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The standard Yee’s scheme for the Maxwell eigenvalue problem places the discrete electric 
field variable at the midpoints of the edges of the grid cells. It performs well when the 
permittivity is a scalar field. However, when the permittivity is a Hermitian full tensor 
field it would generate un-physical complex eigenvalues or frequencies. In this paper, we 
propose a finite element method which can be interpreted as a modified Yee’s scheme 
to overcome this difficulty. This interpretation enables us to create a fast FFT eigensolver 
that can compute very effectively the band structure of the anisotropic photonic crystal 
with SC and FCC lattices. Furthermore, we overcome the usual large null space associated 
with the Maxwell eigenvalue problem by deriving a null-space free discrete eigenvalue 
problem which involves a crucial Hermitian positive definite linear system to be solved in 
each of the iteration steps. It is demonstrated that the CG method without preconditioning 
converges in 37 iterations even when the dimension of a matrix is as large as 5, 184, 000.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with a fast numerical eigensolver for the Maxwell eigenvalue problem

∇ × ∇ ×E = λεE, λ = μω2, (1a)

∇ · εE = 0 (1b)

posed on �, which is a primitive cell with lattice vectors a� , � = 1, 2, 3, of a periodic structure in R3 such as a photonic 
crystal (PC). Here in (1), E = E(x) is the electric field, ε is the periodic permittivity complex tensor field, and μ is the 
constant permeability scalar field. Mathematically, this problem arises naturally from the source-free Maxwell equations by 
assuming that the time dependent electric and magnetic fields are time-harmonic with a factor of e−ιωt (ι = √−1). In an 
anisotropic medium, the permittivity ε may take a Hermitian form [27–29]
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ε =
⎡⎣ ε11 ιε12 ιε13

−ιε12 ε22 ιε23
−ιε13 −ιε23 ε33

⎤⎦ . (2)

Anisotropic PC material has many interesting and novel applications in practice, such as the hollow semiconductor 
nanorod [22], femtosecond laser pulses [38], photonic crystal fibers [2,6,37], among others. In 1993, it was shown that 
the anisotropy of the material could split the degenerate band and narrow the band gap of a PC [41]. Later in 1998, a 
large band gap opening by using an anisotropic PC was shown in [23,24]. Thereafter, to exhibit large band gap tenability, a 
three-dimensional (3D) inverse opal PC structure infiltrated with liquid crystals was proposed in [7].

Computational methods play an equally important role in the study of the anisotropic material. The spectral element 
method [30], the finite-element method (FEM) [3,4,10,11,35], the mixed finite element method [21,25,26], the finite-
difference frequency-domain method (FDFD) [13,36], and the plane wave expansion method [20] have been proposed to 
compute the band structure of the anisotropic PC. In this paper, we are interested in creating a finite element method that 
resembles the finite difference Yee’s scheme [40] due to its robustness in solving the Maxwell eigenvalue problems associ-
ated with isotropic materials. Yee’s scheme only discretizes (1a) and leaves the divergence-free condition (1b). The reason 
for that is formerly the exact solution of (1a) satisfies (1b). Indeed, this strategy works well for isotropic materials. Thus, 
when it comes to the discretization of (1a)-(1b) or its many possible weak formulations through finite difference or finite 
element schemes, the traditional wisdom is to use spatial discretizations that admit discrete analogue of the divergence 
free condition. This class of spatial discretizations includes Yee’s scheme [14,16,40], the Whitney form [5,39], the covolume 
discretization [34], the mimetic discretization [19] and the edge element [32,33]. It should be noted that in all these cases 
the permittivity ε is a scalar field. In this paper, we will follow this approach, i.e., we will discretize (16a) in such a way that 
enables us to rigorously show in Theorem 5 of Sec. 5.2 that the discretized version of the weak divergence free condition 
(16b) is automatically satisfied, which is by no means a trivial task. On the other hand, there are certainly other approaches, 
e.g., [4] that keep (16b). They have the advantage of the availability of a general convergence theory of [3] for eigenvalue 
problems posed on general domains. However, for cuboid domains our approach can generate fast eigensolvers. The avail-
ability of such solvers is essential when the same large Maxwell eigenvalue problem has to be solved a large number of 
times when the material parameters in the constitutive relations must be varied in design problems [17].

On a 3D PC, due to the divergence-free condition (1b), a large null space of the underlying eigenvalue problem will 
be produced. The presence of the huge null space is a numerically challenging problem in solving the eigenvalue prob-
lem. Moreover, how to efficiently solve the associated linear system in each step of the eigensolver is another challenging 
problem.

In the 3D non-anisotropic cases (isotropic or bi-isotropic medium), we have had successes [8,14] in tackling these obsta-
cles that were present when using Yee’s scheme [40] in which E is assigned to the edge centers and the magnetic field H to 
the face centers. After the discretization phase, a generalized eigenvalue problem (GEP) with a large null space is produced. 
It is rather remarkable that a null-space free method with FFT (fast Fourier transform)-based matrix-vector multiplications 
has been found [8,14] to explicitly deflate this huge null space so that the GEP is transformed into a null-space free standard 
eigenvalue problem (NFSEP). The coefficient matrix of the NFSEP is Hermitian positive definite (HPD) and well-conditioned. 
Therefore, the associated linear system in each iteration of the invert Lanczos method can be efficiently solved by the con-
jugate gradient (CG) method without any preconditioner. In the dispersive PC with isotropic medium (i.e., ε is a piecewise 
nonlinear function of λ), a Newton-type iterative method [18] with the null-space free method is proposed to solve the 
associated nonlinear eigenvalue problem.

The successes of the null-space free method in isotropic and bi-isotropic PCs are partially due to the fact that the 
permittivity ε is a piecewise constant scalar field, and there is no conflict in the placement of discrete permittivity variable. 
In other words, it meshes well with the standard discretization by Yee’s scheme. However, for the anisotropic material, there 
is a conflict in the placement of discrete tensor permittivity variable. How to modify Yee’s scheme so that the null-space 
free method can be applied to a tensor field ε is one of the issues addressed in this paper.

In an anisotropic medium, the permittivity ε is given in the tensor form (2) where εi j , for 1 ≤ i, j ≤ 3, are piecewise 
constants or piecewise nonlinear functions. Moreover, in [27,28], the tensor ε is HPD. A FDTD method [36] for modeling 
electromagnetic scattering is proposed to discretize the general anisotropic objects. The important structure and property 
of the tensor ε in (2) were not considered in this discretization. In this paper, we will exclusively consider the case in 
which the Hermitian matrix in (2) satisfies that εi j are piecewise constant, and propose a new finite element scheme which 
preserves the Hermitian and positive definiteness (if ε has) in the discretization. The main contributions in this paper are 
summarized as follows:

• Our new finite element method can be interpreted as a modified finite difference Yee’s scheme. As a consequence, 
the discretization of the double curl operator in our proposed method is equivalent to the corresponding operator in 
Yee’s scheme so that the null-space free method [8,14] can be applied to solve the resulting generalized eigenvalue 
problem. Furthermore, a well-known feature of the classical finite difference Yee’s scheme for isotropic materials is that 
the divergence free condition of the field is automatically satisfied by the finite difference solution. In other words, one 
needs not to discretize (1b) explicitly. We show in Theorem 5 that our method preserves this feature for anisotropic 
materials as well.
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• For the right-hand side of (1a), our method provides an HPD-preserving coefficient matrix Bε , i.e., if ε is HPD, so is Bε . 
Furthermore, the matrix Bε can be factorized by FFT-matrices, diagonal matrices and a 3 × 3 block diagonal matrix with 
a suitable permutation. The special factorization of Bε results in minimal effort in inverting Bε while still keeping the 
correct physics intact (real frequencies).

• Based on the above important factorization of Bε , the null-space free method can be applied to reduce the GEP into 
a NFSEP with HPD coefficient matrix. The NFSEP can be solved by the invert Lanczos method and the CG method 
without preconditioning can be used to solve the linear system efficiently at each iteration. The computational cost of 
the matrix-vector multiplication in the CG method is almost equal to that of the null-space free method in isotropic 
PCs.

This paper is organized as follows. We introduce our proposed finite element method in Section 2. The equivalence 
between our method and Yee’s scheme for the discretization of double-curl operator is shown in Section 3. The discretization 
of εE is introduced in Section 4. In Section 5, we show that the coefficient matrix corresponding to ε is HPD, and the 
divergence free condition is automatically satisfied for the approximate electric field. Finally, the numerical efficiency of the 
developed schemes is studied in Section 6.

2. A finite element method for Maxwell eigenvalue problem

In this section, we propose a weak formulation for the Maxwell eigenvalue problem (1) and a Galerkin finite element 
method to solve it.

2.1. Weak formulation of problem (1)

Denote by (f, g) the complex inner product of CN -valued functions in L2(�), i.e.,

(f,g) =
∫
�

N∑
i=1

f i(x)gi(x)dx =
∫
�

g∗(x)f(x)dx. (3)

Here “∗” denotes the conjugate transpose. Let � be a primitive cell with lattice vectors a�, � = 1, 2, 3. It is known that the 
electric field satisfies the quasi-periodic condition

E(x + a�) = eι2πk·a�E(x), � = 1,2,3, (4)

for all x ∈R
3, where the Bloch wave vector k lies in the first Brillouin zone B.

Corresponding to E, we can define a periodic function u, its associated modulating amplitude, as

u(x) = e−ι2πk·x
E(x), (5)

which satisfies the periodic condition

u(x + a�) = u(x), � = 1,2,3. (6)

Thus one can also study the Maxwell eigenvalue problem (1) by the equivalent system in terms of u:

∇k × ∇k × u = λεu, (7a)

∇k · εu = 0, (7b)

where the shifted gradient operator ∇k := ∇ + ι2πk.

Remark 1. This u-system (7) has the advantage of having Fourier analysis at our disposal when analyzing the existence, 
stability, and convergence issues, see [11,35]. However, in this paper we are more concerned with creating fast eigensolvers 
and the E-system (1) will be used. We will have occasions of interpreting some nice spectral-theory results from [35, 
Chapter 4] back to the E-system.

We need to introduce some complex-valued function spaces. Let

H(curl,�) := {v : � →C
3|v,∇ × v ∈ L2(�)}

with the norm

||v||2H(curl,�) := ||v||2L2(�)
+ ||∇ × v||2L2(�)

,

and let
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C∞
per(�) := {φ|� : φ :R3 →C, φ ∈ C∞(R3),φ(x + a�) = φ(x), � = 1,2,3},

C∞
per(�) := {v|� : v : R3 →C

3, v ∈ C∞(R3), v(x + a�) = v(x), � = 1,2,3}.
Define the periodic function spaces

Hper(curl,�) := the closure of C∞
per(�) in H(curl,�), (8a)

H1
per(�) := the closure of C∞

per(�) in H1(�), (8b)

and their associated quasi-periodic function spaces

Hqper(curl,�) := {v : e−ι2πk·x v ∈ Hper(curl,�)}, (8c)

H1
qper(�) := {φ : e−ι2πk·xφ ∈ H1

per(�)}. (8d)

Note that in view of (5), (6) and the Fourier series representation, functions in the above two spaces satisfy the quasi-
periodic conditions (4).

Theorem 1. For any E, W ∈ C∞(R3) ∩ Hqper(curl, �) and φ ∈ C∞(R3) ∩ H1
qper(�), we have

(∇ × ∇ ×E,W) = (∇ ×E,∇ ×W), (9a)

(∇(εE),φ) = (εE,∇φ). (9b)

Proof. Since E and W are smooth, Green’s formula implies

(∇ × ∇ ×E,W) = (∇ ×E,∇ ×W) +
∫
∂�

ν × ∇ × E ·WdA, (10)

where ν is the outward unit normal vector to the boundary. For convenience, we name the six boundary surfaces of the 
primitive cell � as ∂�0

a1
, ∂�1

a1
, ∂�0

a2
, ∂�1

a2
, ∂�0

a3
and ∂�1

a3
, where

∂�s
a1

= {sa1 + aa2 + ba3 |a,b ∈ [0,1]},
∂�s

a2
= {sa2 + aa3 + ba1 |a,b ∈ [0,1]},

∂�s
a3

= {sa3 + aa1 + ba2 |a,b ∈ [0,1]},
for s = 0, 1. Then the surface integral term in (10) can be divided as

3∑
�=1

⎛⎜⎜⎝ ∫
∂�0

a�

ν�,0 × ∇ ×E ·WdA +
∫

∂�1
a�

ν�,1 × ∇ ×E ·WdA

⎞⎟⎟⎠
where ν�,0 = −ν�,1 are the outward unit normal vectors on ∂�0

a�
and ∂�1

a�
, respectively. In particular, from the quasi-

periodicity of E and W, we have∫
∂�0

a�

ν�,0 × ∇ ×E(x) ·W(x)dA =
∫

∂�0
a�

ν�,0 × ∇ ×E(x + a�) ·W(x + a�)dA

=
∫

∂�1
a�

−ν�,1 × ∇ ×E(x) ·W(x)dA,

for � = 1, 2, 3. Therefore, the result in (9a) is proved.
To show (9b), we observe that

(∇ · εE, φ) = (εE,−∇φ) +
∫
∂�

εE · νφdA. (11)

Again, the surface integral term in (11) can be divided as
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3∑
�=1

⎛⎜⎜⎝ ∫
∂�0

a�

εE · ν�,0φdA +
∫

∂�1
a�

εE · ν�,1φdA

⎞⎟⎟⎠ .

From the periodicity of ε, and the quasi-periodicity of E and φ, we have∫
∂�0

a�

εE(x) · ν�,0φ(x)dA =
∫

∂�0
a�

ε(x + a�)E(x + a�) · ν�,0φ(x + a�)dA

=
∫

∂�1
a�

ε(x)E(x) · (−ν�,1)φ(x)dA

for � = 1, 2, 3. The result in (9b) is obtained. �
In view of Theorem 1, a simple density argument suggests that we consider the following weak formulation of problem 

(1): Find a pair (λ, E) with λ ∈C and E ∈ Hqper(curl, �) such that

(∇ ×E,∇ ×W) = λ(εE,W), ∀W ∈ Hqper(curl,�), (12a)

(εE,∇φ) = 0, ∀φ ∈ Hqper(�). (12b)

However, from a computational electromagnetics viewpoint, it is more convenient to work with the following two spaces 
whose description is more accessible: For functions u : R3 → C

3 and φ :R3 → C, we define

Hcurl(�) = {u|� : u ∈ H(curl,�), u(x + a�) = eι2πk·a� u(x), � = 1,2,3}, (13)

Hgrad(�) = {φ|� : φ ∈ H1(�), φ(x + a�) = eι2πk·a�φ(x), � = 1,2,3}. (14)

Remark 2. Alternatively, the quasi-periodic condition in (13) can be viewed as a way to extend the functions outside of 
�, while the regularity condition u ∈ H(curl, �), together with the quasi-periodic condition, implies a tangential boundary 
(trace) condition on ∂�:

uT (x + a�) = eι2πk·a� uT (x), � = 1,2,3, (15)

where uT = ν × u is the tangential trace of u.
In fact, Hgrad(�) = H1

qper(�) and Hcurl(�) = Hqper(curl, �). It is not hard to see that the first relation holds. The proof 
of the second relation and (15) uses similar arguments in proving two characterizations of H0(curl) are equivalent (cf. [31, 
Theorem 3.33] or [12, Theorem 2.12]). See also [1, Lemma 2.1]. The analogy is not surprising, if we view the difference of 
(15) as a zero-trace condition.

In summary, we shall consider the weak formulation of problem (1): Find a pair (λ, E) with λ ∈C and E ∈ Hcurl(�) such 
that

(∇ ×E,∇ ×W) = λ(εE,W), ∀W ∈ Hcurl(�), (16a)

(εE,∇φ) = 0, ∀φ ∈ Hgrad(�), (16b)

where ε : R3 → C
3×3 is a tensor field of the general form (not necessarily Hermitian)

ε =
⎡⎣ε11 ε12 ε13

ε21 ε22 ε23
ε31 ε32 ε33

⎤⎦ . (17)

Remark 3. Due to the existence of an exact de Rham sequence (cf. [35, p. 58]) and Remark 1, it implies that

∇ (Hgrad(�)
)⊂ Hcurl(�). (18)

Thus we can set W = ∇φ in (16a) and see that [9] when λ �= 0, the divergence free condition is automatically satisfied. Our 
discrete weak formulation below will respect this property (see subsection 5.2):

∇
(

Hh
grad(�)

)
⊂ Hh

curl(�). (19)
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Remark 4. It may be curious that why there is no need in introducing a Lagrange multiplier in the above weak formulation. 
See [35, Proposition 4.20] for such a case. Using the techniques in [35] via (5), we can show a result similar to the Prop. 4.20: 
Suppose that ε is HPD. Then for each k ∈ B, first Brillouin zone, the eigenvalue problem (16) has an increasing sequence 
{λ j} j∈N of non-negative real numbers tending to infinity. Each eigenvalue has finite multiplicity and zero is an eigenvalue 
if and only if k = 0. The details will be reported elsewhere. As a consequence, zero eigenvalue is not only nonphysical, but 
mathematically spurious for the k �= 0 case, when a discrete weak formulation of the Maxwell eigenvalue problem produces 
zero eigenvalue. A null-space free method would be called for in such a case.

2.2. Discretizations of weak formulations of (16)

In this subsection, we use a Galerkin finite element method based on the edge elements to approximate the exact field 
E in (16a). To this end, let Hh

curl(�) and Hh
grad(�) be 3N-dimensional linear subspaces of Hcurl(�) and N-dimensional linear 

subspace of Hgrad(�), respectively (to be defined in (23) and (24), respectively). Then a straightforward Galerkin method for 
(16a)-(16b) is: Find a pair (λ, E) with λ ∈C and E ∈ Hh

curl(�) such that

(∇ × E,∇ × W )h = λ(εE, W )h, ∀ W ∈ Hh
curl(�), (20a)

(εE,∇φ)h = 0, ∀φ ∈ Hh
grad(�). (20b)

Here ( f , g)h is a discrete inner product to be specified later.
To simplify the discussion, we only give the details when � is a simple cubic (SC) primitive cell with the lattice transla-

tion vectors a� = a ̂x�, � = 1, 2, 3, where x̂� is the �-th unit vector in R3. Along the way, we also give sufficient remarks for 
the face-centered cubic (FCC) lattice so that it can be handled similarly. Let hx , hy , and hz be the equal grid spacings along 
the x, y, and z directions, respectively. Grid points are indexed from 0 to ni (i = 1, 2, 3) with n1 = a/hx, n2 = a/hy, n3 = a/hz . 
Thus the number of the edges parallel to the x-, y- and z-axes, respectively, excluding those on the right, rear, and top sur-
faces, is just N = n1n2n3.

From now on, we use xm = mhx and xm̂ = m̂hx , where m̂ = m + 1
2 . Furthermore, for m = −1, 0, . . . , n1, let ĉm̂(x) denote 

the characteristic function whose value is one over [xm, xm+1] and zero elsewhere, l̂i denote the generic global hat function 
supported over [xi−1, xi+1], i.e., l̂i(x�) = δi� , for i = 1, . . . , n1 − 1. Here and hereafter, δi� denotes the Kronecker delta. Similar 
notations are used for the y and z directions.

We now define piecewise constant functions

cî(x) = ĉî(x), c ĵ(y) = ĉ ĵ(y), ck̂(z) = ĉk̂(z), (21a)

for i �= 0, n1 − 1, j �= 0, n2 − 1, k �= 0, n3 − 1, and

c0̂(x) = ĉ0̂(x) + eι2πk·a1 ĉn̂1
(x), cn̂1−1(x) = ĉn̂1−1(x) + e−ι2πk·a1 ĉ-̂1(x), (21b)

c0̂(y) = ĉ0̂(y) + eι2πk·a2 ĉn̂2
(y), cn̂2−1(y) = ĉn̂2−1(y) + e−ι2πk·a2 ĉ-̂1(y), (21c)

c0̂(z) = ĉ0̂(z) + eι2πk·a3 ĉn̂3
(z), cn̂3−1(z) = ĉn̂3−1(z) + e−ι2πk·a3 ĉ-̂1(z), (21d)

as well as piecewise linear functions,

li(x) = l̂i(x), l j(y) = l̂ j(y), lk(z) = l̂k(z), (22a)

for i, j, k �= 0, and

l0(x) =

⎧⎪⎨⎪⎩
−h−1

x (x − x1), if x ∈ [x0, x1],
eι2πk·a1 h−1

x (x − xn1−1), if x ∈ [xn1−1, xn1 ],
0, otherwise,

(22b)

l0(y) =

⎧⎪⎨⎪⎩
−h−1

y (y − y1), if y ∈ [y0, y1],
eι2πk·a2 h−1

y (y − yn2−1), if y ∈ [yn2−1, yn2 ],
0, otherwise,

(22c)

l0(z) =

⎧⎪⎨⎪⎩
−h−1

z (z − z1), if z ∈ [z0, z1],
eι2πk·a3 h−1

z (z − zn3−1), if z ∈ [zn3−1, zn3 ],
0, otherwise.

(22d)

Based on the piecewise constant and linear functions in (21) and (22), we now define bases for the 3N-dimensional 
subspace Hh (�) and N-dimensional subspace Hh (�) in (20), respectively, as
curl grad
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Hh
curl(�) = span{φi, j,k

1
i, φ

r,s,t
2

j, φ
�,m,n
3

k} ⊂ Hcurl(�) (23)

and

Hh
grad(�) = span{φi, j,k} ⊂ Hgrad(�), (24)

where i, j, k are the standard unit vectors in R3, and

φ
i, j,k
1 (x, y, z) := cî(x)l j(y)lk(z), (25a)

φ
r,s,t
2 (x, y, z) := lr(x)cŝ(y)lt(z), (25b)

φ
�,m,n
3 (x, y, z) := l�(x)lm(y)cn̂(z), (25c)

φi, j,k(x, y, z) := li(x)l j(y)lk(z) (25d)

with the sup-indices varying in the set S described as

S = {(i, j,k) : i = 0, . . . ,n1 − 1, j = 0, . . . ,n2 − 1,k = 0, . . . ,n3 − 1}. (26)

The components of an approximate electric field E ∈ Hh
curl(�) are piecewise constant in one direction and piecewise 

linear in the other two remaining directions, i.e.,

E1(x, y, z) =
∑

(i, j,k)∈S

E1|î, j,kcî(x)l j(y)lk(z) ≡
∑

(i, j,k)∈S

E1|î, j,kφ
i, j,k
1 , (27a)

E2(x, y, z) =
∑

(i, j,k)∈S

E2|i, ĵ,kli(x)c ĵ(y)lk(z) ≡
∑

(i, j,k)∈S

E2|i, ĵ,kφ
i, j,k
2 , (27b)

E3(x, y, z) =
∑

(i, j,k)∈S

E3|i, j,k̂li(x)l j(y)ck̂(z) ≡
∑

(i, j,k)∈S

E3|i, j,k̂φ
i, j,k
3 . (27c)

Here in (27a), a subindex (î, j, k) indicates that a quantity is located at the midpoint of that edge. By direct evaluation, 
we see that E1|î, j,k = E1(xi+ 1

2
, y j, zk). Similar interpretations hold for E2 and E3. The Ei ’s are the familiar edge elements 

closely related to the finite difference Yee’s scheme [9]. In consistent with the quasi-periodic conditions (15), it is easily 
checked that

Left-Right

{
E2|n1, ĵ,k = eι2πk·a1 E2|0, ĵ,k, j = 0 : n2 − 1,k = 0 : n3 − 1,

E3|n1, j,k̂ = eι2πk·a1 E3|0, j,k̂, j = 0 : n2 − 1,k = 0 : n3 − 1,
(28a)

Front-Rear

{
E1|î,n2,k = eι2πk·a2 E1|î,0,k, i = 0 : n1 − 1,k = 0 : n3 − 1,

E3|i,n2,k̂ = eι2πk·a2 E3|i,0,k̂, i = 0 : n1 − 1,k = 0 : n3 − 1,
(28b)

Top-Bottom

{
E1|î, j,n3

= eι2πk·a3 E1|î, j,0, i = 0 : n1 − 1, j = 0 : n2 − 1,

E2|i, ĵ,n3
= eι2πk·a3 E2|i, ĵ,0, i = 0 : n1 − 1, j = 0 : n2 − 1.

(28c)

For the derivation of the generalized eigenvalue problem for (20a), the vectorized form of the discrete electric field E in 
(27) can be written as

e = [
e�

1 e�
2 e�

3

]�
(29)

with

e1 = vec{E1|î, j,k}, e2 = vec{E2|i, ĵ,k}, e3 = vec{E3|i, j,k̂},
for (i, j, k) ∈ S . Here

vec{F } :=

⎡⎢⎢⎢⎣
vec(F (0 : n1 − 1,0 : n2 − 1,0))

vec(F (0 : n1 − 1,0 : n2 − 1,1))
...

vec(F (0 : n1 − 1,0 : n2 − 1,n3 − 1))

⎤⎥⎥⎥⎦
for given F ∈C

n1×n2×n3 .
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In terms of the basis functions of Hh
curl(�), we expect the discrete weak formulation (20a) to have a matrix form

Ae = λBεe, (30)

where e is as in (29), A and Bε are matrix representations of the left and right hand sides of (20a), respectively. In Sections 3
and 4, we will use the trapezoidal quadrature

( f (x), g(x)) =
xn∫

xm

f (x)g(x)dx

≈ hx

2

⎡⎣ f (xm)g(xm) + 2
n−1∑

i=m+1

f (xi)g(xi) + f (xn)g(xn)

⎤⎦
≡ ( f (x), g(x))h (31)

to approximate the discretization in (20a) with Hh
curl(�) in (23) so that the matrix A in (30) is identical to that of Yee’s 

scheme up to a factor hxhyhz .

3. Trapezoidal quadrature approximation for (∇ × E, ∇ × W )

For a given E ∈ Hh
curl(�), from (20a) and (23) it suffices to consider the expressions

(∇ × E,∇ × φ
i, j,k
1

i), (∇ × E,∇ × φ
i, j,k
2

j), (∇ × E,∇ × φ
i, j,k
3

k) (32)

with (i, j, k) ∈ S in (26) and φi,k, j
� , � = 1, 2, 3, in (25). In fact, the inner product (·, ·) in (32) involves the evaluation of 

typical terms like (l, c), (c, l), (l, l) and (c, c). For technical derivation, instead of the exact integrals (lr(x), li(x)), (ls(y), l j(y))

and (lt(z), lk(z)) in (32), we use the trapezoidal quadrature (31) to obtain

(lr(x), li(x))h = δrihx, (ls(y), l j(y))h = δsjhy, (lt(z), lk(z))h = δtkhz (33)

for their approximations.
Let

c-̂1(x) = eι2πk·a1 cn̂1−1(x), c-̂1(y) = eι2πk·a2 cn̂2−1(y), c-̂1(z) = eι2πk·a3 cn̂3−1(z). (34)

Then the following relations hold:

∂xli(x) = h−1
x (cî−1(x) − cî(x)), (35a)

∂yl j(y) = h−1
y (c ĵ−1(y) − c ĵ(y)), (35b)

∂zlk(z) = h−1
z (ck̂−1(z) − ck̂(z)), (35c)

and

∂yφ
i, j,k
1 = h−1

y cî(c ĵ−1 − c ĵ)lk, ∂zφ
i, j,k
1 = h−1

z cîl j(ck̂−1 − ck̂), (36a)

∂xφ
i, j,k
2 = h−1

x (cî−1 − cî)c ĵlk, ∂zφ
i, j,k
2 = h−1

z lic ĵ(ck̂−1 − ck̂), (36b)

∂xφ
i, j,k
3 = h−1

x (cî−1 − cî)l jck̂, ∂yφ
i, j,k
3 = h−1

y li(c ĵ−1 − c ĵ)ck̂, (36c)

for (i, j, k) ∈ S .
Before proving the following theorem concerning a certain consistency between our edge element scheme and the finite 

difference Yee’s scheme, we denote the difference matrix with the quasi-periodic condition as

Kn�,a�
=
[

0 In�−1

eι2πk·a� 0

]
− In�

∈C
n�×n� , (37)

for � = 1, 2, 3.

Theorem 2. For an SC lattice, the vectorized forms of the inner products described in (32) take on the matrix representation⎡⎢⎣ vec{(∇ × E,∇ × φ
i, j,k
1

i)h}(i, j,k)∈S

vec{(∇ × E,∇ × φ
i, j,k
2

j)h}(i, j,k)∈S

vec{(∇ × E,∇ × φ
i, j,k
3

k)h}(i, j,k)∈S

⎤⎥⎦= (hxhyhz)C∗Ce, (38)
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where e is defined in (29),

C =
⎡⎣ 0 −C3 C2

C3 0 −C1
−C2 C1 0

⎤⎦ ∈C
3N×3N (39)

with

C1 = h−1
x In3 ⊗ In2 ⊗ Kn1,a1 ∈C

N×N , (40a)

C2 = h−1
y In3 ⊗ Kn2,a2 ⊗ In1 ∈C

N×N , (40b)

C3 = h−1
z Kn3,a3 ⊗ In2 ⊗ In1 ∈C

N×N , (40c)

in which ⊗ denotes the Kronecker product.

Proof. We start with the first inner product in (32)

(∇ × E,∇ × φ
i, j,k
1

i) = (∂z E1 − ∂x E3, ∂zφ
i, j,k
1 ) − (∂x E2 − ∂y E1, ∂yφ

i, j,k
1 ) (41)

and the similar process can be applied to the remaining two.
From (27), we have

(∂z E1, ∂zφ
i, j,k
1 ) =

∑
(r,s,t)∈S

E1|r̂,s,t(∂zφ
r,s,t
1 , ∂zφ

i, j,k
1 ). (42)

It follows from (36) that

(∂zφ
r,s,t
1 , ∂zφ

i, j,k
1 ) = h−2

z (cr̂ls(ct̂−1 − ck̂), cîl j(ck̂−1 − ck̂))

= h−2
z

∫
cr̂cîdx

∫
lsl jdy

∫
(ct̂−1 − ct̂)(ck̂−1 − ck̂)dz. (43)

By the definitions of cî(x) and ck̂(z) in (21), it holds that

(cr̂(x), cî(x)) = δrihx (44)

and

(ct̂−1(z) − ct̂(z), ck̂−1(z) − ck̂(z))

(34)=

⎧⎪⎨⎪⎩
hz
(−e−ι2πk·a3δt,n3−1 + 2δt0 − δt1

)
, if k = 0,

hz(−δt,k−1 + 2δtk − δt,k+1), if k �= 0,n3 − 1,

hz
(−δt,n3−2 + 2δt,n3−1 − eι2πk·a3δt0

)
, if k = n3 − 1.

(45)

Plugging (33), (44) and (45) into (43), we have

(∂zφ
r,s,t
1 , ∂zφ

i, j,k
1 )h = h−2

z (δrihx)(δsjhy) × (45).

Thus, the inner product in (42) with trapezoidal approximation is equal to

hz(∂z E1, ∂zφ
i, j,k
1 )h

= hxhyhz

−E1|î, j,k−1 + 2E1|î, j,k − E1|î, j,k+1

hz

= hxhyhz

(
E1|î, j,t+1 − E1|î, j,t

hz

∣∣∣∣∣
t=k−1

−
E1|î, j,t+1 − E1|î, j,t

hz

∣∣∣∣∣
t=k

)

:= hxhyhz

E1|î, j,t+1 − E1|î, j,t

hz

∣∣∣∣∣
t=k−1

t=k

(46a)

by replacing E1|î, j,−1 and E1|î, j,n3
with quasi-periodic conditions

E1|î, j,−1 = e−ι2πk·a3 E1|î, j,n3−1 and E1|î, j,n3
= eι2πk·a3 E1|î, j,0,

respectively. Similarly,
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hy(∂y E1, ∂yφ
i, j,k
1 )h = hxhyhz

E1|î,s+1,k − E1|î,s,k
hy

∣∣∣∣s= j−1

s= j

. (46b)

On the other hand, from (27) and (36), we have

(∂x E3, ∂zφ
i, j,k
1 ) =

∑
(r,s,t)∈S

E3|r,s,t̂(∂xφ
r,s,t
3 , ∂zφ

i, j,k
1 ) (47)

and

(∂xφ
r,s,t
3 , ∂zφ

i, j,k
1 ) = h−1

x h−1
z ((cr̂−1 − cr̂)lsct̂, cîl j(ck̂−1 − ck̂))

= h−1
x h−1

z

∫
(cr̂−1 − cr̂)cîdx

∫
lsl jdy

∫
ct̂(ck̂−1 − ck̂)dz. (48)

Plugging (33) and

(cr̂−1(x) − cr̂(x), cî(x))
(34)=

{
hx
(
eι2πk·a1δr,0 − δr,n1−1

)
, if i = n1 − 1,

hx(δr,i+1 − δr,i), if i �= n1 − 1,

(ct̂(z), ck̂−1(z) − ck̂(z))
(34)=

{
hz
(
e−ι2πk·a3δt,n3−1 − δt,0

)
, if k = 0,

hz(δt,k−1 − δt,k), if k �= 0

into (48), the inner product in (47) can be approximated by the trapezoidal rule:

(∂x E3, ∂zφ
i, j,k
1 )h

= − hxhyhz

(
E3|i+1, j,k̂ − E3|i+1, j,k̂−1

)
−
(

E3|i, j,k̂ − E3|i, j,k̂−1

)
hxhz

= − hxhyhz

E3|r, j,k̂ − E3|r, j,k̂−1

hxhz

∣∣∣∣∣
r=i+1

r=i

(49a)

by replacing E3|n1, j,k̂ and E3|i, j,-̂1 with quasi-periodic conditions

E3|n1, j,k̂ = eι2πk·a3 E3|0, j,k̂ and E3|i, j,-̂1 = e−ι2πk·a3 E3|i, j,n̂3−1,

respectively. Similarly,

(∂x E2, ∂yφ
i, j,k
1 )h

= − hxhyhz

(
E2|i+1, ĵ,k − E2|i+1, ĵ−1,k

)
−
(

E2|i, ĵ,k − E2|i, ĵ−1,k

)
hxhy

= − hxhyhz

E2|r, ĵ,k − E2|r, ĵ−1,k

hxhy

∣∣∣∣∣
r=i+1

r=i

(49b)

From (46) and (49), we see the following central differences:

1

hxhyhz
(∂z E1, ∂zφ

i, j,k
1 )h = ∂z E1(î, j, k̂ − 1) − ∂z E1(î, j, k̂)

hz
, (50a)

1

hxhyhz
(∂y E1, ∂yφ

i, j,k
1 )h = ∂y E1(î, ĵ − 1,k) − ∂y E1(î, ĵ,k)

hy
, (50b)

1

hxhyhz
(∂x E3, ∂zφ

i, j,k
1 )h = ∂z E3(i + 1, j,k) − ∂z E3(i, j,k)

hx
, (50c)

1

hxhyhz
(∂x E2, ∂yφ

i, j,k
1 )h = ∂y E2(i + 1, j,k) − ∂y E2(i, j,k)

hx
. (50d)

Then, letting H = ∇ × E , it is now not hard to see from (41) and (50) that
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1

hxhyhz

(
∇ × E,∇ × φ

i, j,k
1

i
)

h

= H2(î, j, k̂ − 1) − H2(î, j, k̂)

hz
− H3(î, ĵ − 1,k) − H3(î, ĵ,k)

hy

= − ∂z H2(î, j,k) + ∂y H3(î, j,k)

= (∇ × H)1(î, j,k).

Similarly, we have

1

hxhyhz

(
∇ × E,∇ × φ

i, j,k
2

j
)

h
= (∇ × H)2(i, ĵ,k),

1

hxhyhz

(
∇ × E,∇ × φ

i, j,k
3

k
)

h
= (∇ × H)3(i, j, k̂).

This shows that the edge element method with the trapezoidal rule and the finite difference Yee’s scheme produce the 
same left-hand side up to a factor. On the other hand, from the results in [8], the matrix form of the discrete double curl 
operator by using Yee’s scheme is C∗C . Consequently, the vectorized forms of the inner products in (32) have the form of 
(38). �
Remark 5. The quasi-periodic condition is easily enforced for the approximate electric field E in the SC lattice since the 
lattice translation vectors a� = ax̂� . For the FCC lattice they are not aligned with the coordinator axes, we must derive the 
non-diagonal relations, for example, the top-bottom variables are not componentwise related as above. The relations are 
already derived in [15].

Remark 6. For a FCC lattice, the matrices C1, C2, and C3 with quasi-periodic condition (4) are somewhat complicated which 
can be found in Appendix.

From Theorem 2, the edge elements allow the traditional Yee’s discretization done for ∇ × (∇ ×E) to be preserved. The 
edge finite element method (20a) with the trapezoidal rule is equivalent to the finite difference Yee’s scheme up to a factor 
of hxhyhz . That is, edge elements and Yee’s discretization generate the discrete matrices hxhyhz A and A, respectively, where 
A is of the form

A = C∗C, (51)

and has the following eigen-decomposition.

Theorem 3 ([8,14]). Let C�, � = 1, 2, 3 and A be defined in (40) and (51), respectively. Then C1 , C2 , C3 are simultaneously diagonal-
izable by unitary matrix T ∈C

n×n in the forms

C�T = T �, � = 1,2,3, (52)

where � is the eigenvalue matrix for C�. Moreover, there is an orthonormal matrix

Q r := (I3 ⊗ T )�r ≡ (I3 ⊗ T )

⎡⎣�r,1 �r,2
�r,3 �r,4
�r,5 �r,6

⎤⎦ ∈C
3N×2N , (53)

where �r, j ∈C
N×N , j = 1, . . . , 6, are diagonal such that A has an eigen-decomposition of the form

Q ∗
r A Q r = diag

(
q,q

)≡ r

with q being a diagonal matrix whose diagonal entries are the positive eigenvalues of A.

4. Trapezoidal quadrature approximation for (εE, W )

In this section, we will derive the discretization of the right-hand side of (20a). For simplicity, let εi, j,k
rs denote the value 

of εrs at the point (ihx, jhy, khz), for r, s = 1, 2, 3. Recalling the basis for Hh
curl(�) defined in (23), we consider

(εE, φ
i, j,k
1

i), (εE, φ
i, j,k
2

j), (εE, φ
i, j,k
3

k) (54)

with sup-indices (i, j, k) in S and discuss the componentwise contributions resulted from applying the trapezoidal rule in 
(31) to the integrals on the right-hand side of (20a).

To this end, we first give a useful lemma.
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Lemma 1. Let f : R → C be a piecewise constant function defined on [x0, xn1 ] satisfying the periodic boundary condition f (x0) =
f (xn1 ). Then, for given r, i = 0, 1, . . . , n1 − 1, we have trapezoidal approximations

( f cr̂, cî)h = hx

2

(
δr,i−1 f (xi) + δri( f (xi) + f (xi+1)) + δr,i+1 f (xi+1)

)
, (55a)

( f lr, li)h = hxδri f (xi), (55b)

( f cr̂, li)h = hx

2

{
(δr,i−1 + δri) f (xi), if i �= 0,

(δr0 + e−ι2πk·a1δr,n1−1) f (x0), if i = 0,
(55c)

( f lr, cî)h = hx

2

{
δri f (xi) + δr,i+1 f (xi+1), if i �= n1 − 1,

eι2πk·a1δr0 f (x0) + δr,n1−1 f (xn1−1), if i = n1 − 1.
(55d)

Similar relations hold for the y- and z-directions.

Proof. From the definitions of cî(x) in (21) and li(x) in (22), it holds that

( f cr̂, cî) =
xn1∫

x0

f (x)cr̂(x)cî(x)dx =
xi+1∫
xi

f (x)cr̂(x)dx,

( f lr, li) =
xn1∫

x0

f (x)lr(x)li(x)dx =
xi+1∫

xi−1

f (x)lr(x)li(x)dx,

( f cr̂, li) =
xn1∫

x0

f (x)cr̂(x)li(x)dx =
xr+1∫
xr

f (x)li(x)dx,

( f lr, cî) =
xn1∫

x0

f (x)lr(x)cî(x)dx =
xi+1∫
xi

f (x)lr(x)dx.

Then, using the trapezoidal rule in (31) directly, we obtain

( f cr̂, cî)h = hx

2

(
( f cr̂)(xi) + ( f cr̂)(xi+1)

)
= hx

2

(
δr,i−1 f (xi) + δri( f (xi) + f (xi+1)) + δr,i+1 f (xi+1)

)
,

( f lr, li)h = hx
( f lrli)(xi−1) + 2( f lrli)(xi) + ( f lrli)(xi+1)

2
= hxδri f (xi),

and

( f cr̂, li)h = hx
( f li)(xr) + ( f li)(xr+1)

2

=
{

hx
(δri+δr,i−1) f (xi)

2 , if i �= 0,

hx
(δr0+e−ι2πk·a1 δr,n1−1) f (x0)

2 , if i = 0,

( f lr, cî)h = hx
( f lr)(xi) + ( f lr)(xi+1)

2

=
{

hx
(δri f (xi)+δr,i+1 f (xi+1))

2 , if i �= n1 − 1,

hx
(eι2πk·a1 δr0 f (x0)+δr,n1−1 f (xn1−1))

2 , if i = n1 − 1. �
4.1. Trapezoidal approximation for diagonal entries

The diagonal entries of inner products in (54) are considered as

(εmm Em, φ
i, j,k
m ), for m = 1,2,3. (56)
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From (55a)-(55b) in Lemma 1, we have

(ε11φ
r,s,t
1 , φ

i, j,k
1 )h

=hxhyhzδsjδtk
δr,i−1ε

i, j,k
11 + δri(ε

i, j,k
11 + ε

i+1, j,k
11 ) + δr,i+1ε

i+1, j,k
11

2
, (57a)

(ε22φ
r,s,t
2 , φ

i, j,k
2 )h

=hxhyhzδriδtk
δs, j−1ε

i, j,k
22 + δsj(ε

i, j,k
22 + ε

i, j+1,k
22 ) + δs, j+1ε

i, j+1,k
22

2
, (57b)

(ε33φ
r,s,t
3 , φ

i, j,k
3 )h

=hxhyhzδriδsj
δt,k−1ε

i, j,k
33 + δtk(ε

i, j,k
33 + ε

i, j,k+1
33 ) + δt,k+1ε

i, j,k+1
33

2
. (57c)

Then, by evaluating the Kronecker delta in (57) carefully, the inner products in (56) have matrix representations as

vec{(εmm Em, φ
i, j,k
m )h}(i, j,k)∈S

=hxhyhz

2

(
Dεmm (hαCm + 2I)∗ + Dε′

mm
(hαCm + 2I)

)
em. (58)

Here α can be subscripts x, y, z of the grid spacings hx , hy and hz , respectively, corresponding to m = 1, 2, 3 and Dεmn , Dε′
mn

are diagonal matrices, in general, given by

Dεmn = diag{εmn(xi, y j, zk)}(i, j,k)∈S , (59a)

Dε′
1n

= diag{ε1n(xi+1, y j, zk)}(i, j,k)∈S , (59b)

Dε′
2n

= diag{ε2n(xi, y j+1, zk)}(i, j,k)∈S , (59c)

Dε′
3n

= diag{ε3n(xi, y j, zk+1)}(i, j,k)∈S , (59d)

for m, n = 1, 2, 3. Here diag{F } := diag (vec{F }) for any F ∈C
n1×n2×n3 .

4.2. Trapezoidal approximation for off-diagonal entries

The off-diagonal entries of inner products in (54) are considered as

(εmn En, φ
i, j,k
m ), for m,n = 1,2,3, m �= n.

From (55c)-(55d) in Lemma 1, we have

(ε12φ
r,s,t
2 , φ

i, j,k
1 )h =

hxhyhz

4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δtk(δs, j−1 + δsj)(δriε

i, j,k
12 + δr,i+1ε

i+1, j,k
12 ), if j �= 0, i �= n1 − 1,

δtk(δs0 + e−ι2πk·a2δs,n2−1)(δriε
i,0,k
12 + δr,i+1ε

i+1,0,k
12 ), if j = 0, i �= n1 − 1,

δtk(δs, j−1 + δsj)(eι2πk·a1δr0ε
0, j,k
12 + δr,n1−1ε

n1−1, j,k
12 ), if j �= 0, i = n1 − 1,

δtk(δs0 + e−ι2πk·a2δs,n2−1)(eι2πk·a1δr0ε
0,0,k
12 + δr,n1−1ε

n1−1,0,k
12 ), if j = 0, i = n1 − 1,

(60)

and

(ε21φ
r,s,t
1 , φ

i, j,k
2 )h =

hxhyhz

4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δtk(δr,i−1 + δri)(δsjε

i, j,k
21 + δs, j+1ε

i, j+1,k
21 ), if i �= 0, j �= n2 − 1,

δtk(δr0 + e−ι2πk·a1δr,n1−1)(δsjε
0, j,k
21 + δs, j+1ε

0, j+1,k
21 ), if i = 0, j �= n2 − 1,

δtk(δr,i−1 + δri)(eι2πk·a2δs0ε
i,0,k
21 + δs,n2−1ε

i,n2−1,k
21 ), if i �= 0, j = n2 − 1,

δtk(δr0 + e−ι2πk·a1δr,n1−1)(eι2πk·a2δs0ε
0,0,k
21 + δs,n2−1ε

0,n2−1,k
21 ), if i = 0, j = n2 − 1.

(61)

Furthermore, these inner products have matrix representations as
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vec{(ε12 E2, φ
i, j,k
1 )h}(i, j,k)∈S = hxhyhz

4

[
Dε12(hyC2 + 2I)∗ + Dε′

12
(hyC2 + 2I)∗(hxC1 + I)

]
e2,

vec{(ε21 E1, φ
i, j,k
2 )h}(i, j,k)∈S = hxhyhz

4

[
Dε21(hxC1 + 2I)∗ + Dε′

21
(hxC1 + 2I)∗(hyC2 + I)

]
e1,

where Dεmn and Dε′
mn

are defined in (59).
By the same process as above, we conclude that

vec{(εmn En, φ
i, j,k
m )h}(i, j,k)∈S

=hxhyhz

4

[
Dεmn (hβ Cn + 2I)∗ + Dε′

mn
(hβ Cn + 2I)∗(hαCm + I)

]
en, (62)

where (α, β) = (x, y), (y, x), (y, z), (z, y), (z, x), (x, z) corresponding to (m, n) = (1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3), re-
spectively.

Finally, from (58) and (62), the right-hand side of (20a) can be discretized as the matrix form

hxhyhz Bεe ≡ hxhyhz

4

⎡⎣2B11 B12 B13
B21 2B22 B23
B31 B32 2B33

⎤⎦⎡⎣e1
e2
e3

⎤⎦ , (63)

where

Bmm = Dεmm (hαCm + 2I)∗ + Dε′
mm

(hαCm + 2I) (64a)

and

Bmn = Dεmn (hβ Cn + 2I)∗ + Dε′
mn

(hβ Cn + 2I)∗(hαCm + I) (64b)

in which (α, β) = (x, y), (y, x), (y, z), (z, y), (z, x), (x, z) corresponding to (m, n) = (1, 2), (2, 1), (2, 3), (3, 2), (3, 1), (1, 3).

Remark 7. In the previous section we showed that the left side of the edge finite element method (20a) with the trapezoidal 
rule is equivalent to finite difference Yee’s scheme up to a factor of hxhyhz . Notice that all coefficients above have the same 
factor as well. Consequently, our finite element method can be interpreted as a finite difference method once we combine 
Yee’s scheme with our right-hand side discretization divided by hxhyhz .

5. Null-space free method and divergence-free condition

The matrix representation Bε of the discretization in terms of the discrete electric field e = [
e�

1 e�
2 e�

3

]�
from the 

right-hand side of (20a) can be written as in (63). Now, we give a lemma for the matrix factorizations of Dε′
mn

and Bmn in 
(59b)-(59d) and (64), respectively.

Lemma 2. The matrices in (59b)-(59d) can be written as

Dε′
1n

= (hxC1 + I)Dε1n (hxC1 + I)∗, (65a)

Dε′
2n

= (hyC2 + I)Dε2n (hyC2 + I)∗, (65b)

Dε′
3n

= (hzC3 + I)Dε3n (hzC3 + I)∗, (65c)

and, for the matrices Bmn in (64), m, n = 1, 2, 3, we have

Bmn = (hαCm + 2I)Dεmn (hβ Cn + 2I)∗. (66)

Here α and β can be subscripts x, y, z of the grid spacings hx, hy and hz , respectively, corresponding to m, n = 1, 2, 3.

Proof. First, we show that (65a) holds and the similar process can be applied for (65b) and (65c). From the Kronecker 
product and the periodicity of ε1n , it apparently holds that

diag(ε1n(1 : n1, j,k)) = (Kn1,a1 + I)diag(ε1n(0 : n1 − 1, j,k))(Kn1,a1 + I)∗

for j = 0, . . . , n2 − 1, k = 0, . . . , n3 − 1, where Kn1,a1 is defined in (37).
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Next, for (66), by plugging (65a)-(65c) into (64a) and (64b), respectively, we get

Bmm = Dεmm (hαCm + 2I)∗ + Dε′
mm

(hαCm + 2I)

= Dεmm (hαCm + 2I)∗ + (hαCm + I)Dεmm (hαCm + I)∗(hαCm + 2I)

= Dεmm (hαCm + 2I)∗ + (hαCm + I)Dεmm (hαCm + 2I)∗

= (hαCm + 2I)Dεmm (hαCm + 2I)∗

and

Bmn = Dεmn (hβ Cn + 2I)∗ + Dε′
mn

(hβ Cn + 2I)∗(hαCm + I)

= [
Dεmn + (hαCm + I)Dεmn (hαCm + I)∗(hαCm + I)

]
(hβ Cn + 2I)∗

= (hαCm + 2I)Dεmn (hβ Cn + 2I)∗,
for m �= n. �

The HPD property of Bε can be shown immediately by using Lemma 2.

Theorem 4. The matrix Bε in (63) is HPD, if the tensor field ε in (17) is also HPD. In fact, Bε can be written as the matrix representation

Bε = 1

4
P Dε P∗ (67)

where

P =
⎡⎣hxC1 + 2I

hyC2 + 2I
hzC3 + 2I

⎤⎦ , Dε =
⎡⎣2Dε11 Dε12 Dε13

Dε21 2Dε22 Dε23

Dε31 Dε32 2Dε33

⎤⎦ . (68)

Proof. The matrix factorization in (67) can be derived from (66). If ε is HPD, then Dε in (68) is also HPD and therefore, Bε

is HPD. �
In the original finite difference Yee’s scheme, there is no need to compute E� , � = 1, 2, 3, on the edges orthogonal to 

x-, y-, z-axis, respectively. That is fine if ε is a scalar field, but when ε is a matrix, the E� will also appear on the edges 
orthogonal to the x̂� direction via the product εE and a naive extension of the finite difference Yee’s scheme using the 
averages will give rise to a nonsymmetric Bε in (30). Thus, it is possible for such a scheme to produce complex eigenvalues 
instead of just the (correct) real eigenvalues, which is incorrect if ε is positive definite.

So in the context of a finite difference scheme, the right side of Galerkin finite element formulation (20a) actually 
provides the right weights. This gives our method a more natural interpretation as a modified finite difference Yee’s scheme, 
which seems to be more intuitive for people working in the field of computational electromagnetics. Furthermore, the 
special factorization (67) of the HPD matrix Bε results in minimal effort in inverting Bε while still keeping the correct 
physics intact (real frequencies).

5.1. The null-space free method

From (51) and Theorem 4, we have that all eigenvalues of the resulting GEP (30) are real if the tensor field ε is Hermitian. 
Moreover, these eigenvalues are non-negative if ε is HPD. By Theorem 3, the GEP (30) can be transformed to a null-space 
free standard eigenvalue problem (NFSEP)(


1
2
r Q ∗

r B−1
ε Q r

1
2
r

)
y = λy. (69)

Both of the GEP and the corresponding NFSEP have the same positive eigenvalues, while the zero eigenvalues of the GEP 

are deflated [14,16]. Because 
1
2
r Q ∗

r B−1
ε Q r

1
2
r is Hermitian, we can use the invert Lanczos method to find some smallest 

target eigenvalues of (69). In each iteration of the invert Lanczos method, we need to solve the linear system(


1/2
r Q ∗

r B−1
ε Q r

1/2
r

)
z = d

or equivalently(
Q ∗

r B−1
ε Q r

)
z̃ = 

−1/2
r d, z = 

−1/2
r z̃ (70)

for a given vector d.
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Plugging the results in (52) into (68), the matrix P can be factored as

P = (I3 ⊗ T )

⎡⎣hx1 + 2I
hy2 + 2I

hz3 + 2I

⎤⎦ (I3 ⊗ T )∗

≡ (I3 ⊗ T )D(I3 ⊗ T )∗,

which implies that

Bε = 1

4
(I3 ⊗ T )D(I3 ⊗ T )∗Dε(I3 ⊗ T )D∗

(I3 ⊗ T )∗.

From (53), we have

Q ∗
r B−1

ε Q r = 4�∗
r D−∗

 (I3 ⊗ T ∗)D−1
ε (I3 ⊗ T )D−1

 �r . (71)

Since Dε in (68) is a 3 × 3 block diagonal matrix after a suitable permutation, the most computationally expensive part of 
solving the linear system with coefficient matrix (71) is the computation of the matrix-vector multiplications T q and T ∗p. 
Remarkably, these two multiplications can be efficiently computed by the developed FFT-based methods in [8,14] without 
explicitly forming the matrix T .

5.2. Divergence free condition

We now show the discrete divergence free condition (20b) holds, i.e.,

(εE,∇φi, j,k)h = 0, ∀(i, j,k) ∈ S, (72)

where φi, j,k ∈ Hh
grad(�) is defined in (25). By (35)-(36), we have

∂xφ
i, j,k =

{
h−1

x (φ
i−1, j,k
1 − φ

i, j,k
1 ), if i �= 0,

h−1
x (eι2πk·a1φ

n1−1, j,k
1 − φ

0, j,k
1 ), if i = 0,

(73a)

∂yφ
i, j,k =

{
h−1

y (φ
i, j−1,k
2 − φ

i, j,k
2 ), if j �= 0,

h−1
y (eι2πk·a2φ

i,n2−1,k
2 − φ

i,0,k
2 ), if j = 0,

(73b)

∂zφ
i, j,k =

{
h−1

z (φ
i, j,k−1
3 − φ

i, j,k
3 ), if k �= 0,

h−1
z (eι2πk·a3φ

i, j,n3−1
3 − φ

i, j,0
3 ), if k = 0,

(73c)

and hence

∇
(

Hh
grad(�)

)
⊂ Hh

curl(�). (74)

This together with (20a) shows that (20b) holds, when λ �= 0. Alternatively, substituting (73) into (72) and using 
(εE, φi, j,k

1
i)h , (εE, φi, j,k

2
j)h and (εE, φi, j,k

3
k)h in Section 4, we see that Eq. (72) holds if and only if

N∗
c Bεe ≡ [

C∗
1 C∗

2 C∗
3

]
Bεe = 0. (75)

Theorem 5. Let (λ, y) be an eigenpair of NFSEP (69) and define

e = B−1
ε Q r

1/2
r y.

Then (λ, e) is an eigenpair of GEP (30) and e automatically satisfies the divergence free condition (75).

Proof. As shown in [14] and Theorem 3, the columns of Nc and Q r , respectively, span the invariant subspaces of the Hermi-
tian matrix A corresponding to zero and nonzero eigenvalues. This implies that if Bεe ∈ span{Q r}, then (75) is automatically 
satisfied. Moreover, from the result in [14], the columns of B−1

ε Q r spans the invariant subspace of the GEP (30) correspond-
ing to nonzero eigenvalues. The invariant subspace span{B−1

ε Q r} is then applied to reduce GEP (30) into NFSEP (69) with 
e = B−1

ε Q r
1/2
r y. This means that such eigenvector e automatically satisfies the divergence free condition (75). �
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Fig. 1. Schema of 3D anisotropic medium with SC and FCC lattices within a single primitive cell.

6. Numerical experiments

To study the convergence behavior of the eigensolvers in terms of iteration numbers, we consider the SC and FCC lattices 
described in [8,14].

For the SC lattice, we consider a lattice consisting of spheres with radius r and circular cylinders with radius s, as 
shown in Fig. 1(a). In particular, we assume the lattice constant a = 1, r/a = 0.345, and s/a = 0.11. The perimeter of the 
irreducible Brillouin zone for the SC lattice is formed by the corners G = [0, 0, 0]� , X = 2π

a

[ 1
2 ,0,0

]�
, M = 2π

a

[ 1
2 , 1

2 ,0
]�

, 
and R = 2π

a

[ 1
2 , 1

2 , 1
2

]�
.

For the FCC lattice, we consider a lattice consisting of dielectric spheres with a connecting cylinder as shown in Fig. 1(b). 
The radius r of the spheres is r = 0.12a and the connecting cylinder has a radius s = 0.11a. The perimeter of the irreducible 
Brillouin zone for the lattice is formed by the corners X = 2π

a �[0, 1, 0]� , U = 2π
a � 

[ 1
4 ,1, 1

4

]�
, L = 2π

a � 
[ 1

2 , 1
2 , 1

2

]�
, G =

[0, 0, 0]� , W = 2π
a � 

[ 1
2 ,1,0

]�
, and K = 2π

a � 
[

3
4 , 3

4 ,0
]�

, where

� = 1√
2

⎡⎢⎣ 1 1 0
− 1√

3
1√
3

2√
3

2√
6

− 2√
6

2√
6

⎤⎥⎦ .

All computations in this section are carried out in MATLAB 2017a, and the MATLAB functions fft and ifft are applied 
to compute the matrix-vector multiplications T ∗p and T q, respectively.

The SC and FCC anisotropic media have the permittivity tensors εs(x) and ε f (x) [27,28], respectively, where εs(x) and 
ε f (x) are defined as

εs(x) =
⎡⎣ ε11(x) 0 −ιε13(x)

0 ε22(x) 0
ιε13(x) 0 ε11(x)

⎤⎦ , ε f (x) = �εs(x)�� (76)

at position x ∈R
3. Here

ε11 =
{√

1 + |β|2ε, if x in the anisotropic medium,

1, otherwise,

ε22 =
{

ε, if x in the anisotropic medium,

1, otherwise,

ε13 =
{ |β|ε, if x in the anisotropic medium,

1, otherwise,

with external magnetic field intensity β . It is clear that

det(εs(x)) = det(ε f (x)) = ε3

if x is in the material. We take ε = 13 and |β| = 0.875 in the following discussion.
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Fig. 2. Iteration numbers of the CG method for solving Q ∗
r B−1

ε Q r z = d with the external magnetic field intensity |β| = 0.875 and the matrix dimension 
3n = 3 × 1203 = 5,184,000.

Fig. 3. The convergence of the smallest target eigenvalues for the NFSEP (69) with SC lattice. Various coarse mesh lengths are used. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

6.1. Performance of solving linear systems

Based on the above prescribed permittivity tensors εs and ε f of (76), we know that the coefficient matrix Bε in (67) is 
also HPD, and the associated linear system is easily solved. Therefore, we can apply the CG method without preconditioning 
to solve the linear system Q ∗

r B−1
ε Q rz = d in each iteration of the eigensolver for NFSEP (69). Using a stopping tolerance of 

10−12, the associated iteration numbers with various wave vectors are shown in Fig. 2. They range in the vicinities of 63
and 69 iterations for the SC and FCC lattices, respectively.

6.2. Convergence and performance of eigensolver

First, we illustrate convergence of the eigenvalues. Since the coefficient matrix 
1
2
r Q ∗

r B−1
ε Q r

1
2
r in (69) is HPD, the 

invert Lanczos method is applied to compute the smallest target eigenvalues of (69). For the SC lattice and the wave vector 
k = [0.5, 0.5, 0.06], we set mesh lengths hx = hy = hz = h. The computed eigenvalues of (69) with h = 2−4, 2−5, 2−6, 2−7

and 2−8 are shown in Fig. 3, which indicates convergence to the right frequency in all cases considered.
Taking |β| = 0.875 and n1 = n2 = n3 = 120, the computed band structures of SC and FCC lattices are demonstrated in 

Fig. 4. For each wave vector k in Fig. 4, the total iteration numbers it takes for the invert Lanczos method to solve (69) for 
the eight smallest target eigenvalues are shown in Fig. 5. Among all cases tested for solving each of the target eigenvalues, 
the invert Lanczos method takes 45 to 55 iterations (46.7 on average) for the SC lattice, 46 to 60 iterations (53.2 on average) 
for the FCC lattice. These small iteration numbers for such large problems are indeed remarkable.

7. Conclusions

In this paper, we have shown that our finite element method can be interpreted as a modified finite difference Yee’s 
scheme for the following reasons: (i) For the left-hand side of (1), through the discrete inner products with trapezoidal 
quadratures, we derived the discrete double curl operator A, which coincides with the finite difference Yee’s scheme C∗C
up to a factor hxhyhz . Therefore, the well-known eigen-decomposition of C∗C can be applied. (ii) For the right-hand side 
of (1), we derived an HPD-preserving coefficient matrix Bε , i.e., if ε is HPD, so is Bε . In contrast, the coefficient matrix 
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Fig. 4. Computed band structures of SC and FCC lattices with the external magnetic field intensity |β| = 0.875 and the matrix dimension 3n = 3 × 1203 =
5, 184, 000.

Fig. 5. Iteration numbers of the invert Lanczos method with various wave vector 2πk. Here external magnetic field intensity |β| = 0.875 and matrix 
dimension 3n = 3 × 1203 = 5,184,000.

Bε generated by Yee’s scheme does not enjoy this property. Furthermore, the matrix Bε can be factorized by FFT-matrices 
and a 3 × 3 block diagonal matrix with a suitable permutation. Thus, the linear system for Bε can be easily solved. In 
conclusion, the NFSEP can then be solved by the invert Lanczos method and the linear system at each iteration step can be 
efficiently solved by the CG method without any preconditioner. Numerical results show the effectiveness of our proposed 
finite element method.
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Appendix

Define

Km,a =
[

0 Im−1

eι2πk·a 0

]
− Im ∈C

m×m.

Then, for the SC lattice [8], the discrete partial derivative operators in (40) can be written as

C1 = h−1
x In3 ⊗ In2 ⊗ K1, C2 = h−1

y In3 ⊗ K2, C3 = h−1
z K3,

where

K1 = Kn1,a1 , K2 = Kn2,a2 ⊗ In1 , K3 = Kn3,a3 ⊗ In2 ⊗ In1 ;
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for the face-centered cubic (FCC) lattice [14], they are

K1 = Kn1,a1 , K2 = Kn2,a1,a2 ≡
[

0 In1(n2−1)

eι2πk·a2 J2,a1 0

]
− In1n2 ,

K3 = Kn3,a1,a2,a3 ≡
[

0 In1n2(n3−1)

eι2πk·a3 J3,a1,a2 0

]
− In1n2n3 ,

where

J2,a1 =
[

0 e−ι2πk·a1 In1/2
In1/2 0

]
,

J3,a1,a2 =
[

0 e−ι2πk·a2 I 1
3 n2

⊗ In1

I 2
3 n2

⊗ J2,a1 0

]
and

a1 = a√
2
[1,0,0]�, a2 = a√

2

[
1

2
,

√
3

2
,0

]�
, and a3 = a√

2

[
1

2
,

1

2
√

3
,

√
2

3

]�
,

in which a is a lattice constant.
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