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s ‖P(D+ + D−)‖∞ < 1, and study its numerical computation by

fixed-point iteration, Newton’s method and doubling.We shall also

study several special cases; e.g. when b̂ = 0 and P is low-ranked,

then X∗ = ŝ
2
UV is low-ranked and can be computed using more

efficient iterative processes in U and V. Numerical examples will be

given to illustrate our theoretical results.
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Fig. 1. The four-port-system.

1. Introduction

Transport theory has been an active area of research, associated with masters like Bellman and

Chandrasekhar (see [2,13] and the references therein). A one-dimensional model was studied first in

[13], stimulating a series of numerical studies, e.g., in [1,14,15,17], in the past 15 years. We shall study

a more general two-dimensional model in this paper.

In [18,19], the transport of particles stemming from a rectangular beam bounded in the rectangle

[0, x] × [0, y] and unbounded in the orthogonal z direction, incident upon a similar rectangular region,

was considered. Assuming that the incident particle beam is from the East, it is important to determine

the East reflection kernel, fromwhich the corresponding transmission, left-turn and right-turn kernels

can be deduced [18].

Consider thedomainΘ = [0,α] × [0,β] in Fig. 1,withparticle inputUd andoutputVd fromvarious

directions d = N, S, E, W . From the input UE from the East, we are interested in the corresponding

transmission, left-turn, right-turn and reflection operators TE , GE , DE and RE , respectively, producing

outputs TEUE , GEUE , DEUE and REUE .

For example, as on the left of Fig. 2 for TE , the incident flux UE comes in at y = yi and the resulting

emerging flux emerges at y = ye, produces an output in the form

[TEUE](ye) ≡
∫ β

0
TE(α,β , ye, yi)UE(yi) dyi,

where TE(x, y, ye, yi) is the corresponding transmission kernel. For the output flux VE from the East, we

have contributions from all four directions, summing to

VE = TEUE + DNUN + RWUW + GSUS.

Tounderstand the system,weneed todetermineall thekernels. Becauseof symmetry,weshall consider

only the kernels corresponding to the Eastern direction.

From [18,19], the integral–differential equations for the kernels for TE , GE , DE , and RE have been

derived. For the kernel RE of the Eastern reflection operator RE , we have

1

σ

∂RE

∂x
(x, y, ye, yi)= b δ(ye − yi)+ s p(ye, yi)+ 2(f − 1) RE(x, y, ye, yi)

+ s

∫ y

0

[
p(y′, yi)RE(x, y, ye, y′)+ p(ye, y

′)RE(x, y, y′, yi)
]
dy′

+
∫ y

0

[
bRE(x, y, ye, y

′)+ s

∫ y

0
p(y′′, y′)RE(x, y, ye, y′′) dy′′

]
× RE(x, y, y

′, yi) dy′, (1)
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Fig. 2. The incremental layer and the transmission operator TE .

with initial/boundary conditions RE(0,β , ye, yi) = 0,where δ(·) is the Kronecker functionwith δ(0) =
1 but vanishing at other arguments. For the parameters in (1),σ is the positive scattering cross-section,

and f , b and s are nonnegative expected numbers of particles that emerged from a collisionmoving in,

respectively, the same direction as the particle that engendered the collision, the opposite, or either of

the two orthogonal directions. The nonnegative intensity kernel p(·, ·) defines the expected intensity

operator P:

(PV)
(
y(k)

)
=
∫ y

0
p
(
y(k), y′

)
V(y′) dy′, (2)

on some function V .

One important problem in transport theory is to understand the behaviour of the four-port model

in Figs. 1 and 2, through the operators TE ,GE ,DE andRE , whose kernels can be obtained by solving their

corresponding integral–differential equations like (1). One important feature is that the equations for

the kernels TE , GE and DE are decoupled from each other, but dependent on the reflection kernel RE;

details can be found in [18,19]. In this paper, we shall concentrate on the steady-state solution to (1) for

the reflectionkernelRE . The global solutionof the integral–differential equation (1) canbe computed as

a fixed point of a positive operator,with the steady-state solution as its natural upper bound.Moreover,

these global solutions converge to the steady-state solution under favourable conditions. Note that RE
is differentiated with respect to the spatial variable x in (1) and the steady-state solution has to be

interpreted as the scattering behaviour stabilizing further away from the source, rather than against

time.

Quoting from [18,19], we shall attempt to pass on the essence of the approach of “invariant imbed-

ding”, which produces (1).

To the subregion [0, x] × [0, y] (on the right in Fig. 2) ofΘ (in Fig. 1) with x ∈ (0,α) and y ∈ (0,β),
imbed an additional strip [x, x +�x] × [0, y] on the right. Particles enter the subregion from the right

are reflected back from several possibilities. First, the probability of a particle having a collision inside

the strip is σ�x, of which fσ�x accounts for it continuing forward, bσ�x backward, and sσ�x left

or right. When a particle enters the strip at y = yi, collides and transverses up (or down) the strip, it

produces a source and an emerging flux out of the strip to the left or right at y = ye with probability

sσp(yi, ye)�x. Also, the probability of any particle going through the strip is [1+ σ�x(f − 1)], being
the sum of 1− σ�x (no collision) and fσ�x (going forward after collision). Let RE(x, y, ye, yi) and
RE(x +�x, y, ye, yi) represent the amounts of reflection,with incident particles at y = yi andemerging

particles at y = ye, in the subregion and the augmented region, respectively. Showing only the effects

of at most two collisions in the strip, we have

RE(x +�x, y, ye, yi)= [1+ σ�x(f − 1)]RE(x, y, ye, yi)[1+ σ�x(f − 1)]
+ bσδ(ye − yi)�x + sσp(ye, yi)�x + · · ·
= RE(x, y, ye, yi)+ 2(f − 1)σRE(x, y, ye, yi)�x + bσδ(ye − yi)�x

+ sσp(ye, yi)�x + · · · . (3)

The first term in between the equality signs in (3) accounts for the particle going through the strip into

the subregion, turning after reflection and then going through the strip again and emerge. The second
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term accounts for the particle bouncing back in the strip, and the third term for the particle to collide

in the strip, transverse and exit. Rearrange and let�x→ 0, (3) implies

1

σ

∂RE

∂x
(x, y, ye, yi) = b δ(ye − yi)+ s p(ye, yi)+ 2(f − 1) RE(x, y, ye, yi)+ · · · ,

a truncated version of (1). We now abbreviate the discussion and “explain” the remaining terms in (1).

For the first integral, the particle collides and transverses in the strip, enters the subregion (at y = y′)
and reflects, or reflects first before colliding (at y = y′) and transversing in the strip before emerging.

The second integral accounts for the particle going through the strip, reflecting in the subregion,

bouncing back to the strip (at y = y′), reflecting again and emerging to the right. For the last (double)

integral, the particle goes through the strip, reflects, collides in the strip (at y = y′) and transverses

in the strip, re-enters into the subregion (at y = y′′), reflects and emerges to the right. The integrals

sum all the possibilities in y′ and y′′. Many other paths for the particle are obviously possible but they

contribute towards higher order terms in�x and disappear when�x→ 0.

From obvious probabilistic reasons in the above transport model, we assume the inequalities

b+ f + 2s� 1, (4)

ψ(P) ≡ max
y∈[0,1],‖V‖∞=1

∣∣∣∣∫ 1

0
p(y, y′)V(y′) dy′

∣∣∣∣� 1, (5)

with b, f , s and p(y, y′) being nonnegative. When (4) is satisfied with equality, our system and the

resulting nonsymmetric algebraic Riccati equation (6) are described as critical.

For the steady-state solution, we have the right-hand-side of the integral–differential equation (1)

equals to zero, yielding an integral equation in RE . Assume without loss of generality that y = 1 and

apply numerical quadrature with n positive weights {d±k } and nodes {y(k)}, we have the approximated

equation at yi = y(m) and ye = y(l):

bδlm + splm + 2(f − 1)rlm

+ s
∑
k

(
rlkd
−
k pkm + plkd

+
k rkm

)
+ b

∑
k

rlkd
−
k rkm + s

∑
k,t

rlkd
−
k pktd

+
t rtm = 0

with plm ≡ p(y(l), y(m)), rlm ≡ RE(x, y, y
(l), y(m)) and D± ≡ diag{d±k }. Note that d

±
k are of O(n−1) for

many standardnumerical quadratures, andweallow theflexibility of differentweightsd
+
k andd

−
k , thus

different accuracies, for the numerical integration} respect to y′ and y′′ in the double integral in (1).

In matrix form with b̂ ≡ b/(1− f ), ŝ ≡ s/(1− f ) and using the convention M = [mij] (with capital

letters denoting matrices and the corresponding lower-case letters with indices for their elements),

we have the nonsymmetric algebraic Riccati equation (NARE):(
b̂I + ŝP

)
− 2R+ ŝ(RD−P + PD+R)+ b̂RD−R+ ŝRD−PD+R = 0.

Post-multiply the above equation by D−, the NARE now reads:

B− − XF− − F+X + XB+X = 0 (6)

with the n× nmatrices X ≡ RD− and

F± ≡ I − ŝPD±, B− ≡
(
b̂I + ŝP

)
D−, B+ ≡ b̂I + ŝPD+. (7)

Remark 1.1. The more useful variable is X = RD−, not R or RE , because ultimately we are interested

in integrals like

(REV)
(
y′
)
=
∫ y

0
RE

(
x, y, y′, y′′

)
V
(
y′′
)
dy′′ ≈ (RD−v)k = (Xv)k (8)

for some function V with the corresponding function values in v = [V(y(1)), . . . , V(y(n))]
 and y′ ≈
y(k).
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The “convergence” of the solution X of (6) to RE for the original integral equation is an interesting

problem on its own and will be pursued elsewhere. At the moment, we shall assume that the solution

X is an accurate approximation to RE for large enough values of n, in the sense that the difference

between the left- and right-hand-sides in (8) diminishes to zero as n→∞.

In addition to RE(V) in (8), we may also be interested in(
R�

EV
) (

y′′
)
≡
∫ y

0
V
(
y′
)
RE

(
x, y, y′, y′′

)
dy′ ≈

(
v
D+R

)
k
=
(
v
Y

)
k

with Y = D+R = D+X(D−)−1. Analogously, we can derive an NARE for Y (whose existence requires

an assumption on D±P in 1-norm, similar to that on PD± in (11)) but it may be simpler to solve (6) for

X and then retrieve Y afterward.

2. Existence of solution

Some relevant definitions are as follows. For any matrices Â, B̂ ∈ Rm×n , we write Â� B̂ (̂A > B̂)

if their elements satisfy âij � b̂ij (âij > b̂ij) for all i, j. A real square matrix Â is called a Z-matrix if all

its off-diagonal elements are nonpositive. It is clear that any Z-matrix Â can be written as sI − B̂ with

B̂ � 0. A Z-matrix Â is called an M-matrix if s� ρ(̂B), where ρ(·) is the spectral radius; it is a singular

M-matrix if s = ρ(̂B) and a nonsingular M-matrix if s > ρ(̂B). We have the following useful results

from [3] and [8, Theorem 1.1]:

Lemma 2.1. For a Z-matrix Â, the following three statements are equivalent:
(a) Â is a nonsingular M-matrix.
(b) Â−1 � 0.
(c) Âv > 0 for some vector v > 0.

Theorem 2.2. For the NARE

XĈX − XD̂− ÂX + B̂ = 0 (9)

where Â, B̂, Ĉ and D̂ are real matrices of sizes m× m,m× n, n× m, n× n, respectively. Assume that

M =
[
D̂ −Ĉ
−B̂ Â

]
(10)

is a nonsingular M-matrix or an irreducible singular M-matrix. Then the NARE has a minimal nonnegative

solution S. If M is irreducible, then S > 0 and Â− SĈ and D̂− ĈS are irreducible M-matrices. If M is

a nonsingular M-matrix, then Â− SĈ and D̂− ĈS are nonsingular M-matrices. If M is an irreducible

singular M-matrix with positive left and right null vectors [u
1 , u
2 ]
 and [v
1 , v
2 ]
 (where u1, v1 ∈ Rn

and u2, v2 ∈ Rm) satisfying

u
1 v1 /= u
2 v2,

then

MS = In ⊗ (̂A− SĈ)+ (D̂− ĈS)
 ⊗ Im

is a nonsingular M-matrix. If M is an irreducible singular M-matrix with u
1 v1 = u
2 v2, then MS is an

irreducible singular M-matrix.

Applying Lemma 2.1 and Theorem 2.2, we have the following existence result:

Theorem 2.3. Under the assumption that

b+ f + s ‖P(D+ + D−)‖∞ < 1, (11)

with b, f , s and P being nonnegative, the unique minimal nonnegative solution X∗ of (6) exists.
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Proof. Applying Theorem 2.2, we need to show that the Z-matrix

M =
⎡⎣ I − ŝPD− −

(
b̂I + ŝPD+

)
−
(
b̂I + ŝP

)
D− I − ŝPD+

⎤⎦ = I − b̂

[
I

D−
]
− ŝ

[
P

P

] [
D−, D+

]
(12)

is a nonsingular M-matrix or irreducible singular M-matrix. For the former, applying Lemma 2.1 toM

requires a vector v > 0 such thatMv > 0. Let v = e (the vector of all ones) and we need

b̂+ ŝ ‖P(D+ + D−)‖∞ < 1, (13)

which is equivalent to our assumption (11). �

For the rest of the paper, anymatrix normwill be the∞-norm unless otherwise stated. Many other

useful results on more general NAREs can be found in [8].

Remark 2.1. For the numerical quadrature chosen in deriving (6) from (1), we shall assume that it is

exact for some interpolating function of appropriate smoothness. Note that most numerical quadra-

tures can be derived through exact integration of such interpolating functions V , and different Vs

yield different quadratures or weights. In other words, for some v = [V(y(1)), . . . , V(y(n))]
 and its

interpolating function V , we have

(PV)(y(l)) =
∫ 1

0
p(y(l), y′)V(y′) dy′ =∑

k

plkd
±
k vk = (PD±v)l.

Together with (5) and for some v with ‖v‖ = 1 and its interpolating function V , it implies that

‖PD±‖ = ‖PD±v‖ = max
l

∣∣∣(PV)(y(l))
∣∣∣�ψ(P)� 1. (14)

With (4) and (14) not both satisfied with equality, the sufficient condition in (13) or assumption (11)

in Theorem 2.3 are satisfied. Consequently, the critical case (with equality in (4)) does not satisfy (14)

only if (5) is also satisfied with equality.

We shall consider the super-critical case, when both (4) and (5) are satisfied with equality, later

in the next sub-section. In some applications, P is of low rank. We shall consider this special case in

Section 3.

2.1. NARE as an eigenvalue problem

The NARE (6) can be reformulated as the following eigenvalue problem

H

[
I

X

]
=
[
I

X

]
S, H ≡

[−F− B+
−B− F+

]
=
[ −I b̂I

−b̂D− I

]
+ ŝ

[
I

−I
]
P
[
D−, D+

]
. (15)

From (11), it is easy to see that the eigenvalues of H are shifted from±1, splitting equally on opposite

sidesof the imaginaryaxis.Using theGerschgorinTheoremanddenoteD(a, r) ≡ {x ∈ C : |x − a|� r},
the eigenvalues are in the regions D(−1,α) ∪ D(1,α) on opposite sides of the imaginary axis, with

α ≡ b̂+ ŝ ‖P(D+ + D−)‖ < 1.

Remark 2.2. With α = 1 in the super-critical case, a simple application of the Gerschgorin Theorem

implies thatH in (15) andM in (12)maybe singular.However, this potential singularitymaybedetected

or excluded, by applying the extensions of the Gerschgorin Theorem in [12, Section 6.2]. Consider all

the Gerschgorin disks of H containing the origin, at least one of the corresponding inequalities should

not be satisfied with equality. In other words, wemay detect or exclude this super-critical case that all

the first n rows have their row sums equal to zero.

Note that even if H or M are singular, the existence result in Theorem 2.2 still holds provided that

M is irreducible. With the additional requirement for the null vectors as in Theorem 2.2, the Newton’s

method in Section 4.2 will be convergent quadratically.
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3. Special cases

In this section,we shall consider several special cases.When b = 0, theNARE simplifies to (17). If, in

addition, P is low-ranked, the NARE simplifies further to (18) and (19), yielding a solution of low-rank

which can be solved efficiently via the nonlinear equations in (20) in Section 3.2. Other special cases

are less interesting – when s = ŝ = 0 and b /= 0, the NARE degenerates to a simple quadratic (see

Section 3.3); and when b = s = 0, the problem becomes trivial, with the NARE degenerates into the

0 = 0 situation. Finally, when f = 0, the NARE remains qualitatively the same as (6).

3.1. The b = 0 case

When b = 0, the NARE (6) then reads

ŝPD− − X(I − ŝPD−)− (I − ŝPD+)X + ŝXPD+X = 0. (16)

Equivalently, we have

X = φ(X) ≡ ŝ

2

(
PD− + XPD− + PD+X + XPD+X

)
= ŝ

2
(I + X)P(D− + D+X), (17)

implying that X is low-ranked when P is.

We have the following special case of [6, Theorem 2.3] for X∗ and the iteration X(k+1) = φ(X(k)):

Theorem 3.1. Let X(0) = 0 andX(k+1) = φ(X(k)); i.e., the fixed-point iteration for theNARE in (17)when

b = 0. Then under assumption (11) in Theorem 2.3, we have

(i) the iterates satisfy X∗ � X(k+1) � X(k) � ŝ
2
PD− � 0, and

(ii) X(k)→ X∗ as k→∞.
We can apply Newton’s method and doubling [4,11] to solve (16), as in the general case in Sections

4.2 and 4.3.

3.2. Low-ranked P when b = 0

When P = P1P2 is of rank r (with P1, P


2 being n× r, r < n) and b = 0, (17) implies

X = ŝ

2
UV (18)

with the auxiliary variables

U = (I + X)P1, V = P2(D
− + D+X), (19)

where U, V
 are n× r. Substituting X in (18) into (19), we have 2rn nonlinear equations for the 2rn

unknowns in U and V :

U =
(
I + ŝ

2
UV

)
P1, V = P2

(
D− + ŝ

2
D+UV

)
. (20)

Convergence of various iterative schemes (e.g., Newton’s method, generalized nonlinear Jacobi and

Gauss–Seidelmethods, as in [1,6–11,14,15] ) for the above set of nonlinear equations (20) canbe shown,

similar to the proof in Theorem 2.3 (or techniques in the respective references).

Consider the following iterative schemes, all starting from U
(0)
I , V

(0)
I = 0 for I = S ,M,J and G:

(I) Simple Iteration (SI):

U
(k+1)
S =

[
I + ŝ

2
U
(k)
S V

(k)
S

]
P1, V

(k+1)
S = P2

[
D− + ŝ

2
D+U(k)S V

(k)
S

]
.
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(II) Modified Simple Iteration (MSI):

U
(k+1)
M =

[
I + ŝ

2
U
(k)
MV

(k)
M

]
P1, V

(k+1)
M = P2

[
D− + ŝ

2
D+U(k+1)M V

(k)
M

]
.

(III) Nonlinear Block Jacobi Method (NBJ):

U
(k+1)
J =

[
I + ŝ

2
U
(k+1)
J V

(k)
J

]
P1, V

(k+1)
J = P2

[
D− + ŝ

2
D+U(k)J V

(k+1)
J

]
.

(IV) Nonlinear Block Gauss–Seidel Method (NBGS):

U
(k+1)
G =

[
I + ŝ

2
U
(k+1)
G V

(k)
G

]
P1, V

(k+1)
G = P2

[
D− + ŝ

2
D+U(k+1)G V

(k+1)
G

]
.

We have the following results for various iterates, similar to those in [10]:

Theorem 3.2. Assume that (4) holds with b = 0 and the splitting P = P1P2, with P1, P2 � 0, satisfies

‖P1‖ = 1, 0 < ‖P2D±‖� 1. (21)

Ignoring the subscripts when the result holds for all the four methods, we have

(i) the iterates satisfy U∗ �U(k+1) �U(k) �U(1) � 0, V∗ � V (k+1) � V (k) � V (1) � 0, for k = 0, 1, . . . ;
with U∗ ≡ (I + X∗)P1 and V∗ ≡ P2(D

− + D+X∗);
(ii) U(k)→ U∗, V (k)→ V∗ as k→∞;
(iii) for each k, 0�U

(k)
S �U

(k)
M �U

(k)
G and 0� V

(k)
S � V

(k)
M � V

(k)
G ; and

(iv) for each k, 0�U
(k)
S �U

(k)
J �U

(k)
G and 0� V

(k)
S � V

(k)
J � V

(k)
G .

Proof. First we prove the iterates are well-defined. For SI and MSI, the issue is trivial. For NBJ and

NBGS, the formulae imply

U
(k+1)
J = P1

[
I − ŝ

2
V
(k)
J P1

]−1
, V

(k+1)
J =

[
I − ŝ

2
P2D
+U(k)J

]−1
P2D
− (22)

and

U
(k+1)
G = P1

[
I − ŝ

2
V
(k)
G P1

]−1
, V

(k+1)
G =

[
I − ŝ

2
P2D
+U(k+1)G

]−1
P2D
−. (23)

Thematrices inside the square brackets in (22) and (23) can be proved to be nonsingularM-matrices in

the form I − K by induction, with nonnegative inverses. In particular, we need to show that ‖K‖ < 1
2
.

Note that (4) implies that ŝ� 1
2
when b = 0.

For k = 0,U
(1)
J , V

(1)
J andU

(1)
G are obviously well-defined, as K = 0 in their respective formulae. For

NBGS with K ≡ ŝ
2
P2D
+U(1)G , (21) and (23) imply

‖U(1)G ‖ = ‖P1‖ = 1, ‖K‖�
ŝ

2
�

1

4
<

1

2

so V
(1)
G = (I − K)−1P2D− is well-defined as I − K is a nonsingular M-matrix. In addition, from the

second formula in (23), we have∥∥∥V (1)G
∥∥∥ = ∥∥∥(I + K + K2 + · · ·)P2D−

∥∥∥�
∥∥∥P2D−∥∥∥ (1+ 1

4
+ 1

42
+ · · ·

)
�

4

3
< 2. (24)

For the induction step, assume that U
(k)
I and V

(k)
I are well-defined, with ‖U(k)I ‖, ‖V (k)I ‖ < 2 (I =

J , G). For NBJ and NBGS, we obviously have ‖K‖ < 1
2
, and ‖U(k+1)I ‖, ‖V (k+1)J ‖ < 2 (I = J , G). For
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V
(k+1)
G , applying a similar argument as in (24) with K = ŝ

2
P2D
+U(k+1)G , we complete the induction

step with∥∥∥V (k+1)G
∥∥∥ = ∥∥∥(I + K + K2 + · · ·)P2D−

∥∥∥ < ∥∥∥P2D−∥∥∥ (1+ 1

2
+ 1

22
+ · · ·

)
� 2.

Consequently, (i) and (ii) can be proved similarly as in Theorem 3.1.

For (iii) and (iv), again by induction, we have

U
(1)
I = P1 (∀I), V

(1)
I = P2D

− (I = S ,M,J ).

For V
(1)
G with K = ŝ

2
P2D
+U(1)G , we have

V
(1)
G = (I − K)−1P2D− = (I + K + K2 + · · ·)P2D− � P2D

− = V
(1)
I (I = S ,M,J ).

For the induction step, assume that (iii) and (iv) hold for some arbitrary value of k. We then have

U
(k+1)
S =

[
I + ŝ

2
U
(k)
S V

(k)
S

]
P1 �

[
I + ŝ

2
U
(k)
MV

(k)
M

]
P1 = U

(k+1)
M ,

V
(k+1)
S = P2

[
D− + ŝ

2
D+U(k)S V

(k)
S

]
� P2

[
D− + ŝ

2
D+U(k)MV

(k)
M

]

� P2

[
D− + ŝ

2
D+U(k+1)M V

(k)
M

]
= V

(k+1)
M ;

U
(k+1)
S =

[
I + ŝ

2
U
(k)
S V

(k)
S

]
P1 �

[
I + ŝ

2
U
(k)
J V

(k)
J

]
P1

�
[
I + ŝ

2
U
(k+1)
J V

(k)
J

]
P1 = U

(k+1)
J ,

V
(k+1)
S = P2

[
D− + ŝ

2
D+U(k)S V

(k)
S

]
� P2

[
D− + ŝ

2
D+U(k)J V

(k+1)
J

]
= V

(k+1)
J ;

U
(k+1)
M =

[
I + ŝ

2
U
(k)
MV

(k)
M

]
P1 �

[
I + ŝ

2
U
(k+1)
G V

(k)
G

]
P1 = U

(k+1)
G ,

V
(k+1)
M = P2

[
D− + ŝ

2
D+U(k+1)M V

(k)
M

]
� P2

[
D− + ŝ

2
D+U(k+1)G V

(k+1)
G

]
= V

(k+1)
G ;

and

U
(k+1)
J = P1

[
I − ŝ

2
V
(k)
J P1

]−1
� P1

[
I − ŝ

2
V
(k)
G P1

]−1
= U

(k+1)
G ,

V
(k+1)
J =

[
I − ŝ

2
P2D
+U(k)J

]−1
P2D
− �

[
I − ŝ

2
P2D
+U(k+1)G

]−1
P2D
− = V

(k+1)
G .

Note that the iterates U(k) and V (k) are increasing towards their respective limits U∗ and V∗, and the

right-most inequalitieswill be obvious from (I − K)−1 = I + K + K2 + · · · The induction is complete

and (iii) and (iv) are proved. �

After U and V are obtained, X can be retrieved from (18). As for the simpler equation in [1,10,13,

14,15,17], the speed of convergence for various iterative schemes is reflected by the rates of increase

in the iterates. Consequently, NBGS is the fastest method, as proven more elaborately in [10]. Note

that these iterative schemes are of O(r2n) complexity per iteration, with the inexpensive inversion of
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I − K ∈ Rr×r in NBJ and NBGS. (Only when X = ŝ
2
UV is formed, O(rn2) flops are involved.) However,

all these are possible only for the special case b = 0 and s /= 0, sowe shall not attempt similar analysis

as in [10]. Note that the iterative schemes for the simpler equations previously studied in [10] are of

O(n2) complexity.

3.3. Explicit solution for special case when s = 0

When s = 0, the NARE (6) becomes the quadratic

b̂D− − 2X + b̂X2 = 0. (25)

With the minimal nonnegative solution guaranteed to exist by Theorem 2.3, we may consider various

iterative processes for solving (25). However, the fixed-point iteration X ← b̂(D− + X2)/2 implies

that X∗ = diag{xi} is diagonal and (25) degenerates to n scalar quadratics, implying that

X∗ = b̂−1
(
I −

√
I − b̂2D−

)
= b̂D−

(
I +

√
I − b̂2D−

)−1
.

As D± = O(1/n), a good approximation to X∗ is given by b̂D−/2, identical to X(1) from the fixed-point

iteration with X(0) = 0 or solving (25) by ignoring the X2 term.

4. The general case

For the general NARE (6):

B− − XF− − F+X + XB+X = 0

with F± ≡ I − ŝPD±, B− ≡ (b̂I + ŝP)D− and B+ ≡ b̂I + ŝPD+ in (7) for b /= 0, we can apply fixed-

point iteration, Newton’s method [8,14,15] or doubling [4,11]. The existence of the unique minimal

nonnegative solution X∗ has been proved in Theorem 2.3. Similar results as in Theorems 3.1 and

3.2 can be proved. For P = P1P2 of rank r (< n), the additional structure can be exploited for lower

operation counts.

4.1. Fixed-point iteration

There are many different versions of fixed-point iterations for (6). One obvious way, extending (17)

in Section 3.1, is

X ← F(X) ≡ ŝ

2
(I + X)P(D− + D+X)+ b̂

2
(D− + X2), X(0) = 0. (26)

Note that we have written F(X) as the sum of the right-hand-side of (17) associated with ŝ and the

left-over b̂ term, requiring one less matrix–matrix multiplication than the obvious

F̃(X) = 1

2

[
B− − ŝ(XPD− + PD+X)+ XB+X

]
.

For P = P1P2 of rank r (< n), only [(6r + 4)n2 + 2n3] flops are required per iteration (see Table 5.1

for other operation counts).

Similar to Theorem 3.1, we have the following special case of [6, Theorem 2.3]:

Theorem 4.1. Under assumption (11), for the fixed-point iteration (26), we have

(i) the iterates satisfy X∗ � X(k+1) � X(k) � X(1) = 1
2
B− � 0 (k = 0, 1, . . .); and

(ii) X(k)→ X∗ as k→∞.
For the rate of convergence, please consult [6, Theorem 2.5].
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4.2. Newton’s method

From the NARE (6), let R(X) denote the left-hand-side of the equation, in the computationally

efficient form

R(X) = ŝ(I + X)P(D− + D+X)+ b̂(D− + X2)− 2X,

with further saving when P = P1P2 is low-ranked.

At the (k+ 1)th iteration with X(k) being an approximate solution and X(k+1) = X(k) + δX(k),
Newton’s method requires the solution of the Sylvester equation(

F+ − X(k)B+
)
δX(k) + δX(k)

(
F− − B+X(k)

)
= R

(
X(k)

)
. (27)

Convergence of Newton’s method follows readily.

Theorem 4.2. Let X∗ be the minimal nonnegative solution of (6). Then under assumption (11), for the

Newton iteration (27)with X(0) = 0, the sequence {X(k)} is well-defined, X(k) � X(k+1) � X∗ for all k � 0,

and limi→∞ X(k) = X∗.

The proofmakes use of selected results from Theorem 2.2. In particular when vectorized, the above

Sylvester operator can be written as the matrix operator MX∗ (withm = n).

4.3. Doubling

We shall quote the doubling algorithm for the general NARE (9), with the matrix M in (10) being

a nonsingular M-matrix, from [11]. Note that the doubling algorithm is at approximately three times

faster than Newton’s method, as concluded in [7,11] and Table 5.1; please consult the details in the

respective references.

For the general NARE:

XĈX − XD̂− ÂX + B̂ = 0

with the corresponding matrixM in (10) being a nonsingular M-matrix, we first transform Â, B̂, Ĉ and

D̂ to

Eγ = I − 2γ V−1γ , Gγ = 2γD−1γ ĈW−1γ , Fγ = I − 2γW−1γ , Hγ = 2γW−1γ B̂D−1γ

with the parameter γ �maxi,j{âii, b̂jj} and
Aγ = Â+ γ I, Dγ = D̂+ γ I, Wγ = Aγ − B̂D−1γ Ĉ, Vγ = Dγ − ĈA−1γ B̂.

The doubling algorithm can then be summarized as:

E0 = Wγ , F0 = Fγ , G0 = Gγ , H0 = Hγ ,

Ek+1 = Ek(I − GkHk)
−1Ek, Fk+1 = Fk(I − HkGk)

−1Fk,
Gk+1 = Gk + Ek(I − GkHk)

−1GkFk, Hk+1 = Hk + Fk(I − HkGk)
−1HkEk. (28)

The iterates are well-defined with I − HkGk and I − GkHk being nonsingular M-matrices for all k, and

Hk → X and Gk → Y (respectively, the solutions to (9) and its adjoint) from below quadratically as

k→∞ (see [11, Theorem 5.1]).

When D± = D, we have F± = I − ŝPD and B± = ŝPD, halving the operation count of doubling.

5. Numerical examples

For comparison,we shall summarize the operation counts per iteration of various iterativemethods

in Table 5.1. We shall show only the dominant terms, assuming that n� r. The Sylvester equations
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Table 5.1

Operation counts per iteration.

Parameter P Method Flops

b = 0 General Fixed-point iteration for (17) 4n3

Low-ranked NBGS (23) 6r2n

b /= 0 General Fixed-point iteration (26) 6n3

Low-ranked Fixed-point iteration (26) 2n3

General Newton’s method (27) 41n3

Low-ranked Newton’s method (27) 34n3

Doubling (28) 16 2
3
n3

Table 5.2

CPU-times and iteration numbers for Example 1.

Fixed-point Newton Doubling

n tn rn #It tn rn #It tn rn #It

64 0.125 N/A 42 0.062 N/A 6 0.047 N/A 7

128 0.374 2.99 38 0.421 6.79 5 0.156 3.32 7

256 2.886 7.72 38 2.558 6.08 5 1.435 9.20 7

512 18.80 6.51 40 21.75 8.50 5 10.76 7.50 7

1024 186.9 9.94 43 172.1 7.91 5 97.25 9.04 8

in (27) are assumed to be solved by the Bartels–Stewart algorithm [5]. For b = 0 with a low-ranked

P, only the fastest method NBGS is considered. The slow fixed-point iteration method is also included

for comparison.

We shall consider two randomly generated examples for n = 64, 128, 256, 512 and 1024. Example

1 has ŝ = 0.3, b̂ = 0.4 and P being full-ranked, and Example 2 has ŝ = 0.3, b̂ = 0 and rank P = 10.

For the examples, the respective assumptions in Theorems 2.3 and 3.2 are satisfied. The numerical

computation has been carried out usingMATLABR2008b on a laptopwith eps = 2.2204× 10−16 [16].

Fig. 3. Residuals for Example 1 (n = 1024).
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Table 5.3

CPU-times and iteration numbers for Example 2with NBGS.

n 64 128 256 512 1024

tn 0.0000 0.0000 0.0312 0.0468 0.0780

rn N/A N/A N/A 1.50 1.67

#It 9 9 9 9 9

For Example 1, fixed-point iteration, Newton’s method and the doubling algorithm have been

compared for various values of n. The iterations have been run until convergence with tolerance

tol = 10−15. The results are summarized in Table 5.2, with tn denoting the CPU-time, rn ≡ tn/t n
2

and #It the number of iterations required, for a particular value of n. The iterates are also plotted in

Fig. 3 for n = 1024.

From Table 5.2 and Fig. 3, it is evident that the doubling algorithm performs better than Newton’s

method and thefixed-point iterationmethod is the slowest, as predicted in Table 5.1. The ratios rn illus-

trate the O(n3) complexity of the methods. The graphs in Fig. 3 illustrate the quadratic convergence of

the doubling algorithm and Newton’s method, with fixed-point iteration obviously converges linearly.

Newton’s method is faster than doubling in terms of convergence but the latter has an advantage in

operation count per iteration by a factor of three, resulting in its better efficiency in terms of CPU-time.

Note that the cputime command in MATLAB [16] is not an exact reflection of CPU-time consumed and

should be used as a rough guide only. Also, we have no control over some parts of the algorithms, such

as the inversion of the Sylvester operators by the MATLAB command lyap [16] in Newton’s method.

For Example 2, only the fastest iteration method NBGS has been tested and the results are summa-

rized in Table 5.3, with tol = 10−15. The O(n) complexity of the method is illustrated in the ratios rn,

although cputime in MATLAB fails to register the small amount of CPU-time for smaller values of n.

6. Concluding remarks

For a two-dimensionalmodel in transport theory,weneed to solve an integral–differential equation

to obtain the Eastern reflection kernel RE , from which other kernels can be derived. For the steady-

state solution, we have derived an NARE from the corresponding integral equation using numerical

quadratures. We have proved the existence and uniqueness of the minimal nonnegative solution of

the NARE. When b = 0 and P is low-ranked, the efficient NBGS method of complexity O(n) solves
the NARE efficiently. For the general case when b /= 0, the doubling algorithm is the most efficient,

approximately three times more efficient as Newton’s method. The numerical results support our

theoretical findings.

For future work, we need to consider conditions for existence other than (11), efficient algorithms

making better use of the structure of the Riccati equations, the convergence of X = RD− to RE and to

improve the efficiency of the numerical algorithms for large values of n. Finally, there are other similar

models and problems in transport theory [2] worthy of investigation.
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