
Minimization Principle for Linear Response

Eigenvalue Problem II: Computation

Zhaojun Bai∗ Ren-Cang Li †

Jan 28, 2012

Abstract

In Part I of this paper we presented a trace minimization principle and related theoretical
results for the linear response eigenvalue problem. Here we develop best approximations
of the few smallest eigenvalues with the positive sign via a structure-preserving subspace
projection. Then we present a four-dimensional subspace search conjugate gradient-like
algorithm for simultaneously computing these eigenvalues and their associated eigenvectors.
Finally, we present numerical examples to illustrate convergence behaviors of the proposed
methods with and without preconditioning.
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1 Introduction

This is the second paper of ours in a sequel of two. Building upon the theoretical results in [2],
here we will focus on the numerical aspect of the LR eigenvalue problem:

Hz ≡

(
0 K

M 0

)(
y

x

)
= λ

(
y

x

)
≡ λz, (1.1)

where K and M are n×n symmetric positive semi-definite matrices and one of them is definite.
It is an equivalent problem obtained from the original LR (a.k.a. Random Phase Approximation
(RPA)) eigenvalue problem: (

A B

−B −A

)(
u

v

)
= λ

(
u

v

)
(1.2)

by an orthogonal similarity transformation to give K = A − B and M = A + B [2], where A

and B are n × n real symmetric matrices such that the symmetric matrix

(
A B

B A

)
is positive

definite [35, 41]. Note that if obtained from the original LR eigenvalue problem, K and M are
both definite but here we relax this condition to one of them being definite.
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As noted in [3], the eigenvalue problem (1.1) is equivalent to any one of the following product
eigenvalue problems

KMy = λ2y, (1.3a)

MKx = λ2x. (1.3b)

Their equivalences have led to solving (1.1) through solving one of the eigenvalue problems in
(1.3). They also imply that the eigenvalues of H come in ±λ pairs. As in [2], we will denote the
positive eigenvalues1 of H by λi (1 ≤ i ≤ n) and

−λn ≤ · · · ≤ −λ2 ≤ −λ1 ≤ 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

The eigenvalue problem (1.2) has the same eigenvalues ±λi.
An important minimization principle of Thouless [40] is

λ1 = min
u,v

̺(u, v), (1.4)

where ̺(u, v) is defined by

̺(u, v) =

(
u

v

)T(
A B

B A

)(
u

v

)

|uTu− vTv|
, (1.5)

and the minimization is taken among all vectors u, v such that uTu − vTv 6= 0. For H, this
minimization principle translates into

λ1 = min
x,y

ρ(x, y), (1.6)

where

̺(u, v) ≡ ρ(x, y)
def
=

xTKx+ yTMy

2|xTy|
, (1.7)

where the minimization is taken among all x and y such that either xTy 6= 0 or xTy = 0 but
xTKx + yTMy > 0. This removes those x and y that annihilate both the numerator and the
denominator from the domain. In particular x = y = 0 is excluded.

Thouless’ minimization principle (1.4) and consequently the induced (1.6) for H were proved
under the condition that both A ±B (thus K and M , too) are symmetric positive definite. In
[2], they were extended to include the case when one of K and M is definite.

Since the RPA and linear response theory was proposed by Bohm and Pines for studying the
collective motion of many particles in the early 1950’s [7], the development of numerical methods
for solving the eigenvalue problem (1.2) and equivalently (1.1) has been an active research
subject in computational (quantum) physics and chemistry for over four decades. In [9], it was
suggested to solve the equivalent product eigenvalue problem (1.3a) instead by converting it to
the symmetric eigenvalue problem of RTKR using the Cholesky decomposition of M = RTR. In
[29, 38], Davidson’s algorithm for the symmetric eigenvalue problem was extended to the large
scale eigenvalue problem (1.2). In [14, 15, 43, 44, 45], Lanczos-like algorithms were proposed.
Given the minimization principle (1.4) or equivalently (1.6), conjugate gradient (CG) methods
become nature choices for finding the smallest positive eigenvalue and indeed they have (see for
example [25, 27]).

1Note our convention of assigning the positive sign to half of the eigenvalues 0 and the negative sign to the
other half in [2].
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Meanwhile, the eigenvalue problems in the forms of (1.1), (1.3), and (1.2) have also attracted
a great deal of attention in numerical analysis community over the past four decades, too.
As early as in 1960’s, Wilkinson discussed the product eigenvalue problems (1.3) arising from
theoretical physics, and proposed the method of transforming them to the standard symmetric
eigenvalue problems by using the Cholesky decomposition [48, p.35, p.337]. Wilkinson’s method
is implemented as LAPACK’s subroutine xSYGVD [1], where the product eigenvalue problems
in (1.3) are classified as the types 2 and 3 of the generalized symmetric definite eigenvalue
problems, respectively. Alternatively the structure-preserving GR algorithm, a generalization of
the well-known QR algorithm, can also be used for small to medium size problems [47, Chapter 8].
For large and sparse cases, the Lanczos algorithm, Krylov-Schur algorithm and Jacobi-Davidson
algorithm all have been generalized to the product eigenvalue problems (see [17, 21, 46]). On the
other hand, since the RPA eigenvalue problem (1.2) is a special case of the Hamiltonian matrix
eigenvalue problem, an extension of the QR algorithm made for Hamiltonian matrix eigenvalue
problems can be used to solve the problems of small to medium sizes [6, 8, 12, 47]. In particular,
the work [12] treated a more general linear response eigenvalue problem. Algorithms for large
scale Hamiltonian eigenvalue problems can be found in [4, 5] and references therein. An RPA test
case is given in [4] to illustrate the computational efficiency of a Hamiltonian Krylov-Schur-type
algorithm.

A recent survey study [42] compared four numerical methods (namely Lanczos, Arnoldi,
Davidson, and CG) and discussed the limitations of each of these methods for developing an
efficient linear-scaling eigensolver for the RPA eigenvalue problem (1.2). In the study, severe
limitations were experienced for the Lanczos-type methods due to the orthogonality constraints
(also see [43]), for the CG type methods to compute several eigenpairs simultaneously, and for
incorporating preconditioning techniques (see also [25]).

In [2], we obtained a trace (or subspace) version of (1.6):

k∑

i=1

λi =
1

2
inf

UTV=Ik

trace(UTKU + V TMV ), (1.8)

as well as Cauchy-like interlacing inequalities for a structure-preserving projection HSR of H.
Based on this newly developed theory, here we have an opportunity to develop efficient numerical
methods for the LR eigenvalue problem (1.1) in the much same way as the conjugate gradient
and Lanczos methods for solving the large scale symmetric eigenvalue problem. In particular, we
will show an important computational implication of the minimization principle (1.8) that is that
it lends itself to seek approximations to a cluster of smallest eigenvalues with the positive sign λi

(1 ≤ i ≤ k) simultaneously through minimizing the objective function trace(UTKU + V TMV )
subject to UTV = Ik and that span(U) and span(V ) are restricted inside two suitably built
subspaces U and V, respectively:

k∑

i=1

λi ≈
1

2
inf

UTV =Ik
span(U)⊆U, span(V )⊆V

trace(UTKU + V TMV ), (1.9)

where span(U) denotes the subspace spanned by the column vectors of U .
The minimization problem in the right-hand side of (1.9) doesn’t look easy to solve at first

sight. But we obtain a structure-preserving projection matrix HSR and show that the sum of its
first k smallest eigenvalues with the positive sign is the infimum. In this sense, HSR is the best
projection matrix from the given subspaces U and V, and solving its eigenvalue problem yields
the best approximations to λi (1 ≤ i ≤ k) and their associated eigenvectors. Moreover, HSR has
the same block structure as H. With these new developments, we will be able to construct effi-
cient numerical algorithms that can compute several smallest eigenvalues with the positive sign
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of H simultaneously. Indeed we will present our versions of locally optimal conjugate gradient
type algorithms, including blocked versions for computing these smallest eigenvalues simulta-
neously and preconditioned versions for speedy convergence. An extended presentation about
the steepest descent-like methods and their applications in ab initio calculation of optical ab-
sorption spectra appeared [36]. We point out that these new algorithms are not straightforward
applications of the standard steepest decent and nonlinear conjugate gradient algorithms, but
improved ones to take advantage of the best projection matrix HSR we have uncovered. All these
are made possible by our new theory, parallel to some of the well-known and important results
for the symmetric eigenvalue problem [22, 32, 37].

The rest of this paper is organized as follows. Section 2 presents an algorithm to construct
approximate eigenpairs for H, given a pair of approximate deflating subspaces {U ,V}. It is
derived from the result in [2] for the case when the subspaces do consist of a pair of deflating
subspaces. Section 3 and appendix A discuss how to construct the best approximations to some
of the eigenpairs of H, given a pair of approximate deflating subspaces {U ,V}. The results in
section 3 justifies the algorithm in section 2 from a different perspective. In section 4, we apply
newly established minimization principles in [2] to derive CG type algorithms for computing a
set of the smallest eigenvalues with the positive sign. In section 5, we present numerical results
to illustrate the convergence behaviors of CG methods. Concluding remarks are in section 6.

Notation. We will follow the notation as specified at the end of section 1 in [2]. In particular,
K, M ∈ R

n×n are assumed, by default, to be symmetric positive semi-definite and one of which
is definite, unless explicitly stated differently.

2 Approximate deflating subspaces

Recall that {U ,V} is a pair of deflating subspaces of {K,M} if [2, subsection 2.2]

KU ⊆ V and MV ⊆ U . (2.1)

Each such a pair will yield a subset of H’s eigenvalues and corresponding eigenvectors associated
with the eigenvalues in the subset [2, subsection 2.2]. But in practical computations, rarely pairs
of exact deflating subspaces are known, only approximate ones. The question then arises: how
to compute approximate eigenpairs of H given a pair of approximate deflating subspaces.

Let {U ,V} be a pair of approximate deflating subspaces with dimU = dimV = ℓ such that

W
def
= UTV is nonsingular. In [2, section 2], we defined a structure-preserving projection

HSR =

(
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

)
. (2.2)

of H onto the pair of the subspaces {U ,V}, where Wi ∈ R
ℓ×ℓ are from factorizing W = WT

1 W2

and nonsingular. This HSR in many ways, as will become clear later, play the same role for H
as the Rayleigh quotient matrix for the symmetric eigenvalue problem.

Theorem 2.6 in [2] shows how to construct the eigenpairs of H from those of HSR when {U ,V}
is a pair of deflating subspaces of {K,M}. The way of construction there naturally leads us to
propose the following algorithm.

Algorithm 2.1. Given the basis matrices U and V of an approximate deflating
subspaces {U ,V} of {K,M}, this algorithm returns approximate eigenvalues and
eigenvectors for H as follows.

1. Construct HSR as in (2.2) if UTV is nonsingular;
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2. Compute the eigenpairs

{
λ̂,

(
ŷ

x̂

)}
of HSR;

3. The computed eigenvalues λ̂ approximate some eigenvalues of H, and the asso-

ciated approximate eigenvectors can be recovered as

(
VW−1

2 ŷ

UW−1
1 x̂

)
.

In view of [2, Theorem 2.7], as far as the eigenvalue problem ofH is concerned, in theory any one
of HSR associated with a given pair of approximate deflating subspaces is just as good as another.
Numerically, however, we should pick basis matrices that are sufficiently well-conditioned, like
with orthonormal columns.

Remark 2.1. For this subsection, our default assumption on K,M ∈ R
n×n is not required. ✸

3 Best approximations by a pair of subspaces

Two most important aspects in solving a large scale eigenvalue problem are

1. building subspaces which the desired eigenvectors (or invariant subspaces) are close to,
and

2. seeking “best possible” approximations from the suitably built subspaces.

In this section, we shall address the second aspect for our current problem at hand, i.e., seeking
“best possible” approximations to a few smallest eigenvalues with the positive sign of H and their
associated eigenvectors from given pair of subspaces. We will prove that HSR provides best ap-
proximations. We leave the first aspect to the later sections when we present our computational
algorithms.

The concept of “best possible” comes with a quantitative measure as to what constitutes
“best possible”. There may not be such a measure in general. But for the eigenvalue problem
here, each of the minimization principles we established in [2] provides a quantitative measure.

Recall the default assumption that K, M ∈ R
n×n are symmetric positive semi-definite and

one of them is definite. Let {U ,V} be a pair of approximate deflating subspaces of {K,M} and
dim(U) = dim(V) = ℓ. Motivated by the minimization principles in [2] we would seek

1. the best approximation to λ1 in the sense of

inf
x∈U , y∈V

ρ(x, y) (3.1)

and its associated approximate eigenvector;

2. the best approximations to λj (1 ≤ j ≤ k) in the sense of

1

2
inf

span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ ) (3.2)

and their associated approximate eigenvectors. Necessarily k ≤ ℓ.

To this end, we divide our investigation into two cases. Let U, V ∈ R
n×ℓ be the basis matrices

of U and V, respectively, and set W = UTV . The two cases are

1. W = UTV is nonsingular;
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2. W = UTV is singular.

For the first case, i.e., W = UTV is nonsingular. Factorize W = WT
1 W2, whereWi ∈ R

ℓ×ℓ are
nonsingular. How this factorization is done is not essential mathematically. But it is included to
accommodate cases when such a factorization may offer certain conveniences. In general, simply
taking W1 = WT and W2 = Iℓ or W1 = Iℓ and W2 = W may just be good enough.

For the best approximation to λ1 by (3.1), we note that any x ∈ U and y ∈ V can be written
as x = Uû and y = V v̂ for some û, v̂ ∈ R

ℓ and vice versa. Therefore, we have

ρ(x, y) =
ûTUTKUû+ v̂TV TMV v̂

2|ûTWv̂|
(3.3)

=
x̂TW−T

1 UTKUW−1
1 x̂+ ŷTW−T

2 V TMVW−1
2 ŷ

2|x̂Tŷ|
,

where x̂ = W1û and ŷ = W2v̂. By [2, Theorem 3.1], the quantity in (3.1) is the smallest eigenvalue
with the positive sign of HSR defined earlier in section 2:

HSR =

(
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

)
∈ R

2ℓ×2ℓ. (2.2)

Now turn to the best approximations to λj (1 ≤ j ≤ k) by (3.2). Note that any Û and V̂

such that span(Û) ⊆ U , span(V̂ ) ⊆ V, and ÛTV̂ = Ik can be written as

Û = UW−1
1 X̂, V̂ = V W−1

2 Ŷ ,

where X̂, Ŷ ∈ R
ℓ×k and X̂TŶ = Ik, and vice versa. Hence we have

ÛTKÛ + V̂ TMV̂ = X̂TW−T
1 UTKUW−1

1 X̂ + Ŷ TW−T
2 V TMVW−1

2 Ŷ

and thus

inf
span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ )

= inf
X̂TŶ=Ik

trace(X̂TW−T
1 UTKUW−1

1 X̂ + Ŷ TW−T
2 V TMVW−1

2 Ŷ ). (3.4)

By [2, Theorem 3.2], we know that the right-hand side of (3.4) is the sum of the k smallest
eigenvalues with the positive sign of HSR.

In summary, the best approximations to the first k eigenvalues with the positive sign of H
within the pair of approximate deflating subspaces are the eigenvalues of HSR. Algorithmically,
denote by µj (j = 1, . . . , ℓ) the eigenvalues with the positive sign of HSR in ascending order and
by ẑj the associated eigenvectors, i.e., 0 ≤ µ1 ≤ · · · ≤ µℓ, and

HSRẑj = µj ẑj , ẑj =

(
ŷj
x̂j

)
. (3.5)

It can be verified that

ρ(UW−1
1 x̂j, V W−1

2 ŷj) = µj for j = 1, . . . , ℓ.

Naturally, according to Algorithm 2.1, we take λj ≈ µj and the corresponding approximate
eigenvectors of H as

z̃j ≡

(
ỹj
x̃j

)
=

(
VW−1

2 ŷj
UW−1

1 x̂j

)
for j = 1, . . . , ℓ. (3.6)
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In practice, not all of the approximate eigenpairs (µj , z̃j) are equally accurate to the same level.
Usually the first few pairs are more accurate than the rest.

For the ease of reference, we summarize the findings for the first case of nonsingular W =
UTV into the following theorem.

Theorem 3.1. Suppose that one of K, M ∈ R
n×n is definite. Let {U ,V} be a pair of approx-

imate deflating subspaces of {K,M} with dim(U) = dim(V) = ℓ, and let U, V ∈ R
n×ℓ be the

basis matrices of U and V, respectively. If W
def
= UTV is nonsingular, then

k∑

j=1

µj =
1

2
inf

span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ ),

and the best approximations to λ1 in the sense of (3.1) or to λj (1 ≤ j ≤ k) in the sense of (3.2)
are the eigenvalues {µj} of HSR defined in (2.2) with the corresponding approximate eigenvectors
given by (3.6).

We recall that even though HSR is not uniquely determined by the given subspaces U and V,
the approximate eigenpairs (µj, z̃j) are uniquely determined, as guaranteed by [2, Theorem 2.7].

It turns out the second case (namely W is singular) is much more complicated, but the
conclusion is similar in that both optimization problems in (3.1) and (3.2) can still be solved
through solving a smaller eigenvalue problem for a projection matrix ĤSR to be defined in
appendix A. Due to its complexity in treatment, we defer the consideration for the second case
to appendix A, where Theorem A.1 similar to Theorem 3.1 is obtained.

Remark 3.1. The best approximation technique so far is based on the minimization principles
in [2, Theorems 3.1 and 3.2]. Naturally one may wonder if a similar technique could be devised
using the minimization principles in [2, Theorem 3.3] for the original LR eigenvalue problem (1.3)
of [2]: (

A B

−B −A

)(
u

v

)
= λ

(
u

v

)
.

But that seems hard, if at all possible. The difficulty lies in that there appears no good way to

define a proper projection matrix of

(
A B

B A

)
or of

(
A B

−B −A

)
onto the given subspaces. ✸

4 4-D CG algorithms

4.1 Partial gradients

The partial gradients of the Thouless functional ρ(x, y) with respect to x and y will be needed
later for minimization. To find the gradients, we perturb x and y to x+p and y+q, respectively,
where p and q are assumed tiny in magnitude. Assuming xTy 6= 0, we have for sufficiently tiny
p and q, up to the first order in p and q,

ρ(x+ p, y + q) =
(x+ p)TK(x+ p) + (y + q)TM(y + q)

2|(x+ p)T(y + q)|

=
xTKx+ 2pTKx+ yTMy + 2qTMy

2|xTy + pTy + qTx|

=
xTKx+ 2pTKx+ yTMy + 2qTMy

2 |xTy|

[
1−

pTy + qTx

xTy

]

= ρ(x, y) +
1

xTy
pT [Kx− ρ(x, y) y] +

1

xTy
qT [My − ρ(x, y)x] .
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Therefore the partial gradients of ρ(x, y) with respect to x and y are given by

∇xρ =
1

xTy
[Kx− ρ(x, y) y] , ∇yρ =

1

xTy
[My − ρ(x, y)x] . (4.1)

There is a close relation between these two partial gradients and the residual:

Hz − ρ(x, y)z ≡

(
0 K

M 0

)(
y

x

)
− ρ(x, y)

(
y

x

)
= xTy

(
∇xρ

∇yρ

)
. (4.2)

Namely the block vector obtained by stacking ∇xρ over ∇yρ is parallel to the residual.

4.2 4-D search

The line search is a common approach in the process of optimizing a function value. For our
case, we are interested in solving

inf
x,y

ρ(x, y) = inf
x,y

xTKx+ yTMy

2|xTy|
(4.3)

in order to compute λ1 and its associated eigenvector of H.
From the theoretical point of view, this task of minimizing ρ(x, y) may end up with no

optimal arguments because possibly no x and y attend the infimum, unless both K and M are
definite. One may argue that in this case, λ1 is already known, i.e., +0, when the infimum
cannot be attained and it happens if one of K and M is singular. Naturally one can compute
corresponding eigenvectors (by, e.g., the inverse iteration) and deflate out the eigenvalues 0.
But in practice, that one of them is singular may not be known a priori, except that both are
semi-definite is usually known from the problem setup. A likely scenario would be that one may
still attempt to minimize ρ(x, y) anyway. What would happen then? First numerically rarely a
matrix is exactly singular. This means that the singular K or M is not actually singular (even
might be slightly indefinite). With carefully written computer codes, one may safely regard the
singular one barely definite. We find from our numerical tests that with a without approximately
H−1, any computation by minimizing ρ(x, y) can still yield meaningful numerical results: the
computed λ1 is very tiny, as tiny as about down to O(‖K‖ + ‖M‖)u, and one of x and y is
negligible compared to the other, where u is the machine unit roundoff. Therefore, despite of
the implied theoretical impasse by [2, Theorem 3.1] when one of K and M is singular, attempting
to minimize ρ(x, y), with a suitable without, is still a worthwhile thing to do in seeking λ1 and
its associated eigenvector of H.

Given a search direction

(
q

p

)
from the current position

(
y

x

)
, the basic idea of the standard

line search2 is to look for the best possible scalar argument t on the line

{(
y

x

)
+ t

(
q

p

)
: t ∈ R

}
(4.4)

to minimize ρ. Carrying out the line search, i.e., minimizing ρ along the line (4.4), is rather
straightforward through differentiating ρ(x+ tp, y+ tq) [3]. However we decided to give up this

2Since ρ is homogeneous of degree 0, i.e., ρ(tx, ty) ≡ ρ(x, y) for any scalar t, minimizing ρ along the line (4.4)

is in fact minimizing ρ in

{
α

(
y

x

)
+ αt

(
q

p

)
: α, t ∈ R

}
which in general form a plan in R

2n spanned by

(
y

x

)

and

(
q

p

)
, excluding the line

{
t

(
q

p

)
: t ∈ R

}
. Therefore the standard line search becomes a defacto plane search

for ρ. To be consistent with the standard terminology in optimization, we still call it the line search.

8



standard idea for reasons to be detailed in a moment. Instead, we shall look for four scalars α,
β, s, and t to minimize

ρ(αx+ sp, βy + tq) =
(αx+ sp)TK(αx+ sp) + (βy + tq)TM(βy + tq)

2|(αx + sp)T(βy + tq)|
.

This no longer performs a line search, but a 4-dimensional subspace search (or, 4-D search for
short):

inf
α,β,s,t

ρ(αx+ sp, βy + tq) = min
u∈span(U), v∈span(V )

ρ(u, v), (4.5)

within the 4-dimensional subspace

{(
βy + tq

αx+ sp

)
for all scalars α, β, s, and t

}
, (4.6)

where U = (x, p) and V = (y, q). The right-hand side of (4.5) can be solved by the methods
given in section 3 if UTV is nonsingular (the common case) or in appendix A if UTV is singular
(the rare case).

We prefer our 4-D search to the standard line search along the line (4.4) for the following
reasons:

1. While we have no formal proof, it seems that the standard line search cannot be recasted
into a (much) smaller eigenvalue problem of a matrix having the same block structure as
H: zero diagonal blocks and symmetric off-diagonal blocks.

2. The standard line search is not readily extensible to the subspace search, a crucial tech-
nique for our development for simultaneously computing few smallest eigenvalues with the
positive sign and corresponding eigenvectors of H.

3. The standard line search yields the best possible approximation along the line (4.4) that
is contained in the 4-dimensional subspace over which our 4-D search minimizes. Starting
with the same p and q, the solution by our 4-D search is and can be much better at about
the same cost.

4. Although we restricted our developments so far on real K and M , they are actually valid
for Hermitian K and M after minor changes, i.e., replacing all transposes (·)T by complex
conjugate transposes (·)H. When K and M are Hermitian and some of their entries are
complex, our 4-D search is truly a 4-D search over a 4-dimensional subspace in C

2n (the
2n-dimensional Euclidean vector space over the complex field), whereas the standard line
search does not minimize ρ over a straight line in C

2n because t is restricted to be real.
Conceivably the standard line search solution could be even worse in the complex case.

4.3 4-D CG algorithms

The minimization principle in [2, (1.8)/(1.11)], and the newly established one in [2, Theorem 3.2]
make it tempting to apply memory-efficient nonlinear CG algorithms [28] to solve LR (a.k.a.
RPA) eigenvalue problems. Not surprisingly, such applications had been attempted in [25, 27]
based on the Thouless functional ̺ in (1.5). Conceivably when only one eigenvalue and its
associated eigenvector are requested, it matters little, if any, to apply CG to (1.4) for the
Hamiltonian matrix in (1.2) or to (1.6) for H in (1.1). But it is a very different story if more
than one eigenpairs are requested, in which case block algorithms become necessary. It seems
hard, if at all possible, to create a block CG algorithm for the Hamiltonian matrix eigenvalue
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problem (1.2) directly, even with our new minimization principle in [2, Theorem 3.3] for the same
reason as we pointed out in Remark 3.1. On the other hand, the developments in section 3
and appendix A make it possible for designing efficient block CG algorithms to compute the
first few smallest eigenvalues with the positive sign λj and their corresponding eigenvectors
simultaneously, based on the minimization principle in [2, Theorem 3.2] and the Cauchy-like
interlacing inequalities in [2, Theorem 3.4]. This is the precise reason we prefer to work with H.

The locally optimal CG algorithm [33, 39] was born as a result of

1. the observation that the next approximation from applying a (classical) nonloinear CG
algorithm [28] to an optimization problem lies in the subspace spanned by the most recent
approximation, the most recent searching direction, and the gradient at the most recent
approximation, and

2. that subspace is the same as the one spanned by the two most recent approximations and
the gradient, and thus

3. we should compute the next approximation as the optimal solution within that subspace.

It has been noted that the locally optimal CG algorithm is often better suited for solving large
scale Hermitian eigenvalue problems, especially with a proper preconditioner [19, 20] than the
(classical) nonlinear CG algorithms (see also [30]. It converges fast, has no parameters to worry
about, and is still easy to implement. Inspired by this, we present in what follows our locally
optimal CG algorithms (with or without preconditioners).

For many nonlinear optimization problems, even solving simple line searches poses challenges.
But for the eigenvalue problem for H, thanks to Theorem 3.1 and Theorem A.1, the optimal
approximate solution within a pair of subspaces of dimension higher than 1 is easily computed,
very much like the case for the standard Hermitian eigenvalue problem for which Knyazev [20]
proposed the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG).
Theorem 3.1 and Theorem A.1 enable us to go for block CG algorithms as well.

Algorithm 4.1 below summarizes four locally optimal 4-D CG algorithms in one. We attach
“4-D” to them because of their relation to the 4-D search idea in subsection 4.2. Their creation
follows the idea of “local optimality” in the locally optimal CG algorithm in that each step the
optimal solution is searched within the subspace spanned by the two most recent approximations
and the partial gradients. Each of the four algorithms is realized through adjusting its integer
parameter k and preconditioner Φ:

• Locally Optimal 4-D CG algorithm (LO4DCG): k = 1 and

Φ =

(
0 In
In 0

)
; (4.7)

• Locally Optimal Preconditioned 4-D CG algorithm (LOP4DCG): k = 1 and Φ ≈ (H −
µI2n)

−1;

• Locally Optimal Block 4-D CG algorithm (LOB4DCG): k > 1 and Φ as in (4.7);

• Locally Optimal Block Preconditioned 4-D CG algorithm (LOBP4DCG): k > 1 and3 Φ ≈
(H − µI2n)

−1.

3Other possibilities include picking Φ to vary with CG steps and with the desired λj , i.e., Φ in (4.9) could be
made dependent on i and j, for fast convergence. But doing so likely increase preconditioning cost.
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The key iterative step in these locally optimal 4-D CG algorithms is to seek the best pos-
sible approximations in the subspace spanned by the two most recent approximations and the
(preconditioned) gradients at the most recent approximations, except for the first iterative step
for which the search subspace is simply spanned by the most recent approximations and the
(preconditioned) gradients at the approximations. A straightforward application would be to
search the next approximations within

span

{(
y
(i)
j

x
(i)
j

)
,

(
y
(i−1)
j

x
(i−1)
j

)
,

(
qj
pj

)
, 1 ≤ j ≤ k

}
, (4.8)

where the superscript (i−1) and (i) indicate that they are for the (i − 1)st and ith iterations,
respectively, and (

qj
pj

)
= Φ

(
∇xρ

∇yρ

)∣∣∣∣
(x,y)=(x

(i)
j ,y

(i)
j )

, (4.9)

and Φ is a preconditioner. For the first iteration, the vectors in (4.8) with the superscript
(i−1) should be deleted from the list because they are not available yet. To utilize the best
approximation methods in section 3 and appendix A, we modify this approach by using the
search space

span

{(
y
(i)
j

0

)
,

(
y
(i−1)
j

0

)
,

(
qj
0

)
,

(
0

x
(i)
j

)
,

(
0

x
(i−1)
j

)
,

(
0
pj

)
1 ≤ j ≤ k

}
.

Breaking each vector into two in such a way is a common technique today in developing structure-
preserving algorithms (see, e.g., [18, 23]). We are now ready to give our four locally optimal CG
algorithms collectively in one.

Algorithm 4.1. The locally optimal block preconditioned 4-D CG algorithms:

0 Given initial approximations X0 and Y0 having k columns such that

columns of Z0 =

(
Y0

X0

)
are approximate eigenvectors of H associated with

λj , 1 ≤ j ≤ k.
1 for i = 0, 1, . . . until convergence:
2 ρj = ρ((Xi)(:,j), (Yi)(:,j)), 1 ≤ j ≤ k;

3 Pi = KXi − Yi diag(ρ1, . . . , ρk), Qi = MYi −Xi diag(ρ1, . . . , ρk);

3.1

(
Qi

Pi

)
← Φ

(
Pi

Qi

)
if the preconditioner Φ is given;

4.1 For i = 0: U = (Xi, Pi), V = (Yi, Qi);
4.2 For i > 0: U = (Xi,Xi−1, Pi), V = (Yi, Yi−1, Qi);
4.3 Orthogonalize the columns of U and V ;
4.4 W = UTV = WT

1 W2;
5 Construct HSR as in (2.2) (assume W is nonsingular);
6 Compute the k smallest eigenvalue with positive sign of HSR,

and the associated eigenvectors as in (3.5);

7 Xi+1 = UW−1
1 (x̂1, . . . , x̂k), Yi+1 = V W−1

2 (ŷ1, . . . , ŷk);

8 Normalize each column of Zi+1 =

(
Yi+1

Xi+1

)
.

9 end

A few comments are in order for Algorithm 4.1:
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1. At Line 2, evaluations of ρj are needed only for sweep i = 0; for i ≥ 1, they are the k

smallest eigenvalues with the positive sign of HSR in the previous sweep.

2. For the convergence test, we can use the relative residual norm

‖Hz
(i)
j − ρ(x

(i)
j , y

(i)
j )z

(i)
j ‖[

‖H‖+ ρ(x
(i)
j , y

(i)
j )
]
‖z

(i)
j ‖

to determine if the approximate eigenpair (ρ(x
(i)
j , y

(i)
j ), z

(i)
j ) has converged to a desired

accuracy, where z
(i)
j = (Zi)(:,j), x

(i)
j = (Xi)(:,j), and y

(i)
j = (Yi)(:,j), and ‖ · ‖ is some

matrix/vector norm, e.g., the ℓ1-vector norm and ℓ1-operator norm.

3. U and V constructed at Line 4.1 or Line 4.2 may be ill-conditioned, especially when near
convergence because then the gradients tend to the zero vector and Xi and Yi are almost
converged. To ensure that U and V are well-conditioned for better numerical stability, we
may have to orthogonalize their columns via, e.g., the (classical/modified) Gram-Schmidt
orthogonalization process. This is the reason we have Line 4.3 there.

4. From Line 5 to Line 8, we leave out the case when UTV is singular for simplicity. Actual
implementation should include the case for which the optimal solution has been given in
detail in appendix A. Specifically, instead of HSR as in (2.2), we compute ĤSR as in (A.5)
and its min{k, r} smallest eigenvalues with the positive sign and the associated eigenvectors
as in (A.7), and finally compute Zi+1 = (z̃1, . . . , z̃min{k,r}) by (A.8) – (A.10), where r is
the (numerical) rank of W .

There are two factors that affect the (non)singularity of UTV : 1) the choices of U and V

as the basis matrices of U = span(Xi,Xi−1, Pi) and V = span(Yi, Yi−1, Qi), respectively,
and 2) the angle ∠(U ,V) between the two subspaces. The first factor can be alleviated by
picking orthonormal bases as suggested at Line 4.3, albeit an expensive step. A similar
issue came up in the standard LOBPCG [20], too, and essentially the same idea as in Line
4.3 was suggested in [16]. But the second factor is an intrinsic one [2, Lemma 2.2] and
we must then resort the technique detailed in appendix A. Even with the technique, a
complete and robust implementation must confront the important issue of deciding the
numerical rank of UTV to balance convergence speed and numerical stability. This will
be one of the issues that we will look into in our future study.

5. At Line 6, LAPACK’s subroutine xSYSVD can be used to solve the eigenvalue problem of
HSR because of its small size. In theory half of the eigenvalues of HSR have the positive
sign and the other half are opposite. But when the off-diagonal blocks of HSR is semi- or
barely definite, some of the tiny eigenvalues with the positive sign may be computed by
xSYSVD negative or even complex with tiny magnitude. This can be easily detected and
corrected by a simple post-processing.

6. At Line 8, we can simply scale each column of Zi+1 to be a unit vector in some vector
norm.

7. Sometimes it can be helpful to use a k that is somewhat bigger than the actual number of
requested eigenpairs for the acceleration of convergence.

8. The algorithm without Line 4.2, using Line 4.1 for all i, and without the preconditioner
Φ is reminiscent of the so-called Simultaneous Rayleigh Quotient Minimization Method
(SIRQIT) due to Longsine and McCormick [24] for the standard Hermitian eigenvalue
problem.
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9. Φ as in (4.7) gives the plain 4-D CG algorithm (i.e., without preconditioning). An efficient
preconditioner to compute the eigenvalues of H close to a prescribed point µ is

Φ = (H − µI2n)
−1.

Then the vectors pj and qj defined by (4.9) can be computed through approximately
solving a linear system with the coefficient matrix (H − µI2n)

−1 in practice. Note that
the arrangement of the two n-entry blocks in the vector applied to by Φ is not mistaken.
In fact the vector is parallel to the corresponding residual vector as given by (4.2). The
modified directions are parallel to the ones obtained from one step of the inverse power
iteration on the residual. When µ is closer to the desired eigenvalues than any others,
the preconditioned directions should have “larger” components in the desired eigenvectors
than the ones obtained without preconditioning. Since we are particularly interested in
the smallest eigenvalues with the positive sign, µ = 0 is often an obvious choice. Then

Φ

(
∇xρ

∇yρ

)
=

(
0 M−1

K−1 0

)(
∇xρ

∇yρ

)
=

(
M−1∇yρ

K−1∇xρ

)
=:

(
q

p

)
.

In this case, both p and q can be computed by using the conjugate gradient method [10, 13].
The search direction in the x-component depends only on ∇xρ while the search direction
in the y-component depends only on ∇yρ. This in part also justifies the correct block
ordering in the vector applied to by Φ in (4.9).

10. The rough flop counts per step, excluding the pre-conditioning part as it may vary with
implementation and ignoring those of O(k3) and O(nk) or less, are as follows.

(a) Residual computations at Line 3: 2k matrix-vector multiplications by K or M ;

(b) Orthogonalzations by, e.g., modified Gram-Schmidt process, at Line 4.3 [13, p.232]:
16nk2 (for i = 0) or 36nk2 (for i > 0) flops;

(c) Forming HSR: 4k (for i = 0) or 6k (for i > 0) matrix-vector multiplications by K or
M , plus 8nk2 (for i = 0) or 18nk2 (for i > 0) flops;

(d) Forming W at Line 4.4: 8nk2 (for i = 0) or 18nk2 (for i > 0) flops;

(e) Forming Xi+1 and Yi+1 at Line 7: 4nk2.

In summary, the cost per step, excluding the pre-conditioning part, is 6k (for i = 0) or 8k
(for i > 0) matrix-vector multiplications by K or M , plus 36nk2 (for i = 0) or 76nk2 (for
i > 0) flops.

5 Numerical examples

In this section, we present some numerical experiment results obtained within the MATLAB
environment to illustrate the essential convergence behaviors of locally optimal 4-D CG algo-
rithms in section 4. More tests on much larger scale LR problems will be in our future work.
Just recently, in collaboration with computational chemists, in [36] we successfully solve an LR
problem with 2n = 5, 650, 410 by the 4-D Block Steepest Descent method (4DBSD) which is
Algorithm 4.1 with Line 4.2 deleted and Line 4.1 used for all i with no preconditioner.

For the first example, we use the pair of matrices K and M of H (1.1) generated from
the linear response analysis of the density matrix calculated by the Quantum ESPRESSO, an
electronic structure calculation code that implements density functional theory (DFT) using
plane-waves as a basis set and pseudopotentials [11]. For simplicity, we use a synthesized pair of
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Figure 5.1: The convergence behaviors of the locally optimal block 4-D CG algorithms
with/without preconditioning for computing the 4 smallest positive eigenvalues (excitation
states) of a synthesized bi-atomic molecule: relative residual norms (left) and relative eigen-
value errors (right).

matrices K and M for the sodium dimer Na2, namely a simple biatomic molecule. Such small
molecules are often used as benchmark tests to assess various simulation models, functionals
and methods (for example see [26]). Both K and M are symmetric positive definite and of order
n = 1862.

Our goal is to compute 4 smallest positive eigenvalues 0 < λ1 < λ2 < λ3 < λ4 and corre-
sponding eigenvectors z1, z2, z3, z4 of H. The initial approximate eigenvectors of zi are chosen
as (eTj , e

T
j )

T for j = 1, 2, 3, 4. The relative residual norms and relative eigenvalue errors for the

jth approximate eigenpair (λ
(i)
j , z

(i)
j ) at the ith iterative step to the exact jth eigenpairs (λj , zj)

are defined by

‖Hz
(i)
j − λ

(i)
j z

(i)
j ‖1

(‖H‖1 + λ
(i)
j )‖z

(i)
j ‖1

and
|λ∗

j − λ
(i)
j |

|λ∗
j |

,

respectively, where λ∗
j are computed by the QR algorithm (via MATLAB’s function eig) and

considered to be the “exact” eigenvalues. The preconditioner is chosen to be

Φ = H−1 =

(
0 M−1

K−1 0

)
.

The preconditioned vectors qi := M−1pi and pi := K−1qi are computed by the CG method [10,
13]. Often very crude approximations are good enough. In this example, we solve both equations
with stopping tolerance 10−2 or maximum 20 iterations.

Figure 5.1 shows the relative residual norms and the relative eigenvalue errors of a MATLAB
implementation of the locally optimal block 4-D CG algorithm with and without preconditioning
(Algorithm 4.1 with k = 4). We observe that the significant difference in convergence rate with
and without preconditioning.

In this example, for each CG step there are 2k = 8 linear systems with coefficient matrix
K or M . On average, they are approximately solved by a combined 32k = 128 linear CG
steps (or 16 linear CG steps per linear system). That is to say that each LOP4DCG uses 32k
matrix-vector multiplications by K or M for the preconditioning part.
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Figure 5.2: The convergence behaviors of the locally optimal block 4-D CG algorithms with
preconditioning for computing the 4 smallest eigenvalues with the positive sign for the artificially
constructed H: relative residual norms (left) and absolute or relative eigenvalue errors (right).

The next example is artificially constructed with a singular K: all K(i,i+1) = K(i+1,i) = −1
for 1 ≤ i ≤ n − 1, K(j,j) = 2 for 2 ≤ j ≤ n − 1, K(1,1) = K(n,n) = 1, and K(i,j) = 0 elsewhere,
M = diag(1, 2, . . . , n), and n = 2000. We use the locally optimal block 4-D CG algorithm
to compute the first 4 smallest eigenvalues with the positive sign. We find that without a
preconditioner, convergence is very slow. Figure 5.2 shows the relative residual norms and the

absolute error in λ
(i)
1 (since λ1 = 0) and relative errors in λ

(i)
j (j = 2, 3, 4) by Algorithm 4.1 with

k = 4 using the preconditioner Φ = H−1 implemented again by the CG method with stopping
tolerance 10−2 or maximum 50 iterations. We point out that our numerical history indicates that
the stopping tolerance 10−2 was never reached in solving linear systems with coefficient matrix
K, i.e., CG took 50 steps for each of such a system. But we still observe decent convergence
rate towards the designed eigenvalues.

6 Concluding remarks

Basing on the theoretical foundation laid out in [2] for the LR (a.k.a. RPA) eigenvalue problem
(1.1) in computational quantum chemistry and physics, we developed a 4-D search technique
which enhances the standard line search method in optimization and then devise locally optimal
CG methods that are capable of computing the first few smallest eigenvalues with the positive
sign and corresponding eigenvectors simultaneously.

The numerical examples in section 5 demonstrate the effectiveness of the new algorithms,
especially with suitable preconditioners. Extended numerical experiment results on a block
4-D steepest descent type method for the first-principle calculation of the excitation states of
large molecules is presented in [36]. However, we do not have any precise estimate on rates of
convergence yet.

In both [2] and this paper, we have focused on the case where the LR (RPA) eigenvalue
problem has only real eigenvalues with eigenvalues 0 allowed. There are cases in which imaginary
eigenvalues occur. For example, the positive-definiteness condition of A + B and/or A − B is
not met in [31, 34]. The development of efficient numerical methods for treating such large scale
problems is a subject of future study.
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A Best approximations: the singular case

This appendix continues the investigation in section 3 to seek best approximate eigenpairs of H
for given {U ,V}, a pair of approximate deflating subspaces of {K,M} with dim(U) = dim(V) =

ℓ. In section 3, we have treated the case in which W
def
= UTV is nonsingular, where U, V ∈ R

n×ℓ

are the basis matrices of U and V, respectively. In what follows, we will treat the case in which
W is singular.

Suppose that W is singular, and factorize

W = WT
1 W2, Wi ∈ R

r×ℓ, r = rank(W ) < ℓ. (A.1)

So both Wi have full row rank. Factorize4

WT
i = Qi

(
Ri

0

)
for i = 1, 2, (A.2)

where Ri ∈ R
r×r, Qi ∈ R

ℓ×ℓ (i = 1, 2) are nonsingular.
Consider the best approximation to λ1 by (3.1). We still have (3.3):

ρ(x, y) =
ûTUTKUû+ v̂TV TMV v̂

2|ûTWv̂|
, (3.3)

where x = Uû and y = V v̂ for some û, v̂ ∈ R
ℓ. Note the correspondence between x ∈ U and

û ∈ R
ℓ and that between y ∈ V and v̂ ∈ R

ℓ are one-one. Let x̂ = W1û ∈ R
r and ŷ = W2v̂ ∈ R

r.
Since r < ℓ, û is not uniquely defined by x̂; neither is v̂ by ŷ. But use (A.2) to see that

û = Q−T
1

(
R−T

1 x̂

u

)
, v̂ = Q−T

2

(
R−T

2 ŷ

v

)
,

where u, v ∈ R
ℓ−r are arbitrary. Partition

Q−1
1 UTKUQ−T

1 =

( r ℓ−r

r K11 K12

ℓ−r KT
12 K22

)
, Q−1

2 V TMVQ−T
2 =

( r ℓ−r

r M11 M12

ℓ−r MT
12 M22

)
. (A.3)

We have

ûTUTKUû =

(
R−T

1 x̂

u

)T(
K11 K12

KT
12 K22

)(
R−T

1 x̂

u

)
,

v̂TV TMV v̂ =

(
R−T

2 ŷ

v

)T(
M11 M12

MT
12 M22

)(
R−T

2 ŷ

v

)
.

Given x̂, ûTUTKUû is minimized at these u such that K22u = −KT
12R

−T
1 x̂. This equation

always has a solution because that Q−1
1 UTKUQ−T

1 is positive semi-definite implies span(KT
12) ⊆

span(K22), and its solution is not unique if K22 is singular. But the non-uniqueness does not
matter as far as the minimal value of ûTUTKUû is concerned. The same can be said about
v̂TV TMV v̂. In fact,

min
u

ûTUTKUû = x̂TR−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1 x̂, (A.4a)

min
v

v̂TV TMV v̂ = ŷTR−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 ŷ, (A.4b)

4Computationally, this can be realized by the QR decompositions of WT
i . For more generality in presentation,

we do not assume have to be QR decompositions.
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whereK†
22 andM

†
22 are the Moore-Penrose inverses of K22 andM22, respectively. The minimums

in (A.4) are attained at those u and v satisfying

K22u = −KT
12R

−T
1 x̂, M22v = −MT

12R
−T
2 ŷ.

Finally, the quantity in (3.1) is

inf
x̂,ŷ

x̂TR−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1 x̂+ ŷTR−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 ŷ

2|x̂Tŷ|

which, by [2, Theorem 3.1], is the smallest eigenvalue with the positive sign of ĤSR:

ĤSR =


 0 R−1

1

(
K11 −K12K

†
22K

T
12

)
R−T

1

R−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 0


 ∈ R

2r×2r. (A.5)

Now we turn to the best approximations to λj (1 ≤ j ≤ k) by (3.2). Assume (A.1) and
(A.2). Any Û , V̂ ∈ R

n×k such that span(Û) ∈ U , span(V̂ ) ∈ V, and ÛTV̂ = Ik can be written
as

Û = UQ−T
1 Ũ , V̂ = V Q−T

2 Ṽ ,

where Ũ , Ṽ ∈ R
ℓ×k that make ÛTV̂ = Ik, and vice versa. We note that necessarily

k = rank(Ik) = rank(ÛTV̂ ) ≤ rank(W ) = r.

We first look into what constraint is needed on Ũ and Ṽ in order to enforce ÛTV̂ = Ik. To this
end, we partition

Ũ =

( k

r Ũ1

ℓ−r Ũ2

)
, Ṽ =

( k

r Ṽ1

ℓ−r Ṽ2

)
.

We have

ÛTV̂ = ŨTQ−1
1 WT

1 W2Q
−T
2 Ṽ = ŨT

(
R1

0

)(
RT

2 , 0
)
Ṽ = ŨT

1 R1R
T
2 Ṽ1.

Let X̂ = RT
1 Ũ1, Ŷ = RT

2 Ṽ1 ∈ Rr×k. Then ÛTV̂ = Ik is equivalent to X̂TŶ = Ik which will be

enforced henceforth, while Ũ2 and Ṽ2 are arbitrary. Assume the partitioning in (A.3). We have

ÛTKÛ = ŨTQ−1
1 UTKUQ−T

1 Ũ =

(
R−T

1 X̂

Ũ2

)T(
K11 K12

KT
12 K22

)(
R−T

1 X̂

Ũ2

)
,

V̂ TMV̂ = Ṽ TQ−1
1 V TKVQ−T

1 Ṽ =

(
R−T

2 Ŷ

Ṽ2

)T(
M11 M12

MT
12 M22

)(
R−T

2 Ŷ

Ṽ2

)
.

Given X̂ and Ŷ , it can be verified that

min
Ũ2

trace(ÛTKÛ) = trace(X̂TR−1
1 [K11 −K12K

†
22K

T
12]R

−T
1 X̂), (A.6a)

min
Ṽ2

trace(V̂ TMV̂ ) = trace(Ŷ TR−1
2 [M11 −M12M

†
22M

T
12]R

−T
2 Ŷ ) (A.6b)

with the minimums attained at those Ũ2 and Ṽ2 satisfying

K22Ũ2 = −K
T
12R

−T
1 X̂, M22Ṽ2 = −M

T
12R

−T
2 Ŷ .
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Therefore the quantity in (3.2) is

inf
X̂TŶ=Ik

trace
(
X̂TR−1

1 [K11 −K12K
†
22K

T
12]R

−T
1 X̂ + Ŷ TR−1

2 [M11 −M12M
†
22M

T
12]R

−T
2 Ŷ

)

which, by [2, Theorem 3.2], is the sum of the k smallest eigenvalues with the positive sign of ĤSR

defined by (A.5).
In summary, the best approximations to some of the eigenvalues of H within the pair of

approximate deflating subspaces are the eigenvalues of ĤSR. Denote by µj (j = 1, . . . , r) the
eigenvalues with the positive sign of ĤSR in ascending order and by ẑj the associated eigenvectors:

ĤSRẑj = µj ẑj , ẑj =

(
ŷj
x̂j

)
. (A.7)

Following the derivations above, we conclude

ρ(x̃j , ỹj) = µj for j = 1, . . . , r,

where

x̃j = UQ−T
1

(
R−T

1 x̂j
uj

)
, ỹj = V Q−T

2

(
R−T

2 ŷj
vj

)
(A.8)

for uj and vj satisfying

K22uj = −K
T
12R

−T
1 x̂j , M22vj = −M

T
12R

−T
2 ŷj. (A.9)

Naturally the approximate eigenvectors of H should be taken as

z̃j =

(
ỹj
x̃j

)
for j = 1, . . . , r. (A.10)

For easy of reference, we summarize our findings into the following theorem.

Theorem A.1. Suppose that one of K, M ∈ R
n×n is definite. Let {U ,V} be a pair of approxi-

mate deflating subspaces of {K,M} with dim(U) = dim(V) = ℓ, and let U, V ∈ R
n×ℓ be the basis

matrices of U and V, respectively. Suppose that W
def
= UTV is singular and let ĤSR be defined by

(A.5). Then the best approximations to λ1 in the sense of (3.1) or to λj (1 ≤ j ≤ k) in the sense
of (3.2) are the corresponding eigenvalues µj of ĤSR defined in (A.5), with the corresponding
approximate eigenvectors given by (A.8) – (A.10).

In [2, Theorem 2.7], we proved the approximate eigenpairs are unique for given {U ,V} with
nonsingular UTV , even though there are infinitely many different HSR associated with the pair
of subspaces. We are facing with the same question for ĤSR in whose construction there are
three non-unique choices:





1. Factorizations in (A.2) are not unique.

2. Factorization W = WT
1 W2 in (A.1) is not unique.

3. Basis matrices U and V are not unique.

(A.11)

The question would arise if different ĤSR could produce different approximate eigenpairs. This
is addressed by the following theorem.

18



Theorem A.2. Suppose that one of K, M ∈ R
n×n is definite. Let U and V be two subspaces

of Rn of dimension ℓ with basis matrices U, V ∈ R
n×ℓ, respectively. Suppose that W = UTV is

singular and define ĤSR by (A.5). Then

1. the approximate eigenvalues, i.e., the eigenvalues of ĤSR, are invariant with respect to any
of the non-uniqueness listed in (A.11) for constructing ĤSR;

2. the approximate eigenvectors by (A.8) – (A.10) are invariant with respect to any of the
non-uniqueness listed in (A.11) if and only if both K22 and M22 are definite.

Proof. To see the first conclusion, we notice that the infimum (3.2) only depends on {U ,V} and
is invariant with respect to any of the non-uniqueness in (A.11) for 1 ≤ k ≤ r. Since the infimum
is the sum of the first k smallest eigenvalues with the positive sign of ĤSR, let k go from 1 to r

to conclude that the eigenvalues with the positive sign of ĤSR are invariant with respect to any
of the non-uniqueness in (A.11); so are all eigenvalues of ĤSR.

For the second conclusion, let us first select one choice for each of them in (A.11), namely
basis matrices U and V , a factorization W = WT

1 W2 in (A.1), and two factorizations in (A.2).

Let H0
def
= ĤSR with these selected choices, and suppose that both K22 and M22 are definite. We

shall now prove that the approximate eigenvectors are invariant with respect to any variation
to the selected ones. Along the way, we will also see the definiteness of K22 and M22 does not
change with the variations, either.

1. Invariance with respect to different choices of factorizations in (A.2). Any factorizations
other than the given ones in (A.2) can be written as

WT
i = Qi

(
Si1

Si2

)(
S−1
i1 Ri

0

)
, (A.12)

for some nonsingular Si1 ∈ R
r×r, Si2 ∈ R

(ℓ−r)×(ℓ−r). Denote by H1
def
= ĤSR with given U ,

V and (A.1), and (A.12). Perform substitutions

Qi

(
Si1

Si2

)
← Qi, S

−1
i1 Ri ← Ri, S

−1
1i KijS

−T
1j ← Kij, S

−1
2i MijS

−T
2j ←Mij

to see H0 = H1 and that the approximate eigenvectors for H by (A.8) – (A.10) do not
change. Also the definiteness of K22 and M22 does not change with the variation in (A.12).

2. Invariance with respect to different choice of factorization W = WT
1 W2. Any factorization

other than the given one in (A.1), can be written as

W = WT
1 SS−1W2 = (STW1)

T(S−1W2) (A.13)

for some nonsingular S ∈ R
r×r. Define H1

def
= ĤSR with given U , V , and (A.13) and

(STW1)
T = Q1

(
R1S

0

)
, (S−1W2)

T = Q2

(
R2S

−T

0

)
. (A.14)

Since we just proved the invariance with respect to different choices of factorizations in
(A.2), it suffices to prove that the approximate eigenvectors obtained through H0 and H1

are the same. Upon using substitutions R1S ← R1 and R2S
−T ← R2, we find

H1 =
(
S−1 ⊕ ST

)
H0

(
S−1 ⊕ ST

)−1
,

and thus the relationships between the eigenvectors for H0 and H1. It can then be verified
that the approximate eigenvectors obtained through H0 and H1 via (A.8) – (A.10) are the
same. Also the definiteness of K22 and M22 does not change with the variation in (A.13).
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3. Invariance with respect to different choices of basis matrices. Given basis matrices U and
V of U and V, respectively, any other basis matrices can be written as UR and V S for

some nonsingular R, S ∈ R
ℓ×ℓ. Define H1

def
= ĤSR with UR and V S, and

W = (UR)T(V S) = RTUTV S = (W1R)T(W2S), (A.15)

and

(W1R)T = RTQ1

(
R1

0

)
, (W2S)

T = STQ2

(
R2

0

)
. (A.16)

By the two invariance properties we just proved, it suffices to prove that the approximate
eigenvectors obtained through H0 and H1 are the same. Perform substitutions

UR← U, V S ← V, RTQ1 ← Q1, STQ2 ← Q2

to see H0 = H1 and that the approximate eigenvectors for H by (A.8) – (A.10) do not
change. Again the definiteness of K22 and M22 does not change with the variation from
U to UR and from V to V S.

Finally if K22 is singular, then uj satisfying the first equation in (A.9) is not unique. In fact,
if uj is one, any uj + g is another, for any g in the kernel of K22. So the defining equation in
(A.8) for x̃j gives

x̃j = UQ1

(
R−T

1 x̂j

−K†
22K

T
12R

−T
1 x̂j + g

)
(A.17)

leading to different approximate eigenvectors as g varies within the kernel of K22. The same
thing happens if M22 is singular.

The proof of Theorem A.2 exposes the cause for the approximate eigenvectors by (A.8) –
(A.10) not to be uniquely determined, namely, one of the equations in (A.9) may have infinitely
many solutions5. When that’s the case, we can either always take

uj = −K
†
22K

T
12R

−T
1 x̂j , vj = −M

†
22M

T
12R

−T
1 ŷj

or settle the non-uniqueness by

min
g,h

{
‖Kx̃j − µj ỹj‖

2
2 + ‖Mỹj − µjx̃j‖

2
2

}
(A.18)

over all g in the kernel of K22 and h in the kernel of M22, upon noticing (A.17) and

ỹj = V Q−T
2

(
R−T

2 ŷj

−M †
22M

T
12R

−T
2 ŷj + h

)
. (A.19)

Finally it can be seen that (A.18) is a least squares problem in g and h. The next theorem says
that there are Cauchy-like interlacing inequalities for ĤSR, too.

Theorem A.3. Assume the conditions of Theorem A.1. Then

λi ≤ µi ≤ λi+2n−2ℓ for 1 ≤ i ≤ r, (A.20)

where λi+2n−2ℓ =∞ if i+ 2n− 2ℓ > n.

5By default, one of K and M is definite. Thus at most one of K22 and M22 is singular.
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Proof. Suppose for the moment that both K and M are definite. Recall the equivalence between
the eigenvalue problem (1.1) and the one for [2]

AAA− λBBB ≡

(
M 0
0 K

)
− λ

(
0 In
In 0

)
. (A.21)

AAA is symmetric positive definite if K and M are. Let

Z =

(
V Q−T

2 (R−1
2 ⊕ Iℓ−r)

UQ−T
1 (R−1

1 ⊕ Iℓ−r)

)

which has full column rank. It can be verified, upon using (A.3), that

ZTAAAZ =

(
M̂ 0

0 K̂

)
, ZTBBBZ =

(
0 Î

Î 0

)
,

where

M̂ =

(
R−T

2

Iℓ−r

)(
M11 M12

MT
12 M22

)(
R−1

2

Iℓ−r

)
,

K̂ =

(
R−T

1

Iℓ−r

)(
K11 K12

KT
12 K22

)(
R−1

1

Iℓ−r

)
,

Î =

(
Ir

0

)
∈ R

ℓ×ℓ.

ZTAAAZ is positive definite because AAA is. Note the eigenvalues of BBB − λAAA are ±λ−1
i and

−λ−1
1 ≤ −λ

−1
2 ≤ · · · ≤ −λ

−1
n < λ−1

n ≤ · · · ≤ λ−1
2 ≤ λ−1

1 .

Denote the eigenvalues6 of ZTBBBZ − λZTAAAZ by ±σi ordered as

−σ1 ≤ · · · ≤ −σr < −σr+1 = · · · = −σℓ = 0 = σℓ = · · · = σr+1 < σr ≤ · · · ≤ σ1.

Now apply Cauchy’s interlacing inequalities (extended for the generalized eigenvalue problem)
to BBB − λAAA and ZTBBBZ − λZTAAAZ to get for 1 ≤ i ≤ ℓ

λ−1
i ≥ σi ≥

{
λ−1
i+2n−2ℓ, if i+ 2n− 2ℓ ≤ n,

0, otherwise.

Equivalently λi ≤ σ−1
i ≤ λi+2n−2ℓ for 1 ≤ i ≤ ℓ. It remains to show that µi = σ−1

i for 1 ≤ i ≤ r.
To this end, we let

Z1 =

(
Ir 0

−K−1
22 KT

12R
−1
1 Iℓ−r

)
, Z2 =

(
Ir 0

−M−1
22 MT

12R
−1
2 Iℓ−r

)
.

It can be verified that ZT
1 ÎZ2 = Î and

ZT
1 K̂Z1 =

(
R−1

1 K̂11R
−T
1 0

0 K22

)
, K̂11 = K11 −K12K

−1
22 KT

12,

ZT
2 M̂Z2 =

(
R−1

2 M̂11R
−T
2 0

0 M22

)
, M̂11 = M11 −M12M

−1
22 MT

12.

6These eigenvalues are the same as those of (ZTAAAZ)−1/2(ZTBBBZ)(ZTAAAZ)−1/2 =

(
0 C

CT 0

)
, where C =

M̂−1/2ÎK̂−1/2. Thus σi are the singular values of C.
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The eigenvalues of ZTBBBZ − λZTAAAZ are the same as these of

(Z1 ⊕ Z2)
T
(
ZTBBBZ − λZTAAAZ

)
(Z1 ⊕ Z2)

which is a 4× 4 block matrix pencil and becomes, after switching its second and third row and
its second and third column,

(
0 Ir
Ir 0

)
⊕ 02(ℓ−r)×2(ℓ−r) − λ

(
R−1

2 M̂11R
−T
2 0

0 R−1
1 K̂11R

−T
1

)
⊕

(
M22 0
0 K22

)
.

Thus the nonzero eigenvalues of ZTBBBZ − λZTAAAZ are the same as these of

(
0 Ir
Ir 0

)
− λ

(
R−1

2 M̂11R
−T
2 0

0 R−1
1 K̂11R

−T
1

)

which in turn are the same as the reciprocals of the eigenvalues of ĤSR, i.e., σi = µ−1
i , as

expected.
Consider now that K is singular. Let K(ǫ) = K + ǫIn which is definite, where ǫ > 0. Define

accordingly H(ǫ) and its eigenvalues ±λi(ǫ), ĤSR(ǫ) and its eigenvalues ±µi(ǫ). By what we just
proved, we have

λi(ǫ) ≤ µi(ǫ) ≤ λi+2n−2ℓ(ǫ) for 1 ≤ i ≤ r. (A.22)

From the construction of ĤSR above, we see that limǫ→0+ ĤSR(ǫ) exists and the limit is the ĤSR

given by (A.5). Since eigenvalues are continuous functions of matrix entries, letting ǫ → 0+ in
(A.22) to get the desired inequalities in (A.20).

Remark A.1. Noticeably our treatment above is much more complicated than the nonsingular
case in section 3. Certainly an argument can be made not to use {U ,V} with a singular W at all
because [2, Lemma 2.1] says that W is nonsingular if {U ,V} is exact. But in practice, especially
at the beginning of an iterative process, it is hard to guarantee this is so at all time. Our
treatment, albeit complicated, shows that the optimums in (3.1) and (3.2) can still be realized.
An alternative and much simpler treatment for the singular case at a tradeoff of achieving only
suboptimal approximations to (3.1) and (3.2) is as follows. Suppose (A.1) and (A.2). We have

(R−1
1 , 0)Q−1

1 UTV Q−T
2

(
R2

0

)
= Ir.

After substitutions

U ← UQ−T
1

(
R1

0

)
, V ← V Q−T

2

(
R2

0

)
,

two new subspaces U and V with dimension r are born with new basis matrices U and V

satisfying UTV = Ir, returning to the nonsingular W case in section 3. ✸
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