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Abstract

Objective. The quantitative and routine imaging capabilities of cone-beam CT (CBCT) are hindered
from clinical applications due to the severe shading artifacts of scatter contamination. The scatter
correction methods proposed in the literature only consider the anatomy of the scanned objects while
disregarding the impact of incident x-ray energy spectra. The multiple-spectral model is in urgent
need for CBCT scatter estimation. Approach. In this work, we incorporate the multiple spectral
diagnostic multidetector CT labels into the pixel-to-pixel (Pix2pix) GAN to estimate accurate scatter
distributions from CBCT projections acquired at various imaging volume sizes and x-ray energy
spectra. The Pix2pix GAN combines the residual network as the generator and the PatchGAN as the
discriminator to construct the correspondence between the scatter-contaminated projection and
scatter distribution. The network architectures and loss function of Pix2pix GAN are optimized to
achieve the best performance on projection-to-scatter transition. Results. The CBCT data of a head
phantom and abdominal patients are applied to test the performance of the proposed method. The
error of the corrected CBCT image using the proposed method is reduced from over 200 HU to be
around 20 HU in both phantom and patient studies. The mean structural similarity index of the CT
image is improved from 0.2 to around 0.9 after scatter correction using the proposed method
compared with the MC-simulation method, which indicates a high similarity of the anatomy in the
images before and after the proposed correction. The proposed method achieves higher accuracy of
scatter estimation than using the Pix2pix GAN with the U-net generator. Significance. The proposed
scheme is an effective solution to the multiple spectral CBCT scatter correction. The scatter-correction
software using the proposed model will be available at: https://github.com/YangkangJiang/Cone-
beam-CT-scatter-correction-tool.

1. Introduction

Cone-beam CT (CBCT) occupies a dominant position in the image guidance in radiation therapy and surgery.
CBCT inherits the characteristics of high-definition structural imaging capability from conventional multiple
detectors-based diagnostic multidetector CT (MDCT) (de la Zerda et al 2007). It further provides the onboard
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and intraoperative imaging functions to accurately supply the location and morphology of the targeted regions
of interest (ROIs) during treatment (Arisan et al 2013). CBCT is thus ubiquitously applied for routine clinical
use, for example, intraoperative patient setup (Rafferty et al 2006), daily or weekly patient position verification
(Haworth et al 2009), treatment monitoring (Pouliot 2007), tumor positioning (Nickenig and Eitner 2007), etc.
CBCT has been further applied in advanced clinical applications, including online target delineation (Altorjai
etal2012), dose accumulation and onboard treatment planning (McDermott et al 2008), and diagnosis decision
making (Mota de Almeida et al 2014). CBCT can obtain the three-dimensional (3D) volumetric information
efficiently with alow x-ray irradiation dose. Nevertheless, the image quality of CBCT is degraded by the shading
and/or streaking artifacts due to the scatter contamination in the large cone-angle illumination procedure (Niu
and Zhu 2010). When complex anatomical structures are involved in CBCT imaging, these structures
significantly deteriorate the image quality due to their complicated modulation on the scatter signals (Jain et al
2019). These issues place restrictions on CBCT imaging for qualitative use in the clinic.

Several algorithms are developed in the literature to correct for the severe artifacts in CBCT due to scatter
contamination and can be divided into two major categories: learning and non-learning-based methods
according to whether learning techniques are applied in the process. Non-learning-based methods can be
separated into pre- and post-processing categories according to when the scatter signal is suppressed in the
measurement. The pre-processing methods prevent the scatter photons from reaching the detector which
include the air gap and anti-scatter grid schemes (Sorenson and Floch 1985, Kyriakou and Kalender 2007). The
pre-processing methods have the major shortcoming of increasing the x-ray dose received by the patient to
maintain the appropriate signal-to-noise ratio of the projection data (Yang et al 2017). The post-processing
techniques are more effective than pre-processing methods in that they incorporate the scatter correction at the
systematic level and can be divided into measurement-based and calculation-based methods. In the
measurement-based methods, the primary beam-blocker array is inserted between the x-ray source and the
object to estimate the scatter samples in the blocked projection area (Niuand Zhu 2011). The primary
modulation methods are developed via the low-frequency scatter extraction from the Fourier domain (Zhu et al
2006). These methods require hardware modification which may not be readily achievable in clinical
equipment. The calculation-based methods include the Monte Carlo (MC) based methods and the analytical
scatter kernel-based methods. The MC based method achieves accurate scatter estimation based on the accurate
modeling of the CBCT imaging systems and simulation of the potential physical interaction between photons
and matter while at the expense of heavy computational burden (He et al 2016). To combat the low
computational efficiency, analytical scatter kernel-based methods provide a faster solution using the
convolutional operations to mimic the scattering process between the primary beam and imaged object (Baer
and Kachelrie8 2012, Zhao et al 2016). It works well for relatively uniform objects while may not function for
objects with heterogeneous inner structures because of the nonlinear scattering process (Nomura et al 2020).
The corrected CBCT images still have residual artifacts.

Learning-based methods can acquire the complicated scatter distribution by feature extraction and
representation learning. The nonlinear scattering process can be approached using the deep convolutional
neural network (CNN) to overcome the shortcomings of the aforementioned non-learning methods (Nomura
etal2019). The learning methods of scatter correction can be performed in three ways based on different
working domains, i.e. direct image-to-image mapping, projection-to-projection mapping and projection-to-
scatter transition. Different from scatter correction methods performed in the projection domain, the image-to-
image mapping directly investigates the compensation map from the CBCT image with scatter-induced artifacts
to the high-quality synthetic CT images (Harms et al 2019, Jiang et al 2019). In previous work, we proposed an
image-domain scheme for CBCT shading correction using a deep residual CNN (DRCNN) combining a U-net
based deep CNN and the residual of shading compensation. DRCNN trains the mapping function from the
uncorrected CBCT to the high-quality CBCT image corrected using the MC simulation method. A drawback of
this method is that the CBCT images in both training and testing datasets should be consistent in anatomy due to
the supervised learning nature of DRCNN (Jiang et al 2019). To alleviate the constraint of consistent anatomy
requirement in DRCNN, the cycle generative adversarial network (GAN) is integrated with residual block to
investigate the mapping function from CBCT to its counterpart, e.g. the paired planning CT (Harms et al 2019).
The GAN can obtain the high-quality samples since the parameter updating in the generator is driven by the
backpropagation of the discriminator instead of the data samples (Goodfellow et al 2014, Zhang e al 2021). The
cycle GAN enforces the inverse transformation and consistency to allow for higher accuracy learning (Harms
etal 2019). Nevertheless, inconsistent anatomy training in cycle GAN may alter the anatomy of corrected CBCT
images, leading to doubtful results (Harms et al 2019).

To minimize the anatomical structure deformation, David C Hansen et al proposed a U-net based network
to study the transformation from uncorrected to scatter-corrected CBCT projection data (Hansen et al 2018). To
generate the labels in the training dataset, the scatter distribution is obtained by the difference between the
forward projection of the registered planning CT and the uncorrected CBCT projection. The low-pass filtration
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is applied to the difference to eliminate the registration error (Niu et al 2010). The projection domain mapping
scheme alleviates the anatomy deformation issue in the image domain since the structural variation is not as
significant as that in the image domain. Nevertheless, the anatomical structure deformation is difficult to be
eliminated due to the small number of patients in the training dataset which cannot cover the anatomical
variations found in the patient population (Hansen et al 2018).

To tackle the inconsistent anatomy issue, the projection-to-scatter transition is proposed to estimate the
scatter signal instead of the projection data. The estimated scatter signal is subtracted from the raw projection to
correct for the scatter contamination without altering the anatomical structure in the projection. For example,
Yusuke Nomura et al applied the U-net to obtain the mapping from measured CBCT projection to the
corresponding scatter distribution generated using MC simulation in nonanthropomorphic phantoms
(Nomura et al 2019). This scheme avoids the inconsistent anatomy issue of indirect mapping methods since
scatter signal is dominantly low-frequency and places little impact on the relatively high-frequency anatomical
structures. In this study, we apply the projection-to-scatter transition to maintain the anatomy in the CBCT
image after scatter correction.

The above methods only consider the anatomy of the scanned object to construct a scatter correction model.
The x-ray energy spectrum is another major parameter affecting the estimated scatter distribution. In the
research performed by Alexandr Malusek et al the scatter-to-primary ratio (SPR) of x-rays at 30 keV is 2.42 times
more than that at 60 keV and 3.24 times more than that at 90 keV for a head-size object. For a body-size object,
the SPR at 30 keV is twice more than that at 60 keV and 2.65 times more than that at 90 keV (Malusek et al 2003).
The difference of SPRs is decreased when an anti-scatter grid is installed which is not a necessary component in
all the x-ray CBCT systems with an adjustable source-to-detector distance (SID) and source-to-axis distance
(SAD) including the C-arm CBCT (Orth et al 2008). Therefore, the multiple spectral model is in an urgent need
for CBCT scatter estimation.

The energy spectra of different CBCT imaging systems vary in various clinical scenarios. Even the same
device may perform different scanning protocols on the body parts of the patient. For example, the peak voltage
of the x-ray source is 100 kVp in head scan and 125 kVp in abdominal scan in Varian on-board imager (OBI)
system (Palm et al 2010). The tube voltage is 90 kVp in the dental CBCT system (Pauwels et al 2015) and 110 kVp
in the C-arm CBCT system (Sheth et al 2020). It would be a very complicated and tedious task to design a model
for improving CBCT image quality in each scan mode of the clinical CBCT imaging system. The multiple
spectral model for CBCT image quality improvement is an innovation that can be applied as a general solution to
scatter correction in different scanning modes of CBCT imaging systems.

In this study, we aim to estimate accurate scatter distributions from CBCT projections acquired at various
imaging volume sizes and x-ray energy spectra to achieve the generalized image quality improvement and
maintain the anatomy intact. We apply the pixel-to-pixel (Pix2pix) GAN to achieve the generalized scatter
estimation since the Pix2pix GAN improves the capability of the original GAN to achieve pixel-wise image-to-
image transition by the correspondence construction between the sample and label. The network architectures
and loss function of Pix2pix GAN are optimized to achieve the best performance on projection-to-scatter
transition. Abdominal and head patient CT data are incorporated to generate the training dataset. The trained
projection to scatter mapping model is applied to the CBCT projection data of various anatomy and x-ray energy
spectra to estimate the scatter distributions. Both head phantom and abdominal patient CBCT projections
acquired at different energy spectra are included in the testing process.

2. Methods and materials

2.1. Concept and workflow

Any scatter estimation method that does not rely on a learning scheme can be applied to generate the training
dataset such as the MC-based and the analytical scatter kernel-based methods. The MDCT data are used as one
embodiment of implementing the framework in this study since scatter-induced artifacts rarely exist in the
MDCT images due to its well-designed scatter suppression schemes in the past four decades (Niu efal 2010, Li
etal2019).

Figure 1 shows the workflow of the proposed scatter correction method. The part framed by the dashed line
indicates the process of training dataset generation and model training. The forward projection algorithm and
MC simulation are performed on the multiple spectral MDCT images to generate the scatter-free projection
data and scatter signal, respectively. The scatter signal is added into the scatter-free projection to mimic the
scatter-contaminated projection with a similar SPR of measured CBCT projection. The mimicked scatter-
contaminated projection and scatter signal are used as the sample and label respectively in the Pix2pix GAN for
the training of the scatter estimation model. The trained model is applied to the CBCT projection data to predict
the scatter distribution to achieve the CBCT scatter correction.
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Figure 1. The workflow of the proposed scheme using the Pix2pix GAN.

2.2.Network architecture and model training

The original GAN losses the ability of user control since it cannot use the input image as a condition and learn
the mapping from the input image to the output image since it generates the images from prior noise
distribution (Mirza and Osindero 2014). Due to this loss of user control using the original GAN (Isola etal 2017),
the Pix2pix GAN is applied to train the proposed model to construct the correspondence between the scatter-
contaminated projection and scatter distribution. The Pix2pix GAN incorporates the data samples of the
generator into the discriminator to decide the real or fake data pair (Isola et al 2017). The discriminator in
Pix2pix GAN discriminates the real or fake estimation of a specific patch in the input image which is referred to
as receptive field (RF) hereafter. As shown in figure 2(a), generator G produces the approximate scatter
distribution G (I;) from the scatter-contaminated projection I,. I, and G (I;) are combined into the
discriminator D as the data sample. The data pair of I, and the real scatter signal label I are used as the data label.
The discriminator acts as a dual classifier of an image to distinguish the correct data pair from the incorrect ones.
The discriminated results are combined with the generator to construct the loss function.

2.2.1. Generator network

The generator G shown in figure 2(b) transforms the scatter-contaminated projection I, into the scatter signal

G (I;) to approximate the label data I;. The symmetric encoder-decoder framework with the residual block is
used to build our generator due to its well-behaved end-to-end learning capability to implement image
translation (Jian et al 2019). The encoder part is composed of three convolutional layers and six residual blocks
to balance the computation efficiency and training accuracy. The role of the convolutional layer is to extract
features that contain all the textural and structural information of the input raw projection data (Krizhevsky et al
2017). Thelegend of the parameters is included in figure 2(e). The dimensions of the output image of
convolutional (conv) or transposed convolutional (tconv) layer are calculated as Karpathy (2016):

Monv:(W_K+2P)/S+1a (1)
Nicony = (Wﬁ 1) X s — 2P+ K+ Bu, (2)

where W is the width of the input image, K is the width of the convolution kernel, P is the number of zeros
padded into one end of the input, and s is the stride of the convolutional operation. P, is the number of
additional zeros padded into one end of the output of the tconv operation to ensure the dimensions of the tconv
output are the same as that of the conv input and is set as one in this study. n;, and n,,, are the number of
channels of input and output data.
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Figure 2. The architecture of the proposed Pix2pix GAN is composed of: (a) the training process of the proposed network for scatter
estimation, (b1) and (c1) the generator and discriminator network architecture, and (d) the residual block used in the ResNet
generator. The ‘conv’ and ‘tconv’ indicate the convolutional and transposed convolutional layer, respectively. (b2) and (c2) are the
activation dimension and RF of the output of each convolutional layer for the generator and discriminator, respectively. (e) is the
legend of the ‘conv’ and ‘tconv’ layers. The BN indicates the Batch Normalization and RF indicates the receptive field.

The firstlayer appliesa 7 x 7 convolution kernel, the stride of one and three padded zeros, to extracta

feature map with the same dimension as the input data. The second and third layers applya 3 x 3 convolution
kernel, the stride of two and one zero padded to one end of the input, to perform down-sampling operations and
output the half-size feature maps. To improve the training accuracy without gradient vanishing and network
degradation problems, six residual blocks whose structure is shown in figure 2(d) are added to the encoder part
to increase the depth of the network. The gradient calculated from the output of the upper-level residual block is
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propagated to the input of the lower level with a shortcut connection to alleviate the gradient vanishing issue (He
etal2016). Thetwo 3 x 3 convolutional layers with the stride of one are used to ensure the consistent
dimension of the input and output features and achieve the highest accuracy due to the reduced complexity
(Zagoruyko and Komodakis 2016). To obtain the G (I,) with the same dimension as the input I, the decoder part
applies a symmetric transposed convolution after the six residual blocks in the encoder part. The transposed
convolutional layer has the same kernel dimension and stride as the symmetrical convolutional layer to
reconstruct the generated scatter signal from extracted intermediate features using an up-sampling operation.
Each convolutional or transposed convolutional layer is followed by spatial batch normalization (BN) and a
rectified linear activation function (ReLU) to alleviate the gradient vanishing issue and increase training stability
(Zagoruyko and Komodakis 2016). The final convolutional layer applies the tanh function as the activation
function since the output range of the tanh function is (— 1 1) which is readily convertible into pixel values after
affine transformation (Karlik and Olgac 2011).

2.2.2. Discriminator network
Figure 2(c) shows the network architecture of the PatchGAN which is used as the discriminator in Pix2pix GAN
(Isola etal 2017). Compared with an ordinary discriminator mapping the input into a scaler using original GAN,
PatchGAN maps the input to a matrix, the entry of which represents the probability of real patch estimation in
the RF (Zhao eral 2019). The average value of the matrix elements is defined as the final output of the
discriminator, indicating the overall probability of real sample estimation. PatchGAN used in the proposed
method includes five4 x 4 convolutional layers to map the inputintoa30 x 30 probability matrix. The RF
dimensions of each entry of the matrixare4 x 4,7 x 7,16 x 16and 34 x 34 on the inputs from the
penultimate layer to the first layer, respectively. The discriminator finally classifies whether the 70 x 70 patch in
the input image is real or not.

The dimension of the RF within each layer is calculated as:

RF, = (RF11 — 1) X s; + K, (3

where RF; is the dimension of the RF, s; is the stride and K; is the kernel width of the ith convolutional layer. The
dimension of the RF within the final layer is the same as the kernel of the final convolutional layer (Araujo et al
2019). LeakyReLU is used as the activation function in PatchGAN since the LeakyReLU is less likely to lose
information than ReLU. Due to the small number of layers in the discriminator, the possible increase of network
complexity using LeakyReLU may not lead to a significant computational burden (Xu et al 2015).

2.2.3. Label image generation

We apply the paired mimicked scatter-contaminated projections and scatter signals generated using MDCT as
the sample and label in the training dataset to achieve high training performance since MDCT is of better image
quality and fewer artifacts compared with CBCT.

Alimited number of photons are used in the MC simulation due to the limitations of computer memory and
the calculation time. The noise level is too high in the projection data directly obtained from MC simulation
using the limited number of photons. Therefore, we apply Siddon’s fast ray-tracing forward projection
algorithm to accelerate the calculation of scatter-free line integral data (Siddon 1985). The noise-free projection
is generated using the exponential transformation on the line integral data. The Poisson noise is added into the
projection data to match the signal-to-noise ratio (SNR) of the reconstructed image close to that of the CBCT
image. The process of generating projection data can be defined as:

I, = Ipe™ ' + A1, “)

where I is the number of photons in the air scan, I is the line integral data generated using forward projection
and I, is the Poisson noise. \,, is the weighting factor to tune the intensity of additive Poisson noise so that the
SNR within the simulated and real CBCT images is consistent. \, is set as 0.9 in the head data simulation and is
setas 1.1 in the abdomen data simulation.

In this study, an open-source GPU-based MC software MC-GPU (code.google.com /archive/p/mcgpu/) is
applied to perform the MC simulation due to its high computational efficiency (Badal and Badano 2009). The
MC-GPU code applies the PENELOPE 2006 which is a code system for MC simulation of electron and photon
transport to achieve the interaction between the photons and the object and the Woodcock tracking algorithm
to compute the trajectories of the photons. The object in the MC-GPU is described as a combination of voxels of
different materials and mass densities. The photons treat each voxel as a uniform medium composed of the same
material. In the simulation, to directly apply the MDCT images as the object into the MC-GPU program, we
choose a straightforward hard-threshold segmentation to achieve the voxelization of the object and the template
image composes of air, adipose, muscle and bone. The side effect of segmentation error is minimized due to the
dominantly low-frequency distribution of the scatter signal in the projection domain. The spectra in the MC
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simulation for each MDCT dataset are the same as those in the actual scanning process. The spectra are
estimated using the measurement-based spectrum estimation method proposed by Zhao et al (2014).

The noise appears in the simulated scatter signal and degrades the accuracy of the scatter estimation. We thus
apply the two-dimensional (2D) Gaussian filtration method to smooth the simulated scatter distribution
(Zbijewski and Beekman 2006). To accelerate the calculation, the logarithm of the Gaussian function is applied
to convert the nonlinear to quadratic polynomial process. The 2D Gaussian function is defined as:

— 2 _ _ _ 2
s(x, y) = (Zwalaz\/l—pz)lexp( ! ((x 2#1) _ ey = ) + 54 2#2) )),

2(1 — p?) oj 010, lop

5

where 0y and o, are the standard deviations of the distributions in x and y directions, i, and p, are the
expectation of the distributions and p is the correlation coefficient of these two directions. After the logarithmic
operation, the fitting function is converted to the following quadratic form as:

1
f&x, ) = In(s(x, y)) = —In (2moioa41 — Pz) - 2(17—02)
_ 2 2 _ _ _ 2
x((x 2”1) _ plx — p)(y — py) + (y ;‘2) ) 6)
01 010 o5
These fitting parameters are calculated using the least square method. The least-squares method finds the
optimal parameters in equation (6) by minimizing the sum of squared residuals between equation (6) and the
scatter distribution S. The sum of squared residuals is defined as:
X v

R(Sa f(x) )’)) - ZZ(S _f(x’ )’))2» (7)

x=1y=1

where (X, Y) is the dimension of the scatter distribution. R(S, f (x, y)) is minimal when the partial derivative of
the R(S, f (x, y))is zero. After the noise suppression, the estimated scatter signal has a high SNR while
maintaining the corrected profile.

2.2.4. Model training

When the network is determined, the generator can be estimated by the optimization of aloss function. The
fidelity term is generated using the output of the discriminator. The least absolute deviation (L1) term is used as
the regularization item to solve the overfitting problem. The entire loss function of the Pix2pix GAN is defined
as:

G* = arg minG maXDELSGAN(G, D) + )\ELl(G), (8)

where X is the coefficient of the regularization term and set as 100.0 in this work to eliminate the overfitting
while ensuring the convergence of the loss function. £;56an(G, D) represents the loss function of the least-
square GAN. Compared with the conventional sigmoid cross-entropy loss function used in the original GAN,
the proposed method with the least-square (LS) form achieves higher-quality image generation and more stable
training since it penalizes the fake samples and overcomes the gradient vanishment problem (Mao et al 2017).
Lrscan (G, D)is defined as Mao etal (2017):

M M
Lisean(G, D) = LZ (D) L))+ LZ [(DEj, GUj) — 17, ©)
M M
where M is the total number of training datasets, D (W) is the output of the discriminator. I; ; and I ; are the jth
scatter-contaminated projection and scatter signal, respectively.
The L1 regularization term is incorporated to constrain the difference between the generated and the real
images while maintaining the boundary of the object in the image (Geng et al 2020):

M
L0(G) = ﬁZUsi ~ Gl (10)
i=1

The adaptive moment estimation (Adam) algorithm (Kingma and Ba 2014) is applied as the solver to
optimize the loss function to determine the parameters of each convolutional layer in the G and D.

2.3. Dataset

The MDCT images of abdominal and head patients are applied to train the proposed model. The MDCT data of
the abdominal patient are obtained from Philips Brilliance Big Bore CT scanner with the tube voltage of 120
kVp. Dual-energy CT data of the head patient are acquired from Siemens SOMATOM Definition Flash scanner

7



10P Publishing

Phys. Med. Biol. 67 (2022) 115003

Table 1. Parameters of MDCT and CBCT data acquisition.

Y Jiang et al

MDCT parameters Philips brilliance big bore CT Siemens SOMATOM definition flash
Anatomical site Abdomen Head

Scan mode Helical Helical

Scan voltage (kVp) 120 80,140

# of patients 17 12,12

# of images in the training dataset 18 600

CBCT parameters Trilogy Tabletop CBCT system
Anatomical site Abdomen Head phantom

Scan mode Half-fan Full-fan

Scan voltage (kVp) 125 75,100,125

Bowtie filter Yes No

Detector shifted (mm) 148 0

Source to detector distance (mm) 1500 1300

Source to axis distance (mm) 1000 1000

Detector dimension (pixels) 1024 x 768 2816 x 2816

Pixel size (mm) 0.388 0.154

# of patients for test 20 1

using 80 and 140 kVp tube voltages. The training dataset is composed of 15 sets of 120 kVp abdominal images,

ten sets of 80 kVp and ten sets of 140 kVp head images. The validation dataset has two sets of 120 kVp abdominal
images, two sets of 80 kVp and two sets of 140 kVp head images.

CBCT projection data of abdominal patients and phantom are acquired to test the performance of the
proposed method. Abdominal projection data are acquired using the OBl installed on the Varian Trilogy
treatment system with the tube voltage of 125 kVp (Varian Medical Systems, Palo Alto, CA, USA). We collect 20
patients’ data to evaluate the performance of the proposed method. The CBCT projection data of a head
phantom is acquired from our customized tabletop CBCT imaging system which consists of the x-ray tube from
Varian Medical Systems (Rad94, www.varian.com) and the detector from Careray Corp. (1800RF, cn.careray.
com). The scanning tube voltages of the head phantom are 75 kVp, 100 kVp and 125 kVp, respectively. We also
obtain the MDCT data of the head phantom from the Siemens SOMATOM Definition Flash scanner at the same
kVps as the CBCT scans for a side-by-side image quality comparison instead of for model training. The purpose
of this operation is to obtain the ground truth to evaluate the quality of the corrected images. The scanning
parameters of both MDCT and CBCT data acquisition are listed in table 1.

For the abdominal site, the data is first downsampled from 1024 x 768 to 256 x 192 and then resize to
256 X 256 using zero padding operation. The head data is downsampled from 2816 x 2816 to 256 x 256.
Image gray values are normalized to [0 1] using the Min—Max scaling method (Kahng et al 2002) during the
training and testing process.

3. Evaluation

3.1.Implementation details

The proposed model training is implemented using PyTorch (www.pytorch.org), an open-source python
machine learning library based on Torch (Paszke et al 2019) and an official Pix2pix project that Isola et al
proposed in Isola et al (2017). The training and testing processes are implemented on a GPU workstation with
128 GB mainboard memory, Intel i7- 9700 K CPU and a single GeForce RTX 2080Ti graphics card with 11 GB
graphic memory. The momentum parameters are setas 3; = 0.5and 3, = 0.999. The epoch number is set as
400 to guarantee the convergence. In the first 150 epochs, the learning rate is set as a fixed value 0f 0.0002. In the
following 250 epochs, the learning rate gradually decreases to zero to ensure the network convergence to alocal
minimum and avoid oscillation (You et al 2019). Due to the memory limitation, the batch size is set as eight in
the model training.

The MC simulation is also implemented in this workstation. To balance the calculation complexity and the
scatter estimation accuracy, the number of photons simulated within each projectionissetas 1 x 10%.In the
training data generation, the number of calculated projections for each MDCT dataset is 600. They all use the
same list of projection angles which is equally spaced between [0 360) degrees.
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Table 2. Trained models applied in the comparison study. RF means receptive field and LS means least square loss function.

Model Generator Discriminator Loss function
1 U-net RF=70 x 70 LS

2 Resnet-3blocks RF=70 x 70 LS
3(proposed) Resnet-6blocks RF=70 x 70 LS

4 Resnet-9blocks RF=70 x 70 LS

5 Resnet-6blocks RF=1 x 1 LS

6 Resnet-6blocks RF=256 x 256 LS

7 Resnet-6blocks RF=70 x 70 Sigmoid

3.2. Comparison study

In the comparison study, we evaluate the various configurations of loss functions and network structures of the
generator and the discriminator. In the proposed projection-to-scatter transformation, we perform two
comparison studies to choose the optimal generator. The U-net and Resnet are applied as the generators
individually to compare the performance of scatter correction of the trained model. Resnet with different
network depths are further compared to determine the optimal depth to achieve a trade-off between
computational accuracy and efficiency. In this study, we choose the number of residual blocks as three, six and
nine in the Resnet generator, respectively, while keeping the PatchGAN intact as the discriminator.

The discriminators with different dimensions of RFs are compared to determine the optimal RF and achieve
atrade-off between the computational accuracy and training difficulty. We apply PatchGAN with RF = 1 X 1,
RF = 70 x 70and RF = 256 x 256 as the discriminator, while keeping the Resnet with six residual blocks
intact as the generator.

Compared with the sigmoid cross-entropy loss, the LS loss function achieves higher-quality image
generation and a more stable training process since it penalizes the fake samples and overcomes the gradient
vanishment problem (Mao et al 2017). To further verify this claim, we compare the results corrected by models
trained with the LS and the sigmoid cross-entropy loss when the generator is a Resnet with six residual blocks
and the discriminator is the PatchGAN with RF = 70 x 70.

The projection and scatter data of head patients at 80 kVp are used as the training dataset to train the single-
spectral model to compare the imaging performance with the proposed method. The network is the same as the
proposed method for a fair comparison.

The trained models in the comparison study are summarized in table 2. In the model training, we maintain
the same training dataset, hardware configuration, optimizer architecture, decay rate and the number of epochs
to ensure a fair comparison.

3.3. Image quality metrics

The root of mean square error (RMSE), the Pearson correlation coefficient (PCC) (Biguri et al 2016), the mean
structural similarity index (SSIM) (Nomura et al 2019, Lalonde et al 2020) and spatial nonuniformity (SNU) are
selected to evaluate the correction performance of the proposed method. In all studies, the RMSE, PCC and
SSIM are calculated based on the white rectangle area and the whole image and the SNU is calculated based on
six ROIs selected in the uniform areas. In the evaluation of the correction results of the mimicked scatter-
contaminated MDCT, the metrics are calculated between the corrected and the original MDCT images. In the
evaluation of the CBCT scatter correction, the metrics are calculated between the corrected CBCT images and
the corresponding high-quality MDCT images for the head phantom and the CBCT images corrected by MC
simulation for abdominal patient data. The RMSE which indicates the squared differences of pixel intensities of
two images is defined as:

1 m
RMSE = \/22(%:’ - ﬂgi)z: (11)
i=1

where i is the index of the pixel in the selected ROI, 7 is the total number of the pixels in the ROI, 1, ; is the HU
value of the ith pixel in the corrected CT image using the proposed method and 4., ; is the HU value of the ith
pixel in the ground-truth image.

The PCCis an index to measure the linear dependence between two images and is calculated as:

Z:il(ufi - ILTC)(/’Lgl - E)

- -

where 7z; and [z, are the mean values of the selected ROl in the corrected and ground-truth images, respectively.

(12)
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(a) 80 kVp Scatter-contaminated

A

[-50 250] HU for 140 kVp

Figure 3. The axial, coronal, and sagittal views of the head patient validation data: (a) mimicked scatter-contaminated image at 80
kVp, (b) corrected CT image at 80 kVp, (c) the reference MDCT image at 80 kVp, (d) corrected CT image at 140 kVp and (e) the
reference MDCT image at 140 kVp. Displace window is [-250 50] HU for (a), [50 350] HU for (b), (c) and [—50 250] HU for (d), (e).

The SSIM indicates the similarity of two images regarding intensity, contrast and structure. It is proposed to
provide a good approximation of perceptual image quality and is defined as:

QR + Q2o + Co)
(B + 2 + Q)0 + 0 + C)

SSIM = (13)

where C; = 0.01 x dand C, = 0.03 x d are the small constants to avoid instability of SSIM calculation. Here
d is the dynamic range of the pixel values in the ROI of the corrected image. o, and oy are the standard deviations
of the selected ROIs in the corrected CT image and the ground-truth image, respectively. o, is the covariance
between the corrected image and the ground-truth image.

To demonstrate that our method can maintain the image uniformity, the SNU is used as a quality metric and
defined as:

H Umax — []min

x 100%. (14)
1000

SNU:’
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Figure 4. One-dimensional profiles along the red line in figure 3(e). (a) is for the 80 kVp study and (b) is for the 140 kVp study.

Table 3. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the head validation data at
80 and 140 kVps. The values outside brackets are calculated on the white rectangle in figure 3(e) and
the values in the brackets are calculated based on the whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected-80 kVp 603.4(506.5) 0.1156(0.9075) 0.1007(0.6691) 9.06%
Corrected 6.2(27.3) 0.9461(0.9995) 0.9473(0.9993) 5.26%
Reference 0 1 1 4.39%
Uncorrected-140 kVp 355.4(226.9) 0.0264(0.9730) 0.0354(0.9021) 6.11%
Corrected 4.5(18.5) 0.9914(0.9996) 0.9911(0.9995) 2.13%
Reference 0 1 1 2.69%

HU,.x and HUp;, are the maximum and the minimum of the mean values of the six ROIs selected in the
uniform areas.

4. Results

4.1.Head study

4.1.1. Validation dataset using MDCT

Figure 3 shows the axial, coronal, and sagittal views of the mimicked scatter-contaminated, the corrected and the
reference MDCT images which are selected from the validation dataset of the head patient at the kVps of 80 and
140. We only show the mimicked scatter-contaminated image of 80 kVp for comparison. The one-dimensional
(1D) profiles along the vertical red line in figure 3(e) are shown in figure 4. We select the region contoured by the
white rectangle in figure 3(e) and the whole image to calculate the image quality metrics and the results are listed
in table 3. The evaluation metrics on the whole image are listed in parentheses. The RMSE of the corrected image
is reduced from 603.4 HU (506.5 HU) to 6.2 HU (27.3 HU) for 80 kVp data and from 355.4 HU (226.9 HU) to
4.5HU (18.5 HU) for 140 kVp data. The PCCs between the corrected and the reference images are 0.9461
(0.9995) and 0.9914 (0.9996) while they are 0.1156 (0.9075) and 0.0264 (0.9730) before correction for the 80 kVp
and 140 kVp data, respectively. The SSIMs of the corrected images of 80 and 140 kVp data are close to the ground
truth, indicating that the anatomy in the image is not altered after the proposed scatter correction. The SNU is
calculated based on the six ROIs shown in figure 3(a). The SNUs of the scatter-contaminated, corrected and the
reference images are 9.06%, 5.26% and 4.39% in the 80 kVp study, and 6.11%, 2.13% and 2.69% in the 140 kVp
study, respectively.

4.1.2. Testing data using CBCT

Figure 5 shows the axial, coronal, and sagittal views of the uncorrected, the corrected and the reference images of
the CBCT data of a head phantom whose scanning kVps are 75, 100 and 125. We only show the uncorrected and
reference images at 75 kVp. We apply the registered MDCT as the reference image in the head phantom study.
1D profile along the vertical red line in figure 5(e) is shown in figure 6. The ROI enclosed by the white box in
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(a) 75 kVp Uncorrected

(d) 125 kVp Corrected
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Figure 5. The axial, coronal, and sagittal views of the head phantom CBCT data: (a) uncorrected image at 75 kVp, (b)—(d) corrected
image at 75 kVp, 100 kVp, 125kVp and (e) the reference MDCT image at 75 kVp. Displace window is [-150 400] HU for all.

{a) 7S kVp (b) 100 kVp (¢} 125 kVp
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Figure 6. One-dimensional profiles along the red line in figure 5(e). (a): 75 kVp, (b): 100 kVp and (c): 125 Vp.
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Figure 7. The axial, coronal, and sagittal views of the MDCT images of one patient in the validation dataset: (a) mimicked scatter-
contaminated image, (b) corrected image using the proposed method and (c) the reference MDCT image. Displace window is [ —250
300] HU forall.

Table 4. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the head phantom data at
75,100 and 125 kVps. The values outside brackets are calculated on the white rectangle in figure 5(e)
and the values in the brackets are calculated based on the whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected-75kVp 346.2(321.5) 0.1447(0.9520) 0.1253(0.9166) 13.77%
Corrected 37.7(51.0) 0.8612(0.9795) 0.8507(0.9778) 3.74%
Reference 0 1 1 0.64%
Uncorrected-100 kVp 287.9(230.2) 0.2007(0.9599) 0.1752(0.9107) 11.28%
Corrected 42.8(56.4) 0.8852(0.9818) 0.8424(0.9814) 1.56%
Reference 0 1 1 1.93%
Uncorrected-125 kVp 299.8(219.0) 0.2157(0.9745) 0.2274(0.9251) 10.24%
Corrected 34.8(45.7) 0.8765(0.9881) 0.8554(0.9872) 0.34%
Reference 0 1 1 0.95%

figure 5(e) and the whole image are used to calculate RMSE, PCC and SSIM. The six small ROIs in figure 5(a) are
used to calculate the SNU value. The quantitative results are listed in table 4. The RMSE of the corrected image is
reduced from 346.2 HU (321.5 HU) to 37.7 HU (51.0 HU), from 287.9 HU (230.2 HU) to 42.8 HU (56.4 HU)
and from 299.8 HU (219.0 HU) to 34.8 HU (45.7 HU) in the 75 kVp, 100 kVp and 125 kVp studies, respectively.
The RMSEs between the CBCT and MDCT images is more than 30 HU due to the energy spectra difference
between the two scanning devices. The PCCs between the corrected and the reference images are 0.8612
(0.9795),0.8852 (0.9818) and 0.8765 (0.9881) and are only 0.1447 (0.9520), 0.2007 (0.9599) and 0.2157 (0.9745)
before correction for 75 kVp, 100 kVp and 125 kVp data, respectively. The SSIM of the corrected image is close
to the ground truth, which indicates that the anatomy of the image is not altered after the proposed scatter
correction. The SNUs of the uncorrected image, corrected image and the reference image are 13.77%, 3.74% and
0.64% for 75 kVp data, 11.28%, 1.56% and 1.93% for 100 kVp data and 10.24%, 0.34% and 0.95% for 125 kVp
data, respectively.

According to the correction results of the above three groups of different scanning spectra, the proposed
method can eliminate most of the shading artifacts and improve the image quality of CBCT to be closer to the
high-quality MDCT.

4.2. Abdominal patient study

4.2.1. Validation data using MDCT

The corrected results using the MDCT image in the validation dataset of the abdominal patient are shown in
figure 7. The 1D profiles along the horizontal red line in figure 7(c) are shown in figure 10(a). The MDCT data of
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Figure 8. The axial, coronal, and sagittal views of the abdominal CBCT images of one patient whose corresponding MDCT is in the
training dataset: (a) uncorrected CBCT image, (b) corrected CBCT image using the proposed method and (c) the reference CBCT
image using MC simulation. (d) The original projection, the predicted scatter signal and the MC estimated scatter signal. Displace
window is [—-250 300] HU for (a)—(c) and [0 2400] detector intensity for (d).

Table 5. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the MDCT in the
validation dataset. The values outside brackets are calculated on the white rectangle in
figure 7(c) and the values in the brackets are calculated based on the whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected 259.4(143.9) 0.1656(0.9793) 0.1594(0.9402) 12.01%
Corrected 12.7(15.8) 0.9074(0.9901) 0.9082(0.9812) 4.84%
Reference 0 1 1 2.71%

this patient is not involved in the model training. The results of the image quality metrics are listed in table 5. The
RMSE between the scatter-contaminated image and the reference image is 259.4 HU (143.9 HU) while
decreasing to 12.7 HU (15.8 HU) after the proposed correction. The PCC increases from 0.1656 (0.9793) to
0.9074(0.9901) and SNU reduces from 12.01% to 4.84% while maintaining the anatomy after the proposed
correction.

4.2.2. CBCT scatter correction

Figure 8 shows the results of the correction results of the abdominal CBCT. The reference image is the CBCT
image corrected by the MC simulation method. The 1D profile along the horizontal red line in figure 8(c) is
shown in figure 10(b). The quality of the CBCT image is greatly improved after correction using the proposed
method. The results of the image quality metrics are listed in table 6. The original projection, the predicted
scatter signal and the MC estimated scatter signal are shown in figure 8(d). The RMSE of the corrected CBCT
image is reduced from 186.3 HU (100.7 HU) to 11.8 HU (25.0 HU) compared with the image without
correction. The PCC between the corrected image and the reference image is 0.8409 (0.9976) while it is only
0.3229 (0.9738) before correction. The SSIM of the CBCT image promotes from 0.3178 (0.9814) to 0.8386
(0.9971) and the SNU reduces from 11.17% to 6.85% after correction. We collect CBCT data of another 15
abdominal patients and performed scatter correction using the proposed method to verify that the training
dataset is large enough. We compare the correction results with the MC-based method. The RMSEs of the
proposed method are reduced from 200 HU to around 25 HU in this fifteen-patient study.
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Figure 9. The axial, coronal, and sagittal views of the abdominal CBCT images of one patient whose corresponding MDCT is in the
validation dataset. (a) Uncorrected CBCT image, (b) corrected CBCT image via Pix2pix GAN with a U-net generator, (c) the corrected
CBCT image via the proposed method and (d) the reference CBCT image via MC simulation. (e) The absolute differences between the
reference CBCT image and (e-1) uncorrected CBCT image, (e-2) the corrected CBCT image via Pix2pix GAN with a U-net generator,
(e-3) the corrected CBCT image via the proposed method. Displace window is [—250 300] HU for (a)—(d) and is [0 50] HU for (e).

Table 6. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the abdominal
CBCT whose corresponding MDCT is in the training dataset. The values outside brackets
are calculated on the white rectangle in figure 8(c) and the values in the brackets are
calculated based on the whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected 186.3(100.7) 0.3229(0.9738) 0.3178(0.9814) 11.17%
Corrected 11.8(25.0) 0.8409(0.9976) 0.8386(0.9971) 6.85%
Reference 0 1 1 5.60%

4.3. Comparison study

4.3.1. U-net and Resnet

To demonstrate the advantages of our method, the abdominal CBCT whose corresponding MDCT is in the
validation datasets is used to quantitatively evaluate the performances of the proposed network and the Pix2pix
GAN with a U-net generator. Figure 9 shows the CBCT images corrected using the two schemes and the MC
simulation as the reference. The 1D profile along the horizontal red line in figure 9(d) is shown in figure 10(c).
The absolute differences between the corrected image and the reference image are shown in figure 9(e). It can be
seen from the residual image that the difference between the proposed method and the reference image is
smaller compared with the Pix2pix GAN with the U-net generator method especially in the area pointed by the
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Figure 10. The one-dimensional profiles along the red line. (a) is in figure 7(c), (b) is in figure 8(c) and (c) is in figure 9(d).

white arrow in figure 9(e-3). The results of the image quality metrics are listed in table 7. The Pix2pix GAN with a
U-net generator produces streaking artifacts after correction due to the incorrect scatter estimation. U-net
obtains higher segmentation accuracy by classifying each pixel which is more suitable for medical image
segmentation. The RMSEs of the corrected CBCT images are 21.2 HU and 16.3 HU using the Pix2pix GAN with
U-net generator and the proposed method while the SNUs are 10.47% and 8.72%. The proposed Pix2pix GAN
with the Resnet generator achieves higher accuracy in scatter estimation than that with the U-net generator.

4.3.2. The number of residual blocks in Resnet

Another abdominal CBCT whose corresponding MDCT is not in the training datasets is used to quantitatively
evaluate the performances of the Pix2pix GAN with the Resnet generator of different numbers of residual blocks.
Figures 11(b)—(d) show the CBCT images corrected using the three generators with three, six and nine residual
blocks. The absolute differences between the corrected image and the reference image are shown in

figures 12(a)—(c). The results of the image quality metrics are listed in table 8. As shown in the absolute difference
maps, the nine-block Resnet achieves the best scatter estimation while the three-block Resnet is of the worst
performance compared with the reference. The generator with six blocks has the same performance compared
with the nine-block one using a much lower computational cost. We therefore apply the six-block Resnet as the
generator in this study since it only needs two-thirds of the training time of the nine-block Resnet.

4.3.3. Discriminator parameters

Figures 11(c), (e), (f) show the CBCT images corrected using the discriminators with different dimensions of RF.
The absolute differences between the corrected image and the reference image are shown in figures 12(b), (d),
(e). Using the PatchGAN with RF = 70 x 70, the difference between the corrected image and the reference
image is the smallest compared with the RF = 1 x landthe RF = 256 x 256.

4.3.4. Least-square loss and sigmoid loss

The abdominal CBCT data is used in the comparison study of the least-square loss and sigmoid cross-entropy
loss. The corrected image of the sigmoid loss is shown in figure 11(g). The absolute difference between the
corrected image and the reference image is shown in figure 12(f). Using the least-square loss as the loss function
for model training, RMSE is reduced from 32.1 to 21.5 HU compared with that using the model trained by
sigmoid cross-entropy loss.

4.3.5. Single-spectral and multiple-spectral models

The mimicked scatter-contaminated MDCT of head in the validation datasets is used to quantitatively evaluate
the performances of the multiple-spectral model and the single-spectral model. Figure 13 shows the axial views
of the mimicked scatter-contaminated, the corrected and the reference MDCT images which are selected from
the validation dataset of the head patient at the kVps of 80 and 140. It can be seen from the residual image that the
single-spectral model has a similar performance compared with the proposed method in the results of the head
patientat 80 kVp (0.5 HU difference in RMSE). The results of the image quality metrics are listed in table 9. In
the 140 kVp head-patient study, the single-spectral model does not work very well since the overcorrection
artifacts are produced while reducing the scatter artifacts compared with the proposed model. The proposed
multiple-spectral model can be applied to the CBCT dataset which has different scan modes and spectra.
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Figure 11. The axial views of the abdominal CBCT images of one patient whose corresponding MDCT is not in the training dataset. (a)
Uncorrected CBCT image, (b)—(g) corrected CBCT images via Pix2pix GAN with different network parameters and (h) the reference
CBCT image via MC simulation. Displace window is [—200 100] HU for (a) and [—-100 200] HU for (b)—(h).

Table 7. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the abdominal
CBCT images in the comparison study. The values outside brackets are calculated on the
white rectangle in figure 9(d) and the values in the brackets are calculated based on the

whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected 216.2(101.3) 0.0891(0.9941) 0.0811(0.9815) 17.88%
p2p U-net 21.2(41.5) 0.7088(0.9957) 0.7286(0.9952) 10.47%
p2p Resnet 16.3(31.9) 0.8090(0.9958) 0.8086(0.9956) 8.72%
Reference 0 1 1 8.48%

5. Discussion

In this paper, we propose a generalized image quality improvement strategy of CBCT using the multiple spectral
MDCT labels. The proposed method learns the model using the Pix2pix GAN which combines the six-block
Resnet as the generator and the PatchGAN as the discriminator to translate the scatter-contaminated projection
to the scatter signal. In the head and abdominal patient studies, the proposed model achieves accurate scatter
estimation and produces high-quality CBCT images in the projection domain.

The novelty of this study is reflected in four-folds. First of all, the x-ray energy spectrum is an important
parameter to affect the estimated scatter distribution in model training. Different from other studies only
working on the scatter estimation at a single spectrum, the proposed method achieves multiple spectral CBCT
scatter estimation. Secondly, the proposed model is suitable for the CBCT with various imaging volumes and
multiple scanning modes. For example, on the OBI system in the Trilogy, a single model we generated achieves
the scatter correction for the CBCT data obtained by the half-fan and full-fan modes. Thirdly, we apply the
projection-to-scatter transition to estimate the scatter distribution from the raw projection. Compared with the
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Figure 12. The absolute differences between the reference CBCT image. Displace window is [0 50] HU for all.

Table 8. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the abdominal CBCT images in the
comparison study. The values outside the brackets are calculated on the white rectangle in figure 11(h) and the
values in the brackets are calculated based on the whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected 212.5(105.0) 0.4631(0.9816) 0.4445(0.9604) 13.21%
3blocks+RE = 70 x 70 23.4(45.8) 0.8670(0.9965) 0.8466(0.9945) 4.82%
6blocks + RF = 70 x 70 21.5(44.4) 0.8794(0.9967) 0.8663(0.9951) 4.44%
9blocks + RF = 70 x 70 17.9(43.9) 0.8702(0.9968) 0.8535(0.9951) 4.36%
6blocks + RE =1 x 1 30.8(46.6) 0.8496(0.9962) 0.8382(0.9944) 4.74%
6blocks + RF = 256 x 256 21.1(44.8) 0.8393(0.9966) 0.8258(0.9937) 4.93%
6blocks + RE = 70 x 70+sigmoid 32.1(48.7) 0.8519(0.9958) 0.8400(0.9604) 5.14%
Reference 0 1 1 4.56%

image-to-image mapping and the projection-to-projection mapping, the proposed method ensures no
anatomical structure deformation of the reconstructed image during the scatter correction process due to the
dominantly low-frequency behavior of scatter distribution. No extra image processing technique, e.g. image
registration, is required to operate on the sample and label. Finally, the proposed method is a post-processing
and real-time scatter correction scheme based on deep learning. It does not increase the radiation dose to the
patient nor does it modify the existing hardware of the CBCT system. After the model training, real-time scatter
estimation capability accelerates the generation of high-quality CBCT images for advanced CBCT-guided
radiation therapy including patient setup time reduction, physical and psychological patient stress decreasing
and accuracy and efficiency improvement.

Although the proposed method can effectively correct the scatter-induced artifacts in CBCT images, it still
needs improvement in our future work. The scanning spectra of the MDCT and CBCT for the same imaging
volume size are generally different. The spectral discrepancy may lead to inaccurate scatter estimation and
residual artifacts in the image. For example, in the correction results of the head phantom at 125 kVp (see
figure 5(d)), the scatter artifacts are over-corrected as shown in the sagittal and coronal views. Ideally, the MDCT
data in the training dataset should be scanned using multiple spectra. Due to the radiation dose limitation, the
patient cannot be repeatedly scanned in the hospital. In future, we plan to use phantoms for MDCT imaging
under different x-ray energy spectra to construct multiple spectral training dataset. These datasets can be used to
train a generalized scatter correction model by the proposed network. Without increasing the radiation dose to
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Figure 13. The axial views of the head patient validation images using: (1) mimicked scatter contamination, (2) the single-spectral model,
(3) using the proposed method, (4) the reference. (a) 80 kVp images, (b) the difference image of 80 kVp, (c) 140 kVp images, (d) the
difference image of 140 kVp. Displace window is [50 350] HU for (a2)—~(a4), [—50 250] HU for (c2)—~(c4) and [0 50] HU for (b) and (d).

Table 9. Comparison of the RMSE, PCC, SSIM and SNU evaluated using the head patient validation
data in the comparison study. The values outside of the brackets are calculated within the white
rectangle in figure 1(d) and the values in the brackets are calculated based on the whole image.

RMSE(HU) PCC SSIM SNU
Uncorrected-80 kVp 603.4(506.5) 0.1156(0.9075) 0.1007(0.6691) 9.06%
Single spectral 5.7(25.7) 0.9518(0.9997) 0.9517(0.9995) 5.18%
Multiple spectral 6.2(27.3) 0.9461(0.9995) 0.9473(0.9993) 5.26%
Reference 0 1 1 4.39%
Uncorrected-140 kVp 355.4(226.9) 0.0264(0.9730) 0.0354(0.9021) 6.11%
Single spectral 27.9(44.5) 0.8812(0.9921) 0.8921(0.9925) 3.76%
Multiple spectral 4.5(18.5) 0.9914(0.9996) 0.9911(0.9995) 2.13%
Reference 0 1 1 2.69%

the patient, an accurate and precise multiple spectral model can be trained for the scatter correction in clinical
CBCT imaging.

In addition to scatter contamination, beam hardening effect is another issue degrading CBCT image quality
with similar shading artifacts as scatter signals. In our previous work, we propose a beam hardening artifacts
correction algorithm in the line-integral domain. This method estimates the polychromatic and monochromatic
spectra. The scaled difference of the monochromatic reprojection data and the polychromatic reprojection is
added to the raw line-integral data to achieve beam-hardening artifacts correction (Zhao et al 2018). This work
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can be transformed from the line-integral domain into the projection domain. In future, we can combine the
estimation of scatter artifacts and beam-hardening artifacts to design a model that can be used for the correction
of both beam hardening artifacts and scatter artifacts.

6. Conclusion

The proposed method applies the multiple spectral MDCT labels and the Pix2pix GAN to construct the multiple
spectral scatter estimation model. The Pix2pix GAN combines the Resnet as the generator and the PatchGAN as
the discriminator to set up the correspondence between the scatter-contaminated projection and the scatter
distribution. It achieves excellent performance in scatter estimation and correction to maintain the anatomy of
the patient. The proposed method does not require the increase of the radiation dose to the patient, nor does it
modify the existing hardware of the CBCT system and is thus practical to be implemented in clinical
applications.
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