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New region force for variational models in image
segmentation and high dimensional data clustering

Ke Wei,∗ Ke Yin,† Xue-Cheng Tai‡ and Tony F. Chan

We propose an effective framework for multi-phase image segmen-
tation and semi-supervised data clustering by introducing a novel
region force term into the Potts model. Assume the probability that
a pixel or a data point belongs to each class is known a priori. We
show that the corresponding indicator function obeys the Bernoulli
distribution and the new region force function can be computed as
the negative log-likelihood function under the Bernoulli distribu-
tion. We solve the Potts model by the primal-dual hybrid gradient
method and the augmented Lagrangian method, which are based
on two different dual problems of the same primal problem. Em-
pirical evaluations of the Potts model with the new region force
function on benchmark problems show that it is competitive with
existing variational methods in both image segmentation and semi-
supervised data clustering.

1. Introduction

Image segmentation plays an important role in image processing and appears
in a wide range of applications, including computer vision [35], stereo [24, 25]
and 3D reconstruction [41]. Given an image I(x) defined over a domain
Ω ∈ R2, the task is to partition Ω into different subdomains so that I(x)
has different properties over each subdomain. According to different criteria,
image segmentation can be divided into two-phase segmentation vs. multi-
phase segmentation, automatic segmentation vs. user-assisted segmentation,
and discrete approach based segmentation vs. continuous approach based
segmentation, just to name a few. In this paper we study the multi-phase
image segmentation problem where the number of partitions, denoted by K,
is known a priori.
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In the spatially discrete setting, a digital image is usually modeled as
a graph, and the solution to the multi-phase image segmentation problem
can be computed from the min-cut or max-flow solutions of the graph, see
[23, 26, 7, 6] and references therein. In contrast, variational approaches have
been widely studied in the spatially continuous setting, where image seg-
mentation is typically formulated as a continuous energy-functional min-
imization problem over the image domain. We consider the Potts model
for multi-phase image segmentation. In the simplest form, the Potts model
attempts to partition an image by minimizing an energy-functional which
combines a region force term and an edge force term. It has several advan-
tages compared with the graph-based approaches: (i) it can avoid the met-
rication errors owing to the crucial rotation invariance property; (ii) a wide
range of reliable numerical algorithms are available, and those algorithms
can be easily implemented and accelerated; (iii) it requires less memory in
computation; (iv) it is easy to use GPU and other parallel computing sys-
tems. The active contours which first appeared as the snake model in [22] is
another well known approach in variational models. In the active contours
approach, the boundaries of each subdomain are modeled as curves, which
can be evolved by minimizing an energy-functional.

Data clustering (or classification) is a fundamental task in machine learn-
ing which is about partitioning a large data set into a number of clusters
that can be well interpreted from a practical perspective. In general, data
clustering can be roughly divided into three groups: unsupervised cluster-
ing, supervised clustering and semi-supervised clustering. In this paper we
consider the multi-class semi-supervised data clustering problem in which
the number of clusters is given and there are a few labelled data points
in each cluster. The goal is to infer labels for the rest of data points from
the already labelled ones. In practice, data points are typically modeled
as vertices of a weighted graph where the weights on the edges describe
the affinity between each pair of data points. Many algorithms have been
developed under the graphical model. For example, the idea of geometric
diffusion was developed for semi-supervised clustering in a seminal paper
by Coifman et al. [15] . The propagation of labels in geometric diffusion is
driven by a diffusion kernel on the weighted graph of the data points. More-
over, the diffusion map based on the eigenvectors of the graph Laplacian
embeds the data points into a feature space with the diffusion distance as
a new metric. Variational approaches have also been extended from image
segmentation in spatially continuous domain to data clustering on weighted
graphs, which will be the focus of this paper. In [9], the Mumford-Shah-Potts
model [33, 36] was demonstrated to be effective for data clustering, where
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the Cheeger cut, formulated as the sum of a modified total variation of the

cluster indicator functions, is used. The Cheeger cut can be interpreted as

the perimeter of a cluster normalized by the imbalance of the cluster sizes

and hence acts as the edge force in the model. In [21, 27, 19, 30], the authors

attempt to extend the Chan-Vese model [13] to data clustering, where the

edge force is the total variation of the indicators functions. Furthermore,

after approximating the total variation via the phase field representations,

a graph-based Merriman-Bence-Osher (MBO [31]) scheme is developed to

solve the diffusion equations with double-well potential. In all the aforemen-

tioned variational approaches, the region force term is either based on the

distance between the data points and the cluster centroids or based on the

mismatch of the labels over the already labelled data.

The main contributions of this work are summarized in the following.

(i) We introduce a new region force term into the Potts model for both

image segmentation and high dimensional data clustering. Compared with

the snake model, a region force term was introduced for image segmentation

in the Chan-Vese model [11]. Some earlier works have tried to introduce

region force into variational models for data clustering, see for example [21,

27, 2]. The region force introduced in [45] overcomes some of the difficulties

and shows good numerical performance. In the present work, we derive a

new region force function and show its applications to multi-phase image

segmentation and semi-supervised data clustering.

(ii) The variational model we use in this paper is the Potts model. Using

graph total variation, one can easily extend this model to high dimensional

data clustering [8][29]. Following [4, p.116], [46, p.386] and [47, 42], the

Potts model has two different dual formulations. Related to these two dual

formulations, we present two numerical algorithms. One is for the first dual

formulation using a primal-dual algorithm, while the other one is for the

second dual formulation using an augmented Lagrangian algorithm.

(iii) Numerical experiments show the good performce of the new region

force function and demonstrate the effectiveness of the numerical algorithms.

The tests for image segmentation show that the new region force function is

as effective as the widely used L2 fidelity in the literature. However, the L2

fidelity or the Euclidean distance is not applicable for semi-supervised data

clustering problems when there exists complex geometry within the data,

while our region force function still works very well. The numerical results for

semi-supervised data clustering show that our approach can achieve higher

classification accuracy than other existing variational methods. Meanwhile,

it is much easier to implement the numerical algorithms for our approach.
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The remainder of this paper is organized as follows. The Potts model
and the corresponding primal-dual formulations for image segmentation and
data clustering are presented in Sections 2.1 and 2.2. The new region force
function is introdcued in Section 2.2.2. In Section 3, we present the numerical
algorithms for the Potts model, and Section 4 contains the numerical simu-
lations. We conclude this paper in Section 5 with some additional remarks
about future directions.

2. Variational models and primal-dual formulations

For image segmentation, the snake models only consider edge force [22].
The Chan-Vese model [11] introduced a region force into variational im-
age segmentation. There were efforts to extend these region force for data
clustering, [27, 21]. However, these extensions have problems for data with
complex geometries. In [45, 2], the authors successfully introduced a region
force for data clustering. In the following, we shall continue in this direction
and will introduce a new region force for both image segmentation and data
clustering. Moreover, we will combine them with efficient algorithms based
on two different primal-dual formulations of the primal problem.

To make the connections between image segmentation and data clus-
tering clear, we first present the model for traditional image segmentation.
Since data clustering can be formulated as a graph partitioning problem,
essentially the same mathematical model can be established for it based on
the graph total variation. Therefore, the new region force function equally
applies for image segmentation and data clustering.

2.1. Multi-phase image segmentation

Let us start with image segmenation. Given a gray scale image function
I : Ω 7→ R, the two-phase Chan-Vese [11] model is trying to solve the
following minimization problem:

min
φ,c1,c2

λ1

∫
Ω
|I(x)− c1|2H(φ)dx+ λ2

∫
Ω
|I(x)− c2|2(1−H(φ))dx

+ µ

∫
Ω
|∇H(φ)|dx,

where (i) φ is a level set function whose zero level curves set represents
the segmentation boundary, (ii) H(·) is the Heaviside function, (iii) c1 and
c2 are two real numbers, and (iv) λ1 and λ2 and µ are positive numbers.
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In this work, we shall use a more general model that extends the above

mode, i.e., the so-called Potts model. The Potts model for multi-phase image

segmentation tries to minimize the following energy-functional:

min
{Ωk}Kk=1

K∑
k=1

∫
Ωk

fk(x)dx+R
(
{Ωk}Kk=1

)
,(1)

where {Ωk}Kk=1 is a partition of Ω such that ∪Kk=1Ωk = Ω and Ωk ∩ Ωk′ =

∅ for k 6= k′. The integrand fk(x) in (1) is usually referred to as the region

force function or the fidelity term. In case that fk(x) = |I(x) − ck|2, we

recover the Chan-Vese model [11] or the piecewise constant Mumford-Shah

model [33]. The regularization term R
(
{Ωk}Kk=1

)
measures the geometry

properties of the boundaries of {Ωk}Kk=1. The regularizer used in this paper

is the sum of the weighted length of each boundary, i.e.,

(2) R
(
{Ωk}Kk=1

)
=

K∑
k=1

|∂Ωk|α =

K∑
k=1

∫
∂Ωk

α(x)ds,

where α(x) ≥ 0 is normally called an edge detector. A popular choice for the

edge detector is α(x) = β
1+γ|∇Iσ|2 with γ and β being some properly chosen

constants and Iσ is a Gaussian smoothing of the image function I(x). In

case α(x) = 1, the regularizer is the sum of the length of each boundary.

Let φk(x)(1 ≤ k ≤ K) be an indicator function associated with the k-th

sub-domain,

φk(x) =

{
1 x ∈ Ωk

0 x 6∈ Ωk.

It is true that
∫
∂Ωk

α(x)ds =
∫

Ω α(x)|∇φk(x)|dx, so we can rewrite (1) with

the regularizer R
(
{Ωk}Kk=1

)
=
∑K

k=1 |∂Ωk|α as1

min
φk∈{0,1}
[φk]∈S

K∑
k=1

∫
Ω
fkφkdx+

K∑
k=1

∫
Ω
α(x)|∇φk|dx,(3)

1Throughout this paper we omit the independent variable notation x when there
is no risk of confusion, and we use | · |, | · |1, and | · |∞ to denote the l2-norm, l1-norm
and l∞-norm, respectively.
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where

[φk] = (φ1, · · · , φK),

and

S =

{
[φk] :

K∑
k=1

φk = 1, 0 ≤ φk ≤ 1

}
.

One can immediately see that (3) is a non-convex optimization problem.
Therefore there does not exist a tractable way to compute its global solution
reliably. In a seminal paper, Chan, Esedoglu and Nicolova [12] proposed
to relax the binary value constraint on φk to 0 ≤ φk ≤ 1. Based on this
relaxation, (3) can be transformed into the following convex programming:

min
0≤φk≤1
[φk]∈S

K∑
k=1

∫
Ω
fkφkdx+

K∑
k=1

∫
Ω
α(x)|∇φk|dx.(P)

We will refer to (P) as the primal problem. Despite its convexity, numerical
algorithms for the primal problem usually suffer from slow convergence rate
due to the non-smoothness of the TV term. In this paper, we will present two
numerical methods for (P): a primal-dual hybrid gradient descent method
and an augmented Lagrangian method. In order to describe those two meth-
ods, we first give two dual formulations of (P), one of which leads to the
continuous max-flow approach studied in [48].

The first dual formulation of (P) can be obtained using the following
equality: ∫

Ω
α(x)|∇φk|dx = max

|qk|≤α(x)

∫
Ω
φk div qkdx, k = 1, · · · , n,(4)

and the min-max theorem [17, Chapter 6, Proposition 2.4]. That is,

min
0≤φk≤1
[φk]∈S

K∑
k=1

∫
Ω
fkφkdx+

K∑
k=1

∫
Ω
α(x)|∇φk|dx

= min
0≤φk≤1
[φk]∈S

max
|qk|≤α(x)

K∑
k=1

∫
Ω
fkφkdx+

K∑
k=1

∫
Ω
φk div qkdx

= max
|qk|≤α(x)

min
0≤φk≤1
[φk]∈S

K∑
k=1

∫
Ω
φk(fk + div qk)dx
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= max
|qk|≤α(x)

∫
Ω

min
k=1,··· ,K

(fk + div qk)dx,(D1)

The above dual formulation for (P) was first observed in [4, p.116], where

a gradient decent method was developed to solve the smoothed dual prob-

lem [4, p.120]. In this work, we shall use the recent developed primal-dual

algorithms related to the ones in [18, 10, 50] to solve it, see Algorithm 1.

The second dual formulation of (P) is given by

max
λ

∫
Ω
λdx subject to

{
hk ≤ fk, |qk| ≤ α(x)

div qk − λ+ hk = 0.
(D2)

In fact, the above problem is a continuous max-flow problem with flow con-

servation in a system where the image region is copied K times. The equality

div qk−λ+hk = 0 represents flow conservation in each of the copied regions.

The vector function qk is the flow inside each copy and the scalar function

hk is the flow between the copies with upper flow constraint hk ≤ fk, see

[46, p.386]. A more comprehensive exploration about the connection between

other continuous min-cut and max-flow problems were also discussed in [42].

In order to derive the above max-flow model, we begin with introducing K

auxiliary variables hk, k = 1, · · · ,K,

min
0≤φk≤1
[φk]∈S

K∑
k=1

∫
Ω
fkφkdx+

K∑
k=1

∫
Ω
α(x)|∇φk|dx

= min
0≤φk≤1
[φk]∈S

max
hk≤fk

K∑
k=1

∫
Ω
hkφkdx+

K∑
k=1

∫
Ω
α(x)|∇φk|dx

= min
φk∈R

[φk]∈S

max
hk≤fk

K∑
k=1

∫
Ω
hkφkdx+

K∑
k=1

∫
Ω
α(x)|∇φk|dx.(5)

To show the last line, suppose there exists a φk < 0. We can then take

the corresponding hk to be negative infinity so that the inner maximum

problem can be arbitrarily large. However, this case can be excluded since

a minimization over φk is followed.

By introducing another variable λ and utilizing (4), one can further see
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that (5) is equivalent to

min
φk∈R

max
λ

hk≤fk
|qk|≤α(x)

∫
Ω

(1−
K∑
k=1

φk)λdx+

K∑
k=1

∫
Ω
hkφkdx+

K∑
k=1

∫
Ω
φk div qkdx.(6)

At last, the application of the min-max theorem implies that the optimal
value of the above min-max problem is equal to the optimal value of the
following max-min problem

max
λ

hk≤fk
|qk|≤α(x)

min
φk∈R

∫
Ω

(1−
K∑
k=1

φk)λdx+

K∑
k=1

∫
Ω
hkφkdx+

K∑
k=1

∫
Ω
φk div qkdx

= max
λ

hk≤fk
|qk|≤α(x)

min
φk∈R

∫
λdx+

K∑
k=1

∫
Ω
φk(div qk − λ+ hk)dx

= max
λ

hk≤fk
|qk|≤α(x)

∫
Ω
λdx subject to div qk − λ+ hk = 0,

where the last line gives the dual problem in (D2) after rearrangement.
The pair of min-max problems in (P) and (D2) are continuous analogue

of the min-cut and max-flow problems in graph theory. In the discrete case,
it is well-known that the min-cut problem is equivalent to the max-flow prob-
lem. The above analysis suggests this is also true in the spatially continuous
setting. The interested reader can find more details about the continuous
max-flow approaches in [48, 1, 3] and references therein.

2.2. Semi-supervised clustering

2.2.1. Discrete Potts model for data clustering. Before describing
the discrete Potts model for data clustering, we briefly review some con-
cepts related to the graphic model. Our description follows that in [20] (also
adopted in [19] and numerous other works). In the graphic model data fea-
ture vectors are represented by vertices of a weighted graph G = (V,E,w),
where V represents the set of vertices, E represents the set of edges con-
necting different vertices, and w represents the set of weights on the edges.
The graph G is typically sparse in real applications. For instance, in image
segmentation each pixel is only connected with its four nearest neighbor
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pixels or pixels in a local image patch. In data clustering problems, data

points are often assumed to be uniformly distributed on a low dimensional

manifold endowed with a Riemannian metric d(·, ·). Each data point on the

manifold is usually connected with s-nearest neighbors for a small s, and

together they form a local patch of the manifold. Therefore the graph G can

be constructed by s-Nearest-Neighbor (s-NN). In practice, the number of

neighbor points s may be determined by the dimension or co-dimension of

the underlying manifold.

There are several interesting weight functions in the literautre, for ex-

ample the radial basis function (RBF [37])

w(xi, xj) = exp(−d(xi, xj)
2/(2ε)),(7)

and the Zelnik-Manor and Perona function (ZMP [49])

w(xi, xj) = exp
(
−d(xi, xj)

2/(σ(xi)σ(xj))
)
,(8)

where ε in (7) is a tuning parameter and σ(·) in (8) measures the local vari-

ance within the data. Another popular weight function in natural language

processing is the cosine similarity function [39]

w(xi, xj) = cos(xi, xj) =
〈xi, xj〉
|xi||xj |

.(9)

Let W = (wij) be a weight matrix constructed from the weight function and

D = (dii) be a diagonal matrix with the i-th diagonal entry being equal to

the l1-norm of the i-th row of W . The normalized affinity matrix defined via

Ŵ = D−1/2WD−1/2 will be used later in the computation of the new region

force function.

We will introduce more nations in order to describe the discrete Potts

model for data clustering. Let N = |V |, the total number of vertices of the

graph G. For any u ∈ L2(V ), the gradient of u at the vertex xi, denoted by

∇u(xi), is defined as

∇u(xi) = (∂x1
u(xi), . . . , ∂xNu(xi)),

where

∂xju(xi) = wij(u(xj)− u(xi)).
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Here we assume wij = 0 and consequently ∂xju(xi) = 0 if xixj 6∈ E. For
any q = (q(xi)(xj)) ∈ L2(V,L2(V )), the divergence of q(xi), denoted by
div q(xi), is defined as

div q(xi) =

N∑
j=1

wij(q(xj)(xi)− q(xi)(xj)).

The computation of the divergence of q(·) over all the vertices of G can be
proceeded in the following matrix form

div q = (W ◦ (qT − q))1,

where ◦ denotes the Hadamard product. Moreover, one can easily verify
that the divergence operator is the adjoint of the gradient operator which
satisfies

〈∇u, q〉 = 〈u,div q〉 .(10)

Now we are ready to describe the discrete Potts model. Suppose we want
to partition the data points into K clusters, denoted by V1, · · · , VK . If the
corresponding membership function φk(xi) for the k-th cluster is defined as

φk(xi) =

{
1 if xi ∈ Vk
0 otherwise,

(11)

then the discrete counterpart of the Potts model in (3) can be written as

min
φk∈{0,1}
[φk]∈S

K∑
k=1

∑
xi∈V

fk(xi)φk(xi) +

K∑
k=1

∑
xi∈V

α(xi)|∇φk(xi)|1,(12)

where fk(·) is a region force function and |∇φk(xi)|1 is the anisotropic version
of the total variation,∑

xi∈V
α(xi)|∇φk(xi)|1 =

∑
xi∈V

∑
xj∈V

α(xi)wij |φk(xj)− φk(xi)|

= | diag(α)W diag(φk)− diag(α) diag(φk)W |1.

In addition, one also has∑
xi∈V

α(xi)|∇φk(xi)|1 =
∑
xi∈V

max
|qk(xi)|∞≤α(xi)

〈∇φk(xi), qk(xi)〉
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= max
|qk|∞≤α(xi)

〈∇φk, qk〉

= max
|qk|∞≤α(xi)

〈φk, div qk〉

= max
|qk|∞≤α(xi)

∑
xi∈V

φk(xi) div qk(xi),(13)

where in the first line we use the fact that `∞-norm is the dual norm of
`1-norm, and in the fourth line we apply (10).

It is evident that (12) is a non-convex problem and the application of
the same convex relaxation technique as in (P) leads to the following primal
problem of the Potts model for data clustering

min
φk∈[0,1]
[φk]∈S

K∑
k=1

∑
xi∈V

fk(xi)φk(xi) +

K∑
k=1

∑
xi∈V

α(xi)|∇φk(xi)|1.(P̄)

Using a variant of (13) and the same min-max argument as in Section 2.1,
we are also able to obtain two different dual formulations for (P̄), which are
listed below:

max
|qk|1≤α(xi)

∑
xi∈V

min
k

(fk(xi) + div qk(xi)),(D̄1)

max
∑
xi∈V

λ(xi) subject to

{
hk(xi) ≤ fk(xi), |qk(xi)|∞ ≤ α(xi)

div qk(xi)− λ(xi) + hk(xi) = 0.
(D̄2)

In this paper, we investigate the discrete Potts model for semi-supervised
data clustering. Suppose there exists a small fraction Sk ⊂ Vk in each cluster
such that the label of the data points in Sk is given. The goal is to determine
the labels for the rest of the data points from those labelled ones. In our
approach, the labelled data points will be used to compute the probabilities
in the new region force function presented in the next section.

2.2.2. Effective region force under the Bernoulli model. In [21],
Hu, Sunu and Bertozzi extended the Chan-Vese model to data clustering
by combing a region force function of the form fk(xi) = |xi − ck|2 with a
special type of edge force function. Here ck denotes the centroid of the k-th
cluster which can be computed as the weighted average of the data points
in each cluster. The quadratic region force function defined using the Eu-
clidean distance between the data points and the cluster centroids penalizes
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the heterogeneity of the data points within each cluster. It is effective for
the Gaussian mixture model, where the data points are homogeneous in a
visually smooth region. However, for many data clustering problems, there
exists complex geometry within the data points and typically the clusters
cannot be distinguished by the centroid of each cluster, for example in the
three-circles synthetic data set. In this section, we present a different region
force function which can be obtained as the negative log-likelihood function
under the Bernoulli model.

Let pk(xi) denote the probability of a given data point xi belonging
to the k-th cluster Vk. If pk(xi) is known a priori, then the binary value
label function φk(xi) defined in (11) is a random variable which satisfies the
Bernoulli distribution and

P{φk(xi)} =

{
pk(xi) if φk(xi) = 1

1− pk(xi) if φk(xi) = 0

= (pk(xi))
φk(xi)(1− pk(xi))1−φk(xi).

Therefore, the negative log-likelihood function over all the data points is
given by

−
∑
xi∈V

log(P{φk(xi)}) =
∑
xi∈V
{− log(pk(xi))φk(xi) + log(1− pk(xi))φk(xi)}

+ Const.,

where the last term is a constant as we assume pk(xi) is given. Without
any prior information imposed on φk(xi), we are interested in a realization
which minimizes the negative log-likelihood function under the constraint∑K

k=1 φk(xi) = 1 for all xi. This can be achieved by computing the solution
of the following minimization problem:

min
φk(xi)

K∑
k=1

∑
xi∈V
{− log(pk(xi))φk(xi) + log(1− pk(xi))φk(xi)}

s. t. φk(xi) ∈ {0, 1} and

K∑
k=1

φk(xi) = 1 for all i = 1, · · · , n.

The above minimization problem provides us a new region force function
for the Potts model. That is, we can set

fk(xi) = − log(pk(xi)) + log(1− pk(xi))(14)
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so that

fk(xi)φk(xi) = − log(pk(xi))φk(xi) + log(1− pk(xi))φk(xi)

in (12). Since log(t) ≤ t− 1 for all t > 0, we have

− log(pk(xi)) + log(1− pk(xi)) ≤
1− 2pk(xi)

pk(xi)
.(15)

The numerator in (15) gives the region force function proposed in [45],

fk(xi) = 1− 2pk(xi).(16)

Numerical simulations in Section 4 demonstrate that the region force func-
tions in (14) and (16) are equally effective when used in the Potts model for
image segmentation and semi-supervised clustering.

2.2.3. Compute the probability. We now describe how to compute
pk(xi), the probability that xi belongs to Vk, in the region force function.
The idea behind the computation is simple. If a data point is “much closer”
to the labelled data points in a cluster Vk (i.e., the data points in Sk), then
with high probability this data point should belong to the k-th cluster. So
pk(xi) should be proportional to the “closeness” between xi and Sk. Similar
ideas can be found in [44, 43], where a novel learning algorithm based on the
random Markov chain model was proposed for semi-supervised clustering.

Recall from Section 2.2.1 that Ŵ is the normalized affinity matrix for

the data points. Let Ŵm = (ŵ
(m)
ij ) be the m-th power of Ŵ . In [15], the

m-th diffusion distance between two data points xi and xj is defined as

d(m)(xi, xj) = ŵ
(m)
ii + ŵ

(m)
jj − 2ŵ

(m)
ij ,

where ŵ
(m)
ii (and ŵ

(m)
jj ) describes the probability that a random walk starting

from xi (and xj) returns back to xi (and xj) afterm steps, and ŵ
(m)
ij describes

the probability that a random walk starting from xi arrives at xj after m

steps. Thus, ŵ
(m)
ij measures the closeness between two data points. Based

on the diffusion distance, we compute pk(xi) in semi-supervised clustering
as follows:

(17) pk(xi) =

1
|Sk|
∑

j∈Sk rij∑K
k′=1

1
|Sk′ |

∑
j∈Sk′ rij

,
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where

rij = (ŵ
(m)
ij )2/(ŵ

(m)
ii ŵ

(m)
jj ),

and with a slight abuse of notation | · | denotes the cardinality of a finite
set. In the numerical simulations, we take m = 1 or 2 and set pk(xi) = 1/K
when the denominator in (17) is zero.

The region force functions presented in Section 2.2.2 are also applicable
for the multi-phase image segmentation problem. That is, we can take fk(x)
to be either − log(pk(x)) + log(1 − pk(x)) or 1 − 2pk(x) in (3) and (P).
Assume the image density of each subdomain obeys the Gaussian random
model given by I(x) ∼ N (ck, σ

2). For each pixel x in the image domain, the
probability of x belonging to the k-th subdomain, denoted by pk(x), should
be proportional to exp(−|I(x)− ck|/2σ2). Therefore we can compute pk(x)
as follows:

pk(x) =
exp(−|I(x)− ck|/2σ2)∑K

k′=1 exp(−|I(x)− ck′ |/2σ2)
.(18)

3. Algorithms

In this section, we present two numerical algorithms for computing the solu-
tions to the primal problems (P) and (P̄). Since (P̄) is just a discrete version
of (P), we only present the algorithms for (P) but note one can easily extend
them for (P̄). As stated previously, computing the solution to (P) directly
suffers from the non-smoothness of the TV term. Alternatively, we solve (P)
by the primal-dual hybrid gradient method and the alternating direction
method of multipliers (ADMM) which are targeting the min-cut problem
(P) and the max-flow problem (D2), respectively.

In Section 2, two dual problems are presented for the primal problem
(P). If [φ∗k] is the optimal solution of the primal problem and [q∗k] is the
optimal solution of the first dual problem, then ([φ∗k], [q

∗
k]) forms a saddle

point of the min-max problem

min
0≤φk≤1
[φk]∈S

max
|qk|≤α(x)

K∑
k=1

∫
Ω
fkφkdx+

K∑
k=1

∫
Ω
φk div qkdx.

A primal-dual hybrid gradient algorithm can be developed for the above min-
max problem, see Algorithms 1. In each iteration, the primal and dual vari-
ables are updated successively by a projected gradient descent step, followed



15

by an acceleration using the Nesterov’s memory technique. Algorithm 1 is a
special case of the general primal-dual algorithms that have been well stud-
ied in the literature. The convergence analysis of the primal-dual algorithms
can be found in [18, 10, 50, 5].

Algorithm 1 Primal-Dual Hybrid Gradient (PDHG)

1. Update the dual variables [qk] by

ql+1
k = Π|qk|≤α(x)(q

l
k − βk∇φlk).

2. Update the primal variables [φk] by

[φl+1
k ] = ΠS [φlk − γk(div qlk + fk)].

3. Combine two adjacent steps

[φl+1
k ] = θ[φlk] + (1− θ)[φl+1

k ],

where we choose θ = −0.5.

As noted below the second dual formation (D2), the continuous Potts
model (P) can be interpreted as a continuous min-cut problem, while the
corresponding max-flow problem is given by its dual formulation in (D2).
Therefore we can instead solve the dual problem by the ADMM algorithm.
First note that the augmented Lagrangian associated with (D2) is

L(λ, [hk], [qk], [φk]) =

∫
Ω
λdx

+

K∑
k=1

∫
Ω
φk(div qk − λ+ hk)dx−

c

2

K∑
k=1

∫
Ω

(div qk − λ+ hk)
2dx.(19)

Here we use [φk] to denote the Lagrangian multipliers because when we use
ADMM to solve the dual problem based on the augmented Lagrangian, the
Lagrangian multipliers converge to the primal optimal solution. The ADMM
algorithm for the augmented Lagrangian functional (19) is presented in Al-
gorithm 2. In the algorithm, each dual variable is updated by solving a mini-
mization subproblem when the other variables are fixed, and the Lagrangian
multiplies are updated by a gradient descent step. While the closed-form so-
lutions to the minimization problems with respect to λ and [hk] can be com-
puted easily, the minimization problem with respect to [qk] does not have
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an explicit solution. However, we can compute its solution approximately

using one step projected gradient descent.

Algorithm 2 ADMM for Augmented Lagrangian (ADMM)

1. Update the dual variables

(a) Update λ by

λl+1 = arg max
λ

∫
Ω
λdx− c

2

K∑
k=1

∫
Ω

(div qlk − λ+ hlk −
φlk
c

)2 dx

=
1

K

K∑
k=1

(div qlk + hlk −
φlk
c

) +
1

Kc
.

(b) Update [hk] by

hl+1
k = arg max

hk≤fk
−
∫

Ω
(divqlk − λl+1 + hk −

φlk
c

)2 dx

= min{
φlk
c

+ λl+1 − divqlk, fk}.

(c) Update [qk] by

ql+1
k = arg max

|qk|≤α(x)
−
∫

Ω
(divqk − λl+1 + hl+1

k −
φlk
c

)2 dx,

which can be approximately solved by one step of projected gra-
dient descend,

ql+1
k = Π|qk|≤α(x)(q

l
k + βl∇(div qlk − λl+1 + hk −

φlk
c

)).

2. Update the Lagrangian multipliers

φl+1
k = φlk − c(hl+1

k + div ql+1
k − λl+1).
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4. Numerical Experiments

In this section, we explore the performance of the Potts model (P) and

(P̄) with the new region force function for multi-phase image segmentation

and semi-supervised data clustering, and test the efficiency of the numerical

algorithms presented in Section 3. Both PDHG (Algorithm 1) and ADMM

(Algorithm 2) are implemented in MATLAB R© and executed on a laptop.

4.1. Multi-phase image segmentation

We first examine the performance of the proposed region force function listed

in (14) on RGB image segmentation problems, and compare them with the

widely used l2 region force function

fk(x) = |I(x)− ck|2,(20)

and the one in (16). The test images are obtained from BSDS500 [28], see

Figures 1a, 2a, 3a, and 4a. They are discretized on a Cartesian grid with the

weights on all the edges being equal to 1, and the image density centroids

(i.e., ck, 1 ≤ k ≤ K) are computed by the kmeans algorithm in Matlab.

We use un-smoothed images (i.e., σ = 0) to compute the edge detector in

(2). The values of K and the values of β, γ in each image segmentation

test are listed in Table 1. The probability function pk(x) in (14) and (16) is

computed via (18) with unit variance.

Table 1: Parameters used for the image segmentation tests in Figures 1b to
1d, 2b to 2d, 3b to 3d, and 4b to 4d.

1b 1c 1d 2b 2c 2d
K 4 4 4 7 7 7
β 0.6 0.3 0.5 0.6 0.25 0.5
γ 50 70 70 55 75 60

3b 3c 3d 4b 4c 4d
K 10 10 10 6 6 6
β 1.35 0.45 1.35 1.45 0.5 1.35
γ 55 100 55 45 55 55

We solve the Potts model (P) with the three different region force func-

tions using PDHG (Algorithm 1) and ADMM (Algorithm 2), where we set

βl = γl = 0.4 in PDHG, and βl = 0.05 and c = 0.1 in ADMM. In order
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to monitor the convergence of the algorithm, we record two quantities: The
primal energy

(21) EP ([φk]) =

∫
Ω

K∑
i=1

fkφk + α|∇φk|dx,

and the dual energy

(22) ED([qk]) =

∫
Ω

min
k∈{1,...,K}

(fk + divqk) dx.

Because the primal variables [φk] from Algorithm 2 could violate the sim-
plex constraint, the duality gap is not always great than or equal to zero.
However, as the algorithm converges, the duality gap is approaching zero.
Therefore, both PDHG and ADMM are terminated if either of the following
two conditions is satisfied: a) a maximum of 2500 iterations is reached; b)
the relative absolute duality gap is smaller than ε,

|EP − ED|
|EP |

≤ ε,(23)

where ε = 10−5 in the experiments for image segmentation.

The segmentation results obtained from PDHG and ADMM are visually
close, so we only present the ones obtained from PDHG in Figures 1 to
4. These figures show that for image segmentation the new region force
function (14) proposed in this paper is as effective as the L2 fidelity and
the one proposed in [45]. We direct the interested reader to [16] for indirect
comparisons of the segmentation results with other approaches.

We present the computational results of PDHG and ADMM in Table 2,
which shows both methods can solve the segmentation with very good ef-
ficiency. For these test images, we find that PDHG requires many fewer
iterations and less computation time than ADMM to converge to the mod-
erate accuracy. However, the computing time could also be in favor of the
ADMM method for some other images. The table also shows an interest-
ing feature about the three region force functions. Typically, it requires the
least number of iterations and computation time for PDHG and ADMM to
compute the solution of the Potts model with the region force function (14),
while it requires the most number of iterations and computation time to
compute the solution of the Potts model with the region force function (20).
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(a) (b)

(c) (d)

Figure 1: (a): Original image; (b), (c), (d): Segmentation results obtained
from the Potts model with the region force functions (14), (16), and (20),
respectively.

4.2. Semi-supervised data clustering

Next, we evaluate the performance of the new region force function on three
benchmark semi-supervised clustering data sets: Three-Circles, COIL, and
MNIST. Three-Circles is a synthetic data set which are constructed from
three circles having an identical center. We first create three circles on the
2D plane, centered at (0,0) with radii 1, 2, and 3, and then sample 6000
points uniformly at random from these circles. The sampled points are em-
bedded into R100 by padding 98 zeros to their end, followed by the per-
turbation of each coordinate with i.i.d Gaussian noise of mean 0 and vari-
ance 0.16. The COIL data set is downloaded from the supplementary ma-
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(a) (b)

(c) (d)

Figure 2: (a): Original image; (b), (c), (d): Segmentation results obtained
from the Potts model with the region force functions (14), (16), and (20),
respectively.

terial of [14] (http://olivier.chapelle.cc/ssl-book/benchmarks.html,

originally from COIL-100 [34]). It contains 1500 natural images of 6 dif-

ferent objects taken from various angles. All the images are preprocessed

http://olivier.chapelle.cc/ssl-book/benchmarks.html


21

(a) (b)

(c) (d)

Figure 3: (a): Original image; (b), (c), (d): Segmentation results obtained
from the Potts model with the region force functions (14), (16), and (20),
respectively.

to the same size, and the labels for the images are also contained in the

data set. MNIST is obtained from “The MNIST Database of Handwritten

Digits” (http://yann.lecun.com/exdb/mnist/), which consists of 70,000

gray-scale images of labeled handwritten digits from 0 to 9, all scaled to the

same size. The basic properties of the three data sets are listed in Table 3.

The graph G for each test data set is constructed as a s-nearest-neighbor

(s-NN) graph under the l2-metric. We make use of an implementation of

the randomized kd-tree [38, 32], called VLFeat [40], to find the s-nearest

neighbors of each data point. The Zelnik-Manor and Perona weight function

in (8) is used to construct the affinity matrix, where the standard deviation

http://yann.lecun.com/exdb/mnist/
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(a) (b)

(c) (d)

Figure 4: (a): Original image; (b), (c), (d): Segmentation results obtained
from the Potts model with the region force functions (14), (16), and (20),
respectively.

at a data point is estimated using the distance between the data point and

its s-th nearest neighbor.

In the tests, a small fraction of data points are drawn uniformly at

random from each data set and marked as labelled data, and then we apply

the discrete Potts model (P̄) to determine the labels for the rest of the data

points. The probabilities pk(xi) used to define the region force functions (14)

and (16) are computed via (17) for m = 1 or m = 2. We choose α(xi) to

be a constant, denoted by α, in (P̄) . The solution to the discrete Potts

model is computed by PDHG (Algorithm 1) and ADMM (Algorithm 2).

The algorithms are terminated using the same criteria as in Section 4.1 but
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Table 2: Number of iterations and computational time of PDHG and ADMM
for the image segmentation tests in Figures 1b to 1d, 2b to 2d, 3b to 3d,
and 4b to 4d.

1b 1c 1d 2b 2c 2d

ADMM
#iter 352 1033 2500 921 2500 2500

time (s) 162.8 417.5 1144.2 761.3 2062.8 2043.5

PDHG
#iter 176 307 642 826 670 2500

time (s) 58.9 108.9 224.1 492.3 432.1 1344.8

3b 3c 3d 4b 4c 4d

ADMM
#iter 1911 2500 2500 2363 2500 2500

time (s) 2231.6 2922.9 2930.5 1671.2 1751.8 1754.6

PDHG
#iter 1751 2500 2500 744 562 2500

time (s) 1392.9 1905.1 1895.7 386.9 305.4 1151.3

Table 3: Basic properties of Three-Circles, COIL, and MNIST. The original
data sets also contain labels for all the data points

Data set Classes Dimension Points
Three Circles 3 100 6000

COIL 6 241 1500
MNIST 10 784 70,000

with ε = 10−3. All the simulations are repeated 10 times.

Table 4: Parameters used in the tests where n is the number of labelled data
points in each data set, s is the number of neighbors used to construct the
graph, m is the value used in the computation of pk(xi), and α is the TV
weight in the Potts model. The last two rows include the parameters used
in PDHG and ADMM.

Three Circles COIL MNIST

n 50 100 350
s 10 5 10
m 2 1 2

α for (14) 3 5.5 5.5
α for (16) 0.5 1.5 1.5

PDHG βl = γl = 0.4 βl = γl = 0.4 βl = 0.5l, γl = 0.5
(1+0.1l)

ADMM βl = 0.05, c = 0.05 βl = 0.05, c = 0.1 βl = 0.05, c = 5

We begin with comparing the performance of the region force functions

(14) and (16). When the region force function (14) is used in the discrete
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(a) (b) (c)

Figure 5: Three-Circle synthetic data: (a) all the data points with labelled
data, (b) classification result computed from pk(xi), and (c) classification
result of the Potts model with (14).

Potts model, we add a small quantity δ = 10−3 to the logarithm and test

fk(x) = − log(pk(x) + δ) + log(1− pk(x) + δ)

to avoid numerical overflow. The values of the parameters used in our tests
for the three different data sets are listed in Table 4.

The average classification accuracy (out of the ten random samples of
the labelled data) of the Potts model with the region force functions (14)
and (16) are listed in Tables 5, 6, and 7 for Three Circles, COIL, and
MNIST, respectively. The three tables show that the average classification
accuracy of (14) is slightly higher than that of (16), and overall they are
equally effective for the tested semi-supervised clustering problems. We also
plot the classification result of the Potts model with (14) for Three Circles

in Figure 5 by projecting the data points onto the first two dimensions. The
average computation time and average number of iterations of PDHG and
ADMM in each test are also listed in the tables, which show that PDHG is
typically faster than ADMM.

We further compare our approach, referred to as Potts-RF, with an-
other two existing variational methods from the literature: multiclass total
variation (MTV [8]) and multiclass-MBO [19]. The codes for MTV are down-
loaded from the author’s website, while we reproduce the codes for multi-
class MBO using the parameters suggested in [19]. We test three different
numbers of labeled samples for each data set. The average classification ac-
curacy of Potts-RF, MTV and multiclass-MBO is listed in Tables 8, 9, and
10 for Three Circles, COIL, and MNIST, respectively. Table 10 shows that
the classification accuracy of Potts-RF is only about 0.5% lower than that of
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Table 5: Average classification accuracy of the discrete Potts model with
the region forces functions (14) and (16) for Three-Circles, as well as the
average computational time of PDHG and ADMM. The number of labelled
data points is 50 (0.83%).

region force algorithm accuracy (%) iterations (ave.) cpu time (s)
(14) PDHG 98.2 162.8 2.94
(14) ADMM 98.2 76.3 2.78
(16) PDHG 97.9 65.6 1.45
(16) ADMM 97.9 71.5 2.70

Table 6: Average classification accuracy of the discrete Potts model with
the region forces functions (14) and (16) for COIL, as well as the average
computational time of PDHG and ADMM. The number of labelled data
points is 100 (6.7%).

region force algorithm accuracy (%) iterations (ave.) cpu time (s)
(14) PDHG 90.90 307.6 2.16
(14) ADMM 90.90 163.1 1.67
(16) PDHG 90.25 306.6 2.09
(16) ADMM 90.25 475.9 4.21

Table 7: Average classification accuracy of the discrete Potts model with
the region forces functions (14) and (16) for MNIST, as well as the average
computational time of PDHG and ADMM. The number of labelled data
points is 350 (0.5%).

region force algorithm accuracy (%) iterations (ave.) cpu time (s)
(14) PDHG 97.3 110.1 81.7
(14) ADMM 97.3 385.8 2097
(16) PDHG 97.2 203.8 161.3
(16) ADMM 97.2 381.6 2063

MTV for MNIST, while Tables 8 and 9 show that the classification accuracy

of Potts-RF is larger than that of MTV and multi-class MBO for the other

two data sets. In addition, our approach is much easier to be implemented

than MTV and multi-class MBO which requires either complicated initial-

ization or computation of the eigenvectors of a large matrix. For the sake

of completeness, we also include the classification accuracy computed from

the initial probabilities pk(xi) in the tables.
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Table 8: Average classification accuracy (%) of Potts-RF, MTV and
multiclass-MBO on Three-Circles for three different numbers of labeled
samples.

l 0.83% 1.25% 1.67%
pk(xi) 75.92± 2.43 83.42± 2.45 89.91± 1.27

Potts-RF(14) 98.19± 3.58 99.35± 0.07 99.49± 0.05
MTV 75.44± 8.34 79.19± 4.96 79.47± 2.03

multiclass-MBO 66.15± 5.98 81.13± 5.53 90.02± 3.31

Table 9: Average classification accuracy (%) of Potts-RF, MTV and
multiclass-MBO on COIL for three different numbers of labeled samples.

3.3% 6.7% 10%
pk(xi) 46.64± 1.79 58.90± 2.41 66.46± 2.31

Potts-RF(14) 81.8± 4.9 90.9± 2.0 92.9± 0.9
MTV 78.4± 4.00 89.73± 1.5 92.20± 1.3

multiclass-MBO 70.53± 3.46 82.03± 3.90 89.09± 2.06

Table 10: Average classification accuracy (%) of Potts-RF, MTV and
multiclass-MBO on MNIST for three different numbers of labeled samples.

0.25% 0.5% 1%
pk(xi) 18.24± 3.34 24.67± 0.99 35.85± 0.77

Potts-RF(14) 97.15± 0.13 97.28± 0.09 97.32± 0.09
MTV 97.62± 0.03 97.63± 0.03 97.65± 0.01

multiclass-MBO 73.0± 3.91 90.1± 3.24 94.9± 2.78

5. Conclusion and Future Direction

We introduce a novel region force function into the Potts model and thus
provide a uniformly effective framework for multi-phase image segmentation
and semi-supervised data clustering. The new region force function is com-
puted as the negative log-likelihood function of the indicator function under
the Bernoulli distribution. The probability that an image pixel or a data
point belongs to a given class is estimated based on the mixed Gaussian
density model for image segmentation and based on the diffusion distance
for semi-supervised data clustering.

Two numerical algorithms PDHG and ADMM are presented to com-
pute the solution of the Potts model. Those two algorithms are developed
from two different dual formulations of the Potts model. Extensive numerical
experiments have been conducted on benchmark problems in image segmen-
tation and semi-supervised data clustering and show that our approach is
as effective as other existing variational methods in the literature.
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In this paper, the probabilities used in the computation of the region
force function are fixed. For future work, we suggest updating the proba-
bilities adaptively in the numerical algorithms, for example based on the
maximum likelihood estimation. We also intend to apply data driven ideas
to design new region force functions for different applications.
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