
Annals of Mathematical Sciences and Applications

Volume 7, Number 2, 169–191, 2022

On nonlinear matrix equations from the first
standard form
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In numerically solving nonlinear matrix equations, including alge-
braic Riccati equations, that are associated with the eigenspaces
of certain regular matrix pencils by the doubling algorithms, the
matrix pencils must first be brought into one of the two standard
forms. Conversely, each standard form leads to a kind of nonlin-
ear matrix equations, which are of interest in their own right. In
this paper, we are concerned with the nonlinear matrix equations
associated with the first standard form (SF1). Under the nonnega-
tiveness assumption, we investigate solution existence and the con-
vergence of the doubling algorithm. We obtain several results that
resemble the ones for SF1 derived from an M -matrix algebraic
Riccati equation.
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1. Introduction

Huang, Li, and Lin [16] summarized a general framework to apply doubling

algorithms for the numerical solutions of several types of nonlinear matrix

equations in association with the eigenspaces of certain regular matrix pen-

cils. Within the framework, there are two standard forms called the first

standard form (SF1) and the second standard form (SF2) that the regular

matrix pencils must be transformed into, if they are not already in, before

a doubling algorithm can be applied. SF1 was inspired by the developments

previously in [6, 7, 8, 15, 25], while SF2 differs subtly from what has been

used in the past [6, 10, 11, 12, 13, 14].
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Conversely, SF1 corresponds to a nonlinear matrix equation in the form

(1.1) X = X0 + F0X(I − Y0X)−1E0

of unknown X ∈ Cn×m, where X0 ∈ Cn×m, Y0 ∈ Cm×n, E0 ∈ Cm×m and

F0 ∈ Cn×n are known constant matrices. Several special nonlinear matrix
equations must be transformed into (1.1) before the doubling algorithm (DA)
can be applied for their efficient numerical solution [16]. They include the
continuous-time algebraic Riccati equation (care) and the discrete-time al-
gebraic Riccati equation (dare) arising from the optimal control theory
[27], and the M -matrix algebraic Riccati equation (mare) from applied

probability and transportation theory, Markov-modulated fluid queue theory
[3, 5, 17, 18, 22, 23], among others. In general, a nonlinear matrix equation
has more than one solution, but usually one of the them is of interest for the
underlying application. In fact, for (1.1) derived from care, dare, mare,
and the quasi-birth-and-death (qbd) equation, which particular solution to
look for is dictated by the applications, and the subsequent success of DA is

critically dependent on the properties of the source equations of (1.1). All
of these make that nonlinear matrix equation (1.1) is so much more general
than care, dare, mare, and the qbd equation, and begs further studies
on its own. This is the purpose of this article.

The rest of this paper is organized as follows. In section 2, we briefly
outline SF1 for which the doubling algorithm that is built for. Really, SF1 is
defined upon four constant matrices E0, F0, X0 and Y0 of apt sizes. In sec-

tion 3, we investigate solution existence and numerical solution of nonlinear
matrix equation (1.1), assuming the nonnegativeness of the four matrices.
We briefly comment on nonlinear matrix equation (1.1) in the symmetric
case straightly from dare. Finally, we draw our concluding remarks in sec-
tion 5. We also list a few basic facts about nonnegative and M -matrices in
appendix A needed for our analysis.

Notation. Throughout this paper, Cn×m is the set of all n×m complex
matrices, Cn = Cn×1, and C = C1. Similarly define Rn×m, Rn, and R except
replacing the word complex by real. In (or simply I if its dimension is clear
from the context) is the n × n identity matrix, and ej is its jth column.
The superscript “·T” takes transpose of a matrix or vector. For X ∈ Rm×m,

X(i,j) refers to its (i, j)th entry. Inequality X ≤ Y means X(i,j) ≤ Y(i,j) for
all (i, j), and similarly for X < Y , X ≥ Y , and X > Y . In particular, X ≥ 0
means that X is entrywise nonnegative. For a square matrix X, denote by
ρ(X) its spectral radius.
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2. The first standard form (SF1)

In this section, we will outline the framework for (SF1) only and its associ-
ated doubling algorithm. The interested reader is referred to [16] for detail
on (SF2) and its associated doubling algorithm.

The first standard form (SF1) [16] takes the form

(SF1) A0 =

[ m n

m E0 0
n −X0 I

]
, B0 =

[ m n

m I −Y0
n 0 F0

]
.

It generally comes from a nonlinear matrix equation that is equivalent to
an eigenvalue problem of a regular matrix pencil A − λB:

(2.1a) A

[
Im
X

]
= B

[
Im
X

]
M,

where X ∈ Cn×m, M ∈ Cm×m, and

(2.1b) A =

[ m n

m A11 A12

n A21 A22

]
, B =

[ m n

m B11 B12

n B21 B22

]
.

Note that X and M are not independent in the sense if one is known, so is
the other. To go from the matrix pencil A − λB to (SF1), while preserving

the eigenspace, i.e., the column space of

[
Im
X

]
, we basically multiply A and

B from the left by the same nonsingular matrices to yield a new matrix
pencil A0 − λB0, taking the standard form (SF1), while ensuring

(2.2) A0

[
Im
X

]
= B0

[
Im
X

]
M .

Usually, the spectral radius ρ(M ) < 1 (sometimes ρ(M ) = 1 in the so-called
critical case). Next, the doubling algorithm is applied to iteratively produce
a sequence of matrix pencils Ai − λBi, taking the same form as A0 − λB0:

(2.3) Ai =

[ m n

m Ei 0
n −Xi I

]
, Bi =

[ m n

m I −Yi
n 0 Fi

]
for i = 0, 1, . . .,

as in Algorithm 2.1, such that

(2.4) Ai

[
I
X

]
= Bi

[
I
X

]
M 2i

for i = 0, 1, . . ..
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Algorithm 2.1 Doubling Algorithm for (SF1)

Input: X0 ∈ Cn×m, Y0 ∈ Cm×n, E0 ∈ Cm×m, F0 ∈ Cn×n.
Output: X∞ as the limit of Xi if it converges.

1: for i = 0, 1, . . ., until convergence do
2: compute Ei+1, Fi+1, Xi+1, Yi+1 according to

Ei+1 = Ei(Im − YiXi)
−1Ei,(2.5a)

Fi+1 = Fi(In −XiYi)
−1Fi,(2.5b)

Xi+1 = Xi + Fi(In −XiYi)
−1XiEi(2.5c)

= Xi + FiXi(Im − YiXi)
−1Ei,(2.5d)

Yi+1 = Yi + Ei(Im − YiXi)
−1YiFi(2.5e)

= Yi + EiYi(In −XiYi)
−1Fi.(2.5f)

3: end for
4: return Xi at convergence as the computed solution.

In [16], it was shown that (2.2), after eliminating the matrix M , yields
a nonlinear matrix equation

(2.6a) X = X0 + F0X(I − Y0X)−1E0

that was called the primal equation. Conversely, by letting M = (I −
Y0X)−1E0, we find that (2.6a) results in (2.2). Associated with this primal
equation, there is the so-called dual equation

(2.6b) Y = Y0 + E0Y (I −X0Y )−1F0.

Letting N = (I −X0Y )−1F0, we find (2.6b) yields

(2.7) A
(d)
0

[
I
Y

]
= B

(d)
0

[
I
Y

]
N ,

where A
(d)
0 := ΠT

m,nB0Πm,n and B
(d)
0 := ΠT

m,nA0Πm,n with Πm,n=

[
0 Im
In 0

]
,

yielding

(2.8) A
(d)
0 =

[ n m

n F0 0
m −Y0 I

]
, B

(d)
0 =

[ n m

n I −X0

m 0 E0

]
.

All of this is part of the primal-dual view developed in [16]. It can be verified
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that (2.7) is equivalent to

(2.9) A0

[
Y
In

]
N = B0

[
Y
In

]
.

Returning to Algorithm 2.1, if ρ(M ) < 1, then (2.4) implies, as i → ∞,

Ai

[
I
X

]
→ 0 ⇒ Xi → X,

a solution of the nonlinear equation of interest. But how to ensure ρ(M ) <

1? Note that M does not show up in Algorithm 2.1. In fact, the algorithm

takes input {X0, Y0, E0, Y0} and produces output {Xi, Yi, Ei, Yi}∞i=0, pro-

vided all the inverses exist. It turns out that the existing analysis of the

doubling algorithm on care, dare, mare, and the qbd equation [5, 16]

traces M back to the matrix M in (2.1) to gain the information on ρ(M ).

Departing from this approach, in this paper, we are going to look at Al-

gorithm 2.1 from a different perspective, namely to build a convergence

theory only around (2.6) by asking what properties the initial input matri-

ces X0, Y0, E0, Y0 have in order to ensure the convergence of Xi to a solution

of (2.6a). Conceivably such a theory may expand the domain where Algo-

rithm 2.1 may be applied beyond the types of nonlinear matrix equations

investigated in the literature.

The reader is referred to [16] for what suitable stopping criteria should

be used in Algorithm 2.1 in different circumstances.

3. Nonnegative case

The nonnegative case of (SF1) refers to one with

[ m n

m E0 Y0
n X0 F0

]
≥ 0.

We will also assume that there is a positive vector u ≡
[

m u1
n u2

]
> 0 such

that either

(3.1a)

[
E0 Y0
X0 F0

]
u < u,
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or a combination of the following inequalities[
E0 Y0
X0 F0

]
u ≤ u,(3.1b) [

E0 Y0
X0 F0

]
u = u,(3.1c)

Y0u2 < u1,(3.1d)

X0u1 < u2,(3.1e)

either E0u1 > 0 or F0u2 > 0.(3.1f)

hold. Specifically, our investigation covers two cases:

(3.2)
Case I: (3.1a);

Case II: (3.1b) with one of (3.1d), (3.1e), and (3.1f).

Remark 3.1. There are a few comments in order.

1. Condition (3.1c) is a special case of (3.1b). It is just that under (3.1c)
sometimes we may have stronger conclusions in terms of equalities.

2. Assuming (3.1b), we find that the first condition in (3.1f), i.e., E0u1 >
0, implies (3.1d) because Y0u2 ≤ u1 − E0u1 < u1, and similarly, the
second condition in (3.1f), i.e., F0u2 > 0, implies (3.1e).

3. To understand what E0u1 > 0 means, we note that E0 ≥ 0 and u1 > 0
and thus E0u1 > 0 is equivalent to that no row of E0 is zero. For the
same reason, F0u2 > 0 is same as that no row of F0 is zero.

Later we will further divide (3.1a) into two conditions that may or may
not be satisfied simultaneously:

[E0, Y0]u < u1,(3.1a-1)

[X0, F0]u < u2.(3.1a-2)

One source of such an (SF1) is the numerical solution of an mare:

(3.3a) XDX −AX −XB + C = 0

by the doubling algorithm, where A, B, C, D are matrices whose sizes are
determined by the partitioning

(3.3b) W =

[ m n

m B −D
n −C A

]
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andW is a nonsingularM -matrix or an irreducible singularM -matrix. mare
(3.3) corresponds to an eigenvalue problem (2.1) with

A =

[
Im

−In

] [
B −D
C −A

]
, B = Im+n,

which eventually gives rise to (SF1) after proper transformations [16]. But
we emphasize that not all such (SF1) come from some mare (3.3).

3.1. Solution existence

Our main goal of this subsection is to establish a collection of results as
to when one or both equations in (2.6) have minimal nonnegative solutions,
denoted by Φ and Ψ, respectively, under subsets of conditions listed in (3.1),
specifically either Case I or Case II in (3.2). Whenever they are proved to
exist in what follows, it will also be shown at the same time that

(3.4) ρ(Y0Φ) < 1, ρ(X0Ψ) < 1.

The minimality of Φ and Ψ is conditional in the following sense:

• for (2.6a), Φ is minimal among all nonnegative solutions X of (2.6a)
subject to ρ(Y0X) < 1;

• for (2.6b), Ψ is minimal among all nonnegative solutions Y of (2.6b)
subject to ρ(X0Y ) < 1.

Under (3.4), I − Y0Φ and I −X0Ψ are nonsingular M -matrices, and we can
define

(3.5) M := (I − Y0Φ)
−1E0, N := (I −X0Ψ)−1F0.

Both are nonnegative. We summarize our main results spread among 4 lem-
mas into Theorem 3.1, but we point out that it does not include all detailed
conclusions of the lemmas. Further, Table 3.1 provides a table-view of the
results, where a question mark means nonexistence or an answer yet to be
found.

Theorem 3.1. 1. If (3.1a) holds, then both equations in (2.6) have min-
imal nonnegative solutions, Φ and Ψ, respectively. Moreover

Φu1 < u2, Mu1 < u1, ρ(M ) < 1,(3.6a)

Ψu2 < u1, N u2 < u2, ρ(N ) < 1.(3.6b)
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Table 3.1: Summary of solution existence

condition
(3.1b)

(3.1a) (3.1f) (3.1d) (3.1e) (3.1d) & (3.1e)

Φ to (2.6a) Y Y Y ? Y
Ψ to (2.6b) Y Y ? Y Y

ρ(M )
< 1 ≤ 1 ≤ 1;

?
≤ 1;

< 1 if (3.1a-2) < 1 if (3.1a-2)

ρ(N )
< 1 ≤ 1

?
≤ 1; ≤ 1;
< 1 if (3.1a-1) < 1 if (3.1a-1)

ρ(M ) · ρ(N ) < 1 ≤ 1 ? ? ≤ 1

2. If (3.1b) and (3.1f) hold, then both equations in (2.6) have minimal
nonnegative solutions, Φ and Ψ, respectively. Moreover,

Φu1 ≤ u2, Mu1 ≤ u1, ρ(M ) ≤ 1,(3.7a)

Ψu2 ≤ u1, N u2 ≤ u2, ρ(N ) ≤ 1.(3.7b)

3. If (3.1b) and (3.1d) hold, then (2.6a) has minimal nonnegative solu-
tion Φ. Moreover, we have (3.7a). Additionally, if also (3.1a-2) holds,
i.e., [X0, F0]u < u2, then we have (3.6a).

4. If (3.1b) and (3.1e) hold, then (2.6b) has minimal nonnegative solu-
tion Ψ. Moreover, we have (3.7b). Additionally, if also (3.1a-1) holds,
i.e., [E0, Y0]u < u1, then we have (3.6b).

Later we will see that a sufficient condition to guarantee for convergence
of the doubling algorithm is ρ(M )·ρ(N ) < 1. Extracting from this theorem,
we get the following corollary.

Corollary 3.1. If (3.1a) holds, or if (3.1b), (3.1d), and (3.1e), together
with one of (3.1a-1) and (3.1a-2), hold, then both equations in (2.6) have
minimal nonnegative solutions Φ and Ψ, respectively, for which ρ(M ) ·
ρ(N ) < 1.

For the purpose of establishing this theorem, we design the following
fixed-point iterations

X̂0 = 0, X̂i+1 = X0 + F0X̂i(I − Y0X̂i)
−1E0 for i ≥ 0,(3.8a)

Ŷ0 = 0, Ŷi+1 = Y0 + E0Ŷi(I −X0Ŷi)
−1F0 for i ≥ 0(3.8b)

to solve the equations in (2.6), respectively. The scheme (3.8a) will generate a
sequence {X̂i}∞i=0 intended to approximate a solution of (2.6a), provided that
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all I−Y0X̂i are invertible. Similarly, (3.8b) will generate a sequence {Ŷi}∞i=0

intended to approximate a solution of (2.6b), provided that all I −X0Ŷi are
invertible. We will need auxiliary iterations

F̂0 = F0, F̂i+1 = F0(I − X̂iY0)
−1F̂i for i ≥ 0,(3.9a)

Ê0 = E0, Êi+1 = E0(I − ŶiX0)
−1Êi for i ≥ 0(3.9b)

in our later proofs. It is clear that X̂1, Ŷ1, Ê1, and F̂1 are well defined and
nonnegative because X̂0 = 0 and Ŷ0 = 0. In fact,

(3.10) X̂1 = X0, Ŷ1 = Y0, F̂1 = F 2
0 , Ê1 = E2

0 .

Lemma 3.1. Suppose that (3.1b) and (3.1d) hold, then for all i ≥ 1

(i) I − Y0X̂i−1 and I − X̂i−1Y0 are nonsingular M -matrices;
(ii) X̂i ≥ 0 and F̂i ≥ 0;
(iii) [X̂i, F̂i−1]u ≤ u2;
(iv) [X̂i, F̂i−1]u = u2 under (3.1c), a stronger condition than (3.1b).

As a consequence, 0 = X̂0 ≤ X̂1 ≤ X̂2 ≤ · · · , X̂i is bounded, and the
sequence {X̂i}∞i=0 converges to, say Φ ≥ X0. Furthermore, we have the fol-
lowing statements.

(a) I − Y0Φ and I − ΦY0 are nonsingular M -matrices;
(b) Φ is the minimal nonnegative solution of (2.6a) among all nonnegative

solutions X subject to ρ(Y0X) < 1;
(c) Φu1 ≤ [X0, F0]u ≤ u2 and Mu1 ≤ u1. In particular, ρ(M ) ≤ 1;
(d) If [X0, F0]u<u2, then Φu1<u2 and Mu1<u1 which implies ρ(M )< 1.

Proof. We use the mathematical induction to prove items (i) – (iv). We start
by proving items (i) – (iv) for i = 1 for which both matrices in item (i) are
the identity matrices of apt sizes. Item (ii) holds due to (3.10), item (iii) due
to (3.1b), and item (iv) due to (3.1c).

Suppose items (i) – (iv) hold for i = j. We will have to prove them for
i = j + 1. Since Y0u2 < u1 by (3.1d), we have

Y0X̂ju1 ≤ Y0u2 < u1,

which implies ρ(Y0X̂j) < 1 by Lemma A.1 in the appendix. Hence ρ(Y0X̂j) =

ρ(X̂jY0) < 1, too. Therefore both I − Y0X̂j and I − X̂jY0 are nonsingular

M -matrices. As a consequence, (I − Y0X̂j)
−1 ≥ 0 and (I − X̂jY0)

−1 ≥ 0,
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and X̂j+1 and F̂j+1 are well-defined and nonnegative as well. Next, we note
the following

E0u1 ≤ u1 − Y0u2,(3.11)

X̂j(I − Y0X̂j)
−1 = (I − X̂jY0)

−1X̂j ,(3.12)

X̂j(I − Y0X̂j)
−1Y0 = (I − X̂jY0)

−1X̂jY0

= −I + (I − X̂jY0)
−1,(3.13)

X̂ju1 − u2 ≤ −F̂j−1u2,(3.14)

X0u1 + F0u2 ≤ u2.(3.15)

It follows from (3.8a) that

X̂j+1u1 = X0u1 + F0X̂j(I − Y0X̂j)
−1E0u1

≤ X0u1 + F0X̂j(I − Y0X̂j)
−1(u1 − Y0u2) (by (3.11))

= X0u1 + F0X̂j(I − Y0X̂j)
−1u1 − F0X̂j(I − Y0X̂j)

−1Y0u2.

Upon using (3.12) and (3.13), we get

X̂j+1u1 = X0u1 + F0(I − X̂jY0)
−1X̂ju1 + F0u2 − F0(I − X̂jY0)

−1u2

= X0u1 + F0u2 + F0(I − X̂jY0)
−1(X̂ju1 − u2)

≤ u2 − F0(I − X̂jY0)
−1F̂j−1u2 (by (3.14) and (3.15))

= u2 − F̂ju2,(3.16)

i.e., [X̂j+1, F̂j ]u ≤ u2. Furthermore, in the case of (3.1c), all “less than or
equal to” signs from (3.11) to (3.16) can be replaced by the “equal to” sign,
which implies [X̂j+1, F̂j ]u = u2. This completes the proof of items (i) – (iv).

X̂i is monotonically increasing and bounded because X̂iu1 ≤ u2 for all
i. Thus it has a limit limi→∞ X̂i =: Φ and Φu1 ≤ u2. We have

Y0Φu1 ≤ Y2u2 < u1,

implying ρ(Y0Φ) < 1 by Lemma A.1. Hence ρ(Y0Φ) = ρ(ΦY0) < 1, too.
Therefore both I − Y0Φ and I − ΦY0 are nonsingular M -matrices, proving
item (a).

For item (b), by letting i → ∞ in (3.8a), we see that Φ is a nonnegative
solution of (2.6a). Consider any nonnegative solution Φ̃ of (2.6a) such that
ρ(Y0Φ̃) < 1. we claim that X̂i ≤ Φ̃ for i ≥ 0, which leads to Φ ≤ Φ̃ upon
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letting i → ∞. It is true that X̂0 = 0 ≤ Φ̃. Suppose X̂i ≤ Φ̃ for i = j. Then
I − Y0X̂i ≥ I − Y0Φ̃ which is a nonsingular M -matrix because ρ(Y0Φ̃) < 1.
By Lemma A.3, 0 ≤ (I − Y0X̂i)

−1 ≤ (I − Y0Φ̃)
−1. Therefore using (3.8a),

we conclude that

X̂j+1 ≤ X0 + F0Φ̃(I − Y0Φ̃)
−1E0 = Φ̃,

completing the induction step. Thus item (b) is proved.

For item (c), we note X̂iu1 ≤ u2 by items (iii) and (iv). Letting i → ∞,
we find Φu1 ≤ u2. Hence Y0u2 ≥ Y0Φu1 and

(3.17) E0u1 ≤ u1 − Y0u2 ≤ u1 − Y0Φu1 = (I − Y0Φ)u1

to give Mu1 = (I − Y0Φ)
−1E0u1 ≤ u1. Since Φ is a solution of (2.6a), we

get Φ = X0 + F0ΦM and thus
(3.18)
Φu1 = X0u1 +F0ΦMu1 ≤ X0u1 +F0Φu1 ≤ X0u1 +F0u2 = [X0, F0]u ≤ u1.

Lastly for item (d), suppose [X0, F0]u < u2. Then the first inequality in
(3.17) becomes strict to give Mu1 < u1 which, by Lemma A.1, yields
ρ(M ) < 1, and the last inequality in (3.18) becomes strict to give Φu1<u2.

Lemma 3.2. Suppose that (3.1b) and (3.1e) hold, then for all i ≥ 1

(i) I −X0Ŷi−1 and I − Ŷi−1X0 are nonsingular M -matrices;
(ii) Ŷi ≥ 0 and Êi ≥ 0;
(iii) [Êi, Ŷi−1]u ≤ u1;
(iv) [Êi, Ŷi−1]u = u1 under (3.1c), a stronger condition than (3.1b).

As a consequence, 0 = Ŷ0 ≤ Ŷ1 ≤ Ŷ2 ≤ · · · , Ŷi is bounded, and the sequence
{Ŷi}∞i=0 converges to, say Ψ ≥ Y0. Furthermore, we have the following state-
ments.

(a) I −X0Ψ and I −ΨX0 are nonsingular M -matrices;
(b) Ψ is the minimal nonnegative solution of (2.6b) among all nonnegative

solutions Y subject to ρ(X0Y ) < 1;
(c) Ψu2 ≤ [E0, Y0]u ≤ u1 and N u2 ≤ u2. In particular, ρ(N ) ≤ 1;
(d) If, also, [E0, Y0]u < u1, then Ψu2 < u1 and N u2 < u2 which implies

ρ(N ) < 1.

Proof. The proof is similar to that of Lemma 3.1.
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Lemma 3.3. Suppose1 (3.1a) holds. Then all claims of both Lemmas 3.1
and 3.2, except both items (iv) there, are valid.

Proof. The inequality (3.1a) implies (3.1b), (3.1d), and (3.1e), but not (3.1c).
Hence this lemma is a corollary of Lemmas 3.1 and 3.2.

Lemma 3.4. Suppose that (3.1b) and (3.1f) hold, then for all i ≥ 1

(i) I − Y0X̂i−1 and I − X̂i−1Y0 are nonsingular M -matrices;
(ii) X̂i ≥ 0 and F̂i ≥ 0;
(iii) F̂iu2 > 0 if F0u2 > 0;
(iv) [X̂i, F̂i−1]u ≤ u2;
(v) [X̂i, F̂i−1]u = u2 under (3.1c), a stronger condition than (3.1b);
(vi) I −X0Ŷi−1 and I − Ŷi−1X0 are nonsingular M -matrices;
(vii) Ŷi ≥ 0 and Êi ≥ 0;
(viii) Êiu2 > 0 if E0u1 > 0;
(ix) [Êi−1, Ŷi]u ≤ u1;
(x) [Êi−1, Ŷi]u = u2 under (3.1c), a stronger condition than (3.1b).

As a consequence, 0 = X̂0 ≤ X̂1 ≤ X̂2 ≤ · · · and 0 = Ŷ0 ≤ Ŷ1 ≤ Ŷ2 ≤ · · · ,
X̂i and Ŷi are bounded, and the sequence {X̂i}∞i=0 and {Ŷi}∞i=0 converge to,
say Φ ≥ X0 and Ψ ≥ Y0, respectively. Items (a) – (d) of both Lemmas 3.1
and 3.2 remain valid.

Proof. We use the mathematical induction to prove items (i) – (v). Items
(vi) – (x) can be proved in the same way.

For i = 1, X̂0 = 0 and F̂0 = F0. Items (i) – (v) are evident by assumption
(3.1b) or more strongly (3.1c), and (3.1f), and F̂1 = F 2

0 .
Suppose items (i) – (v) hold for i = j. We will have to prove them for

i = j + 1. If F0u2 > 0, then F̂ju2 > 0 and thus X̂ju1 ≤ u2 − F̂ju2 < u2 to
give

X̂jY0u2 ≤ X̂ju1 < u2

which implies ρ(X̂jY0) < 1 by Lemma A.1. Hence we have ρ(Y0X̂j) =

ρ(X̂jY0) < 1. Therefore both I − Y0X̂j and I − X̂jY0 are nonsingular M -

matrices. As a consequence, (I − Y0X̂j)
−1 ≥ 0 and (I − X̂jY0)

−1 ≥ 0, and

X̂j+1 and F̂j+1 are well-defined and nonnegative. Also F̂j+1u2 > 0 in the
case F0u2 > 0. Next, we note that the reasonings between (3.11) and (3.16)
remain valid, and thus [X̂j+1, F̂j ]u ≤ u2. Furthermore, in the case of (3.1c),
all “less than or equal to” signs as the results of directly using (3.11) can

1This implies, in particular, that the conditions in both items (d) of Lemmas 3.1
and 3.2 are satisfied.
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be replaced by the “equal to” sign, which implies [X̂j+1, F̂j ]u = u2. This
completes the proof of items (i) – (v).

3.2. Eigenvalue problem for A0 − λB0

Any solution X to (2.6a) decouples the eigenvalue problem for A0 − λB0.
In fact, we will have (2.2) with M = (I − Y0X)−1E0 and

(3.19) A0

[
Im 0
X In

] [
Im

F0

]
= B0

[
Im 0
X In

] [
M −Y0

I −XY0

]
.

Consequently, the eigenvalues of A0 − λB0 is the multiset union of those of

(3.20) M = (I − Y0X)−1E0

and the reciprocals of those of F0(I −XY0)
−1. In particular, the infinite is

an eigenvalue of A0 − λB0 if F0 is singular.

When we have a solution pair (X,Y ) to both equations in (2.6) such
that I −XY is nonsingular, it can be verified that

(3.21) A0

[
Im Y
X In

] [
Im

N

]
= B0

[
Im Y
X In

] [
M

In

]
,

where M is the same as (3.20) and

(3.22) N = (I −X0Y )−1F0.

Immediately, we conclude that the eigenvalues of A0 − λB0 is the multiset
union of those of M and the reciprocals of those of N .

3.3. Convergence of doubling algorithm

Now consider running Algorithm 2.1 with nonnegative matricesX0, Y0, E0, F0

as inputs. The next theorem says, among many others, the iteration will not
breakdown, i.e., all inverse exists, under assumption of (3.1a), or (3.1b) with
(3.1f). We point out again that (3.1c) is considered a special case of (3.1b).

Theorem 3.2. Suppose that in Algorithm 2.1, input matrices X0, Y0, E0, F0

are nonnegative matrices and satisfy (3.1a), or (3.1b) with (3.1f). Then
Algorithm 2.1 does not breakdown, i.e., all inverses exist during the iterative
process, and the following statements hold for i ≥ 0.
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(a) All Xi, Yi, Ei, Fi are nonnegative;
(b) All I −XiYi and I − YiXi are nonsingular M -matrices;
(c) If E0u1 > 0, then Eiu1 > 0;
(d) If F0u2 > 0, then Fiu2 > 0;
(e) We have

(3.23)

[
Ei Yi
Xi Fi

] [
u1
u2

]
≤

[
u1
u2

]
,

where the inequality is strict under (3.1a) or an identity under (3.1c).

As a consequence of items (a) and (b) and the recursive formulas in (2.5),
we conclude that 0 ≤ X0 ≤ X1 ≤ · · · , 0 ≤ Y0 ≤ Y1 ≤ · · · , and Xi and Yi are
bounded.

Proof. We will prove items (a) – (e) by induction. For i = 0, only item (b)
needs a proof. It follows from (3.1a) that

(3.24) Y0u2 < u1 − E0u1 ≤ u1, X0u1 < u2 − F0u2 ≤ u2,

or from (3.1b) that

(3.25) Y0u2 ≤ u1 − E0u1 ≤ u1, X0u1 ≤ u2 − F0u2 ≤ u2.

If E0u1 > 0 then the first inequality in (3.25) can be improved to Y0u2 <
u1; if F0u2 > 0, then the second inequality in (3.25) can be improved to
X0u1 < u2. Hence under (3.1a) or under (3.1b) with (3.1f), we have either
Y0u2 < u1 or X0u1 < u2 or both. Consider now Y0u2 < u1. For any nonzero
row eTj X0 of X0, we have

eTj X0(u1 − Y0u2) > 0 ⇒ eTj X0Y0u2 < eTj X0u1 ≤ eTj u2.

Since for any zero row eTj X0 = 0 of X0, if any, we clearly have eTj X0Y0u2 =

0 < eTj u2. Hence X0Y0u2 < u2 which implies ρ(X0Y0) < 1 by Lemma A.1
and I − X0Y0 is a nonsingular M -matrix. Since ρ(Y0X0) = ρ(X0Y0) < 1,
I − Y0X0 is a nonsingular M -matrix, too. The case when X0u1 < u2 can be
dealt with in the same way.

Suppose now all the claims are true for i ≤ j. Consider i = j+1. Item (a)
for i = j+1 is rather straightforward upon using items (a) and (b) for i = j
and the recursive formulas in (2.5). To prove items (c) and (d) for i = j+1,
we note, by the inductive assumption, either Eju1 > 0, i.e., no row of Ej is
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zero, or Fju2 > 0, i.e., no row of Fj is zero. Since also (I −XjYj)
−1 ≥ 0 and

(I − YjXj)
−1 ≥ 0 and both have no zero rows, we have

Ej+1u1 = Ej(Im − YjXj)
−1Eju1 > 0 if Eju1 > 0;

Fj+1u2 = Fj(Im −XjYj)
−1Fju2 > 0 if Fju2 > 0.

This proves items (c) and (d) for i = j + 1. Next, we prove item (e) for
i = j+1. By the inductive assumption, I−XjYj and I−YjXj are nonsingular

M -matrices, implying that

[
Im −Yj

−Xj In

]
is also a nonsingular M -matrix

because

(3.26)

[
Im −Yj

−Xj In

]−1

=

[
(I − YjXj)

−1 Yj(I −XjYj)
−1

(I −XjYj)
−1Xj (I −XjYj)

−1

]
≥ 0.

By the induction hypothesis, we have

[
Ej Yj
Xj Fj

] [
u1
u2

]
≤

[
u1
u2

]
⇒

[
Ej 0
0 Fj

] [
u1
u2

]
≤

(
I −

[
0 Yj
Xj 0

])[
u1
u2

]
.

(3.27)

Pre-multiply both sides of the last inequality by the nonnegative matrix in
(3.26) to get

(3.28)

[
Im −Yj

−Xj In

]−1 [
Ej 0
0 Fj

] [
u1
u2

]
≤

[
u1
u2

]
.

Combining all the equations in (2.5) gives

(3.29)

[
Ej+1 Yj+1

Xj+1 Fj+1

]
=

[
0 Yj
Xj 0

]
+

[
Ej 0
0 Fj

] [
Im −Yj
−Xj In

]−1 [
Ej 0
0 Fj

]
.

Now using (3.28), we have[
Ej+1 Yj+1

Xj+1 Fj+1

] [
u1
u2

]
=

[
0 Yj
Xj 0

] [
u1
u2

]

+

[
Ej 0
0 Fj

] [
Im −Yj

−Xj In

]−1 [
Ej 0
0 Fj

] [
u1
u2

]

≤
[
0 Yj
Xj 0

] [
u1
u2

]
+

[
Ej 0
0 Fj

] [
u1
u2

]
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=

[
Ej Yj
Xj Fj

] [
u1
u2

]

≤
[
u1
u2

]
,(3.30)

as expected. Further, it can be checked that all inequalities from (3.27) to
(3.30) become equalities under (3.1c), and all inequalities in (3.27), (3.28),
and (3.30) are strict under (3.1a).

Lastly for item (b) for i = j + 1, in the same way as above for proving
both I−X0Y0 and I−Y0X0 are nonsingular M -matrices, we can prove both
Xj+1Yj+1u2 < u2 and Yj+1Xj+1u1 < u1 in the case of (3.1a), or, either
Xj+1Yj+1u2 < u2 or Yj+1Xj+1u1 < u1, depending on either Ej+1u1 > 0 or
Fj+1u2 > 0 in the case of (3.1b) with (3.1f). Consequently, ρ(Yj+1Xj+1) =
ρ(Xj+1Yj+1) < 1 and I −Xj+1Yj+1 and I − Yj+1Xj+1 are nonsingular M -
matrices.

The induction proof of items (a) – (e) is completed.

Previously in Theorem 3.1 and Table 3.1, we summarized various cases
for which both Φ and Ψ provably exist and at the same time ρ(M ) ·ρ(N ) ≤
1. These cases contain those covered by Theorem 3.2 that guarantees Algo-
rithm 2.1 executes without any breakdown. Next we cite [16, Theorem 3.18]
to our interest in this section regarding the convergence of the doubling
algorithm in Algorithm 2.1.

Theorem 3.3 ([16]). Suppose that there are solutions X = Φ and Y = Ψ to
the equations in (2.6) such that ρ(M ) · ρ(N ) < 1, and suppose that Algo-
rithm 2.1 executes without any breakdown, i.e., all the inverses exist during
the doubling iterations. Then Xi and Yi converge to Φ and Ψ quadratically,
and moreover,

lim sup
i→∞

‖Xi − Φ‖1/2i ≤ ρ(M ) · ρ(N ), lim sup
i→∞

‖Yi −Ψ‖1/2i ≤ ρ(M ) · ρ(N ),

(3.31a)

lim sup
i→∞

‖Ei‖1/2
i ≤ ρ(M ), lim sup

i→∞
‖Fi‖1/2

i ≤ ρ(N ).

(3.31b)

In this theorem, there are two major requirements: 1) the existence of
solutions Φ and Ψ such that ρ(M )·ρ(N ) < 1, and 2) Algorithm 2.1 executes
without any breakdown. The first requirement is answered in Corollary 3.1,
while the second requirement is answered by Theorem 3.2.
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Convergence of the sequences generated by Algorithm 2.1 is also possible

when ρ(M ) ·ρ(N ) = 1, but additional conditions are needed. The case falls

into the critical case. The reader is referred to [16, Theorem 3.26] for more

detail.

3.4. Highly accurate implementation

The ideas in [20, 19, 21, 26] can be straightforwardly adopted to yield a

highly accurate implementation of Algorithm 2.1 to solve the minimal non-

negative solutions Φ and Ψ, if exist, to the equations in (2.6) with high

relative entrywise accuracy, provided

• input matrices X0, Y0, E0, F0 are nonnegative and have high
relative entrywise accuracy;

• there is a positive vector u ≡
[

m u1
n u2

]
> 0, such that

v := u −
[
E0 Y0
X0 F0

]
u ≥ 0 evaluated to v̂ ≡

[
m v̂1
n v̂2

]
≈ v

with high relative entrywise accuracy.

(3.32)

For completeness, we detail the implementation in Algorithm 3.1. There are

a couple of explanations to make. In step 5, the concept of triplet representa-

tion is mentioned. It was introduced in [1, 2] as an alternative representation

of an M -matrix, say A, as follows:

(3.33) A = {offdiag(A),p, q},

where offdiag(A) ≥ 0 is the opposite of the off-diagonal part of A, p > 0

and q = Ap ≥ 0. Numerically, Alfa, Xue, and Ye [1] presented the GTH-

like algorithm that can compute the solution to Ax = b ≥ 0 with high

relative entrywise accuracy if a highly relative entrywise accurate triplet

representation (3.33) is provided. To save space, we will not give the detail

of the GTH-like algorithm here, but refer the reader to [1, 16].
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Algorithm 3.1 Highly Accurate ADDA (accADDA)

Input: nonnegative X0, Y0, E0, F0, and vectors u and v̂, as described in (3.32);
Output: the minimal nonnegative solutions Φ (and Ψ if needed).

1: w
(0)
1 = v̂1, w

(0)
2 = v̂2, i = −1;

2: repeat
3: i = i+ 1;
4: compute

v
(i)
1 = w

(i)
1 + Eiu1 + Yi(Fiu2 + w

(i)
2 ),

v
(i)
2 = w

(i)
2 + Fiu2 +Xi(Eiu1 + w

(i)
1 );

5: generate the triplet representations:

Im − YiXi = {offdiag(Im − YiXi), u1, v
(i)
1 },

In −XiYi = {offdiag(In −XiYi), u2, v
(i)
2 };

6: compute Ei+1, Fi+1, Xi+1 and Yi+1 by (2.5) with the help of the GTH-like
algorithm made possible by the triplet representations;

7: compute

w
(i+1)
1 = w

(i)
1 + Ei(Im − YiXi)

−1[w
(i)
1 + Yiw

(i)
2 ],

w
(i+1)
2 = w

(i)
2 + Fi(In −XiYi)

−1[Xiw
(i)
1 + w

(i)
2 ]

(reuse Ei(Im − YiXi)
−1 and Fi(In − XiYi)

−1 that appear in implementing
line 6 to reduce work);

8: until convergence;
9: return the last Xi and Yi as approximations to Φ and Ψ, respectively.

4. Symmetric case

The symmetric case of (SF1) refers to one with m = n and

F0 = EH
0 , X0 = XH

0 , Y0 = Y H
0 ,

where ( · )H takes the complex conjugate transpose of a matrix. Now (2.6a)
takes the form

X = X0 + EH
0 X(I − Y0X)−1E0.

This is exactly in one of the forms of dare for which X0 � 0 (positive
semidefinite), Y0 � 0 (negative semidefinite) [16, chapter 4]. In the dare
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case, there is a classical theorem regarding its solution existence (see, e.g.,

[16, Theorem 4.3]), relying on certain stabilizable and detectable properties

from the optimal control theory [27]. It is not clear what other conditions,

besides those in dare, to impose for solution existence in general.

5. Concluding remarks

In [16], the authors streamlined the applications of doubling algorithms to

solve certain types of nonlinear matrix equations in association with the

eigenspaces of regular matrix pencils. In doing so, they formally formulated

two standard forms into which the regular matrix pencils must be trans-

formed first, if they are not already in, before a doubling iterative procedure

can be applied. This is especially true for nonlinear matrix equations cur-

rently solved through the first standard form (SF1), such as dare, care,

mare, and the qbd equation [5]. In general, (SF1) corresponds to a nonlin-

ear matrix equation that may not have any trace of its source equation, and

it is of interest in its own right.

In this paper, we launched a study on the nonlinear matrix equation

associated directly with (SF1) under the assumption that all involved con-

stant matrices are nonnegative, among others. Various results analogously

to the ones for mare are proved to still hold. But still there are unanswered

questions that warrant further investigation. For example, the minimality of

the nonnegative solutions Φ and Ψ is conditional, e.g., Φ is minimal among

all nonnegative solutions X of (2.6a) subject to ρ(Y0X) < 1, as we pointed

out at the beginning of subsection 3.1. Naturally, we would like to know if

Φ is minimal among all nonnegative solutions X of (2.6a). Another ques-

tion is about the critical case when ρ(M ) · ρ(N ) = 1. We have practically

nothing for the situation in the general case of SF1. Previously for care,

dare, mare, and the qbd equation, we do have knowledge on the Jordan

canonical form of the associated matrix pencil A − λB that allows us to

tell the convergence behavior of the doubling algorithm [5, 16].

So far, we have not mentioned anything about the second standard form

(SF2) at all. There is a reason for that. In fact, in [16], there is a wealth of

studies on the nonlinear matrix equations solved by the doubling algorithm

on SF2, and these equations can be directly translated from SF2, without

going through any nontrivial transformation as we have to do for care,

mare, and the qbd equation.
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Appendix A. Preliminaries on M -matrices

In this appendix, we collect some well-known results on nonnegative matrices
and M -matrices that are relevant to our arguments in this paper. They can
be found in, e.g., [4, 9, 24].

Lemma A.1 ([4, Theorem 1.11]). Let A ∈ Rn×n be nonnegative and u ∈ Rn

be positive, i.e., A ≥ 0 and u > 0.

(a) If Au ≤ u, then ρ(A) ≤ 1.
(b) If Au < u, then ρ(A) < 1.

A ∈ Rn×n is called a Z-matrix if A(i,j) ≤ 0 for all i = j [4, p.284].
Any Z-matrix A can be written as sI −N with N ≥ 0, and it is called an
M -matrix if s ≥ ρ(N), a singular M -matrix if s = ρ(N), and a nonsingular
M -matrix if s > ρ(N).

Lemma A.2. For a Z-matrix A, the following are equivalent:

(a) A is a nonsingular M -matrix;
(b) A−1 ≥ 0;
(c) Au > 0 for some vector u > 0;
(d) All eigenvalues of A have positive real parts.

Lemma A.3. Let A ∈ Rn×n be a nonsingular M -matrix, B ∈ Rn×n a Z-
matrix. If A ≤ B, then B is also a nonsingular M -matrix and, moreover,
0 ≤ B−1 ≤ A−1.
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