
SOLVING LARGE-SCALE NONSYMMETRIC ALGEBRAIC RICCATI
EQUATIONS BY DOUBLING

TIEXIANG LI∗, ERIC KING-WAH CHU† , YUEH-CHENG KUO‡ , AND WEN-WEI LIN§

Abstract. We consider the solution of the large-scale nonsymmetric algebraic Riccati equation XCX −
XD − AX + B = 0, with M ≡ [D,−C;−B,A] ∈ R(n1+n2)×(n1+n2) being a nonsingular M-matrix. In addition,
A and D are sparse-like, with the products A−1u, A−>u, D−1v and D−>v computable in O(n) complexity
(with n = max{n1, n2}), for some vectors u and v, and B,C are low-ranked. The structure-preserving doubling
algorithm by Guo, Lin and Xu (2006) is adapted, with the appropriate applications of the Sherman-Morrison-
Woodbury formula and the sparse-plus-low-rank representations of various iterates. The resulting large-scale
doubling algorithm has an O(n) computational complexity and memory requirement per iteration and converges
essentially quadratically. A detailed error analysis, on the effects of truncation of iterates with an explicit forward
error bound for the approximate solution from the SDA, and some numerical results will be presented.
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1. Introduction. Consider the nonsymmetric algebraic Riccati equation (NARE)

R(X) ≡ XCX −XD −AX +B = 0, (1.1)

where A, B, C and D are real n1×n1, n1×n2, n2×n1 and n2×n2 matrices, respectively. From
the solvability conditions in [12, 13], we assume the matrix

M =

[
D −C
−B A

]
∈ R(n1+n2)×(n1+n2) (1.2)

is a nonsingular M-matrix, i.e., M has nonpositive off-diagonal entries and all elements of M−1

are nonnegative. In this paper, we are interested in developing an efficient algorithm for solving
the minimal nonnegative solution X of NAREs in (1.1).

The structure-preserving doubling algorithm (SDA) in [17] is first proposed for solving the
NARE (1.1) with quadratical convergence. Then in [5], more general convergence results were
given, especially for the critical case. Later in [4], Bini, Meini, and Poloni developed a doubling
algorithm called SDA ss, which has shown efficient improvements over SDA in some of numerical
tests, but it can happen that sometimes SDA ss runs slower than SDA. Recently in [31], the
alternating-directional doubling algorithm (ADDA) has been developed by Wang, Wang and Li
to improve the convergence of the SDA dramatically. In practice, ADDA is always faster than
SDA and SDA ss, however, it may encounter overflow in Fk and Ek before Hk and Gk converge
with a desired accuracy, and the scaling technique in [31] is not suitable for the large scale case
which we will study.

We state the SDA for solving (1.1) as follows. Choose suitable parameter γ such that

γ ≥ γ0 ≡ max

{
max

1≤i≤n1

aii, max
1≤i≤n2

dii

}
, (1.3)

∗Department of Mathematics, Southeast University, Nanjing 211189, People’s Republic of China;
txli@seu.edu.cn (Corresponding Author)
†School of Mathematical Sciences, Building 28, Monash University 3800, Australia; eric.chu@monash.edu
‡Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan;

yckuo@nuk.edu.tw
§Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan;

wwlin@math.nctu.edu.tw

1



2

where aii and dii are the diagonal entries of A and D, respectively. Compute

F0 = In1 − 2γW−1
γ , E0 = In2 − 2γV −1

γ ,
H0 = 2γW−1

γ BD−1
γ , G0 = 2γD−1

γ CW−1
γ

(1.4)

with Aγ ≡ A + γIn1 , Dγ ≡ D + γIn2 , Wγ ≡ Aγ − BD−1
γ C, Vγ ≡ Dγ − CA−1

γ B. The SDA [17]
has the form (for k ≥ 0)

Fk+1 = Fk(In1
−HkGk)−1Fk, Ek+1 = Ek(In2

−GkHk)−1Ek,
Hk+1 = Hk + Fk(In1

−HkGk)−1HkEk, Gk+1 = Gk + Ek(In2
−GkHk)−1GkFk,

(1.5)

where Fk ∈ Rn1×n1 , Ek ∈ Rn2×n2 , Hk ∈ Rn1×n2 and Gk ∈ Rn2×n1 .
For A = [aij ], B = [bij ] ∈ Rm×n, we write A ≥ B (A > B) if aij ≥ bij (aij > bij) for all

i, j. A matrix A is called positive (nonnegative) if aij > 0 (aij > 0). We denote |A| = [|aij |] and
‖A‖ := ‖A‖2 the 2-norm of A.

Let

D(Y ) ≡ Y BY − Y A−DY + C = 0 (1.6)

be the dual equation of NARE (1.1). The following convergence theory for (1.5) is originally
given in [17] and improved in [5].

Theorem 1.1. Let M in (1.2) be a nonsingular M-matrix. Then the NARE (1.1) and its
dual equation (1.6) have minimal nonnegative solutions X ≥ 0 and Y ≥ 0, respectively. Moreover
S = A − BY and R = D − CX are nonsingular M-matrices. Let Sγ = (S + γIn1

)−1(S − γIn1
)

and Rγ = (R + γIn2
)−1(R − γIn2

). Then the sequences {Fk}, {Ek}, {Hk} and {Gk} generated
by the SDA (1.5) are well-defined, and for all k ≥ 0, we have

(a) E0, F0 ≤ 0 and Fk = (In1
−HkY )S2k

γ ≥ 0, Ek = (In2
−GkX)R2k

γ ≥ 0;
(b) I −GkHk and I −HkGk are nonsingular M-matrices;

(c) 0 ≤ Hk ≤ Hk+1 ≤ X and 0 ≤ X −Hk = (In1 −HkY )S2k

γ XR
2k

γ ≤ S2k

γ XR
2k

γ ;

(d) 0 ≤ Gk ≤ Gk+1 ≤ Y and 0 ≤ Y −Gk = (In2
−GkX)R2k

γ Y S
2k

γ ≤ R2k

γ Y S
2k

γ ;

(e) Sγ , Rγ ≤ 0, the spectral radii ρ(Sγ), ρ(Rγ) < 1, and S2k

γ , R
2k

γ → 0 as k →∞;
(f) In1

−XY and In2
− Y X are nonsingular M-matrices.

Motivated by the low-ranked cases from the applications in transport theory [19, 22, 23], in
this paper we further assume that n1 and n2 are large, A and D are sparse-like (with the products
A−1u, A−>u, D−1v and D−>v computable in O(n) complexity, where n = max{n1, n2}, for some
vectors u and v), and B and C are of low-ranked (m and l, respectively, with m, l � n1, n2).
In [19, 22, 23], A and D are low-ranked updates of nonsingular diagonal matrices, which are
nonsingular but not sparse. We shall adapt the SDA [17] to solve the NARE (1.1), resulting in a
large-scale doubling algorithm (SDA ls ε) with an O(n) computational complexity and memory
requirement per iteration. Note that the orthodox SDA in [17] has a computational complexity
of O(n3).

More generally, algebraic Riccati equations arise in many important applications, including
the total least squares problems with or without symmetric constraints [9], the spectral fac-
torizations of rational matrix functions [10], the linear and nonlinear optimal controls [2], the
contractive rational matrix functions [20], the structured complex stability radius [18], transport
theory [19, 22, 23], the Wiener-Hopf factorization of Markov chains [32], and the optimal solutions
of linear differential systems [21]. Symmetric algebraic Riccati equations have been the topic of
extensive research, and the theory, applications and numerical solutions of these equations are
the subject of [5]–[8] as well as the monographs [21, 29]. The minimal positive solution to the
NARE (1.1), for medium size problems without the sparseness and low-ranked assumptions, has
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been studied recently by several authors, employing functional iterations, Newton’s method and
the structure-preserving algorithm; see [1, 3, 4], [12]–[17], [22, 23, 26, 27, 30, 31] and the refer-
ences therein. Evidently, the applications associated with and the numerical solution to NAREs
have attracted much attention in the past decade but this paper is the first on general large-scale
NAREs.

Main Contribuations. Apart from being the first paper on the numerical solution to gen-
eral large-scale NAREs, we shall formalize the discussion on the numerical rank of the solution X,
showing constructively when X is numerically low-ranked. We adapt the well-known structure-
preserving doubling method efficiently for large-scale NAREs. Then we show how the exponential
growth in the rank of the approximate solution is controlled by compression and truncation. A
first order error estimate will show that the difference between the approximate solution by the
SDA with small truncation and the exact solution has the same order as the truncation without
affecting the convergence of the SDA.

2. Large-Scale Doubling Algorithm. Borrowing from [24], we shall apply the Sherman-
Morrison-Woodbury formula (SMWF) in order to avoid the inversion of large or unstructured
matrices, and use sparse-plus-low-ranked matrices to represent iterates when appropriate. Also,
some matrix operators are computed recursively, to preserve the corresponding sparsity or low-
ranked structures, instead of forming them explicitly. If necessary, we compress and truncate
fast growing components in the iterates, to trade off the negligible amount of accuracy for better
efficiency. Together with the careful organization of convergence control in the algorithm, we
obtain an O(n) computational complexity and memory requirement per iteration.

2.1. Large-Scale SDA. We assumeB ∈ Rn1×n2 and C ∈ Rn2×n1 in (1.1) have, respectively,
the full low-ranked decompositions

B = B1B
>
2 , C = C1C

>
2 , (2.1)

where B1 ∈ Rn1×m, B2 ∈ Rn2×m, C1 ∈ Rn2×`, C2 ∈ Rn1×` with m, l � n ≡ max{n1, n2}.
We first state a basic large-scale SDA, and then propose a practical large-scale SDA later in
Section 2.2.

For the initial matrices in (1.4), we have F0 = In1
− 2γW−1

γ , E0 = In2
− 2γV −1

γ , H0 =

Q10Σ0Q
>
20, and G0 = P10Γ0P

>
20, where

Q10 ≡ 2γW−1
γ B1, Q20 ≡ D−>γ B2, Σ0 ≡ Im;

P10 ≡ 2γD−1
γ C1, P20 ≡W−>γ C2, Γ0 ≡ Il. (2.2)

Note that efficient linear solvers for the large-scale A and D, and thus for Aγ and Dγ , are available.
Applying the SMWF, W−1

γ w and V −1
γ v can be computed economically by

W−1
γ w =

{
In1 +A−1

γ B1

[
Im − (B>2 D

−1
γ C1)(C>2 A

−1
γ B1)

]−1
(B>2 D

−1
γ C1)C>2

}
A−1
γ w, (2.3)

V −1
γ v =

{
In2 +D−1

γ C1

[
Il − (C>2 A

−1
γ B1)(B>2 D

−1
γ C1)

]−1
(C>2 A

−1
γ B1)B>2

}
D−1
γ v. (2.4)

For k = 1, 2, · · · , we shall organize the SDA so that the iterates have the recursive forms

Hk = Q1kΣkQ
>
2k, Gk = P1kΓkP

>
2k, (2.5)

Fk = F 2
k−1 + F1kF

>
2k, Ek = E2

k−1 + E1kE
>
2k, (2.6)

where Fik ∈ Rn1×lk−1 , Eik ∈ Rn2×mk−1 (i = 1, 2), and the kernels Σk ∈ Rmk×mk and Γk ∈ Rlk×lk .
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We should compute products like Eku, E>k u, Fkv, F>k v, for some vectors u and v, by applying
(2.6) recursively. Without actually forming Ek and Fk, we avoid any possible deterioration of
their sparse-like properties or other structures as k grows, and preserve the O(n) computational
complexity of the algorithm. As a trade-off, we need to store all the Qik, Σk, Pik, Γk, Fik and
Eik for all previous k, as we shall see below.

Applying the SMWF again, we obtain

(In2 −GkHk)−1 = In2 +GkQ1kΣk
(
Imk
−Q>2kGkQ1kΣk

)−1
Q>2k

= In2
+ P1k

(
Ilk − ΓkP

>
2kHkP1k

)−1
ΓkP

>
2kHk, (2.7a)

(In1
−HkGk)−1 = In1

+Q1k

(
Imk
− ΣkQ

>
2kGkQ1k

)−1
ΣkQ

>
2kGk

= In1 +HkP1kΓk
(
Ilk − P>2kHkP1kΓk

)−1
P>2k. (2.7b)

Denote the direct sum of square matrices by ⊕. From (1.5) and (2.7), we can choose the matrices
in (2.5) and (2.6) recursively as

Q1,k+1 = [Q1k, FkQ1k], Q2,k+1 = [Q2k, E
>
k Q2k], (2.8)

P1,k+1 = [P1k, EkP1k], P2,k+1 = [P2k, F
>
k P2k]; (2.9)

Σk+1 = Σk ⊕
[
Σk + (Imk

− ΣkQ
>
2kGkQ1k)−1ΣkQ

>
2kGkQ1kΣk

]
= Σk ⊕

[
Σk + ΣkQ

>
2kP1kΓk(Ilk − P>2kHkP1kΓk)−1P>2kQ1kΣk

]
≡ Σk ⊕ Σ̆k, (2.10)

Γk+1 = Γk ⊕
[
Γk + ΓkP

>
2kQ1kΣk(Imk

−Q>2kGkQ1kΣk)−1Q>2kP1kΓk
]

= Γk ⊕
[
Γk + (Ilk − ΓkP

>
2kHkP1k)−1ΓkP

>
2kHkP1kΓk

]
≡ Γk ⊕ Γ̆k; (2.11)

F1,k+1 = FkHkP1kΓk(Ilk − P>2kHkP1kΓk)−1

= FkQ1k(Imk
− ΣkQ

>
2kGkQ1k)−1ΣkQ

>
2kP1kΓk, (2.12)

F2,k+1 = F>k P2k; (2.13)

and

E1,k+1 = EkGkQ1kΣk(Imk
−Q>2kGkQ1kΣk)−1

= EkP1k(Ilk − ΓkP
>
2kHkP1k)−1ΓkP

>
2kQ1kΣk, (2.14)

E2,k+1 = E>k Q2k. (2.15)

Ultimately from (2.6), (2.8) and (2.9), we see that the SDA is dominated by the computation
of products like Eku, E>k u, Fkv, F>k v, for arbitrary vectors u and v. By applying (2.6) recur-
sively, these products can be computed using (2.3) and (2.4) in O(n) complexity and memory
requirement, because of our assumptions on A,B,C and D.

The SDA for large-scale NAREs is a competition between the convergence of the doubling
iteration and the exponential growth in the dimensions of Qik and Pik. From (2.5), (2.8) and
(2.9), we have

rank(Hk) ≤ rank(Qik) ≤ 2km, rank(Gk) ≤ rank(Pik) ≤ 2kl. (2.16)
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Note that 2km and 2kl are the numbers of columns in Qik and Pik, respectively. The success
of the SDA depends on the trade-off between the accuracy of the approximate solution and its
CPU-time and memory requirements, controlled by the compression and truncation of Qik and
Pik in Section 2.2. With the truncation and compression process, rank(Qik) and rank(Pik) will
be much reduced even with high accuracy for the approximate solutions Hk and Gk.

From the convergence results in Theorem 1.1, as well as (2.8), (2.9) and (2.16), the fact that
X and Y are numerically low-ranked can be considered constructively. We next define what we
mean by being numerically low-ranked of X (and similarly for Y ):

Definition 2.1. Let X ∈ Cn×n.
(i) For a given numerical rank tolerance τ > 0, the numerical rank of X with respect to τ ,

denoted by rankτX, is defined as the lowest rank of X̂ ∈ Cn×n such that ‖X̂ −X‖ 6 τ .
(ii) X is said to be numerically low-ranked with respect to the numerical rank tolerance τ > 0

if rankτ (X)� n.
We first give a useful lemma which is simple but has not appeared in the literature.
Lemma 2.1. For any A, B ∈ Rn×r, if 0 ≤ A ≤ B, then ‖A‖ ≤ ‖B‖.
Proof. Since 0 ≤ A ≤ B, we have 0 ≤ A> ≤ B> and then 0 ≤ A>A ≤ B>B. From the

Perron-Fronbenius Theorem, we have ‖A‖ =
√
ρ(A>A) ≤

√
ρ(B>B) = ‖B‖.

2.2. Truncation and Compression of Qik and Pik. The truncation and compression
process described in this section is necessary when the convergence of the SDA is slow in compar-
ison with the exponential growth in the dimensions of the iterates Gk and Hk. In this situation,
the numerical rank of X will be high and we obviously cannot achieve high accuracy in the ap-
proximation Hk of X by any method. We then have to compromise its accuracy for the sake
of less memory and CPU-time consumption. We should then either choose larger tolerances for
the truncation and compression process (εk below), to control the growth in the iterates and
adjust them until the accuracy of the approximate solution is acceptable, or simply abandon the
truncation and compression process and accept whatever approximate solution obtained within
reasonable computing constraints.

We now propose a large-scale SDA with truncation error ε (SDA ls ε). For a given sequence
of tolerances ε = {εk}k̄k=0 we first compute truncated initial matrices for the SDA ls ε. From
(2.2) we compute the QR decompositions

Q10 = Q̃10R1q, Q20 = Q̃20R2q, P10 = P̃10R1p, P20 = P̃20R2p,

where Q̃10, Q̃20, P̃10 and P̃20 are orthogonal and R1q, R2q, R1p and R2p are upper triangular.
Then we compute the SVD decompositions

R1qΣ0R
>
2q = [Uτ10, U

ε
10](Στ0 ⊕ Σε0)[Uτ20, U

ε
20]>, ‖Σε0‖ < ε0;

R1pΓ0R
>
2p = [V τ10, V

ε
10](Γτ0 ⊕ Γε0)[V τ20, V

ε
20]>, ‖Γε0‖ < ε0;

where [Uτi0, U
ε
i0] and [V τi0, V

ε
i0] (i = 1, 2) are orthogonal, Στ0 ⊕ Σε0 and Γτ0 ⊕ Γε0 are nonnegative

diagonal with Στ0 ∈ Rm0×m0 and Γτ0 ∈ Rl0×l0 . By setting

Qτ10 = Q̃10U
τ
10, Qτ20 = Q̃20U

τ
20, P τ10 = P̃10V

τ
10, P τ20 = P̃20V

τ
20, (2.17)

we have the (truncated) initial matrices

F τ0 = F0, Eτ0 = E0, Hτ
0 = Qτ10Στ0Q

τ>

20 , Gτ0 = P τ10Γτ0P
τ>

20 (2.18)

for the SDA ls ε. Let

∆H0 ≡ H0 −Hτ
0 = Q̃10U

ε
10Σε0U

ε
20
>Q̃>20, ∆G0 ≡ G0 −Gτ0 = P̃10V

ε
10Γε0V

ε>

20 P̃
>
20. (2.19)



6

The truncation errors of the initial matrices can be estimated by

‖∆H0‖ = ‖Σε0‖ < ε0, ‖∆G0‖ = ‖Γε0‖ < ε0. (2.20)

We repeat this process and suppose it holds at the k step that

Hτ
k = Qτ1kΣτkQ

τ>

2k , Gτk = P τ1kΓτkP
τ>

2k ;

Eτk = Eτ
2

k−1 + Eτ1kE
τ>

2k , F τk = F τ
2

k−1 + F τ1kF
τ>

2k ; (2.21)

where Qτik and P τik are orthogonal with widths being mk and lk (i = 1, 2), respectively.
To estimate the (k + 1)th truncation error, from (2.10)–(2.15) as well as (2.21), we compute

Σ̆τk = Στk + ΣτkQ
τ>

2k P
τ
1kΓτk(Ilk − P τ2k

>Hτ
kP

τ
1kΓτk)−1P τ

>

2k Q
τ
1kΣτk,

Γ̆τk = Γτk + (Ilk − ΓτkP
τ>

2k H
τ
kP

τ
1k)−1ΓτkP

τ>

2k H
τ
kP

τ
1kΓτk; (2.22)

and

F τ1,k+1 = F τkH
τ
kP

τ
1kΓτk

(
Ilk − P τ>2k H

τ
kP

τ
1kΓτk

)−1
, F τ2,k+1 = F τ

>

k P τ2k;

Eτ1,k+1 = EτkP
τ
1k

(
Ilk − ΓτkP

τ>

2k H
τ
kP

τ
1k

)−1

ΓτkP
τ>

2k Q
τ
1kΣτk, Eτ2,k+1 = Eτ

>

k Qτ2k. (2.23)

From the QR decompositions

[Qτ1k, F
τ
kQ

τ
1k] = [Qτ1k, Q̃1k]

[
I S1q

0 R1q

]
k

, [Qτ2k, E
τ>

k Qτ2k] = [Qτ2k, Q̃2k]

[
I S2q

0 R2q

]
k

;

[P τ1k, E
τ
kP

τ
1k] = [P τ1k, P̃1k]

[
I S1p

0 R1p

]
k

, [P τ2k, F
τ>

k P τ2k] = [P τ2k, P̃2k]

[
I S2p

0 R2p

]
k

, (2.24)

we set

Σ̂k+1 ≡
[
I S1q

0 R1q

]
k

[
Στk 0

0 Σ̆τk

] [
I S2q

0 R2q

]>
k

, Γ̂k+1 ≡
[
I S1p

0 R1p

]
k

[
Γτk 0

0 Γ̆τk

] [
I S2p

0 R2p

]>
k

. (2.25)

We next compute the SVDs

Σ̂k+1 =
[
Uτ1,k+1 Uε1,k+1

] [Στk+1 0
0 Σεk+1

] [
Uτ2,k+1 Uε2,k+1

]>
,

Γ̂k+1 =
[
V τ1,k+1 V ε1,k+1

] [Γτk+1 0
0 Γεk+1

] [
V τ2,k+1 V ε2,k+1

]>
(2.26)

with ‖Σεk+1‖ < εk+1 and ‖Γεk+1‖ < εk+1. To truncate, we compute

Qτ1,k+1 ≡ [Qτ1k, Q̃1k]Uτ1,k+1 ∈ Rn1×mk+1 , Qτ2,k+1 ≡ [Qτ2k, Q̃2k]Uτ2,k+1 ∈ Rn2×mk+1 ;

P τ1,k+1 ≡ [P τ1k, P̃1k]V τ1,k+1 ∈ Rn2×lk+1 , P τ2,k+1 ≡ [P τ2k, P̃2k]V τ2,k+1 ∈ Rn1×lk+1 . (2.27)

Let

Ĥk+1 = Hτ
k + F τk (I −Hτ

kG
τ
k)−1Hτ

kE
τ
k , Ĝk+1 = Gτk + Eτk (I −GτkHτ

k )−1GτkF
τ
k . (2.28)

We define the local truncation errors of Hτ
k+1 and Gτk+1 as

δHk+1 ≡ Ĥk+1 −Hτ
k+1, δGk+1 ≡ Ĝk+1 −Gτk+1. (2.29)
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From (2.26), we see that

‖δHk+1‖ =
∥∥∥[Qτ1k, Q̃1k]Uε1,k+1Σεk+1U

ε>

2,k+1[Qτ2k, Q̃2k]>
∥∥∥ = ‖Σεk+1‖ < εk+1, (2.30)

‖δGk+1‖ =
∥∥∥[P τ1k, P̃1k]V ε1,k+1Γεk+1V

ε>

2,k+1[P τ2k, P̃2k]>
∥∥∥ = ‖Γεk+1‖ < εk+1. (2.31)

Moreover, we define the global truncation errors of Hτ
k+1 and Gτk+1 by

∆Hk+1 ≡ Hk+1 −Hτ
k+1, ∆Gk+1 ≡ Gk+1 −Gτk+1, (2.32)

which will be estimated in Section 3.
The SDA ls ε for solving large-scale NAREs realizes the iterations in (1.5) with initial matrices

in (2.18), and the help of (2.3), (2.4), (2.21)–(2.27).

Algorithm 1 (SDA ls ε)

Input: A ∈ Rn1×n1 , B ∈ Rn1×n2 , C ∈ Rn2×n1 , D ∈ Rn2×n2 with B = B1B
>
2 and

C = C1C
>
2 being full low-ranked as in (2.1); suitable shift γ as in (1.3);

truncation tolerances ε = {εk}k̄k=0 and convergence tolerance εc > 0.

Output: Hτ
k̄

= Qτ
1k̄

Στ
k̄
Qτ
>

2k̄
and Gτ

k̄
= P τ

1k̄
Γτ
k̄
P τ
>

2k̄
with Qτ

ik̄
∈ Rni×mk̄ , P τ

ji,k̄
∈ Rni×lk̄

orthogonal (i = 1, 2; j1 = 2, j2 = 1), approximating the solutions X and Y
to the large-scale NARE (1.1) and its dual equation (1.6), respectively.

Initial matrices:
Set k = 0;
Compute Qi0, Pi0 (i = 1, 2) in (2.2);
Compute Qτi0, P

τ
i0 (i = 1, 2) in (2.17) with truncation tolerance ε0;

Do until convergence:

Compute Σ̆τk, Γ̆τk as in (2.22) and F τi,k+1, E
τ
i,k+1 (i = 1, 2) as in (2.23);

Orthogonalize F τkQ
τ
1k, E

τ>

k Qτ2k, EτkP
τ
1k and F τ

>

k P τ2k as in (2.24);

Compute Σ̂k+1 and Γ̂k+1 as in (2.25), and their SVDs as in (2.26);
Compute Qτi,k+1, P τi,k+1 (i = 1, 2) using the tolerance εk+1 as in (2.27);

Compute k ← k + 1, dk = max{‖dHτ
k ‖, ‖dGτk‖} and rk = ‖R(Hτ

k )‖;
(An economic way for computing ‖dHτ

k ‖, ‖dGτk‖ and ‖R(Hτ
k )‖ can be

found in (4.1), (4.2) and (4.3) in Section 4.1.)
If dk < εc, Set k̄ = k; Stop; End If;

End Do

2.3. SDA and Krylov Subspaces. There is an interesting relationship between the SDA
and Krylov subspaces. Define the Krylov subspaces

Kk(A, V ) ≡
{

span{V } (k = 0),

span{V,AV,A2V, · · · , A2k−1V } (k > 0).

From (1.4), (2.2)–(2.4) and (2.8), we see that

Q10 = 2γW−1
γ B1 ⊆ K0(A−1

γ , A−1
γ B1), Q20 = D−>γ B2 ⊆ K0(D−>γ , D−>γ B2);

Q11 = [Q10, F0Q10] ⊆ K1(A−1
γ , A−1

γ B1), Q21 = [Q20, E
>
0 Q20] ⊆ K1(D−>γ , D−>γ B2).

(We have abused notations, with V ⊆ Kk(A,B) meaning span{V } ⊆ Kk(A,B).) Similarly, it is
easy to show that

Q1k ⊆ Kk(A−1
γ , A−1

γ B1), Q2k ⊆ Kk(D−>γ , D−>γ B2);

P1k ⊆ Kk(D−1
γ , D−1

γ C1), P2k ⊆ Kk(A−>γ , A−>γ C2).
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In other words, the general SDA is closely related to approximating the solutions X and Y using
Krylov subspaces, with additional components diminishing quadratically. However, for problems
of moderate size n, Qik and Pik become full-ranked after a few iterations.

The link between the SDA and the Krylov subspaces defined above is important in explaining
the fast convergence of the SDA. We used to believe the convergence of the SDA came from the
following inequalities:

‖Hk −Hk−1‖ ≤ ‖Fk−1‖‖(In1 −Hk−1Gk−1)−1Hk−1‖‖Ek−1‖,
‖Gk −Gk−1‖ ≤ ‖Ek−1‖‖(In2 −Gk−1Hk−1)−1Gk−1‖‖Fk−1‖,

and the fact that ‖Ek−1‖, ‖Fk−1‖ → 0 quadratically, as k →∞. This is consistent with numerical
results from examples associated with M in (1.2) which is barely a nonsingular M-matrix, where
the corresponding Ek, Fk → 0 slowly but the overall convergence for Hk and Gk are much faster.

3. Truncation Error Estimates. In this section, we shall estimate the global truncation
errors defined in (2.32). For simplicity, we derive only the first order error bounds.

From Theorem 1.1, we have 0 ≤ Hk ≤ X, 0 ≤ Gk ≤ Y , and

0 ≤ (I −GkHk)−1 = I +GkHk + (GkHk)2 + · · ·
≤ I + Y X + (Y X)2 + · · · = (I − Y X)−1

and 0 ≤ Fk = (In1 −HkY )S2k

γ ≤ S2k

γ . By Lemma 2.1, we have

‖Hk‖ ≤ ‖X‖, ‖Gk‖ ≤ ‖Y ‖, (3.1)

and

‖(I −GkHk)−1‖ ≤ ‖(I − Y X)−1‖ ≡ β1, ‖Fk‖ ≤ ‖S2k

γ ‖ → 0. (3.2)

Similarly, from Theorem 1.1 and Lemma 2.1 we also have

‖(I −HkGk)−1‖ ≤ ‖(I −XY )−1‖ ≡ β2, ‖Ek‖ ≤ ‖R2k

γ ‖ → 0. (3.3)

Denote

ρk = max{‖R2k

γ ‖, ‖S2k

γ ‖}, α = max{‖X‖, ‖Y ‖}, β = max{β1, β2}. (3.4)

In the following we abuse the notation ”=” and ” ≡ ”, ignoring the higher order terms.
Suppose that ρ(Hτ

kG
τ
k) < 1, ‖∆Hk‖ and ‖∆Gk‖ are sufficiently small. From (2.32) we have the

first order approximation of (I −Hτ
kG

τ
k)−1:

(I −Hτ
kG

τ
k)−1 = [I − (Hk −∆Hk)(Gk −∆Gk)]

−1

= [I −HkGk + ∆HkGk +Hk∆Gk −∆Hk∆Gk]
−1

= (I −HkGk)−1 − (I −HkGk)−1(∆HkGk +Hk∆Gk)(I −HkGk)−1.

From (2.19) and (2.20), we have Hτ
0 = H0 −∆H0, G

τ
0 = G0 −∆G0 with ‖∆H0‖, ‖∆G0‖ < ε0.

Since Eτ0 = E0 and F τ0 = F0, (2.28) implies

Ĥ1 = Hτ
0 + F τ0 (I −Hτ

0G
τ
0)−1Hτ

0E
τ
0

= H0 −∆H0

+F0

[
(I −H0G0)−1 − (I −H0G0)−1(∆H0G0 +H0∆G0)(I −H0G0)−1

]
(H0 −∆H0)E0

= H0 + F0(I −H0G0)−1H0E0 −∆H0 − F0(I −H0G0)−1∆H0E0

−F0(I −H0G0)−1(∆H0G0 +H0∆G0)(I −H0G0)−1H0E0

≡ H1 − δ̂H1, (3.5)
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where δ̂H1 is the first order truncation error given by

δ̂H1 = ∆H0 +F0(I −H0G0)−1∆H0E0 +F0(I −H0G0)−1(∆H0G0 +H0∆G0)(I −H0G0)−1H0E0.

From (2.29), (2.32) and (3.5), it follows that ∆H1 = H1 − Hτ
1 = δ̂H1 + δH1. By (2.30) and

(3.1)–(3.4), we have

‖∆H1‖ ≤ ‖δH1‖+ ‖δ̂H1‖
≤ ε1 + ‖∆H0‖+ ‖F0‖‖E0‖‖(I −H0G0)−1‖‖∆H0‖

+ ‖F0‖‖E0‖‖H0‖‖(I −H0G0)−1‖2(‖∆H0‖‖G0‖+ ‖H0‖‖∆G0‖)
≤ ε1 + (1 + ρ2

0β + ρ2
0α

2β2)‖∆H0‖+ ρ2
0α

2β2‖∆G0‖.

Similarly, we have

‖∆G1‖ ≤ ε1 + (1 + ρ2
0β + ρ2

0α
2β2)‖∆G0‖+ ρ2

0α
2β2‖∆H0‖.

From (2.21), we have

F τ1 = F τ0 (I −Hτ
0G

τ
0)−1F τ0 = F0(I −Hτ

0G
τ
0)−1F0

= F0(I −H0G0)−1F0 − F0(I −H0G0)−1(∆H0G0 +H0∆G0)(I −H0G0)−1F0

≡ F1 −∆F1,

where ∆F1 = F0(I − H0G0)−1(∆H0G0 + H0∆G0)(I − H0G0)−1F0 is the first order truncation
error and satisfies

‖∆F1‖ ≤ ‖F0‖2‖(I −H0G0)−1‖2(‖∆H0‖‖G0‖+ ‖H0‖‖∆G0‖)
≤ ρ2

0αβ
2(‖∆H0‖+ ‖∆G0‖).

Similarly, we also have

‖∆E1‖ ≤ ρ2
0αβ

2(‖∆H0‖+ ‖∆G0‖).

Performing the (k + 1)th step in the SDA ls ε algorithm, we obtain

Ĥk+1 = Hτ
k + F τk (I −Hτ

kG
τ
k)−1Hτ

kE
τ
k

= Hk −∆Hk + (Fk −∆Fk)(I −HkGk)−1(Hk −∆Hk)(Ek −∆Ek)

−(Fk −∆Fk)(I −HkGk)−1(∆HkGk +Hk∆Gk)(I −HkGk)−1(Hk −∆Hk)(Ek −∆Ek)

= Hk + Fk(I −HkGk)−1HkEk −∆Hk − Fk(I −HkGk)−1(Hk∆Ek + ∆HkEk)

−∆Fk(I −HkGk)−1HkEk − Fk(I −HkGk)−1(∆HkGk +Hk∆Gk)(I −HkGk)−1HkEk

≡ Hk+1 − δ̂Hk+1,

where

δ̂Hk+1 = ∆Hk + Fk(I −HkGk)−1(Hk∆Ek + ∆HkEk) + ∆Fk(I −HkGk)−1HkEk

+Fk(I −HkGk)−1(∆HkGk +Hk∆Gk)(I −HkGk)−1HkEk

is the first order truncation error. Then (2.30)–(2.32) and (3.1)–(3.4) imply

‖∆Hk+1‖ ≤ ‖δHk+1‖+ ‖δ̂Hk+1‖
≤ ‖δHk+1‖+ ‖∆Hk‖+ ‖(I −HkGk)−1‖‖Fk‖(‖Hk‖‖∆Ek‖+ ‖Ek‖‖∆Hk‖)

+‖(I −HkGk)−1‖‖Hk‖‖Ek‖‖∆Fk‖
+‖Fk‖‖Ek‖‖Hk‖‖(I −HkGk)−1‖2(‖∆Hk‖‖Gk‖+ ‖Hk‖‖∆Gk‖)

≤ εk+1 + (1 + ρ2
kβ + ρ2

kα
2β2)‖∆Hk‖

+ρ2
kα

2β2‖∆Gk‖+ ρkαβ(‖∆Ek‖+ ‖∆Fk‖). (3.6)
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Similarly, we also have

‖∆Gk+1‖ ≤ εk+1 + (1 + ρ2
kβ+ ρ2

kα
2β2)‖∆Gk‖+ ρ2

kα
2β2‖∆Hk‖+ ρkαβ(‖∆Fk‖+ ‖∆Ek‖). (3.7)

From (2.21), it holds that

F τk+1 = F τk (I −Hτ
kG

τ
k)−1F τk = (Fk −∆Fk)(I −Hτ

kG
τ
k)−1(Fk −∆Fk)

= Fk(I −HkGk)−1Fk − Fk(I −HkGk)−1∆Fk −∆Fk(I −HkGk)−1Fk

−Fk(I −HkGk)−1(∆HkGk +Hk∆Gk)(I −HkGk)−1Fk

≡ Fk+1 −∆Fk+1,

where

∆Fk+1 =Fk(I −HkGk)−1∆Fk + ∆Fk(I −HkGk)−1Fk

+ Fk(I −HkGk)−1(∆HkGk +Hk∆Gk)(I −HkGk)−1Fk

is the first order truncation error and satisfies

‖∆Fk+1‖ ≤ 2‖Fk‖‖(I −HkGk)−1‖‖∆Fk‖+ ‖Fk‖2‖(I −HkGk)−1‖2(‖∆Hk‖‖Gk‖+ ‖Hk‖‖∆Gk‖)
≤ 2ρkβ‖∆Fk‖+ ρ2

kαβ
2(‖∆Hk‖+ ‖∆Gk‖). (3.8)

Similarly, we also have

‖∆Ek+1‖ ≤ 2ρkβ‖∆Ek‖+ ρ2
kαβ

2(‖∆Hk‖+ ‖∆Gk‖). (3.9)

Assemble (3.6)–(3.9) in matrix form, we have
‖∆Hk+1‖
‖∆Gk+1‖
‖∆Fk+1‖
‖∆Ek+1‖

 ≤


1 + ρ2
kβ + ρ2

kα
2β2 ρ2

kα
2β2 ρkαβ ρkαβ

ρ2
kα

2β2 1 + ρ2
kβ + ρ2

kα
2β2 ρkαβ ρkαβ

ρ2
kαβ

2 ρ2
kαβ

2 2ρkβ 0
ρ2
kαβ

2 ρ2
kαβ

2 0 2ρkβ



‖∆Hk‖
‖∆Gk‖
‖∆Fk‖
‖∆Ek‖

+


εk+1

εk+1

0
0


≡ Ψk[‖∆Hk‖, ‖∆Gk‖, ‖∆Fk‖, ‖∆Ek‖]> + [εk+1, εk+1, 0, 0]>. (3.10)

Substituting Ψk in (3.10) recursively, the error bound can be estimated by
‖∆Hk+1‖
‖∆Gk+1‖
‖∆Fk+1‖
‖∆Ek+1‖

 ≤ k+1∑
i=1

i−1∏
j=0

Ψk−j


εk−i+1

εk−i+1

0
0


+


εk+1

εk+1

0
0

 . (3.11)

In the following theorem we claim that the first order forward error bounds of Hτ
k , Gτk and

the first order truncation errors of F τk and Eτk , which only depend on ρk and the tolerance

ε = {εk}k̄k=0.
Theorem 3.1. Let X and Y be the minimal nonnegative solutions of NARE (1.1) and its

dual equation (1.6), respectively. For given tolerances ε = {εk}k̄k=0, suppose {Hτ
k , G

τ
k, F

τ
k , E

τ
k}k̄k=0

is the sequence generated by the SDA ls ε satisfying ρ(Hτ
kG

τ
k) < 1 for all k. Then we have

‖Hτ
k −X‖, ‖Gτk − Y ‖ ≤ εk +

1

2

k∑
i=1

1 +

i∏
j=1

(1 + ηk−j)

 εk−i + ρ2
kα, (3.12)
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and

‖F τk − Fk‖, ‖Eτk − Ek‖ ≤
1

2

k∑
i=1

1 +

i∏
j=1

(1 + ηk−j)

 εk−i (3.13)

for k = 0, 1, · · · k̄, where ρk is given by (3.4) and ηk is defined by

ηk = 4 max{ρ2
kβ + ρ2

kα
2β2, ρkαβ, ρ

2
kαβ

2, 2ρkβ}. (3.14)

Proof. For convenience, we let

Ψ̂k = diag(1, 1, 0, 0) +
1

4
ηkee

> ≡ J0 + ηkJ1,

where e = [1, 1, 1, 1]> and ηk is given in (3.14). Then (3.11) can be simplified to
‖∆Hk+1‖
‖∆Gk+1‖
‖∆Fk+1‖
‖∆Ek+1‖

 ≤ k+1∑
i=1

i−1∏
j=0

Ψ̂k−j


εk−i+1

εk−i+1

0
0


+


εk+1

εk+1

0
0

 . (3.15)

It is easily seen that

J2
0 = J0, J2

1 = J1, J0J1J0 ≤ J1, J1J0J1 ≤ J1. (3.16)

Let C(Js0 , J t1) denote the product of s’s J0 and t’s J1 in any order. From (3.16), it follows that

C(Js0 , J t1) ≤

{
J1, if t ≥ 1,

J0. if t = 0.
(3.17)

By (3.17), the products in (3.15) can be bounded by

i−1∏
j=0

Ψ̂k−j =Ψ̂k · · · Ψ̂k−i+1 ≤ J0 +

i∑
t=1

 ∑
k≥r1>···>rt≥k−i+1

ηr1 · · · ηrt

 J1. (3.18)

Post-multiplying (3.18) by [εk−i+1, εk−i+1, 0, 0]> and substituting the result into (3.15), we obtain
the first order upper bounds

‖∆Hk+1‖ ≤ εk+1 +

k+1∑
i=1

1 +
1

2

i∑
t=1

 ∑
k≥r1>···>rt≥k−i+1

ηr1 · · · ηrt

 εk−i+1

= εk+1 +
1

2

k+1∑
i=1

1 +

i−1∏
j=0

(1 + ηk−j)

 εk−i+1, (3.19)

‖∆Fk+1‖ ≤
1

2

k+1∑
i=1

1 +

i−1∏
j=0

(1 + ηk−j)

 εk−i+1, (3.20)

which also hold for ‖∆Gk+1‖ and ‖∆Ek+1‖, respectively. By Theorem 1.1 and (3.4), we have
‖Hk − X‖ ≤ ρ2

kα and ‖Gk − Y ‖ ≤ ρ2
kα. Since ‖Hτ

k − X‖ ≤ ‖Hτ
k − Hk‖ + ‖Hk − X‖ and

‖Gτk − Y ‖ ≤ ‖Gτk −Gk‖+ ‖Gk − Y ‖, it follows from (3.19) and (3.20), by setting k ← k + 1, we
prove the assertions in (3.12) and (3.13).

Remark 3.1.
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(a) To obtain an approximate solution Hτ
k̄

from {Qτ
1k̄
,Στ

k̄
, Qτ

2k̄
} generated by the SDA ls ε

algorithm will be the most expensive step. Specifically, we need a post process for the com-

putation of Hτ
k̄

= Qτ
1k̄

Στ
k̄
Qτ
>

2k̄
which require O(n2) flops and n2 memory. Furthermore,

the computed Hτ
k̄

is no longer nonnegative. If a nonnegative solution is required, it is

suggested to set Hτ+
k̄

:= (Hτ
k̄

+ |Hτ
k̄
|)/2. Since X > 0, it is easily seen that the forward

error of Hτ+
k̄

, ‖Hτ+
k̄
−X‖, can be estimated by the upper bound of (3.12) in Theorem 3.1.

(b) For k = k̄ in (3.12), we see that the coefficients ci ≡ 1 +
∏k̄−i
j=1(1 + ηk̄−j) of εi are

decreasing, for i = 1, . . . , k̄. It is reasonable to choose the tolerance sequence {εi}k̄i=1 as
an increasing sequence. However, in general, it is hard to estimate those coefficients of εi
beforehand. Therefore, in practice, we suggest to choose a constant sequence of tolerances
{ετ}k̄i=1 (e.g., ετ = 10−3, 10−4, . . . , 10−15). From our numerical experiments, the forward
errors of Hτ

k̄
and Gτ

k̄
almost have the same order of the given truncation tolerance ετ .

4. Computational Issues.

4.1. Residual and Convergence Control. In the SDA ls ε, we should compute residuals
and differences of iterates carefully in O(n) complexity.

From (3.12), consider the difference of successive iterates

dHτ
k+1 = Hτ

k+1 −Hτ
k = Qτ1,k+1Στk+1Q

τ>

2,k+1 −Qτ1kΣτkQ
τ>

2k

=
[
Qτ1,k+1 | Qτ1k

]
(Στk+1 ⊕ Στk)

[
Qτ
>

2,k+1

−Qτ>2k

]
≡ Y1k(Στk+1 ⊕ Στk)Y >2k,

where Qik, Qi,k+1 (i = 1, 2) are orthogonal. We compute ‖dHτ
k+1‖ efficiently as follows.

‖dHτ
k+1‖ = ‖Rh1k(Στk+1 ⊕ Στk)Rh>2k ‖, (4.1)

where Y1k = Wh
1kR

h
1k and Y2k = Wh

2kR
h
2k are the QR decompositions of Y1k and Y2k, respectively.

Similarly, we have

‖dGτk+1‖ = ‖Rg1k(Γτk+1 ⊕ Γτk)Rg>2k ‖ (4.2)

with the QR decompositions [P τ1,k+1, P
τ
1k] = W g

1kR
g
1k and [P τ2,k+1,−P τ2k] = W g

2kR
g
2k.

From the NARE (1.1) we have the

R(Hτ
k ) = Qτ1kΣτk

(
Qτ
>

2k CQ
τ
1k

)
ΣτkQ

τ>

2k −AQτ1kΣτkQ
τ>

2k −Qτ1kΣτkQ
τ>

2k D +B1B
>
2

= [Qτ1k | AQτ1k | B1]

 Στk(Qτ
>

2k CQ
τ
1k)Στk −Στk 0

−Στk 0 0
0 0 Im

 Qτ
>

2k

Qτ
>

2k D
B>2


≡ Z1kΦkZ

>
2k.

Then the residual and the relative residual,

rk ≡ ‖R(Hτ
k )‖, r̃k =

rk
‖Hτ

kCH
τ
k ‖+ ‖Hτ

kD‖+ ‖AHτ
k ‖+ ‖B‖

(4.3)

can be efficiently calculated by

‖R(Hτ
k )‖ = ‖Rr1kΦkR

r>
2k ‖, ‖Hτ

kCH
τ
k ‖ = ‖Στk(Qτ

>

2k CQ
τ
1k)Στk‖,

‖AHτ
k ‖ = ‖RakΣτk‖, ‖Hτ

kD‖ = ‖ΣτkRd>k ‖, ‖B‖ = ‖Rb1R>b2‖,

with the QR decompositions Zik = W r
ikR

r
ik, AQτ1k = W a

kR
a
k, D>Qτ2k = W d

kR
d
k and Bi = W b

i Rbi,
for i = 1, 2.
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4.2. Operation and Memory Counts. We shall assume that cγn flops (n = max{n1, n2})
are required in the solution of M̃z = b or M̃>z = b (with M̃ = Aγ , b ∈ Rn1 or M̃ = Dγ , b ∈ Rn2).
The operation count for the QR decomposition of an n × r matrix is 4r2n flops [11, p. 250]. A
start up cost of (c1 + c2 + c3)n flops is made up of the following:

(1) set up Aγ = A+ γIn1
and Dγ = D+ γIn2

, requiring n1 + n2 ≤ 2n flops; we shall denote
this part of the count by c1n flops, with c1 = 2;

(2) set up Qi0 and Pi0 (i = 1, 2) as in (2.2) with the help of (2.3), requiring c2n flops with
c2 = 2

[
(cγ + 1)(m+ l) + 2lm+m2 + l2

]
; and

(3) set up Qτi0 and P τi0 (i = 1, 2) as in (2.17), requiring c3n flops with c3 = 12(l2 +m2).

The operation and memory counts of Algorithm 1 (SDA ls ε) for the kth iteration are sum-
marized in Table 4.1 below. In the third column, the number of variables is recorded. Only
O(n) operations or memory requirement are included. Note that most of the work is done in the
computation of F τkQ

τ
1k, F τ>k P τ2k, EτkP

τ
1k and Eτ>k Qτ2k in (2.23) have to be calculated recursively,

as Eτk and F τk in (2.21) are not available explicitly.

Table 4.1
Operation and memory counts for the kth iteration in Algorithm 1 (SDA ls ε)

Computation Flops Memory

Σ̆τk, Γ̆τk 4lkmkn −
F τkQ

τ
1k, F τ>k P τ2k

[
2k(cγ + 4

∑k
j=1 2−j lj)

]
(lk +mk)n 2n

∑k−1
j=1 lj

EτkP
τ
1k, Eτ>k Qτ2k

[
2k(cγ + 4

∑k
j=1 2−jmj)

]
(lk +mk)n 2n

∑k−1
j=1 mj

F τ1,k+1, E
τ
1,k+1 4lkmkn 2n(mk + lk)

Orthogonalize F τkQ
τ
1k,

F τ>k P τ2k, E
τ
kP

τ
1k

and Eτ>k Qτ2k

2[6(m2
k + l2k) +mk + lk]n −

Σ̂k+1, Γ̂k+1, Στk+1, Γτk+1 O(l3k +m3
k) lk+1 +mk+1

Qτi,k+1, P τi,k+1 (i = 1, 2) 8(lklk+1 +mkmk+1)n 2n(lk+1 +mk+1)

Total flops & memory
[
2k+1

(
cγ + 2

∑k
j=1 2−j(lj +mj)

)
(lk +mk) 2n

∑k+1
j=1 (lj +mj)

+8(lkmk + lklk+1 +mkmk+1)
+12(m2

k + l2k) + 2(mk + lk)
]
n

With lk and mk controlled by the compression and truncation in Section 2.2, the operation
count will be dominated by the calculation of F τkQ

τ
1k, F τ>k P τ2k, EτkP

τ
1k and Eτ>k Qτ2k. In our

numerical examples in Section 5, the flop count near the end of Algorithm 1 dominates, with the
work involved in one iteration approximately doubled that of the previous one. This corresponds
to the 2k+1 factor in the total flop count.

5. Numerical Examples. We constructed the examples as in [23], A and D are rank one
updates of nonsingular diagonal matrices and B and C are rank one, generated randomly. Three
examples of sizes n = n1 = n2 = 1000, 10000, 100000 were generated, all satisfying the correspond-
ing solvability conditions. The numerical results in Examples 5.1–5.3 (n = 1000, 10000, 100000)
were computed using MATLAB [28] Version R2012b, on an iMac with a 2.97GHz Intel Core i7
processor and 8GB RAM, with machine accuracy eps = 2.22× 10−16.

In Algorithm 1, the stopping criterion is dk ≡ max{‖dHτ
k ‖, ‖dGτk‖} < εc where ‖dHτ

k ‖ =
‖Hτ

k −Hτ
k−1‖ and ‖dGτk‖ = ‖Gτk − Gτk−1‖ and convergence tolerance εc; please also consult the

convergence results in Theorem 3.1. All numerical experiments were considered with a constant
truncation tolerance ετ in each iteration, i.e., εi = ετ for i = 0, 1, . . . , k̄.
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In Example 5.1 with the smallest n = 1000, we apply the SDA (1.5) to compute the near-exact
solutions X and Y of NARE (1.1) and its dual equation (1.6). These were then used to illustrate
the results for rankτ (X), rankτ (Y ) in Table 5.1 and the forward errors in Tables 5.2–5.3. Effects
of different tolerances ετ (or εc) are also presented in Table 5.2 (or in Table 5.3).

In Examples 5.2–5.3, the iterations in the SDA ls ε are reported for a corresponding set of
tolerances εc and ετ . In Tables 5.4–5.5 below, ‖Hτ

k ‖, ‖Gτk‖, dk, rk, r̃k, mk, lk, δtk and tk are
displayed. Note that δti is the execution time for the ith iteration and the sub-total execution
time tk =

∑k
i=1 δti.

Example 5.1. (n = 1000) In this example, we have performed three tests.

Test 1: We first apply the SDA (1.5) with initial (1.4) to compute the near-exact solutions
X and Y of NARE (1.1) and its dual equation (1.6). The SDA converges after 12 iterations and
the norms (‖X‖, ‖Y ‖), residuals (‖R(X)‖, ‖D(Y )‖) are estimated, respectively, as

‖X‖ = 2.5748× 10−1, ‖R(X)‖ = 5.9875× 10−17,
‖Y ‖ = 2.6545× 10−1, ‖D(Y )‖ = 5.6928× 10−17.

Table 5.1 shows the rankτ (X) and rankτ (Y ) with τ = 10−3, 10−5, 10−7, 10−9, 10−11, 10−13 and
10−15. Note that rankτ (X) and rankτ (Y ) are much smaller than the matrix size n = 1000.

Table 5.1
The numerical ranks of X and Y with respect to various τ .

τ 10−3 10−5 10−7 10−9 10−11 10−13 10−15

rankτ (X) 4 7 11 14 17 21 24
rankτ (Y ) 4 8 11 14 18 21 24

Test 2: In the test, we set convergence tolerance εc = 10−8 and employ Algorithm 1 with
various truncation tolerances ετ . Suppose that Algorithm 1 converges after k̄ iterations, i.e.,
dk̄ < εc = 10−8. To determinate whether the computed solutions, Hτ

k̄
and Gτ

k̄
, are nonnegative,

we denote

Hτ−

k̄ = (Hτ
k̄ − |H

τ
k̄ |)/2, Gτ

−

k̄ = (Gτk̄ − |G
τ
k̄|)/2.

From the results of Test 1, we have near-exact solutions X and Y . Hence, we can compute the
forward errors, ‖Hτ

k̄
− X‖ and ‖Gτ

k̄
− Y ‖ in the example. The numerical results are shown in

Table 5.2.

Table 5.2 shows that Algorithm 1 converges within 12 iterations (in 2.1 ∼ 8.4 seconds) for
various tolerances ετ and the residual rk̄ and forward errors, ‖Hτ

k̄
−X‖ and ‖Gτ

k̄
−Y ‖, are heavily

dependent on the chosen truncation tolerances ετ . Furthermore, the computed solutions, Hτ
k̄

and
Gτ
k̄
, are nonnegative matrices when ετ = 10−7, 10−11, 10−15.

Test 3: In the test, we set truncation tolerance ετ = 10−12 and employ Algorithm 1 with
various convergence tolerances εc. The numerical results are shown in Table 5.3.

Table 5.3 shows that Algorithm 1 converges within 8 ∼ 13 iterations for various tolerances εc
and the residual and forward errors achieve the accuracy of O(ετ ) for εc = 10−7, 10−11, 10−15.

Example 5.2. (n = 10000) In this example, we set the truncation tolerance ετ = 10−12 and
convergence tolerance εc = 10−8. In Table 5.4, the residual (or relative residual) achieves the
accuracy of O(ετ ) within 12 iterations, in 140 seconds (execution time).

Example 5.3. (n = 100000) In this example, we set the truncation tolerance ετ = 10−12

and convergence tolerance εc = 10−8. In Table 5.5, the residual (or relative residual) achieves the
accuracy of O(ετ ) within 13 iterations, in 4000 seconds (execution time).
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Table 5.2
Numerical results with various truncation tolerances ετ .

ετ 10−3 10−7 10−11 10−15

k̄ 12 12 12 12
mk̄ 3 10 17 24
lk̄ 3 11 17 24

‖Hτ
k̄
−Hτ

k̄−1
‖ 1.208e−13 6.706e−13 6.844e−13 6.844e−13

‖Gτ
k̄
−Gτ

k̄−1
‖ 1.767e−12 9.638e−12 9.640e−12 9.640e−12

rk̄ 1.134e−03 7.820e−08 1.490e−11 4.245e−15
‖Hτ

k̄
−X‖ 1.494e−03 1.473e−07 1.843e−11 7.091e−15

‖Gτ
k̄
− Y ‖ 2.174e−03 8.537e−08 1.456e−11 7.691e−15

‖Hτ−

k̄
‖ 1.606e−12 0 0 0

‖Gτ−
k̄
‖ 9.034e−12 0 0 0

tk̄ 2.104 4.449 6.471 8.377

Table 5.3
Numerical results with various truncation tolerances εc.

εc 10−3 10−7 10−11 10−15

k̄ 8 11 12 13
mk̄ 17 19 19 19
lk̄ 17 19 19 19

‖Hτ
k̄
−Hτ

k̄−1
‖ 1.251e−04 7.131e−09 6.844e−13 1.918e−16

‖Gτ
k̄
−Gτ

k̄−1
‖ 4.982e−04 9.899e−08 9.640e−12 1.311e−16

rk̄ 1.163e−07 8.310e−13 8.310e−13 8.310e−13
‖Hτ

k̄
−X‖ 1.751e−05 1.094e−12 1.077e−12 1.077e−12

‖Gτ
k̄
− Y ‖ 1.417e−04 9.765e−12 1.316e−12 1.316e−12

‖Hτ−

k̄
‖ 0 0 0 0

‖Gτ−
k̄
‖ 0 0 0 0

tk̄ 0.3517 3.227 6.937 12.93

6. Conclusions. We have proposed a structure-preserving doubling algorithm for the large-
scale nonsymmetric algebraic Riccati equation (1.1), the SDA ls ε, with A and D being large and
sparse(-like), and B and C being low-ranked. We apply the Sherman-Morrison-Woodbury formula
when appropriate and do not form Ek and Fk (the iterates for E and F ) explicitly. For well-
behaved NAREs, low-ranked approximations to the solutions X and Y can be obtained efficiently.
The convergence of the SDA ls ε is quadratic, ignoring the compression and truncation of Qi,k
and Pi,k, as shown in [17, 25]. The computational complexity and memory requirement are both
O(n), provided that the growth in the dimensions of Qi,k and Pi,k is controlled. In the error
analysis part, we gave a first order forward error bound for the computed approximate solution
in Theorem 3.1. Notice that large-scale NAREs, arisen naturally from transport theory [22, 23],
have not been investigated before. Our technique can be applied when A and D are large and
sparse(-like), or are products (inverses) of such matrices. The feasibility of the SDA ls ε depends
on whether A−1u, A−>u, D−1v and D−>v can be formed efficiently, for arbitrary vectors u and
v.

Acknowledgements. The first author was supported by the NSFC (No.11101080) and the
SRFDP (No.20110092120023), China. Parts of this project were completed while the first author
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Table 5.4
n = 10000, ετ = 10−12, εc = 10−8.

k ‖Hτ
k ‖ ‖Gτk‖ dk rk r̃k mk lk δtk tk

1 0.24203 0.23622 4.245e−2 1.110e−02 2.513e−02 2 2 1.2e−2 1.2e−2
2 0.25704 0.25051 2.643e−2 3.201e−03 7.165e−03 4 4 4.5e−2 5.7e−2
3 0.26182 0.25500 1.388e−2 7.928e−04 1.771e−03 8 8 3.1e−2 8.8e−2
4 0.26294 0.25606 6.634e−3 1.888e−04 4.216e−04 10 10 1.1e−1 1.9e−1
5 0.26316 0.25627 3.166e−3 4.494e−05 1.003e−04 12 12 2.6e−1 4.6e−1
6 0.26320 0.25631 1.473e−3 9.990e−06 2.231e−05 14 14 6.3e−1 1.1e+0
7 0.26321 0.25631 6.167e−4 1.904e−06 4.252e−06 15 15 1.5e+0 2.6e+0
8 0.26321 0.25632 2.365e−4 3.021e−07 6.746e−07 17 17 3.2e+0 5.8e+0
9 0.26321 0.25632 6.564e−5 3.417e−08 7.631e−08 18 18 7.5e+0 1.3e+1
10 0.26321 0.25632 1.076e−5 1.295e−09 2.891e−09 19 19 1.6e+1 3.0e+1
11 0.26321 0.25632 6.023e−7 3.942e−12 8.803e−12 20 20 3.4e+1 6.4e+1
12 0.26321 0.25632 3.142e−9 1.247e−12 2.784e−12 20 20 7.3e+1 1.4e+2

Table 5.5
n = 100000, ετ = 10−12, εc = 10−8.

k ‖Hτ
k ‖ ‖Gτk‖ dk rk r̃k mk lk δtk tk

1 0.23862 0.23907 4.180e−02 1.088e−02 2.497e−02 2 2 4.5e−2 4.5e−2
2 0.25331 0.25372 2.587e−02 3.142e−03 7.130e−03 4 4 1.5e−1 1.9e−1
3 0.25797 0.25836 1.378e−02 8.036e−04 1.820e−03 8 8 4.2e−1 6.2e−1
4 0.25910 0.25948 6.832e−03 1.969e−04 4.457e−04 10 10 1.7e+0 2.3e+0
5 0.25933 0.25972 3.309e−03 4.709e−05 1.066e−04 12 12 4.1e+0 6.4e+0
6 0.25938 0.25976 1.567e−03 1.091e−05 2.471e−05 14 14 9.7e+0 1.6e+1
7 0.25939 0.25977 7.140e−04 2.394e−06 5.420e−06 15 15 2.2e+1 3.8e+1
8 0.25939 0.25977 2.961e−04 4.475e−07 1.013e−06 17 17 4.7e+1 8.6e+1
9 0.25939 0.25977 9.725e−05 5.627e−08 1.274e−07 18 18 1.1e+2 1.9e+2
10 0.25939 0.25977 1.896e−05 2.937e−09 6.648e−09 20 20 2.3e+2 4.2e+2
11 0.25939 0.25977 1.276e−06 2.340e−11 5.297e−11 21 21 5.0e+2 9.2e+2
12 0.25939 0.25977 1.146e−08 1.181e−12 2.672e−12 21 21 1.0e+3 2.0e+3
13 0.25939 0.25977 1.662e−12 1.181e−12 2.672e−12 21 21 2.1e+3 4.0e+3
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