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a b s t r a c t

We study the generalized eigenvalue problems (GEPs) derived from modeling the surface
acoustic wave in piezoelectric materials with periodic inhomogeneity. The eigenvalues
appear in the reciprocal pairs due to periodic boundary conditions in the modeling. By
transforming the GEP into a T-palindromic quadratic eigenvalue problem (TPQEP), the
reciprocal relationship of the eigenvalues can be maintained. In this paper, we outline four
recently developed structure-preserving algorithms, SA, SDA, TSHIRA and GTSHIRA, for
solving the TPQEP. Numerical comparisons on the accuracy and the computational costs
of these algorithm are presented. The eigenvalues close to unit circle on the complex plane
are of interest in the area of filter and sensor designs. Our numerical results show that the
Arnoldi-type structure-preserving algorithms TSHIRA and GTSHIRA with ‘‘re-symplectic’’
and ‘‘re-bi-isotropic’’ processes, respectively, are as accurate as the SA and SDA algorithms,
and more efficient in finding these eigenvalues.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the generalized eigenvalue problem (GEP) of the form
M1 G
F⊤ 0

 
ψi
ψℓ


+ λ


0 F
G⊤ M2

 
ψi
ψℓ


= 0, (1)

where M⊤

1 = M1 ∈ Cn×n,M⊤

2 = M2 ∈ Cm×m, F and G ∈ Cn×m with m ≪ n, and the subscript ‘‘⊤’’ denotes the complex
transpose. IfM1 andM2 are nonsingular, then (1) can be reduced as the T-palindromic quadratic eigenvalue problem (TPQEP)
of the form

P (λ)x ≡ (λ2A⊤

1 + λA0 + A1)x = 0, (2)

where

x = ψℓ, ψi = −M−1
1 (λF + G)ψℓ,

A1 = F⊤M−1
1 G, A0 = F⊤M−1

1 F + G⊤M−1
1 G − M2; (3)
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or

x = ψi, ψℓ = −λ−1M−1
2 (F⊤

+ λG⊤)ψi,

A1 = GM−1
2 F⊤, A0 = FM−1

2 F⊤
+ GM−1

2 G⊤
− M1. (4)

By taking the transpose of P (λ) in (2) and multiplying it by 1/λ2 it is easily seen that the eigenvalues of P (λ) appear in
the reciprocal pairs (λ, 1/λ) (including 0 and ∞). Since the nullity of A1 = GM−1

2 F⊤ in (4) is larger or equal to n − m,P (λ)
in (2) with A0 and A1 defined in (4) has n − m trivial zero and infinite eigenvalues which are not interested. We are only
interested in finding 2m(≪2n) nontrivial eigenpairs of P (λ).

The GEP (1) can be solved by traditionalmethods such as QZ and Arnoldimethod. But it does not guarantee that half of the
computed eigenvalues lie inside of the unit circle and the others are outside [1]. For solving TPQEP (2) with small and dense
matrices A0 and A1, some pioneering works [2–4] have been done for preserving the reciprocity of the eigenvalues basing
on a good linearization of (2) which transforms (2) into the form λZ⊤

+ Z . Some structure-preserving methods [2,5,6] were
proposed for solving (λZ⊤

+ Z)u = 0. These methods require at least O(n3) flops. Other structure-preserving algorithms
can also be employed to solve (2). One method based on doubling algorithm was developed in [7] via the computation of
a solvent of a nonlinear matrix equation associated with (2). Another structure-preserving algorithm based on (S + S−1)-
transform [8] and Patel’s approach [9] was developed in [10]. For problems with large and sparse matrices A0 and A1, two
structure-preserving Arnoldi-type algorithms, TSHIRA and GTSHIRA, were developed to search eigenvalues in a specified
region of interests [10] where TSHIRA solves the standard ⊤-skew-Hamiltonian eigenvalue problem and GTSHIRA solves
the generalized⊤-skew-Hamiltonian eigenvalue problem. Bothmethods employed the (S+S−1)-transform and implicitly-
restarted shift-and-invert Arnoldimethod. However, in case eigenvectors are needed, an extra linear systemhas to be solved
in TSHIRA.

TheGEP (1) typically arises inmany application areas including rail vibrations of fast train, surface acousticwave (SAW) in
filter design and crackmodeling, etc., [11]. In these areas, an accurate and efficient eigensolverwhichpreserves the reciprocal
relationship of the associated eigenpairs is needed. In this paper, we would like to compare the accuracy and computational
costs of the above mentioned algorithms for computing reciprocal eigenpairs in a SAW device [12]. The SAW filter plays
an important role in telecommunication filters [13,14] and sensor technologies [15] etc. These filters are built on the
physical property of piezoelectricmaterials, that electrical charges inducemechanical deformations and vice versa. Themain
component (or cell) of a SAW filter composes of a piezoelectric substrate and the input and output interdigital transducers
(IDT). An input electrical signal from the input IDT produces a surface acoustic wave, traveling through periodically arranged
electrodes and the output IDT picks up the output electrical signal. Depending on thematerial properties of the piezoelectric
substrate (PZT) and the metallic electrode, and the gap length between the electrodes, frequencies in a desired range can be
stopped or filtered out. In the filter design, it is important to know the stop band width and the center frequency fc of the
filter where fc =

vs
λs

here vs and λs are the wave velocity and wave length of the incident wave. The center frequency and
stop band width can be determined by experiments or computation. In computational approach, the dispersion diagram
needs to be generated in which a GEP of the form (1) associated with each frequency in the search range has to be
solved [1].

This paper is organized as follows. We shall first introduce finite element modeling for a simple SAW resonator in
Section 2. For more finite element simulations of piezoelectric devices in two dimension (2D) and three dimension (3D),
one can refer to the works done by Allik, Koshiba, Lerch, Buchner and Mohamed etc., [16–19]. In Section 3, we introduce
four structure-preserving algorithms developed in [7,10] to solve the TPQEP (2) and the GEP (1) resulted from our FEM
model. Our numerical experiments in Section 4 compare the efficiency and accuracy of the structure-preserving algorithms
for solving the GEP (1). Finally, we conclude the paper in Section 5.

2. Surface wave propagation

Tomodel the wave propagation in a SAW device, we assume that a large number of electrodes are placed equally-spaced
along a straight line on the PZT substrate. According to the Floquet–Bloch theory, one can reduce the problem to a single
cell domain with one electrode by assuming the wave ψ is quasi-periodic of the form

ψ(x1, x2) = ψp(x1, x2)e(α+ıβ)x1 , ψp(x1 + p, x2) = ψp(x1, x2),

where x1 is the wave propagation direction, p is the length of the unit cell (i.e. the periodic interval), α and β are the
attenuation and phase shift along the wave propagation direction, respectively.

Let Ω denote the piezoelectric substrate with a single IDT as shown in Fig. 1, and Γℓ and Γr denote the left
and right boundary segments of Ω , respectively. For the general anisotropic PZT substrates, under the assumption
of linear piezoelectric coupling, the elastic and electric fields interact following the general material constitution law
below

T = cES − e⊤E,

D = eS + εSE,
(5)
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Fig. 1. A 2D single cell domain of a LSAW resonator and boundary conditions.

where vectors T , S,D and E are the mechanical stress, strain, dielectric displacement and the electric field, respectively,
and the matrices cE, εS and e are the elasticity constant, dielectric constant and piezoelectric constant matrices measured
at constant electric and constant strain fields at constant temperature. By applying the virtual work principle to the Eq. (5),
the equilibrium state satisfies the following equation:

Ω

(δS)⊤

cES + e⊤(∇φ)


dV +


Ω

(∇δφ)⊤

eS − εS(∇φ)


dV +


Ω

(δu)⊤ρü dV

=


Γl∪Γr


(δu)⊤(T · n⃗)+ (δφ)⊤(D · n⃗)


dA, (6)

where ρ is the mass density, u = [u1, u2, u3]
⊤ is the displacement vector, φ is the electric potential that satisfies

∇φ = E, S =


∂u1
∂x ,

∂u2
∂y ,

∂u3
∂z ,

∂u2
∂z +

∂u3
∂y ,

∂u3
∂x +

∂u1
∂z ,

∂u1
∂y +

∂u2
∂x

⊤

, and δu, δφ, δS are virtual displacement, potential and

strain vectors, respectively. Let the notation ψ = [u⊤, φ]
⊤ and the subscript i, ℓ and r refer to nodal point index in the

interior, the left boundary and the right boundary of the domain Ω , respectively. Using the periodic boundary conditions,
proposed by Buchner [17],

Tr · nr = −γ Tℓ · nℓ, Dr · nr = −γDℓ · nℓ with γ = e−(α+ıβ),

the finite element discretization to (6) on the domainΩ [1] can be written in the following matrix form

C(ω)ψ ≡ [K − ω2M + ıω(κ1K + κ2M)]ψ = 0, (7)

where κ1, κ2 > 0 are the viscous damping andmass damping respectively. By ordering the nodal unknownψ according the
order of subscripts ℓ, i and r , the matrices K andM , and the vector ψ can be partitioned as following:

K =

Kℓℓ K⊤

iℓ 0
Kiℓ Kii Kir

0 K⊤

ir Krr

 , M =

Mℓℓ M⊤

iℓ 0
Miℓ Mii Mir

0 M⊤

ir Mrr

 ,
where Kii,Mii ∈ Rn×n, Kℓℓ, Krr ,Mℓℓ,Mrr ∈ Rm×m, Kiℓ, Kir ,Miℓ,Mir ∈ Rn×m, and ψ = [ψ⊤

ℓ , ψ
⊤

i , ψ
⊤
r ]

⊤ with ψi ∈

Cn, ψℓ, ψr ∈ Cm(m ≪ n). Obviously the matrix C(ω) in (7) can also be partitioned into

C(ω) ≡ C ≡

Cℓℓ C⊤

iℓ 0
Ciℓ Cii Cir

0 C⊤

ir Crr

 .
By setting ψr = λψℓ, the Eq. (7) leads to the generalized eigenvalue problem

Cii Ciℓ

C⊤

ir 0


− λ


0 Cir

C⊤

iℓ Cbb

 
ψi
ψℓ


= 0, (8)

where Cbb := Cℓℓ + Crr .
Since the viscosity is small for PZT substrates and metals in SAW devices, the attenuation factor α of surface waves is

close to zero. As a result, the propagation factor λ are generally near the unit circle thereafter denoted by U. Furthermore,
for frequency ω in the stopping band, the frequency shift parameter β shall be close to π when the periodic interval p
(i.e. the domain width here) equals to half of the incident wave length λs. Therefore, we are interesting in finding λ close
to U, especially for those are near −1 on the complex plane. Notice that eigenvalues of (2) appear in the reciprocal pairs
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(λ, 1/λ). In the following sections, we aim to discuss the efficiency and accuracy of the structure-preserving algorithms
[7,10] for solving the eigencurves λ(ω) and the associated eigenvectors of (8).

3. Structure-preserving algorithms

In this section, we shall introduce four structure-preserving algorithms developed in [7,10] to solve the TPQEP (2) and
discuss the computation costs of these algorithms in solving the GEP (1). In the following, we suppose m reciprocal pairs of
eigenvalues near U are desired.

3.1. Structure-preserving doubling algorithm

For solving the TPQEP (2) with A0, A1 ∈ Cm×m defined in (3), a structure-preserving doubling algorithm (SDA) was
developed in [7] via the computation of a solvent of a nonlinear matrix equation associated with (2). That is P (λ) can be
factorized as

P (λ) = (λA⊤

1 − X)X−1(λX − A1) (9)

for some nonsingular X with X⊤
= X if and only if X satisfies the following nonlinear matrix equation (NME):

A⊤

1 X
−1A1 + X + A0 = 0.

Combining SDA in [7], the GEP (1) can be solved by Algorithm 1. The advantages of Algorithm 1 are as following: (i) the
computed eigenvalues are guaranteed to appear in reciprocal pair since the eigenvalues of the matrix pencils λA⊤

1 − X and
λX − A1, which are reciprocal pairs, are the eigenvalues of P (λ) in (9) and (ii) the convergence rate of the SDA is proved to
be quadratic [7] if there are no eigenvalues of P (λ) located on unit circle.

Algorithm 1 GE_SDA
Input: matrices F ,G,M2 and M1, tolerance η and the number m of desired eigenvalues.
Output: eigenpairs {(γj, [(ψ

(1)
i,j )

⊤, (ψ
(1)
ℓ,j )

⊤
]
⊤), (γ−1

j , [(ψ
(2)
i,j )

⊤, (ψ
(2)
ℓ,j )

⊤
]
⊤)}m

j=1 of (1).
1: Compute A0 = F⊤M−1

1 F + G⊤M−1
1 G − M2 and A1 = F⊤M−1

1 G.
2: Set k = 0, Yk = A1, Xk = −A0 and Zk = 0.
3: repeat
4: Compute Yk+1 = Yk(Xk − Zk)−1Yk, Xk+1 = Xk − Y⊤

k (Xk − Zk)−1Yk, and
Zk+1 = Zk + Yk(Xk − Zk)−1Y⊤

k ;
5: Set k = k + 1;
6: until ∥Xk − Xk−1∥ ≤ η∥Xk∥

7: Compute the left and right eigenpairs {(λj, ψ
(1)
ℓ,j ), (λj, ψ

(r)
ℓ,j )}

m
j=1 of Xkψℓ = λA⊤

1 ψℓ;
8: Choose the eigenpairs which associated eigenvalues are near the unit circle, said {(λj, ψ

(1)
ℓ,j ), (λj, ψ

(r)
ℓ,j )}

m
j=1;

9: Solve (λjXk − A1)ψ
(2)
ℓ,j = Xkψ

(r)
ℓ,j and set γj = λ−1

j for j = 1, . . . ,m;
10: Compute

ψ
(1)
i,j = −M−1

1


γjFψ

(1)
ℓ,j + Gψ (1)

ℓ,j


, ψ

(2)
i,j = −M−1

1


γ−1
j Fψ (2)

ℓ,j + Gψ (2)
ℓ,j


for j = 1, . . . ,m.

Next, let us discuss the computational costs of Algorithm 1. To mimic the computation cost in the LU factorization of the
matrixM1 obtained from finite element discretization, we reorder the nodal indices so that thematrixM1 has narrower band
structure. Let M1 = LU be the LU factorization of M1. Then, computing A0 and A1 in Step 7 of Algorithm 1 requires solvingF ≡ U−1L−1F andG ≡ U−1L−1G, andmatrixmultiplications of F⊤F ,G⊤G and F⊤G. In Steps 3–6, one LU factorization (2m3/3
flops), two forward and back substitutions (4m3 flops) and three matrices multiplications (6m3 flops) are required for each
iterate k. Next, computing the left and right eigenpairs in Step 7 and solving ψ (2)

ℓ,j in Step 9 take 100m3 flops and 2mm3/3
flops, respectively. Finally, it also requires 2m forward and back substitutions to compute {ψ

(1)
i,j , ψ

(2)
i,j }

m
j=1 in Step 10. The total

cost of Algorithm is summarized in Table 1.

3.2. Structure-preserving algorithm

Another structure-preserving algorithm (SA) developed in [10] is based on the (S + S−1)-transform [8] and Patel’s
approach [9] for solving the TPQEP (2) with A0, A1 ∈ Cm×m defined in (3). The idea is, first, to linearize the TPQEP as the
following special GEP:

(M − λL)


x
y


= 0, (10)



144 T.-M. Huang et al. / Journal of Computational and Applied Mathematics 244 (2013) 140–154

Table 1
The computational costs of GE_SDA and GE_SA where k denotes the total iterations to
obtain convergent Xk in Lines 3.1–3.1 of GE_SDA.

ComputeM1 = LU GE_SDA GE_SA
1 1

Compute A0, A1

Solve Lx = b1 2m 2m
Solve Ux = b2 2m 2m
Compute F⊤d1 2m 2m
ComputeG⊤d2 m m

Computeψ (1)
i , ψ

(2)
i

Solve Lx = b1 2m 2m

Solve Ux = b2 2m 2m

Compute Fe1 2m 2m

Compute Ge2 2m 2m

Solve dense TPQEP

100 +

32
3 k +

2
3 m


m3 flops 50m3 flops

where λy = A1x, and

M =


A1 0

−A0 −I


, L =


0 I
A⊤

1 0


. (11)

Obviously, the matrix pencil M − λL is ⊤-symplectic, i.e., it satisfies MJM⊤
= LJL⊤ where J =


0 Im

−Im 0


. As a result,

the eigenvalues of (M,L) appear in the reciprocal pairs (λ, 1/λ). Secondly, the (S + S−1)-transform is applied on M − λL
and the pencil is now transformed into a ⊤-skew-Hamiltonian pencil K − µN , i.e., (KJ)⊤ = −KJ, (N J)⊤ = −N J:

K − µN ≡

(LJM⊤

+ MJL⊤)− µLJL⊤

J⊤

=


A0 A⊤

1 − A1

A1 − A⊤

1 A0


− µ


−A1 0
0 −A⊤

1


. (12)

The two eigenvalues λ and µ are then related by the relationship µ = λ+ 1/λ. The relationship between eigenpairs of the
TPQEP in (2) and the ⊤-skew-Hamiltonian pair (K,N ) in (12) is stated in the following theorem.

Theorem 3.1 ([10]). Let (K,N ) be defined in (12). If zs = [z⊤

1 , z
⊤

2 ]
⊤ with z1, z2 ∈ Cm is an eigenvector of (K,N )

corresponding to eigenvalue µ and ν satisfies ν +
1
ν

= µ, then 1
ν
z1 − z2 and νz1 − z2 are eigenvectors of the TPQEP

in (2) corresponding to eigenvalues ν and 1
ν
, respectively.

Finally, based on Patel’s approach [9], the matrix pair (K,N ) can further be reduced to a block triangular structure as
following

K := Q⊤KZ =


K11 K12

0 K⊤

11


, N := Q⊤N Z =


N11 N12

0 N⊤

11


, (13)

where K11 ∈ Cm×m is upper Hessenberg, N11 ∈ Cm×m is upper triangular, and Q , Z are unitary satisfying

Q = J⊤ZJ.

We then apply theQZ algorithm to (K11,N11) for computing them eigenpairs {(µk, yk)}mk=1. Consequently,

µk, Z


yk
0

m

k=1
are the m eigenpairs of (K,N ). Combining the above procedures and the structure-preserving algorithm in [10], the GEP
(1) can be solved by Algorithm 2.

The computational costs in Steps 1 and 9 of Algorithm 2 are the same that in Steps 1 and 10 of Algorithm 1. The SA
processes in Steps 2–8 of Algorithm 2 require approximately 50m3 flops [10] to compute the eigenpairs of the TPQEP (2)
with small sizematrices A0 and A1 in (3). The comparison of the computation costs for GE_SDA and GE_SA is listed in Table 1.

3.3. ⊤-skew-Hamiltonian implicit-restarted Arnoldi algorithm

In the above mentioned GE_SDA and GE_SA algorithms, the GEP (1) is transformed into the TPQEP (2) through equations
in (3) where M−1

1 F and M−1
1 G are solved by LU factorization on the matrix M1. The computation costs in this step increase

in the amount of 2m times n2. Since the GE_SDA and GE_SA algorithms are then working on the TPQEP where the size of
matrices ism × m,m ≪ n, the computation cost in solving the TPQEP is relatively small.

In the following, we introduce two Arnoldi-type algorithms in which the GEP (1) is transformed into the TPQEP (2)
through equations in (4). Since the matrix size m of M2 is much smaller, the cost in solving M−1

2 F⊤ and M−1
2 G⊤ by LU
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Algorithm 2 GE_SA
Input: matrices F , G, M2 andM1, and the number m of desired eigenvalues.
Output: eigenpairs {(γj, [(ψ

(1)
i,j )

⊤, (ψ
(1)
ℓ,j )

⊤
]
⊤), (γ−1

j , [(ψ
(2)
i,j )

⊤, (ψ
(2)
ℓ,j )

⊤
]
⊤)}m

j=1 of (1).
1: Compute A0 = F⊤M−1

1 F + G⊤M−1
1 G − M2 and A1 = F⊤M−1

1 G.
2: Form the pair (K,N ) as in (12);
3: Reduce (K,N ) to block upper triangular forms in (13) using unitary transformations;
4: Compute eigenpairs {(µk, yk)}mk=1 of (K11,N11) defined in (13) by using the QZ algorithm;
5: Compute eigenvalues νk and ν−1

k of P (λ) by solving ν2 − µkν + 1 = 0;
6: Choose the eigenvalues which are near the unit circle, said {νkj , ν

−1
kj

}
m
j=1;

7: Compute zj = Z


ykj
0


≡


zj1
zj2


, j = 1, 2, . . . ,m;

8: Compute eigenvectors ψ (1)
ℓ,j ≡ γ−1

j zj1 − zj2 and ψ (2)
ℓ,j ≡ γjzj1 − zj2 corresponding to eigenvalues γj ≡ νkj and ν

−1
kj

,
respectively, for j = 1, 2, . . . ,m;

9: Compute

ψ
(1)
i,j = −M−1

1


γjFψ

(1)
ℓ,j + Gψ (1)

ℓ,j


, ψ

(2)
i,j = −M−1

1


γ−1
j Fψ (2)

ℓ,j + Gψ (2)
ℓ,j


for j = 1, . . . ,m.

factorization of M2 can now be ignored. Following the same idea in Section 3.2, the TPQEP (2) with A0, A1 ∈ Cn×n is also
transformed into the ⊤-skew-Hamiltonian pencil K − µN through the Eqs. (10) and (12) with J =


0 In

−In 0


. Instead of

taking Patel’s approach, we seek the eigenvalues of the matrix pair (K,N ) by some implicit-restart Arnoldi algorithms.
Although the Arnoldi algorithm is working on the matrices with size 2n× 2n now, saving on computation costs is expected
when fast convergence of the Arnoldi iterations can be achieved. In the following, we sketch the key steps and theorems
that are employed in developing Arnoldi algorithm.

Let τ be a shift value and τ ∉ σ(M,L) where σ(A,B) denotes the set of all eigenvalues of any matrix pair (A,B).
Then, we have µ0 ≡ τ + τ−1

∉ σ(K,N ). Define the shift-invert transformation K − µ N for K − µN with µ =
1

µ−µ0
and

K ≡ −τN = τ


A⊤

1 0
0 A1


, (14a)

N ≡ −τ(K − µ0N ) = (M − τL)J

M⊤

− τL⊤

J⊤, (14b)

where K and N are ⊤-skew-Hamiltonian. Furthermore, from the definition of N in (14b), N can be factorized as N =

N1N2, where

N1 = M − τL, N2 = J(M⊤
− τL⊤)J⊤ (15)

are nonsingular and satisfy N ⊤

2 J = JN1. The GEP Kz = µ N z is then equivalent to the eigenvalue problem B z̃ = µz̃,
where

B ≡ N −1
1

KN −1
2 (16)

is ⊤-skew-Hamiltonian, i.e., JB⊤
= BJ, and z̃ = N2ẑ. Now, according to the following two main theorems proved in

[10,20], the⊤-skew-Hamiltonian implicitly-restarted Arnoldi (TSHIRA) algorithm as shown in Algorithm4 can be employed
to solve this eigenvalue problem.

Let us define the Krylov matrix with respect to u1 by

Kj ≡ Kj[B, u1] = [u1, Bu1, . . . , B j−1u1], 1 ≤ j ≤ n.

The two main theorems in [10,20] are as follows:

Theorem 3.2 ([20]). Let B ∈ C2n×2n be ⊤-skew-Hamiltonian and Kj be a Krylov matrix with rank(Kj) = j. Then span (Kj) is
⊤-isotropic and if Kj = UjRj is a QR-factorization, then

BUj = UjHj + ũj+1e⊤

j ,

where Hj ∈ Cj×j is unreduced upper Hessenberg, Uj ∈ C2n×j is orthonormal and ⊤-isotropic, and ũj+1 ∈ C2n is a suitable vector
such that

UH
j ũj+1 = 0 and U⊤

j Jũj+1 = 0.
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Theorem 3.3 ([10,20]). Let B ∈ C2n×2n be ⊤-skew-Hamiltonian. If rank(Kn) = n, then there is a unitary ⊤-symplectic matrix
U with Ue1 = u1 such that

UHBU =


Hn Sn
0 H⊤

n


,

where Hn ≡ [hij] is unreduced upper Hessenberg and Sn is ⊤-skew-symmetric.

Based on Theorem 3.2, the jth step of TSHIRA is given by

hj+1,juj+1 = Buj −

j
i=1

hijui, (17)

where hij = uH
i Buj, i = 1, . . . , j and hj+1,j > 0 is chosen so that ∥uj+1∥2 = 1. In order to guarantee the⊤-isotropic property

of the space span{u1, . . . , uj+1} is preserved within machine precision, reorthogonalizing uj+1 against JUj is necessary. As
a result, the Eq. (17) is modified into

hj+1,juj+1 = Buj −

j
i=1

hijui −

j
i=1

tijJūi,

where tij = −u⊤

i JBuj, i = 1, . . . , j. The above procedure is stated in Algorithm 3.
Finally, we present TSHIRA with Krylov–Schur restart to solve the eigenvalue problem B z̃ = µz̃ in Algorithm 4. Once

the eigenpair (µ̂, z̃) is obtained, one can recover the eigenpair (µ, z) of (K,N ) from the relationship û =
1

µ−µ0
and the

solution of the linear system N2z = z̃. The reciprocal eigenpair

λ, 1

λ


and the associated eigenvectors of the TPQEP (2) are

then followed from Theorem 3.1.

Algorithm 3 The jth ⊤-isotropic Arnoldi step
Input: ⊤-skew-Hamiltonian B and Uj = [u1, · · · , uj] with UH

j Uj = Ij and U⊤

j JUj = 0.
Output: [h1,j, · · · , hj+1,j] and uj+1.
1: Compute uj+1 = Buj;
2: for i = 1, . . . , j do
3: hij = uH

i uj+1, uj+1 = uj+1 − hijui
4: end for
5: for i = 1, . . . , j do
6: tij = u⊤

i J⊤uj+1, uj+1 = uj+1 − tijJūi
7: end for
8: Set hj+1,j := ∥uj+1∥2 and uj+1 := uj+1/hj+1,j.

Algorithm 4 [8] TSHIRA for solving B z̃ = µz̃
Input: ⊤-skew-Hamiltonian matrix B with starting vector u1.
Output: eigenpairs (µi, z̃i), i = 1, . . . ,m of B.
1: Use Algorithm 3 with starting vector u1 to generate the mth step of ⊤-isotropic Arnoldi decomposition:

BUm = UmHm + hm+1,mum+1e⊤

m ;

2: repeat
3: Use Algorithm 3 to extend the mth step of ⊤-isotropic Arnoldi decomposition to the (m + p)th step of ⊤-isotropic

Arnoldi factorization:
BUm+p = Um+pHm+p + hm+p+1,m+pum+p+1e⊤

m+p.

4: Use Krylov–Schur restarting scheme [21,22] to reform a new ⊤-isotropic Arnoldi decomposition with order m.
5: untilwanted m eigenpairs of B are convergent

3.4. Generalized ⊤-skew-Hamiltonian implicitly-restarted Arnoldi algorithm

Recall that an additional linear system N2z = z̃ has to be solved for recovering the eigenpair (µ, z) of (K,N ) when
TSHIRA is employed to solve the GEP Kz = µ N z in (14). This may result in losing some accuracy of the eigenvector
z. In order to eliminate this extra computational cost and to prevent the inaccuracy, a generalized ⊤-skew-Hamiltonian
implicitly-restarted Arnoldi (GTSHIRA) algorithm is proposed in [10]. The idea is to solve the GEP Kz = µ N z in (14) directly
through bi-reorthogonalization and bi-⊤-isotropic processes. The GTSHIRA algorithm is based on following two theorems.
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Theorem 3.4 ([10]). Let B ≡ N −1
1

KN −1
2 with N = N1N2 be ⊤-skew-Hamiltonian. Let Kj ≡ Kj[B, u1] be the Krylov matrix

with rank(Kj) = j. If

N −1
2 Kj = ZjR2,j and N1Kj = YjR1,j

are QR-factorizations, where Zj, Yj ∈ C2n×j are orthonormal and R2,j, R1,j are nonsingular upper triangular, then we have

KZj = YjHj +yj+1e⊤

j (18)

and N Zj = YjRj, (19)

whereHj ∈ Cj×j is unreduced upper Hessenberg,Rj ∈ Cj×j is nonsingular upper triangular, and Yj and Zj are ⊤-bi-isotropic such
that

YH
j yj+1 = 0 and Z⊤

j Jyj+1 = 0,

for a suitableyj+1 ∈ C2n.

Theorem 3.5 ([10]). Let B = N −1
1

KN −1
2 with N = N1N2 be ⊤-skew-Hamiltonian and Kn ≡ Kn[B, u1] be the Krylov matrix

with rank(Kn) = n. Then there are unitary matrices U and V satisfying V = J⊤UJ,Ue1 = u1 and Ve1 = N1u1/∥N1u1∥2
such that

V⊤ KU =

Hn Sn
0 H⊤

n


, V⊤ N U =

Rn Tn
0 R⊤

n


,

whereHn is unreduced upper Hessenberg,Rn is nonsingular upper triangular andSn,Tn are ⊤-skew-symmetric.

Based on Theorem 3.4 and assuming that the first (j − 1)th step in GTSHIRA follows the generalized ⊤-isotropic Arnoldi
process, i.e.,N Zj−1 = Yj−1Rj−1, (20)

by comparing the jth columns of both sides in (19) at the jth step, one has

N zj =

j−1
i=1

rijyi +rjjyj. (21)

With (20), (21) can be rewritten as

r−1
jj zj = N −1yj −

j−1
i=1

rijzi, (22)

where

[r1j, . . . ,rj−1,j]
⊤

:= −r−1
jj

R−1
j−1[r1j, . . . ,rj−1,j]

⊤,

andrjj in (22) is chosen so that ∥zj∥2 = 1. Since ZH
j Zj = Ij, the coefficientrij in (22) can be evaluated by

rij = zHj N −1yj, i = 1, . . . , j − 1.

Finally, from (18), the vector yj+1 in the jth step of the generalized ⊤-isotropic Arnoldi process is given by

hj+1,jyj+1 = Kzj −
j

i=1

hijyi,

wherehij = yHi Kzj,

andhj+1,j > 0 is chosen so that ∥yj+1∥2 = 1.
Notice that, in theory, zj and yj+1 are orthogonal to JȲj and JZ̄j, respectively, in exact arithmetic. However, in practice,

roundoff errorsmay cause y⊤

i J⊤zj and z⊤

i J⊤yj+1, i = 1, . . . , j, to be somenonzero tiny values. Therefore, in order to preserve
the ⊤-bi-isotropic property of Yj and Zj, reorthogonalization of zj against JȲj or yj+1 against JZ̄j is needed. Summarizing
above processes, we state the jth step of the generalized⊤-isotropic Arnoldi process in Algorithm5. The reorthogonalization
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Algorithm 5 [8] The jth generalized ⊤-isotropic Arnoldi step
Input: ⊤-skew-Hamiltonian K and N , upper triangular R(1 : j − 1, 1 : j − 1), Yj = [y1, . . . , yj] and Zj−1 = [z1, . . . , zj−1]

with YH
j Yj = Ij, ZH

j−1Zj−1 = Ij−1 and Y⊤

j JZj−1 = 0.
Output: [h1,j, . . . , hj+1,j], R(1 : j, j), yj+1 and zj.
1: Solve N zj = yj;
2: for i = 1, . . . , j − 1 do
3: rij = zHi zj, zj = zj −rijzi
4: end for
5: Reorthogonalize zj to JȲj as following for-loop in Steps 6–8:
6: for i = 1, . . . , j do
7: sij = y⊤

i J⊤zj, zj = zj − sijJȳi
8: end for
9: Set R(j, j) := ∥zj∥−1

2 , zj := R(j, j)zj and
R(1 : j − 1, j) := −R(j, j)R(1 : j − 1, 1 : j − 1)[r1j, . . . ,rj−1,j]

⊤;
10: Compute yj+1 = Kzj;
11: for i = 1, . . . , j do
12: hij = yHi yj+1, yj+1 = yj+1 − hijyi
13: end for
14: Reorthogonalize yj+1 to JZ̄j as following for-loop in Steps 15–17:
15: for i = 1, . . . , j do
16: tij = z⊤

i J⊤yj+1, yj+1 = yj+1 − tijJz̄i
17: end for
18: Set hj+1,j := ∥yj+1∥2 and yj+1 := yj+1/hj+1,j.

Algorithm 6 [8] GTSHIRA for solving Kz = µ N z
Input: ⊤-skew-Hamiltonian matrices K , N , starting vector y1 and shift value τ .
Output: m eigenpairs of ( K, N ).
1: Use Algorithm 5 with starting vector y1 to generate a generalized ⊤-isotropic Arnoldi decomposition with order m:KZm = YmHm + hm+1,mym+1e⊤

m ,N Zm = YmRm.

2: repeat
3: Use Algorithm 5 to extend the generalized ⊤-isotropic Arnoldi decomposition with order m to order (m + p):KZm+p = Ym+pHm+p + hm+p+1,m+pym+p+1e⊤

m+p,N Zm+p = Ym+pRm+p.

4: Use Krylov–Schur restarting scheme [20,21] to reform a new generalized ⊤-isotropic Arnoldi decomposition with
order m.

5: until wanted m eigenpairs of ( K, N ) are convergent

steps just mentioned are Step 5 and Step 14, respectively, in Algorithm 5. Moreover, the GTSHIRA algorithm based on the
generalized ⊤-isotropic Arnoldi process is presented in Algorithm 6 for finding eigenpairs of the matrix pair ( K, N ).

In the above TSHIRA and GTSHIRA algorithms, the main costs arise in computing uj+1 = Buj and solving linear systemN zj = yj at the jth⊤-isotropic and generalized⊤-isotropic Arnoldi steps, respectively. From (14b), (15) and (16), computing
these vectors uj+1 and zj require to solve the following linear systems

N1v1 = b1, N2v2 = b2. (23)
By the definitions of M and L in (11), we see that solving (23) is equivalent to solve

(τ 2A⊤

1 + τA0 + A1)v11 = b11 − τb12, (24)

v12 = −b12 − (A0 + τA⊤

1 )v11,

and

(τ 2A1 + τA0 + A⊤

1 )v22 = b22 + (A0 + τA1)b21, (25)
v21 = τv22 − b21,

where v1 = [v⊤

11, v
⊤

12]
⊤, v2 = [v⊤

21, v
⊤

22]
⊤, b1 = [b⊤

11, b
⊤

12]
⊤ and b2 = [b⊤

21, b
⊤

22]
⊤. By the definitions of A0 and A1, it holds that

τ 2A⊤

1 + τA0 + A1 = (G + τF)M−1
2 (F⊤

+ τG⊤)− τM1 (26)
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Algorithm 7 GE_GTSHIRA/GE_TSHIRA
Input: matrices F , G, M2 andM1, shift value τ and the number m of desired eigenvalues.
Output: eigenpairs {(γj, [(ψ

(1)
i,j )

⊤, (ψ
(1)
ℓ,j )

⊤
]
⊤), (γ−1

j , [(ψ
(2)
i,j )

⊤, (ψ
(2)
ℓ,j )

⊤
]
⊤)}m

j=1 of (1) where γj + γ−1
j for j = 1, . . . ,m are

the closest to shift value τ + τ−1.
1: Compute eigenpairs {(µj, zj ≡ [z⊤

j1 , z
⊤

j2 ]
⊤)}m

j=1 of ( K, N ) by using GTSHIRA or
Compute eigenpairs {(µj, z̃j)}m

j=1 of B by using TSHIRA and solve N2[z⊤

j1 , z
⊤

j2 ]
⊤

= z̃j, for j = 1, . . . ,m.
2: Compute eigenvalues γj and γ−1

j of TPQEP in (2) by solving

γ 2
− (τ + τ−1

+ µ−1
j )γ + 1 = 0;

Compute eigenvectors

ψ
(1)
i,j ≡ γ−1

j zj1 − zj2, ψ
(2)
i,j ≡ γjzj1 − zj2

corresponding to γj, γ−1
j , respectively, for j = 1, 2, . . . ,m.

3: Compute

ψ
(1)
ℓ,j = −M−1

2


γ−1
j F⊤ψ

(1)
i,j + G⊤ψ

(1)
i,j


, ψ

(2)
ℓ,j = −M−1

2


γjF⊤ψ

(2)
i,j + G⊤ψ

(2)
i,j


for j = 1, . . . ,m.

and

τ 2A1 + τA0 + A⊤

1 = (F + τG)M−1
2 (G⊤

+ τF⊤)− τM1. (27)

LetM1 = LU be the LU factorization ofM1 and set

E1 = L−1

1
τ
G + F


, E2 = U−⊤(F + τG). (28)

By the Sherman–Morrison–Woodbury formula, (26) and (27) imply that
τ 2A⊤

1 + τA0 + A1
−1

= −
1
τ
U−1


I + E1


M2 − E⊤

2 E1
−1

E⊤

2


L−1

and 
τ 2A1 + τA0 + A⊤

1

−1
= −

1
τ
L−⊤


I + E2


M2 − E⊤

1 E2
−1

E⊤

1


U−⊤,

respectively.
Obviously, from (28), we need m forward substitutions and m backward substitutions to obtain E1 and E2, respectively.

Furthermore, in addition to the cost in solving small linear systems

M2 − E⊤

2 E1
−1 and


M2 − E⊤

1 E2
−1, only two forward

substitutions (L−1,U−⊤) and two backward substitutions (L−⊤,U−1) are required to obtain the solutions of (24) and (25)
for generating Krylov subspace at each iterative step. Recall that, for GE_SDA and GE_SA, in order to form the matrices A0
and A1 in (3), one needs to compute M−1

1 F and M−1
1 G which require 2m forward and backward substitutions. Since the

shift-and-invert Arnoldi method is known to converge very fast when a proper shift is known, the overall computational
costs of GE_GTSHIRA and GE_TSHIRA, including computing E1, E2 and solving linear systems in each iterative steps, can be
only about half amount of the computation cost needed in GE_SDA and GE_SA. Our numerical results in Table 2 confirm
this observation. Finally, we summarize the process of applying TSHIRA/GTSHIRA to solve the GEP in (1) in Algorithm 7 and
show the comparison of the computational costs for TSHIRA and GTSHIRA in Table 2.

4. Numerical results

In this section, we tests the above mentioned four types of structure preserving algorithms on computing the dispersion
diagram of the frequency that are close to the stopping frequency of the SAW filter. The piezoelectric substrate of the filter
is made of 15° rotated quartz. The configuration of our computational domain is shown in Fig. 1 where the domain width AB
and height CD are set to be 10−6 and 3 × 10−6, respectively, the ratio of the electrode width EF versus the domain width is
set to be 1

2 and the ratio of the electrode thickness DE versus the domain height is 1
15 . In our numerical studies, the viscous

damping coefficient κ1 is set to be 10−14 and the mass damping coefficient κ2 is taken as 1 − κ1 to account for the effect
from the electrode weight. All computations are carried out in MATLAB 2010b on a HP workstation with an Intel Quad-Core
Xeon X5570 2.93 GHz and 60 GB main memory, using IEEE double-precision floating-point arithmetic.

Suppose m reciprocal pairs of eigenvalues near U are desired. For TSHIRA and GTSHIRA, the restart procedure will be
activated when the desired eigenpairs do not converge before the dimension of the Krylov subspace reaches 5m. This is
done by setting the value of p in Step 3 of Algorithms 4 and 6 to 4m. In the following discussion, we take m = 5 and the
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Table 2
Computational costs for TSHIRA and GTSHIRA.

TSHIRA GTSHIRA

Compute E1, E2

M1 = LU 1 1
F + ξG 2 2
Solve Lx = b1 m m
Solve U⊤y = c2 m m
E⊤

2 E1 (flops) 2m2n 2m2n

jth step Arnoldi

Solve Lx = b1, L⊤y = c1 1 1
Solve Ux = b2,U⊤y = c2 1 1
Compute Fd1, F⊤c1,Gd2,G⊤c2 3 3
Compute M1b 2 2
Compute E1d1, E⊤

1 c1, E2d2, E⊤

2 c2 1 1
Saxpy and inner products (flops) 8nj + 15n 16nj+18n

Schur restarting Matrix product (flops) 2(m + p)2n 4(m+p)2n

Fig. 2. The distribution of the eigenvalues which are close to and inside of U.

Fig. 3. Dispersion diagrams of α and β near the stopping band.

matrix dimensions of Ci and Cb are n = 63 960 and m = 723, respectively. An example of computed reciprocal eigenpairs
near U at frequency ω = 1.2757/(2π)× 1010 is shown in Fig. 2. The dispersion diagrams of the attenuation constant α and
the propagation constant β associated with the eigenvalue λ(ω) are shown in Fig. 3, for frequency ω around the stopping
band, where the eigenpair most close to −1 on the complex plane is plotted.

4.1. Accuracy of structure-preserving eigensolvers

In this subsection, we compare the accuracy of the eigenpairs, computed by structure-preserving Algorithms 1, 2 and 7,
respectively, for the GEP (8). Recall that the Krylov subspace Uj generated by the ⊤-Hamiltonian matrix B is automatically
⊤-isotropic in Theorem 3.2, and the subspaces Zj and Yj+1 generated in Theorem 3.4 are automatically ⊤-bi-isotropic. As
mentioned in Sections 3.3 and 3.4, isotropic re-orthogonalization in Step 6 of Algorithm 3 and Steps 7 and 16 of Algorithm
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Table 3
Convergent eigenvalues computed by T_NoSymp and GT_NoBiIso at ω = 1.2757/(2π)× 1010 .

T_NoSymp GT_NoBiIso


λ, 1

λ


−0.85175542558 − 0.52335156640ı −0.85175542559 − 0.52335156640ı
−0.85228028786 + 0.52367406214ı −0.85228028785 + 0.52367406213ı

−0.85175542557 − 0.52335156639ı −0.85175542556 − 0.52335156641ı
−0.85228028787 + 0.52367406214ı −0.85228028786 + 0.52367406216ı

−0.98999503056 + 0.00448884999ı −0.98999503056 + 0.00448884999ı
−1.01008531402 − 0.00457994365ı −1.01008531402 − 0.00457994365ı

−0.98999503056 + 0.00448884999ı −0.98999503056 + 0.00448884999ı
−1.01008531402 − 0.00457994365ı −1.01008531402 − 0.00457994365ı

Fig. 4. The relative residual of the computed eigenpairs produced by different re-bi-isotropic processes in Algorithm 5 with shift value τ = −0.99.

5 is important in maintaining the ⊤-isotropic property. Moreover, Theorems 3.3 and 3.5 both show that the multiplicities
of eigenvalues of (K,N ) are all even. In other words, no duplicate eigenpairs need to be computed theoretically when the
⊤-isotropic property is kept during the computation. On the other hand, without the isotropic re-orthogonalization process,
extra computation cost can arise in computing the duplicate eigenpairs. We would like to address this issue by numerical
studies shown in the following. We also like to point out that the accuracy of the computed eigenpairs can be affected by
different approaches in isotropic re-orthogonalization.

First, let us denote the algorithm that applying TSHIRAwithout the re-symplectic process as T_NoSymp and the algorithm
that applying GTSHIRA without these re-bi-isotropic processes as GT_NoBiIso. In Table 3, the convergent eigenvalues
obtained by T_NoSymp and GT_NoBiIso at frequency ω = 1.2757/(2π) × 1010 are listed. Obviously, one can see that,
in case only two eigenpairs {(λ1, λ

−1
1 ), (λ2, λ

−1
2 )} are needed here, the algorithms T_NoSymp and GT_NoBiIso return four

convergent eigenpairs in which two of them are indeed the duplicated pairs.
Next, let us compare the accuracy of the computed eigenpairs obtained from three different isotropic re-

orthogonalization approaches in GTSHIRA. One or two steps of re-bi-isotropic process can be performed by the for-loops
in Steps 6–8 and 15–17.

To distinguish among various re-bi-isotropic processes, we use notations ‘‘FullIso’’, ‘‘zIsoY’’ and ‘‘yIsoZ’’ defined as
follows:

• FullIso: Algorithm 5 with two for-loops in Steps 6–8 and 15–17.
• zIsoY: Algorithm 5 with one for-loop in Steps 6–8 and omitting for-loop in Steps 15–17.
• yIsoZ: Algorithm 5 with one for-loop in Steps 15–17 and omitting for-loop in Steps 6–8.

To measure the accuracy of computed eigenpairs of (8), we consider the relative residual of an eigenpair (λ, ψ) where
ψ = [ψ⊤

i , ψ
⊤

ℓ ]
⊤ which is defined as following:
Ci Ciℓ

C⊤

ir 0


ψ − λ


0 Cir

C⊤

iℓ Cb


ψ


F

Ci Ciℓ

C⊤

ir 0


F
∥ψ∥F + |λ|


0 Cir

C⊤

iℓ Cb


F
∥ψ∥F

,

here ∥ ∗ ∥F is the Frobenius matrix norm. The relative residuals of the convergent eigenpairs computed by ‘‘FullIso’’, ‘‘zIsoY’’
and ‘‘yIsoZ’’ are shown in Fig. 4. From the numerical results in Fig. 4, we see that the accuracy of the convergent eigenpairs
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(a) ∥ N Zj − YjRj∥2 . (b) ∥ KZj − YjHj −hj+1,jyj+1e⊤

j ∥2 .

Fig. 5. The errors of the equalities in (18) and (19) for ‘‘FullIso’’, ‘‘zIsoY’’ and ‘‘yIsoZ’’.

Table 4
CPU times (s) for GE_TSHIRA, GE_GTSHIRA, GE_SDA and GE_SA.

TSHIRA GTSHIRA SDA SA

Compute Ci = LU 191.31 191.31 191.31 191.31
Compute E1, E2, E⊤

2 E1 243.75 243.75
Compute A0, A1 533.94 533.94
Solve dense TPQEP 34.145
Solve Lx = b1 4.9850 4.9850 1.9940 1.9940
Solve Ux = b2 3.9775 3.9775 1.5910 1.5910
Solve U⊤y = c2 33.597 27.998
Solve L⊤y = c1 36.300 30.250
Compute E1d1, E⊤

2 c2 4.9150 4.9150
Compute E⊤

1 c1, E2d2 5.7930 4.8275

computed by ‘‘yIsoZ’’ is higher than those by ‘‘FullIso’’ and ‘‘zIsoY’’. This result can be explained from the accumulation of the
errors in the equalities (18) and (19). Let ξj,K ≡ ∥ KZj−YjHj−hj+1,jyj+1e⊤

j ∥2 and ξj,N ≡ ∥ N Zj−YjRj∥2, denote these errors in
the jth iteration. The error ξj,N depends on the accuracy of the solution of the linear systems in (23). If zj is reorthogonalized
to JȲj, then the error produced by this reorthogonalization will reduce the accuracy of ξj,N . Therefore, ξj,N produced by
‘‘FullIso’’ and ‘‘zIsoY’’ are greater than that by ‘‘yIsoZ’’ as shown in Fig. 5(a). On the other hand, the error ξj,K only depends on
the accuracy of matrix product vector and vector inner product. Obviously, the amount of ξj,K is much less than the amount
of ξj,N . Consequently, even though the accuracy of ξj,K can reduced by the errors from reorthogonalization yj+1 to JZ̄j as
shown Fig. 5(b), the reorthogonalization process ‘‘yIsoZ’’ ismuch accurate than the ‘‘FullIso’’ and ‘‘zIsoY’’ reorthogonalization
processes.

Finally, we compare the accuracy of the eigenpairs (λ(ω), u(ω)) obtained from GE_SDA, GE_SA, GE_TSHIRA and
GE_GTSHIRA with ‘‘yIsoZ’’ re-bi-isotropic process. The relative residuals resulted from these algorithms in computing four
reciprocal eigenpairs (λi(ω), ui(ω)), for i = 1, . . . , 4, that are closest to −1 on the complex plane are plotted in Fig. 6 for
each frequency ω near the stopping band. Obviously, one can see that the accuracy of the eigenpairs obtained from GE_SDA
and GE_SA are higher than those obtained by GE_TSHIRA and GE_GTSHIRA.

4.2. Comparison with computational costs

In this subsection, we discuss the computational costs of structure-preserving Algorithms 1, 2 and 7 in computing
m = 5 desired eigenpairs. Our numerical results show that the desired eigenpairs are convergent within 5m⊤-isotropic
Arnoldi steps without restart for GE_TSHIRA and GE_GTSHIRA. On the other hand, it requires total 18 iterations to obtain a
convergent Xk in Steps 3–6 for the SDA algorithm. As we mentioned in Section 3.3, the number of forward and backward
substitutions needed for GE_TSHIRA and GE_GTSHIRA is only about half the amount of these substitutions that needed
to transform the GEP into TPQEP in GE_SDA and GE_SA. Since only additional 25 forward substitutions and backward
substitutions are needed inGE_TSHIRA andGE_GTSHIRA for solving linear systems Lx = b andUy = c , we expect GE_TSHIRA
and GE_GTSHIRA to be more robust than GE_SA and GE_SDA. The following numerical results support this observation.

To give an overall comparison for GE_SDA, GE_SP, GE_TSHIRA andGE_GTSHIRA, in Table 4, computational intensive items
in these algorithms are listed in the first column and the sums of the CPU times for each associated item are listed in the
other four columns. From the results in Table 4, the dominant computational costs in GE_TSHIRA and GE_GTSHIRA are the
costs for computing E1, E2, E⊤

2 E1 and LU factorization of Ci. For GE_SDA and GE_SA, the cost in computing the matrices A0
and A1 of the TPQEP is the main cost comparing to the other costs. Obviously, the numbers shown in Table 4 indicate that
GE_TSHIRA and GE_GTSHIRA are more efficient than GE_SDA and GE_SA. We also plot the overall CPU times for GE_SDA
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(a) λ1(ω), λ1(ω)−1 . (b) λ2(ω), λ2(ω)−1 .

(c) λ3(ω), λ3(ω)−1 . (d) λ4(ω), λ4(ω)−1 .

Fig. 6. Relative residuals for GE_SDA, GE_SA, GE_TSHIRA and GE_GTSHIRA with shift value τ = −0.89.

Fig. 7. CPU times for GE_SDA and GE_GTSHIRA.

and GE_GTSHIRA with frequency from 1.274/(2π)× 1010 to 1.279/(2π)× 1010 in Fig. 7. From Fig. 7, one can see that the
total CPU times needed in GE_SDA and GE_SA are 40% more than the CPU time needed in GE_TSHIRA and GE_GTSHIRA for
computing 5 desired eigenpairs.

5. Conclusion

In this paper,we have discussed the structure-preservingmethods for solving the generalized eigenvalue problemarising
in the surface acoustic wave propagation on a simple resonator with an interdigital transducer (IDT) where electrodes are
arranged periodically on piezoelectric substrates (PZT) such as 15° rotated Quartz.With given periodic boundary conditions,
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the eigenvalues of the GEP appear in the reciprocal pairs (λ, λ−1). In order to preserve the reciprocal relationship of
the eigenvalues, the GEP is transformed to two types of T-palindromic quadratic eigenvalue problems, one with large
coefficient matrices and the other with small coefficient matrices. The structure-preserving algorithms GE_SDA and GE_SA
in Algorithms 1 and 2 are employed to solve the TPQEP (3) with small-size coefficient matrices and GE_TSHIRA and
GE_GTSHIRA in Algorithm 7 are employed to solve the TPQEP (4) with large-size coefficient matrices.

In finding the five eigenpairs that are near U and close to −1, we observed duplicate eigenpairs appear when applying
GE_TSHIRA and GE_GTSHIRA without re-symplectic and re-bi-isotropic processes, respectively. On the other hand, no
duplicate eigenpairs are observed when re-symplectic and re-bi-isotropic processes are integrated in GE_TSHIRA and
GE_GTSHIRA. Three different re-bi-isotropic processes in GE_GTSHIRA has been tested. We have found that using the re-
bi-isotropic processes in Steps 15–17 of Algorithm 5 achieves the best accuracy. Moreover, our numerical results show that
the relative residuals of the eigenpairs produced by GE_SDA/GE_SA and GE_TSHIRA/GE_GTSHIRA can be less than 10−17

and 10−15, respectively. Although the accuracy of GE_SDA and GE_SA is marginally higher than that of GE_TSHIRA and
GE_GTSHIRA, we further found that the total CPU times required for computing the five desired eigenpairs by GE_SDA and
GE_SA are about 40% more than that are required by GE_TSHIRA and GE_GTSHIRA. Therefore, by transforming the GEP into
the TPQEP (4), the structure-preserving Arnoldi type algorithm GE_TSHIRA or GE_GTSHIRA with one ‘‘re-symplectic’’ or
‘‘re-bi-isotropic’’ processes provide an accurate and efficient way in finding the reciprocal eigenpairs of the GEP (1).

For further reading

[21,22].
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