SOLVING LARGE-SCALE NONSYMMETRIC ALGEBRAIC RICCATI
EQUATIONS BY DOUBLING
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Abstract. We consider the solution of the large-scale nonsymmetric algebraic Riccati equation XCX —
XD — AX + B =0, with M = [D, —C; —B, A] € R(m+n2)x(n1412) heing a nonsingular M-matrix. In addition,
A and D are sparse-like, with the products A= u, A=Tu, D= v and D~ Tv computable in O(n) complexity
(with n = max{ni,n2}), for some vectors u and v, and B, C are low-ranked. The structure-preserving doubling
algorithm by Guo, Lin and Xu (2006) is adapted, with the appropriate applications of the Sherman-Morrison-
Woodbury formula and the sparse-plus-low-rank representations of various iterates. The resulting large-scale
doubling algorithm has an O(n) computational complexity and memory requirement per iteration and converges
essentially quadratically. A detailed error analysis, on the effects of truncation of iterates with an explicit forward
error bound for the approximate solution from the SDA, and some numerical results will be presented.
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1. Introduction. Consider the nonsymmetric algebraic Riccati equation (NARE)
R(X)=XCX - XD-AX +B=0, (1.1)

where A, B, C' and D are real ny X ny, n1 X na, ny X ny and ns X ny matrices, respectively. From
the solvability conditions in [12, 13], we assume the matrix

D -C

M:{—B A

] c R(n1+n2)x(ni+n2) (1.2)

is a nonsingular M-matrix, i.e., M has nonpositive off-diagonal entries and all elements of M !
are nonnegative. In this paper, we are interested in developing an efficient algorithm for solving
the minimal nonnegative solution X of NAREs in (1.1).

The structure-preserving doubling algorithm (SDA) in [17] is first proposed for solving the
NARE (1.1) with quadratical convergence. Then in [5], more general convergence results were
given, especially for the critical case. Later in [4], Bini, Meini, and Poloni developed a doubling
algorithm called SDA _ss, which has shown efficient improvements over SDA in some of numerical
tests, but it can happen that sometimes SDA_ss runs slower than SDA. Recently in [31], the
alternating-directional doubling algorithm (ADDA) has been developed by Wang, Wang and Li
to improve the convergence of the SDA dramatically. In practice, ADDA is always faster than
SDA and SDA _ss, however, it may encounter overflow in Fj and Ej before Hy and Gy converge
with a desired accuracy, and the scaling technique in [31] is not suitable for the large scale case
which we will study.

We state the SDA for solving (1.1) as follows. Choose suitable parameter v such that

(1.3)

> ) = max< max a;;, max d;;
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where a;; and d;; are the diagonal entries of A and D, respectively. Compute

Fo =1L, —2W;Y,  Eg=1l, — 2V,

Hy = Q’YW,Y_IBD,;17 Go = QVDJICW,Y_I

(1.4)

with Ay = A+~I,,, Dy = D+ ~yl,,, W, = A, - BD;'C, V, = D, — CA;'B. The SDA [17]
has the form (for & > 0)

Fip1 = Fi(I1,,, — H,Gp) ' F, Eyt1 = Ex(I,, — GeHy) ' Ey, (1.5)
Hyy1 = Hy + Fy(In, — HyGy) 'HyEy, Gry1 = G + Ep(In, — GpHy) *GpFy, '
where Fj, € RM*™ | B, € R™2%% H, € R"%™ and G, € R™X™.

For A = [aij]a B = [blj] S Rmxn, we write A > B (A > B) if Qij > bij (aij > blj) for all
i,7. A matrix A is called positive (nonnegative) if a;; > 0 (a;; > 0). We denote |A| = [|a;;|] and
[|A]| := || A|l2 the 2-norm of A.

Let

DY)=YBY ~YA—DY +C =0 (1.6)

be the dual equation of NARE (1.1). The following convergence theory for (1.5) is originally
given in [17] and improved in [5].

THEOREM 1.1. Let M in (1.2) be a nonsingular M-matriz. Then the NARE (1.1) and its
dual equation (1.6) have minimal nonnegative solutions X > 0 and Y > 0, respectively. Moreover
S=A—-BY and R= D — CX are nonsingular M-matrices. Let S, = (S + vIn,) (S — vI,,)
and Ry = (R + vI,,) " (R — vI,,). Then the sequences {Fy}, {Ex}, {Hy} and {Gy} generated
by the SDA (1.5) are well-defined, and for all k > 0, we have

(a) Eo, Fo <0 and Fy = (I, — HyY)S2 >0, By = (I, — Gy X)R% > 0;

(b) I — GpHy and I — H,G), are nonsingular M-matrices;

(¢) 0< Hy < Hypy <X and 0 < X — Hy = (I,, — H,Y)S2 XR?" < 82" XR?";

(d) 0<SGr <G <Y and 0 <Y — Gy = (I, — G X)R2'YS2 < R¥'YS?;

(e) Sy, Ry <0, the spectral radii p(S,), p(Ry) < 1, and S?Yk,R?yk — 0 as k — oo;

(f) In, — XY and I,,, — Y X are nonsingular M-matrices.

Motivated by the low-ranked cases from the applications in transport theory [19, 22, 23], in
this paper we further assume that ny and n9 are large, A and D are sparse-like (with the products
A=Yy, A=Tu, D=1y and D~ Tv computable in O(n) complexity, where n = max{ni, ny}, for some
vectors u and v), and B and C' are of low-ranked (m and [, respectively, with m,l < ni,ns).
In [19, 22, 23], A and D are low-ranked updates of nonsingular diagonal matrices, which are
nonsingular but not sparse. We shall adapt the SDA [17] to solve the NARE (1.1), resulting in a
large-scale doubling algorithm (SDA_ls_¢) with an O(n) computational complexity and memory
requirement per iteration. Note that the orthodox SDA in [17] has a computational complexity
of O(n?).

More generally, algebraic Riccati equations arise in many important applications, including
the total least squares problems with or without symmetric constraints [9], the spectral fac-
torizations of rational matrix functions [10], the linear and nonlinear optimal controls [2], the
contractive rational matrix functions [20], the structured complex stability radius [18], transport
theory [19, 22, 23], the Wiener-Hopf factorization of Markov chains [32], and the optimal solutions
of linear differential systems [21]. Symmetric algebraic Riccati equations have been the topic of
extensive research, and the theory, applications and numerical solutions of these equations are
the subject of [5]-[8] as well as the monographs [21, 29]. The minimal positive solution to the
NARE (1.1), for medium size problems without the sparseness and low-ranked assumptions, has



been studied recently by several authors, employing functional iterations, Newton’s method and
the structure-preserving algorithm; see [1, 3, 4], [12]-[17], [22, 23, 26, 27, 30, 31] and the refer-
ences therein. Evidently, the applications associated with and the numerical solution to NAREs
have attracted much attention in the past decade but this paper is the first on general large-scale
NAREs.

Main Contribuations. Apart from being the first paper on the numerical solution to gen-
eral large-scale NAREs, we shall formalize the discussion on the numerical rank of the solution X,
showing constructively when X is numerically low-ranked. We adapt the well-known structure-
preserving doubling method efficiently for large-scale NAREs. Then we show how the exponential
growth in the rank of the approximate solution is controlled by compression and truncation. A
first order error estimate will show that the difference between the approximate solution by the
SDA with small truncation and the exact solution has the same order as the truncation without
affecting the convergence of the SDA.

2. Large-Scale Doubling Algorithm. Borrowing from [24], we shall apply the Sherman-
Morrison-Woodbury formula (SMWF) in order to avoid the inversion of large or unstructured
matrices, and use sparse-plus-low-ranked matrices to represent iterates when appropriate. Also,
some matrix operators are computed recursively, to preserve the corresponding sparsity or low-
ranked structures, instead of forming them explicitly. If necessary, we compress and truncate
fast growing components in the iterates, to trade off the negligible amount of accuracy for better
efficiency. Together with the careful organization of convergence control in the algorithm, we
obtain an O(n) computational complexity and memory requirement per iteration.

2.1. Large-Scale SDA. We assume B € R":*"2 and C' € R™2*"™ in (1.1) have, respectively,
the full low-ranked decompositions

B=DBB,, C=CCy, (2.1)

where By € R™X™ By € R™=X™ ) € R™=* 0y € RM*f with m, | < n = max{ny,na}.
We first state a basic large-scale SDA, and then propose a practical large-scale SDA later in
Section 2.2.

For the initial matrices in (1.4), we have Fy = I,,, — 2’yW,y*1, Ey =1, — 2’yV,Y*1, Hy =
QlOEOQQTQa and GO = P10F0P2—(r)7 where

Qi0=29W;'B1, Qx =D, Bay, o= Ip;
Pio=2yD;'C1, Py=W;'Cy To=1. (2.2)

Note that efficient linear solvers for the large-scale A and D, and thus for A, and D,, are available.
Applying the SMWF, W 'w and V7 'v can be computed economically by

-1

W = {Im + AZ'By I — (Bf D7'Ch)(C4 A1 By))] (BJD;lcl)c;} A'w, (2.3)

Vol = {Im +D;'Cy [I — (C3 A" By)(By D Cy)] ™ (c;Angl)B;} D', (24)

For k =1,2,---, we shall organize the SDA so that the iterates have the recursive forms

Hyp = QupXrQqp, Gy = PPy, (2.5)
F,=F} |+ F\.F),, E,=FE} | +EE,),.,

where Fy, € Rm>Xle-1 [ € R"2>X™k-1 (7 = 1,2), and the kernels ¥;, € R™ X" and ', € Rk,



We should compute products like Eyu, E; u, Fyv, F;/ v, for some vectors u and v, by applying
(2.6) recursively. Without actually forming Ej and Fj, we avoid any possible deterioration of
their sparse-like properties or other structures as k grows, and preserve the O(n) computational
complexity of the algorithm. As a trade-off, we need to store all the Q;x, Xk, Pk, I'x, Fir and
E;;, for all previous k, as we shall see below.

Applying the SMWF again, we obtain

-1
(In, — GrHy) ™t = Iy + GpQuiZi (Imy, — Q2,GrQ1xZr)  Qay,

-1
= I, + Py, (L, — TPy HiPiy) TPy Hy, (2.7a)
_ -1
(In, — HyGr) ™" = In, + Quk (I, — ZkQoxGrQur)  TiQ2,Gr
-1
= I, + HyPipTy (I, — P HipPikly) Py (2.7b)

Denote the direct sum of square matrices by @. From (1.5) and (2.7), we can choose the matrices
in (2.5) and (2.6) recursively as

Qi1 = [Qik, FrQix], Q2441 = [Qak, Ef Qaxl,
Pigi1 = [Pk, ExPixl,  Pagyr = [Pok, Fy Pogl;

i1 =2k @[Sk 4 (I, — SkQakGrQ1k) ' Sk Q2 G Qi)

= ® [Sk + Sk Qo Pl (L, — PoyHiPiul'n) ™' Py Qi ]

=%, &Sk, (2.10)
Tis1 =T & [T + Te Py QuiEi Iy, — Q2 GrQ1x2k) ' Qo Pril's]

=15 & [Ts + (I, — Tu P HyPiiy) Ty Py H PiT 'y

=Tp @k (2.11)

Fi g1 = FyHy Py Ty (I, — Py Hyp Py Ty) 7!
= FpQux(Inmy — Z1Qa,GrQur) ' S1Qay Pi Tk, (2.12)
Fy 1 = Fy Po; (2.13)

and

E1 i1 = ExGrQuiSk(Im, — Q2,GrQuiXr) !
= EPu,(Iy, — TPy He Pi) ' T Pyt Q1 Sk, (2.14)
Ea ki1 = By Qar. (2.15)

Ultimately from (2.6), (2.8) and (2.9), we see that the SDA is dominated by the computation
of products like Eyu, E, u, Fyv, F} v, for arbitrary vectors u and v. By applying (2.6) recur-
sively, these products can be computed using (2.3) and (2.4) in O(n) complexity and memory
requirement, because of our assumptions on A, B,C and D.

The SDA for large-scale NARESs is a competition between the convergence of the doubling
iteration and the exponential growth in the dimensions of Q;; and Pj;. From (2.5), (2.8) and
(2.9), we have

rank(Hy,) < rank(Qqx) < 28m, rank(G}) < rank(Py,) < 2FI. (2.16)
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Note that 2¥m and 21 are the numbers of columns in Q;; and Pj;, respectively. The success
of the SDA depends on the trade-off between the accuracy of the approximate solution and its
CPU-time and memory requirements, controlled by the compression and truncation of Q;; and
Pii, in Section 2.2. With the truncation and compression process, rank(Q;;) and rank(P;;) will
be much reduced even with high accuracy for the approximate solutions Hy and Gj.
From the convergence results in Theorem 1.1, as well as (2.8), (2.9) and (2.16), the fact that
X and Y are numerically low-ranked can be considered constructively. We next define what we
mean by being numerically low-ranked of X (and similarly for Y):
DEFINITION 2.1. Let X € C™*™.
(i) For a given numerical rank tolerance T > 0, the numerical rank of X with respect to T,
denoted by rank, X, is defined as the lowest rank of X € C™*"™ such that ||)A( - X <.
(i) X is said to be numerically low-ranked with respect to the numerical rank tolerance 7 > 0
if rank, (X) < n.
We first give a useful lemma which is simple but has not appeared in the literature.
LEMMA 2.1. For any A, B € R™™", if 0 < A < B, then || 4| < | B
Proof. Since 0 < A < B, we have 0 < AT < BT and then 0 < ATA < BTB. From the
Perron-Fronbenius Theorem, we have ||A|| = \/p(ATA) < \/p(BTB) = ||B|. O

2.2. Truncation and Compression of (;z and P;;. The truncation and compression
process described in this section is necessary when the convergence of the SDA is slow in compar-
ison with the exponential growth in the dimensions of the iterates Gy and Hy. In this situation,
the numerical rank of X will be high and we obviously cannot achieve high accuracy in the ap-
proximation Hjy of X by any method. We then have to compromise its accuracy for the sake
of less memory and CPU-time consumption. We should then either choose larger tolerances for
the truncation and compression process (¢ below), to control the growth in the iterates and
adjust them until the accuracy of the approximate solution is acceptable, or simply abandon the
truncation and compression process and accept whatever approximate solution obtained within
reasonable computing constraints.

We now propose a large-scale SDA with truncation error € (SDA_ls_¢). For a given sequence
of tolerances ¢ = {ej}i_, we first compute truncated initial matrices for the SDA Is_e. From
(2.2) we compute the QR decompositions

Q1o = éleq, Q20 = @2032(1, Py = 151031;” Py = 152032;)7

where @10, @20, 1510 and ﬁQo are orthogonal and Ri4, R4, Rip and Ry, are upper triangular.
Then we compute the SVD decompositions

R1,SoR], = (U, Uil (55 @ £5)[U30, Usol ', 15511 < eo;
Ry, ToRy, = Vo, VRITG @ TH) Vi, Vol . IITEI < eo;

where [U7),Ug] and [V,7,V§] (i = 1,2) are orthogonal, ¥f & X and I'j & I'§ are nonnegative
diagonal with %7 € R™0*™0 and T'f € Rlo*lo, By setting

Q1o = é510(]170: Q30 = @20(]50: Py = 1310‘/16’ Py = ﬁ20V2T0: (2.17)
we have the (truncated) initial matrices
T T T T T ‘l'T T T T ’TT
Fy = Fo, Ey=Eo, Hj=Qio¥0Q, Go=Pll'ola (2.18)
for the SDA_Is_e. Let

AHy = Hy — HT = Q1oU5,55U5,  Qly,  AGo = Go — GI = Py VETEVE P (2.19)



The truncation errors of the initial matrices can be estimated by
[AHo| = [|55]] < g0,  AGo| = TG < eo.
We repeat this process and suppose it holds at the k step that
T T T TT T T T ’TT
Hy = Q1% Q2 » k= Pl LR Py
Ef = B, + E[yB3y . F{ = F{_y + F,Fg, ;

where Q7 and Pjj are orthogonal with widths being my, and I (i = 1,2), respectively.

(2.20)

(2.21)

To estimate the (k4 1)th truncation error, from (2.10)—(2.15) as well as (2.21), we compute

9

T AT DT T T T 77 DT T\ — AT T
i+ X1Q3 PLIL(Ly, — Py HPLTT) ™' Py QTXF,
T T T 7T pT \—11T pT | 7T DT T
=Tk + (I, —TLPs, H{P,)”'TL P, Hf P}
and
T T I7T DT T°T T 77 pr T\ L T T pr
Fl,k+1 :FkaPka (Ilk _sz Hkplkrk> ’ F2,k+1 :Fk P2k§

T T T T T—r T T 1 T TT T T T ‘I'—r T
El,k+1 = Ekplk <Ilk - FkPQk HkPlk) kazk Qlkzka Ez,k+1 = Ek QQk'

From the QR decompositions

~ I S T ~ I S
Q70 FEQT) = Q5. Qul g 7] 15 BT Q3 = (05 Qm g 3] -

I Sy ~ I SQP]
k?

~ T
Pl EEP = PPl [o 32| o PR EE PR = (PR Pl [

we set
T

coely 305 6 L e 2T 26 -
OqukO ZE ORqu’ ORlpkO F}g 0R2pk

We next compute the SVDs

a - X7 0 - T
Ykl = [Ul,k—H Uf,k+1}{ %H e :|[U2,k+1 UsS i1l s
k41
| A 0

fkﬂ = [VlT,kH Vls,k+1] { 0+ } [V2T,k+1 V2€,Ic+1]T

Dt
with |35 || < erq1 and ||, ]| < ex41. To truncate, we compute
QI,kJrl = [QIlek]U{k«H € R XMt Qg,k+1 = [ng,QQk]U£k+1 € RM2X Mkt
Pl iy = [Pl PrelVigpiq € R x4 Py i1 = [Pog, Pog] Vi1 € R <t
Let
Hyyy = H + F{(I - H{G}) ' H{E}, Giy1=Gj + E[(I - GLH]) "G F}.
We define the local truncation errors of H;  ; and G} as

§Hyy1 = Hypy — Hiyq, 0GRy = Gl — Gri1-

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



From (2.26), we see that
1081l = [[[QFks QuilUF 4152108 1 Q50 Qel 7| = IZ5all < 0rs (230)
16kl = |[ [Pl PV s a D Vi [P Pl || = T3l < 1. (2.31)
Moreover, we define the global truncation errors of Hf,, and G7 ., by

AHk+1 Hk)-‘rl H/Z:—-‘rl’ AGk+1 Gk+1 GE-H? (232)

which will be estimated in Section 3.
The SDA Is_¢ for solving large-scale NARESs realizes the iterations in (1.5) with initial matrices

n (2.18), and the help of (2.3), (2.4), (2.21)-(2.27).

Algorithm 1 (SDA _Is_¢)

Input: AeRmxm B e RMXm2 O ¢ RX™ D e R"X" with B = B;B; and
C = C,05 being full low-ranked as in (2.1); suitable shift v as in (1.3);
truncation tolerances € = {e}¥_, and convergence tolerance . > 0.

Output:  Hf = Q];S1Q; and G} = PLITPy with Q) € R™<™i, PT e R"*k
orthogonal (z =1,2;j1 = 2,js = 1), approximating the solutlons X and Y
to the large-scale NARE (1.1) and its dual equation (1.6), respectively.

Initial matrices:

Set k = 0;

Compute Qio, Pio (i =1,2) in (2.2);

Compute QF,, PG (1 =1,2) in (2.17) with truncation tolerance eo;

Do until convergence:
Compute X7, I'] as in (2.22) and FY,,, EJ,,, (i =1,2) as in (2.23);
Orthogonalize F7 QT,, Ef' Q%,, EL Py, and Fy ' PJ, as in (2.24);
Compute Siyq and Liyq as in (2.25), and their SVDs as in (2.26);
Compute Q7 1, Py (i = 1,2) using the tolerance e;41 as in (2.27);
Compute k + k+ 1, d, = max{||dH]||, ||[dG]||} and r = [|R(H])||;
(An economic way for computing ||[dH] ||, ||dG}|| and |R(H])| can be
found in (4.1), (4.2) and (4.3) in Section 4.1.)
If dj, < e., Set k = k; Stop; End If;

End Do

2.3. SDA and Krylov Subspaces. There is an interesting relationship between the SDA
and Krylov subspaces. Define the Krylov subspaces

Ki(4,V) = { ZEZE%}AV, A2V, A1y} Ei ; 8;
From (1.4), (2.2)-(2.4) and (2.8), we see that
Qo = 29W, ' B1 C Ko(AS ', AT By), Q20 =Dy B2 C Ko(D; ", DT Ba);
Qu1 = [Qu0, FoQuo] € K1 (ATY, AT'By), Qa1 = [Qa0, By Q20] € K1 (DS, DS " By).

(We have abused notations, with V' C Ky (A, B) meaning span{V} C Ky (A, B).) Similarly, it is
easy to show that

Q1k Qlck(A YL AD'By), Qo CKi(DS T, DT By);
Py CKi(DSY, DSCY),  Pae CKi(AS T, AT Co).



8

In other words, the general SDA is closely related to approximating the solutions X and Y using
Krylov subspaces, with additional components diminishing quadratically. However, for problems
of moderate size n, Q;; and P;; become full-ranked after a few iterations.

The link between the SDA and the Krylov subspaces defined above is important in explaining
the fast convergence of the SDA. We used to believe the convergence of the SDA came from the
following inequalities:

[Hy, — Hi—1]| < | Feallll(Iny — Hy-1Gr-1) " Hi-1 | Be-1]l,
Gk = Grtll < 1Bx-1llll(Zn, = Gr1Hy—1) ™ Gl Fiall,
and the fact that ||Ex_1]|, || Fr—1]| = 0 quadratically, as k — co. This is consistent with numerical

results from examples associated with M in (1.2) which is barely a nonsingular M-matrix, where
the corresponding F, Fj, — 0 slowly but the overall convergence for Hy and G are much faster.

3. Truncation Error Estimates. In this section, we shall estimate the global truncation
errors defined in (2.32). For simplicity, we derive only the first order error bounds.
From Theorem 1.1, we have 0 < H, < X, 0 < Gi <Y, and

0< (I_Gkch)_l :I+Gka+(Gka)2+
STHYX+(YX)?2 4. =(I-YX)™!

and 0 < Fy, = (I, — HkY)S?Yk < S%k. By Lemma 2.1, we have

IH < 11X 1Gell < 1Y, (3.1)
and
I = GRH) T < [T =YX) M =81, [ Fell < 182 = 0. (3-2)
Similarly, from Theorem 1.1 and Lemma 2.1 we also have
(T = HeGo) 7 < (L= XY) 7Y = 85, | Bxll < B2 — 0. (3-3)
Denote
pie = maxc{]| B ||, 83" [1}, @ = max{|[X|. [Y[}, 8 =max{8.5a}. (3.4)

»

In the following we abuse the notation =" and ” = ”, ignoring the higher order terms.
Suppose that p(H;G}) < 1, [|AH|| and ||AGy|| are sufficiently small. From (2.32) we have the
first order approximation of (I — HfG})™!:

(I-HJGy)™' = [I—(Hy— AH) (G — AGy) ™
= [I — H.Gy, + AH,L.G, + H,AG), — AHkAGk]_l
= (I — Hka)fl - (I — Hka)il(AHka + HkAGk)(I — Hka)fl.

From (2.19) and (2.20), we have Hj = Hy — AHy, G = Gy — AGy with |AHp||, |AGo]| < eo.
Since Ef = Ey and Fj = Fyp, (2.28) implies
Hy=H] +F](I - H}G}) "HJE]
= Hy — AH,
+Fy [(I — HoGo)™" — (I — HoGo) ™ "(AHoGo + HoAGo)(I — HoGo)™"| (Hy — AHp)Eq
= Hy+ Fo(I — HyGo) *HoEy — AHy — Fo(I — HoGo) " AHEy
—Fyo(I — HyGo) Y (AHyGo + HoAG) (I — HoGo) ' HyEy
= H, — 6H,, (3.5)



where 0 H 1 is the first order truncation error given by
6H, = AHy+ Fo(I — HyGo) " AHoEy + Fy(I — HoGo) ™ "(AHoGo + HyAGo) (I — HyGo) ™' Hy Ey.

From (2.29), (2.32) and (3.5), it follows that AH, = Hy — H] = 6H; + 6H,. By (2.30) and
(3.1)—(3.4), we have

|AH| < ||ISHy | + [SH |
<1+ [[AHo|| + | Follll Eoll[[(I = HoGo) ™| AHo||
+ | Follll Eol 1 Holl (T — HoGo) I (|AHolll|Goll + [ Holl [ AGol)
< a1+ (L+poB + p3a®B2) | AHo || + pa® 82| AGy .
Similarly, we have
IAGH| < €1+ (1 + p3B + pga 52| AGo | + pa® 82| AHo| -
From (2.21), we have
F = Fg (I = H{G) ™ Fg = Fo(I — HJGg) ™' Fy
= Fy(I — HoGo) ' Fy — Fo(I — HoGo) H(AHGo + HyAGo)(I — HyGo) ' Fy
=F — AF,
where AFy = Fy(I — HoGo) Y (AHoGo + HoAGy)(I — HoGo) 1 Fy is the first order truncation
error and satisfies
[AFL] < Bl (I — HoGo) 2| AHo ||| Goll + | Holl | AGo]))
< ppa B (|| AH | + [|AGo]).
Similarly, we also have
|AE:| < pgas®(||AHo|| + [[AGo])).
Performing the (k 4 1)th step in the SDA lIs_e algorithm, we obtain
Hysr = Hf, + F{ (I - H{G}) "' H] Ef,
= Hy, — AHy, + (Fy — AFy)(I — H,Gy) ' (Hy, — AHy)(Ex — AEy,)
—(Fy — AFy)(I — HyGy) " (AHLGy, + HyAGy)(I — HyGy) ™' (Hy — AHg)(Ex — AEy)
= Hy, + Fo(I — HyGy) 'HyEy — AHy, — Fp(I — H,Gy) Y (HLAEL + AHLEY)
~AF(I — H,Gy) " HiEy — Fp(I — HyGy) Y (AHR Gy + Hy AGy) (I — HyGi) ' Hi By,
= Hyy1 — 0Hp i1,
where
6Hpy1 = AHy, + Fio(I — HyGp) (HyAE), + AHLE)) + AFy(I — HyGr) ™ HyEj,
+Fy(I — Hi,Gy,) " (AHRGy + HyAGy) (I — HyGy) ™' HyEy,
is the first order truncation error. Then (2.30)—(2.32) and (3.1)—(3.4) imply

IAH 1| < 10Hp 4[| + 10 Hpsa |
< 0Hpsa || + |AH|| + 11(I — HeGr) " IF N He | AE: | + || Bell | AHg|)
+[|(I = HiGr) " I He ||| Be [ AFy |
I E M ERNHR N — HeGr) P ([AHRGell + [ He [ | AGK]
< eppr + (L + ppB + pia®B?) || AHL |
+0ra” B2| AGk|| + praB(| AEL|| + || AF]). (3.6)
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Similarly, we also have
[AG k41| < errr+ (1+ i + pia® B | AGK]| + pia® B2 | AH || + praB (| AF]| + [|AE]]). (3.7)
From (2.21), it holds that

Fily = F{(I = HLGL) ' Ff = (Fy — AR (I — H{G}) " (Fy, — AFy)
= Fk(] — Hka)_le - Fk(I — Hka)_lAFk — AFL(I — Hka)_le
—Fk(I — Hka)il(AHka + HkAGk)(I — Hka)ile
= Fit1 — AFgqa,

where

AFy1 =Fy(I — HyGy) " AFy, + AF(I — HyGy) ™' Fy,
+ F(I — HyG) Y (AHLG, + HLAGE) (I — H,Gy) L Fy,

is the first order truncation error and satisfies

[AFg | < 20 Fxllll(1 = HyGr) " IIAF,| + | FRl? (1 — HiGr) P (JAHR G| + [ Hi[[[[AGK])
<201 B||AFy || + praf® (|| AH|| + [[AGK]). (3.8)

Similarly, we also have
IAE 1] < 2Bl AEk]| + piaf® (|AH|| + [ AGK). (3.9)

Assemble (3.6)—(3.9) in matrix form, we have

[AH k41| L+ piB + ppa®p? pra’ B praB  prafB| [[|AHg| Ek+1
[AGk1][] pa’p? L+ piB+pia®B? praB praB| | [AGk]| | ekt
|AF | < plap? pRa? 2008 0 | |AF 0
N piaf? piaf? 0 28] [IAEK 0
= Uy [| AHK|| [|AGK], |AFRL [AB T + [er+1, €x41,0,0] (3.10)
Substituting ¥y in (3.10) recursively, the error bound can be estimated by
Hﬁgkﬂ” ka1 [ i1 zk—i+1 ik+1
k+1 k—i+1 k+1
< i . .
aFen [ =2 | L0 |0 1] (310
[AEwall] "7 0 0

In the following theorem we claim that the first order forward error bounds of H}, GJ and
the first order truncation errors of F;] and Ej, which only depend on p, and the tolerance
e = {ertizo-

THEOREM 3.1. Let X and Y be the minimal nonnegative solutions of NARE (1.1) and its
dual equation (1.6), respectively. For given tolerances ¢ = {ex}¥_,, suppose {H] ,GT, FT, Ef}¥_,
is the sequence generated by the SDA_ls_e satisfying p(HG7,) <1 for all k. Then we have

k i
T T 1
IH = XI NG =Y <ent 5D |1+ [ +ms) | exi+ ik (3.12)

i=1 j=1
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and

k i
1
1EE = Fill, 1B — Bl < 5 S+ TIO+me—s) | eni (3.13)
i=1 j=1

for k=0,1,---k, where py, is given by (3.4) and ny, is defined by

me = Amax{p; B + pra’B%, praB, praB®, 2pkB}. (3.14)

Proof. For convenience, we let
~ 1
W = diag(1,1,0,0) + gmkee” = Jo + ]y,

where e = [1,1,1,1]T and 7 is given in (3.14). Then (3.11) can be simplified to

|AHp 1] i (i1 Ek—it1 Ekt1
[AGk1 || Ek— z+1 Ek+1
< v + . 3.15
jan)| =2 | 1T A (3.15)
[AEk4a| 0 0
It is easily seen that
=Ty, Ji=J1, JoJiJo < T, JiJoJi < Ji. (3.16)

Let C(J§, J}) denote the product of s’s Jy and t’s J; in any order. From (3.16), it follows that

Jh ift>1
C(Js,Jh < ’ =7 3.17
g 1){J0. if t = 0. (3.17)
By (3.17), the products in (3.15) can be bounded by
i—1 N N N A
%) =% Ui < Jo+ > > Doy My | 1 (3.18)

t=1 \k>2r1>->ri>k—it+l

Post-multiplying (3.18) by [er_i+1,&k—i+1,0,0] T and substituting the result into (3.15), we obtain
the first order upper bounds

k41 i
1
[AHg 1] < epqr + Z 1+ > Z Z ' Mry = Ny | | Ek—it1
i=1 t=1 k>r1>-->ri >k—i+1
s i1
=€k+1 + 5 Z 1+ H(l +—j) | Er—it1, (3.19)
i=1 7=0
s i—1
ARl <53 |1 +j[[0<1 T (3.20)

which also hold for |[AGj41]|| and ||AEk41||, respectively. By Theorem 1.1 and (3.4), we have
|Hy — X|| < gl and |Gy — Y] < gRa. Since |H] — X|| < [Hf — Hyll + | Hy — X| and
|G} =Y < ||G}, — G|l + |G — Y|, it follows from (3.19) and (3.20), by setting k < k + 1, we
prove the assertions in (3.12) and (3.13). O

REMARK 3.1.
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(a) To obtain an approzimate solution HI from {Q7;, %7, Q7 } generated by the SDA ls e
algorithm will be the most expensive step Specifically, we need a post process for the com-
putation of Hf = Q;X7Q7 T—T which require O(n?) flops and n? memory. Furthermore,
the computed HY is no longer nonnegative. If a nonnegative solution is required, it is
suggested to set HTJr (HE +|HL[)/2. Since X > 0, it is easily seen that the forward

error of HI ", HHT"' X||, can be estimated by the upper bound of (3.12) in Theorem 3.1.
(b) For k = k in (3.12), we see that the coefficients ¢; = 1 + szl( + mg—;) of i are

decreasing, for i = 1,...,k. It is reasonable to choose the tolerance sequence {e;}*_| as
an increasing sequence. However, in general, it is hard to estimate those coefficients of €;
beforehand. Therefore, in practice, we suggest to choose a constant sequence of tolerances
{e-}F | (e.g., e, =1073,107%,...,10715). From our numerical experiments, the forward
errors of Hi and G} almost have the same order of the given truncation tolerance ;.

4. Computational Issues.

4.1. Residual and Convergence Control. In the SDA _Is_e, we should compute residuals
and differences of iterates carefully in O(n) complexity.
From (3.12), consider the difference of successive iterates

N
T — T T T T T T T
dHpy = Hp o — H = Q1 p 15541 Q2 k1 — Qa2

szle = Y1k (311 @ B) Yk,

= [QI,kJrl | Q1] (S ®27)
2%

where Qi, Qi1 (i = 1,2) are orthogonal. We compute |[dH]_ || efficiently as follows.
ldH 4l = | R (SF40 © SHRE |, (4.1)

where Y7, = WlhkR?k and Yo, = W. kR are the QR decompositions of Y7, and Yag, respectively.
Similarly, we have

T T T T
1dGE I = 1R, (TR © TR R, |l (4.2)
with the QR decompositions [P, Pf,] = W, R, and [P],,,, P3| = W5 RJ,.
From the NARE (1.1) we have the

T T
R(H]) = Q7,5% (@5t CQLL) S1QE. — AQTSTQE, — QTuSiQE D+ BiB]

T T
o SHQECQIITE —Sp 0 ][ Q%
=[Qx | AQT | B] m 0 0 1 1Q3D
0 0 Iy By
= 71,02y,
Then the residual and the relative residual,
. Tk
Y 70z 70 N A — _ (43)
: [HLCHE| + [[HL D + [AH || + || B]|
can be efficiently calculated by
.
IR(HD)| = IRk Ray ||, 1 HECHE|| = ||25(Q5, CQTEL
IAHT|| = BTN, IHID| = [IZERE |, Bl = |Rn Ry,
with the QR decompositions Z;;, = W, RY,., AQT, = WiRE, DTQ% = Rﬁ and B; = WibRbi,

fori=1,2.
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4.2. Operation and Memory Counts. We shall assume that cyn flops (n = max{n,ns})

are required in the solution of Mz=bor M z=b (with M = A,, be R" or M = D,, b e R").
The operation count for the QR decomposition of an n x r matrix is 4r2n flops [11, p. 250]. A
start up cost of (¢1 + c2 + ¢3)n flops is made up of the following:
(1) set up Ay, = A+~I,, and D, = D +~I,,, requiring nq + ny < 2n flops; we shall denote
this part of the count by cyn flops, with ¢; = 2;
(2) set up Qip and Pjp (i = 1,2) as in (2.2) with the help of (2.3), requiring con flops with
c2 =2 [(cy + 1)(m—+1) + 2lm + m? + ?]; and
(3) set up Q7 and P (i =1,2) as in (2.17), requiring c3n flops with c3 = 12(1% + m?).
The operation and memory counts of Algorithm 1 (SDA_ls_¢) for the kth iteration are sum-
marized in Table 4.1 below. In the third column, the number of variables is recorded. Only
O(n) operations or memory requirement are included. Note that most of the work is done in the
computation of F} Q7,, FTTP{k, E7 Pl and E,:Tng in (2.23) have to be calculated recursively,
as EJ and F] in (2.21) are not available explicitly.

TABLE 4.1
Operation and memory counts for the kth iteration in Algorithm 1 (SDA_ls_¢)

Computation Flops Memory
fl; f‘g 4lpmyn -
()T T T k —J k_l
FL Q5 Fi TP, [24(ey + 451 279)] (i +man 2 Y4
T DT T T k —J
E[ P, E[TQ3, {Qk(cv + 423‘:1 2 ij)] (Ik + mup)n 2n Z] 1My
Fiiv1 BT 4lmgn 2n(myg + )
Orthogonalize F Q7,,
F{T Py, ELP, 2[6(mj; + 1) + mu + lxln -
and E,ZT ok
Yit1, Tiogr, X, T Ol +mi) kg1 + migr
Qf ey Plpa (1=1,2) 8(lklk+1 + mypmpq1)n 2n(lkt1 + myy1)
Total flops & memory {2’“"’1 (cnY +2 Z?Zl 279(1; + mj)> (lk +mg) 2n ZkH(Z +m;)
—|—8(lkmk + lklk—i-l + mkmk_,_l)
+12(m3 +12) + 2(mi + U) | n

With [ and my controlled by the compression and truncation in Section 2.2, the operation
count will be dominated by the calculation of F7Q7,, Fy Py, Ef P, and E]'QZ,. In our
numerical examples in Section 5, the flop count near the end of Algorithm 1 dominates, with the
work involved in one iteration approximately doubled that of the previous one. This corresponds
to the 281 factor in the total flop count.

5. Numerical Examples. We constructed the examples as in [23], A and D are rank one
updates of nonsingular diagonal matrices and B and C' are rank one, generated randomly. Three
examples of sizes n = n; = ny = 1000, 10000, 100000 were generated, all satisfying the correspond-
ing solvability conditions. The numerical results in Examples 5.1-5.3 (n = 1000, 10000, 100000)
were computed using MATLAB [28] Version R2012b, on an iMac with a 2.97GHz Intel Core i7
processor and 8SGB RAM, with machine accuracy eps = 2.22 x 10716

In Algorithm 1, the stopping criterion is dy = max{||dH]||,||dGL||} < e, where ||[dH]|| =
|H — H]_,|| and ||dG}|| = |G}, — G}_|| and convergence tolerance ¢.; please also consult the
convergence results in Theorem 3.1. All numerical experiments were considered with a constant
truncation tolerance e, in each iteration, i.e., e; = ¢, for i =0,1,..., k.
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In Example 5.1 with the smallest n = 1000, we apply the SDA (1.5) to compute the near-exact
solutions X and Y of NARE (1.1) and its dual equation (1.6). These were then used to illustrate
the results for rank,(X), rank,(Y") in Table 5.1 and the forward errors in Tables 5.2-5.3. Effects
of different tolerances e, (or €.) are also presented in Table 5.2 (or in Table 5.3).

In Examples 5.2-5.3, the iterations in the SDA _ls_e are reported for a corresponding set of
tolerances . and e,. In Tables 5.4-5.5 below, || H]||, |GLll; dk, Tk, Tk, Mk, Ik, 0t and t; are
displayed. Note that 6t; is the execution time for the ith iteration and the sub-total execution
time t;, = Zle 0t;.

EXAMPLE 5.1. (n = 1000) In this example, we have performed three tests.

Test 1: We first apply the SDA (1.5) with initial (1.4) to compute the near-exact solutions
X and Y of NARE (1.1) and its dual equation (1.6). The SDA converges after 12 iterations and
the norms (|| X||, |Y|]), residuals (||R(X)||, |P(Y)]||) are estimated, respectively, as

| X = 2.5748 x 107, [|R(X)|| = 5.9875 x 10717,
V]| = 2.6545 x 10~1, || D(Y)|| = 5.6928 x 10717,

Table 5.1 shows the rank,(X) and rank,(Y) with 7 = 1073,1072,1077,107°,10~*!,10~13 and
10715, Note that rank,(X) and rank,(Y) are much smaller than the matrix size n = 1000.

TABLE 5.1
The numerical ranks of X and Y with respect to various 7.

T 107 100° 1077 107° 107! 10713 101
rank, (X) | 4 7 11 14 17 21 24
rank,(Y) | 4 § 11 14 18 21 24

Test 2: In the test, we set convergence tolerance ¢, = 10~® and employ Algorithm 1 with
various truncation tolerances e,. Suppose that Algorithm 1 converges after k iterations, i.e.,
dy < €. = 1078, To determinate whether the computed solutions, H7 and G7, are nonnegative,
we denote

HI = (HI —|HI|)/2, GI = (Gi—|GI])/2.

From the results of Test 1, we have near-exact solutions X and Y. Hence, we can compute the
forward errors, |H] — X|| and |G} — Y| in the example. The numerical results are shown in
Table 5.2.

Table 5.2 shows that Algorithm 1 converges within 12 iterations (in 2.1 ~ 8.4 seconds) for
various tolerances ¢, and the residual rj, and forward errors, || Hf — X|| and |G — Y|, are heavily
dependent on the chosen truncation tolerances ;. Furthermore, the computed solutions, H; and
G% are nonnegative matrices when e, = 107,107, 10712,

Test 3: In the test, we set truncation tolerance £, = 1072 and employ Algorithm 1 with
various convergence tolerances .. The numerical results are shown in Table 5.3.

Table 5.3 shows that Algorithm 1 converges within 8 ~ 13 iterations for various tolerances e,
and the residual and forward errors achieve the accuracy of O(e;) for e, = 1077,10711, 10712,

EXAMPLE 5.2. (n = 10000) In this example, we set the truncation tolerance £, = 10712 and
convergence tolerance £, = 1078, In Table 5.4, the residual (or relative residual) achieves the
accuracy of O(e,) within 12 iterations, in 140 seconds (execution time).

EXAMPLE 5.3. (n = 100000) In this example, we set the truncation tolerance e, = 1072
and convergence tolerance £, = 10~%. In Table 5.5, the residual (or relative residual) achieves the
accuracy of O(e,) within 13 iterations, in 4000 seconds (execution time).



TABLE 5.2

Numerical results with various truncation tolerances €.

€r | 1073 107 10~ 1015
k 12 12 12 12
mg 3 10 17 24
Iz 3 11 17 24
[H —H || [ 1.208c—13 6.706c—13 6.844c—13 6.844c—13
IGE —GI_|| | 1.767e~12  9.638e—12 9.640e—12 9.640e—12
TE 1.134e—03 7.820e—08 1.490e—11 4.245e—15
HH,—? —X|| 1.494e—03 1.473e—07 1.843e—11 7.091e—15
|GE —Y|| | 2174e—03 8.537e—08 1.456e—11 7.69le—15
|HT | 1.606e—12 0 0 0
G || 9.034e—12 0 0 0
t 2.104 4.449 6.471 8.377
TABLE 5.3
Numerical results with various truncation tolerances ec.
€c 1073 1077 10~ 10710
k 8 11 12 13
my 17 19 19 19
I 17 19 19 19
[HT —HT | | 1.25le—04 7.131e—09 6.84de—13 1.918¢—16
IGT — GT_|| | 4.982e—04 9.899e—08 9.640e—12 1.311e—16
TE 1.163e—07 8.310e—13 8.310e—13 8.310e—13
JHT —X[| | 1.751e—05 1.094e—12 1.077e—12 1.077e—12
|GT — Y|l | 1.417e—04 9.765e—12 1.316e—12 1.316e—12
[HT || 0 0 0 0
G || 0 0 0 0
tr 0.3517 3.227 6.937 12.93

6. Conclusions. We have proposed a structure-preserving doubling algorithm for the large-
scale nonsymmetric algebraic Riccati equation (1.1), the SDA_ls_e, with A and D being large and
sparse(-like), and B and C being low-ranked. We apply the Sherman-Morrison-Woodbury formula
when appropriate and do not form Ej and Fj (the iterates for F and F) explicitly. For well-
behaved NARESs, low-ranked approximations to the solutions X and Y can be obtained efficiently.
The convergence of the SDA_ls_¢ is quadratic, ignoring the compression and truncation of @; x
and P; i, as shown in [17, 25]. The computational complexity and memory requirement are both
O(n), provided that the growth in the dimensions of @; and P, is controlled. In the error
analysis part, we gave a first order forward error bound for the computed approximate solution
in Theorem 3.1. Notice that large-scale NARESs, arisen naturally from transport theory [22, 23],
have not been investigated before. Our technique can be applied when A and D are large and
sparse(-like), or are products (inverses) of such matrices. The feasibility of the SDA_ls_e depends
on whether A='u, A~ Tu, D~ v and D~ Tv can be formed efficiently, for arbitrary vectors u and
.

Acknowledgements. The first author was supported by the NSFC (No.11101080) and the
SRFDP (No0.20110092120023), China. Parts of this project were completed while the first author
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TABLE 5.4

n = 10000, e, = 10712, ¢, = 10~8.

k| IH gl lIGE d T Tk mi L, | Ot te
1 | 0.24203 0.23622 | 4.245e—2 1.110e—02 2.513e—02 | 2 2 | 1.2e—2 1.2e—2
2 | 0.25704 0.25051 | 2.643e—2 3.201e—03 7.165¢—03 | 4 4 | 4.5e—2 5.7e—2
3 | 0.26182 0.25500 | 1.388e¢—2 7.928e—04 1.771e—03 | 8 8 | 3.1e—2 8.8e—2
4 | 0.26294 0.25606 | 6.634e—3 1.888e—04 4.216e—04 | 10 10 | 1.1e—1 1.9e—1
5 | 0.26316 0.25627 | 3.166e—3 4.494e—05 1.003e—04 | 12 12 | 2.6e—1 4.6e—1
6 | 0.26320 0.25631 | 1.473e—3 9.990e—06 2.231e—05 | 14 14 | 6.3e—1 1.1e40
7 | 0.26321 0.25631 | 6.167e—4 1.904e—06 4.252e—06 | 15 15 | 1.5e+0 2.6e+0
8 | 0.26321 0.25632 | 2.365e—4 3.021e—07 6.746e—07 | 17 17 | 3.2e+0 5.8e+40
9 | 0.26321 0.25632 | 6.564e—5 3.417e—08 7.631e—08 | 18 18 | 7.5e+0 1.3e+1
10 | 0.26321 0.25632 | 1.076e—5 1.295¢—09 2.891e—09 | 19 19 | 1.6e+1 3.0e+1
11 | 0.26321 0.25632 | 6.023e—7 3.942¢e—12 8.803e—12 | 20 20 | 3.4e+1 6.4e+1
12 | 0.26321 0.25632 | 3.142e—9 1.247e—12 2.784e—12 | 20 20 | 7.3e+1 1.4e+2
TABLE 5.5
n = 100000, e, = 10712, ¢, = 10~8.
k| IHEEL NGE d I T my e | Ot t
1 ] 0.23862 0.23907 | 4.180e—02 1.088e¢—02 2.497e—02 | 2 2 | 4.5e—2 4.5e—2
2 | 0.25331 0.25372 | 2.587e—02 3.142e—03 7.130e—03 | 4 4 | 1.se—1 1.9e—1
3 | 0.25797 0.25836 | 1.378¢—02 8.036e—04 1.820e—03 | 8 8 | 42¢e—1 6.2e—1
4 | 0.25910 0.25948 | 6.832e—03 1.969e—04 4.457¢—04 | 10 10 | 1.7e+0 2.3e+0
5 1 0.25933 0.25972 | 3.309¢—03 4.709e—05 1.066e—04 | 12 12 | 4.1e+0 6.4e+0
6 | 0.25938 0.25976 | 1.567e—03 1.091e—05 2.471e—05 | 14 14 | 9.7e+0 1.6e+1
7 1 0.25939 0.25977 | 7.140e—04 2.394e—06 5.420e—06 | 15 15 | 2.2e+1 3.8e+1
8 | 0.25939 0.25977 | 2.961e—04 4.475e—07 1.013e—06 | 17 17 | 4.7e+1 8.6e+1
9 | 0.25939 0.25977 | 9.725e—05 5.627e—08 1.274e—07 | 18 18 | 1.1e4+2 1.9e+2
10 | 0.25939 0.25977 | 1.896e—05 2.937e—09 6.648¢—09 | 20 20 | 2.3e+2 4.2e+2
11 | 0.25939 0.25977 | 1.276e—06 2.340e—11 5.297e—11 | 21 21 | 5.0e+2 9.2e+2
12 | 0.25939 0.25977 | 1.146e—08 1.181e—12 2.672e—12 | 21 21 | 1.0e+3 2.0e+3
13 | 0.25939 0.25977 | 1.662e—12 1.181e—12 2.672¢—12 | 21 21 | 2.1e+3 4.0e+3

visited Monash University and when the second author visited the CMMSC and the NCTS at
the National Chiao Tung University, and we would like to acknowledge the support from these
Universities. The third and the fourth authors would like to acknowledge the support from the
National Science Council and the National Centre for Theoretical Sciences in Taiwan. The fourth
author also likes to thank the CMMSC and the ST Yau Centre at the National Chiao Tung
University for their support.

Last but not least, we would like to thank the referees for their valuable comments. We also
would like to thank Mr. Chang-Yi Weng for his valuable suggestions on the beginning version.

REFERENCES

[1] Z.-Z. BAI, Y.-H. GAO AND L.-Z. LU. Fast iterative schemes for nonsymmetric algebraic Riccati equations arising
from transport theory, SIAM J. Sci. Comput., 30 (2008) 804-818.

[2] D.s. BERNSTEIN AND W.M. HADDAD. LQG control with an Hs, performance bound: a Riccati equation ap-
proach, IEEE Trans. Automat. Control, 34 (1989) 293-305.

[3] D.A. BINI, B. IAMMAZZO AND F. POLONI. A fast Newtons method for a nonsymmetric algebraic Riccati equation,



17

SIAM J. Matriz Anal. Appl., 30 (2008) 276-290.

D.A. BINI, B. MEINI AND F. POLONI. Transforming algebraic Riccati equations into unilateral quadratic matrix
equations, Numer. Math., 116 (2010) 553-578.

C.-Y. CHIANG, E.K.-W. CHU, C.-H. GUO, T.-M. HUANG, W.-W. LIN AND S.-F. XU. Convergence analysis of the
doubling algorithm for several nonlinear matrix equations in the critical case, SIAM J. Matrz Anal.
Appl., 31 (2009) 227-247.

E.K.-W. CHU, H.-Y. FAN AND W.-W. LIN. A structure-preserving doubling algorithm for continuous-time alge-
braic Riccati equations, Linear Alg. Appl., 396 (2005) 55-80.

E.K.-W. CHU, H.-Y. FAN, W.-W. LIN AND C.-S. WANG. A structure-preserving doubling algorithm for periodic
discrete-time algebraic Riccati equations, Internat. J. Control, 77 (2004) 767-788.

E.K.-W. CHU, T.M. HUANG, W.-W. LIN AND C.-T. WU. Palindromic eigenvalue problems: a brief survey, Tai-
wanese J. Math., 14 (2010) 743-779.

B. DE MOOR AND J. DAVID. Total linear least squares and the algebraic Riccati equations, Systems Control
Lett., 18 (1992) 329-337.

I. GOHBERG AND M.A. KAASHOEK. An inverse spectral problem for rational matrix functions and minimal
divisibility, Integral Equations Operator Theory, 10 (1987) 437-465.

G.H. GOLUB AND C.F. VAN LOAN. Matriz Computations, 2nd Ed., Johns Hopkins University Press, Baltimore,
MD, 1989.

C.-H. GUO. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices, SIAM
J. Matriz Anal. Appl., 23 (2001) 225-242.

C.-H. GUO. A new class of nonsymmetric algebraic Riccati equations, Linear Algebra Appl., 426 (2007)
636-649.

C.-H. GUO AND N.J. HIGHAM. Iterative solution of a nonsymmetric algebraic Riccati equation, STAM J. Matriz
Anal. Appl., 29 (2007) 396-412.

C.-H. GUO AND P. LANCASTER. Analysis and modification of Newton’s method for algebraic Riccati equations,
Math. Comp., 67 (1998) 1089-1105.

C.-H. GUO AND W.-W. LIN. Convergence rates of some iterative methods for nonsymmetric algebraic Riccati
equations arising in transport theory, Linear Algebra Appl., 432 (2010) 283-291.

X.-X. GUO, W.-W. LIN AND S.-F. XU. A structure-preserving doubling algorithm for nonsymmetric algebraic
Riccati equations, Numer. Math., 103 (2006) 393-412.

D. HINRICHSEN, B. KELB AND A. LINNEMANN. An algorithm for the computation of the structured complex
stability radius, Automatica, 25 (1989) 771-775.

J. JUANG. Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl.,
230 (1995) 89-100.

P. LANCASTER AND L. RODMAN. Solutions of the continuous and discrete-time algebraic Riccati equations: a
review, in The Riccati Equations, S. Bittanti, A.J. Lamb and J.C. Willems eds., Springer-Verlag, Berlin,
1991.

P. LANCASTER AND L. RODMAN. Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.

T. LI, E.K.-W. CHU, J. JUANG AND W.-W. LIN. Solution of a nonsymmetric algebraic Riccati equation from a
two-dimensional transport model, Lin. Alg. Applic., 434 (2011) 201-214.

T. LI, E.K.-W. CHU, J. JUANG AND W.-W. LIN. Solution of a nonsymmetric algebraic Riccati equation from a
one-dimensional multi-state transport model, IMA J. Numer. Anal., 31 (2011) 1453-1467.

T. LI, E.K.-W. CHU, W.-W. LIN AND C.-Y. WENG. Solving large-scale continuous-time algebraic Riccati equations
by doubling, J. Comput. Appl. Math., 237(1) (2013) 373-383.

W.-W. LIN AND S.-F. XU. Convergence analysis of structure-preserving doubling algorithms for Riccati-type
matrix equations. SIAM J. Matriz Anal. Appl., 28 (2008) 26-39.

Y. LIN, L. BAO AND Y. WEL. A modified Newton method for solving non-symmetric algebraic Riccati equations
arising in transport theory. IMA J. Numer. Anal., 29 (2008) 215-224.

L.-Z. LU. Newton iterations for a non-symmetric algebraic Riccati equation, Numer. Linear Algebra Appl.,
12 (2005) 191-200.

] MATHWORKS. MATLAB User’s Guide, 2010.

V. MEHRMANN. The Autonomous Linear Quadratic Control Problem, Lecture Notes in Control and Informa-
tion Sciences 163, Springer-Verlag, 1991.

V. MEHRMANN AND H. XU. Explicit solutions for a Riccati equations from transport theory, SIAM J. Matriz
Anal. Appl., 30 (2008) 1339-1357.

W.-G. WANG, W.-C. WANG AND R.-C. LI. Alternating-directional doubling algorithm for M-matrix algebraic
Riccati equations, SIAM. J. Matriz Anal. Appl., 33 (2012) 170-194.

D. WILLIAMS. A potential-theoretical note on the quadratic Wiener-Hopf equation for Q-matrices, in Seminar
on Probability X VI, Lecture Notes in Mathematics 920, pp. 91-94, Springer-Verlag, Berlin, 1982.



