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Abstract

Purpose. This study aims to develop and validate a multi-view learning method by the combination of
primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status
in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC
patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection
approach including Pearson correlation analysis and supervised feature selection method based on
test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics
features respectively. Two types of discriminative features were then learned by an unsupervised
multi-view partial least squares (UMVPLS) for a latent common space on which alogistic regression
classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-
dimensional latent common space, area under receiver operating characteristic curve (AUC),
precision, accuracy, recall and F1-score are 0.9531 4 0.0183,0.9260 + 0.0184,0.9136 &+ 0.0174,
0.9468 + 0.0106 and 0.9362 =+ 0.0125 for the training cohort respectively, and 0.8984 + 0.0536,
0.8671 + 0.0489,0.8500 + 0.0599,0.9118 + 0.0550 and 0.8882 + 0.0440 for the validation cohort
respectively (reported as mean + standard deviation). It shows a better discrimination capability than
single-view methods, our previous method, and eight baseline methods. When the dimension was
reduced to 2, the model not only has effective prediction performance, but also is convenient for data
visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor
and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view
learning has great potential for guiding the prognosis and treatment decision-making in GC.

1. Introduction

Gastric cancer (GC) is the fifth most common malignant tumor and the fourth leading cause of cancer-related
death globally (Sungefal 2021). Lymph node (LN) metastasis (LNM) determines the extent of LN dissection and
is one of the main independent prognostic factors in GC (Forman and Burley 2006, Cho et al 2007, Lum et al
2020). Patients with occult LNM not diagnosed by histological examination had a significantly poor prognosis
compared to those without occult LNM (Huang et al 2013). Therefore, it is of great significance to evaluate the
LN status for the improvement of prognosis in patients with GC.

In clinic, postoperative factors represented by tumor size, histological types and lymphovascular invasion
have been identified as risk factors of LNM on GC patients (Shang-Guan et al 2018, Lin et al 2019). However,
nearly half of patients who undergo surgical resection will experience relapse (Sada et al 2019). Another strategy

© 2022 Institute of Physics and Engineering in Medicine


https://doi.org/10.1088/1361-6560/ac515b
https://orcid.org/0000-0003-4181-3641
https://orcid.org/0000-0003-4181-3641
mailto:tyniu@qq.com
https://doi.org/10.1088/1361-6560/ac515b
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac515b&domain=pdf&date_stamp=2022-02-24
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac515b&domain=pdf&date_stamp=2022-02-24

10P Publishing

Phys. Med. Biol. 67 (2022) 055007 JYanget al

for evaluating the LN status can be relied on the comprehensive characteristics of primary tumors, but most of
them need to be obtained from postoperative pathological examination (Wang et al 2020). A noninvasive
medical strategy to avoid the risk and complications of operation is needed. Currently, computed tomography
(CT) is the most widely used imaging modality for the evaluation of LN in GC. It mainly relies on morphological
features, leading to unsatisfactory accuracy only at approximately 60% (Kim et al 2005a, 2005b, Lee et al 2010).
Thus, accurate preoperative prediction for LNM of GC patients is still a great challenge.

Radiomics is a process that automatically extract high-dimensional quantitative features from imaging data,
followed by further data analysis for clinical decision support (Lambin et al 2012, Gillies et al 2016, Larue et al
2017, Traverso et al 2018). Several works have shown that CT radiomics could facilitate the preoperative
individualized prediction of LN status in GC (Feng et al 2019, Jiang et al 2019, Wang et al 2020, Gao et al
2020a, 2020b). For example, Gao et al (2020a) utilized multivariate logistic regression analysis to build a CT-
based radiomics model for preoperative prediction of LNM in 463 early-stage GC patients, indicting good
predictive power in the training and testing cohort with AUC values 0of 0.91 and 0.89, respectively. Wang et al
(2020) constructed a radiomics nomogram to predict the LNM by using a random forest (RF) algorithm. Its
AUC values also showed good discrimination in 247 consecutive GC patients (training cohort, 0.886
(0.808—-0.941); testing cohort, 0.881 (0.759—0.956)). These studies mainly utilize tumor-only radiomics features
or integrate with a small amount of clinicopathologic features (e.g. CT-reported LN status, serum biomarkers, T
and N stage) to find non-invasive predictors of LNM. However, the occurrence of LN is accompanied by the
development and progression of primary tumor. Relying solely on tumor radiomics cannot thoroughly reflect
the heterogeneity underlying the complicated biological process of GC.

In addition to the above characteristics, our previous research found LN radiomics has the predictive power
for discriminating GC patients with or without LNM (Yang et al 2020). And the LNM of patients can be better
predicted by simply fusing primary tumors radiomics and LN radiomics. Wang et al (2021) also received
favorable predictive accuracy in predicting No.3 LNM in T1-2 GC patients by integrating quantitative radiomics
features of No.3 LN and primary tumors. These results suggest that the combination of tumor radiomics
features and LN radiomics features may capture more information of heterogeneity and explain latent
relationship between imaging characteristics and LNM risk in GC patients. Unfortunately, directly combining
the two together may not comprehensively describe the information, thus limits the ability to accurately predict
LN status.

2. Previous work and novel contributions

For LNM classification, tumor radiomics and LN radiomics could be considered as two views (data sources),
which can be complementary and redundant to each other. Considering different views may have different
number of features and are not directly comparable, how to effectively integrate information coming from
different views becomes an urgent problem to be solved.

Multi-view learning has been attracting broad attention for leveraging the data collected from multiple views
to overcome the limitations of single-view analysis (Sun 2013, Zhao et al 2017). In the field of medical image
processing, multi-view learning has been increasingly used to deal with machine learning problems (such as
segmentation (Liang et al 2020, Xia et al 2020), recognition (Wei et al 2019, Zhou et al 2021), and classification
(Fratello etal 2017, Puyol-Anton et al 2019, Xie et al 2019, Thammasorn et al 2021)) of high-dimensional data
represented by multiple distinct feature sets. There has been some related work with multi-view learning
methods to establish statistically significant correlations between radiomics and clinical endpoints. Li et al (2020)
presented a radiomics approach to design a multi-view network architecture for mammographic density
classification. Lee et al (2020) proposed a multi-view data analysis approach using radiomics and dosiomics
texture features in 388 patients with lung cancer radiotherapy to predict acute-phase weight loss. Nevertheless,
the methodological research of multi-view CT radiomics aiming at GC patients is still unclear.

To the best of our knowledge, there is no research studying in practical applications of multi-view learning in
GCat present. Herein, based on our previous study, we developed and validated a multi-view learning method
using both primary tumor radiomics and LN radiomics for the LNM prediction of GC patients. The specific
novel contributions of this work are as follows:

+ Multi-view learning technology is introduced into the field of GC radiomics for the first time. A multi-view
subspace learning method is utilized to exploit the complementarity of multi-view data at the decision level. It
could find a latent subspace shared by each view and fuse them together in a shared view.

+ Weextract radiomics features of primary tumor and LN and embed them into a unified framework. Two-step
feature selection method with an upper bound on the total cost used to access groups of features could remove
redundant information and retain relevant information between multi-view radiomics features.
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Figure 1. The flow diagram of each hold-out experiment in the study.

+ For the preoperative prediction of LNM in GC, our multi-view learning model could provide advantages
compared to processing the two branches separately. More useful information will be mined and the
heterogeneity could be well represented. As a noninvasive prediction tool, it has the potential to be applied to
other diseases to solve different clinical tasks.

3. Materials and methods

3.1. Patients

This study was approved by the Institutional Review Board of the Affiliated Hospital of Qingdao University
(Qingdao, China). The requirement for informed consent was waived. One hundred and seventy GC patients
who were treated surgically and confirmed pathologically at the hospital between May 2016 and April 2019 were
enrolled in this retrospective study. There are 113 LN positive (GC patients with LNM) and 57 LN negative (GC
patients without LNM) patients with contrast-enhanced abdominal CT images. The inclusion criteria are as
follows: (1) the imaging examination performs <2 weeks before surgical resection. (2) GC diagnosis is
histologically confirmed. (3) Lymphadenectomy is performed. (4) There are complete contrast-enhanced
abdominal CT images, clinicopathologic characteristics, and tumor marker examination. (5) No combined
malignant neoplasm, no distant metastasis, no preoperative neoadjuvant chemotherapy or radiotherapy are
permitted. (6) The data quality is satisfactory for analysis. The exclusion criteria are as follows: (1) patients
undergo preoperative treatments such as chemotherapy or radiotherapy. (2) Patients are diagnosed with
advanced GC which has spread to other parts of the body (such as liver, lung, brain and bone). (3) No surgical
resection or complete clinicopathologic characteristics. (4) Unclear CT images or imperfect preparation before
CT. CT scanning protocol of all patients were derived. More details can be found in our previous study using this
dataset for the first time (Yang et al 2020).

3.2. Study flow diagram

Five repeated random hold-out experiments were conducted in this study. In each hold-out experiment,
patients are randomly drawn from the dataset at a close to 7:3 ratio to form training cohort and validation
cohort. The flow diagram of the study for each hold-out experiment is shown in figure 1. The pipeline of this
study includes four main steps: data preprocessing, two-step feature selection, multi-view subspace learning,
and prediction. Data preprocessing mainly includes delineation of tumor volume of interest (VOI) and LN VOI,
interpolation, and feature extraction. Senior radiologists utilized an open-source imaging platform (ITK-SNAP,
version 3.6.0; www.itksnap.org) to delineate tumor VOI and LN VOI on CT scans. After interpolating into
isotropic voxel spacingof 1 x 1 x 1 mm?, radiomics features of tumor VOI and LN VOI were extracted using
PyRadiomics (van Griethuysen et al 2017) (more details shown in the previous work (Yang et al 2020)). Then
two-step feature selection is performed in the training cohort. Redundant tumor radiomics features and LN
radiomics features are removed using Pearson correlation analysis. Discriminative features are selected using a
supervised feature selection method to obtain tumor signature and LN signature. Next, a multi-view subspace
learning method takes patients with these two signatures and learns projection matrices for a latent common
space on which logistic regression classifier is trained. Finally, the model is tested in the corresponding validation
cohort.
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3.3. Two-step feature selection
Before feature selection, all tumor and LN VOI features were normalized using the Z-score normalization so that
all radiomics features have the same scale with zero mean and standard deviation via the formula
Xi,s — Hs

Os

i s = (D
where x; ; is the sth feature value of the ith patient, y, is the mean of the sth feature of all patients in the training
cohort, o is the deviation of the sth feature of all patients in the training cohort, and %; ; is the normalized sth
featrure value of the ith patient. The same formula is applied to the sth feature value of patients in the validation
cohort with the fixed 1, and o; obtained on the training cohort. In the following steps of the experiment, the
normalized tumor and LN radiomics features were used unless specific statements have been provided.

In the training cohort, we applied the two-step feature selection approach to both tumor VOI features and
LN VOI features to remove redundance for each type of inputs. Our goal is to select minimal number of features
that are discriminative without degradation of classification performance. These selected features are considered
as the radiomics signature for tumor and LN, respectively. To reach this goal, high correlated tumor VOI
features were first filtered out using Pearson correlation analysis (Meng e al 2019, Wang et al 2019). Then a
supervised feature selection method based on test-time budget (namely FSBudget) was designed to select tumor
radiomics signature for the differentiation between LN positive and LN negative patients. The same process was
conducted for LN VOI features and LN radiomics signature was also obtained.

Pearson correlation coefficient can be calculated for each pair of two radiomics features over either tumor or
LN VOI features. The larger the coefficient is, the higher the positive correlation of the two features will be.
Features with coefficients larger than a certain threshold are considered as redundant features and will be
eliminated. Pearson correlation analysis is an unsupervised learning approach, so it cannot differentiate
discriminative and non-discriminative features.

To select discriminative features, we took the FSBudget algorithm which learns a linear predictor by
introducing binary indicator variables for selecting groups of features with an explicit budget constraint to
upbound the total cost when the cost is available for each group. In our previous research (Wang et al 2018), a
general and efficient algorithm had been proposed to solve the relaxation problem by leveraging the existing
support vector machine (SVM) solvers with various loss functions. The FSBudget algorithm is a targeted
modification on the basis of the previous algorithm to focus on medical radiomics research. Mathematically,
FSBudget solves the following optimization problem

] 1 d W2 n d
min —» 75 + CY L(fi y): fi = > wixis
s=1

Orwbof 2577 05 i=1
+6, 37 (0, <B, 0. €(0,1),V5,i, Q@)

where (x;, y.)i— is the training cohort with 7 patients and d features, x; is the feature vector of the ith patient
with the sth feature x;;, . = 1for metastasis and 0 for non-metastasis,  is an indicator vector with entry as
either 0 or 1 for not selected or selected, respectively. In this study, each feature is treated as a group with uniform
cost 1, thatis ¢, = 1. The total budget B becomes the expected number of features to be selected. As FSBudget is
formulated with a general loss function L, it is easy to be adapted for different learning problems such as
classification and regression. Our study aims to find discriminative features for binary classification, so the hinge
loss is used. Given a training cohort, five-fold cross validation is conducted to select the optimal hyper-
parameter C in the grid {0.01, 0.1, 1, 10, 100} with respect to the classification accuracy.

3.4. Multi-view subspace learning and prediction

Our proposed unsupervised multi-view partial least squares (UMVPLS) (Wang and Li 2020) was utilized to learn
one function to model tumor signature and LN signature. Without loss of generality, let Xy be the view LN with
LN signature and X7y be the view of tumor with tumor signature. Each column represents one patient in the
training cohort. PLS aims to solve the following optimization problem

maxp,, p,, trace(Piy Xin Xty Prv): s.t.PLyPin = PiyPru = I 3)

where Py, Py are the projection matrix from the number of features to the dimension k of the latent common
space. Both inputs need to be centered so that the mean of # columns in X; and Xy are zeros. To solve
problem (3), the UMVPLS algorithm is used since it can guarantee the orthogonality constraints, and
simultaneously maximize the covariance in the common space by relying on proven numerical linear algebra
techniques, while existing methods often encounter numerical instabilities and offer no orthogonality guarantee
on view-specific projection matrices. Orthogonal projections not only possess the nice property of metric
preservation, but also provide a natural representation for data visualization similar to principal component
analysis (PCA), but on two views.
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In training phrase, we solve (3) using UMVPLS for the optimal Py and Pry. For any given patient, the LN
and tumor signatures (x;y and Xy, respectively) are projected to the common latent space via the following
formulas:

zin = Plyxin, 4

zru = Plyxqu. &)
Although two signatures are located in different feature spaces, both projected points reside in the same space.
For classification performance, the concatenation of two projected points (i.e. z = [z;n; z7y]) often shows better
performance, while the average value of two projected points (i.e. z = (z;y + z7y)/2) can be used for data

visualization. The logistic regression classifier is built on the common latent space with the concatenation of two
views using the training cohort.

3.5. Performance evaluation

In the validation phrase, both tumor signature and LN signature of the validation cohort were first projected to
the same latent common space via the learned projection matrices, and then the prediction was made by the
learned classifier. Finally, the performances on the training and validation cohorts were evaluated. The
discrimination performance was quantified by receiver operating characteristic (ROC) curve and area under the
curve (AUC). Various performance metrics including precision, accuracy, recall and F1-score, were also used to
measure the quality of the learned binary classifier. Here the evaluation indices are given by

TP

Precision = ————, (6)
TP + FP
Accuracy = P+ TN , ()
TP + TN + FP + FN
Recall = L, (8)
TP + FN
Fl 2 x TP ©)

 2x TP+ FP+FEN’

where TP is the number of the true positive, TN is the number of the true negative, FP is the number of the false
positive and FN is the number of the false negative.

4, Results

4.1. Dataset

A total of 170 patients were enrolled in this retrospective study, including 112 men (mean age, 61.61 years; age
range, 33—-90 years) and 58 women (mean age, 58.76 years; age range, 37—80 years). In each experiment, there
were 118 patients in the training cohort (consisting of 79 LN positive and 39 LN negative patients) and 52
patients in the validation cohort (consisting of 34 LN positive and 18 LN negative patients). After data
preprocessing and Z-score normalization, 1561 tumor radiomics features and 833 LN radiomics features were
obtained for each patient. These radiomics features mainly include three classes: shape, first order statistics and
texture features. Texture features contain gray level cooccurence matrix (GLCM), gray level run length matrix
(GLRLM), gray level size zone matrix (GLSZM), neigbouring gray tone difference matrix (NGTDM), and gray
level dependence matrix (GLDM) features.

4.2. Two-step feature selection

After removing redundant radiomics features, more than 200 tumor radiomics features (mean number, 255.2;
number range, 246—273) and more than 100 LN radiomics features (mean number, 190.2; number range,
187-194) were retained using Pearson correlation analysis with threshold 0.9. The numbers of these radiomics
features are shown in tables S1 and S2 (available online at stacks.iop.org/PMB/67/055007 /mmedia). FSBudget
with budget 40 was applied to these tumor and LN radiomics features to obtain ~40 optimal tumor radiomics
features and ~40 optimal LN radiomics features as tumor signature and LN signature individually. Details of the
tumor signature and the LN signature are given in tables S3 and S4. Note that FSBudget does not return exactly
40 tumor radiomics features (mean number, 40.6; number range, 40—41) or LN radiomics features (mean
number, 40.8; number range, 40—42), but very close to the budget cost. Further observation of each feature class
indicates that there are great differences at five hold-out experiments. Tumor-only model or LN-only model
with logistic regression classifier was constructed using the radiomics signature of tumor or LN. In the training
cohort, the overall AUC values (reported as mean + standard deviation), are 0.8522 + 0.0242 and

0.9109 =+ 0.0317 for the tumor-only and LN-only models respectively. The overall AUC values of the validation

5


http://stacks.iop.org/PMB/67/055007/mmedia

10P Publishing

Phys. Med. Biol. 67 (2022) 055007 JYanget al

Sensitivity
Sensitivity
Sensitivity

—— Training cohart (AUC = 0.9318] e —— Training cohort (AUC = 0.9739) e —— Training cohort {AUC = 0.9516)
Validation cohort (AUC = 0.9395) ’.-‘ Validation cohort (AUC = 0.8660) ’,-‘ Validation cohort (AUC = 0.9444)

0.8 1.0 0.0 02 06 08 1.0

08 1.0 0.0 0z 0.4
1-Specificity

0.4 06
1-Specificity
e

0.4 06
1-Specificity

1.0 e p— r 1.0
08 o 08
F Z
= i
@ @
g g
g 0a » w04
02 02 -
—— Training cohort (AUC = 0.9422) o —— Training cohort (AUC = 0.9598)
, Validation cohort (AUC = 0.9216) ,-” Validation cohort (AUC = 0.8203)
0.0 0.0
0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 0.8 1.0
f 1-Specificity g 1-Specificity
098
0.7 0.93 T
0.96
0.90
095
0.94
0.85
0.93
o
0.92
0.80
091 ]
0.90 0.75 1 °
AUC Precision Accuracy Recall Fl-score AUC Precision Accuracy Recall Fl-score

Figure 2. Performances of the UMvPLSR_20 model by five repeated random hold-out experiments. (a) to (e) are the ROC curves of
Experiment 1 to Experiment 5. (f) and (g) are the boxplots of five performance metrics in the training and validation cohorts.

cohort in the tumor-only and LN-only models are 0.8127 + 0.0941 and 0.8121 £ 0.0291, respectively. Detailed
performance of the two single-view radiomics models is shown in tables S5 and S6.

4.3. Multi-view subspace learning

In this section, UMVPLS was used to explore the complementary information between LN and tumor signatures
by projecting them into a latent common space. The UMvPLS radiomics model with the dimension of the latent
common space set to 20 is code-named UMVPLSR_20. The space dimension was determined by our previous
study (Yang et al 2020). ROC curves and five performance metrics of the UMvPLSR_20 model are described in
figure 2 (more details are shown in table S7). The overall AUC values of the training cohorts and the validation
cohortsare 0.9531 £ 0.0183 and 0.8984 £ 0.0536 respectively. The other four performance metrics also show
the good predictive power for discriminating patients with and without LNM in patients of GC (training cohort:
precision, 0.9260 £ 0.0184; accuracy, 0.9136 %+ 0.0174; recall, 0.9468 + 0.0106; F1-score, 0.9362 + 0.0125;
validation cohort: precision, 0.8671 £ 0.0489; accuracy, 0.8500 + 0.0599; recall, 0.9118 £ 0.0550; F1-score,
0.8882 £ 0.0440).

We further reduced the dimension of the latent common space from 20 to 2, in order to demonstrate the
capability of our proposed method for data visualization. The proposed method for an intuitive 2-dimensional
latent common space is code-named UMVPLSR_2. We show the projected points of UMVPLSR _2 with both
training and validation cohorts in figure 3. In five hold-out experiments, training-0 and training-1 mean LN
negative and LN positive patients in training cohort, respectively. Similarly, validation-0, and validation-1 mean
LN negative and LN positive patients in validation cohort, respectively. UMvPLSR_2’s ROC curves by five
repeated random hold-out experiments are shown in figures 4(a)—(e), and compared using Delong test in table
S10. There is no significant difference in ROC curves between any two experiments (all P values > 0.05). Five
performance metrics of the UMVPLSR_2 model in the training and validation cohorts are described in
figures 4(f) and (g). The overall AUC, precision, accuracy, recall and F1-score are 0.8593 £ 0.0226,

0.8583 £ 0.0320,0.8220 + 0.0247,0.8810 £ 0.0212 and 0.8691 £ 0.0163 for the training cohort respectively.
As for the validation cohorts, AUC 0f 0.8660 + 0.0573, precision 0f0.8615 + 0.0605, accuracy of
0.8308 + 0.0534, recall 0f0.8882 + 0.0483 and F1-score of 0.8732 £ 0.0376 are obtained in five experiments.
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Figure 3. Data visualization in 2D common latent space learned by the UMvPLSR_2 model of Experiment 1 (a) to Experiment 5(e).
Note: training-0 and training-1 mean LN negative and LN positive patients in training cohort, respectively. Similarly, validation-0,
and validation-1 mean LN negative and LN positive patients in validation cohort, respectively.

More details are provided in table S8. Results demonstrate our multi-view radiomics model, whether in 20-
dimensional space or 2-dimensional space, has good predictive power for LNM on GC patients.

4.4. Performance comparison

4.4.1. Multi-view method versus single-view method

Compared to the tumor-only model and the LN-only model, the UMvPLSR_20 model’ AUC is better in each
experiment except for the validation cohort of Experiment 3 (table 1). In five validation cohorts, the overall
precision, accuracy, recall and F1-score increases by 4%, 13%, 17%, and 10% for the tumor-only model
respectively, and 10%, 13%, 8%, and 9% for the LN-only model respectively (tables S5-S7). All performance
metrics of the UMvPLSR_20 model are globally better than those of single-view methods, which designating the
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Figure 4. Performances of the UMvPLSR_2 model by five repeated random hold-out experiments. (a) to (e) are the ROC curves of
Experiment 1 to Experiment 5. (f) and (g) are the boxplots of five performance metrics in the training and validation cohorts.

Table 1. The AUC values of the tumor-only model, the LN-only model, the UMvPLSR_20 model, and the
UMVPLSR_2 model by five repeated random hold-out experiments.

Model 1 2 3 4 5 Mean Std
Training cohort
Tumor-only 0.8588 0.8711 0.8121 0.8488 0.8702 0.8522 0.0242
LN-only 0.8952 0.9588 0.9228 0.8750 0.9030 0.9109 0.0317
UMVPLSR_20 0.9318 0.9799 0.9516 0.9422 0.9598 0.9531 0.0183
UMVPLSR_2 0.8744 0.8893 0.8510 0.8497 0.8319 0.8593 0.0226
Validation cohort

Tumor-only 0.7582 0.8284 0.9542 0.8203 0.7026 0.8127 0.0941
LN-only 0.8431 0.8105 0.7859 0.8399 0.7810 0.8121 0.0291
UMvVPLSR_20 0.9395 0.8660 0.9444 0.9216 0.8203 0.8984 0.0536
UMvPLSR_2 0.8660 0.9118 0.9281 0.8382 0.7859 0.8660 0.0573

Std is the abbreviation of standard deviation.

The highest AUC value of each experiment in the training or validation cohortis in a bold.

performance on concatenated features outperforms that of individual view. It implies that LN and tumor could

contain complementary information for the LNM prediction in GC.

For UMVPLSR_2, itis clear that 2D space loses certain information in comparison with the UMvPLSR_20
model since UMVPLSR_2’s overall performance decreases by 3% at the worst. However, the average value of
each performance metric in UMVvPLSR_2 is still higher than that of the tumor-only model and the LN-only
model at five validation cohorts (tables S5, S6, S8). Even if the dimension of the latent common space is 2, the
classification performance does not degrade too much, and the visualization results demonstrate that two classes
can be separated by a linear classifier with decent performance. In short, the proposed multi-view radiomics
strategy provide advantages compared to single-view radiomics strategy in our validation cohorts.
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Patient without LNM

Patient with LNM

Figure 5. Examples of clinical images. (al)—(a4) are from a 58 year old female patient without LNM. The TNM staging of this patient is
T3NOMO. (b1)—(b4) are from a 47 year old female patient with LNM. Her TNM staging is TAN1MO. Figures with the number 1 and 2
are the middle slice of the tumor on transverse section (red line is the contour of tumor). Figures with the number 3 and 4 are the
middle slice of the largest LN visible on transverse section (green line is the contour of LN).

Table 2. The AUC values of the UMvPLSR_20 model, the UMvPLSR_2 model and the previously proposed radiomics signature
model by five repeated random hold-out experiments.

Model 1 2 3 4 5 Mean Std

Training cohort
UMVPLSR_20 0.9318 0.9799 0.9516 0.9422 0.9598 0.9531 0.0183
UMvVPLSR_2 0.8744 0.8893 0.8510 0.8497 0.8319 0.8593 0.0226
Radiomics signature [(Yang et al 2020)] 0.9296 0.9523 0.9400 0.9195 0.9179 0.9319 0.0129

Validation cohort
UMVPLSR_20 0.9395 0.8660 0.9444 0.9216 0.8203 0.8984 0.0536
UMvPLSR_2 0.8660 0.9118 0.9281 0.8382 0.7859 0.8660 0.0573
Radiomics signature [(Yang et al 2020)] 0.8742 0.8627 0.8088 0.8824 0.8448 0.8546 0.0261

Std is the abbreviation of standard deviation.
The highest AUC value of each experiment in the training or validation cohortis in bold.

4.4.2. Our method versus previously proposed method

The performance of the UMvPLSR_20 model was then compared with that of the previously proposed
radiomics model (Yang et al 2020). The previous radiomics signature was obtained by a four-step feature
selection method on the same dataset as ours. The radiomics signature model was constructed by the radiomics
signature based on logistic regression classifier (Yang et al 2020). Table 2 manifests that the average performance
of the UMvPLSR_20 model (training cohort, 0.9531; validation cohort, 0.8984) is superior to that of our
previous model (training cohort, 0.9319; validation cohort, 0.8546). For a comprehensive comparison, we then
focused on the performance of the training and validation cohorts in each experiment. In addition to the
validation cohort of Experiment 5, the AUC value of the UMvPLSR_20 model outperforms that of the previous
radiomics model in all training and validation cohorts. As for the UMVvPLSR_2 model, the average AUC value of
validation cohorts slightly surpasses that of the previous model (UMvPLSR_2 model, 0.8660; previous
radiomics model, 0.8546). Taken together, our proposed method shows better predictive power than the
previously proposed method with a simple fusion strategy for discriminating patients with or without LNM

in GC.

4.4.3. Our method versus other baseline methods

In this section, we compared our proposed UMVPLSR_20 method with other baseline methods using eight
classifiers including Decision Tree (Breiman et al 2017), RF (Breiman 2001), Adaboost (Freund and

Schapire 1997), Gradient Boosting (Friedman 2001), Naive Bayes (Zhang 2004), SVM-Recursive Feature
Elimination (SVM-RFE) (Guyon et al 2002), L1-Logistic regression (Fan et al 2008) and Multi-layer Perceptron
(MLP) (Hinton 1990) in terms of three different settings: tumor-only, LN-only and the combination of tumor
and LN radiomics features. As eight baseline methods do not take two set of features as input, so the
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concatenation of two sets of features is used for comparisons. The validation results are reported in terms of five
metrics (table 3). Results show that our method generally outperform others except MLP works the best for
precision (5% higher than ours). The performance of the UMvPLSR_20 model and eight baseline methods on
tumor-only or LN-only radiomics signatures are shown in tables S11 and S12. Tables S11 and S12 are results
with our single-view data, so their performance will not be that important even though either does not show the
best results, but our UMvPLSR_20 model still outperform their concatenation of two sets of features as well as
the single-view baselines.

5. Discussion

Radiomics features of primary tumors and LN show positive role in predicting LNM in GC, yet only a simple
combination of the two has been used in previous research. In this study, we developed and validated a multi-
view learning radiomics method to discriminate between LN positive and LN negative on GC patients. To the
best of our knowledge, this is the first time that a multi-view learning technology to study patients with GC.

The scope and number of LNM determine the extent of LN dissection in surgery, and directly affect the
prognosis in patients with GC (Forman and Burley 2006, Cho et al 2007, Lum et al 2020). LNM occurs with the
progression of primary tumor, which is a complex and continuous process (figure 5). Only relying on primary
tumor radiomics without considering LN radiomics may not thoroughly discriminate patients with or without
LNM. It urges that radiomics features extracted from LN is coming into our view. We found that both primary
tumor radiomics and LN radiomics have the predictive power for differentiating GC patients with or without
LNM, which is consistent with previous studies (Yang et al 2020, Wang et al 2021) (table 1). It is worth noting
that the AUC value of the LN-only model is greater than that of the tumor-only model in three out of five
validation cohorts. Our findings point to the potential benefit of imaging characteristics of LN, showing the
traditional strategy solely based on imaging characteristics of primary tumors is not comprehensive for the LNM
prediction in GC.

Since multiple views of radiomics features are jointly considered when performing classification prediction
in medical tasks, the multi-view learning strategy has been involved in recent researches. Puyol-Anton et al
proposed two multi-view machine learning algorithms, using a multimodal cardiac motion atlas from
3-dimensional magnetic resonance and 3-dimensional ultrasound data, for the classification of dilated
cardiomyopathy patients. The multi-view Laplacian support vector machines algorithm achieved the best
performance (global approach: 92.71%; regional approach: 94.32%), illustrating the automated diagnostic
pipeline is an important aid in the quantification of the contractility and function of the left ventricular
myocardium (Puyol-Anton et al 2019). Thammasorn et al developed a novel nearest-neighbor validation
strategy based on small-sample medical imaging data to optimize multi-view triplet network for classification.
The strategy was superior to other common deep representation learning baselines in dealing with several
medical tasks, such as radiation therapy delivery error prediction and sarcoma survival prediction
(Thammasorn et al 2021). These studies show great potentials of multi-view learning technologies in
classification of clinical tasks. In this study, we explored the application of a multi-view learning technique to
the prediction of LN status on GC patients.

The major contribution of our work is to exploit the complementarity of different views and seek the
consensus among them to fuse multi-view data on a feature level. After data preprocessing, all tumor and LN
radiomics features were selected by two-step feature selection methods including Pearson correlation analysis
and FSBudget algorithm, respectively. Comparing to sequential forward floating selection (SFES) algorithm
(Pudil et al 1994) used in our previous study (Yang et al 2020), FSBudget has the following advantages: (i)
FSBudget is a supervised feature selection approach with a global objective, but SFFS is a greedy approach; (ii)
FSBudget can select varying number of features with a proper budget B, while SFFS often gets stuck for selecting
moderate number of features due to its inclusive and exclusive operations with no convergence guarantee; (iii)
FSBudget is scalable for high-dimensional data, while SFFS can be extremely slow on a large number of features.
Then UMVPLS, one of multi-view subspace learning methods, was utilized to fuse the information of tumor
radiomics and LN radiomics to disambiguate the result made by one single view. Among various multi-view
learning methods, multi-view subspace learning is a widely studied approach that learns a latent common space
such that the projected data points of each view preserve certain properties. For example, canonical correlation
analysis (CCA) (Hardoon et al 2004) aims to maximize the correlation of two views and partial least squares
(PLS) (Wold et al 1984) aims to find the maximum covariance with orthogonal projection matrices. In this
study, we have two considerations: (i) the cross-view covariance/correlation is important to explore the
complementary information provided by each other; (ii) data visualization is important for exploratory analysis
in medical domain. With the two considerations, our recently proposed UMvPLS algorithm based on PLS was
chosen for our subspace learning since it maximizes the cross-covariance and learns orthogonal projection

10



IOP Publishing Phys. Med. Biol. 67 (2022) 055007 JYanget al

Table 3. The performance of the UMvPLSR_20 model and eight baseline methods on the combination of tumor and
LN radiomics by five repeated random hold-out experiments.

Method 1 2 3 4 5 Mean Std
AUC
RandomForest 0.9281 0.9069 0.8611 0.8922 0.8562 0.8889 0.0305
DecisionTree 0.6250 0.7941 0.7606 0.7230 0.7459 0.7297 0.0640
Adaboost 0.9134 0.7288 0.8627 0.7794 0.8219 0.8212 0.0716
GradientBoosting 0.8987 0.9036 0.8660 0.8578 0.8848 0.8822 0.0199
NaiveBayes 0.7876 0.6993 0.7647 0.7467 0.6716 0.7340 0.0476
SVM-RFE 0.8922 0.7345 0.9101 0.7516 0.6569 0.7891 0.1086
L1-LogisticRegression 0.9346 0.7533 0.8333 0.8660 0.8203 0.8415 0.0663
MLP 0.4779 0.4975 0.5613 0.5123 0.4575 0.5013 0.0393
UMVPLSR_20 0.9395 0.8660 0.9444 0.9216 0.8203 0.8984 0.0536
Precision
RandomPForest 0.7857 0.8378 0.8378 0.8250 0.7778 0.8128 0.0290
DecisionTree 0.7097 0.8611 0.8485 0.8182 0.7879 0.8051 0.0604
Adaboost 0.8421 0.7143 0.7632 0.8000 0.7442 0.7727 0.0497
GradientBoosting 0.8378 0.8378 0.8485 0.8158 0.8205 0.8321 0.0136
NaiveBayes 0.8462 0.8000 0.8333 0.7895 0.7368 0.8012 0.0428
SVM-RFE 0.8611 0.8182 0.8378 0.7879 0.7241 0.8058 0.0530
L1-LogisticRegression 0.8611 0.8276 0.8438 0.8000 0.8286 0.8322 0.0226
MLP 0.6458 0.6538 0.6400 0.6400 0.6538 0.6467 0.0069
UMvVPLSR_20 0.8649 0.9063 0.8919 0.8889 0.7838 0.8671 0.0489
Accuracy
RandomForest 0.8077 0.8269 0.8269 0.8462 0.7308 0.8077 0.0451
DecisionTree 0.5962 0.8462 0.7885 0.7500 0.7115 0.7385 0.0938
Adaboost 0.8462 0.6346 0.7308 0.8077 0.7500 0.7538 0.0809
GradientBoosting 0.8269 0.8269 0.7885 0.8077 0.8269 0.8154 0.0172
NaiveBayes 0.5192 0.4615 0.5000 0.5577 0.5192 0.5115 0.0349
SVM-RFE 0.8462 0.7500 0.8269 0.7115 0.5962 0.7462 0.1003
L1-LogisticRegression 0.8462 0.7115 0.7692 0.7500 0.7885 0.7731 0.0498
MLP 0.6154 0.6538 0.6154 0.6154 0.6538 0.6308 0.0211
UMVPLSR_20 0.8654 0.8462 0.9038 0.8846 0.7500 0.8500 0.0599
Recall
RandomForest 0.9706 0.9118 0.9118 0.9706 0.8235 0.9176 0.0603
DecisionTree 0.6471 0.9118 0.8235 0.7941 0.7647 0.7882 0.0962
Adaboost 0.9412 0.7353 0.8529 0.9412 0.9412 0.8824 0.0907
GradientBoosting 0.9118 0.9118 0.8235 0.9118 0.9412 0.9000 0.0446
NaiveBayes 0.3235 0.2353 0.2941 0.4412 0.4118 0.3412 0.0847
SVM-RFE 0.9118 0.7941 0.9118 0.7647 0.6176 0.8000 0.1220
L1-LogisticRegression 0.9118 0.7059 0.7941 0.8235 0.8529 0.8176 0.0761
MLP 0.9118 1.0000 0.9412 0.9412 1.0000 0.9588 0.0395
UMVPLSR_20 0.9412 0.8529 0.9706 0.9412 0.8529 0.9118 0.0550
Fl-score
RandomPForest 0.8684 0.8732 0.8732 0.8919 0.8000 0.8614 0.0355
DecisionTree 0.6769 0.8857 0.8358 0.8060 0.7761 0.7961 0.0780
Adaboost 0.8889 0.7246 0.8056 0.8649 0.8312 0.8230 0.0635
GradientBoosting 0.8732 0.8732 0.8358 0.8611 0.8767 0.8640 0.0168
NaiveBayes 0.4681 0.3636 0.4348 0.5660 0.5283 0.4722 0.0793
SVM-RFE 0.8857 0.8060 0.8732 0.7761 0.6667 0.8015 0.0882
L1-LogisticRegression 0.8857 0.7619 0.8182 0.8116 0.8406 0.8236 0.0451
MLP 0.7561 0.7907 0.7619 0.7619 0.7907 0.7723 0.0170
UMvVPLSR_20 0.9014 0.8788 0.9296 0.9143 0.8169 0.8882 0.0440

Std is the abbreviation of standard deviation.
The highest AUC value of each experiment in the training or validation cohortis in a bold.
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matrices for better data visualization, simultaneously. Finally, the UMvPLSR_20 model was built by the logistic
regression classifier on the 20-dimensional latent common space.

In the training and validation cohorts, each performance index of the UMvPLSR_20 model exceeds 0.91 and
0.85 respectively (table S7). The overall performance of the UMvPLSR_20 model (table S7) is higher than that of
the tumor-only model (table S5) or the LN-only model (table S6). These results show that compared with single-
view radiomics model, multi-view inputs have obviously benefits in increasing performance, demonstrating that
the advanced features of the UMvPLSR_20 model could provide robust expression of the input images.
Meanwhile, table 2 shows the overall performance of UMVPLSR_20 is better in contrast to the previously
proposed radiomics method (Yang et al 2020). It is obvious that the features selected by our proposed method
are more informative, which confirms that the effectiveness of our method to predict the LN status on GC
patients. This is probably attributed to its ability to implicitly account for 3D information by fusing tumor view
and LN view into a common latent common space rather than simple fusion. We then reduced the dimension of
the latent common space to 2 for generating the UMvPLSR_2 model. For UMVPLSR_2, tumor view and LN view
are directly comparable and can easily be merged together. It forms a 2-dimensional common space that is
supposed to preserve the information from each view, facilitating the visualization of the classification results
(figure 3). The overall performance of UMVPLSR_2 has slightly worse than UMvPLSR_20, but it is still greater
than two single-view radiomics models and is conducive to doctors’ judgment (figure 4 and table S8). In
addition, our UMvPLSR_20 method also outperforms other methods with eight commonly used machine
learning classifiers (table 3). In general, our proposed multi-view radiomics analysis strategy could significantly
improve performance for predicting LNM in GC patients, compared to the traditional radiomics analysis
strategy.

Future work will focus on incorporating non-imaging information (such as genomics, metabolic and
semantic features) and other modality data (when the LN images are not available), in order to form a more
comprehensive multi-view learning strategy. Furthermore, we are collecting more gastric cancer data from other
clinical centers. A multi-center gastric cancer database is being developed to provide more clinical decision
support. Other abdominal tumor data will also be considered to test the same predictive pipeline for more
clinical tasks in the future.

6. Conclusions

In summary, this study proposed a multi-view learning method to learn radiomics features of primary tumor
and LN. Compared with single-view radiomics model, the previous radiomics method, and other baseline
methods, our predictive pipeline can be more effective for the LNM prediction in GC. It provides medical
professionals with an effective noninvasive strategy to pick a choice for GC patients’ therapy, and has potential to
be applied to other clinical tasks.
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