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In this article, we propose the Fast Algorithms for Maxwell’s Equations (FAME) package for solving Maxwell’s

equations for modeling three-dimensional photonic crystals. FAME combines the null-space free method with fast

Fourier transform (FFT)-based matrix-vector multiplications to solve the generalized eigenvalue problems (GEPs)

arising from Yee’s discretization. The GEPs are transformed into a null-space free standard eigenvalue problem with

a Hermitian positive-definite coefficient matrix. The computation times for FFT-based matrix-vector multiplications

with matrices of dimension 7 million are only 0.33 and 3.6× 10−3 seconds using MATLAB with an Intel Xeon CPU

and CUDA C++ programming with a single NVIDIA Tesla P100 GPU, respectively. Such multiplications significantly

reduce the computational costs of the conjugate gradient method for solving linear systems. We successfully use

FAME on a single P100 GPU to solve a set of GEPs with matrices of dimension more than 19 million, in 127 to 191

seconds per problem. These results demonstrate the potential of our proposed package to enable large-scale numerical

simulations for novel physical discoveries and engineering applications of photonic crystals.
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1 INTRODUCTION

The propagation of electromagnetic waves in bi-isotropic complex media can be mathematically modeled

using the three-dimensional (3D) Maxwell’s equations:

∇× 𝐸 = 𝜄𝜔𝐵, ∇×𝐻 = −𝜄𝜔𝐷, (1a)

∇ ·𝐵 = 0, ∇ ·𝐷 = 0, (1b)

where 𝜔 is the frequency; 𝐸 and 𝐻 are the electric and magnetic fields, respectively; and 𝐵 and 𝐷 are the

magnetic and electric flux densities, respectively, which satisfy the constitutive relations

𝐵 = 𝜇𝐻 + 𝜁𝐸 and 𝐷 = 𝜀𝐸 + 𝜉𝐻, (2)

where 𝜇 and 𝜀 are the magnetic permeability and electric permittivity, respectively, and 𝜁 = 𝜉* are

magnetoelectric parameters. According to the well-known Bloch theory [21], the 𝐸 and 𝐻 fields in (1) on a

prescribed crystal lattice {̃︀aℓ}3ℓ=1 are required to satisfy the following quasiperiodic condition [32]:

𝐸(x+ ãℓ) = e𝚤2𝜋k·ãℓ𝐸(x), 𝐻(x+ ãℓ) = e𝚤2𝜋k·ãℓ𝐻(x), ℓ = 1, 2, 3, (3)

where 2𝜋k is the Bloch wave vector within the first Brillouin zone [19] and the ãℓ are the lattice translation

vectors.

In this paper, we consider the case of dielectric photonic crystals (PCs) with 𝜇 ≡ 1, 𝜀 > 0 and 𝜉 = 𝜁 = 0

in (1), where 𝜀 is a material-dependent piecewise constant function. The associated governing equation can

be simplified as

∇× 𝜇−1∇× 𝐸 = 𝜔2𝜀𝐸, ∇ · (𝜀𝐸) = 0. (4)

Additionally, in a dispersive metallic material [7–9, 25, 27, 34], 𝜀 in (4) is dependent on the frequency 𝜔,

that is, 𝜀 = 𝜀(x, 𝜔) at the position x ∈ R3. Such materials can exhibit negative permittivities at certain

frequencies, such as below the plasma frequency. On the other hand, left-handed materials or negative-index

materials have 𝜇 < 0 and 𝜀 < 0. Although no such material exists in nature, artificial metamaterials with

periodic structures have been proposed in [30, 31] that exhibit the characteristic properties of such materials,

including a negative refractive index. The associated 𝐵 and 𝐷 satisfy the constitutive relations given in (2).

A number of methods are available for discretizing (1), including the plane-wave expansion method

[20], the finite-difference frequency-domain method (FDFD) [3, 10, 38–40], the finite element method

[1, 2, 5, 6, 18, 28, 29], and the mixed finite element method [22, 23], to name a few. Due to the divergence-

free condition given in (1b), the dimensions of the null space of the resulting discrete generalized eigenvalue

problem (GEP) account for one-third of the total dimensions. The presence of such a large null space will

seriously affect the convergence to the desired solution to the GEP and thus presents a numerical challenge.

Another challenge is to solve the corresponding linear system, which is extremely large in size, in each step

of an iterative eigensolver. For the case of isotropic media, Yee’s finite-difference scheme [39] is used to

discretize (1), which results in a GEP. It has been shown that when using Yee’s scheme, these challenges

can be resolved by applying the null-space free techniques presented in [11, 12, 14]. With the help of this

null-space free method, the GEPs resulting from (1) and (4) are transformed into a null-space free GEP

(NFGEP) and a null-space free standard eigenvalue problem (NFSEP), respectively. Moreover, when solving
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this NFSEP or NFGEP, the necessary matrix-vector multiplications can be significantly accelerated by

means of the fast Fourier transform (FFT).

The efficiency of the null-space free method combined with FFT-based matrix-vector multiplications

has been demonstrated in [11, 12, 16]. In this paper, we will focus on 3D nondispersive PCs as described

in (4). The main goals of this paper are threefold: (i) to integrate all of the techniques discussed above,

including the null-space free method and FFT-based matrix-vector multiplications, into a package called Fast

Algorithms for Maxwell’s Equations (FAME) for the computation of the band structures of 3D PCs with all

Bravais lattices; (ii) to implement FAME on two architectures, namely, CUDA with a GPU accelerator and

MATLAB without a GPU architecture; and (iii) to provide various material structures [11, 24, 26, 35, 37] in

FAME as benchmark PCs, which users can easily use to efficiently simulate the associated band structures.

Furthermore, users can also define material structures themselves to be used in FAME.

This paper is organized as follows. In Section 2, we introduce 7 lattice systems and 14 Bravais lattices

in 3D Euclidean space. The matrix representations of the discrete single curl operator and the associated

singular value decomposition (SVD) are presented in Section 3. In Section 4, we introduce the FFT-based

matrix-vector multiplications proposed in [16] and demonstrate their efficiency when implemented in the

MATLAB environment and on a single NVIDIA GPU architecture. The application of the SVD as an

efficient preconditioner for solving GEPs and the null-space free method for solving NFSEPs are introduced

in Section 5. Numerical comparisons show that the null-space free method outperforms the SVD-based

preconditioning method. In Section 6, we introduce the integration of all of the above schemes into the

FAME package and present four benchmark PCs to demonstrate the timing performance of FAME. Finally,

concluding remarks are given in Section 7.

Notations. For matrices 𝐴 and 𝐵 and vector v, 𝐴⊤ and 𝐴* are the transpose and conjugate trans-

pose, respectively; diag(𝐴,𝐵) denotes a diagonal block matrix whose block entries are matrices 𝐴 and

𝐵; diag(𝐴) denotes a vector whose entries are the diagonal entries of the matrix A; diag(v) denotes a

diagonal matrix whose diagonal entries are the entries of the vector v; 𝐴 ⊗ 𝐵, 𝐴 ⊕ 𝐵 = diag(𝐴,𝐵), and

𝐴⊙𝐵 = [𝑎𝑖𝑗 *𝑏𝑖𝑗 ] are the Kronecker product, the direct sum, and the Hadamard product of matrices 𝐴 and 𝐵,

respectively; vec(𝐴) denotes a vector obtained by stacking the columns of the matrix 𝐴 on top of one another.

2 LATTICE TRANSLATION VECTORS

A 3D PC is a periodic lattice composed of dielectric materials. In crystallography, the so-called primitive

cell of a crystal is a fundamental domain under translational symmetry and contains just one lattice point.

In fact, a 3D primitive cell, denoted by Ω𝑝, is a (slanted) parallelepiped formed by three lattice translation

vectors, ã1, ã2 and ã3, as illustrated in Figure 1(a). At present, millions of crystals are known, and each

crystal has a different nature. As shown in [26], such crystals with different lattice translation vectors can be

classified into 7 lattice systems and 14 Bravais lattices in 3D Euclidean space, which are listed below.

(1) Cubic system

(a) Cubic lattice (CUB)

ã1 =
[︁
𝑎 0 0

]︁⊤
, ã2 =

[︁
0 𝑎 0

]︁⊤
, ã3 =

[︁
0 0 𝑎

]︁⊤
;
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(b) Body-centered Cubic lattice (BCC)

ã1 =
[︁
−𝑎

2
𝑎
2

𝑎
2

]︁⊤
, ã2 =

[︁
𝑎
2

−𝑎
2

𝑎
2

]︁⊤
, ã3 =

[︁
𝑎
2

𝑎
2

−𝑎
2

]︁⊤
;

(c) Face-centered Cubic lattice (FCC)

ã1 =
[︁
0 𝑎

2
𝑎
2

]︁⊤
, ã2 =

[︁
𝑎
2

0 𝑎
2

]︁⊤
, ã3 =

[︁
𝑎
2

𝑎
2

0
]︁⊤

;

(2) Tetragonal system (𝑎 ̸= 𝑐)

(a) Tetragonal lattice (TET)

ã1 =
[︁
𝑎 0 0

]︁⊤
, ã2 =

[︁
0 𝑎 0

]︁⊤
, ã3 =

[︁
0 0 𝑐

]︁⊤
;

(b) Body-centered Tetragonal lattice (BCT)

ã1 =
[︁
−𝑎

2
𝑎
2

𝑐
2

]︁⊤
, ã2 =

[︁
𝑎
2

−𝑎
2

𝑐
2

]︁⊤
, ã3 =

[︁
𝑎
2

𝑎
2

− 𝑐
2

]︁⊤
;

(3) Orthorhombic system (𝑎 < 𝑏 < 𝑐)

(a) Orthorhombic lattice (ORC)

ã1 =
[︁
𝑎 0 0

]︁⊤
, ã2 =

[︁
0 𝑏 0

]︁⊤
, ã3 =

[︁
0 0 𝑐

]︁⊤
;

(b) Body-centered Orthorhombic lattice (ORCI)

ã1 =
[︁
−𝑎

2
𝑏
2

𝑐
2

]︁⊤
, ã2 =

[︁
𝑎
2

− 𝑏
2

𝑐
2

]︁⊤
, ã3 =

[︁
𝑎
2

𝑏
2

− 𝑐
2

]︁⊤
;

(c) Face-centered Orthorhombic lattice (ORCF)

ã1 =
[︁
0 𝑏

2
𝑐
2

]︁⊤
, ã2 =

[︁
𝑎
2

0 𝑐
2

]︁⊤
, ã3 =

[︁
𝑎
2

𝑏
2

0
]︁⊤

;

(d) C-centered Orthorhombic lattice (ORCC)

ã1 =
[︁
𝑎
2

− 𝑏
2

0
]︁⊤

, ã2 =
[︁
𝑎
2

𝑏
2

0
]︁⊤

, ã3 =
[︁
0 0 𝑐

]︁⊤
;

(4) Hexagonal system (𝑎 ̸= 𝑐)

(a) Hexagonal lattice (HEX)

ã1 =
[︁
𝑎
2

−𝑎
√
3

2
0
]︁⊤

, ã2 =
[︁
𝑎
2

𝑎
√
3

2
0
]︁⊤

, ã3 =
[︁
0 0 𝑐

]︁⊤
;

(5) Monoclinic system (𝑎, 𝑏 ≤ 𝑐; 𝛼 ≤ 𝜋
2
)

(a) Monoclinic lattice (MCL)

ã1 =
[︁
𝑎 0 0

]︁⊤
, ã2 =

[︁
0 𝑏 0

]︁⊤
, ã3 =

[︁
0 𝑐 cos𝛼 𝑐 sin𝛼

]︁⊤
;

(b) C-centered Monoclinic lattice (MCLC)

ã1 =
[︁
𝑎
2

𝑏
2

0
]︁⊤

, ã2 =
[︁
−𝑎

2
𝑏
2

0
]︁⊤

, ã3 =
[︁
0 𝑐 cos𝛼 𝑐 sin𝛼

]︁⊤
;

(6) Rhombohedral system (𝛼 ̸= 𝜋
2
)

(a) Rhombohedral lattice (RHL)

ã1 =
[︁
𝑎 cos 𝛼

2
−𝑎 sin 𝛼

2
0
]︁⊤

, ã2 =
[︁
𝑎 cos 𝛼

2
𝑎 sin 𝛼

2
0
]︁⊤

, ã3 =
[︁
𝑎 cos𝛼
cos 𝛼

2
0 𝑎

√︁
1− cos2 𝛼

cos2 𝛼
2

]︁⊤
;
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(a) Primitive cell (b) Computational cell

Fig. 1. Illustration of the 3D primitive cell Ω𝑝 and computational cell Ω𝑐 of a hexagonal lattice.

(7) Triclinic system (𝑎 ̸= 𝑏 ̸= 𝑐; 𝛼 ̸= 𝛽 ̸= 𝛾)

(a) Triclinic lattice (TRI)

ã1 =
[︁
𝑎 0 0

]︁⊤
, ã2 =

[︁
𝑏 cos 𝛾 𝑏 sin 𝛾 0

]︁⊤
,

ã3 =
[︁
𝑐 cos𝛽 𝑐

sin 𝛾
(cos𝛼− cos𝛽 cos 𝛾) 𝑐

sin 𝛾

√︀
sin2 𝛾 − cos2 𝛼− cos2 𝛽 + 2 cos𝛼 cos𝛽 cos 𝛾

]︁⊤
;

Due to the misalignment between the lattice vectors {̃︀aℓ}3ℓ=1 and the Cartesian coordinate, a finite-

difference scheme used for the discretization of (4) in the slanted parallelepiped Ω𝑝 (as shown in Figure 1(a))

may produce a large number of stair errors. Instead, we use the procedure described by (5) below to find new

vectors a1, a2, and a3 to redefine an equivalent cuboid computational cell Ω𝑐 = [0,a1(1)]×[0,a2(2)]×[0,a3(3)]

which align with the Cartesian coordinates exactly, as shown in Figure 1(b). First, we compute the QR

factorization with column pivoting of [ã1, ã2, ã3]:̃︀𝑄⊤
[︁
ã1 ã2 ã3

]︁
Π = 𝑅, (5a)

where ̃︀𝑄 is orthonormal and 𝑅 is upper triangular. Then, we take[︁
a1 a2 a3

]︁
≡ 𝑆𝑅, 𝑄 = ̃︀𝑄𝑆, (5b)

where 𝑆 = diag(sign(𝑅(1, 1)), sign(𝑅(2, 2)), sign(𝑅(3, 3))). A 3D crystal can now be periodically generated

along these new vectors a1, a2, and a3, and the quasiperiodic condition given in (3) can be rewritten as

𝐸(x+ aℓ) = e𝚤2𝜋k·aℓ𝐸(x), 𝐻(x+ aℓ) = e𝚤2𝜋k·aℓ𝐻(x), ℓ = 1, 2, 3. (6)

We describe the procedure for generating a1, a2, and a3 in Algorithm 1.
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6 Huang and Li, et al.

Algorithm 1 [14] Constructing computational lattice translation vectors

Input: Original lattice translation vectors ã1, ã2, and ã3.
Output: Computational lattice vectors a1, a2, a3, a rotation matrix 𝑄 and a permutation matrix Π.
1: Compute the QR factorization with column pivoting of

[︀
ã1 ã2 ã3

]︀
such that[︀

ã1 ã2 ã3

]︀
Π = ̃︀𝑄𝑅

where Π is a permutation, ̃︀𝑄 is orthonormal, and 𝑅 is upper triangular.
2: Set 𝑆 := diag{sign(𝑅(1, 1)), sign(𝑅(2, 2)), sign(𝑅(3, 3))} and take[︀

a1 a2 a3

]︀
= 𝑆𝑅; 𝑄 = ̃︀𝑄𝑆.

3 SINGULAR VALUE DECOMPOSITION

Let the positive integers 𝑛1, 𝑛2 and 𝑛3 be the mesh sizes along the 𝑥-, 𝑦- and 𝑧-axes, respectively, 𝑛 = 𝑛1𝑛2𝑛3

be the grid number, and let 𝛿𝑥 = a1(1)/𝑛1, 𝛿𝑦 = a2(2)/𝑛2 and 𝛿𝑧 = a3(3)/𝑛3 be the corresponding mesh

lengths. We define three nonnegative quantities 𝜌𝑖 (𝑖 = 1, 2, 3) as follows:

𝜌1 =

⎧⎨⎩0, if a2(1) ≥ 0,

1, if a2(1) < 0;
𝜌2 =

⎧⎨⎩0, if a3(1) ≥ 0,

1, if a3(1) < 0;
𝜌3 =

⎧⎨⎩0, if a3(2) ≥ 0,

1, if a3(2) < 0.
(7)

We also define

𝑚1 = round

(︂
a2(1) + 𝜌1a1(1)

𝛿𝑥

)︂
≤ 𝑛1, 𝑚2 = round

(︂
a3(1) + 𝜌2a1(1)

𝛿𝑥

)︂
< 𝑛1, 𝑚3 = round

(︂
a3(2) + 𝜌3a2(2)

𝛿𝑦

)︂
< 𝑛2.

(8)

Here, round(𝑎) denotes the operation of rounding the element 𝑎 to the nearest integer. In addition, following

we denote some matrix and vector operations which will be used later.

As shown in [14], by applying Yee’s finite-difference scheme to the computational cell Ω𝑐, the discretizations

for (1a) can be obtained as the following matrix representations:

𝐶e = 𝜄𝜔b, 𝐶*h = −𝜄𝜔d, (9)

where

𝐶 =

⎡⎢⎣ 0 −𝐶3 𝐶2

𝐶3 0 −𝐶1

−𝐶2 𝐶1 0

⎤⎥⎦ (10)
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with

𝐶1 =
1

𝛿𝑥
𝐼𝑛3 ⊗ 𝐼𝑛2 ⊗

[︃
−𝐼𝑛1−1 𝐼𝑛1−1

𝑒𝚤2𝜋k·a1 −1

]︃
, (11a)

𝐶2 =
1

𝛿𝑦
𝐼𝑛3 ⊗

⎡⎢⎣ −𝐼𝑛1(𝑛2−1) 𝐼𝑛1(𝑛2−1)

𝑒𝚤2𝜋k·(𝜌1a1+a2)

[︃
0 𝑒−𝚤2𝜋k·a1𝐼𝑚1

𝐼𝑛1−𝑚1 0

]︃
−𝐼𝑛1

⎤⎥⎦ , (11b)

𝐶3 =
1

𝛿𝑧

[︃
−𝐼𝑛1𝑛2(𝑛3−1) 𝐼𝑛1𝑛2(𝑛3−1)

𝑒𝚤2𝜋k·a3𝐽3 −𝐼𝑛1𝑛2

]︃
. (11c)

See [14] or Appendix A for the detailed definitions of the matrix 𝐽3 for all Bravais lattices.

We define

f𝑚,ℓ =
[︁
1 𝑒ℓ𝜃𝑚 · · · 𝑒(𝑚−1)ℓ𝜃𝑚

]︁⊤
, 𝜃𝑚 =

𝚤2𝜋

𝑚
, (12a)

â2 = a2 − (
𝑚1

𝑛1
− 𝜌1)a1, (12b)

â3 = a3 −
(︁

𝑚3
𝑛2

− 𝜌3
)︁
a2 −

{︁(︁
𝑚3
𝑛2

− 𝜌3
)︁
𝜌1 − 𝜌2 − 𝑚1

𝑛1

𝑚3
𝑛2

+ 𝑚2+𝜌3𝑚1
𝑛1

}︁
a1, (12c)

𝜃a1 =
𝚤2𝜋k · a1

𝑛1
, 𝜃â2,𝑖 =

𝚤2𝜋

𝑛2

(︂
k · â2 −

𝑚1

𝑛1
𝑖

)︂
, (12d)

𝜃â3,𝑖,𝑗 =
𝚤2𝜋

𝑛3

{︂
k · â3 −

𝑚3

𝑛2
𝑗 +

(︂
𝑚1

𝑛1

𝑚3

𝑛2
− 𝜌3𝑚1 +𝑚2

𝑛1

)︂
𝑖

}︂
, (12e)

and

𝐷a1 = diag
(︁
1, 𝑒𝜃a1 , · · · , 𝑒(𝑛1−1)𝜃a1

)︁
, (13a)

𝐷â2,𝑖 = diag
(︁
1, 𝑒𝜃â2,𝑖 , · · · , 𝑒(𝑛2−1)𝜃â2,𝑖

)︁
, (13b)

𝐷â3,𝑖,𝑗 = diag
(︁
1, 𝑒𝜃â3,𝑖,𝑗 , · · · , 𝑒(𝑛3−1)𝜃â3,𝑖,𝑗

)︁
. (13c)

Let

x𝑖 = 𝐷a1 f𝑛1,𝑖, y𝑖,𝑗 = 𝐷â2,𝑖f𝑛2,𝑗 , z𝑖,𝑗,𝑘 = 𝐷â3,𝑖,𝑗f𝑛3,𝑘,

for 𝑖 = 0, . . . , 𝑛1 − 1, 𝑗 = 0, . . . , 𝑛2 − 1, and 𝑘 = 0, . . . , 𝑛3 − 1. Using x𝑖, y𝑖,𝑗 and z𝑖,𝑗,𝑘, we define an 𝑛× 𝑛

matrix 𝑇 as follows:

𝑇 =
1√
𝑛

[︁
𝑇1 𝑇2 · · · 𝑇𝑛1

]︁
, 𝑇𝑖 =

[︁
𝑇𝑖,1 𝑇𝑖,2 · · · 𝑇𝑖,𝑛2

]︁
∈ C𝑛×(𝑛2𝑛3), (14a)

𝑇𝑖,𝑗 =
[︁
z𝑖,𝑗,1 ⊗ y𝑖,𝑗 ⊗ x𝑖 z𝑖,𝑗,2 ⊗ y𝑖,𝑗 ⊗ x𝑖 · · · z𝑖,𝑗,𝑛3 ⊗ y𝑖,𝑗 ⊗ x𝑖

]︁
, (14b)

for 𝑖 = 1, · · · , 𝑛1 and 𝑗 = 1, · · · , 𝑛2. As shown in [11], 𝑇 is unitary.

It has been shown in [4, 11, 14] that 𝐶1, 𝐶2 and 𝐶3 are normal and commute with each other. In addition,

𝐶1, 𝐶2 and 𝐶3 can be diagonalized by means of the common unitary matrix 𝑇 defined in (14).
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Theorem 1 ([4, 11, 14]). Let 𝐶ℓ (ℓ = 1, 2, 3) be defined as shown in (11). Then, 𝐶1, 𝐶2, and 𝐶3 are

simultaneously diagonalizable by means of the unitary matrix 𝑇 ∈ C𝑛×𝑛 in the following form:

𝐶ℓ𝑇 = 𝑇Λℓ, ℓ = 1, 2, 3, (15)

with

Λ1 = Λ𝑛1 ⊗ 𝐼𝑛2 ⊗ 𝐼𝑛3 , Λ𝑛1 =
1

𝛿𝑥
diag

(︁
𝑒𝜃1 − 1, · · · , 𝑒𝜃𝑛1 − 1

)︁
∈ C𝑛1×𝑛1 , (16a)

Λ2 = ⊕𝑛1
𝑖=1(Λ𝑖,𝑛2 ⊗ 𝐼𝑛3), Λ𝑖,𝑛2 =

1

𝛿𝑦
diag

(︁
𝑒𝜃𝑖,1 − 1, · · · , 𝑒𝜃𝑖,𝑛2 − 1

)︁
∈ C𝑛2×𝑛2 , (16b)

Λ3 = ⊕𝑛1
𝑖=1 ⊕

𝑛2
𝑗=1 Λ𝑖,𝑗,𝑛3 , Λ𝑖,𝑗,𝑛3 =

1

𝛿𝑧
diag

(︁
𝑒𝜃𝑖,𝑗,1 − 1, · · · , 𝑒𝜃𝑖,𝑗,𝑛3 − 1

)︁
∈ C𝑛3×𝑛3 , (16c)

where 𝜃𝑖 = 𝑖𝜃𝑛1 + 𝜃a1 , 𝜃𝑖,𝑗 = 𝑗𝜃𝑛2 + 𝜃â2,𝑖, 𝜃𝑖,𝑗,𝑘 = 𝑘𝜃𝑛3 + 𝜃â3,𝑖,𝑗.

As shown in [4, 11], we define

[︁
Φ0 Φ1 Φ2

]︁
=

⎡⎢⎣Λ1 Λ𝑞 − Λ1Λ
*
𝑠 Λ*

3 − Λ*
2

Λ2 Λ𝑞 − Λ2Λ
*
𝑠 Λ*

1 − Λ*
3

Λ3 Λ𝑞 − Λ3Λ
*
𝑠 Λ*

2 − Λ*
1

⎤⎥⎦ diag

(︂
Λ

− 1
2

𝑞 ,
(︀
3Λ2

𝑞 − Λ𝑞Λ𝑝

)︀− 1
2 , (3Λ𝑞 − Λ𝑝)

− 1
2

)︂
, (17)

where Λ𝑞 = Λ*
1Λ1 + Λ*

2Λ2 + Λ*
3Λ3 ∈ R𝑛×𝑛 and Λ𝑝 = Λ𝑠Λ

*
𝑠 ≡ (Λ1 + Λ2 + Λ3)(Λ1 + Λ2 + Λ3)

* ∈ R𝑛×𝑛. The

following important SVD of 𝐶 is derived in [4], which provides the bases for 𝑛-dimensional null space and

2𝑛-dimensional range space of 𝐶 and 𝐶*.

Theorem 2 ([4]). There exist unitary matrices

𝑉 =
[︁
𝑉0 𝑉𝑟

]︁
≡ (𝐼3 ⊗ 𝑇 )

[︁
Φ0 Φ1 Φ2

]︁
≡ (𝐼3 ⊗ 𝑇 )

[︁
Φ0 Φ𝑟

]︁
, (18a)

𝑈 =
[︁
𝑈0 𝑈𝑟

]︁
≡ (𝐼3 ⊗ 𝑇 )

[︁
Φ̄0 −Φ̄2 Φ̄1

]︁
, (18b)

where 𝑉𝑟, 𝑈𝑟 ∈ C3𝑛×2𝑛, such that 𝐶 has the following SVD and compact SVD:

𝐶 = 𝑈diag(0𝑛×𝑛,Λ
1/2
𝑞 ,Λ1/2

𝑞 )𝑉 * = 𝑈𝑟Σ𝑟𝑉
*
𝑟 , Σ𝑟 = diag(Λ1/2

𝑞 ,Λ1/2
𝑞 ) ∈ R2𝑛×2𝑛. (18c)

In Algorithm 2, we summarize the processes of constructing Σ𝑟, Φ0, Φ1, and Φ2 in Theorem 2 and 𝐷a1 ,

𝐷â2,𝑖, and 𝐷â3,𝑖,𝑗 (𝑖 = 1, . . . , 𝑛1 and 𝑗 = 1, . . . , 𝑛2) in (13).

4 FFT-BASED MATRIX-VECTOR MULTIPLICATIONS

From the definition of 𝑇 given in (14), we can see that 𝑇 is dense and impossible to explicitly store in

memory. Hence, at first glance, the SVD of 𝐶 in (18c) seems only theoretically interesting. Fortunately,

novel and efficient FFT-based matrix-vector multiplications have been proposed in [11, 16] to address this

problem, meaning that the SVD given in (18c) is now a useful and powerful tool for applications involving

3D electromagnetism.

To introduce these FFT-based multiplications, we define an orthogonal matrix 𝐹𝑚 as follows:

𝐹𝑚 =
[︁
f𝑚,1 · · · f𝑚,𝑚

]︁
∈ C𝑚×𝑚,
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Algorithm 2 [14] Construction of the matrices in the SVD

Input: Computational lattice translation vectors a1, a2, a3, grid numbers 𝑛1, 𝑛2, 𝑛3, wave vector k.
Output: Λ1, Λ2, Λ3, Λ𝑞, Σ𝑟, Φ0, Φ1, Φ2, 𝐷a1 , 𝐷â2,𝑖, and 𝐷â3,𝑖,𝑗 for 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛2.
1: Compute 𝜌1, 𝜌2 and 𝜌3 according to (7).
2: Compute 𝛿𝑥 = a1(1)/𝑛1, 𝛿𝑦 = a2(2)/𝑛2 and 𝛿𝑧 = a3(3)/𝑛3.
3: Compute 𝑚1, 𝑚2 and 𝑚3 according to (8).

4: Compute â2, â3, 𝜃𝑛1 , 𝜃𝑛2 , 𝜃𝑛3 , 𝜃a1 according to (12) and 𝜃â2 = 𝚤2𝜋k·â2
𝑛2

, 𝜃â3 = 𝚤2𝜋k·â3
𝑛3

.

5: Compute Λ𝑛1 , Λ𝑖,𝑛2 and Λ𝑖,𝑗,𝑛3 according to (16) with 𝜃𝑖 = 𝜃a1+𝑖𝜃𝑛1 , 𝜃𝑖,𝑗 = 𝜃â2+𝑗𝜃𝑛2− 𝚤2𝜋
𝑛2

𝑚1
𝑛1

𝑖, 𝜃𝑖,𝑗,𝑘 =

𝜃â3 + 𝑘𝜃𝑛3 + 𝚤2𝜋
𝑛3

{︁(︁
𝑚1
𝑛1

𝑚3
𝑛2

− 𝜌3𝑚1+𝑚2
𝑛1

)︁
𝑖− 𝑚3

𝑛2
𝑗
}︁

for 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛2 and 𝑘 = 1, . . . , 𝑛3.

6: Compute Λ1 = Λ𝑛1 ⊗ 𝐼𝑛2 ⊗ 𝐼𝑛3 , Λ2 = ⊕𝑛1
𝑖=1(Λ𝑖,𝑛2 ⊗ 𝐼𝑛3), and Λ3 = ⊕𝑛1

𝑖=1 ⊕
𝑛2
𝑗=1 Λ𝑖,𝑗,𝑛3 .

7: Compute Λ𝑞 = Λ*
1Λ1 + Λ*

2Λ2 + Λ*
3Λ3, Σ𝑟 = diag(Λ

1/2
𝑞 ,Λ

1/2
𝑞 ), Λ𝑠 = Λ1 + Λ2 + Λ3 and Λ𝑝 = Λ𝑠Λ

*
𝑠 .

8: Compute Φ0, Φ1 and Φ2 according to (17).
9: Compute 𝐷a1 , 𝐷â2,𝑖 and 𝐷â3,𝑖,𝑗 according to (13) with 𝜃â2,𝑖 = 𝜃â2 − 𝚤2𝜋

𝑛2

𝑚1
𝑛1

𝑖, 𝜃â3,𝑖,𝑗 = 𝜃â3 +

𝚤2𝜋
𝑛3

{︁(︁
𝑚1
𝑛1

𝑚3
𝑛2

− 𝜌3𝑚1+𝑚2
𝑛1

)︁
𝑖− 𝑚3

𝑛2
𝑗
}︁

for 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛2.

where 𝑚 = 𝑛1, 𝑛2, or 𝑛3 and {𝑓𝑚,ℓ}𝑚ℓ=1 is given in (12a). In addition, we let

𝐺y ≡
[︁
diag(𝐷â2,1) · · · diag(𝐷â2,𝑛1)

]︁
∈ C𝑛2×𝑛1 , (19a)

𝐺z,𝑖 ≡
[︁
diag(𝐷â3,𝑖,1) · · · diag(𝐷â3,𝑖,𝑛2)

]︁
∈ C𝑛3×𝑛2 . (19b)

Then, based on the structure of 𝑇 , the matrix-vector multiplications 𝑇q and 𝑇 *p for given vectors p and

q can be calculated as sequences of entrywise multiplications, diagonal matrix-vector multiplications and

one-dimensional FFT operations [11, 16], as shown in Algorithms 3 and 4.

Algorithm 3 [16] Parallel FFT-based matrix-vector multiplication for 𝑇q

Input: 𝐷a1 , 𝐺y, 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1, and any vector q =
[︀
q⊤
1 · · · q⊤

𝑛1

]︀⊤ ∈ C𝑛 with q𝑖 =[︀
q⊤
𝑖,1 · · · q⊤

𝑖,𝑛2

]︀⊤
and q𝑖,𝑗 ∈ C𝑛3 for 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛2.

Output: The vector q̃ ≡ 𝑇q.

1: Set ̃︀𝑄z,𝑖 =
[︀
q𝑖,1 · · · q𝑖,𝑛2

]︀
∈ C𝑛3×𝑛2 , for 𝑖 = 1, . . . , 𝑛1.

2: Compute ̃︀𝑄𝑢z = 𝐹𝑛3

[︁ ̃︀𝑄z,1 · · · ̃︀𝑄z,𝑛1

]︁
∈ C𝑛3×𝑛1𝑛2 by 1D backward FFT .

3: Compute ̃︀𝑄z,𝑖 = 𝐺z,𝑖 ⊙ ̃︀𝑄𝑢z(:, (𝑖− 1)𝑛2 + 1 : 𝑖𝑛2) for 𝑖 = 1, . . . , 𝑛1.

4: Set ̃︀𝑄y =
[︁ ̃︀𝑄⊤

z,1 · · · ̃︀𝑄⊤
z,𝑛1

]︁
∈ C𝑛2×𝑛1𝑛3 .

5: Compute ̃︀𝑄𝑢y ≡
[︁ ̃︀𝑄(1)

𝑢y · · · ̃︀𝑄(𝑛1)
𝑢y

]︁
= 𝐹𝑛2

̃︀𝑄y by 1D backward FFT .

6: Compute ̃︀𝑄y,𝑘 = 𝐺y ⊙
[︁ ̃︀𝑄(1)

𝑢y (:, 𝑘) · · · ̃︀𝑄(𝑛1)
𝑢y (:, 𝑘)

]︁
for 𝑘 = 1, . . . , 𝑛3.

7: Set ̃︀𝑄x =
[︁ ̃︀𝑄⊤

y,1 · · · ̃︀𝑄⊤
y,𝑛3

]︁
.

8: Compute ̃︀𝑄𝑢x = 𝐹𝑛1
̃︀𝑄x by 1D backward FFT .

9: Compute q̃ = 1√
𝑛1𝑛2𝑛3

vec(𝐷a1
̃︀𝑄𝑢x).
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Algorithm 4 [16] Parallel FFT-based matrix-vector multiplication for 𝑇 *p

Input: 𝐷a1 , 𝐷â2,𝑖, 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1, and any vector p =
[︀
p⊤
1 · · · p⊤

𝑛3

]︀⊤ ∈ C𝑛 with p𝑘 =[︀
p⊤
1,𝑘 · · · p⊤

𝑛2,𝑘

]︀⊤
and p𝑗,𝑘 ∈ C𝑛1 for 𝑗 = 1, . . . , 𝑛2, 𝑘 = 1, . . . , 𝑛3.

Output: The vector p̃ ≡ 𝑇 *p.

1: Set ̃︀𝑃x,𝑘 =
[︀
p1,𝑘 · · · p𝑛2,𝑘

]︀
∈ C𝑛1×𝑛2 , for 𝑘 = 1, . . . , 𝑛3.

2: Compute ̃︀𝑃𝑒x = 𝐷*
a1

[︁ ̃︀𝑃x,1 · · · ̃︀𝑃x,𝑛3

]︁
.

3: Compute ̃︀𝑃𝑢x = 𝐹 *
𝑛1

̃︀𝑃𝑒x ∈ C𝑛1×𝑛2𝑛3 by 1D forward FFT .

4: Set ̃︀𝑃 (𝑖)
𝑢x =

[︁ ̃︀𝑃𝑢x(𝑖, 1 : 𝑛2)
⊤ · · · ̃︀𝑃𝑢x(𝑖, (𝑛3 − 1)𝑛2 + 1 : 𝑛3𝑛2)

⊤
]︁
, for 𝑖 = 1, . . . , 𝑛1.

5: Compute ̃︀𝑃𝑒y =
[︁
𝐷*

â2,1
̃︀𝑃 (1)
𝑢x · · · 𝐷*

â2,𝑛1
̃︀𝑃 (𝑛1)
𝑢x

]︁
.

6: Compute ̃︀𝑃𝑢y ≡
[︁ ̃︀𝑃 (1)

𝑢y · · · ̃︀𝑃 (𝑛1)
𝑢y

]︁
= 𝐹 *

𝑛2
̃︀𝑃𝑒y ∈ C𝑛2×𝑛1𝑛3 by 1D forward FFT .

7: Compute ̃︀𝑃𝑒z =
[︁
�̄�z,1 ⊙ ( ̃︀𝑃 (1)

𝑢y )⊤ · · · �̄�z,𝑛1 ⊙ ( ̃︀𝑃 (𝑛1)
𝑢y )⊤

]︁
.

8: Compute p̃ = 1√
𝑛1𝑛2𝑛3

vec(𝐹 *
𝑛3

̃︀𝑃𝑒z) by 1D forward FFT.

4.1 Comparison with 3D FFTs

In this subsection, we show that Algorithms 3 and 4 can be related to the standard 3D FFTs 1√
𝑛1𝑛2𝑛3

(𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)q

and 1√
𝑛1𝑛2𝑛3

(𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)
* p, respectively.

The details can be derived as follows. If we reshape p as a matrix 𝑃 ∈ C𝑛1×𝑛2𝑛3 with vec(𝑃 ) = p and let

𝑃x ≡
[︁
𝑝⊤x,1 · · · 𝑝⊤x,𝑛1

]︁⊤
= 𝐹 *

𝑛1
𝑃 ∈ C𝑛1×𝑛2𝑛3 , (20a)

𝑃x,𝑖 ∈ C𝑛2×𝑛3 with vec(𝑃x,𝑖) = 𝑝⊤x,𝑖, 𝑖 = 1, . . . , 𝑛1, (20b)

𝑃y ≡
[︁
𝑃y,1 · · · 𝑃y,𝑛1

]︁
= 𝐹 *

𝑛2

[︁
𝑃x,1 · · · 𝑃x,𝑛1

]︁
∈ C𝑛2×𝑛1𝑛3 , (20c)

𝑃z ≡
[︁
𝑃z,1 · · · 𝑃z,𝑛1

]︁
= 𝐹 *

𝑛3

[︁
𝑃⊤
y,1 · · · 𝑃⊤

y,𝑛1

]︁
∈ C𝑛3×𝑛1𝑛2 , (20d)

then, from the properties of the Kronecker product, namely,

(𝐵⊤ ⊗𝐴)vec(𝑋) = vec(𝐴𝑋𝐵), (𝐴⊗𝐵)* = 𝐴* ⊗𝐵*, (21)

it follows that

(𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)
* p = vec

(︀
𝐹 *
𝑛1

𝑃
(︀
𝐹𝑛3 ⊗ 𝐹𝑛2

)︀)︀
= vec

(︂[︁
(𝐹 *

𝑛3
⊗ 𝐹 *

𝑛2
)𝑝⊤x,1 · · · (𝐹 *

𝑛3
⊗ 𝐹 *

𝑛2
)𝑝⊤x,𝑛1

]︁⊤)︂
= vec

(︂[︁
vec(𝐹 *

𝑛2
𝑃x,1𝐹𝑛3) · · · vec(𝐹 *

𝑛2
𝑃x,𝑛1𝐹𝑛3)

]︁⊤)︂
= vec

(︂[︁
vec(𝑃y,1𝐹𝑛3) · · · vec(𝑃y,𝑛1𝐹𝑛3)

]︁⊤)︂
= vec

(︂[︁
vec(𝑃⊤

z,1) · · · vec(𝑃⊤
z,𝑛1

)
]︁⊤)︂

. (22)

Let 𝐷a1 and 𝐷â2,𝑖, 𝑖 = 1, . . . , 𝑛1, in Lines 2 and 5 of Algorithm 4 be identity matrices of appropriate

dimensions. Then, ̃︀𝑃𝑒x and ̃︀𝑃𝑒y in Lines 2 and 5 are equal to 𝑃x in (20a) and 𝑃y in (20c), respectively.

Moreover, if 𝐷â3,𝑖,𝑗 , 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛2, are 𝑛3 × 𝑛3 identity matrices, i.e., 𝐺z,𝑖 = 1𝑛31
⊤
𝑛2
,

𝑖 = 1, . . . , 𝑛1, in Line 7 of Algorithm 4, then 𝐹 *
𝑛3

̃︀𝑃𝑒z in Line 8 of Algorithm 4 is equal to 𝑃z in (20d). Here,

1𝑚 is an 𝑚× 1 vector with each component being 1. This means that Algorithm 4 is an 3D forward FFT in

(22) if 𝐷a1 , 𝐷â2,𝑖 and 𝐷â3,𝑖,𝑗 are identity matrices of appropriate dimensions.
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Meanwhile, we can reshape the vector q as a matrix 𝑄 ∈ C𝑛1𝑛2×𝑛3 with vec(𝑄) = q and let

𝑄z ≡ [𝑞1, · · · , 𝑞𝑛3 ] = 𝑄𝐹⊤
𝑛3

= (𝐹𝑛3𝑄
⊤)⊤ ∈ C𝑛1𝑛2×𝑛3 , (23a)

𝑄z,𝑘 ∈ C𝑛1×𝑛2 with vec(𝑄z,𝑘) = 𝑞𝑘, 𝑘 = 1, . . . , 𝑛3, (23b)

𝑄y ≡
[︁
𝑄y,1 · · · 𝑄y,𝑛3

]︁
= 𝐹𝑛2

[︁
𝑄⊤

z,1 · · · 𝑄⊤
z,𝑛3

]︁
∈ C𝑛2×𝑛1𝑛3 , (23c)

𝑄x ≡
[︁
𝑄x,1 · · · 𝑄x,𝑛3

]︁
= 𝐹𝑛1

[︁
𝑄⊤

y,1 · · · 𝑄⊤
y,𝑛3

]︁
∈ C𝑛1×𝑛2𝑛3 . (23d)

Then, using the properties of the Kronecker product given in (21), we obtain

(𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)q = vec(𝑄x). (24)

Using a similar discussion to the above paragraph, Algorithm 3 can be simplified to the 3D backward

FFT in (23) if 𝐷a1 , 𝐷â2,𝑖 and 𝐷â3,𝑖,𝑗 are identity matrices of appropriate dimensions.

4.2 Implementation

In Algorithms 3 and 4, the complexities without parallelization for computing 𝑇q and 𝑇 *p are both equal to

𝑐 = 4𝑛+ (𝑛1𝑛2𝒪(𝑛3 log𝑛3) + 𝑛1𝑛3𝒪(𝑛2 log𝑛2) + 𝑛2𝑛3𝒪(𝑛1 log𝑛1)),

and more details can be found in Appendix B. The highest computational costs for 𝑇q and 𝑇 *p are those

of the matrix computations in Steps 2, 5 and 8 of Algorithm 3 and in Steps 3, 6 and 8 of Algorithm 4,

respectively. However, the corresponding matrix in each of these steps can be computed by means of 𝑚 1D

FFTs, where 𝑚 = 𝑛1𝑛2, 𝑛1𝑛3, or 𝑛2𝑛3. For example, in Step 2 of Algorithm 3, ̃︀𝑄𝑢z is computed by means

of 𝑛1𝑛2 1D backward FFTs involving 𝐹𝑛3 . These 𝑛1𝑛2 1D backward FFTs can be performed in parallel

using multicore/many-core CPU and GPU computations. In this case, there is no need to consider any

parallelization for the 1D FFTs. Therefore, highly efficient performance can be achieved for Algorithms 3

and 4 [16].

By contrast, in the MATLAB environment, the 1D backward FFTs in Steps 2, 5 and 8 of Algorithm 3 are

computed by means of ifft(𝑄), where the matrices𝑄 in these steps are 𝑛3×𝑛1𝑛2, 𝑛2×𝑛1𝑛3 and 𝑛1×𝑛2𝑛3 ma-

trices, respectively. Similarly, the 1D forward FFTs in Steps 3, 6 and 8 of Algorithm 4 are computed by means

of fft(𝑃 ), where the matrices 𝑃 are 𝑛1×𝑛2𝑛3, 𝑛2×𝑛1𝑛3 and 𝑛3×𝑛1𝑛2 matrices, respectively. On an NVIDIA

GPU architecture, cufftExecZ2Z(*,*,*,CUFFT INVERSE) and cufftExecZ2Z(*,*,*,CUFFT FORWARD) in the

CUDA Toolkit, corresponding to ifft(𝑄) and fft(𝑃 ), respectively, are used to compute the 1D backward

and forward FFTs in Algorithms 3 and 4. Such 1D backward and forward FFTs can be performed in

parallel using multiple GPU threads. More details of the possible implementations of Algorithms 3 and 4 for

improved performance can be found in [16].

4.3 Performance of Algorithms 3 and 4

In this section, we illustrate the efficiency of Algorithms 3 and 4 in the MATLAB environment and on a

single NVIDIA GPU architecture. We performed numerical experiments on a workstation with two Intel

Xeon Gold 6132 (3.2 GHz, 8-core) CPUs and 128 GB of main memory running the Red Hat Enterprise

Linux operating system. For the GPU architecture, we used the NVIDIA Quadro P6000 GPU with 24

GB of GDDR5X memory, the Tesla K40 GPU with 12 GB of GDDR5 memory, and the Tesla P100 GPU

Manuscript submitted to ACM



12 Huang and Li, et al.

20 40 60 80 100 120 140 160 180 200
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

0.33405

0.01003
0.0099458

0.0036192

(a) Timing performance

20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

(b) Timing ratios

20 40 60 80 100 120 140 160 180 200

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(c) Timing ratios 𝜂

Fig. 2. Timing performance for computing 𝑇q and 𝑇 *p for various 𝑛 = 𝑛3
1. Here, 𝑛

3
1 = 1923 = 7, 077, 888.

with 16 GB of GDDR5 memory, each on the Linux operating system. Let 𝑡𝑚, 𝑡𝑝6, 𝑡𝑘8 and 𝑡𝑝1 denote the

computation times when using MATLAB and the P6000, K40 and P100 GPUs, respectively. Figure 2(a)

shows the corresponding timing results for Algorithms 3 and 4 with 𝑛1 = 𝑛2 = 𝑛3. These results show

that Algorithms 3 and 4 are highly efficient on the different devices. It takes less than 𝑡𝑚 = 3.3 × 10−1,

𝑡𝑝6 = 9.9× 10−3, 𝑡𝑘8 = 1.0× 10−2, and 𝑡𝑝1 = 3.6× 10−3 seconds, respectively, to compute a matrix-vector

multiplication 𝑇 *p or 𝑇q even for the matrix 𝑇 of dimension 1923 = 7, 077, 888. In Figure 2(b), we present

the ratios 𝑡𝑚/𝑡𝑝1, 𝑡𝑚/𝑡𝑝6 and 𝑡𝑚/𝑡𝑘8 for computing 𝑇q and 𝑇 *p. These ratios gradually increase as the

dimension 𝑛 = 𝑛3
1 increases, and 𝑡𝑚/𝑡𝑝1 ≈ 100 for 𝑛1 = 192, which shows that the many-core architecture in

a GPU can take advantage of the parallel computation of many 1D backward and 1D forward FFTs.

On an NVIDIA GPU architecture, we can apply cufftExecZ2Z and cufftPlan3d in the CUDA Toolkit,

namely, 3D FFTs, to efficiently compute p3𝑑 ≡ (𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)
* p and q3𝑑 ≡ (𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)q.

Let 𝑡3𝑑 denote the computation time required to compute p3𝑑 and q3𝑑 using 3D FFTs with the Tesla

P100 GPU. Figure 2(c) shows the timing ratios 𝜂 = 𝑡𝑝1/𝑡3𝑑 with various 𝑛1 = 𝑛2 = 𝑛3 for computing

(𝑇 *p, (𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)
* p) and (𝑇q, (𝐹𝑛3 ⊗ 𝐹𝑛2 ⊗ 𝐹𝑛1)q). These ratios are less than or equal to 1.3 and

1.1 for 𝑇 *p and 𝑇q, respectively, when 𝑛1 > 80. These findings show that the efficiency of Algorithms 3 and

4 is close to that of the 3D backward and forward FFTs in the CUDA Toolkit.

5 SIMULATIONS OF THE BAND STRUCTURES OF 3D NONDISPERSIVE PCS

For isotropic media, the matrix representations of (9) for the 3D Maxwell’s equations in (1a) can be rewritten

as a GEP: [︃
0 −𝐶*

𝐶 0

]︃[︃
e

h

]︃
= 𝜄𝜔

[︃
𝐵𝜀 𝐵𝜉

𝐵𝜁 𝐵𝜇

]︃[︃
e

h

]︃
, (25)

where 𝐵𝜀, 𝐵𝜇, 𝐵𝜉 and 𝐵𝜁 are diagonal matrices that are the discrete counterparts of 𝜀, 𝜇, 𝜉 and 𝜁, respectively.

Based on Theorems 1 and 2 along with Algorithms 3 and 4, an efficient preconditioning scheme [13, 15]

is proposed to solve such linear systems for 3D nondispersive/dispersive PCs (i.e., with 𝜁 = 𝜉 = 0 and

𝐵𝜉 = 𝐵𝜁 = 0), and null-space free techniques are developed for simulating the band structures of 3D

nondispersive PCs [11] and complex media [4]. In this section, we focus on nondispersive PCs with 𝜇 = 1

(i.e., 𝐵𝜇 = 𝐼) and a constant isotropic permittivity 𝜀 (i.e., 𝐵𝜀 is diagonal and positive definite). The GEP in
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(25) can be simplified to 𝐶e = 𝜄𝜔h and 𝐶*h = −𝜄𝜔𝐵𝜀e, which implies that

𝐶*𝐶e = 𝜆𝐵𝜀e (26a)

and

𝐶𝐵−1
𝜀 𝐶*h = 𝜆h, (26b)

where 𝜆 = 𝜔2.

5.1 Generation of the matrices 𝐵𝜀 for all 14 Bravais lattices

In this subsection, we will introduce the composition of the diagonal matrix 𝐵𝜀. Discretizing ∇×𝐻 = −𝜄𝜔𝜀𝐸

in (1a) at the point r𝑐 ∈ Ω𝑐 by means of Yee’s finite-difference scheme, we take the corresponding diagonal

element 𝑏ℓℓ of 𝐵𝜀 to be

𝑏ℓℓ =

⎧⎨⎩𝜀𝑖𝑛, if r𝑐 ∈ material structure,

𝜀𝑜, otherwise,
(27)

where 𝜀𝑖𝑛 and 𝜀𝑜 are the electric and vacuum permittivities, respectively. Therefore, the composition of 𝐵𝜀

depends on the geometric structure of the dielectric material. As shown in [26] or Figure 1(a), all geometric

structures are defined in terms of a primitive cell Ω𝑝 = {
∑︀3

ℓ=1 𝛼ℓãℓ;𝛼1, 𝛼2, 𝛼3 ∈ [0, 1]}. We need to transform

the discrete point r𝑐 ∈ Ω𝑐 into a point r𝑝 ∈ Ω𝑝 and then determine the associated value of 𝑏ℓℓ in (27)

depending on whether r𝑝 lies in the material structure. For any r𝑐 ∈ Ω𝑐, from (5), we have

r𝑐 =
[︁
a1 a2 a3

]︁
c = 𝑄⊤

[︁
ã1 ã2 ã3

]︁
Πc ≡ 𝑄⊤

[︁
ã1 ã2 ã3

]︁
c̃,

where c̃ ≡ Πc = Π [a1 a2 a3]
−1 r𝑐. Based on the periodicity of the geometric structure, we can move the

vector [ã1 ã2 ã3] c̃ along the directions ã1, ã2, and ã3 into Ω𝑝 as follows:

r𝑝 =
[︁
ã1 ã2 ã3

]︁
(c̃− ⌊c̃⌋) ∈ Ω𝑝,

where ⌊c̃⌋ denotes the application of the floor operator to c̃. Let Ω𝑝,𝑚 denote the material structure in Ω𝑝.

Then, 𝑏ℓℓ in (27) can be written as

𝑏ℓℓ =

⎧⎨⎩𝜀𝑖𝑛 if r𝑝 ∈ Ω𝑝,𝑚,

𝜀𝑜 if r𝑝 ∈ Ω𝑝,𝑜 ≡ Ω𝑝∖Ω𝑝,𝑚.
(28)

Therefore, we can apply Algorithms 5 and 6 to construct the diagonal matrix 𝐵𝜀 when the material domain

Ω𝑝,𝑚 is given.

Regarding the construction of the material domain Ω𝑝,𝑚, we can systematically generate some such

domains. The crystal structures in [26] are constructed as combinations of spheres 𝒮1, . . . ,𝒮𝑠 and cylinders

𝒞1, . . . , 𝒞𝑡 (see, e.g., Figure 3). The center of 𝒮𝑗 is given by [ã1 ã2 ã3] s̃𝑗 , and the cylinder 𝒞𝑘 is defined

by the centers of its top and bottom circles, denoted by õ𝑡,𝑘 ≡ [ã1 ã2 ã3] c̃𝑡,𝑘 and õ𝑏,𝑘 ≡ [ã1 ã2 ã3] c̃𝑏,𝑘,

respectively. Thus, the geometric structure of a dielectric material will be determined when the radii
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Algorithm 5 Construction of the ℓth diagonal element of 𝐵𝜀

Input: Lattice translation vectors ã1, ã2, ã3, computational lattice translation vectors a1, a2, a3, electric
and vacuum permittivities 𝜀𝑖𝑛 and 𝜀𝑜, grid point r𝑐, index ℓ, material domain Ω𝑝,𝑚, and permutation
matrix Π.

Output: Element 𝐵𝜀(ℓ, ℓ)

1: Compute c̃ = Π [a1 a2 a3]
−1 r𝑐 and r𝑝 =

[︀
ã1 ã2 ã3

]︀
(c̃− ⌊c̃⌋).

2: if r𝑝 ∈ Ω𝑝,𝑚 then
3: Set 𝐵𝜀(ℓ, ℓ) = 𝜀𝑖𝑛.
4: else
5: Set 𝐵𝜀(ℓ, ℓ) = 𝜀𝑜.
6: end if

Algorithm 6 Construction of 𝐵𝜀

Input: Lattice translation vectors ã1, ã2, ã3, computational lattice translation vectors a1, a2, a3, electric
and vacuum permittivities 𝜀𝑖𝑛 and 𝜀𝑜, material domain Ω𝑝,𝑚, and permutation matrix Π, grid numbers
𝑛1, 𝑛2, 𝑛3.

Output: Diagonal matrix 𝐵𝜀.
1: Compute 𝛿𝑥 = a1(1)/𝑛1, 𝛿𝑦 = a2(2)/𝑛2 and 𝛿𝑧 = a3(3)/𝑛3.
2: for 𝑘 = 0, . . . , 𝑛3 − 1 do
3: for 𝑗 = 0, . . . , 𝑛2 − 1 do
4: for 𝑖 = 0, . . . , 𝑛1 − 1 do
5: Set ℓ̃ = (𝑖+ 1) + 𝑗 × 𝑛1 + 𝑘 × 𝑛1 × 𝑛2.

6: Call Algorithm 5 with r𝑐 = [(𝑖− 1
2
)𝛿𝑥, 𝑗𝛿𝑦, 𝑘𝛿𝑧]

⊤ and ℓ = ℓ̃ to determine the value of 𝐵𝜀(ℓ, ℓ).

7: Call Algorithm 5 with r𝑐 = [𝑖𝛿𝑥, (𝑗− 1
2
)𝛿𝑦, 𝑘𝛿𝑧]

⊤ and ℓ = 𝑛+ ℓ̃ to determine the value of 𝐵𝜀(ℓ, ℓ).

8: Call Algorithm 5 with r𝑐 = [𝑖𝛿𝑥, 𝑗𝛿𝑦, (𝑘− 1
2
)𝛿𝑧]

⊤ and ℓ = 2𝑛+ ℓ̃ to determine the value of 𝐵𝜀(ℓ, ℓ).
9: end for

10: end for
11: end for

(a) Body-centered tetragonal
A tI4 139 4

(b) Hexagonal AB2 hP3 191 a d (c) Face-centered cubic A cF8 227 a

Fig. 3. Three crystal structures in [26].
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(a) Single gyroid (b) Double gyroid

Fig. 4. Primitive cells for (a) a single-gyroid PC and (b) a double-gyroid PC.

{𝜌1, . . . , 𝜌𝑠} and {𝛾1, . . . , 𝛾𝑡} of the spheres and cylinders, respectively, are given, i.e.,

𝒮𝑗 =
{︁
r̃ | ‖

[︁
ã1 ã2 ã3

]︁
s̃𝑗 − r̃‖2 ≤ 𝜌𝑗

}︁
, 𝑗 = 1, . . . , 𝑠, (29a)

𝒞𝑘 = {r̃ | l*𝑘(r̃− õ𝑏,𝑘) ≥ 0, l*𝑘(r̃− õ𝑡,𝑘) ≤ 0, ‖(r̃− õ𝑏,𝑘)× l𝑘‖2 ≤ 𝛾𝑘, l𝑘 = õ𝑏,𝑘 − õ𝑡,𝑘} , 𝑘 = 1, . . . , 𝑡. (29b)

This means that Ω𝑝,𝑚 can be defined as

Ω𝑝,𝑚 =
(︀
∪𝑠

𝑗=1𝒮𝑗

)︀
∪
(︀
∪𝑡

𝑘=1𝒞𝑘

)︀
∩ Ω𝑝.

The construction of Ω𝑝,𝑚 as defined in [26] is described in Algorithm 7.

Algorithm 7 Construction of Ω𝑝,𝑚 as defined in [26]

Input: Lattice translation vectors ã1, ã2, ã3, center parameter vector s̃𝑗 of the sphere 𝒮𝑗 , 𝑗 = 1, . . . , 𝑠,
center parameter vectors c̃𝑡,𝑘 and c̃𝑏,𝑘 of the cylinder 𝒞𝑘, 𝑘 = 1, . . . , 𝑡.

Output: Crystal domain Ω𝑝,𝑚.
1: Set the values of the radius 𝜌𝑗 of the sphere 𝒮𝑗 , 𝑗 = 1, . . . , 𝑠, and the radius 𝛾𝑘 of the cylinder 𝒞𝑘,

𝑘 = 1, . . . , 𝑡.
2: Construct 𝒮𝑗 for 𝑗 = 1, . . . , 𝑠 and 𝒞𝑘 for 𝑘 = 1, . . . , 𝑡 defined in (29).
3: Construct Ω𝑝,𝑚 as Ω𝑝,𝑚 =

(︀
∪𝑠

𝑗=1𝒮𝑗

)︀
∪
(︀
∪𝑡

𝑘=1𝒞𝑘

)︀
.

In addition to the crystal structures in [26], there are many other crystal structures that are determined by

different isosurfaces [24, 33, 35–37]. For example, the structure of a gyroid PC [24, 33] is a body-centered cubic

lattice in a cubic system. The single- and double-gyroid surfaces shown in Figure 4 can be approximated by

the sets Ω𝑝,𝑚 := {r ∈ R3; 𝑔(r) > 1.1} and Ω𝑝,𝑚 := {r ∈ R3; 𝑔(r) > 1.1}∪{r ∈ R3; 𝑔(−r) > 1.1}, respectively,
where r = (𝑥, 𝑦, 𝑧) and

𝑔(r) = sin(2𝜋𝑥/𝑎) cos(2𝜋𝑦/𝑎) + sin(2𝜋𝑦/𝑎) cos(2𝜋𝑧/𝑎) + sin(2𝜋𝑧/𝑎) cos(2𝜋𝑥/𝑎).

Based on a given Ω𝑝,𝑚, we can easily use Algorithm 6 to generate the associated diagonal matrix 𝐵𝜀.
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5.2 Efficient preconditioner for solving linear systems

The GEP expressed in (26) can be solved using the Krylov method, the Jacobi-Davidson method, or the

inexact shift-invert residual Arnoldi method [13]. In each iteration of these methods, it is necessary to solve

a linear system of the form

(𝐶*𝐶 − 𝜎𝐵𝜀)x = b (30a)

or (︀
𝐶𝐵−1

𝜀 𝐶* − 𝜎𝐼
)︀
y = b (30b)

for a given shift 𝜎 and vector b. A major computational issue is how to choose efficient preconditioners for

solving (30), which is not a trivial task. None of the traditional preconditioners, such as symmetric successive

overrelaxation (SSOR), block incomplete Cholesky (BIC) factorization or modified incomplete Cholesky

(MIC) factorization, are effective. Nevertheless, based on eigendecompositions of the 𝐶ℓ (ℓ = 1, 2, 3) in (15)

with the diagonal matrix 𝐵𝜀, an efficient preconditioner 𝑀 of the form

𝑀 = 𝐶*𝐶 − 𝜏𝐼 (31)

has been employed in [13], with some constant 𝜏 , for solving (30). The associated preconditioned linear

system

(𝐶*𝐶 − 𝜏𝐼)z = d

can be rewritten using eigendecompositions of the matrices 𝐶ℓ (ℓ = 1, 2, 3) in (15) of the following form:

(𝐼3 ⊗ Λ𝑞 − 𝜏𝐼) z̃ =

⎛⎜⎝𝐼 − 𝜏−1

⎡⎢⎣Λ1

Λ2

Λ3

⎤⎥⎦[︁
Λ*

1 Λ*
2 Λ*

3

]︁⎞⎟⎠ (𝐼3 ⊗ 𝑇 )* d, (32a)

z = (𝐼3 ⊗ 𝑇 ) z̃. (32b)

The solution z in (32) can be efficiently computed using Algorithms 3 and 4, as shown in Algorithm 8.

Moreover, a preconditioner 𝑀 of the form given in (31) can also be used as a preconditioner for solving the

nonlinear eigenvalue problems [15] arising from 3D dispersive PCs.

Algorithm 8 [13] Solving the preconditioned linear system (𝐶*𝐶 − 𝜏𝐼)z = d.

Input: Lattice vectors a1, a2, a3, grid numbers 𝑛1, 𝑛2, 𝑛3, constant 𝜏 and the right hand side vector d.
Output: the solution z.
1: Call Algorithm 2 to compute Λ1, Λ2, Λ3, Λ𝑞, 𝐷a1 , 𝐺y, 𝐷â2,𝑖, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1.
2: Call Algorithm 4 with 𝐷a1 , 𝐷â2,𝑖, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1 to compute z = (𝐼3 ⊗ 𝑇 *)d.

3: Update z := z− 𝜏−1

⎡⎣Λ1

Λ2

Λ3

⎤⎦ [︀
Λ*

1 Λ*
2 Λ*

3

]︀
z.

4: Compute z̃ = (𝐼3 ⊗ Λ𝑞 − 𝜏𝐼)−1z.
5: Call Algorithm 3 with 𝐷a1 , 𝐺y, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1 to compute z = (𝐼3 ⊗ 𝑇 )z̃.
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5.3 Null-space free method

In Subsection 5.2, we have proposed an appropriate preconditioner 𝑀 in (31) for solving linear systems

of the form given in (30). However, according to Theorem 2, each GEP of the form given in (26) has 𝑛

eigenvalues that are equal to zero. This substantial null space poses the main computational challenge faced

when we try to find some smallest positive eigenvalues (usually 6 to 10 eigenvalues are needed for computing

the corresponding band structure) of (26), as it will seriously affect the convergence of the eigensolver

[13, 17]. In addition, it is not straightforward to determine the shift value 𝜎 in (34). The null-space free

method [11] has been proposed to address this challenge. By using the SVD of 𝐶 in (18c), the enormous

null space can be deflated, and a 3𝑛× 3𝑛 GEP of the form given in (26a) and (26b) can be transformed into

the following 2𝑛× 2𝑛 NFSEP:

𝐴𝑟x ≡
(︀
Σ𝑟𝑉

*
𝑟 𝐵−1

𝜀 𝑉𝑟Σ𝑟

)︀
x = 𝜆x, (33a)

with

e = 𝐵−1
𝜀 𝑉𝑟Σ𝑟x and h = 𝑈𝑟x. (33b)

The transformation from the GEP in (26) to the NFSEP in (33) is derived in [11].

Since the coefficient matrix 𝐴𝑟 in (33a) is Hermitian and positive definite, we can effectively find the

desired eigenvalues and eigenvectors by applying the standard inverse Lanczos method. In each step of the

inverse Lanczos method, it is necessary to solve the linear system(︀
Σ𝑟𝑉

*
𝑟 𝐵−1

𝜀 𝑉𝑟Σ𝑟

)︀
y = b,

which is equivalent to (︀
𝑉 *
𝑟 𝐵−1

𝜀 𝑉𝑟

)︀
ỹ = Σ−1

𝑟 b, y = Σ−1
𝑟 ỹ. (34)

As shown in [11], the condition number of 𝑉 *
𝑟 𝐵−1

𝜀 𝑉𝑟 is small; it depends on only 𝜀 and is independent of the

matrix dimensions. Therefore, only a few iterations of the conjugate gradient (CG) method without any

preconditioner are needed to solve (34), even if the dimension of the matrix exceeds one million. As shown

in Algorithm 9, the most expensive operation in the CG method, namely, 𝑉 *
𝑟 𝐵−1

𝜀 𝑉𝑟v, can be efficiently

computed by means of Algorithms 3 and 4.

Algorithm 9 [14] Matrix-vector multiplication u = 𝑉 *
𝑟 𝐵−1

𝜀 𝑉𝑟v.

Input: Φ1, Φ2, 𝐷a1 , 𝐺y, 𝐷â2,𝑖, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1, the diagonal matrix 𝐵𝜀 and the vector v.
Output: the vector u.
1: Compute ũ = [Φ1,Φ2]v.
2: Call Algorithm 3 with 𝐷a1 , 𝐺y, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1 to compute z = (𝐼3 ⊗ 𝑇 )ũ.
3: Compute ũ = 𝐵−1

𝜀 z.
4: Call Algorithm 4 with 𝐷a1 , 𝐷â2,𝑖, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1 to compute z = (𝐼3 ⊗ 𝑇 *)ũ.
5: Compute u = [Φ1,Φ2]

*z.
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(a) Wurtzite structure (AB hP4 186 b b)
in [26]
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Fig. 5. (a) Schematic of a 3D PC with a hexagonal lattice and (b) the associated band structure.

5.4 Performance of the null-space free method

As a benchmark, we consider the medium structure shown in Figure 5(a), which is a hexagonal lattice

consisting of spheres and circular cylinders, both with a radius of 0.6. The coefficient vectors {s̃1, . . . , s̃4} in

(29) are taken to be s̃1 = [ 1
3
, 2
3
, 0.3748], s̃2 = [ 2

3
, 1
3
, 0.8748], s̃3 = [ 1

3
, 2
3
, 0], and s̃4 = [ 2

3
, 1
3
, 1
2
]. The associated

lattice translation vectors are ã1 =
[︁
𝑎
2

−𝑎
√
3

2
0
]︁⊤

, ã2 =
[︁
𝑎
2

𝑎
√
3

2
0
]︁⊤

, and ã3 =
[︁
0 0 𝑐

]︁⊤
, with

𝑎 = 3.8227 and 𝑐 = 6.2424. We take permittivities of 𝜀𝑖𝑛 = 13 and 𝜀𝑜 = 1 and show the corresponding band

structure in Figure 5(b).

The MATLAB function eigs, implemented with the shift-and-invert Lanczos method (SILM) and a

stopping criterion of 10−12, is used to solve the GEP in (26a), and bicgstabl with a preconditioner 𝑀

(31) is used to address the associated linear system (30a). Here, the shift value 𝜎 is taken to be 0.01. On

the other hand, eigs with a stopping criterion of 10−12, referred to as the null-space free Lanczos method

(NFLM), is used to solve the NFSEP in (33), and pcg without preconditioning is used to solve (34). We

take 𝑛1 = 𝑛2 = 𝑛3 = 120; accordingly, the dimensions of the coefficient matrices in (26a) and (33) are

3𝑛3
1 = 5, 184, 000 and 2𝑛3

1 = 3, 456, 000, respectively.

Figure 6(a) illustrates the average numbers of iterations required for solving (30a) and (34), which are

fewer than 30 and 50, respectively. These results indicate that the preconditioner in the SILM is quite

adequate and that the coefficient matrix in the linear system given in (34) is well-conditioned. Figures 6(b)

and 6(c) show the numbers of iterations and the elapsed CPU times for solving the eigenvalue problems

corresponding to each of the wave vectors using the SILM and NFLM. Figure 6(b) shows that the NFLM

requires fewer iterations than the SILM. This observation indicates that the enormous null space affects the

convergence behavior of the SILM, while the zero eigenvalues are deflated in the NFLM. Consequently, as

shown in Figure 6(c), the NFLM outperforms the SILM in terms of computation time for all benchmark

wave vectors k, even when an effective preconditioner is provided for the SILM.
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Fig. 6. (a) Average numbers of iterations of bicgstabl and pcg, (b) numbers of iterations of the SILM and NFLM, and
(c) CPU times of the SILM and NFLM.

Note that the SILM requires a predetermined shift value 𝜎. However, it is not easy to choose a suitable

shift value a priori to ensure a suitable overall computation efficiency. The NFLM does not have this

drawback because the coefficient matrix 𝐴𝑟 in the NFSEP given in (33) is Hermitian and positive definite.

Based on this property, we have developed an efficient package, FAME, for solving GEPs of the form given

in (26) using the null-space free method.

6 FAME PACKAGE

In this section, we introduce our proposed package “FAME” for simulating the band structures of 3D PCs

with all 14 Bravais lattices using MATLAB or an NVIDIA GPU. The source code can be downloaded from

the following website:

https://sites.google.com/g2.nctu.edu.tw/fame

To simulate the band structure of a 3D PC, we need to solve a sequence of GEPs of the form given in

(26) with various wave vectors k. For each GEP, some of the smallest positive eigenvalues are of interest. In

Section 5.3, we have introduced the efficient null-space free method for solving (26). FAME is a package

designed for the implementation of this null-space free method in MATLAB or CUDA code; the corresponding

implementations of the package are called FAMEm and FAMEg, respectively. The FAME package integrates

Algorithms 2, 3, 4, and 9 into the inverse Lanczos method and the CG method without any preconditioner

(see Step 6 of Algorithm 10) to compute a few of the smallest positive eigenvalues of (33). We summarize all

of the processes executed by FAME in Algorithm 10.

We have established models of all 14 Bravais lattices, as listed in Section 1, and the associated first Brillouin

zones in the proposed FAME package. Several crystal structures have been implemented as benchmark

problems. Users can choose such benchmark problems with given input parameters, such as the permittivities

or the radii of the spheres and cylinders, to simulate the associated band structures. They can also provide

isosurfaces of their own to create the corresponding domain Ω𝑝,𝑚 using Algorithm 2 and integrate it into

FAME to compute the related band structure.

We have implemented FAMEm as a MATLAB app. In this app, users can choose any built-in benchmark

problem and visualize the corresponding crystal structure instantly. As an alternative, we have also
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Algorithm 10 FAME

Input: Lattice translation vectors ã1, ã2, ã3, electric and vacuum permittivities 𝜀𝑖𝑛 and 𝜀𝑜, grid numbers
𝑛1, 𝑛2, 𝑛3, and wave vector k.

Output: target eigenpairs {(𝜆𝑖, e𝑖)}𝑝𝑖=1.
1: Use Algorithm 1 to compute a1, a2, a3, and the permutation matrix Π.
2: Define Ω𝑝,𝑚 from the given isosurface or by using Algorithm 7 with giving {ã1, ã2, ã3}, {s̃𝑗}𝑠𝑗=1 and

{c̃𝑡,𝑘, c̃𝑏,𝑘}𝑡𝑘=1.
3: Use Algorithm 6 with {ã1, ã2, ã3}, {a1,a2,a3}, {𝜀𝑖𝑛, 𝜀𝑜}, {𝑛1, 𝑛2, 𝑛3}, Ω𝑝,𝑚 and Π to generate the

diagonal matrix 𝐵𝜀.
4: Use Algorithm 2 with {a1,a2,a3}, {𝑛1, 𝑛2, 𝑛3} and k to generate Σ𝑟, Φ1, Φ2, 𝐷a1 , 𝐷â2,𝑖, and 𝐷â3,𝑖,𝑗

for 𝑖 = 1, . . . , 𝑛1 and 𝑗 = 1, . . . , 𝑛2.
5: Compute 𝐺y and 𝐺z,𝑖 according to (19) for 𝑖 = 1, . . . , 𝑛1.
6: Use inverse Lanczos method to compute the target eigenpairs {(𝜆𝑖,x𝑖)}𝑝𝑖=1 of the NFSEP (33). In each

iteration, use the CG method with the matrix-vector multiplication in Algorithm 9 by using 𝐵𝜀, Φ1, Φ2,
𝐷a1 , 𝐺y, and 𝐷â2,𝑖, 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1 to solve (34).

7: for 𝑖 = 1, . . . , 𝑝 do
8: Compute ũ = [Φ1,Φ2]Σ𝑟x𝑖.
9: Call Algorithm 3 with 𝐷a1 , 𝐺y, and 𝐺z,𝑖 for 𝑖 = 1, . . . , 𝑛1 to compute z = (𝐼3 ⊗ 𝑇 )ũ.

10: Compute e𝑖 = 𝐵−1
𝜀 z.

11: end for

implemented our null-space free method in the form of MATLAB functions. Users can use these functions to

compute target eigenpairs in a given background environment. In addition, the matrices 𝐶 and 𝐵𝜀 can be

saved to a .mat file if needed.

In FAMEg, we have implemented Steps 1 – 3 on a CPU architecture and the other steps on a GPU

architecture to reduce the required communication between the CPU and GPU. The Lanczos method and

the CG method are implemented as CUDA codes to solve the NFSEP (33) and the associated linear system

(34). The high efficiency of FAMEg with a matrix of dimension of 3.5 million for a face-centered cubic

lattice with a diamond structure [3, 11], a body-centered cubic lattice with a gyroid structures [24, 33], an

orthorhombic lattice with an inverse woodpile structure [36, 37], and a hexagonal lattice consisting of hollow

cylinders connected by micropillars [35] has been presented in [16]. In the following, we demonstrate the

performance of FAMEg for various other lattices with material structures described in [26].

6.1 Benchmark problems

In this subsection, we present numerical experiments performed using FAMEg on the NVIDIA Tesla P100

GPU. Subject to the GPU memory limitations, we chose the dimension of the coefficient matrix 𝐴𝑟 in

(33) to be as large as possible. We first demonstrate the efficiency of FAMEm and FAMEg for solving the

NFSEP in (33) for a hexagonal lattice, as shown in Figure 5(a). Here, we take (𝑛1, 𝑛2, 𝑛3) = (256, 157, 136)

and (276, 169, 146) for FAMEm and FAMEg, respectively. The dimensions of 𝐴𝑟 are 10, 932, 224 in the first

case and 13, 620, 048 in the second. The associated timing performance is shown in Figure 7.

Next, we consider three other benchmark lattices with material structures as proposed in [26] and

permittivities of 𝜀𝑖𝑛 = 13 and 𝜀𝑜 = 1 to further demonstrate the performance of FAMEg.

(1) Body-centered orthorhombic lattice with 𝑎 = 3.1440, 𝑏 = 3.1280, and 𝑐 = 7.6770, as shown in

Figure 8(a). The AFLOW prototype label in [26] is AB2 oI6 71 a i. The radii of both are spheres
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Fig. 7. Timing performance for FAMEm and FAMEg.

and circular cylinders are equal to 0.4. The coefficient vectors {s̃𝑗}3𝑗=1 in (29) are s̃1 = [0, 0, 0],

s̃2 = [0.3390, 0.3390, 0] and s̃3 = [0.6610, 0.6610, 0]. 𝑛1, 𝑛2 and 𝑛3 are taken to be 248, 215, and 124,

respectively, meaning that the corresponding dimension of 𝐴𝑟 is 13, 223, 360.

(2) Simple tetragonal lattice with 𝑎 = 4.9570 and 𝑐 = 6.8903 as shown in Figure 8(c). The AFLOW

prototype label is A2B tP12 92 b a. The radii of both the spheres and circular cylinders are equal to

1.0. 𝑛1, 𝑛2, and 𝑛3 are taken to be 168, 168, and 234, respectively, meaning that the corresponding

dimension of 𝐴𝑟 is 13, 208, 832.

(3) Rhombohedral lattice with 𝑎 = 3.7595 and 𝛼 = 1.4137, as shown in Figure 8(e). The AFLOW prototype

label is A hR2 166 c. The radii of both the spheres and circular cylinders are equal to 0.75. The

coefficient vectors {s̃𝑗}2𝑗=1 in (29) are s̃1 = [0.2275, 0.2275, 0.2275] and s̃2 = [0.7725, 0.7725, 0.7725]. 𝑛1,

𝑛2, and 𝑛3 are taken to be 192, 190, and 188, respectively, meaning that the corresponding dimension

of 𝐴𝑟 is 13, 716, 480.

The stopping criteria for both the inverse Lanczos method and the CG method were set to 10−12, and the

ten smallest positive eigenvalues were computed. The resulting timing performance for the three benchmark

PCs listed above is shown in Figures 8(b), 8(d), and 8(f), respectively. The average computation times

in Figures 7(a), 7(b), 8(b), 8(d), and 8(f) are 12897, 190.5, 126.8, 130.4 and 133.1 seconds, respectively.

These results show that for eigenvalue problems with the dimension of the coefficient matrices exceeding

13 million, the proposed FAME package is a fast eigensolver for 3D PCs. This efficiency is attributed to

the null-space free method and the ability to solve the well-conditioned linear system in (34) using fast

FFT-based matrix-vector multiplications as shown in Algorithms 3 and 4. Here, fewer than 45 iterations of

the CG method are necessary for all of these benchmark PCs.

6.2 Performance analysis

We now present a performance analysis of FAMEg based on the NVIDIA Visual Profiler. The results are

shown in Figure 9. In [16], an efficient scheme was developed to reduce the number of launches of the GPU

kernel. We combined Step 3 with Step 4 (for computing ̃︀𝑄y) and Step 6 with Step 7 (for computing ̃︀𝑄x) in

Algorithm 3 and combined Step 4 with Step 5 (for computing ̃︀𝑃𝑒y) in Algorithm 4 to form a single GPU
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(b) Numbers of iterations and timing performance

(c) Simple tetragonal lattice
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(d) Numbers of iterations and timing performance

(e) Rhombohedral lattice
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(f) Numbers of iterations and timing performance

Fig. 8. Schematic of 3D PCs (left) and the corresponding numbers of iterations of the Lanczos method and the associated
timing performance (right).

kernel in each case. Under this scheme, the amounts of time consumed to compute ̃︀𝑄x, ̃︀𝑄y, vec(𝐷a1
̃︀𝑄𝑢x),̃︀𝑃𝑒x, ̃︀𝑃𝑒y, and ̃︀𝑃𝑒z account for approximately 5.4%, 5.3%, 5.3%, 5.3%, 6.5%, and 6.3%, respectively, of

the total time. The percentages for ̃︀𝑃𝑒y and ̃︀𝑃𝑒z are more significant than the others, resulting in greater

efficiency in computing 𝑇q than in computing 𝑇 *p, as shown in Figures 2(b) and 2(c). Moreover, the time

needed for matrix-vector multiplications with the matrices 𝑉𝑟 and 𝑉 *
𝑟 when solving the linear system in
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Fig. 9. Percentages of computation time consumed to solve the eigenvalue problem for each kernel.

(34) is approximately 73.8% of the total time, while the time needed to call cuFFT for the 1D backward

and forward FFTs is only 24.3% of the total. The matrix-vector multiplications with the matrices 𝑉𝑟 and

𝑉 *
𝑟 are the most computationally expensive steps of solving the NFSEP in (33). The results presented in

Figure 2(a) demonstrate that these two matrix-vector multiplications can be performed highly effectively.

Efficient matrix-vector multiplication is one of the crucial advantages of our developed FAME package. The

other critical advantage of FAME is that the numbers of necessary iterations of the Lanczos method and the

CG method are small, as shown in Figures 6 and 8, because of the deflation of the substantial null space.

7 CONCLUSION

In this article, we numerically determine the band structure of three-dimensional photonic crystals by solving

a series of large-scale GEPs. Solving such GEPs is a computational challenge. To this end, we propose a

package called “FAME” to efficiently address the associated GEPs arising from Yee’s discretization. FAME

combines the null-space free method with FFT-based matrix-vector multiplications. The null-space free

method deflates the null space corresponding to the zero eigenvalues of the eigenvalue problem and improves

the convergence of the Lanczos method. The FFT-based matrix-vector multiplications significantly reduce

the computational cost of the conjugate gradient method for solving a linear system with a well-conditioned

coefficient matrix. These advantages allow the proposed package to efficiently simulate the band structure of

a 3D photonic crystal even when the matrix dimensionality exceeds 13 million.
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APPENDIX A

(i) for a3(2) ≥ 0 and 𝑚4 ≡ 𝑚2 −𝑚1 ≥ 0,

𝐽3 =

[︃
0 𝑒−𝚤2𝜋k·(a2+(𝜌1−𝜌2)a1)𝐼𝑚3 ⊗ 𝐽2,𝑚4

𝑒𝚤2𝜋𝜌2k·a1𝐼𝑛2−𝑚3 ⊗ 𝐽2,𝑚2 0

]︃
.

(ii) for a3(2) ≥ 0 and 𝑚4 < 0,

𝐽3 =

[︃
0 𝑒−𝚤2𝜋k·(a2+(𝜌1−𝜌2−1)a1)𝐼𝑚3 ⊗ 𝐽2,𝑛1+𝑚4

𝑒𝚤2𝜋𝜌2k·a1𝐼𝑛2−𝑚3 ⊗ 𝐽2,𝑚2 0

]︃
.

(iii) for a3(2) < 0 and 𝑚5 ≡ 𝑚1 +𝑚2 ≤ 𝑛1,

𝐽3 =

[︃
0 𝑒𝚤2𝜋𝜌2k·a1𝐼𝑚3 ⊗ 𝐽2,𝑚2

𝑒𝚤2𝜋k·(a2+(𝜌2+𝜌1)a1)𝐼𝑛2−𝑚3 ⊗ 𝐽2,𝑚5 0

]︃
.

(iv) for a3(2) < 0 and 𝑚5 > 𝑛1,

𝐽3 =

[︃
0 𝑒𝚤2𝜋𝜌2k·a1𝐼𝑚3 ⊗ 𝐽2,𝑚2

𝑒𝚤2𝜋k·(a2+(𝜌2+𝜌1−1)a1)𝐼𝑛2−𝑚3 ⊗ 𝐽2,𝑚5−𝑛1 0

]︃
,

where

𝐽2,𝑚 ≡

[︃
0 𝑒−𝚤2𝜋k·a1𝐼𝑚

𝐼𝑛1−𝑚 0

]︃
.

APPENDIX B

Here we analyze the complexity of the matrix-vector multiplications 𝑇q and 𝑇 *p processed in Algorithm 3

and 4, respectively.

∙ In Algorithm 3, the complexities without parallelization in Line 2-3, Line 5-6, and Line 7-8 are

𝑐11 ≡ (𝑛1𝑛2)×𝒪(𝑛3 log𝑛3) + 𝑛1 × (𝑛2𝑛3),

𝑐12 ≡ (𝑛1𝑛3)×𝒪(𝑛2 log𝑛2) + 𝑛3 × (𝑛2𝑛1),

𝑐13 ≡ (𝑛2𝑛3)×𝒪(𝑛1 log𝑛1) + (𝑛2𝑛3)× 𝑛1 + 𝑛,

respectively.

∙ In Algorithm 4, the complexities without parallelization in Line 2-3, Line 5-6, and Line 7-8 are

𝑐21 ≡ 𝑛3 × (𝑛2 × 𝑛1) + (𝑛2𝑛3)×𝒪(𝑛1 log𝑛1),

𝑐22 ≡ 𝑛1 × (𝑛3 × 𝑛2) + (𝑛1𝑛3)×𝒪(𝑛2 log𝑛2),

𝑐23 ≡ 𝑛1 × (𝑛2𝑛3) + (𝑛1𝑛2)×𝒪(𝑛3 log𝑛3) + 𝑛,

respectively.
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Therefore, the complexities for computing 𝑇q and 𝑇 *p are both equal to

𝑐 = 4𝑛+ (𝑛1𝑛2𝒪(𝑛3 log𝑛3) + 𝑛1𝑛3𝒪(𝑛2 log𝑛2) + 𝑛2𝑛3𝒪(𝑛1 log𝑛1)).
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