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Abstract

We present two theoretical results for the linear response eigenvalue problem. The first
result is a minimization principle for the sum of the smallest eigenvalues with the positive
sign. The second result is Cauchy-like interlacing inequalities. Although the linear response
eigenvalue problem is a nonsymmetric eigenvalue problem, these results mirror the well-
known trace minimization principle and Cauchy interlacing inequalities for the symmetric
eigenvalue problem.
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1 Introduction

In this paper, we consider the eigenvalue problem of the form:

Hz ≡
(

0 K
M 0

)(
y
x

)
= λ

(
y
x

)
≡ λz, (1.1)

where K and M are n×n symmetric positive semi-definite matrices and one of them is definite.
We refer to it as a linear response (LR) eigenvalue problem for the reason to be explained later.

The LR eigenvalue problem (1.1) arises from computing excitation states (energies) of phys-
ical systems in the study of collective motion of many particle systems, ranging from sili-
con nanoparticles and nanoscale materials to analysis of interstellar clouds (see for example
[8, 20, 24]). In computational quantum chemistry and physics, the excitation states are de-
scribed by the random phase approximation (RPA), a linear response perturbation analysis in
the time-dependent Hatree-Fock and time-dependent density function theories. There are a
great deal of recent work and interests in developing efficient numerical algorithms and simula-
tion techniques for excitation response calculations of molecules for materials design in energy
science [10, 21, 28, 29].

The heart of (nonrelativistic) RPA calculation is to compute a few smallest positive eigen-
values and corresponding eigenvectors of the following eigenvalue problem

HHH

(
u
v

)
≡
(

A B
−B −A

)(
u
v

)
= λ

(
u
v

)
, (1.2)
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where A and B are n × n real symmetric matrices such that the symmetric matrix

(
A B
B A

)

is positive definite1 [27, 32]. In physics literature, it is this eigenvalue problem that is referred
to as the LR eigenvalue problem (see, e.g., [23]), or the RPA eigenvalue problem (see e.g., [11]).
We point out that this eigenvalue problem is also a special case of the so-called Hamiltonian
eigenvalue problem becauseHHH in (1.2) is a Hamiltonian matrix. Therefore existing developments
in, e.g., [4, 5, 18, 35], on the Hamiltonian eigenvalue problem apply. In general, the eigenvalues
of a Hamiltonian matrix come in pairs {µ,−µ̄} for the real case and in quadruples {±µ,∓µ̄} for
the complex case [18, Table 1]. But (1.2) is a special one: its eigenvalues are real and come in
pairs {µ,−µ}.

Define the symmetric orthogonal matrix

J =
1√
2

(
In In
In −In

)
, (1.3)

where In is the n× n identity matrix. It can be verified that JTJ = J2 = I2n and

JTHHHJ =

(
0 A−B

A+B 0

)
(1.4)

which is H in (1.1) with
K = A−B, M = A+B. (1.5)

Hence the Hamiltonian matrix HHH in (1.2) and the matrix H in (1.1) with (1.5) are similar
through J , making it equivalent to solve the eigenvalue problem for one by the one for the other.
In fact, both have the same eigenvalues with corresponding eigenvectors related by

(
y
x

)
= JT

(
u
v

)
,

(
u
v

)
= J

(
y
x

)
. (1.6)

Furthermore, the positive definiteness of the matrix

(
A B
B A

)
is equivalent to that both K and

M are positive definite since

JT

(
A B
B A

)
J =

(
A+B 0

0 A−B

)
. (1.7)

By the equivalence of the eigenvalue problems (1.2) and (1.1), in this paper, we also refer to the
eigenvalue problem (1.1) as the linear response eigenvalue problem.

When both K and M are symmetric positive definite, as in the case for RPA [26, 31, 34], it
can be shown that the Hamiltonian matrix HHH in (1.2) and thus the matrix H in (1.1) have only
nonzero real eigenvalues and their nonzero eigenvalues come in pairs {±µ} (see section 2). In
this case, Thouless [31] showed that the smallest positive eigenvalue λmin admits the following
minimization principle:

λmin = min
u,v

̺(u, v), (1.8)

where ̺(u, v) is defined by

̺(u, v) =

(
u
v

)T(
A B
B A

)(
u
v

)

|uTu− vTv| , (1.9)

1In this article we will focus on very much this case, except that the eigenvalue 0 is allowed, i.e., (1.2) has only
real eigenvalues and some of them may be 0.
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and the minimization is taken among all vectors u, v such that uTu−vTv 6= 0. By the similarity
transformation (1.4) and using the relationships in (1.6), we have

̺(u, v) ≡ ρ(x, y)
def
=

xTKx+ yTMy

2|xTy| , (1.10)

and thus equivalently [34]
λmin = min

x,y
ρ(x, y), (1.11)

where the minimization is taken among all x and y such that either xTy 6= 0 or xTy = 0 but
xTKx + yTMy > 0. This removes those x and y that annihilate both the numerator and the
denominator from the domain. In particular x = y = 0 is excluded.

We will refer to both ̺(u, v) and ρ(x, y) as the Thouless functional but in different forms.
Although ̺(u, v) ≡ ρ(x, y) under (1.6), in this paper we primarily work with ρ(x, y) to develop
extensions of (1.11) and efficient numerical methods.

The theoretical part of our contributions in this paper are three-folds:

1. We extend the minimization principle (1.11) to include the case when one of K and M is
singular and thus λmin = 0 for which “min” needs to be replaced by “inf”.

2. We prove a subspace version of the minimization principle (1.8):

k∑

i=1

λi =
1

2
inf

UTV=Ik
trace(UTKU + V TMV ), (1.12)

where λi (1 ≤ i ≤ k) are the k smallest eigenvalues with the positive sign2 of H, and
U, V ∈ R

n×k. Moreover, “inf” can be replaced by “min” if both K and M are definite.

Equation (1.12) suggests that

1

2
trace(UTKU + V TMV ) subject to UTV = In (1.13)

is a proper subspace version of the Thouless functional in the form of ρ(·, ·). By exploiting
the close relation through (1.6) between ρ and ̺, we also obtain a subspace version of the
minimization principle (1.8) in Theorem 3.3 for the original LR eigenvalue problem (1.2)
and, at the same time, a proper subspace version of the Thouless functional in the form of
̺(·, ·).

3. We prove that the ith eigenvalue with the positive sign of a structure-preserving projection
matrix HSR of H onto a pair of subspaces is no smaller than the corresponding λi of H. In
many ways, HSR plays the same role for the LR eigenvalue problem (1.1) as the Rayleigh
quotient matrix for the symmetric eigenvalue problem [25].

2
H has an even number of eigenvalue 0, if any. It happens when one of K and M is semi-definite, i.e., singular.

Perturbing the singular one by ǫI and then letting ǫ → 0+, we see that half of the 0s comes from some of the
positive eigenvalues of perturbed H going to 0 from the right and the other half from the opposites of these
positive eigenvalues going to 0 from the left. In recognizing this, we will associate the plus sign to half of the
0s and the negative sign to the other half, and speak of H having n eigenvalues with the positive sign and n

eigenvalues with the negative sign without causing any ambiguity. Our distinguishing +0 and −0 here is not
unprecedent. In fact, it is rather beneficial sometimes in computations [13] and it is built into the IEEE floating
point standard 754-1985 [1].
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These three theoretical contributions mirror the three well-known results for the symmetric
eigenvalue problem, namely the minimization principle of the Rayleigh quotient, the trace min-
imization principle (a corollary of Wielandt’s theorem [30, p.199]), and Cauchy’s interlacing
inequalities. They will be reviewed at the beginning of section 3 (see for example [16, 25, 30]).

The eigenvalue problem (1.1) is equivalent to the generalize eigenvalue problem for the matrix
pencil

AAA− λBBB ≡
(
M 0
0 K

)
− λ

(
0 In
In 0

)
. (1.14)

It is not hard to show that AAA − λBBB is diagonalizable (using Theorem 2.3, for example) if K
and M are symmetric positive definite. So the results in [15, 22] apply. Also when K and M
are symmetric positive definite, AAA is definite and thus AAA − λBBB is a symmetric definite pencil.
Fischer’s min-max principle [30, p.201] (naturally extended to the generalized eigenvalue problem
[17, Appendix A]) is applicable. Later we will comment on what possible results may come out of
such applications and compare them to ours.

This is the first paper of ours in a sequel of two. Here we focus on treating the theoretical
aspect of the eigenvalue problem for H, and its numerical aspect will be the subject of study
in the second paper [2]. The rest of this paper is organized as follows. In section 2, we review
basic theoretical results about the eigenvalue problem (1.1) and then introduce the concept of
a pair of deflating subspaces and its approximation properties. In section 3, we extend the
minimization principle (1.11) by Thouless and Tsiper to include several eigenvalues and present
our Cauchy-like interlacing inequalities and more. We will also discuss the metric about the best
approximation from a pair of approximate deflating subspaces. For simplicity of exposition, most
proofs are deferred to appendix A Concluding remarks are in section 4.

Throughout this paper, Rn×m is the set of all n×m real matrices, Rn = R
n×1, and R = R

1.
In (or simply I if its dimension is clear from the context) is the n× n identity matrix, and ej is
its jth column. The superscript “·T” takes transpose only. We shall also adopt MATLAB-like
convention to access the entries of vectors and matrices. i : j is the set of integers from i to j
inclusive. For a vector u and an matrix X, u(j) is u’s jth entry, X(i,j) is X’s (i, j)th entry; X’s
submatrices X(k:ℓ,i:j), X(k:ℓ,:), and X(:,i:j) consist of intersections of row k to row ℓ and column
i to column j, row k to row ℓ, and column i to column j, respectively. If X is nonsingular,

κ(X)
def
= ‖X‖2‖X−1‖2 is its spectral condition number, where ‖ · ‖2 denotes the ℓ2-norm of a

vector or the spectral norm of a matrix. For matrices or scalars Xi, both diag(X1, . . . ,Xk) and
X1 ⊕ · · · ⊕Xk denote the same matrix



X1

. . .

Xk


 .

The assignments in (1.1) will be assumed, namely H is always defined that way for given
K, M ∈ R

n×n which are assumed by default to be symmetric positive semi-definite and one of
which is definite, unless explicitly stated differently. This assumption is essential to our main
contributions in this paper and its following one [2], although a few results do not require this.
We will point them out along the way.

2 Basic theory and pair of deflating subspaces

2.1 Basic theory

In this subsection, we discuss some basic theoretical results on the eigenvalue problem (1.1).
Most results are likely known, but cannot be found in one place. They are collected here for
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the convenience of our later developments. Proofs of these results which can be found in the
technical report [3] are not hard and thus will be omitted.

Theorem 2.1.

1. Each nonzero µ = λ2 as an eigenvalue of KM (and MK) leads to two distinct eigenvalues
of H and two corresponding eigenvectors z.

2. The number of eigenvalues 0 of H is twice as many as the number of eigenvalues 0 of KM
(or MK).

Remark 2.1. Theorem 2.1 is valid for all square matrices K and M . ✸

Suppose that K and M are symmetric positive semi-definite. Since KM = K1/2K1/2M
has the same eigenvalues as K1/2MK1/2 which is also symmetric positive semi-definite, all
eigenvalues of KM are real and nonnegative. Denote these eigenvalues by λ2

i (1 ≤ i ≤ n) in
ascending order, i.e.,

0 ≤ λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
n, (2.1)

where all λi ≥ 0 and thus 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. The eigenvalues of MK are λ2
i (1 ≤ i ≤ n),

too. Theorem 2.1 implies the eigenvalues of H are

±λi for i = 1, 2, . . . , n. (2.2)

An immediate consequence of this is that the eigenvalues of H come in ±λ pairs. In particular,
it has an even number of eigenvalues 0. As we mentioned in the footnote 2, for convenience, we
shall associate half of eigenvalues 0 with the positive sign and the other half with the negative
sign. Doing so legitimizes the use of the phrase “the first k smallest eigenvalues with the positive
sign of H” to refer to λi for 1 ≤ i ≤ k without ambiguity. Throughout this paper, we will stick
to using λ2

i (1 ≤ i ≤ n) in ascending order as in (2.1) to denote the eigenvalues of KM (when
K and M are symmetric positive semi-definite).

Set

I =

(
0 In
In 0

)
(2.3)

which is symmetric but indefinite. The matrix I induces an indefinite inner product on R
2n:

〈z1, z2〉I def
= zT1 I z2.

The following theorem tells us some orthogonality properties among the eigenvectors of H. It
does not require that one of K and M are definite.

Theorem 2.2. Suppose K, M ∈ R
n×n are symmetric and positive semi-definite.

1. Let (α, z) be an eigenpair of H, i.e., Hz = αz and z =

(
y
x

)
6= 0, where x, y ∈ R

n. Then

α〈z, z〉I = 2αxTy > 0 if α 6= 0. In particular, this implies 〈z, z〉I = 2xTy 6= 0 if α 6= 0.

2. Let (αi, zi) (i = 1, 2) be two eigenpairs of H. Partition zi =

(
yi
xi

)
6= 0, where xi, yi ∈ R

n.

(a) If α1 6= α2, then 〈z1, z2〉I = yT1 x2 + xT1 y2 = 0.

(b) If α1 6= ±α2 6= 0, then yT1 x2 = xT1 y2 = 0.
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More can be said when one of K and M are definite. For the sake of presentation, we shall
always either assume that M is definite or only provide proofs for definite M whenever one of
K and M is required to be definite. Doing so loses no generality because the interchangeable
roles played by K and M makes it rather straightforward to create a version for the case when
K is definite by simply swapping K and M in each of their appearances. The following theorem
is critical to our theoretical developments.

Theorem 2.3. Suppose that M is definite. Then the following statements are true:

1. There exists a nonsingular Y ∈ R
n×n such that

K = Y Λ2Y T, M = XXT, (2.4)

where Λ = diag(λ1, λ2, . . . , λn) and X = Y −T.

2. If K is also definite, then all λi > 0 and H is diagonalizable:

H

(
Y Λ Y Λ
X −X

)
=

(
Y Λ Y Λ
X −X

)(
Λ
−Λ

)
. (2.5)

3. H is not diagonalizable if and only if λ1 = 0 which happens when and only when K is
singular.

4. The ith column of Z =

(
Y Λ
X

)
is the eigenvector corresponding to λi and it is unique if

(a) λi is a simple eigenvalue of H, or

(b) i = 1, λ1 = +0 < λ2. In this case, 0 is a double eigenvalue of H but there is only
one eigenvector associated with it.

5. If 0 = λ1 = · · · = λℓ < λℓ+1, then H’s Jordan canonical form is

(
0 0
1 0

)
⊕ · · · ⊕

(
0 0
1 0

)

︸ ︷︷ ︸
ℓ

⊕ diag(λℓ+1,−λℓ+1, . . . , λn,−λn). (2.6)

Thus H has 0 as an eigenvalue of algebraic multiplicity 2ℓ with only ℓ linear independent

eigenvectors which are the columns of

(
0

X(:,1:ℓ)

)
.

2.2 Pair of deflating subspaces

Let U ,V ⊆ R
n be subspaces. We call {U ,V} a pair of deflating subspaces of {K,M} if

KU ⊆ V and MV ⊆ U . (2.7)

This definition is essentially the same as the existing ones for the product eigenvalue problem
[6, 9, 19]. Let U ∈ Rn×k and V ∈ Rn×ℓ be the basis matrices for the subspaces U and V,
respectively, where dim(U) = k and dim(V) = ℓ. Then (2.7) implies that there exist KR ∈ R

ℓ×k

and MR ∈ R
k×ℓ such that

KU = V KR, MV = UMR. (2.8)
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Given U and V , both KR and MR are uniquely determined by respective equations in (2.8), but
there are numerous way to express them. In fact for any left generalized inverses U⊣ and V ⊣ of
U and V , respectively, i.e., U⊣U = Ik and V ⊣V = Iℓ,

KR = V ⊣KU, MR = U⊣MV. (2.9)

There are infinitely many left generalized inverses U⊣ and V ⊣. For example, two of them for U
are

U⊣ = (UTU)−1UT

or
U⊣ = (V TU)−1V T if (V TU)−1 exists. (2.10)

But still KR andMR are unique. The second left generalized inverse (2.10) will become important
later in preserving symmetry in K and M .

Define

HR =

(
0 KR

MR 0

)
. (2.11)

Then HR is the restriction of H onto V ⊕ U with respect to the basis matrix V ⊕ U :
(

0 K
M 0

)(
V

U

)
=

(
V

U

)(
0 KR

MR 0

)
. (2.12)

This also says that V ⊕ U is an invariant subspace of H. On the other hand, every invariant
subspace of H yields a pair of deflating subspaces of {K,M} as well.

Theorem 2.4. 1. If {U ,V} is a pair of deflating subspaces of {K,M}, then V ⊕ U is an
invariant subspace of H.

2. Let Z be invariant subspace of H and let Z =

(
V
U

)
be a basis matrix of Z, where V ∈ R

n×ℓ.

Then {span(U), span(V )} is a pair of deflating subspaces of {K,M}.

Proof. 1. That V ⊕ U is an invariant subspace of H is a consequence of (2.12).
2. There is a matrix D such that HZ = ZD which leads to KU = V D and MV = UD.

Thus (2.7) holds for U = span(U) and V = span(V ).

The following theorem says a subset of eigenvalues and eigenvectors of H can be recovered
from those of HR.

Theorem 2.5. Let {U ,V} be a pair of deflating subspaces of {K,M} and U ∈ R
n×k and

V ∈ R
n×ℓ be the basis matrices for the subspaces U and V, respectively. Define KR, MR, and HR

by the equations in (2.8) and (2.11). Then

HRẑ ≡
(

0 KR

MR 0

)(
ŷ
x̂

)
= λ

(
ŷ
x̂

)
≡ λẑ

implies (1.1) with x = Ux̂ and y = V ŷ, where ẑ =

(
ŷ
x̂

)
conformably partitioned.

Proof. HRẑ = λẑ yields KRx̂ = λŷ and MRŷ = λx̂. Therefore

KUx̂ = V KRx̂ = λV ŷ,

MV ŷ = UMRŷ = λUx̂,

as was to be shown.
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HR in (2.11) inherits the block structure in H in (1.1): zero blocks remain zero blocks. But
when K and M are symmetric, as in the RPA case, in general HR may lose the symmetry
property in its off-diagonal blocks KR and MR, not to mention preserving the positive semi-
definiteness of K and M . We propose a modification to HR to overcome this potential loss,

when W
def
= UTV is nonsingular. Factorize W = WT

1 W2, where W1 and W2 are nonsingular,
and define

HSR =

(
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

)
. (2.13)

Note HSR shares not only the block structure in H but also the symmetry and semi-definiteness
in its off-diagonal blocks. In defining HSR here, it is assumed that UTV is nonsingular. For this,
we have the following lemma.

Lemma 2.1. Suppose that one of K and M is definite. Let {U ,V} be a pair of deflating
subspaces of {K,M} with dim(U) = dim(V) = k, and let U ∈ R

n×k and V ∈ R
n×k be the basis

matrices of the subspaces U and V, respectively. Then UTV is nonsingular.

Proof. Equations in (2.8) hold for some KR and MR. Thus

UTKU = UTV KR, V TMV = V TU MR.

Suppose thatM is definite. Then V TMV is definite and thus nonsingular; so V TU is nonsingular
from the second equation.

Theorem 2.6. Let {U ,V} be a pair of deflating subspaces of {K,M} and U ∈ R
n×k and

V ∈ R
n×ℓ be the basis matrices for the subspaces U and V, respectively. Suppose that W

def
= UTV

is nonsingular and is factorized as W = WT
1 W2 with both W1 and W2 being nonsingular, and

define HSR by (2.13). Then HSR is the restriction of H onto V ⊕ U with respect to the basis
matrix VW−1

2 ⊕ UW−1
1 :

H

(
VW−1

2

UW−1
1

)
=

(
VW−1

2

UW−1
1

)
HSR. (2.14)

Consequently, HSRẑ = λẑ implies (1.1) with x = UW−1
1 x̂ and y = VW−1

2 ŷ, where ẑ =

(
ŷ
x̂

)

conformably partitioned.

Proof. Equations in (2.8) hold for some KR and MR. Thus

UTKU = (UTV )KR = WT
1 W2KR,

V TMV = (V TU)MR = WT
2 W1MR,

which gives

W−T
1 UTKUW−1

1 = W2KRW
−1
1 , W−T

2 V TMVW−1
2 = W1MRW

−1
2 . (2.15)

Now use (2.8) and (2.15) to get

K(UW−1
1 ) = V KRW

−1
1

= (V W−1
2 )(W2KRW

−1
1 )

= (V W−1
2 )(W−T

1 UTKUW−1
1 ),

M(V W−1
2 ) = (UW−1

1 )(W−T
2 V TMVW−1

2 ).

They yield (2.14). Apply Theorem 2.5 to conclude the proof.
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Equations in (2.15) imply that under the conditions of Theorem 2.6, HR and HSR are similar:

HSR =

(
0 W2KRW

−1
1

W1MRW
−1
2 0

)
=

(
W2 0
0 W1

)
HR

(
W2 0
0 W1

)−1

, (2.16)

which is not at all obvious from (2.11) and (2.13).
A trivial pair of deflating subspaces {U ,V} is when U = V = R

n. In particular, for U, V ∈
R
n×n satisfying UTV = In, matrices

H =

(
0 K
M 0

)
and

(
0 UTKU

V TMV 0

)
(2.17)

have the same eigenvalues. In fact, the two matrices in (2.17) are similar because of (2.12) and
for the current case (

V
U

)−1

=

(
UT

V T

)
.

Remark 2.2. For this subsection, our default assumption on K,M ∈ R
n×n is not required,

except for Lemma 2.1. ✸

2.3 Invariant properties of HSR

In the previous subsection, HSR was introduced as a structure-preserving projection of H onto
a pair of deflating subspaces {U ,V}. But its definition in (2.13) does not require {U ,V} being
a pair of deflating subspaces. In fact, it is well-defined so long as UTV is nonsingular, where
U, V ∈ R

n×k are the basis matrices of U ⊂ R
n and V ⊂ R

n, respectively. This observation
will become critically important in the second part of this paper [2] where HSR is often defined
for a pair of approximate deflating subspaces and will play the same role in the LR eigenvalue
computation as the Rayleigh quotient matrix does for the symmetric eigenvalue computation.

As we just pointed out, we need the non-singularity assumption on UTV to define HSR.
We note that this assumption is independent of the freedom in choosing basis matrices. Now
we present a necessary and sufficient condition in terms of canonical angles between subspaces
for this assumption. Recall that the canonical angles between U and V are defined to be [30,
Definition 5.3 on p.43]

arccos σi, i = 1, 2, . . . , k,

where σi (1 ≤ i ≤ k) are the singular values of (UTU)−1/2UTV (V TV )−1/2. Furthermore, we
define the angle ∠(U ,V) between U and V to be

∠(U ,V) = max
i

arccos(σi) = arccos(min
i

σi).

Note the canonical angles arccos σi and the angle ∠(U ,V) are independent of the choices of basis
matrices.

Lemma 2.2. Let U, V ∈ R
n×k be basis matrices of U ⊂ R

n and V ⊂ R
n, respectively.

1. UTV is nonsingular if and only if ∠(U ,V) < π/2.

2. If ∠(U ,V) < π/2, then R
n = U ⊕ V⊥ = V ⊕ U⊥, where U⊥ and V⊥ are the orthogonal

complements of U and V, respectively.
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Proof. Use the notations in the definition of ∠(U ,V) above. UTV is nonsingular if and only if
all 1 ≥ σi > 0 which is equivalent to all arccos(σi) < π/2. This proves item 1.

Suppose ∠(U ,V) < π/2 and thus UTV is nonsingular. Any x ∈ R
n can be written as

x = Px+ (I − P )x, where
P = U(V TU)−1V T. (2.18)

Evidently Px ∈ U . It can be verified that V T(I − P ) = 0 which implies (I − P )x ∈ V⊥. Hence
R
n = U + V⊥. Furthermore, if x ∈ U and x ∈ V⊥, then

x = Ux̂, 0 = V Tx = V TUx̂

which implies x̂ = 0 and so must x = 0 because V TU is nonsingular. This proves Rn = U ⊕V⊥.
Similarly R

n = V ⊕ U⊥.

Unique subspaces:
U = span(U), V = span(V )

are implied by the way HSR is defined, and they satisfy ∠(U ,V) < π/2. On the other hand, two
subspaces U and V satisfying ∠(U ,V) < π/2 lead to (infinitely) many HSR, due to the following
two non-unique choices:

{
1. Factorization W = WT

1 W2 is not unique.

2. Basis matrices U and V are not unique.
(2.19)

In the next theorem, we present two invariant properties of HSR with respect to these two non-
unique choices. The properties are important in speaking about eigenvalue and eigenvector
approximations from a pair of approximate deflating subspaces in [2].

Theorem 2.7. Let U ,V ⊂ R
n be two subspaces of dimension k such that ∠(U ,V) < π/2. We

have the following invariant properties of HSR.

1. The eigenvalues of HSR defined by (2.13) are invariant with respect to any of the non-
uniqueness listed in (2.19);

2. For any invariant subspace E of HSR,
{(

VW−1
2

UW−1
1

)
ẑ : ẑ ∈ E

}
(2.20)

is invariant with respect to any of the non-uniqueness listed in (2.19). By which we mean
for any two realizations H0 and H1 of HSR and the subspace (2.20) obtained from an
invariant subspace E0 of H0, there exists an invariant subspace E1 of H1 which produces
the same subspace (2.20). In particular, if E has dimension 1, this gives an invariant
property on the eigenvectors of HSR.

Proof. We first show the invariant properties with respect to different factorizations W =

WT
1 W2. To this end, we note that H1

def
= HSR with W = WT

1 W2 and H0
def
= HSR with W = ITk ·W

are similar:
(
W−T

1

W1

)−1

H1

(
W−T

1

W1

)
=

(
WT

1

W−1
1

)
H1

(
W−T

1

W1

)
= H0.

Next we verify the invariant properties with respect to different choices of basis matrices. To
this end, it suffices to verify the invariant properties under the following substitutions:

UR← U, V S ← V, W1R←W1, W2S ←W2, (2.21)
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where R, S ∈ R
k×k are nonsingular because we have just proved the properties with respect to

different decompositions of W . The verification is straightforward because HSR and
(
VW−1

2

UW−1
1

)

do not change under the substitutions (2.21).

Remark 2.3. For this subsection, our default assumption on K,M ∈ R
n×n is not required. ✸

3 Minimization principles

We recall three well-known results for a symmetric matrixΞΞΞ ∈ R
m×m. Denote by θi (1 ≤ i ≤ m)

ΞΞΞ’s eigenvalues in ascending order. The first well-known result is the following minimization
principle for ΞΞΞ’s smallest eigenvalue θ1:

θ1 = min
x

xTΞΞΞx

xTx
. (3.1)

The trace (or subspace) version of (3.1), the second well-known result, is

k∑

i=1

θi = min
U∈Rm×k,UTU=Ik

trace(UTΞΞΞU) (3.2)

which is a corollary of Wielandt’s theorem [30, p.199]. Furthermore, given any U ∈ R
n×k such

that UTU = Ik, denote by µi (1 ≤ i ≤ k) the eigenvalues of the projection matrix UTΞΞΞU in
ascending order. We have Cauchy’s interlacing inequalities – the third well-known result:

θi ≤ µi ≤ θi+m−k for 1 ≤ k. (3.3)

The proofs of these well-known theoretical results can be found, for example, in [7, 25, 30]. They
are crucial to the establishment of efficient numerical methods for the symmetric eigenvalue
problem, and largely responsible for why the symmetric eigenvalue problems are regarded as
nice eigenvalue problems in a wide range of applications.

In this section, we establish analogs of these results mainly for the LR eigenvalue problem
(1.1).

3.1 Minimization principles

Theorem 3.1 is an analog of the minimization principle (3.1) for the symmetric matrix ΞΞΞ. It is
essentially (1.11) due to Tsiper [33, 34] who deduced it from (1.8) due to Thouless [31], except
we allow one of K and M to be singular. We note that Theorem 3.2 presents a subspace version
of Theorem 3.1. Although Theorem 3.1 is a corollary of Theorem 3.2, we decide to give a short
proof because the proof of Theorem 3.2 is long and complicated, and is deferred to appendix A.

Theorem 3.1. Suppose that one of K, M ∈ R
n×n is definite. Then we have

λ1 = inf
x,y

ρ(x, y), (3.4)

where the infimum is taken over all x, y ∈ R
n such that xTy 6= 0. Moreover, “inf” can be

replaced by “min” if and only if both K and M are definite. When they are definite, the optimal

argument pair (x, y) gives rise to an eigenvector z =

(
y
x

)
of H associated with λ1.

11



Proof. Note ρ(x, y) ≥ 0 for any x and y. If K is singular, then λ1 = +0. Pick x 6= 0 such that
Kx = 0. Then xTMx > 0 since one of K and M is assumed definite. We have

ρ(x, ǫx) = |ǫ|xTMx/(2|xTx|)→ 0 as ǫ→ 0.

This is (3.4) for the case. We now show that “inf” cannot be replaced by “min”. Suppose there
were x and y such that xTy 6= 0 and ρ(x, y) = 0. We note that ρ(x, y) = 0 and xTy 6= 0 imply
xTKx = yTMy = 0 which in turn implies Kx = My = 0, contradicting that one of K and M
is definite.

SupposeK andM are definite. Then λ1 > 0 and equations in (2.4) hold for some nonsingular
Y ∈ R

n×n and X = Y −T. We have

min
x,y

xTKx+ yTMy

2|xTy| = min
x,y

xTY Λ2Y Tx+ yTY −TY −1y

2|xTY Y −1y|

= min
x̃,ỹ

x̃TΛ2x̃+ ỹTỹ

2|x̃Tỹ|

≥ min
x̃,ỹ

2
∑

i λi|x̃(i)ỹ(i)|
2|∑i x̃(i)ỹ(i)|

(3.5)

≥ λ1, (3.6)

where x̃ = Y Tx and ỹ = Y −1y. Suppose 0 < λ1 = · · · = λℓ < λℓ+1 ≤ · · · ≤ λn. Both equality
signs in (3.5) and (3.6) hold if and only if

x̃(i)λi = ỹ(i) for 1 ≤ i ≤ n,

x̃(i) = ỹ(i) = 0 for ℓ < i ≤ n,

i.e., ỹ = Λx̃ and x̃(ℓ+1:n) = ỹ(ℓ+1:n) = 0. So for their corresponding optimal argument pair (x, y),

Kx = KY −Tx̃ = KXx̃ = Y Λ2x̃ = Y Λỹ = λ1Y ỹ = λ1y,

and similarly My = λ1x.

Remark 3.1. Equation (3.4) is actually true even if both K and M are singular (but still
positive semi-definite, of course). There are two cases.

1. Both K and M are singular and their kernels are not orthogonal to each other, i.e., there
are nonzero vectors x and y such that Kx = My = 0 and xTy 6= 0. For such a case, we
have

λ1 = min
x,y

ρ(x, y). (3.7)

2. Both K and M are singular but their kernels are orthogonal to each other. For such a case,
we have (3.4) but “inf” cannot be replaced by “min”. Here is why. Since K is singular,
we pick x 6= 0 such that Kx = 0. Then Mx 6= 0 because the kernels of K and M are
orthogonal to each other. So xTM = (Mx)T 6= 0 which says at least one of the columns
of M is not orthogonal to x, and take y to be one of such a column. Now we see

ρ(x, ǫy) = |ǫ| yTMy/(2|xTy|)→ 0 as ǫ→ 0.

This gives (3.4) since ρ(·, ·) ≥ 0 always. To see “inf” cannot be replaced by “min”, we
assume there were x and y such that xTy 6= 0 and ρ(x, y) = 0. We note that ρ(x, y) = 0
and xTy 6= 0 imply xTKx = yTMy = 0 which in turn implies Kx = My = 0, contradicting
the assumption that the kernels of K and M are orthogonal to each other. ✸
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Remark 3.2. The first part of Theorem 3.1 – equation (3.4) for positive definite K and M
– can also be deduced from the equivalence between the eigenvalue problem (1.1) and the one
for (1.14). Suppose that both K and M are definite; so is AAA in (1.14). Note that λ−1

1 is
the largest and −λ−1

1 the smallest eigenvalue of the definite pencil BBB − λAAA, and thus for any

0 6= z =

(
y
x

)
∈ R

2n

[
−λ−1

1 , λ−1
1

]
∋ zTBBBz

zTAAAz
⇒ zTAAAz

zTBBBz
∈ (−∞,−λ1] ∪ [λ1,∞). (3.8)

Since ±λ−1
1 are eigenvalues of BBB − λAAA and thus attainable by zTBBBz/zTAAAz for some z; so are

±λ1 are by zTAAAz/zTBBBz for some z. By (3.8) and that zTAAAz > 0 for z 6= 0, we have

λ1 = min
z 6=0

∣∣∣∣
zTAAAz

zTBBBz

∣∣∣∣ = min
z 6=0

xTKx+ yTMy

2|xTy|

which is equation (3.4) (with “inf” replaced by “min”) for positive definite K and M . One may
also use Fischer’s min-max principle [30, p.201] on BBB−λAAA to deduce expressions for other λ−1

j :

λ−1
j = max

Sj

min
06=z∈Sj

zTBBBz

zTAAAz
= max

Sj

min
06=z∈Sj

2xTy

xTKx+ yTMy
, (3.9a)

λ−1
j = min

S2n−j+1

max
06=z∈S2n−j+1

zTBBBz

zTAAAz
= min

S2n−j+1

max
06=z∈S2n−j+1

2xTy

xTKx+ yTMy
. (3.9b)

But it seems that they do not yield any min-max principle of λj in terms of (xTKx+yTMy)/(2xTy)
because it can be positive, 0, and negative. ✸

Our next theorem – Theorem 3.2 – presents a subspace version of Theorem 3.1. It is the
reason we mentioned in section 1 that the expression in (1.13) can be regarded as a proper
subspace version of the Thouless functional in the form of ρ(·, ·).

Theorem 3.2. Suppose that one of K, M ∈ R
n×n is definite. Then we have

k∑

i=1

λi =
1

2
inf

UTV=Ik
trace(UTKU + V TMV ). (3.10)

Moreover, “inf” can be replaced by “min” if and only if both K and M are definite. When
they are definite and if also λk < λk+1, then for any U and V that attain the minimum,
{span(U), span(V )} is a pair of deflating subspaces of {K,M} and the corresponding HSR (and
HR, too) has eigenvalues ±λi (1 ≤ i ≤ k).

Proof. The proof is long and deferred to appendix A.

Corollary 3.1. Suppose that one of K, M ∈ R
n×n is definite. Then

n∑

i=1

λi =
1

2
inf

UTV=In
trace(UTKU + V TMV ). (3.11)

Remark 3.3. In (3.2) which is for the symmetric eigenvalue problem of ΞΞΞ = ΞΞΞT ∈ R
m×m, if

k = m, then
m∑

i=1

θi = trace(UTΞΞΞU), (3.12)
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regardless of U ∈ R
m×m so long as UTU = Im. There is certainly a strong resemblance between

(3.11) and (3.12), but a fundamental difference, too. That is that “inf” has to be there in (3.11).
Without “inf”, (3.11) becomes

n∑

i=1

λi ≤
1

2
trace(UTKU + V TMV ) (3.13)

for any two U, V ∈ R
n×n satisfying UTV = In. For example, consider

K =

(
λ2
1 0
0 λ2

2

)
, M = I2, U =

(
ξ1 0
0 ξ2

)
, V = U−T =

(
ξ−1 0

0 ξ−1
2

)
,

where 0 < λ1 ≤ λ2 and 0 6= ξi ∈ R. Then we have

1

2
trace(UTKU + V TMV ) =

2∑

i=1

ξ2i λ
2
i + ξ−2

i

2
≥

2∑

i=1

λi,

where the equality sign holds if and only if |ξi| = 1/
√
λi for i = 1, 2. ✸

Exploiting the close relation through (1.6) between the two different forms of the Thouless
functionals ̺(·, ·) and ρ(·, ·), we have by Theorem 3.2 the following theorem. It suggests that

1

2
trace(

(
U
V

)T(
A B
B A

)(
U
V

)
) subject to UTU − V TV = 2Ik, U

TV = V TU (3.14)

is a proper subspace version of the Thouless functional in the form of ̺(·, ·).

Theorem 3.3. Suppose that A and B are n × n real symmetric matrices and that A + B and
A−B are positive semi-definite and one of them is definite. Then we have

k∑

i=1

λi =
1

2
inf

UTU−V TV =2Ik
UTV =VTU

trace(

(
U
V

)T(
A B
B A

)(
U
V

)
). (3.15)

Moreover, “inf” can be replaced by “min” if and only if both A±B are definite.

Proof. Assume the assignments in (1.5) for K and M . We have by (1.7)

(
U
V

)T(
A B
B A

)(
U
V

)
=

(
V̂

Û

)T(
M

K

)(
V̂

Û

)
= ÛTKÛ + V̂ TMV̂ ,

where (
V̂

Û

)
= JT

(
U
V

)
=

1√
2

(
U + V
U − V

)
,

and J is given by (1.3). Therefore

inf
ÛTV̂=Ik

trace(ÛTKÛ + V̂ TMV̂ )

= inf
(U−V )T(U+V )=2Ik

trace(

(
U
V

)T(
A B
B A

)(
U
V

)
). (3.16)

We claim

(U − V )T(U + V ) = 2Ik ⇔ UTU − V TV = 2Ik and UTV = V TU. (3.17)
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This is because (U − V )T(U + V ) = 2Ik and its transpose version give

UTU + UTV − V TU − V TV =2Ik, (3.18a)

UTU + V TU − UTV − V TV =2Ik. (3.18b)

Add both equations in (3.18) to get UTU − V TV = 2Ik and subtract one from the other to get
UTV = V TU . That the right-hand side in (3.17) implies its left-hand side can be seen from any
of the equations in (3.18). Equation (3.15) is now a consequence of Theorem 3.2, (3.16), and
(3.17).

3.2 Cauchy-like interlacing inequalities

In the following theorem, we obtain inequalities that can be regarded as an extension of Cauchy’s
interlacing inequalities (3.3).

Theorem 3.4. Suppose that one of K, M ∈ R
n×n is definite. Let U, V ∈ R

n×k such that UTV
is nonsingular. Write W = UTV = WT

1 W2, where Wi ∈ R
k×k are nonsingular, and define HSR

by (2.13). Denote by ±µi (1 ≤ i ≤ k) the eigenvalues of HSR, where 0 ≤ µ1 ≤ · · · ≤ µk. Then

λi ≤ µi ≤
√

min{κ(K), κ(M)}
cos∠(U ,V) λi+n−k for 1 ≤ i ≤ k, (3.19)

where U = span(U) and V = span(V ), and κ(K) and κ(M) are spectral condition numbers.
Furthermore, if λk < λk+1 and λi = µi for 1 ≤ i ≤ k, then3

1. U = span(X(1:k,:)) when M is definite, where X is as in Theorem 2.3;

2. {U ,V} is a pair of deflating subspaces of {K,M} corresponding to the eigenvalues ±λi

(1 ≤ i ≤ k) of H when both K and M are definite.

Proof. The proof is long and deferred to appendix A.

Remark 3.4. Strengthen the conditions of Theorem 3.4 to: both K and M are definite. Recall
the equivalence between the eigenvalue problem (1.1) and the one for (1.14). Let

Z =

(
VW−1

2

UW−1
1

)
.

We have

ZTAAAZ =

(
W−T

2 V TMVW−1
2 0

0 W−T
1 UTKUW−1

1

)
, ZTBBBZ =

(
0 Ik
Ik 0

)
. (3.20)

The eigenvalues of HSR are the same as those for the pencil ZTAAAZ − λZTBBBZ. Apply Cauchy’s
interlacing inequalities (extended for the generalized eigenvalue problem) toBBB−λAAA and ZTBBBZ−
λZTAAAZ to get

λ−1
i ≥ µ−1

i ≥
{
λ−1
i+2n−2k, if i+ 2n− 2k ≤ n,

0, otherwise.

Equivalently
λi ≤ µi ≤ λi+2n−2k for 1 ≤ i ≤ k, (3.21)

where λj =∞ for j > n. The second inequality in (3.21) looks more elegant than those in (3.19)
but not without a price that some of them could be ∞. Later in Remark 3.5, we will present
an example to show the factor [cos∠(U ,V)]−1 in (3.19) cannot be removed. ✸

3A similar statement for the case in which K is definite (but M is semi-definite) can be made, noting that the
decompositions in (2.4) no longer hold but similar decompositions exist.
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Corollary 3.2. Suppose that one of K, M ∈ R
n×n is definite. Let Kp and Mp be k×k principal

submatrices of K and M , extracted with same row and column indices for both. Denote by ±µi

(1 ≤ i ≤ k) the eigenvalues of

(
0 Kp

Mp 0

)
, where 0 ≤ µ1 ≤ · · · ≤ µk.Then

λi ≤ µi ≤
√

min{κ(K), κ(M)} λi+n−k for 1 ≤ i ≤ k. (3.22)

Proof. Let i1, i2, . . . , ik be the row and column indices of K and M that give Kp and Mp, and
let U = (ei1 , ei2 , . . . , eik) ∈ R

n×k. Then Kp = UTKU and Mp = UTMU . Apply Theorem 3.4
with V = U to conclude the proof.

Remark 3.5. Inequalities (3.19), (3.21), and (3.22) mirror Cauchy’s interlacing inequalities (3.3).
But the upper bounds on µi by (3.19) and (3.22) are more complicated. The following example
shows that the factor [cos∠(U ,V)]−1 in general cannot be removed. Consider

K =

(
α2 0
0 β2

)
, M = I2, U =

(
0
1

)
, V =

(
t
1

)
,

where 0 < α < β and t = tan∠(U ,V). Then the positive eigenvalue of HSR is

µ1 =
√
UTKUV TMV = β

√
1 + t2 =

λ2

cos∠(U ,V) .

An application of (3.21) leads to α = λ1 ≤ µ1 ≤ λ1+4−2 =∞. We suspect that
√

min{κ(K), κ(M)}
in (3.19) and (3.22) could be removed or at least be replaceable by something that does not depend
on the condition numbers, but we have no proof, except for the special case as detailed in the
following theorem. ✸

Theorem 3.5. Under the assumptions of Theorem 3.4, if either U ⊆ MV when M is definite
or V ⊆ KU when K is definite, then

λi ≤ µi ≤ λi+n−k for 1 ≤ i ≤ k. (3.23)

Proof. We will prove (3.23), assuming M is definite and U ⊆ MV. Since M is definite,
dim(MV)⊥ = n − k, where (MV)⊥ is the orthogonal complement of MV. Let V⊥ ∈ R

n×(n−k)

be a basis matrix of (MV)⊥. Then V T
⊥ MV = 0 and also UTV⊥ = 0 because U ⊆MV. Let

UUU =
(
UW−1

1 ,MV⊥(V
T
⊥ MV⊥)

−1/2
)
, VVV =

(
VW−1

2 , V⊥(V
T
⊥ MV⊥)

−1/2
)
.

It can be verified that UUUTVVV = In (which implies VVV TUUU = In also) and

M̂
def
= VVV TMVVV =

(
W−T

2 V TMVW−1
2

In−k

)
.

Let K̂ = UUUTKUUU . Notice that

eig(K̂M̂ ) = eig(M̂1/2K̂M̂1/2) = {λ2
i , i = 1, 2, . . . , n},

where eig(·) is the set of eigenvalues of a matrix. The k × k leading principal matrix of

M̂1/2K̂M̂1/2 is

(W−T
2 V TMVW−1

2 )1/2(W−T
1 UTKUW−1

1 )(W−T
2 V TMVW−1

2 )1/2 (3.24)

whose eigenvalues are µ2
i , i = 1, 2, . . . , k. Apply Cauchy’s interlacing inequalities to M̂1/2K̂M̂1/2

and its k × k leading principal matrix (3.24) to get

λ2
i ≤ µ2

i ≤ λ2
i+n−k for 1 ≤ i ≤ k

which yield (3.23).
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3.3 Minimization principle and deflation

Deflation is a commonly used technique in solving eigenvalue problems. The basic idea is to
avoid computing these eigenpairs that have been already computed to a prescribed accuracy, and
it is accomplished by orthogonalizing current vectors against all already converged eigenvectors.
Return to the symmetric eigenvalue problem for ΞΞΞ we discussed at the beginning of this section.
Denote by xi (1 ≤ i ≤ m) the eigenvectors of ΞΞΞ corresponding to θi. We may assume xTi xj = 0
for i 6= j. In (3.1), if “min” is restricted to all x that is orthogonal to xi (1 ≤ i ≤ ℓ), then the
minimum becomes θℓ+1. Similarly, if U is restricted to those such that UTxi = 0 (1 ≤ i ≤ ℓ),
then the minimum in (3.2) is

∑k
i=1 θℓ+i, and (3.3) becomes θℓ+i ≤ µi ≤ θi+m−k. The next

theorem gives similar results for H.

Theorem 3.6. Suppose that one of K, M ∈ R
n×n is definite. Denote by zi =

(
yi
xi

)
(1 ≤ i ≤ ℓ)

the linear independent eigenvectors of H corresponding to eigenvalues λi, respectively, where all
xi, yi ∈ R

n. Set Y1 = (y1, y2, . . . , yℓ) and X1 = (x1, x2, . . . , xℓ).

1. We have
k∑

i=1

λℓ+i =
1

2
inf

UTV =Ik
UTY1=0,V TX1=0

trace(UTKU + V TMV ). (3.25)

If also 0 < λℓ+1 and λℓ+k < λℓ+k+1, then for any U and V that attain the minimum,
{span(U), span(V )} is a pair of deflating subspaces of {K,M} corresponding to the eigen-
values ±λℓ+i (1 ≤ i ≤ k) of H.

2. Let U, V ∈ R
n×k such that UTV is nonsingular, UTY1 = 0 and V TX1 = 0. Write

W = UTV = WT
1 W2, where Wi ∈ R

k×k are nonsingular, and define HSR by (2.13).
Denote by ±µi (1 ≤ i ≤ k) the eigenvalues of HSR, where 0 ≤ µ1 ≤ · · · ≤ µk. Then

λℓ+i ≤ µi ≤
√

min{κ(K), κ(M)}
cos∠(U ,V) λi+n−k for 1 ≤ i ≤ k. (3.26)

If also 0 < λℓ+1 and λℓ+k < λℓ+k+1 and if λℓ+i = µi for 1 ≤ i ≤ k, then {span(U), span(V )}
is a pair of deflating subspaces of {K,M} corresponding to the eigenvalues ±λℓ+i (1 ≤ i ≤
k) of H.

Proof. See appendix A.

4 Concluding remarks

We have obtained new minimization principles and Cauchy-like interlacing inequalities for the
LR (a.k.a. RPA) eigenvalue problem in computational quantum chemistry and physics. Also
obtained is a structure-preserving projection HSR of H onto a pair of subspaces. The role of HSR

for the LR eigenvalue problem (1.1) in many ways is the same as that of the Rayleigh quotient
matrix for the symmetric eigenvalue problem. These new results mirror the three well-known
results for the eigenvalue problem of a real symmetric matrix. They lay the foundation for
our numerical investigation in the second paper of this sequel where new efficient numerical
methods will be devised for computing the first few smallest eigenvalues with the positive sign
and corresponding eigenvectors simultaneously.

Although, throughout this paper and its following one, it is assumed both K and M are real
matrices, all results are valid for Hermitian positive semi-definite K and M with one of them
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being definite after minor changes: replacing all R by C and all superscripts (·)T by complex
conjugate transposes (·)H.

The second inequalities in Theorem 3.4 and Corollary 3.2 that mirror Cauchy’s interlacing
inequalities for the standard symmetric eigenvalue problem are not as satisfactory as we would
like. We demonstrated that the factor [cos∠(U ,V)]−1 is in general not removable, but the factor√

min{κ(K), κ(M)} could be an artifact of our proof and thus might be removed. No proof has
been found yet.

A Proofs of Theorems 3.2 – 3.6

Lemma A.1. Let ωi ∈ R for 1 ≤ i ≤ n be arranged in ascending order, i.e., ω1 ≤ ω2 ≤ · · · ≤ ωn,
and let αi ∈ R for 1 ≤ i ≤ n. Denote by α↓

i (i = 1, . . . , n) the rearrangement of αi (i = 1, . . . , n)

in descending order, i.e., α↓
1 ≥ · · · ≥ α↓

n. Then

n∑

i=1

ωiαi ≥
n∑

i=1

ωiα
↓
i . (A.1)

If (A.1) is an equality and if αk > αk+1 and ωk < ωk+1 for some 1 ≤ k < n, then

{α↓
j , j = 1, . . . , k} = {αj , j = 1, . . . , k}, (A.2)

i.e., αj, j = 1, . . . , k give the largest k values among all αi’s.

Proof. Inequality (A.1) is well-known. See, for example, [7, (II.37) on p.49]. We now prove (A.2),

under the conditions that (A.1) is an equality, α↓
k > α↓

k+1, and ωk < ωk+1. Suppose, to the
contrary, that (A.2) did not hold. Then there would exist

ℓ1 ≤ k and ℓ2 > k such that αℓ1 = α↓
ℓ2
,

j1 ≤ k and j2 > k such that α↓
j1

= αj2 .

Since

ωℓ1αℓ1 + ωj2αj2 − (ωℓ1αj2 + ωj2αℓ1) = (αj2 − αℓ1)(ωj2 − ωℓ1)

= (α↓
j1
− α↓

ℓ2
)(ωj2 − ωℓ1)

≥ (α↓
k − α↓

k+1)(ωk+1 − ωk)

> 0,

we have
n∑

i=1

ωiαi =
∑

i 6=ℓ1,j2

ωiαi + ωℓ1αℓ1 + ωj2αj2 >
∑

i 6=ℓ1,j2

ωiαi + ωℓ1αj2 + ωj2αℓ1 ≥
n∑

i=1

ωiα
↓
i ,

contradicting that (A.1) is an equality. This proves (A.2).

Lemma A.2. Let U ∈ R
n×k and Ω = diag(ω1, ω2, . . . , ωn), where ω1 ≤ ω2 ≤ · · · ≤ ωn. Then

trace(UTΩU) ≥
k∑

i=1

σ2
i ωi, (A.3)

where σi (i = 1, . . . , k) are the k singular values of U in descending order, i.e., σ1 ≥ · · · ≥ σk ≥ 0.
If (A.3) is an equality, ωk < ωk+1, and σk > 0, then U(k+1:n,:) = 0, i.e., the last n − k rows of
U are zeros.
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Proof. Write αi = (UUT)(i,i), the ith diagonal entry of UUT. By Lemma A.1,

trace(UTΩU) = trace(UUTΩ) =
n∑

i=1

ωiαi ≥
n∑

i=1

ωiα
↓
i , (A.4)

where α↓
i (i = 1, . . . , n) are defined as in Lemma A.1. Since UUT is symmetric positive semidef-

inite, its diagonal entries: αi (i = 1, . . . , n) are majorized by its n eigenvalues: σ2
i (i = 1, . . . , k)

and σ2
i = 0 (i = k + 1, . . . , n) [7, (II.14) on p.35], meaning

tj
def
=

j∑

i=1

α↓
j ≤ sj

def
=

j∑

i=1

σ2
i for 1 ≤ j ≤ n− 1, and tn = sn. (A.5)

Therefore, by [16, Lemma 2.3],
n∑

i=1

ωiα
↓
i ≥

k∑

i=1

ωiσ
2
i (A.6)

which, combined with (A.4), lead to (A.3). But in order to characterize those matrices U that
make (A.3) an equality, we need to look into when (A.6) becomes an equality. To that end, we
still have to give a proof of (A.6), despite of [16, Lemma 2.3]. Let t0 = s0 = 0. We have

n∑

i=1

ωiα
↓
i =

n∑

i=1

ωi(ti − ti−1)

= ωntn +

n−1∑

i=1

(ωi − ωi+1)ti

≥ ωnsn +

n−1∑

i=1

(ωi − ωi+1)si (A.7)

=
n∑

i=1

ωiσ
2
i

=

k∑

i=1

ωiσ
2
i . (σi = 0 for i > k)

This is (A.6).
Now if (A.3) is an equality and if ωk < ωk+1, then the equal sign in (A.7) must hold

and thus tk = sk because ωk − ωk+1 < 0. It follows from σ2
i = 0 (i = k + 1, . . . , n) that

tk = sk = · · · = sn = tn; so α↓
j = 0 for j > k by (A.5). Because (A.4) must be an equality,

α↓
k > 0 = α↓

k+1 (since σk > 0) and ωk < ωk+1, we conclude by Lemma A.1 that (A.2) holds, and

thus αj = (UUT)(j,j) = 0 for j > k which implies

(UUT)(i,j) = 0 for max{i, j} > k

because UUT is symmetric positive semi-definite. In particular

U(k+1:n,:)U
T
(k+1:n,:) = (UUT)(k+1:n,k+1:n) = 0

which implies U(k+1:n,:) = 0, as expected.
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Proof of Theorem 3.2. Suppose that M is definite. Equations in (2.4) hold for some non-
singular Y ∈ R

n×n and X = Y −T. We have by (2.4)

UTKU + V TMV = UTY Λ2Y TU + V TXXTV

= ÛTΛ2Û + V̂ TV̂ , (A.8)

where Û = Y TU and V̂ = XTV . It can be verified that ÛTV̂ = UTV and that the correspon-
dences between U and Û and between V and V̂ are one-one. Therefore

inf
UTV=Ik

trace(UTKU + V TMV ) = inf
ÛTV̂=Ik

trace(ÛTΛ2Û + V̂ TV̂ ). (A.9)

For any given Û and V̂ , denote their singular values, respectively, by αi (i = 1, . . . , k) and
βi (i = 1, . . . , k) in descending order. Then by Lemma A.2

trace(ÛTΛ2Û + V̂ TV̂ ) ≥
k∑

i=1

α2
i λ

2
i +

k∑

i=1

β2
i (A.10)

=
k∑

i=1

(α2
i λ

2
i + β2

k−i+1)

≥ 2

k∑

i=1

αiβk−i+1λi (A.11)

≥ 2

k∑

i=1

λi. (A.12)

The last inequality holds because of [12, (3.3.18) on p.178] which says αiβk−i+1 is greater or equal
to the kth largest singular value of UTV = Ik which is 1. Combine (A.9) and (A.12) to get

1

2
inf

UTV=Ik
trace(UTKU + V TMV ) ≥

k∑

i=1

λi. (A.13)

Now if all λi > 0 (i.e., K is also definite), then it can be seen that picking U and V such that

Û =



diag(λ

−1/2
1 , . . . , λ

−1/2
k )

0


 , V̂ =



diag(λ

1/2
1 , . . . , λ

1/2
k )

0


 ,

gives 1
2 trace(U

TKU + V TMV ) =
∑k

i=1 λi which, together with (A.13), yield (3.10) with “inf”
replaced by “min”.

When K is singular, λ1 = 0 and (A.11) is always a strict inequality. So

1

2
trace(UTKU + V TMV ) >

k∑

i=1

λi for any UTV = Ik. (A.14)

Suppose 0 = λ1 = · · · = λℓ < λℓ+1 ≤ · · · ≤ λk. We pick U and V such that

Û =




ǫ−1Iℓ

diag(λ
−1/2
ℓ+1 , . . . , λ

−1/2
k )

0


 , V̂ =




ǫIℓ

diag(λ
1/2
ℓ+1, . . . , λ

1/2
k )

0


 .
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Then 1
2 trace(U

TKU + V TMV ) =
∑k

i=1 λi + ℓǫ2 which goes to
∑k

i=1 λi as ǫ → 0. So we have
(3.10) by (A.14), and “inf” cannot be replaced by “min”.

Now suppose 0 < λ1 and λk < λk+1 and suppose that U and V attain the minimum, i.e.,

1

2
trace(UTKU + V TMV ) =

k∑

i=1

λi.

For this to happen, all equal signs in (A.10), (A.11), and (A.12) must take place. For the equality
sign in (A.10) to take place, by Lemma A.2 we have Û(k+1:n,:) = 0. Partition

Û =

(
Û1

0

)
, V̂ =

(
V̂1

V̂2

)
, Û1, V̂1 ∈ R

k×k.

We claim V̂2 = 0, too. Here is why. For the equality sign in (A.12) to take place, we have
αiβk−i+1 = 1 for 1 ≤ i ≤ k. Now Ik = ÛTV̂ = ÛT

1 V̂1 implies αiγk−i+1 ≥ 1 [12, (3.3.18) on

p.178], where γi (i = 1, . . . , k) are the singular values of V̂1 in descending order. Since V̂ TV̂ =
V̂ T
1 V̂1 + V̂ T

2 V̂2, we have γi ≤ βi for 1 ≤ i ≤ k and thus

1 ≤ αiγk−i+1 ≤ αiβk−i+1 = 1

which implies γi = βi for 1 ≤ i ≤ k. So V̂2 = 0. Now use U = XÛ and V = Y V̂ to conclude that
{span(U), span(V )} is the pair of deflating subspaces of {K,M} corresponding to the eigenvalues
±λi (1 ≤ i ≤ k) of H.

Remark A.1. The first part of Theorem 3.2 – equation (3.10) – for the case when both K
and M are definite has a quick proof upon using the results of Kovač-Striko and Veselić [14].
the equivalence between the eigenvalue problem (1.1) and the one for (1.14). Since BBB − λAAA is
diagonalizable if both K and M are definite, we have by Theorem 3.1 and Corollary 3.3 of [14]

k∑

i=1

λi = min
ZTAAAZ=Ik

trace(ZTBBBZ).

Write Z =

(
V̂

Û

)
, where U, V ∈ R

n×k, to get

k∑

i=1

λi = min
UTV+V TU=Ik

trace(UTKU + V TMV ) (A.15)

=
1

2
min

UTV+V TU=2Ik
trace(UTKU + V TMV ) (A.16)

≤ 1

2
min

UTV=Ik
trace(UTKU + V TMV ). (A.17)

The equal sign in (A.16) is due to scaling both U and V by 1/
√
2 and the inequality (A.17) is

due to {(U, V ) : UTV = Ik} ⊆ {(U, V ) : UTV + V TU = 2Ik}. Finally we notice the equal sign
in (A.17) is attainable using Theorem 2.3. This gives (3.10) for the case when both K and M
are definite. While this does seem to provide a short and quick proof of (3.10) for the definite
case, we point out that the argument in [14] that leads to (A.15) is nontrivial and lengthy (no
shorter than ours that leads to the complete proof of Theorem 3.2). ✸
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Proof of Theorem 3.4. Assume that M is definite. Without loss of generality, we may
simply assume UTV = Ik and W1 = W2 = Ik; otherwise substitutions:

U ← UW−1
1 , V ← V W−1

2 , Ik ←W1, Ik ←W2,

will give new U and V with UTV = Ik and at the same time the same HSR.
Equations in (2.4) hold for some nonsingular Y ∈ R

n×n and X = Y −T. Then

UTKU = UTY Λ2Y TU = ÛTΛ2Û , (A.18a)

V TMV = V TXXTV = V̂ TV̂ , (A.18b)

where Û = Y TU and V̂ = XTV . Still ÛTV̂ = UTV = Ik. Decompose V̂ as

Ṽ
def
= QTV̂ =

(
Ṽ1

0

)
, QTQ = In, Ṽ1 nonsingular. (A.19)

This can be proved, for example, using SVD of V̂ . Then V̂ TV̂ = Ṽ T
1 Ṽ1. Partition

Ũ
def
= QTÛ =

(
Ũ1

Ũ2

)
, Ũ1 ∈ R

k×k. (A.20)

Then ÛTV̂ = (QTÛ)TQTV̂ = ŨT
1 Ṽ1 = Ik which implies ŨT

1 = Ṽ −1
1 . Set

A = QTΛ2Q, E = Ũ2Ṽ
T
1 (A.21)

to get

ÛTΛ2Û = ŨTAŨ, Ũ Ṽ T
1 =

(
Ik
E

)
. (A.22)

By Theorem 2.1, µ2
i (1 ≤ i ≤ k) are all the eigenvalues of

(UTKU)(V TMV ) = (ÛTΛ2Û)(V̂ TV̂ ) = (ŨTAŨ)(Ṽ T
1 Ṽ1) (A.23)

whose eigenvalues are the same as Ṽ1(Ũ
TAŨ)Ṽ T

1 , a real symmetric positive semi-definite matrix.
Set

P = Ũ Ṽ T
1 (Ik + ETE)−1/2.

Then PTP = Ik by (A.22). Denote by νi (1 ≤ i ≤ k) the eigenvalues of PTAP in ascending
order. We have

λ2
i ≤ νi ≤ λ2

i+n−k for 1 ≤ i ≤ k (A.24)

by Cauchy’s interlacing theorem [25, 30]. For any û ∈ R
k, letting u = (Ik + ETE)1/2û gives

(1 + ‖E‖22)
uT(PTAP )u

uTu
≥

ûT
[
Ṽ1(Ũ

TAŨ)Ṽ T
1

]
û

ûTû
≥ uT(PTAP )u

uTu
(A.25)

since
ûTû ≤ uTu = ûTû+ ûTETEû ≤ (1 + ‖E‖22)ûTû.

Denote by Ûi and Ui subspaces of R
k of dimension i. Using the Courant-Fischer min-max

principle (see [25, p.206], [30, p.201]), we have

µ2
i = min

Ûi

max
û∈Ûi

ûT
[
Ṽ1(Ũ

TAŨ)Ṽ T
1

]
û

ûTû
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≥ min
Ui=(Ik+ETE)1/2Ûi

max
u∈Ui

uT(PTAP )u

uTu
(by (A.25))

= min
Ui

max
u∈Ui

uT(PTAP )u

uTu

= νi ≥ λ2
i , (by (A.24))

µ2
i ≤ (1 + ‖E‖22) min

Ui=(Ik+ETE)1/2Ûi

max
u∈Ui

uT(PTAP )u

uTu
(by (A.25))

= (1 + ‖E‖22) νi
≤ (1 + ‖E‖22)λ2

i+n−k. (by (A.24))

It remains to bound 1 + ‖E‖22. We have from (A.19) – (A.22)
√

1 + ‖E‖22 = ‖Ũ Ṽ T
1 ‖2

≤ ‖Ũ‖2‖Ṽ T
1 ‖2

= ‖Û‖2‖V̂ ‖2
= ‖Y TU‖2‖XTV ‖2
≤ ‖Y T‖2‖Y −1‖2‖U‖2‖V ‖2
=
√

κ(M) ‖U‖2‖V ‖2. (A.26)

In Theorem 2.7, we proved that the eigenvalues of HSR do not changes with respect to the
choices of basis matrices. Which means, in proving this theorem, we can use HSR constructed
from different basis matrices for U and V. What we are going to do is to pick new U and V
such that the right hand side of (A.26) is

√
κ(M)

cos∠(U ,V) .

To this end, we compute QR decompositions

U = Q1R1, V = Q2R2,

where Q1, Q2 ∈ R
n×k have orthonormal columns. By [30, Theorem 5.2 on p.40], there are orthog-

onal matrices P ∈ R
n×n and S1, S2 ∈ R

k×k such that

PQ1S1 =




k

k I

k 0

n−2k 0


, PQ2S2 =




k

k Γ

k Σ

n−2k 0


 if 2k ≤ n, (A.27a)

PQ1S1 =




n−k 2k−n

n−k I 0

2k−n 0 I

n−k 0 0


, PQ2S2 =




n−k 2k−n

n−k Γ 0

2k−n 0 I

n−k Σ 0


 if 2k > n, (A.27b)

where Γ = diag(γ1, . . . , γℓ) and Σ = diag(σ1, . . . , σℓ), ℓ = k or n − k, all γi, σi ≥ 0 and
γ2i + σ2

i = 1. With (A.27), we pick new U and V to be

PT



Γ−1

0
0


 , PT



Γ
Σ
0


 if 2k ≤ n,
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PT



Γ−1 0
0 I2n−k

0 0


 , PT



Γ 0
0 I2n−k

Σ 0


 if 2k > n,

respectively. These new U and V span the same space as the old U and V and satisfy UTV = Ik
and ‖U‖2‖V ‖2 = [cos∠(U ,V)]−1. The proof of (3.19) is completed for the case when M is
definite.

Now if λk < λk+1 and λi = µi for all i = 1, 2, . . . , k, then νi = λ2
i for all i = 1, 2, . . . , k since

µ2
i ≥ νi ≥ λ2

i . In particular, trace(PTAP ) =
∑k

i=1 λ
2
i . Apply [16, Theorem 2.2] or [14, Theorem 4]

on −A = QT(−Λ2)Q to conclude that (QP )(1:k,:) is orthogonal and (QP )(k+1:n,:) = 0. Write

Û =

(
Û1

Û2

)
, V̂ =

(
V̂1

V̂2

)
, Û1, V̂1 ∈ R

k×k, Λ2
1 = diag(λ2

1, . . . , λ
2
k).

SinceQP = Û Ṽ T
1 (Ik+ETE)−1/2 by (A.20), we conclude that Û2 = 0 and thus U = span(X(1:k,:)).

Use ÛTV̂ = Ik to get ÛT
1 V̂1 = Ik or equivalently ÛT

1 = V̂ −1
1 . Note, by (A.23),

(UTKU)(V TMV ) = ÛT
1 Λ

2
1Û1V̂

TV̂

which has the same eigenvalues as Λ2
1Û1V̂

TV̂ ÛT
1 which has the same eigenvalues as

Λ1Û1V̂
TV̂ ÛT

1 Λ1 = Λ2
1 + Λ1Û1V̂

T
2 V̂2Û

T
1 Λ1.

Since by assumption the eigenvalues of (UTKU)(V TMV ) are λ2
i (1 ≤ i ≤ k), we have

k∑

i=1

λ2
i = trace(Λ2

1 + Λ1Û1V̂
T
2 V̂2Û

T
1 Λ1) =

k∑

i=1

λ2
i + trace(Λ1Û1V̂

T
2 V̂2Û

T
1 Λ1)

which implies trace(Λ1Û1V̂
T
2 V̂2Û

T
1 Λ1) = 0 and thus if λ1 > 0, then V̂2Û

T
1 = 0 ⇒ V̂2 = 0.

Therefore
U = XÛ = X(1:k,:)Û1, V = Y V̂ = Y(1:k,:)V̂1,

as expected.

Proof of Theorem 3.6. Equations in (2.4) holds for some nonsingular Y ∈ R
n×n and X =

Y −T. Since the columns of Z =

(
Y Λ
X

)
are the eigenvectors of H corresponding to λi (i =

1, 2, . . . , n) and the eigenvectors corresponding to a multiple λi can be picked as any 〈·, ·〉I -
orthogonal basis vectors of the associated invariant subspace, we may assume that zi is parallel
to Z(:,i), the ith column of Z. Now for any UTX1 = 0 and V TY1 = 0, ÛTΛ2Û and V̂ TV̂ in (A.8)
and (A.18) become

ÛTΛ2Û = ÛT
2 Λ

2
2Û2, V̂ TV̂ = V̂ T

2 V̂2,

where

Û =

(
ℓ 0
n−ℓ Û2

)
, V̂ =

(
ℓ 0
n−ℓ V̂2

)
, Λ2 = diag(λℓ+1, . . . , λn).

The rest of the proof are the same as the corresponding parts in the proofs of Theorems 3.2 and
3.4.
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