag(λ1, λ2, . . . , λn) and U = V −H. Now for any X, Y ∈ Cn×k such that 
XHY = Ik, it can be verified that

Z =
[
X 0
0 Y

]
∈ C2n×2k, ZHBZ =

[
0 XHY

Y HX 0

]
=

[
0 Ik
Ik 0

]
.

Because ZHBZ is symmetric and has eigenvalues ±1 with each repeating k times, there 
exists an orthogonal matrix Q ∈ R2k×2k such that

(ZQ)HB(ZQ) = QH(ZHBZ)Q =
[
Ik

−Ik

]
:= J2k

(cf. (1.6) with k+ = k− = k). We have

tr(XHMX + Y HKY ) = tr(ZHAZ) = tr((ZQ)HA(ZQ))

≥ inf
WHBW=J2k

tr(WHAW ) (A.4)

=
k∑

i=1
λi −

k∑
i=1

(−λi) = 2
k∑

i=1
λi, (A.5)

where the equality in (A.5) is due to (1.4) and the size of W ∈ C2n×2k in (A.4) is implied 
by the context. Since X, Y ∈ Cn×k are arbitrary, subject to XHY = Ik, we conclude

inf
XHY =Ik

tr(XHMX + Y HKY ) ≥ 2
k∑

i=1
λi. (A.6)

On the other hand, for X = V(:,1:k)Λ
1/2
k and Y = U(:,1:k)Λ

−1/2
k with Λk =

diag(λ1, . . . , λk), we have by (A.3) and V HU = In that

XHY = Λ1/2
k V H

(:,1:k)U(:,1:k)Λ
−1/2
k = Λ1/2

k (V HU)(1:k,1:k)Λ
−1/2
k = Ik,

where V(:,1:k) and U(:,1:k) are the submatrices consisting of the first k columns of V and 
U , respectively, and (V HU)(1:k,1:k) is the leading principal submatrix of V HU . It can be 
verified that tr(XHMX) = tr(Y HKY ) = tr(Λk) =

∑k
i=1 λi. Together with (A.6), we 

arrive at

k∑
i=1

λi = 1
2 min

XHY =Ik
tr(XHMX + Y HKY ), (A.7)

which is precisely the trace minimization principle obtained in [24] for the case when 
both K and M are positive definite.
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When one of K and M or both are assumed only semi-definite, we may use the limiting 
argument by applying (A.7) to K+εIn and M +εIn and then letting ε → 0+ to conclude 
that (A.7) with min replaced by inf remains valid:

k∑
i=1

λi = 1
2 inf

XHY =Ik
tr(XHMX + Y HKY ), (A.8)

for K � 0 and M � 0. We comment that the decompositions in (A.3) remain valid so 
long as M � 0 even if K is singular, but the decompositions no longer hold if also M is 
singular.

Similarly, one may apply (1.4) to the generalized linear response eigenvalue problem 
to arrive at the same trace minimization principle obtained in [29,30]. We omit the detail 
here. In [25,30], the authors went on to develop LOBPCG type eigensolvers to solve the 
first few eigenpairs for the standard and generalized linear response eigenvalue problems.

Remark A.1. The block-diagonal structure in A of (A.2) ensures that the eigenvalues 
of the matrix pencil A − λB appear in pairs ±λi. But purely from the perspective of 
application, (1.4) is equally applicable to A − λB with B being the same as in (A.2)
while A � 0 but without admitting the block-diagonal structure. In the latter case, the 
eigenvalues no longer appear in pairs.

A.2. Symplectic eigenvalues of positive definite matrices

The symplectic eigenvalues of positive definite matrices play important roles in classi-
cal Hamiltonian dynamics, quantum mechanics, and quantum information, among others 
[27,28] (and references therein). Let (cf. J2n in the previous subsection)

J2n =
[

0 In
−In 0

]
∈ R2n×2n. (A.9)

A matrix Z ∈ R2n×2n is called a symplectic matrix if ZTJ2nZ = J2n. It can be seen 
that J T

2n = −J2n and J 2
2n = −I2n. In 1936, Williamson [48] proved the following 

matrix decomposition results: Given a symmetric positive definite matrix A ∈ R2n×2n

(yes for real matrix only), there exists a symplectic Z ∈ R2n×2n, i.e., ZTJ2nZ = J2n, 
such that

ZTAZ = diag(Λ,Λ) with Λ = diag(λ1, λ2, . . . , λn), (A.10a)

where all λi > 0 and can be arranged in the ascending order

0 < λ1 ≤ λ2 ≤ . . . ≤ λn. (A.10b)
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The decomposition is referred to as Williamson’s diagonal form or Williamson’s normal 
form of A. The values λi are called the symplectic eigenvalues of A. We caution that 
these values λi are not really eigenvalues of A.

It follows from ZTJ2nZ = J2n that Z−T = −J2nZJ2n. Hence by (A.10), we have

AZ = Z−T
[
Λ

Λ

]
= −J2nZJ2n

[
Λ

Λ

]
= J2nZ

[
0 −Λ
Λ 0

]
, (A.11)

which is in the form of the eigen-decomposition of matrix pencil A − λJ2n, and from 
which it can be read off that the eigenvalues of A −λJ2n are ±ιλi for 1 ≤ i ≤ n, where 
ι =

√
−1 is the imaginary unit.

Now let B = ιJ2n which is Hermitian and has n eigenvalues +1 and n eigenvalues 
−1. Matrix pencil A − λB is positive definite because A − λ0B = A � 0 for λ0 = 0, and 
has only real finite eigenvalues which can be divided into two groups: n of the positive 
type and n of the negative type as in (1.5): λ−

i = −λi and λ+
i = λi for 1 ≤ i ≤ n.

For any X ∈ R2n×2k such that XHJ2nX = J2k, we have XTBX = ιJ2k which is 
Hermitian. There exists a unitary Q ∈ C2k×2k such that

(XQ)HB(XQ) = QH(XTBX)Q =
[
Ik

−Ik

]
=: J2k

(cf. (1.6) with k+ = k− = k). Hence by (1.4), we have

tr(XTAX) = tr((XQ)HA(XQ)) ≥ inf
WHBW=J2k

tr(WHAW )

=
k∑

i=1
λi −

k∑
i=1

(−λi) = 2
k∑

i=1
λi.

Since X is arbitrary, subject to XTJ2nX = J2k, we conclude that

inf
XTJ2nX=J2k

tr(XTAX) ≥ 2
k∑

i=1
λi. (A.12)

On the other hand, for X = [Z(:,1:k), Z(:,n+1:n+k)] (the submatrix of Z consisting of its 
first k columns and its (n + 1)st to (n + k)th columns), we have XTJ2nX = J2k. It 
follows from (A.11) that

AZ(:,1:k) = J2nZ(:,n+1:n+k)Λk, AZ(:,n+1:n+k) = −J2nZ(:,1:k)Λk,

where Λk = diag(λ1, . . . , λk), and thus AX = J2nX

[
0 −Λk

Λk 0

]
. Therefore

XTAX = XTJ2nX

[
0 −Λk

Λ 0

]
= J2k

[
0 −Λk

Λ 0

]
=

[
Λk

Λ

]

k k k
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yielding tr(XTAX) = 2 
∑k

i=1 λi, which together with (A.12) lead to

k∑
i=1

λi = 1
2 min

XTJ2nX=J2k
tr(XTAX). (A.13)

Equation (A.13) is precisely the trace minimization principle obtained in [27], and was 
recently used as the theoretical foundation in [32] for numerically computing the sym-
plectic eigenvalues λi of A. Perturbation bounds can also be found in [27,49].

So far A ∈ R2n×2n is assumed to be symmetric positive definite. However, the trace 
minimization principle (A.13) can be extended to semi-definite A. Notice that A − λB

with B = ιJ2n is a positive semi-definite matrix pencil when A ∈ R2n×2n is symmetric 
positive semi-definite. Regardless, A − λB still has 2n eigenvalues ±λi [23], but instead 
of (A.10b) we will have

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, (A.14)

i.e., possibly λ1 = 0. Indeed λ1 = 0 if and only if A is singular. By applying (A.13) to 
A + εI2n and then letting ε → 0+, we arrive at

k∑
i=1

λi = 1
2 inf

XTJ2nX=J2k
tr(XTAX) (A.15)

for generally A ∈ R2n×2n being symmetric positive semi-definite.
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