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GRAPH CONNECTION LAPLACIAN METHODS CAN BE
MADE ROBUST TO NOISE

By Noureddine El Karoui∗,‡ Hau-Tieng Wu†,§

UC Berkeley ‡ and University of Toronto§

Recently, several data analytic techniques based on graph connec-
tion laplacian (GCL) ideas have appeared in the literature. At this
point, the properties of these methods are starting to be understood
in the setting where the data is observed without noise. We study the
impact of additive noise on these methods, and show that they are
remarkably robust. As a by-product of our analysis, we propose mod-
ifications of the standard algorithms that increase their robustness to
noise. We illustrate our results in numerical simulations.

1. Introduction. In the last few years, several interesting variants of
kernel-based spectral methods have appeared in the applied mathematics
literature. These ideas were developed in connection with new types of data,
where pairs of objects or measurements of interest have a relationship that
is “blurred” by the action of a nuisance parameter. More specifically, we can
find this type of data in a wide range of problems, for instance in the class
averaging algorithm for the cryo-electron microscope (cryo-EM) problem
[34, 40], in a modern light source imaging technique known as ptychography
[27], in graph realization problems [12, 13], in vectorized PageRank [10], in
multi-channels image processing [5], etc...

Before we give further details about a specific motivating example, the
cryo-EM problem, let us present the main building blocks of the methods
we will study. They depend on the following three components:

1. an undirected graph G = (V, E) which describes all observations. The
observations are the vertices of the graph G, denoted as {Vi}ni=1.

2. an affinity function w : E → R+, satisfying wi,j = wj,i, which de-
scribes how close two observations are (i and j index our observa-
tions). One common choice of wi,j = w(Vi, Vj) is of the form wi,j =
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exp(−m(Vi, Vj)
2/ε), where m(x, y) is a metric measuring how far x

and y are.
3. a connection function r : E → G, where G is a Lie group, which de-

scribes how two samples are related. In its application to the cryo-EM
problem, ri,j ’s can be thought of estimates of our nuisance parameters,
which are orthogonal matrices in that example.

These three components form the connection graph associated with the
data, which is denoted as (G, w, r). They can be either given to the data
analyst or have to be estimated from the data, depending on the application.

This fact leads to different connection graph and associated noise mod-
els. For example, in the cryo-EM problem, all components of the connection
graph (G, w, r) are determined from the given projection images, where each
vertex represents an image [15, Appendix A]; in the ptychography problem
[27], G is given by the experimenter, r is established from the experimen-
tal setup, and w is built up from the diffractive images collected in the
experiment. Depending on applications, different metrics, deformations or
connections among pairs of observations are considered, or estimated from
the dataset, to present the local information among data (see, for example,
[4, 7, 1, 11, 39, 36, 37, 28]).

We focus in this paper on the graph connection Laplacian (GCL), and
hence we take the Lie Group G = O(k), where k ∈ N, and assume that r
satisfies ri,j = r−1j,i .

1.1. Motivating example: the Cryo-EM problem. In the cryo-EM prob-
lem, the experimenter collects 2-dimensional projection images of a 3-dimensional
macro-molecular object of interest, and the goal is to reconstruct the 3-
dimensional geometric structure of the macro-molecular object from these
projection images. Mathematically, the collected images XcryoEM := {Ii}Ni=1 ∈
Rm2

can be modeled as the X-ray transform of the potential of the macro-
molecular object of interest, denoted as ψ : R3 → R+. More precisely, in the
setting that is usually studied, we have Ii = Xψ(Ri), where Ri ∈ SO(3),
SO(3) is the 3-dimensional special orthogonal group, Xψ is the X-ray trans-
form of ψ. The X-ray transform Xψ(Ri) is a function from R2 to R+ and
hence can be treated by the data analyst as an image. We refer the reader
to [15, Appendix A] for precise mathematical details. (For the rest of the
discussion, we write Ri = [R1

i R
2
i R

3
i ] in the canonical basis, where Rki are

three dimensional unit vectors.)
The experimental process produces data with high level of noise. There-

fore, to solve this inverse problem, i.e reconstruct ψ from {Ii}Ni=1, it is a
common consensus to preprocess the images to increase the signal-to-noise
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ratio (SNR) before sending them to the cryo-EM data analytic pipeline. An
efficient way to do so is to estimate the projection directions of these images,
i.e R3

i . This direction plays a particular role in the X-ray transform, which
is different from the other two directions. If R3

i ’s were known, we would
cluster the images according to these vectors and for instance take the mean
of all properly rotationally aligned images in a cluster as a starting point for
data-analysis. This would increase the SNR of the projection images. With
these “improved” images, we can proceed to estimate Ri for the i-th image
by applying, for example, the common line algorithm [23], so that the 3-D
image can be reconstructed by the inverse X-ray transform[21]. We note that
R3
i is a unit vector in R3 and hence lives on the standard sphere S2.
Conceptually, the problem is rendered difficult by the fact that the X-ray

transform Xψ(Ri) is equivariant under the action of rotations that leave
R3
i unchanged: if rθ is an in-plane rotation, i.e a rotation that leaves R3

i

unchanged but rotates R1
i and R2

i by an angle θ, the image Xψ(rθRi) is
Xψ(Ri) rotated by the angle θ. In other words, Xψ(rθRi) = r2(θ)Xψ(Ri),
where r2(θ) stands for the 2-dimensional rotation by the angle θ. These in-
plane rotations are clearly nuisance parameters if we want to evaluate the
projection direction R3

i .
To measure the distance between R3

i and R3
j , we hence use a rotationally

invariant distance, i.e d2i,j = infθ∈[0,2π)‖Ii − r2(θ)Ij‖22. More concretely, we
look at the Euclidean distance between our two X-ray transforms/images
after we have “aligned” them as best as possible. We now think of R3

i ’s - the
vectors we would like to estimate - as elements of the manifold S2, equipped
with a metric gψ, which depends on the macro-molecular object of interest. It
turns out that the Vector Diffusion Maps algorithm (VDM), which is based
on GCL and which we study in this paper, is effective in producing a good
approximation of gψ from the local information di,j ’s and the rotations we
obtain by aligning the various X-ray transforms. This in turns imply better
clustering of the R3

i ’s and improvement in the data-analytic pipeline for
cryo-EM problems [34, 40].

1.2. Motivation for the paper: impact of noise on these procedures. The
point of this paper is to understand how the GCL algorithms perform when
the input data is corrupted by noise. The relationship between this method
and the connection concept in differential geometry is the following: the pro-
jection images Ii form a graph, and we can define the affinity and connection
among a pair of images so that the topological structure of the 2-dimensional
sphere (S2, gψ) is encoded in the graph. This amounts to using the local geo-
metric information derived from our data to estimate the global information
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- including topology - of (S2, gψ).
What is missing from these considerations and the current literature is

an understanding of how noise impacts the procedures which are currently
used and have mathematical backing in the noise-free context. The aim
of our paper is to shed light on the issue of the impact of noise on these
interesting and practically useful procedures. We will be concerned in this
paper with the impact of adding noise on the observations - collected for
instance in the way described above.

Note that additive noise may impact all three building blocks of the con-
nection graph associated with the data. First, it might make the graph noisy.
For example, in the cryo-EM problem, the standard algorithm builds up the
graph from a given noisy data set {Pi}ni=1 = {Ii + Ni}ni=1 - Ii is the sig-
nal and Ni is additive noise - using the nearest neighbors determined by a
pre-assigned metric. In other words, we put an edge between two vertices
when they are close enough in that metric. Then, clearly, the existence of
the noise Ni will likely create a different nearest neighbor graph from the
one that would be built up from the (clean) projection images {Ii}ni=1. As we
will see in this paper, in some applications, it might be beneficial to consider
a complete graph instead of a nearest neighbor graph.

The second noise source is how w and r are provided or determined from
the samples. For example, in the cryo-EM problem, although {Pi}ni=1 are
points located in a high dimensional Euclidean space, we determine the
affinity and connection between two images by evaluating their rotation-
ally invariant distance. It is clear that when Pi is noisy, the derived affinity
and connection will be noisy and likely quite different from the affinity and
connection we would compute from the clean dataset {Ii}ni=1. On the other
hand, in the ptychography problem, the connection is directly determined
from the experimental setup, so that it is noise-free even when our observa-
tions are corrupted by additive noise.

In summary, corrupting the observations by additive noise might impact
the following elements of the data analysis:

1. which scheme and metric we choose to construct the graph;
2. how we build up the affinity function;
3. how we build up the connection function.

1.3. More details on GCL methods. At a high-level, graph connection
Laplacian (GCL) methods create a block matrix from the connection graph.
The spectral properties of this matrix are then used to estimate properties
of the intrinsic structure from which we posit the data is drawn from. This
in turns lead to good estimation methods for, for instance, geodesic distance
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on the manifold, if the underlying intrinsic structure is a manifold. We refer
the reader to Supplementary Material [20] D and references [31, 33, 3, 9, 10]
for more information.

Given a n × n symmetric matrix W , with scalar entries denoted by wi,j
and a nk × nk block matrix G with k × k block entries denoted by Gi,j , we
define a nk × nk matrix S with (i, j)-block entries

Si,j = wi,jGi,j

and a nk × nk block diagonal matrix D with (i, i)-block entries

Di,i =
∑
j 6=i

wi,jIdk,

which is assumed to be invertible. Let us call

L(W,G) := D−1S and L0(W,G) := L(W ◦ 1i 6=j , G).(1)

In other words, L0(W,G) is the matrix L(W,G) computed from the weight
matrix W where the diagonal weights have been replaced by 0.

GCL terminology Suppose we are given a connection graph (G, w, r),
and construct the (symmetric) n×n affinity matrix W so that wi,j = w(i, j)
and the connection matrix G, the nk × nk block matrix with k × k block
entries Gi,j = r(i, j). The (normalized) GCL associated with the connection
graph (G, w, r) is defined as

(GCL) Idnk − L(W,G) .

The modified GCL associated with the connection graph (G, w, r) is defined
as

(modifGCL) Idnk − L0(W,G) .

We note that under our assumptions on r, i.e ri,j = r−1j,i = r∗i,j the connection
matrix G is Hermitian. (Since W is symmetric, L(W,G) and L0(W,G) are
similar to Hermitian matrices.)

We are interested in the large eigenvalues of L(W,G) (or, equivalently, the
small eigenvalues of the GCL Idnk −L(W,G)), as well as the corresponding
eigenvectors. In the case where the data is not corrupted by noise, the GCL’s
asymptotic properties have been studied in [31, 33], when the underlying
intrinsic structure is a manifold. Its so-called synchronization properties have
been studied in [3, 10].
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1.4. Organization of the paper. We develop in Section 2 a theory for the
impact of noise on a specific metric motivating this work, the rotationally
invariant distance and related quantities. In Section 3, we give results con-
cerning general GCL algorithms and propose modifications to the standard
algorithms to render them more robust to noise. We present in Section 4
some numerical results, illustrating in part the points we raised in Sections
2 and 3.

Questions we address The aim of our study is to understand the impact
of additive noise on GCL algorithms. Our main results are Propositions 2.1
and 2.2, which explain the effect of noise on the affinity, and Theorem 2.2,
which explains the effect of noise on the connection. These results are derived
in the important case of the rotationally invariant distance. They lead to
suggestions for modifying the standard GCL algorithms: the methods are
more robust when we use a complete graph than when we use a nearest-
neighbor graph, the latter being commonly used in practice. One should
also use the matrix L0(W,G) instead of L(W,G) to make the method more
robust to noise. After we suggest these modifications, one main result is
Theorem 3.1, which shows that even when the signal-to-noise-ratio (SNR) is
very small, i.e going to 0 asymptotically, our modifications of the standard
algorithm will approximately yield the same spectral results as if we had
been working on the GCL matrix computed from noiseless data. Another
important result in the paper is Theorem 3.2, which generalizes Theorem
3.1 to a broader class of GCL methods.

Notations: T denotes a set of linear transforms. Idk stands for the k×k
identity matrix. If v ∈ Rn, D({v}) is a nk × nk block diagonal matrix with
the (i, i)-th block equal to viIdk. We denote by A ◦ B the Hadamard, i.e
entry-wise, product of the matrices A and B. |||M |||2 is the largest singular
value (a.k.a operator norm) of the matrix M . ‖M‖F is its Frobenius norm.
We use the probabilistic Landau notations oP and OP with the standard
meaning (see e.g [38], p. 12 for definitions if needed).

We now turn to the analysis of elements of a specific algorithm, the class
averaging algorithm in the cryo-EM problem, with a broadly accepted model
of noise contamination to demonstrate the impact of noise on this procedure.

2. Impact of additive noise on the rotationally invariant dis-
tance. We assume that we observe noisy versions of the k-dimensional im-
ages/objects, k ≥ 2, we are interested in. If the images in the - unobserved
- clean dataset are called {Si}ni=1, we observe

Ii = Si +Ni .
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Here {Ni}ni=1 are pure-noise images/objects. Naturally, after discretization,
the images/objects we consider are just data vectors of dimension p – we view
Si and Ni as vectors in Rp. In other words, for a k-dimensional image, we
sample p points from the domain Rk using the sampling grid X := {xi}pi=1 ⊂
Rk, and the image is discretized according to these points. We also assume
that the random variables Ni’s, i = 1, . . . , n, are independent.

2.1. Distance measurement between pairs of images. We start from a
general definition. Take a set of linear transforms T (k) ⊂ O(k). Consider the
following measurement between two objects/images, dij ≥ 0, with

d2ij = inf
O∈T (k)

‖Ii − O ◦ Ij‖22 ,

where ◦ means that the transform is acting on the pixels. For example, in
the continuous setup where Ij is replaced by fj ∈ L2(Rk), given O ∈ SO(k),
we have O ◦ fj(x) := fj(O

−1x) for all x ∈ Rk. When T (k) = SO(k), dij is
called the rotationally invariant distance (RID).

Difficulties arising from discretization In the discrete setup of inter-
est in this paper, we assume that X = O−1X for all O ∈ T (k); that is, the
linear transform is exact (with respect to the grid X), in that it maps the
sampling grid onto itself. For concreteness, here is an example of sampling
grid and associated exact linear transforms. Let k = 2 and take the sampling
grid to be the polar coordinates grid. Since we are in dimension 2, we pick m
rays of length 1 at angles 2πk/m, k = 0, . . . ,m−1 and have l equally spaced
points on each of those rays. We consider Ii to be the discretization of the
function fi ∈ L2(R2) which is compactly supported inside the unit disk, at
the polar coordinate grid. The set T (2) consisting of elements of SO(2) with
angles θk = 2π k

m , where k = 1, . . . ,m, is thus exact and associated to the
polar coordinate grid.

The discretization and notation merit further discussion. As a linear trans-
form of the domain Rk, O ∈ T (k) can be represented by a k × k matrix. On
the other hand, in the discretized setup we consider here, we can map T (k)

to a set T of p× p matrices O which act on the discretized images Ij . These
images are viewed as a set of p-dimensional vectors, denoted as I∨j , and
O acts on a “flattened” or “vectorized” (i.e 1-dimensional) version of the
k-dimensional object of interest. Note that to each transform O there corre-
sponds a unique p × p matrix O. In the following, we will use O to denote
the transform acting on the pixels, and use O to mean its companion matrix
acting on the vectorized version of the object we are interested in. A simple
but very important observation is that

(O ◦ Ii)∨ = OI∨i .
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In other words, we will have infO∈T (k)‖Ii − O ◦ Ij‖ = infO∈T ‖I∨i − OI∨j ‖. To
simplify the notation, when it is clear from the context, we will use Ij to
mean both the discretized object of interest and its vectorized version.

Approximation results In what follows, we assume that T always con-
tains Idp. We study the impact of noise on dij through a uniform approxi-
mation argument. Let us call for O ∈ T ,

d2ij,noisy(O) := ‖I∨i − OI∨j ‖2 , and d2ij,clean(O) := ‖S∨i − OS∨j ‖2 .

Essentially we will show that, when T contains only orthogonal matrices
and is not “too large”,

sup
O∈T

sup
i 6=j
|d2ij,noisy(O)− d2ij,clean(O)− f(i, j)| = oP (1) ,

where f(i, j) does not depend on O. Our approximations will in fact be
much more precise than this. But we will be able to conclude that in these
circumstances,

sup
i 6=j

∣∣∣∣ inf
O∈T

d2ij,noisy(O)− inf
O∈T

d2ij,clean(O)− f(i, j)

∣∣∣∣ = oP (1) .

We have the following theorem for any given set of transforms T .

Theorem 2.1. Suppose that for 1 ≤ i ≤ n, Ni are independent, with
N∨i ∼ N (0,Σi). Call tp := supi supO∈T

√
trace ((OΣiO′)2) and

sp := sup1≤i≤n supO∈T
√
|||OΣiO′|||2. Then, we have

sup
O∈T

sup
i 6=j
|d2ij,noisy(O)− d2ij,clean(O)− trace

(
Σi + OΣjO

′) |
= OP

(√
log[Card {T }n2]

(
tp + sp sup

i,O∈T
‖OS∨i ‖

)
+ log[Card {T }n2]s2p

)
.

A proof of this Theorem can be found in Subsection A-1 in the Supplemen-
tary Material [20]. In light of the previous theorem, we have the following
proposition.

Proposition 2.1. Suppose that for all 1 ≤ i ≤ n and O ∈ T , |||OΣiO
′|||2 ≤

σ2p,
√

trace ([OΣiO′]2) /p ≤ s2p, and ‖OS∨i ‖ ≤ K, where K is a constant in-
dependent of p. Then,

sup
O∈T

sup
i 6=j
|d2ij,noisy(O)− d2ij,clean(O)− trace

(
Σi + OΣjO

′) | = OP (un,p) .(2)
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where un,p :=
√

log[Card {T }n2](√ps2p +Kσp) + log[Card {T }n2]σ2p.

It follows that, if
√

log[Card {T }n2] max(
√
ps2p, σp) → 0, and T contains

only orthogonal matrices,

sup
O∈T

sup
i 6=j
|d2ij,noisy(O)− d2ij,clean(O)− trace (Σi + Σj) | = OP (un,p) = oP (1) .

Furthermore, in this case,

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − trace (Σi + Σj)
∣∣ = oP (1) ,

where

d2ij,noisy := inf
O∈T
‖I∨i − OI∨j ‖2 , d2ij,clean := inf

O∈T
‖S∨i − OS∨j ‖2 .

The following set of assumptions is natural in light of the previous propo-
sition:
Assumption G1 : ∀i,O ∈ T , |||OΣiO

′|||2 ≤ σ2p,
√

trace ([OΣiO′]2) /p ≤ s2p,
and ‖OS∨i ‖ ≤ K, where K is a constant independent of p. Furthermore,√

log[Card {T }n2] max(
√
ps2p, σp)→ 0 and hence un,p → 0.

We refer the reader to Proposition C.1 on page 16 in the Supplementary
Material [20] for a bound on Card {T } that is relevant to the class averag-
ing algorithm in the cryo-EM problem.

Proof of Proposition 2.1. The first two statements are immediate
consequences of Theorem 2.1. For the second one, we use the fact that since
O ∈ T is orthogonal, trace (OΣjO

′) = trace (Σj).
Now, if F and G are two functions, we clearly have | inf F (x)− inf G(x)| ≤

sup |G(x)−F (x)|. Indeed, ∀x, F (x) ≤ G(x) + sup |G(x)−F (x)|. Hence, for
all x,

inf
x
F (x) ≤ F (x) ≤ G(x) + sup |G(x)− F (x)| ,

and we conclude by taking inf in the right-hand side. The inequality is
proved similarly in the other direction. The results of Theorem 2.1 therefore
show that

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − trace (Σi + Σj)
∣∣

= OP (
√

log[Card {T }n2](√ps2p +Kσp) + log[Card {T }n2]σ2p)

and we get the announced conclusions under our assumptions.

We now present two examples to show that our assumptions are quite un-
restrictive. This will later help to prove that the algorithms we are studying
can tolerate very large amounts of noise.
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Magnitude of noise: First example. Assume that N∨i ∼ p−(1/4+ε)N (0, Idp),
where ε > 0. In this case, ‖N∨i ‖ ∼ p1/4−ε � supi‖S∨i ‖ if ε < 1/4. In other
words, the norm of the error vector is much larger than the norm of the signal
vector. Indeed, asymptotically, the signal to noise ratio ‖S∨i ‖/‖N∨i ‖ is 0.
Furthermore, σp = p−(1/4+ε) and

√
ps2p = p−2ε. Hence, if Card {T } = O(pγ)

for some γ, our conditions translate into
√

log(np) max(p−(1/4+ε), p−2ε)→ 0.
This is of course satisfied provided n is subexponential in p. See Proposition
C.1 in [20] for a natural example of T whose cardinal is polynomial in p.

Magnitude of noise: Second example. We now consider the case where Σi

has one eigenvalue equal to p−ε and all the others are equal to p−(1/2+η),
ε, η > 0. In other words, the noise is much larger in one direction than in all
the others. In this case, σ2p = p−ε and trace

(
Σ2
i

)
= p−2ε+(p−1)∗p−(1+2η) ≤

p−2ε + p−2η. So if once again, Card {T } = O(pγ), our conditions translate
into

√
log(np) max(p−ε + p−η, p−ε/2) → 0. This example would also work

if the number of eigenvalues equal to p−ε were o(p2ε/[log(np)]), provided√
log(np) max(p−η, p−ε/2)→ 0.

Comment on the conditions on the signal in Assumption G1. At first glance,
it might look like the condition supi,O∈T ‖OS∨i ‖ ≤ K is very restrictive due
to the fact that, after discretization, Si has p pixels. However, it is typi-
cally the case that if we start from a function in L2(Rk), the discretized and
vectorized image S∨i is normalized by the number of pixels p, so that ‖S∨i ‖
is roughly equal to the L2-norm of the corresponding function. Hence, our
condition supi,O∈T ‖OS∨i ‖ ≤ K is very reasonable.

2.2. The case of “exact rotations”. We now focus on the most interesting
case for our problem, namely the situation where O leaves our sampling grid

invariant. We call T (k)
exact ⊂ SO(k) the corresponding matrices O and Texact

the companion p× p matrices. We note that T (k)
exact depends on p, but since

this is evident, we do not index T (k)
exact by p to avoid cumbersome notations.

From the standpoint of statistical applications, our focus in this paper is
mostly on the case k = 1 (which corresponds to “standard” kernel methods
commonly used in statistical learning) and k = 2.

We show in Proposition C.1 in [20] that if O ∈ Texact, O is an orthog-
onal p × p matrix. Furthermore, we show in Proposition C.1 in [20] that
Card {Texact} is polynomial in p. We therefore have the following proposi-
tion.
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Proposition 2.2. Let

d2ij,noisy := inf
O∈T (k)

exact

‖Ii − O ◦ Ij‖2 , d2ij,clean := inf
O∈T (k)

exact

‖Si − O ◦ Sj‖2 .

Suppose Ni are independent with N∨i ∼ N (0,Σi). When Assumption G1

holds with Texact being the set of companion matrices of T (k)
exact, we have

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − trace (Σi + Σj)
∣∣ = oP (1) ,

and

sup
O∈T (k)

exact

sup
i 6=j
|d2ij,noisy(O)− d2ij,clean(O)− trace (Σi + Σj) | = OP (un,p) = oP (1) .

2.3. On the transform O∗ij,noisy. We now use the notations

dij,noisy(O) = ‖Ii − O ◦ Ij‖ , and dij,clean(O) = ‖Si − O ◦ Sj‖ .

Naturally, the study of

(3) O∗ij,noisy = argmin
O∈T (k)

exact
dij,noisy(O)

is more complicated than the study of inf
O∈T (k)

exact
dij,noisy(O). We will as-

sume that the clean/noise-free images are nicely behaved when it comes to
the dij,clean(O) minimization, in that rotations that are near minimizers of
dij,clean(O) are close to one another. More formally, we assume the following.

Assumption A0 : T (k)
exact is a subset of SO(k) and contains only exact

rotations. Call O∗ij,clean := argmin
O∈T (k)

exact
d2ij,clean(O) and call

T (k)
ij,ε :=

{
O ∈ T (k)

exact : d2ij,clean(O) ≤ d2ij,clean(O∗ij,clean) + ε
}

. We assume that

∃δij,p > 0 : ∀ε < δij,p ∀O ∈ T (k)
ij,ε , d(O, O∗ij,clean) ≤ gij,p(ε) ,

for d the canonical metric on the orthogonal group and some positive gij,p(ε).
Assumption A1 : δij,p can be chosen independently of i, j and p. Fur-
thermore, there exists a function g such that g(ε) → 0 as ε → 0 and
gij,p(x) ≤ g(x), if x ≤ δij,p ≤ δ.

We discuss the meaning of these assumptions after the following theorem.

Theorem 2.2. Suppose that the assumptions underlying Theorem 2.1

hold and that Assumptions G1, A0 and A1 hold. Suppose further that T (k)
exact
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is the set of exact rotations for our discretization. Then, for any η given,
where 0 < η < 1, as p and n go to infinity,

(4) sup
i 6=j

d(O∗ij,noisy, O
∗
ij,clean) = OP (g(u1−ηn,p )) ,

where un,p is defined in (2). (Under Assumption G1, un,p → 0 as n and p
tend to infinity.)

The informal meaning of this theorem is that under regularity assump-
tions on the set of clean/noise-free images, the optimal rotation computed
from the set of noisy images is close to the optimal rotation computed from
the set of clean/noise-free images. In other words, this step of the GCL
procedure is robust to noise.

Interpretation of Assumptions A0-A1 Assumption A0 guarantees
that all near minimizers of dij,clean(O) are close to one another and hence
the optimum. Our uniform bounds in Proposition 2.2 only guarantee that
O∗ij,noisy is a near minimizer of dij,clean(O) and nothing more. If dij,clean(O)
had near minimizers that were far from the optimum O∗ij,clean, it could very
well happen that O∗ij,noisy end up being close to one of these near minimiz-
ers but far from O∗ij,clean, and we would not have the consistency result of
Theorem 2.2. Hence, the robustness to noise of this part of the GCL algo-
rithm is clearly tied to some regularity or “niceness” property for the set of
clean/noise-free images.

In the cryo-EM problem, these assumptions reflect a fundamental prop-
erty of a manifold dataset – its condition number [29]. Conceptually, the
condition number reflects “how difficult it is to reconstruct a manifold”
from a finite sample of points from that manifold. Precisely, it is the inverse
of the reach of the manifold, which is defined to be the radius of the smallest
normal bundle that is homotopic to the manifold. This also highlights the
fact that even if we were to run the GCL algorithm on the clean/noise-free
dataset, without these assumptions, the results might not be stable and re-
liable since intrinsically distant points (i.e distant in the geodesic distance)
might be identified as neighbors.

About T (k)
exact and extensions We are chiefly interested in this paper

about 2-dimensional images and hence about the case k = 2 (see the cryoEM

example). It is then clear that when our polar coordinate grid is fine, T (k)
exact

is also a fine discretization of SO(2) and contains many elements. (More
details are given in Subsection C-3 in [20].) The situation is more intricate
when k ≥ 3, but since it is a bit tangential to the main purpose of the current
paper, we do not discuss it further here. We refer the interested reader to
Subsection C-3 in [20] for more details about the case k ≥ 3.
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We also note that our arguments are not tied to using a standard polar
coordinate grid for the discretization of the images. For another sampling

grid, we would possibly get another T (k)
exact. Our arguments go through when :

a) if O ∈ T (k), the operation O◦ maps our sampling grid of points onto itself;
b) Card

{
T (k)

}
grows polynomially in p.

2.4. Extensions and different approaches. At the gist of our arguments
are strong concentration results for quadratic forms in Gaussian random
variables. Naturally, our results extend to other types of random variables
for which these concentration properties hold. We refer to [26] and [17]
for examples. A natural example in our context would be a situation where

Ni = Σ
1/2
i Xi, and Xi has i.i.d uniformly bounded entries. This is particularly

relevant in the case where Σi is diagonal for instance - the interpretation
being then that the noise contamination is through the corruption of each
individual pixel by independent random variables with possibly different
standard deviations. The arguments in Lemma C-1 in [20]handle this case,
though the bound is slightly worse than the one in Lemma C-2 in [20] when
a few eigenvalues of Σi are larger than most of the others. Indeed, the only
thing that matters in this more general analysis is the largest eigenvalue of
Σi, so that in the notation of Assumption G1,

√
ps2p is replaced by

√
pσ2p.

Hence, our approximation will require in this more general setting that σp =
o(p−1/4), whereas we have seen in the Gaussian case that we can tolerate a
much larger largest eigenvalue.

We also note that we could of course settle for weaker results on concen-
tration of quadratic forms, which would apply to more distributions. For
instance, using bounds on E

(
|‖Ni‖2 −E

(
‖Ni‖2

)
|k
)

would change the de-

pendence of results such as Proposition 2.1 on b , Card {T }n2 from powers
of log(b) to powers of b1/k. This is in turn would mean that our results would
become tolerant to lower levels of noise but apply to more noise distributions.

3. Robustness theory for general GCL problems . Our aim in this
section is to develop a theory that explains the behavior of GCL algorithms
in the presence of noise. In particular, it will apply to algorithms of the
cryo-EM type. We give in Subsection 3.1 approximation results that apply to
general GCL problems. In Section 2, we studied in detail the impact of noise
on both the affinity and the connection used in the computation of the GCL
when using the rotationally invariant distance (this is particularly relevant
for the cryo-EM problem). We put these two sets of results together for a
detailed study of GCL algorithms in the presence of noise in Subsection 3.2.
We also propose in Subsection 3.2 modifications to the standard algorithms
that increase the robustness to noise of GCL methods.



14

3.1. General approximation results. We first present two results that ap-
ply generally to GCL algorithms, and are not related to specific affinity or
connection functions.

Lemma 3.1. Suppose W and W̃ are n× n matrices, with scalar entries
denoted by wi,j and w̃i,j and G and G̃ are nd×nd block matrices, with d×d
blocks denoted by Gi,j and G̃i,j. We assume that

∃{fi}ni=1 , fi > 0 : sup
i,j

∣∣∣∣ w̃i,jfi − wi,j
∣∣∣∣ ≤ ε , and sup

i,j
‖G̃i,j −Gi,j‖F ≤ η .

Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C,

supi,j‖Gi,j‖F ≤ C and supi,j‖G̃i,j‖F ≤ C. Then, if infi
∑

j 6=iwi,j/n > γ
and γ > ε, we have, with the notations of Equation (1),

|||L(W,G)− L(W̃ , G̃)|||2 ≤
1

γ
C(η + ε) +

ε

γ(γ − ε)
C2 .

We note that quite remarkably, there are essentially no conditions on fi’s:
in particular, w̃i,j and wi,j could be of completely different magnitudes. The
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But since L(W̃f , G̃) = L(W̃ , G̃), we also have

|||L(W,G)− L(W̃ , G̃)|||2 ≤
1

γ
C(η + ε) +

ε

γ(γ − ε)
C2 .

In some situations that will be of interest to us below, it is however not
the case that we can find fi’s such that

∃{fi}ni=1 , fi > 0 : sup
i,j

∣∣∣∣ w̃i,jfi − wi,j
∣∣∣∣ ≤ ε .

Rather, this approximation is possible only when i 6= j, yielding the condi-
tion

∀i,∃fi > 0 : sup
i 6=j

∣∣∣∣ w̃i,jfi − wi,j
∣∣∣∣ ≤ ε .

This apparently minor difference turns out to have significant conse-
quences, both practical and theoretical. We propose in the following lemma
to modify the standard way of the computing the GCL matrix to handle
this more general case.

Lemma 3.2. We work under the same setup as in Lemma 3.1 and with
the same notations. We now assume that multiplicative approximations of
the weights is possible only on the off-diagonal elements of our weight matrix:

∃{fi}ni=1 , fi > 0 : sup
i 6=j

∣∣∣∣ w̃i,jfi − wi,j
∣∣∣∣ ≤ ε , and sup

i,j
‖G̃i,j −Gi,j‖F ≤ η .

Suppose furthermore that there exists C > 0 such that 0 ≤ wi,j ≤ C,

supi,j‖Gi,j‖F ≤ C, and supi,j‖G̃i,j‖F ≤ C. Then, if infi
∑

j 6=iwi,j/n > γ
and γ > ε, we have

|||L0(W,G)− L0(W̃ , G̃)|||2 ≤
1

γ
C(η + ε) +

ε

γ(γ − ε)
C2 ,

and

|||L(W,G)− L0(W̃ , G̃)|||2 ≤
1

γ
C(η + ε) +

ε

γ(γ − ε)
C2 +

C2

nγ
.

The lemma is shown in Subsection A-3 in the Supplementary Material
[20].
Comment: Concretely, this lemma means that if we do not include the
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block diagonal terms in the computation of the GCL obtained from our
“noisy data”, i.e (W̃ , G̃), we will get a matrix that is very close in spectral
norm to the GCL computed from the “clean/noise-free data”, i.e (W,G).
The significance of this result lies in the fact that recent work in applied
mathematics has proposed to use the large eigenvalues and eigenvectors
of L(W,G) for various data analytic tasks, such as the estimation of local
geodesic distances when the data is thought to be sampled from an unknown
manifold.

What our result shows is that even when fi are arbitrarily large, which
we can think of as the situation where the signal to noise ratio in W̃ is
basically 0, working with L0(W̃ , G̃) will allow us to harness the power of

these recently developed tools. Naturally, working with (W̃ , G̃) is a much
more realistic assumption than working with (W,G) since we expect all our
measurements to be noisy in practice. Results based on (W,G) essentially
assume that there is no noise in the dataset.

Finally, the previous lemma also suggests that practitioners not use nearest-
neighbor information when using GCL methods. Indeed, the nearest neigh-
bor information is generally different for noisy and noise-free datasets and in-
corporating it would damage or destroy the spectral approximate-equivalence
results of Lemma 3.2.

We provide a simple extension that may be useful from a practical stand-
point in Lemma A-2 in the Supplementary Material [20], Subsubsection A-
3.1: in the case where L0(W,G) can be approximated by a sparser matrix,
we are able to weaken the requirement of uniform approximation of Gi,j ’s

by G̃i,j ’s.

3.2. Consequences for GCL algorithm and other kernel-based methods.

3.2.1. Reminders and preliminaries. Recall that in GCL methods per-
formed with the rotationally invariance distance induced by SO(k) - hence-
forth RID - we mostly care about the spectral properties - especially large
eigenvalues and corresponding eigenvectors - of the GCL matrix L(W̃ , G̃),

where W̃ is a n × n matrix and G̃ is a nk × nk block-matrix with k × k
blocks defined through

W̃i,j = exp(−d2ij,noisy/ε), G̃i,j = O∗ij,noisy ,

where O∗ij,noisy is defined in Equation (3).
The “good” properties of GCL stem from the fact that the matrix L(W,G),

the GCL matrix associated with the clean/noise-free images, has “good”
spectral properties. For example, when a manifold structure is assumed, the
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theoretical work of [31, 33] relates the properties of L(W,G) - the matrix
obtained in the same manner as above when we replace dij,noisy by dij,clean
and O∗ij,noisy by O∗ij,clean - to the geometric and topological properties of the
manifold from which the data is sampled. The natural approximate “spar-
sity” of the spectrum of this kind of matrices is discussed in Section D in
the Supplementary Material [20].

In practice, the data analyst has to work with L(W̃ , G̃) or variants taking
into account only the k nearest neighbors of each datapoint. Hence, it could
potentially be the case that L(W̃ , G̃) or its variants does not share many of
the good properties of L(W,G). It is therefore natural to study the properties
of the standard GCL algorithm applied to noisy data.

We mention that GCL algorithms may apply beyond the case of the ro-
tational invariance distance and O(k) and we explain in Subsubsection 3.2.3
how our results apply in this more general context.

3.2.2. Modified GCL algorithm and rotationally invariant distance. We
now show that our modification to the standard algorithm is robust to noise.
More precisely, we show that the modified GCL matrix L0(W̃ , G̃) is spec-
trally close to the GCL matrix computed from the noise-free data, L(W,G).

We also argue below that it is important to use the full matrix L0(W̃ , G̃)
and not incorporate nearest-neighbor information.

Theorem 3.1. Consider the modified GCL matrix L0(W̃ , G̃) computed
from the noisy data and the GCL matrix L(W,G) computed from the noise-
free data. Under Assumptions G1 and A0-A1, we have, if trace (Σi) =
trace (Σj) = trace (Σ) for all (i, j),

|||L0(W̃ , G̃)− L(W,G)|||2 = oP (1) ,

provided there exists γ > 0, independent of n and p such that

inf
i

∑
j 6=i

exp(−d2ij,clean/ε)
n

≥ γ > 0 .

The proof is given in Subsection A-4 in the Supplementary Material [20].

Note that the previous result means that L0(W̃ , G̃) and L(W,G) are es-
sentially spectrally equivalent: indeed we can use the Davis-Kahan theorem
or Weyl’s inequality to relate eigenvectors and eigenvalues of L0(W̃ , G̃) to
those of L(W,G) (see [35], [6] or [16] for a brief discussion putting all the
needed results together; note that L0 and L are similar to Hermitian ma-
trices). In particular, if the large eigenvalues of L(W,G) are separated from
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the rest of the spectrum, the eigenvalues of L0(W̃ , G̃) and corresponding
eigenspaces will be close to those of L(W,G).

Is the diagonal modification of the algorithm really needed? It
is natural to ask what would have happened if we had not use a diagonal
modification to the standard algorithm, i.e if we had worked with L(W̃ , G̃)

instead of L0(W̃ , G̃). It is easy to see that

L(W̃ , G̃) = L0(W̃ , G̃) + D

where D is a block diagonal matrix with

D(i, i) =
w̃i,i∑
j 6=i w̃i,j

Idk =
1∑

j 6=i w̃i,j
Idk .

Under our assumptions,

|||n exp(−2trace (Σ) /ε)D−D


[∑

j 6=i exp(−d2ij,clean/ε)
n

]−1
n

i=1

 |||2 = oP (1) .

We also recall that under Assumption G1, trace (Σ) can be as large as p1/2−η

- a very large number in our asymptotics. So in particular, if n is polynomial
in p, we have then n−1 exp(2trace (Σ) /ε)→∞. This implies that

L(W̃ , G̃) = L0(W̃ , G̃) + D

is then dominated in spectral terms by D in general. So it is clear that
in the high-noise regime, if we had used the standard GCL algorithm, the
spectrum of L(W̃ , G̃) could have mirrored that of D - which has little to do
in general with the spectrum of L(W,G), which we are trying to estimate -
and the noise would have rendered the algorithm ineffective. An exception
is the case where D is spectrally close to the identity, in which case the
eigenvectors of L(W̃ , G̃) would be close to those of L0(W̃ , G̃). Even in this

case, it is however not harmful to use L0(W̃ , G̃) instead of L(W̃ , G̃). There

is therefore no downside to using L0(W̃ , G̃) instead of L(W̃ , G̃) by default
and potentially there is some upside.

By using the modification we propose, we guarantee that even in the high-
noise regime, the spectral properties of L0(W̃ , G̃) mirror those of L(W,G).
We have hence made the GCL algorithm more robust to noise.

On a technical note, the fact that, in the noisy case, our approximation
results for the RID distance hold only (up to a scalar) off the diagonal forces
us to work with Lemma 3.2 and not Lemma 3.1. If it were the case, for in-
stance for different affinity functions, that the approximation results held
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on the diagonal, too, we could use the results of Lemma 3.1 and we would
not have to do the diagonal modification.
On the use of nearest neighbor graphs In practice, variants of the GCL
algorithms we have described use nearest neighbor information to replace
wi,j by 0 if wi,j is not among the k largest elements of {wi,j}nj=1. In the
high-noise setting, the nearest-neighbor information is typically not robust
to noise, which is why we proposed to use all the wi,j ’s and avoid the near-
est neighbor variant of the GCL algorithm, even though the latter probably
makes more intuitive sense in the noise-free context. A systematic study of
the difference between these two variants is postponed to future work. In
Section 4, we carry out some numerical experiments to illustrate the lack
of robustness to noise of the nearest-neighbor information and the improve-
ments that result from using L0(W̃ , G̃).
Comparison with previous results in the literature As far as we know,
the study of the impact of high-dimensional additive noise on kernel meth-
ods was started in [18]. Compared to this paper, our extension is two-fold:
1) the noise level (i.e trace (Σ)) that is studied in the current paper is much
higher than what was studied in [18]. This is partly a result of the fact that
the current paper focuses on the Gaussian kernel whereas [18] studied many
more kernels. 2) [18] focused on standard kernel methods - based on the
graph Laplacian, i.e k = 1 and the connection information is not included
in the data analysis. Incorporating this new element creates new difficulties.
See also [30] for another study of the influence of noise in a different setup.

3.2.3. GCL beyond the rotational invariance distance. The previous anal-
ysis has been carried out for the RID and corresponding rotations for whom
we studied the impact of additive noise in Section 2. However, it is clear
that our results apply much more broadly. We have the following theorem.

Theorem 3.2. Suppose we are given a collection di,j,noisy of (scalar-
valued, symmetric in i, j) dissimilarities between noisy versions of objects i
and j, 1 ≤ i, j ≤ n. Suppose objects i and j have (scalar-valued, symmetric
in i, j) dissimilarity di,j,clean. Consider the asymptotic regime where n→∞
and suppose that there exists ξn ∈ R such that

sup
i 6=j
|d2i,j,noisy − d2i,j,clean − ξn| = oP (1) .

Call w̃i,j = exp(−d2i,j,noisy/ν) and wi,j = exp(−d2i,j,clean/ν) the correspond-
ing affinities. ν is held fixed in our asymptotics, though the way affinities
are computed may change with n.
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Suppose G̃i,j is the connection between noisy versions of objects i and j
and Gi,j is the connection between the clean/noise-free version of objects i

and j. Suppose that wi,j, Gi,j and G̃i,j satisfy the assumptions of Lemma
3.2, with ε and η possibly random but oP (1) and γ bounded below as n→∞.
Then

|||L(W,G)− L0(W̃ , G̃)|||2 = oP (1) .

Proof. This theorem is just a consequence of Lemma 3.2. Indeed, the
affinities are all bounded by 1. Furthermore, we can use fi = exp(−ξn/ν)
and all the approximation results needed in Lemma 3.2 are true, so the
result follows.

3.2.4. A situation without robustness to noise. So far, our work has been
quite general and has shown that when the noise is Gaussian (or Gaussian-
like) and its covariance Σi is such that trace (Σi) = trace (Σj) for all i, j,
GCL algorithms can be made robust to noise.

It has been recognized [14, 17, 18, 19] that to study the robustness of var-
ious statistical procedures in high-dimension, it is essential to move beyond
the Gaussian-like situation and study for instance elliptical/scale mixture
of Gaussian models. This is largely due to the peculiar geometry of high-
dimensional Gaussian and Gaussian-like vectors (see above references and
[24]).

If we now write down a model for the noise where Ni = λiZi, where Zi
are i.i.d N (0,Σ), λi’s are i.i.d with E

(
λ2i
)

= 1 and λi ∈ R is independent
of Zi, it is easy to modify our analysis (assuming for instance that λ2i are
bounded, though this condition could easily be relaxed) and to realize that
our main approximation result in Proposition 2.1 is replaced by

sup
i 6=j

∣∣d2ij,noisy − d2ij,clean − [λ2i + λ2j ]trace (Σ)
∣∣ = oP (1) .

In this situation, Theorem 2.2 is still valid. However, Theorem 3.1 is not
valid anymore. The matrix L0(W̃ , G̃) can be approximated by a matrix that
depends both on the signal and the distribution of the λ2i ’s. And there is
no guarantee in general that this matrix will have approximately the same
spectral properties as L(W,G) or L0(W,G), the GCL matrix generated from
the noise-free signals. This suggests that even our modification of the original
GCL algorithm will not be robust to this “elliptical”-noise contamination.

4. Numerical work. Although the robustness properties of GCL meth-
ods were not well studied in the past, these methods have been successfully
applied to different problems; for example, [34, 31, 40, 27, 13, 2]. In this
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section, we show simulated examples to illustrate the practical performance
of our theoretical findings about GCL methods. We refer interested readers
to the aforementioned papers for details and results of its applications.

To demonstrate the main finding of this paper - that GCL methods are
robust to high-levels of noise in the spectral sense - we take the noise to be
a random Gaussian vector Z ∼ N (0, cIp/p

α), where α ≤ 1 and c > 0. Note
that the amount of noise, or the trace of the covariance matrix of Z, is cp1−α

and will tend to infinity when p→∞ and α < 1.

4.1. 1-dimensional manifold. Our first example is a dataset sampled
from a low dimensional manifold, which is embedded in a high dimensional
space. This dataset can be viewed as a collection of high dimensional points
which is (locally) parametrized by only few parameters1, but in a nonlinear
way.

As a concrete example, we take the twisted bell-shaped simple and closed
curve, denoted as M, embedded in the first 3 axes of Rp, where p � 2, via
ι : [0, 2π)→ Rp:

ι : t 7→ [ cos(t), (1− 0.8e−8 cos
2 t) cos(π(cos(t) + 1)/4),

(1− 0.8e−8 cos
2 t) sin(π(cos(t) + 1)/4), 0, . . . , 0 ] ∈ Rp .

M is a 1-dimensional smooth manifold without boundary; that is, no matter
how big p is, locally the points on M can be parametrized by only 1 pa-
rameter. See Figure 1 (A) for an illustration. One interesting such dataset
is the 2-D tomography from noisy projections taken at unknown random
directions [32].

For our numerical work, we independently sample n points uniformly at
random from [0, 2π). Due to the non-linear nature of ι, it is equivalent to
non-uniformly sampling n points from M independently. Denote the clean
data as Y = {yi}ni=1 ⊂ M. The data X = {xi}ni=1 we analyze is the clean data
contaminated by additive noise, i.e xi = yi +Zi, with Zi i.i.d with the same
distribution as Z. We measure the signal-to-noise ratio of the dataset by

the quantity snrdb := 20 log
√
EXTX√
EZTZ

. We take n = p = 1000 and α = 1/4.

Note that α = 1/4 is the critical value in our analysis beyond which our
results do not apply. For concreteness, the snrdb will be −9.25 and −18.73
respectively when c = 0.25, 0.4.

Then, we build up the GCL (in this 1-dimensional manifold with the
trivial connection, it is equivalent to the graph Laplacian (GL)) from X

1By definition, although locally the manifold resembles Euclidean space near a point,
globally it might not. Thus, in general we can only parametrize the manifold locally. This
feature captures the possible nonlinear structure in the data.



22

by setting L(W̃ , G̃) (see (1)), where the n × n affinity matrix W̃ is defined

as W̃i,j := e−‖xi−xj‖
2
Rp/m, the bandwidth m is the first quartile of all Eu-

clidean distances between pairs of (xi, xj) ∈ E, and the n × n connection

matrix G̃ is defined as G̃i,j := 1 for all (xi, xj) ∈ E. That choice of m is
a common in practice. Note that in practice, it is also common to use a
nearest-neighbor (NN) scheme to build up the GCL for the sake of compu-
tational efficiency (see Supplementary Material [20], Section B for details).
The associated affinity matrix (resp. connection matrix and GCL) is de-

noted as W̃NN (resp. G̃NN and L(W̃NN, G̃NN)), where we choose 100 nearest
neighbors to construct edges. We have seen in the analysis described earlier
in the paper that, when α < 1, it theoretically helps to remove the diagonal
terms of the GCL matrix in order to preserve spectral properties. So, we
also consider the matrix L0(W̃ , G̃) for the comparison.

We then evaluate the eigenvalues and eigenvectors of the above three
different GCL’s. To simplify the notation, we use the same notations to
denote the eigenvectors u1, u2, u3 . . . ∈ Rn associated with the eigenvalues
1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ 0. We now show two sets of results to demonstrate
the robustness of the GCL methods studied in this paper.

Dimension Reduction and Data Visualization: To achieve this, we may em-
bed the sampled points into Rm by the truncated diffusion maps (tDM) with
time t > 0 and m ≥ 1:

Φt,n,m : xi 7→ (λt2u2(i), λ
t
3u3(i), . . . , λ

t
m+1um+1(i)) ∈ Rm,

where m is chosen by the user depending on the problem; that is, we map
the i-th data point to Rm using the first m non-trivial eigenvectors of the
GCL. For the purpose of visualization, we may take m = 2 or m = 3. For
other purposes, we may choose m depending on a given threshold δ > 0 –
m is chosen so that |λm+1/λ2|t > δ and |λm+2/λ2|t ≤ δ. In this example,
we choose t = 1 and m = 3 for the visualization. (see also Subsection B-1
in the Supplementary Material [20] for more details about this simulation)
The embedding results of Y, Φ1,1000,3, based on the above different GCL’s
are shown in Figure 1, and the results from X with c = 0.4 are shown in
Figure 2. Ideally, we would expect to recover the “parametrization” of the
dataset by the idea that the eigenvectors of the GCL represent a set of
new coordinates for the data points, so the high dimensional dataset can be
visualized in this new set of coordinates or its dimension can be reduced.
In this specific example, we would expect to find a simple and closed curve
out of the noisy dataset which represents the dataset in R3. Clearly when
the dataset is clean, we succeed in the task no matter which GCL we use.
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However, if the dataset is noisy, at high-noise levels, the embedding might
not be that meaningful if we use L(W̃NN, G̃NN) or L(W̃ , G̃). Indeed, as

shown in Figure 2, with L(W̃NN, G̃NN) the structure of the dataset is barely

recovered; with L(W̃ , G̃), even though we can get the simple closed curve2

back, there are several outliers which might deteriorate the interpretation.
In this noisy case, we can only succeed in the task if we choose L0(W̃ , G̃),
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Fig 2: Noisy samples from the twisted bell-shaped manifold with α = 1/4 and
c = 0.4. (A): the noisy samples. We only plot the first 3 axes of the data X ,
hence we see only a small fraction of the noise, as 997 out of 1000 coordinates
are not plotted. The color of each point is a surrogate for ‖xi‖, xi ∈ R1000. (B):
the results of the truncated diffusion maps (tDM), Φ1,1000,3, when the connection
graph is constructed by the NN scheme and the diagonal entries are not removed,
where the number of nearest neighbors is chosen to be 100. We can barely see the
circular structure in the middle, and there are several big outliers; (C): the result of
tDM, Φ1,1000,3, when the connection graph is complete and the diagonal entries are
not removed. Note that when compared with (B), the embedding is better in the
sense that the “parametrization”, the simple and close curve, is better recovered.
But we can still observe several outliers; (D): the result of tDM, Φ1,1000,3, when
the connection graph is complete and the diagonal entries are removed. Note that
compared with (C), the embedding is yet better in the sense that the number of
outliers is reduced and the parametrization of the manifold is recovered. Note that
for (B), (C),(D), the scale above the figures refer to {‖Φ1,1000,3‖(xi)}ni=1, which are
3-dimensional vectors. The different scales indicate the presence of outliers.

of diffusion maps and vector diffusion maps make these methods particularly
well-suited for these tasks [31]. To determine neighbors, we of course need a
notion of distance. In addition to the naive L2 distance between points, we
consider the (truncated) diffusion distance between two points xi, xj ∈ X by

dDM,t,n,m(xi, xj) := ‖Φt,n,m(xi)− Φt,n,m(xj)‖Rm ,

where m is determined in the tDM, Φt,n,m, with m chosen by a given thresh-
olding δ > 0. Then, we determine the nearest neighbors of each data point
based on these distances, where we choose t = 1 and δ = 0.2 for the dif-
fusion distance. More precisely, we first determine 10 nearest neighbors of
xi, denoted as xij , j = 1, . . . , 10, from the noisy dataset X , for all i. Then,
since we know the ground truth, we may check the true relationship between
yi and yij , j = 1, . . . , 10, i.e dDM,t,n,m(yi, yij ) for various GCL methods, or
‖yi − yij‖ if we use L2 distance. Clearly, if the method preserves nearest
neighbor information, at least approximately, the ranks of the yij ’s mea-
sured in terms of distances to yi should be small. To quantify the estimation



GCL CAN BE MADE ROBUST TO NOISE 25

accuracy, we collect the ranks of all estimated nearest neighbors, and plot
the cumulative distribution results in Figure 3. In other words, if we call Rij
the rank of yij in terms of distance to yi, we plot the cdf of {{Rij}10j=1}ni=1

for the various distances we use. (There are many other methods one could
use to do these comparisons, such as using Kendall’s τ and variants (see
[22]). The one we use here has the benefit of simplicity.) When the dataset
is clean, all methods perform the same, as is predicted in Theorem D.7 of
[20]. It is clear from the results that when the noise is large, the result based
on the L2 distance is much worse than the others. The performance based
on the diffusion distance from L(W̃NN, G̃NN) is better when the noise level is
not big, but still a non-negligible portion of error exists; the results based on
L(W̃ , G̃) and L0(W̃ , G̃) are much better, while the result based on L0(W̃ , G̃)
is the best.

Fig 3: The result of nearest neighbors estimation. In all subfigures, the x-axis is
the true rank of an estimated nearest neighbor and the y-axis is its cumulative
distribution. To emphasize the difference, we only show the area ranging from 90%
to 100% in the y-axis. The gray dashed (gray, black dashed and black respectively)
curve is the cumulative distribution of the true ranks of the estimated nearest
neighbors estimated from the ordinary Euclidean distance (diffusion distance based

on L(W̃NN, G̃NN), L(W̃ , G̃) and L0(W̃ , G̃) respectively). From left to right: clean
samples from the bell shaped manifold, noisy samples with α = 1/4 and c =
0.25, 0.4, 0.5 respectively. It is clear that when the noise is large, the result based on
the L2 distance is much worse than the others. The result based on L(W̃NN, G̃NN)

is slightly better, but not that good, L(W̃ , G̃) is even better and L0(W̃ , G̃) is the
best.

4.2. 2-dimensional images. In Subsection 4.1, we investigated numeri-
cally the influence of noise on GCL methods when the connection function
is trivial. In this subsection, we discuss an example where the connection
function plays an essential role in the analysis. We consider a dataset which
contains randomly rotated versions of a set of objects, and the task is to
align these objects in addition to classifying them. We encounter this kind
of datasets and problems in, for example, image processing [34, 31, 40], shape
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analysis [25], phase retrieval problems [27, 2], etc. In [34, 31, 40, 27, 2] and
others, the GCL methods have been applied to solve the problem.

To focus specifically on demonstrating the influence of noise on this prob-
lem, we work with 2-dimensional images observed in polar coordinates. To
make matters simple, our images are defined as functions observed on the
unit circle at equally spaced points. We have nK different clean images. We
then randomly and independently rotate these images to create our dataset.
We use nR random rotations for each image. In the end we get n = nKnR
randomly rotated images {Si}ni=1 ⊂ Rp. To each image corresponds a rota-
tion Ri ∈ SO(2), or equivalently an angle. The data X = {Ii}ni=1 we analyze
is the clean data contaminated by independent noise, which is i.i.d. sampled
from Z, that is, we have Ii = Si + Zi. We give more precise mathematical
and simulation details in Section B-2 in the Supplementary Material [20].

We now build up the GCL L(W̃ , G̃) by setting W̃i,j := e−d
2
RID(Ii,Ij)/m,

wherem is the first quartile of all non-zero RID distances, and the connection
function as G̃i,j := argminR∈T (2) ‖Ii −R ◦ Ij‖. For comparison purposes, we
also take the NN scheme to construct the connection graph, denoted by
L(W̃NN, G̃NN), where we choose 100 nearest neighbors - as defined by the
RID distance - to construct edges. Thanks to the connection function, we
can estimate the rotations Ri applied to the i-th image up to a common
rotation from the top eigenvector v1 ∈ Cn of the GCL’s.

To evaluate the performance of the estimated rotation, we construct a
complex vector u ∈ Cn whose i-th entry is the complex form of the rotation
Ri. We then evaluate the difference between the estimated rotation of the
i-th object and the ground truth by observing the angle of u(i)∗v(i). This
quantity shows the discrepancy between the true rotation and the estimated
one. For visualization, we plot the vector z ∈ Rn where z(i) is the angle of
the complex number u(i)∗v(i), which measures estimation error. In Figure
4, the resulting z’s with p = 1000, nK = 5, nR = 200, α = 1/4 and c = 6σ
are plotted (see Supplementary Material [20], Section B for the value of
σ). Since there are 5 different images, we see a piecewise function with 5
different values when the images are clean/noise-free, indicating that we
correctly estimate the rotations Ri’s as well as the class membership of the
images. The visual dissimilarities between the functions in Figure 4 (B), (C)
and (D) is due to the fact that all estimation tasks here can be performed
only up to a rotation for each of the nK = 5 template images . Further
discussion of this example can be found in the Supplementary Material [20],
Subsection B-2.
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Fig 4: (A): one of nK = 5 clean surrogate images. (B)-(D): alignment vectors
z computed from clean images; (E): a noisy surrogate image. (F)-(H): alignment
vectors z computed from noisy images with c = 6σ and α = 1/4. (A) and (E): the
black curve is a clean surrogate image, and the gray curve is its noisy version; (B)
and (F): the result from the GCL built up from the NN scheme; (C) and (G): the
result from the GCL built from complete connection graph and the diagonal entries
are not removed; (D) and (H): the result from the GCL built from the complete
connection graph with the diagonal entries removed. It is clear that when the images
are clean, all different GCL’s give equivalent results (see text for explanation of
visual differences which are of no statistical importance). But in the presence of
noise, the GCL built up from the NN scheme is obviously worse.

5. Conclusion. In this paper, we have studied the statistical proper-
ties of a recent generalization of kernel methods called GCL methods and
in particular their sensitivity to additive noise. We have shown both theo-
retically and numerically that they can be made tolerant to very high levels
of noise. Based on our analysis, we have proposed two modifications of the
standard approach that improve performance in the setup we consider. First,
practitioners will benefit from not trying to incorporate nearest-neighbor in-
formation derived from the affinity function as those tend to be very sensitive
to noise. Second, setting the diagonal elements of the affinity matrix to zero
increases robustness to noise.

SUPPLEMENTARY MATERIAL

Supplementary material to “Graph connection Laplacian meth-
ods can be made robust to noise”
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide detailed
proofs and supplementary information in the supplementary material.
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