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Abstract
Objective.The quantitative and routine imaging capabilities of cone-beamCT (CBCT) are hindered
from clinical applications due to the severe shading artifacts of scatter contamination. The scatter
correctionmethods proposed in the literature only consider the anatomy of the scanned objects while
disregarding the impact of incident x-ray energy spectra. Themultiple-spectralmodel is in urgent
need for CBCT scatter estimation.Approach. In this work, we incorporate themultiple spectral
diagnosticmultidetector CT labels into the pixel-to-pixel (Pix2pix)GAN to estimate accurate scatter
distributions fromCBCTprojections acquired at various imaging volume sizes and x-ray energy
spectra. The Pix2pixGAN combines the residual network as the generator and the PatchGANas the
discriminator to construct the correspondence between the scatter-contaminated projection and
scatter distribution. The network architectures and loss function of Pix2pixGANare optimized to
achieve the best performance on projection-to-scatter transition.Results.TheCBCTdata of a head
phantomand abdominal patients are applied to test the performance of the proposedmethod. The
error of the correctedCBCT image using the proposedmethod is reduced fromover 200HU to be
around 20HU in both phantomand patient studies. Themean structural similarity index of the CT
image is improved from0.2 to around 0.9 after scatter correction using the proposedmethod
comparedwith theMC-simulationmethod, which indicates a high similarity of the anatomy in the
images before and after the proposed correction. The proposedmethod achieves higher accuracy of
scatter estimation than using the Pix2pixGANwith theU-net generator. Significance.The proposed
scheme is an effective solution to themultiple spectral CBCT scatter correction. The scatter-correction
software using the proposedmodel will be available at: https://github.com/YangkangJiang/Cone-
beam-CT-scatter-correction-tool.

1. Introduction

Cone-beamCT (CBCT) occupies a dominant position in the image guidance in radiation therapy and surgery.
CBCT inherits the characteristics of high-definition structural imaging capability from conventionalmultiple
detectors-based diagnosticmultidetector CT (MDCT) (de la Zerda et al 2007). It further provides the onboard
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and intraoperative imaging functions to accurately supply the location andmorphology of the targeted regions
of interest (ROIs) during treatment (Arisan et al 2013). CBCT is thus ubiquitously applied for routine clinical
use, for example, intraoperative patient setup (Rafferty et al 2006), daily or weekly patient position verification
(Haworth et al 2009), treatmentmonitoring (Pouliot 2007), tumor positioning (Nickenig and Eitner 2007), etc.
CBCThas been further applied in advanced clinical applications, including online target delineation (Altorjai
et al 2012), dose accumulation and onboard treatment planning (McDermott et al 2008), and diagnosis decision
making (Mota deAlmeida et al 2014). CBCT can obtain the three-dimensional (3D) volumetric information
efficiently with a low x-ray irradiation dose. Nevertheless, the image quality of CBCT is degraded by the shading
and/or streaking artifacts due to the scatter contamination in the large cone-angle illumination procedure (Niu
andZhu 2010).When complex anatomical structures are involved inCBCT imaging, these structures
significantly deteriorate the image quality due to their complicatedmodulation on the scatter signals (Jain et al
2019). These issues place restrictions onCBCT imaging for qualitative use in the clinic.

Several algorithms are developed in the literature to correct for the severe artifacts inCBCTdue to scatter
contamination and can be divided into twomajor categories: learning and non-learning-basedmethods
according towhether learning techniques are applied in the process. Non-learning-basedmethods can be
separated into pre- and post-processing categories according towhen the scatter signal is suppressed in the
measurement. The pre-processingmethods prevent the scatter photons from reaching the detector which
include the air gap and anti-scatter grid schemes (Sorenson and Floch 1985, Kyriakou andKalender 2007). The
pre-processingmethods have themajor shortcoming of increasing the x-ray dose received by the patient to
maintain the appropriate signal-to-noise ratio of the projection data (Yang et al 2017). The post-processing
techniques aremore effective than pre-processingmethods in that they incorporate the scatter correction at the
systematic level and can be divided intomeasurement-based and calculation-basedmethods. In the
measurement-basedmethods, the primary beam-blocker array is inserted between the x-ray source and the
object to estimate the scatter samples in the blocked projection area (Niu andZhu 2011). The primary
modulationmethods are developed via the low-frequency scatter extraction from the Fourier domain (Zhu et al
2006). Thesemethods require hardwaremodificationwhichmay not be readily achievable in clinical
equipment. The calculation-basedmethods include theMonte Carlo (MC) basedmethods and the analytical
scatter kernel-basedmethods. TheMCbasedmethod achieves accurate scatter estimation based on the accurate
modeling of theCBCT imaging systems and simulation of the potential physical interaction between photons
andmatter while at the expense of heavy computational burden (He et al 2016). To combat the low
computational efficiency, analytical scatter kernel-basedmethods provide a faster solution using the
convolutional operations tomimic the scattering process between the primary beam and imaged object (Baer
andKachelrieß 2012, Zhao et al 2016). It workswell for relatively uniformobjects whilemay not function for
objects with heterogeneous inner structures because of the nonlinear scattering process (Nomura et al 2020).
The correctedCBCT images still have residual artifacts.

Learning-basedmethods can acquire the complicated scatter distribution by feature extraction and
representation learning. The nonlinear scattering process can be approached using the deep convolutional
neural network (CNN) to overcome the shortcomings of the aforementioned non-learningmethods (Nomura
et al 2019). The learningmethods of scatter correction can be performed in threeways based on different
working domains, i.e. direct image-to-imagemapping, projection-to-projectionmapping and projection-to-
scatter transition. Different from scatter correctionmethods performed in the projection domain, the image-to-
imagemapping directly investigates the compensationmap from theCBCT imagewith scatter-induced artifacts
to the high-quality synthetic CT images (Harms et al 2019, Jiang et al 2019). In previous work, we proposed an
image-domain scheme for CBCT shading correction using a deep residual CNN (DRCNN) combining aU-net
based deepCNNand the residual of shading compensation. DRCNN trains themapping function from the
uncorrectedCBCT to the high-quality CBCT image corrected using theMC simulationmethod. A drawback of
thismethod is that theCBCT images in both training and testing datasets should be consistent in anatomy due to
the supervised learning nature ofDRCNN (Jiang et al 2019). To alleviate the constraint of consistent anatomy
requirement inDRCNN, the cycle generative adversarial network (GAN) is integratedwith residual block to
investigate themapping function fromCBCT to its counterpart, e.g. the paired planningCT (Harms et al 2019).
TheGANcan obtain the high-quality samples since the parameter updating in the generator is driven by the
backpropagation of the discriminator instead of the data samples (Goodfellow et al 2014, Zhang et al 2021). The
cycleGAN enforces the inverse transformation and consistency to allow for higher accuracy learning (Harms
et al 2019). Nevertheless, inconsistent anatomy training in cycleGANmay alter the anatomy of corrected CBCT
images, leading to doubtful results (Harms et al 2019).

Tominimize the anatomical structure deformation, David CHansen et al proposed aU-net based network
to study the transformation fromuncorrected to scatter-corrected CBCTprojection data (Hansen et al 2018). To
generate the labels in the training dataset, the scatter distribution is obtained by the difference between the
forward projection of the registered planningCT and the uncorrectedCBCTprojection. The low-pass filtration
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is applied to the difference to eliminate the registration error (Niu et al 2010). The projection domainmapping
scheme alleviates the anatomy deformation issue in the image domain since the structural variation is not as
significant as that in the image domain.Nevertheless, the anatomical structure deformation is difficult to be
eliminated due to the small number of patients in the training dataset which cannot cover the anatomical
variations found in the patient population (Hansen et al 2018).

To tackle the inconsistent anatomy issue, the projection-to-scatter transition is proposed to estimate the
scatter signal instead of the projection data. The estimated scatter signal is subtracted from the raw projection to
correct for the scatter contaminationwithout altering the anatomical structure in the projection. For example,
YusukeNomura et al applied theU-net to obtain themapping frommeasuredCBCTprojection to the
corresponding scatter distribution generated usingMC simulation in nonanthropomorphic phantoms
(Nomura et al 2019). This scheme avoids the inconsistent anatomy issue of indirectmappingmethods since
scatter signal is dominantly low-frequency and places little impact on the relatively high-frequency anatomical
structures. In this study, we apply the projection-to-scatter transition tomaintain the anatomy in theCBCT
image after scatter correction.

The abovemethods only consider the anatomy of the scanned object to construct a scatter correctionmodel.
The x-ray energy spectrum is anothermajor parameter affecting the estimated scatter distribution. In the
research performed byAlexandrMalusek et al the scatter-to-primary ratio (SPR) of x-rays at 30 keV is 2.42 times
more than that at 60 keV and 3.24 timesmore than that at 90 keV for a head-size object. For a body-size object,
the SPR at 30 keV is twicemore than that at 60 keV and 2.65 timesmore than that at 90 keV (Malusek et al 2003).
The difference of SPRs is decreasedwhen an anti-scatter grid is installedwhich is not a necessary component in
all the x-rayCBCT systemswith an adjustable source-to-detector distance (SID) and source-to-axis distance
(SAD) including theC-armCBCT (Orth et al 2008). Therefore, themultiple spectralmodel is in an urgent need
for CBCT scatter estimation.

The energy spectra of different CBCT imaging systems vary in various clinical scenarios. Even the same
devicemay performdifferent scanning protocols on the body parts of the patient. For example, the peak voltage
of the x-ray source is 100 kVp in head scan and 125 kVp in abdominal scan inVarian on-board imager (OBI)
system (Palm et al 2010). The tube voltage is 90 kVp in the dental CBCT system (Pauwels et al 2015) and 110 kVp
in theC-armCBCT system (Sheth et al 2020). It would be a very complicated and tedious task to design amodel
for improvingCBCT image quality in each scanmode of the clinical CBCT imaging system. Themultiple
spectralmodel for CBCT image quality improvement is an innovation that can be applied as a general solution to
scatter correction in different scanningmodes of CBCT imaging systems.

In this study, we aim to estimate accurate scatter distributions fromCBCTprojections acquired at various
imaging volume sizes and x-ray energy spectra to achieve the generalized image quality improvement and
maintain the anatomy intact.We apply the pixel-to-pixel (Pix2pix)GAN to achieve the generalized scatter
estimation since the Pix2pixGAN improves the capability of the original GAN to achieve pixel-wise image-to-
image transition by the correspondence construction between the sample and label. The network architectures
and loss function of Pix2pixGANare optimized to achieve the best performance on projection-to-scatter
transition. Abdominal and head patient CT data are incorporated to generate the training dataset. The trained
projection to scattermappingmodel is applied to theCBCTprojection data of various anatomy and x-ray energy
spectra to estimate the scatter distributions. Both head phantom and abdominal patient CBCTprojections
acquired at different energy spectra are included in the testing process.

2.Methods andmaterials

2.1. Concept andworkflow
Any scatter estimationmethod that does not rely on a learning scheme can be applied to generate the training
dataset such as theMC-based and the analytical scatter kernel-basedmethods. TheMDCTdata are used as one
embodiment of implementing the framework in this study since scatter-induced artifacts rarely exist in the
MDCT images due to its well-designed scatter suppression schemes in the past four decades (Niu et al 2010, Li
et al 2019).

Figure 1 shows theworkflowof the proposed scatter correctionmethod. The part framed by the dashed line
indicates the process of training dataset generation andmodel training. The forward projection algorithm and
MC simulation are performed on themultiple spectralMDCT images to generate the scatter-free projection
data and scatter signal, respectively. The scatter signal is added into the scatter-free projection tomimic the
scatter-contaminated projectionwith a similar SPR ofmeasuredCBCTprojection. Themimicked scatter-
contaminated projection and scatter signal are used as the sample and label respectively in the Pix2pixGAN for
the training of the scatter estimationmodel. The trainedmodel is applied to theCBCTprojection data to predict
the scatter distribution to achieve theCBCT scatter correction.
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2.2. Network architecture andmodel training
The original GAN losses the ability of user control since it cannot use the input image as a condition and learn
themapping from the input image to the output image since it generates the images fromprior noise
distribution (Mirza andOsindero 2014). Due to this loss of user control using the original GAN (Isola et al 2017),
the Pix2pixGAN is applied to train the proposedmodel to construct the correspondence between the scatter-
contaminated projection and scatter distribution. The Pix2pixGAN incorporates the data samples of the
generator into the discriminator to decide the real or fake data pair (Isola et al 2017). The discriminator in
Pix2pixGANdiscriminates the real or fake estimation of a specific patch in the input imagewhich is referred to
as receptive field (RF) hereafter. As shown infigure 2(a), generator G produces the approximate scatter
distribution ( )G It from the scatter-contaminated projection I .t It and ( )G It are combined into the
discriminator D as the data sample. The data pair of It and the real scatter signal label Is are used as the data label.
The discriminator acts as a dual classifier of an image to distinguish the correct data pair from the incorrect ones.
The discriminated results are combinedwith the generator to construct the loss function.

2.2.1. Generator network
The generator G shown infigure 2(b) transforms the scatter-contaminated projection It into the scatter signal

( )G It to approximate the label data I .s The symmetric encoder-decoder frameworkwith the residual block is
used to build our generator due to its well-behaved end-to-end learning capability to implement image
translation (Jian et al 2019). The encoder part is composed of three convolutional layers and six residual blocks
to balance the computation efficiency and training accuracy. The role of the convolutional layer is to extract
features that contain all the textural and structural information of the input raw projection data (Krizhevsky et al
2017). The legend of the parameters is included infigure 2(e). The dimensions of the output image of
convolutional (conv) or transposed convolutional (tconv) layer are calculated as Karpathy (2016):

( ) ( )/= - + +N W K P s2 1, 1conv

( ) ( )= - ´ - + +N W s P K P1 2 , 2tconv out

whereW is thewidth of the input image, K is thewidth of the convolution kernel, P is the number of zeros
padded into one end of the input, and s is the stride of the convolutional operation. Pout is the number of
additional zeros padded into one end of the output of the tconv operation to ensure the dimensions of the tconv
output are the same as that of the conv input and is set as one in this study. nin and nout are the number of
channels of input and output data.

Figure 1.Theworkflowof the proposed scheme using the Pix2pixGAN.
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Thefirst layer applies a ´7 7 convolution kernel, the stride of one and three padded zeros, to extract a
featuremapwith the same dimension as the input data. The second and third layers apply a ´3 3 convolution
kernel, the stride of two and one zero padded to one end of the input, to performdown-sampling operations and
output the half-size featuremaps. To improve the training accuracywithout gradient vanishing and network
degradation problems, six residual blocks whose structure is shown infigure 2(d) are added to the encoder part
to increase the depth of the network. The gradient calculated from the output of the upper-level residual block is

Figure 2.The architecture of the proposed Pix2pixGAN is composed of: (a) the training process of the proposed network for scatter
estimation, (b1) and (c1) the generator and discriminator network architecture, and (d) the residual block used in the ResNet
generator. The ‘conv’ and ‘tconv’ indicate the convolutional and transposed convolutional layer, respectively. (b2) and (c2) are the
activation dimension andRFof the output of each convolutional layer for the generator and discriminator, respectively. (e) is the
legend of the ‘conv’ and ‘tconv’ layers. The BN indicates the BatchNormalization andRF indicates the receptive field.
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propagated to the input of the lower level with a shortcut connection to alleviate the gradient vanishing issue (He
et al 2016). The two ´3 3 convolutional layers with the stride of one are used to ensure the consistent
dimension of the input and output features and achieve the highest accuracy due to the reduced complexity
(Zagoruyko andKomodakis 2016). To obtain the ( )G It with the same dimension as the input I ,t the decoder part
applies a symmetric transposed convolution after the six residual blocks in the encoder part. The transposed
convolutional layer has the same kernel dimension and stride as the symmetrical convolutional layer to
reconstruct the generated scatter signal from extracted intermediate features using an up-sampling operation.
Each convolutional or transposed convolutional layer is followed by spatial batch normalization (BN) and a
rectified linear activation function (ReLU) to alleviate the gradient vanishing issue and increase training stability
(Zagoruyko andKomodakis 2016). Thefinal convolutional layer applies the tanh function as the activation
function since the output range of the tanh function is (−1 1)which is readily convertible into pixel values after
affine transformation (Karlik andOlgac 2011).

2.2.2. Discriminator network
Figure 2(c) shows the network architecture of the PatchGANwhich is used as the discriminator in Pix2pixGAN
(Isola et al 2017). Comparedwith an ordinary discriminatormapping the input into a scaler using original GAN,
PatchGANmaps the input to amatrix, the entry of which represents the probability of real patch estimation in
the RF (Zhao et al 2019). The average value of thematrix elements is defined as thefinal output of the
discriminator, indicating the overall probability of real sample estimation. PatchGANused in the proposed
method includes five 4×4 convolutional layers tomap the input into a 30×30 probabilitymatrix. The RF
dimensions of each entry of thematrix are 4×4, 7×7, 16×16 and 34×34 on the inputs from the
penultimate layer to the first layer, respectively. The discriminator finally classifies whether the ´70 70 patch in
the input image is real or not.

The dimension of the RFwithin each layer is calculated as:

( ) ( )= - ´ ++RF RF s K1 , 3i i i i1

where RFi is the dimension of the RF, si is the stride and Ki is the kernel width of the ith convolutional layer. The
dimension of the RFwithin the final layer is the same as the kernel of thefinal convolutional layer (Araujo et al
2019). LeakyReLU is used as the activation function in PatchGAN since the LeakyReLU is less likely to lose
information thanReLU.Due to the small number of layers in the discriminator, the possible increase of network
complexity using LeakyReLUmay not lead to a significant computational burden (Xu et al 2015).

2.2.3. Label image generation
Weapply the pairedmimicked scatter-contaminated projections and scatter signals generated usingMDCT as
the sample and label in the training dataset to achieve high training performance sinceMDCT is of better image
quality and fewer artifacts comparedwithCBCT.

A limited number of photons are used in theMC simulation due to the limitations of computermemory and
the calculation time. The noise level is too high in the projection data directly obtained fromMC simulation
using the limited number of photons. Therefore, we apply Siddon’s fast ray-tracing forward projection
algorithm to accelerate the calculation of scatter-free line integral data (Siddon 1985). The noise-free projection
is generated using the exponential transformation on the line integral data. The Poisson noise is added into the
projection data tomatch the signal-to-noise ratio (SNR) of the reconstructed image close to that of theCBCT
image. The process of generating projection data can be defined as:

( )l= +-I I e I , 4p
I

n n0
l

where I0 is the number of photons in the air scan, Il is the line integral data generated using forward projection
and In is the Poisson noise. ln is theweighting factor to tune the intensity of additive Poisson noise so that the
SNRwithin the simulated and real CBCT images is consistent. ln is set as 0.9 in the head data simulation and is
set as 1.1 in the abdomen data simulation.

In this study, an open-source GPU-basedMC softwareMC-GPU (code.google.com/archive/p/mcgpu/) is
applied to perform theMC simulation due to its high computational efficiency (Badal and Badano 2009). The
MC-GPU code applies the PENELOPE 2006which is a code system forMC simulation of electron and photon
transport to achieve the interaction between the photons and the object and theWoodcock tracking algorithm
to compute the trajectories of the photons. The object in theMC-GPU is described as a combination of voxels of
differentmaterials andmass densities. The photons treat each voxel as a uniformmedium composed of the same
material. In the simulation, to directly apply theMDCT images as the object into theMC-GPUprogram,we
choose a straightforward hard-threshold segmentation to achieve the voxelization of the object and the template
image composes of air, adipose,muscle and bone. The side effect of segmentation error isminimized due to the
dominantly low-frequency distribution of the scatter signal in the projection domain. The spectra in theMC
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simulation for eachMDCTdataset are the same as those in the actual scanning process. The spectra are
estimated using themeasurement-based spectrum estimationmethod proposed by Zhao et al (2014).

The noise appears in the simulated scatter signal and degrades the accuracy of the scatter estimation.We thus
apply the two-dimensional (2D)Gaussianfiltrationmethod to smooth the simulated scatter distribution
(Zbijewski andBeekman 2006). To accelerate the calculation, the logarithmof theGaussian function is applied
to convert the nonlinear to quadratic polynomial process. The 2DGaussian function is defined as:
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where s1 and s2 are the standard deviations of the distributions in x and y directions, m1 and m2 are the
expectation of the distributions and r is the correlation coefficient of these two directions. After the logarithmic
operation, the fitting function is converted to the following quadratic form as:
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These fitting parameters are calculated using the least squaremethod. The least-squaresmethodfinds the
optimal parameters in equation (6) byminimizing the sumof squared residuals between equation (6) and the
scatter distribution S.The sumof squared residuals is defined as:

( ( )) ( ( )) ( )åå= -
= =

R S f x y S f x y, , , , 7
x

X

y

Y

1 1

2

where ( )X Y, is the dimension of the scatter distribution. ( ( ))R S f x y, , isminimal when the partial derivative of
the ( ( ))R S f x y, , is zero. After the noise suppression, the estimated scatter signal has a high SNRwhile
maintaining the corrected profile.

2.2.4.Model training
When the network is determined, the generator can be estimated by the optimization of a loss function. The
fidelity term is generated using the output of the discriminator. The least absolute deviation (L1) term is used as
the regularization item to solve the overfitting problem. The entire loss function of the Pix2pixGAN is defined
as:

( ) ( ) ( ) * l= +G arg G D Gmin max , , 8G D LSGAN L1

where l is the coefficient of the regularization term and set as 100.0 in this work to eliminate the overfitting
while ensuring the convergence of the loss function. ( ) G D,LSGAN represents the loss function of the least-
squareGAN.Comparedwith the conventional sigmoid cross-entropy loss function used in the original GAN,
the proposedmethodwith the least-square (LS) form achieves higher-quality image generation andmore stable
training since it penalizes the fake samples and overcomes the gradient vanishment problem (Mao et al 2017).

( ) G D,LSGAN is defined asMao et al (2017):
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where M is the total number of training datasets, ( )D is the output of the discriminator. It j and Is j are the jth
scatter-contaminated projection and scatter signal, respectively.

The L1 regularization term is incorporated to constrain the difference between the generated and the real
imageswhilemaintaining the boundary of the object in the image (Geng et al 2020):
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The adaptivemoment estimation (Adam) algorithm (Kingma andBa 2014) is applied as the solver to
optimize the loss function to determine the parameters of each convolutional layer in the G and D.

2.3.Dataset
TheMDCT images of abdominal and head patients are applied to train the proposedmodel. TheMDCTdata of
the abdominal patient are obtained fromPhilips Brilliance Big Bore CT scannerwith the tube voltage of 120
kVp.Dual-energy CTdata of the head patient are acquired fromSiemens SOMATOMDefinition Flash scanner
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using 80 and 140 kVp tube voltages. The training dataset is composed of 15 sets of 120 kVp abdominal images,
ten sets of 80 kVp and ten sets of 140 kVp head images. The validation dataset has two sets of 120 kVp abdominal
images, two sets of 80 kVp and two sets of 140 kVp head images.

CBCTprojection data of abdominal patients and phantom are acquired to test the performance of the
proposedmethod. Abdominal projection data are acquired using theOBI installed on theVarian Trilogy
treatment systemwith the tube voltage of 125 kVp (VarianMedical Systems, Palo Alto, CA,USA).We collect 20
patients’ data to evaluate the performance of the proposedmethod. TheCBCTprojection data of a head
phantom is acquired fromour customized tabletopCBCT imaging systemwhich consists of the x-ray tube from
VarianMedical Systems (Rad94, www.varian.com) and the detector fromCareray Corp. (1800RF, cn.careray.
com). The scanning tube voltages of the head phantom are 75 kVp, 100 kVp and 125 kVp, respectively.We also
obtain theMDCTdata of the head phantom from the Siemens SOMATOMDefinition Flash scanner at the same
kVps as theCBCT scans for a side-by-side image quality comparison instead of formodel training. The purpose
of this operation is to obtain the ground truth to evaluate the quality of the corrected images. The scanning
parameters of bothMDCT andCBCTdata acquisition are listed in table 1.

For the abdominal site, the data is first downsampled from ´1024 768 to ´256 192 and then resize to
´256 256 using zero padding operation. The head data is downsampled from ´2816 2816 to ´256 256.

Image gray values are normalized to [0 1] using theMin–Max scalingmethod (Kahng et al 2002) during the
training and testing process.

3. Evaluation

3.1. Implementation details
The proposedmodel training is implemented using PyTorch (www.pytorch.org), an open-source python
machine learning library based onTorch (Paszke et al 2019) and an official Pix2pix project that Isola et al
proposed in Isola et al (2017). The training and testing processes are implemented on aGPUworkstationwith
128GBmainboardmemory, Intel i7- 9700 KCPU and a single GeForce RTX 2080Ti graphics cardwith 11GB
graphicmemory. Themomentumparameters are set as b = 0.51 and b = 0.999.2 The epoch number is set as
400 to guarantee the convergence. In the first 150 epochs, the learning rate is set as a fixed value of 0.0002. In the
following 250 epochs, the learning rate gradually decreases to zero to ensure the network convergence to a local
minimumand avoid oscillation (You et al 2019). Due to thememory limitation, the batch size is set as eight in
themodel training.

TheMC simulation is also implemented in this workstation. To balance the calculation complexity and the
scatter estimation accuracy, the number of photons simulatedwithin each projection is set as ´1 10 .8 In the
training data generation, the number of calculated projections for eachMDCTdataset is 600. They all use the
same list of projection angles which is equally spaced between [ )0 360 degrees.

Table 1.Parameters ofMDCT andCBCTdata acquisition.

MDCTparameters Philips brilliance big boreCT Siemens SOMATOMdefinitionflash

Anatomical site Abdomen Head

Scanmode Helical Helical

Scan voltage (kVp) 120 80, 140

# of patients 17 12, 12

# of images in the training dataset 18 600

CBCTparameters Trilogy TabletopCBCT system

Anatomical site Abdomen Head phantom

Scanmode Half-fan Full-fan

Scan voltage (kVp) 125 75,100,125

Bowtiefilter Yes No

Detector shifted (mm) 148 0

Source to detector distance (mm) 1500 1300

Source to axis distance (mm) 1000 1000

Detector dimension (pixels) 1024×768 2816×2816
Pixel size (mm) 0.388 0.154

# of patients for test 20 1
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3.2. Comparison study
In the comparison study, we evaluate the various configurations of loss functions and network structures of the
generator and the discriminator. In the proposed projection-to-scatter transformation, we perform two
comparison studies to choose the optimal generator. TheU-net andResnet are applied as the generators
individually to compare the performance of scatter correction of the trainedmodel. Resnet with different
network depths are further compared to determine the optimal depth to achieve a trade-off between
computational accuracy and efficiency. In this study, we choose the number of residual blocks as three, six and
nine in the Resnet generator, respectively, while keeping the PatchGAN intact as the discriminator.

The discriminators with different dimensions of RFs are compared to determine the optimal RF and achieve
a trade-off between the computational accuracy and training difficulty.We apply PatchGANwith = ´RF 1 1,

= ´RF 70 70 and = ´RF 256 256 as the discriminator, while keeping the Resnet with six residual blocks
intact as the generator.

Comparedwith the sigmoid cross-entropy loss, the LS loss function achieves higher-quality image
generation and amore stable training process since it penalizes the fake samples and overcomes the gradient
vanishment problem (Mao et al 2017). To further verify this claim, we compare the results corrected bymodels
trainedwith the LS and the sigmoid cross-entropy loss when the generator is a Resnet with six residual blocks
and the discriminator is the PatchGANwith = ´RF 70 70.

The projection and scatter data of head patients at 80 kVp are used as the training dataset to train the single-
spectralmodel to compare the imaging performance with the proposedmethod. The network is the same as the
proposedmethod for a fair comparison.

The trainedmodels in the comparison study are summarized in table 2. In themodel training, wemaintain
the same training dataset, hardware configuration, optimizer architecture, decay rate and the number of epochs
to ensure a fair comparison.

3.3. Image qualitymetrics
The root ofmean square error (RMSE), the Pearson correlation coefficient (PCC) (Biguri et al 2016), themean
structural similarity index (SSIM) (Nomura et al 2019, Lalonde et al 2020) and spatial nonuniformity (SNU) are
selected to evaluate the correction performance of the proposedmethod. In all studies, the RMSE, PCC and
SSIM are calculated based on thewhite rectangle area and thewhole image and the SNU is calculated based on
six ROIs selected in the uniform areas. In the evaluation of the correction results of themimicked scatter-
contaminatedMDCT, themetrics are calculated between the corrected and the originalMDCT images. In the
evaluation of theCBCT scatter correction, themetrics are calculated between the corrected CBCT images and
the corresponding high-qualityMDCT images for the head phantom and theCBCT images corrected byMC
simulation for abdominal patient data. The RMSEwhich indicates the squared differences of pixel intensities of
two images is defined as:

( ) ( )å m m= -
=

RMSE
m

1
, 11

i

m

c i g i
1

2

where i is the index of the pixel in the selected ROI, m is the total number of the pixels in the ROI, mc i is theHU
value of the ith pixel in the correctedCT image using the proposedmethod and mg i is theHUvalue of the ith
pixel in the ground-truth image.

The PCC is an index tomeasure the linear dependence between two images and is calculated as:
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where mc and mg are themean values of the selectedROI in the corrected and ground-truth images, respectively.

Table 2.Trainedmodels applied in the comparison study. RFmeans receptive field and LSmeans least square loss function.

Model Generator Discriminator Loss function

1 U-net RF= ´70 70 LS

2 Resnet-3blocks RF= ´70 70 LS

3(proposed) Resnet-6blocks RF= ´70 70 LS

4 Resnet-9blocks RF= ´70 70 LS

5 Resnet-6blocks RF= ´1 1 LS

6 Resnet-6blocks RF= ´256 256 LS

7 Resnet-6blocks RF= ´70 70 Sigmoid

9

Phys.Med. Biol. 67 (2022) 115003 Y Jiang et al



The SSIM indicates the similarity of two images regarding intensity, contrast and structure. It is proposed to
provide a good approximation of perceptual image quality and is defined as:

( )( )
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, 13
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where = ´C d0.011 and = ´C d0.032 are the small constants to avoid instability of SSIM calculation.Here
d is the dynamic range of the pixel values in the ROI of the corrected image. sc and sg are the standard deviations
of the selectedROIs in the corrected CT image and the ground-truth image, respectively. scg is the covariance
between the corrected image and the ground-truth image.

To demonstrate that ourmethod canmaintain the image uniformity, the SNU is used as a qualitymetric and
defined as:

( )=
-

´SNU
HU HU

1000
100%. 14max min

Figure 3.The axial, coronal, and sagittal views of the head patient validation data: (a)mimicked scatter-contaminated image at 80
kVp, (b) corrected CT image at 80 kVp, (c) the referenceMDCT image at 80 kVp, (d) corrected CT image at 140 kVp and (e) the
referenceMDCT image at 140 kVp.Displacewindow is [−250 50]HU for (a), [50 350]HU for (b), (c) and [−50 250]HU for (d), (e).
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HUmax and HUmin are themaximumand theminimumof themean values of the six ROIs selected in the
uniform areas.

4. Results

4.1.Head study
4.1.1. Validation dataset usingMDCT
Figure 3 shows the axial, coronal, and sagittal views of themimicked scatter-contaminated, the corrected and the
referenceMDCT images which are selected from the validation dataset of the head patient at the kVps of 80 and
140.We only show themimicked scatter-contaminated image of 80 kVp for comparison. The one-dimensional
(1D) profiles along the vertical red line infigure 3(e) are shown infigure 4.We select the region contoured by the
white rectangle infigure 3(e) and thewhole image to calculate the image qualitymetrics and the results are listed
in table 3. The evaluationmetrics on thewhole image are listed in parentheses. The RMSEof the corrected image
is reduced from603.4HU (506.5HU) to 6.2HU (27.3HU) for 80 kVp data and from355.4HU (226.9HU) to
4.5HU (18.5HU) for 140 kVpdata. The PCCs between the corrected and the reference images are 0.9461
(0.9995) and 0.9914 (0.9996)while they are 0.1156 (0.9075) and 0.0264 (0.9730) before correction for the 80 kVp
and 140 kVp data, respectively. The SSIMs of the corrected images of 80 and 140 kVp data are close to the ground
truth, indicating that the anatomy in the image is not altered after the proposed scatter correction. The SNU is
calculated based on the six ROIs shown infigure 3(a). The SNUs of the scatter-contaminated, corrected and the
reference images are 9.06%, 5.26% and 4.39% in the 80 kVp study, and 6.11%, 2.13% and 2.69% in the 140 kVp
study, respectively.

4.1.2. Testing data using CBCT
Figure 5 shows the axial, coronal, and sagittal views of the uncorrected, the corrected and the reference images of
the CBCTdata of a head phantomwhose scanning kVps are 75, 100 and 125.We only show the uncorrected and
reference images at 75 kVp.We apply the registeredMDCT as the reference image in the head phantom study.
1Dprofile along the vertical red line infigure 5(e) is shown infigure 6. The ROI enclosed by thewhite box in

Figure 4.One-dimensional profiles along the red line infigure 3(e). (a) is for the 80 kVp study and (b) is for the 140 kVp study.

Table 3.Comparison of the RMSE, PCC, SSIMand SNU evaluated using the head validation data at
80 and 140 kVps. The values outside brackets are calculated on thewhite rectangle infigure 3(e) and
the values in the brackets are calculated based on thewhole image.

RMSE(HU) PCC SSIM SNU

Uncorrected-80 kVp ( )603.4 506.5 ( )0.1156 0.9075 ( )0.1007 0.6691 9.06%

Corrected ( )6.2 27.3 ( )0.9461 0.9995 ( )0.9473 0.9993 5.26%

Reference 0 1 1 4.39%

Uncorrected-140 kVp 355.4(226.9) ( )0.0264 0.9730 ( )0.0354 0.9021 6.11%

Corrected 4.5(18.5) ( )0.9914 0.9996 ( )0.9911 0.9995 2.13%

Reference 0 1 1 2.69%
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Figure 5.The axial, coronal, and sagittal views of the head phantomCBCTdata: (a) uncorrected image at 75 kVp, (b)–(d) corrected
image at 75 kVp, 100 kVp, 125 kVp and (e) the referenceMDCT image at 75 kVp.Displace window is [−150 400]HU for all.

Figure 6.One-dimensional profiles along the red line infigure 5(e). (a): 75 kVp, (b): 100 kVp and (c): 125Vp.
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figure 5(e) and thewhole image are used to calculate RMSE, PCC and SSIM. The six small ROIs infigure 5(a) are
used to calculate the SNUvalue. The quantitative results are listed in table 4. The RMSEof the corrected image is
reduced from346.2HU (321.5HU) to 37.7HU (51.0HU), from287.9HU (230.2HU) to 42.8HU (56.4HU)
and from299.8HU (219.0HU) to 34.8HU (45.7HU) in the 75 kVp, 100 kVp and 125 kVp studies, respectively.
The RMSEs between theCBCT andMDCT images ismore than 30HUdue to the energy spectra difference
between the two scanning devices. The PCCs between the corrected and the reference images are 0.8612
(0.9795), 0.8852 (0.9818) and 0.8765 (0.9881) and are only 0.1447 (0.9520), 0.2007 (0.9599) and 0.2157 (0.9745)
before correction for 75 kVp, 100 kVp and 125 kVp data, respectively. The SSIMof the corrected image is close
to the ground truth, which indicates that the anatomy of the image is not altered after the proposed scatter
correction. The SNUs of the uncorrected image, corrected image and the reference image are 13.77%, 3.74% and
0.64% for 75 kVp data, 11.28%, 1.56% and 1.93% for 100 kVpdata and 10.24%, 0.34% and 0.95% for 125 kVp
data, respectively.

According to the correction results of the above three groups of different scanning spectra, the proposed
method can eliminatemost of the shading artifacts and improve the image quality of CBCT to be closer to the
high-qualityMDCT.

4.2. Abdominal patient study
4.2.1. Validation data usingMDCT
The corrected results using theMDCT image in the validation dataset of the abdominal patient are shown in
figure 7. The 1Dprofiles along the horizontal red line infigure 7(c) are shown infigure 10(a). TheMDCTdata of

Figure 7.The axial, coronal, and sagittal views of theMDCT images of one patient in the validation dataset: (a)mimicked scatter-
contaminated image, (b) corrected image using the proposedmethod and (c) the referenceMDCT image. Displace window is [−250
300]HU for all.

Table 4.Comparison of the RMSE, PCC, SSIM and SNUevaluated using the head phantomdata at
75,100 and 125 kVps. The values outside brackets are calculated on thewhite rectangle in figure 5(e)
and the values in the brackets are calculated based on thewhole image.

RMSE(HU) PCC SSIM SNU

Uncorrected-75 kVp ( )346.2 321.5 ( )0.1447 0.9520 ( )0.1253 0.9166 13.77%

Corrected ( )37.7 51.0 ( )0.8612 0.9795 ( )0.8507 0.9778 3.74%

Reference 0 1 1 0.64%

Uncorrected-100 kVp ( )287.9 230.2 ( )0.2007 0.9599 ( )0.1752 0.9107 11.28%

Corrected ( )42.8 56.4 ( )0.8852 0.9818 ( )0.8424 0.9814 1.56%

Reference 0 1 1 1.93%

Uncorrected-125 kVp ( )299.8 219.0 ( )0.2157 0.9745 ( )0.2274 0.9251 10.24%

Corrected ( )34.8 45.7 ( )0.8765 0.9881 ( )0.8554 0.9872 0.34%

Reference 0 1 1 0.95%
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this patient is not involved in themodel training. The results of the image qualitymetrics are listed in table 5. The
RMSEbetween the scatter-contaminated image and the reference image is 259.4HU (143.9HU)while
decreasing to 12.7HU (15.8HU) after the proposed correction. The PCC increases from0.1656 (0.9793) to
0.9074 (0.9901) and SNU reduces from12.01% to 4.84%whilemaintaining the anatomy after the proposed
correction.

4.2.2. CBCT scatter correction
Figure 8 shows the results of the correction results of the abdominal CBCT. The reference image is the CBCT
image corrected by theMC simulationmethod. The 1Dprofile along the horizontal red line infigure 8(c) is
shown infigure 10(b). The quality of the CBCT image is greatly improved after correction using the proposed
method. The results of the image qualitymetrics are listed in table 6. The original projection, the predicted
scatter signal and theMC estimated scatter signal are shown infigure 8(d). TheRMSEof the corrected CBCT
image is reduced from186.3HU (100.7HU) to 11.8HU (25.0HU) comparedwith the imagewithout
correction. The PCCbetween the corrected image and the reference image is 0.8409 (0.9976)while it is only
0.3229 (0.9738) before correction. The SSIMof theCBCT image promotes from0.3178 (0.9814) to 0.8386
(0.9971) and the SNU reduces from11.17% to 6.85% after correction.We collect CBCTdata of another 15
abdominal patients and performed scatter correction using the proposedmethod to verify that the training
dataset is large enough.We compare the correction results with theMC-basedmethod. TheRMSEs of the
proposedmethod are reduced from200HU to around 25HU in thisfifteen-patient study.

Table 5.Comparison of the RMSE, PCC, SSIM and SNUevaluated using theMDCT in the
validation dataset. The values outside brackets are calculated on thewhite rectangle in
figure 7(c) and the values in the brackets are calculated based on thewhole image.

RMSE(HU) PCC SSIM SNU

Uncorrected ( )259.4 143.9 ( )0.1656 0.9793 ( )0.1594 0.9402 12.01%

Corrected ( )12.7 15.8 ( )0.9074 0.9901 0.9082(0.9812) 4.84%

Reference 0 1 1 2.71%

Figure 8.The axial, coronal, and sagittal views of the abdominal CBCT images of one patient whose correspondingMDCT is in the
training dataset: (a) uncorrected CBCT image, (b) corrected CBCT image using the proposedmethod and (c) the reference CBCT
image usingMC simulation. (d)The original projection, the predicted scatter signal and theMCestimated scatter signal. Displace
window is [−250 300]HU for (a)–(c) and [0 2400] detector intensity for (d).
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4.3. Comparison study
4.3.1. U-net andResnet
Todemonstrate the advantages of ourmethod, the abdominal CBCTwhose correspondingMDCT is in the
validation datasets is used to quantitatively evaluate the performances of the proposed network and the Pix2pix
GANwith aU-net generator. Figure 9 shows theCBCT images corrected using the two schemes and theMC
simulation as the reference. The 1Dprofile along the horizontal red line infigure 9(d) is shown infigure 10(c).
The absolute differences between the corrected image and the reference image are shown infigure 9(e). It can be
seen from the residual image that the difference between the proposedmethod and the reference image is
smaller comparedwith the Pix2pixGANwith theU-net generatormethod especially in the area pointed by the

Table 6.Comparison of the RMSE, PCC, SSIM and SNUevaluated using the abdominal
CBCTwhose correspondingMDCT is in the training dataset. The values outside brackets
are calculated on thewhite rectangle infigure 8(c) and the values in the brackets are
calculated based on thewhole image.

RMSE(HU) PCC SSIM SNU

Uncorrected ( )186.3 100.7 ( )0.3229 0.9738 ( )0.3178 0.9814 11.17%

Corrected ( )11.8 25.0 ( )0.8409 0.9976 ( )0.8386 0.9971 6.85%

Reference 0 1 1 5.60%

Figure 9.The axial, coronal, and sagittal views of the abdominal CBCT images of one patient whose correspondingMDCT is in the
validation dataset. (a)Uncorrected CBCT image, (b) corrected CBCT image via Pix2pixGANwith aU-net generator, (c) the corrected
CBCT image via the proposedmethod and (d) the reference CBCT image viaMC simulation. (e)The absolute differences between the
reference CBCT image and (e-1) uncorrected CBCT image, (e-2) the corrected CBCT image via Pix2pixGANwith aU-net generator,
(e-3) the corrected CBCT image via the proposedmethod.Displace window is [−250 300]HU for (a)–(d) and is [0 50]HU for (e).
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white arrow infigure 9(e-3). The results of the image qualitymetrics are listed in table 7. The Pix2pixGANwith a
U-net generator produces streaking artifacts after correction due to the incorrect scatter estimation. U-net
obtains higher segmentation accuracy by classifying each pixel which ismore suitable formedical image
segmentation. The RMSEs of the correctedCBCT images are 21.2HUand 16.3HUusing the Pix2pixGANwith
U-net generator and the proposedmethodwhile the SNUs are 10.47%and 8.72%. The proposed Pix2pix GAN
with the Resnet generator achieves higher accuracy in scatter estimation than thatwith theU-net generator.

4.3.2. The number of residual blocks in Resnet
Another abdominal CBCTwhose correspondingMDCT is not in the training datasets is used to quantitatively
evaluate the performances of the Pix2pixGANwith the Resnet generator of different numbers of residual blocks.
Figures 11(b)–(d) show theCBCT images corrected using the three generators with three, six and nine residual
blocks. The absolute differences between the corrected image and the reference image are shown in
figures 12(a)–(c). The results of the image qualitymetrics are listed in table 8. As shown in the absolute difference
maps, the nine-block Resnet achieves the best scatter estimationwhile the three-block Resnet is of theworst
performance comparedwith the reference. The generator with six blocks has the same performance compared
with the nine-block one using amuch lower computational cost.We therefore apply the six-block Resnet as the
generator in this study since it only needs two-thirds of the training time of the nine-block Resnet.

4.3.3. Discriminator parameters
Figures 11(c), (e), (f) show theCBCT images corrected using the discriminators with different dimensions of RF.
The absolute differences between the corrected image and the reference image are shown infigures 12(b), (d),
(e). Using the PatchGANwith = ´RF 70 70, the difference between the corrected image and the reference
image is the smallest comparedwith the = ´RF 1 1and the = ´RF 256 256.

4.3.4. Least-square loss and sigmoid loss
The abdominal CBCTdata is used in the comparison study of the least-square loss and sigmoid cross-entropy
loss. The corrected image of the sigmoid loss is shown infigure 11(g). The absolute difference between the
corrected image and the reference image is shown infigure 12(f). Using the least-square loss as the loss function
formodel training, RMSE is reduced from32.1 to 21.5HU comparedwith that using themodel trained by
sigmoid cross-entropy loss.

4.3.5. Single-spectral andmultiple-spectral models
Themimicked scatter-contaminatedMDCTof head in the validation datasets is used to quantitatively evaluate
the performances of themultiple-spectralmodel and the single-spectralmodel. Figure 13 shows the axial views
of themimicked scatter-contaminated, the corrected and the referenceMDCT imageswhich are selected from
the validation dataset of the head patient at the kVps of 80 and 140. It can be seen from the residual image that the
single-spectralmodel has a similar performance comparedwith the proposedmethod in the results of the head
patient at 80 kVp (0.5HUdifference in RMSE). The results of the image qualitymetrics are listed in table 9. In
the 140 kVp head-patient study, the single-spectralmodel does notwork verywell since the overcorrection
artifacts are producedwhile reducing the scatter artifacts comparedwith the proposedmodel. The proposed
multiple-spectralmodel can be applied to theCBCTdataset which has different scanmodes and spectra.

Figure 10.The one-dimensional profiles along the red line. (a) is in figure 7(c), (b) is infigure 8(c) and (c) is infigure 9(d).
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5.Discussion

In this paper, we propose a generalized image quality improvement strategy of CBCTusing themultiple spectral
MDCT labels. The proposedmethod learns themodel using the Pix2pix GANwhich combines the six-block
Resnet as the generator and the PatchGANas the discriminator to translate the scatter-contaminated projection
to the scatter signal. In the head and abdominal patient studies, the proposedmodel achieves accurate scatter
estimation and produces high-quality CBCT images in the projection domain.

The novelty of this study is reflected in four-folds. First of all, the x-ray energy spectrum is an important
parameter to affect the estimated scatter distribution inmodel training. Different fromother studies only
working on the scatter estimation at a single spectrum, the proposedmethod achievesmultiple spectral CBCT
scatter estimation. Secondly, the proposedmodel is suitable for theCBCTwith various imaging volumes and
multiple scanningmodes. For example, on theOBI system in the Trilogy, a singlemodel we generated achieves
the scatter correction for theCBCTdata obtained by the half-fan and full-fanmodes. Thirdly, we apply the
projection-to-scatter transition to estimate the scatter distribution from the raw projection. Comparedwith the

Table 7.Comparison of the RMSE, PCC, SSIM and SNUevaluated using the abdominal
CBCT images in the comparison study. The values outside brackets are calculated on the
white rectangle in figure 9(d) and the values in the brackets are calculated based on the
whole image.

RMSE(HU) PCC SSIM SNU

Uncorrected ( )216.2 101.3 ( )0.0891 0.9941 ( )0.0811 0.9815 17.88%

p2pU-net ( )21.2 41.5 ( )0.7088 0.9957 ( )0.7286 0.9952 10.47%

p2pResnet ( )16.3 31.9 ( )0.8090 0.9958 ( )0.8086 0.9956 8.72%

Reference 0 1 1 8.48%

Figure 11.The axial views of the abdominal CBCT images of one patient whose correspondingMDCT is not in the training dataset. (a)
Uncorrected CBCT image, (b)–(g) correctedCBCT images via Pix2pixGANwith different network parameters and (h) the reference
CBCT image viaMC simulation. Displace window is [−200 100]HU for (a) and [−100 200]HU for (b)–(h).
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image-to-imagemapping and the projection-to-projectionmapping, the proposedmethod ensures no
anatomical structure deformation of the reconstructed image during the scatter correction process due to the
dominantly low-frequency behavior of scatter distribution. No extra image processing technique, e.g. image
registration, is required to operate on the sample and label. Finally, the proposedmethod is a post-processing
and real-time scatter correction scheme based on deep learning. It does not increase the radiation dose to the
patient nor does itmodify the existing hardware of theCBCT system. After themodel training, real-time scatter
estimation capability accelerates the generation of high-quality CBCT images for advancedCBCT-guided
radiation therapy including patient setup time reduction, physical and psychological patient stress decreasing
and accuracy and efficiency improvement.

Although the proposedmethod can effectively correct the scatter-induced artifacts inCBCT images, it still
needs improvement in our future work. The scanning spectra of theMDCTandCBCT for the same imaging
volume size are generally different. The spectral discrepancymay lead to inaccurate scatter estimation and
residual artifacts in the image. For example, in the correction results of the head phantomat 125 kVp (see
figure 5(d)), the scatter artifacts are over-corrected as shown in the sagittal and coronal views. Ideally, theMDCT
data in the training dataset should be scanned usingmultiple spectra. Due to the radiation dose limitation, the
patient cannot be repeatedly scanned in the hospital. In future, we plan to use phantoms forMDCT imaging
under different x-ray energy spectra to constructmultiple spectral training dataset. These datasets can be used to
train a generalized scatter correctionmodel by the proposed network.Without increasing the radiation dose to

Figure 12.The absolute differences between the reference CBCT image. Displace window is [0 50]HU for all.

Table 8.Comparison of the RMSE, PCC, SSIM and SNUevaluated using the abdominal CBCT images in the
comparison study. The values outside the brackets are calculated on thewhite rectangle infigure 11(h) and the
values in the brackets are calculated based on thewhole image.

RMSE(HU) PCC SSIM SNU

Uncorrected ( )212.5 105.0 ( )0.4631 0.9816 ( )0.4445 0.9604 13.21%

3blocks+RF=70×70 ( )23.4 45.8 ( )0.8670 0.9965 ( )0.8466 0.9945 4.82%

6blocks+RF=70×70 ( )21.5 44.4 ( )0.8794 0.9967 ( )0.8663 0.9951 4.44%

9blocks+RF=70×70 ( )17.9 43.9 ( )0.8702 0.9968 ( )0.8535 0.9951 4.36%

6blocks+RF=1×1 ( )30.8 46.6 ( )0.8496 0.9962 ( )0.8382 0.9944 4.74%

6blocks+RF=256×256 ( )21.1 44.8 ( )0.8393 0.9966 ( )0.8258 0.9937 4.93%

6blocks+RF=70×70+sigmoid ( )32.1 48.7 ( )0.8519 0.9958 ( )0.8400 0.9604 5.14%

Reference 0 1 1 4.56%
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the patient, an accurate and precisemultiple spectralmodel can be trained for the scatter correction in clinical
CBCT imaging.

In addition to scatter contamination, beamhardening effect is another issue degradingCBCT image quality
with similar shading artifacts as scatter signals. In our previouswork, we propose a beamhardening artifacts
correction algorithm in the line-integral domain. Thismethod estimates the polychromatic andmonochromatic
spectra. The scaled difference of themonochromatic reprojection data and the polychromatic reprojection is
added to the raw line-integral data to achieve beam-hardening artifacts correction (Zhao et al 2018). This work

Figure 13.The axial views of the headpatient validation images using: (1)mimicked scatter contamination, (2) the single-spectralmodel,
(3)using theproposedmethod, (4) the reference. (a) 80 kVp images, (b) the difference imageof 80 kVp, (c) 140kVp images, (d) the
difference imageof 140 kVp.Displacewindow is [50 350]HUfor (a2)–(a4), [−50 250]HUfor (c2)–(c4) and [0 50]HUfor (b) and (d).

Table 9.Comparisonof theRMSE,PCC, SSIMand SNUevaluatedusing the headpatient validation
data in the comparison study. The values outside of the brackets are calculatedwithin thewhite
rectangle infigure 1(d) and the values in the brackets are calculated basedon thewhole image.

RMSE(HU) PCC SSIM SNU

Uncorrected-80 kVp ( )603.4 506.5 ( )0.1156 0.9075 ( )0.1007 0.6691 9.06%

Single spectral 5.7(25.7) ( )0.9518 0.9997 ( )0.9517 0.9995 5.18%

Multiple spectral ( )6.2 27.3 ( )0.9461 0.9995 ( )0.9473 0.9993 5.26%

Reference 0 1 1 4.39%

Uncorrected-140 kVp 355.4(226.9) ( )0.0264 0.9730 ( )0.0354 0.9021 6.11%

Single spectral 27.9(44.5) ( )0.8812 0.9921 ( )0.8921 0.9925 3.76%

Multiple spectral 4.5(18.5) ( )0.9914 0.9996 ( )0.9911 0.9995 2.13%

Reference 0 1 1 2.69%
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can be transformed from the line-integral domain into the projection domain. In future, we can combine the
estimation of scatter artifacts and beam-hardening artifacts to design amodel that can be used for the correction
of both beamhardening artifacts and scatter artifacts.

6. Conclusion

The proposedmethod applies themultiple spectralMDCT labels and the Pix2pixGAN to construct themultiple
spectral scatter estimationmodel. The Pix2pixGAN combines the Resnet as the generator and the PatchGANas
the discriminator to set up the correspondence between the scatter-contaminated projection and the scatter
distribution. It achieves excellent performance in scatter estimation and correction tomaintain the anatomy of
the patient. The proposedmethod does not require the increase of the radiation dose to the patient, nor does it
modify the existing hardware of theCBCT system and is thus practical to be implemented in clinical
applications.
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