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§1. Introduction

Let π be a finite group, R be a Dedekind domain (i.e. a commutative noetherian
integral domain which is integrally closed with Krull dimension one). Denote by Rπ
the group ring of π over R. An Rπ-lattice M is a finitely generated left Rπ-module
which is a torsion-free R-module when regarded as an R-module [CR, page 524]. Rπ-
lattices play an important role in the modular representation theory of the group π
[CR, Section 18]. They arose, when R = Z, in the study of Noether’s problem and in
the birational classification of algebraic tori [Sw2; EM; Vo; CTS].

Before discussing the main results, we recall some definitions.

Definition 1.1 Let M be an Rπ-lattice where R is a Dedekind domain and π is a
finite group. M is called a permutation lattice if it is an R-free Rπ-module with an
R-free basis permuted by π; explicitly, M =

⊕
1≤i≤mR ·xi and σ ·xi = xj for all σ ∈ π,

for all 1 ≤ i ≤ m (note that j depends on σ and i). An Rπ-lattice M is called an
invertible lattice if, as an Rπ-module, it is a direct summand of some permutation Rπ-
lattice. An Rπ-lattice M is called a flabby (or flasque) lattice if H−1(π′,M) = 0 for all
subgroups π′ of π [Sw2, Section 8; CTS; Be, page 103] where H−1(π′,M) denotes the
Tate cohomology [Be, page 102]. Similarly, M is called a coflabby (or coflasque) lattice
if H1(π′,M) = 0 for all subgroups π′ of π. Clearly, “permutation” ⇒ “invertible” ⇒
“flabby” and “coflabby” [Sw2, Lemma 8.4].

Definition 1.2 Let p be a prime number andR be a Dedekind domain with charR = 0.
We call p is unramified in R if p is not invertible in R and the principal ideal pR is an
intersection of some maximal ideals of R.

In [EM; CTS], many interesting results about Zπ-lattices were obtained. Here is
one sample of them.

Theorem 1.3 (Endo and Miyata [EM, Theorem 1.5]) Let π be a finite group, IZπ :=
Ker{ε : Zπ → Z} be the augmentation ideal of Zπ, I0Zπ := HomZ(IZπ,Z) be the dual
Zπ-lattice of IZπ. Then the following statements are equivalent,

(1) All the flabby (resp. coflabby) Zπ-lattices are invertible;

(2) [I0Zπ]fl is invertible;

(3) All the Sylow subgroups of π are cyclic.

(The definition of [M ]fl for an Rπ-lattice M can be found in Definition 2.2.)

One of the main results of this paper is to generalize the above theorem for Zπ-
lattices to the case of Rπ-lattices for some “nice” Dedekind domain R. We remark that
many results for Zπ-lattices in [EM; CTS] may be extended readily to the category of
Rπ-lattices where R is a Dedekind domain such that charR = 0 and every prime divisor
of |π| is not invertible in R. However, in some situations, more delicate conditions of
R are required. It is the case for the following theorem.
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Theorem 1.4 Let π be a finite group of order n, R be a Dedekind domain satisfying
that (i) charR = 0, (ii) every prime divisor of n is not invertible in R, and (iii) p
is unramified in R for any prime divisor p of n. Then the following statements are
equivalent,

(1) All the flabby (resp. coflabby) Rπ-lattices are invertible;

(2) [I0Rπ]fl is invertible where IRπ = Ker{ε : Rπ → R} is the augmentation ideal of
Rπ, and I0Rπ = HomR(IRπ, R) is the dual lattice of IRπ;

(3) All the Sylow subgroups of π are cyclic.

Besides the standard method in [EM; Sw3], the crux of the proof of the above
theorem is Theorem 3.3 which provides a sufficient condition to ensure R1 ⊗R0 R2 is a
normal domain when R0, R1, R2 are normal domains.

We thank Prof. Shizuo Endo who communicated to us with two examples, Example
4.3 and Example 4.4, which showed that, without the assumption of unramifiedness
on the Dedekind domain R, all of Theorem 1.4, Theorem 3.3 and Lemma 4.1 would
collapse.

Two applications of Theorem 1.4 will be given. The first application is a short proof
of the following theorem.

Theorem 1.5 (Torrecillas and Weigel [TW, Theorem A and Corollary 6.7]) Let π be
a cyclic p-group and R be a DVR such that charR = 0 and pR is the maximal ideal of
R. Let M be an Rπ-lattice. Then the following statements are equivalent,

(1) M is a permutation Rπ-lattice,

(2) M is a coflabby Rπ-lattice,

(3) M is a flabby Rπ-lattice.

The second application of Theorem 1.4 is to determine FRπ when π is a cyclic group
(for FRπ, see Definition 2.1). Consequently, a partial generalization of Theorem 1.5 is
obtained if π is a cyclic group and R is some semilocal “nice” Dedekind domain (see
Theorem 5.4).

We indicate briefly how to deduce Theorem 1.5 from Theorem 1.4. First rewrite
Theorem 1.5 as follows.

Theorem 1.6 Let π, R be the same as in Theorem 1.5. Then (1), (2), (3) and (4)
are equivalent where (4) is

(4) M is an invertible Rπ-lattice.

In fact, (2) ⇔ (4) (resp. (3) ⇔ (4)) follows from Theorem 1.4. As to (1) ⇔ (4), it
follows from the following theorem in [Be].
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Theorem 1.7 (Beneish [Be, Theorem 2.1]) Let π be a p-group and R be a DVR such
that charR = 0 and p is not invertible in R. If M is an invertible Rπ-lattice, then it
is a permutation Rπ-lattice.

Note that Theorem 1.7 is implicit in the proof of [EM, Theorem 3.2]. We also
note that Part (3) of Theorem 1.5 is different from Part (iii) of [TW, Theorem A], but
they are equivalent: From the definition of the Tate cohomology groups, we have an
exact sequence 0 → H−1(π,M) → H0(π,M) → H0(π,M) → Ĥ0(π,M) → 0. Since
the module Mπ in [TW, Theorem A] is nothing but H0(π,M), and nH−1(π,M) = 0
(due to the restriction and corestriction composition), it follows that M is a flabby
Rπ-lattice if and only if Mπ′ is R-torsion free for any subgroup π′ of π.

We remark that [TW, Theorem C] follows also from Theorem 1.4, because we may
take a flabby resolution 0 → M0 → P → E → 0 (see Definition 2.2) and apply
Theorem 1.4 to E. Then take the dual of this exact sequence.

This paper is organized as follows. In Section 2 we recall the definition of flabby
resolutions and flabby class monoids. In Section 3 we prove that R[X]/〈Φn(X)〉 is a
Dedekind domain when R is a “nice” Dedekind domain. The proof of Theorem 1.4 is
provided in Section 4 following that of [EM; Sw3]. Section 5 contains a computation of
the flabby class group FRπ when π is a cyclic group, which generalizes some part of a
theorem of Endo and Miyata [EM, Theorem 3.3; Sw2, Theorem 2.10]. Then a partial
generalization of Theorem 1.5 is given; see Theorem 5.4.

Terminology and notations. All the groups in this paper are finite groups. We
will denote by Cn the cyclic group of order n. A commutative noetherian integral
domain R is called a DVR if it is a discrete rank-one valuation ring. We denote by
R[X] the polynomial ring of one variable over R. Φm(X) denotes the m-th cyclotomic
polynomial, and ζn denotes a primitive n-th root of unity. We denote by Rπ the group
ring of the finite group π over the ring R. If M is an Rπ-lattice, then M0 denotes its
dual lattice, i.e. M0 = HomR(M,R); note that there is a natural action of π on M0

from the left [Sw2, page 31]. For emphasis, we remind the reader that the definition
that p is unramified in a Dedekind domain R is given in Definition 1.2.

§2. Preliminaries

From now on till the end of this paper, when we talk about the group ring Rπ, we
always assume that π is a finite group of order n.

Let M be an Rπ-module. The cohomology groups Hq(G,M) and the homology
groupsHq(G,M) can be defined via the derived functors ExtqRπ(R,M) and TorRπq (R,M);
the Tate cohomology groups may be defined by the usual way [Be, page 102]. When
q ≥ 1, Hq(G,M) may be defined also by the bar resolution [Se, Chapters 7 and 8;Ev].
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Consider the category of Rπ-lattices. Most results in [EM] and [CTS, Section 1]
remain valid when we replace Zπ by Rπ where R is a Dedekind domain such that
charR = 0 and every prime divisor of |π| is not invertible in R. In particular, the
definitions of flabby class monoids FRπ and flabby resolutions may be adapted to the
case of Rπ-lattices as follows.

Definition 2.1 ([Sw3, Definition 2.6]) Let π be a finite group of order n, R be a
Dedekind domain such that charR = 0 and every prime divisor of n is not invertible
in R. In the category of flabby Rπ-lattices, we define an equivalence relation “∼”:
Two flabby Rπ-lattices M1 and M2 are equivalent, denoted by M1 ∼ M2, if and only
if M1 ⊕ P1 'M2 ⊕ P2 for some permutation lattices P1 and P2. Let FRπ be the set of
all such equivalence classes. It is a monoid under direct sum. FRπ is called the flabby
class monoid of π. The equivalence class containing a flabby lattice M is denoted by
[M ].

We will say that [M ] is invertible (resp. permutation) if there is a lattice E such
that M ∼ E and E is invertible (resp. permutation).

Definition 2.2 Let R and π be the same as in Definition 2.1. For any Rπ-lattice
M , there is an exact sequence of Rπ-lattices 0 → M → P → E → 0 where P is a
permutation Rπ-lattice and E is a flabby Rπ-lattice. Such an exact sequence is called a
flabby resolution of M [EM, Lemma 1.1; Sw1, Lemma 8.5]. If 0→M → P ′ → E ′ → 0
is another flabby resolution of M , it can be shown that [E] = [E ′] in FRπ. We define
[M ]fl = [E] ∈ FRπ (see [Sw2, Lemma 8.7]).

The following results were proved for Zπ-lattices in [Sw3]. It is not difficult to see
that they remain valid for Rπ-lattices.

Lemma 2.3 Let R and π be the same as in Definition 2.1

(1) ([Sw3, Lemma 3.1]) If 0→M ′ →M →M ′′ → 0 is an exact sequence of Rπ-lattices
where M ′′ is an invertible Rπ-lattice, then [M ]fl = [M ′]fl + [M ′′]fl.

(2) ([Sw3, Lemma 3.3]) If M is an Rπ-lattice which is an invertible lattice over each
Sylow subgroup of π, then M is invertible.

(3) ([Sw3, Corollary 2.5]) If 0 → M ′ → M → M ′′ → 0 is an exact sequence of Rπ-
lattices where M ′′ is invertible and M ′ is coflabby, then this exact sequence splits.
Similarly, the exact sequence 0→M ′ →M →M ′′ → 0 splits if M ′ is an invertible
Rπ-lattice and M ′′ is a flabby Rπ-lattice.

§3. Tensor products of normal domains

The purpose of this section is to find some sufficient conditions to ensure that R[ζn]
is a Dedekind domain when R is a Dedekind domain. The problem is reduced to the
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following: If R0, R1, R2 are normal domains (i.e. commutative noetherian integral
domains which are integrally closed), and R0 ⊂ R1, R0 ⊂ R2, when is the tensor
product R1 ⊗R0 R2 a normal domain?

We recall two fundamental lemmas.

Lemma 3.1 ([Na, page 172, (42.9)]) Let R be normal domain containing a field k and
K be an extension field of k. Suppose that K is separably generated over k and K⊗kR
is an integral domain. Then K ⊗k R is a normal domain.

Lemma 3.2 ([Na, page 173, (42.12)]) Let R1 and R2 be normal domains containing a
DVR which is designated as R0. Denote by u a prime element of R0. Assume that (i)
R1⊗R0 R2 is a noetherian integral domain, (ii) both R1 and R2 are separably generated
over R0, and (iii) for any prime divisor Q of uR1, u · (R1)Q = Q · (R1)Q and R1/Q is
separably generated over R0/uR0. Then R1 ⊗R0 R2 is a normal domain.

Remark. According to [Na, page 146], if R0 is a subring of a commutative integral
domain R with k, K being the quotient fields of R0, R respectively, we say that R is
separably generated over R0, if (i) charR = 0, or (ii) charR = p > 0 and K ⊗k k1/p is
an integral domain. Consequently, if char k = 0 or k = Fq is a finite field, then R is
separably generated over R0. Note that Lemma 3.1 and Lemma 3.2 are due to Nakai
and Nagata respectively; see [Na, page 220].

Theorem 3.3 Let n be a positive integer and R be a Dedekind domain. Denote by
R[X] the polynomial ring over R. Assume that (i) charR = 0, (ii) every prime divisor
of n is not invertible in R, and (iii) p is unramified in R for any prime divisor p of n.
Then R[X]/〈Φn(X)〉 is a Dedekind domain and R[X]/〈Φn(X)〉 ' R[ζn].

Proof. Step 1. Let Ω be an algebraically closed field containing K where K is the
quotient field of R. Let ζn be a primitive n-th root of unity in Ω. Clearly Z[ζn]⊗ZR '
R[X]/〈Φn(X)〉 is a one-dimensional noetherian ring. We will show that it is an integral
domain.

First we will show that, within Ω, the subfields K and Q(ζn) are linearly disjoint
over Q.

Let k = K ∩Q(ζn). We will show that k = Q.
Otherwise, Q ( k. Then there is some prime number p such that p ramifies in k.

Since Q ⊂ k ⊂ Q(ζn), it is necessary that p divides n. By assumptions, p is unramified
in R. Thus p is also unramified in k because Q ⊂ k ⊂ K. This is a contradiction.

Once we know Q = k, it is easy to see that Φn(X) is irreducible in K[X]. Suppose
not. Write Φn(X) = f1(X) · f2(X) where f1(X), f2(X) ∈ K[X] are monic polynomials
and deg f1(x) < deg Φn(X). Since the roots of f1(X) are primitive n-the roots of unity,
it follows that the coefficients of f1(X) belong to Q(ζn). Thus these coefficients lie in
K ∩Q(ζn) = Q. Hence f1(X) ∈ Q[X], which is impossible.

We conclude that Φn(X) is irreducible in K[X]. Thus Q(ζn) is linearly disjoint
from K over Q [La, page 49].
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It follows that the canonical map Q(ζn)⊗Q K → Q(ζn) ·K = K(ζn) is an isomor-
phism [La, page 49]. Thus Z[ζn] ⊗Z R → R[ζn] is also an isomorphism. In particular,
R[X]/〈Φn(X)〉 is an integral domain.

Step 2. It remains to show that R[X]/〈Φn(X)〉 is integrally closed. Remember that
R[X]/〈Φn(X)〉 ' Z[ζn]⊗Z R.

For any non-zero prime ideal Q of R, let RQ be the localization of R at Q. We will
show that RQ[X]/〈Φn(X)〉 is integrally closed for all such Q. Because R[X]/〈Φn(X)〉 =⋂
QRQ[X]/〈Φn(X)〉, this will show that R[X]/〈Φn(X)〉 is integrally closed.

Suppose that Q∩Z 6= 0 and Q∩Z = 〈q〉 for some prime number q. If q is a divisor
of n, then q is unramified in R. Let S = Z\〈q〉 and Zq = S−1Z be the localization of
Z at 〈q〉. Then S−1R[X]/〈Φn(X)〉 ' Zq[ζn]⊗Zq (S−1R). Apply Lemma 3.2. Note that
the assumptions of Lemma 3.2 are fulfilled, e.g. if Q′ is a prime divisor of qR, then
S−1R/S−1Q′ is separably generated over Zq/qZq because Zq/qZq ' Fq is a finite field.
Hence S−1R[X]/〈Φn(X)〉 is a normal domain. Since RQ[X]/〈Φn(X)〉 is a localization
of S−1R[X]/〈Φn(X)〉, it follows that RQ[X]/〈Φn(X)〉 is integrally closed.

Suppose that Q∩Z 6= 0 and Q∩Z = 〈q〉 for some prime number q such that q is not
a divisor of n. Then q is unramified in Z[ζn]. Thus we my apply the same arguments
as above and apply Lemma 3.2 to S−1Z[ζn] = Zq[ζn]. Hence RQ[X]/〈Φn(X)〉 is also
integrally closed.

Suppose that Q∩Z = 0. Then Q ⊂ RQ. Let T = Z\{0}. Then T−1R[X]/〈Φn(X)〉
' T−1Z[ζn]⊗QRQ = Q(ζn)⊗QRQ. Apply Lemma 3.1. We find that T−1R[X]/〈Φn(X)〉
is a normal domain. Hence the result. �

Remark. We thank Nick Ramsey for pointing out that Proposition 17 of [Se, page
19] provides a special case of Theorem 3.3 : If p is a prime number and R is a DVR
with maximal ideal pR, then R[X]/〈Φpt(X)〉 is again a DVR where t is any positive
integer.

§4. Proof of Theorem 1.4

The following lemma is a generalization of [Sw3, Lemma 4.3].

Lemma 4.1 Let π be a cyclic p-group of order n. Write π = 〈σ〉. Let R be a Dedekind
domain such that charR = 0 and p is unramified in R. Let M be a finitely generated
module over Rπ/〈Φn(σ)〉 such that M is a torsion-free R-module when it is regarded
as an R-module. Then [M ]fl is an invertible Rπ-lattice.

Proof. Write n = pq and define π′′ = π/〈σq〉. From the factorization Xn − 1 =
(Xq − 1)Φn(X), we get an exact sequence 0→ Rπ/〈Φn(σ)〉 → Rπ → Rπ′′ → 0. Note
that Rπ/〈Φn(σ)〉 ' R[X]/〈Φn(X)〉 ' R[ζn] is a Dedekind domain by Theorem 3.3.
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This provides a flabby resolution of the Rπ-lattice Rπ/〈Φn(σ)〉. Hence [Rπ/〈Φn(σ)〉]fl
= [Rπ′′] = 0.

Since M is torsion-free, M is a projective module over the Dedekind domain
Rπ/〈Φn(σ)〉. Thus we may find another module N satisfying that M ⊕ N ' (Rπ/
〈Φn(σ)〉)(t) for some integer t. Thus [M ]fl + [N ]fl = t[Rπ/〈Φn(σ)〉]fl = 0. It follows
that [M ]fl is invertible. �

Proof of Theorem 1.4.
The proof of Theorem 1.4 is almost the same as that in [EM, Theorem 1.3; Sw2,

Theorem 4.4], once Lemma 4.1 is obtained. In order not to commit a blunder mistake,
we choose to rewrite the proof once again.

(3)⇒ (1)
Step 1. Assume that all the Sylow subgroups of π are cyclic. Let M be an Rπ-lattice

which is flabby (resp. coflabby). We will show that M is invertible.
By Lemma 2.3, it suffices to show that M is an invertible Rπp-lattice where πp is

a p-Sylow subgroup of π and p is a prime divisor of |π|. Thus we may assume that
π = 〈σ〉 is a cyclic p-group of order n, without loss of generality.

Step 2. For any Rπ-lattice M , we claim that M is flabby if and only if it is coflabby.
Since π = 〈σ〉 is cyclic of order n, we find that H−1(π,M) ' Kerϕ/〈σv−v : v ∈M〉

where ϕ : M →M is defined by ϕ(u) = u+ σ · u+ · · ·+ σn−1 · u. On the other hand,
H1(π,M) = Kerϕ/〈σ · v − v : v ∈ M〉 by definition. Hence H1(π,M) ' H−1(π,M).
Similarly, for any subgroup π′ ⊂ π, H1(π′,M) ' H−1(π′,M). Hence the result.

Step 3. Let M be a flabby Rπ-lattice. We will show that M is invertible.
Write n = pq where q is a power of p. Define M ′ = {u ∈M : Φn(σ) · u = 0}, M ′′ =

M/M ′. Then we have an exact sequence of Rπ-lattices 0 → M ′ → M → M ′′ → 0
where M ′ is a module over Rπ/〈Φn(σ)〉 and M ′′ is a lattice over Rπ′′ with π′′ = π/〈σq〉.

By Theorem 3.3, Rπ/〈Φn(σ)〉 ' R[ζn] is a Dedekind domain. Thus [M ′]fl is invert-
ible by Lemma 4.1.

We will show that M ′′ is a flabby Rπ′′-lattice. This will be proved in the next step.
Assume the above claim. By induction on |π|, we find that M ′′ is invertible. Thus

[M ′′]fl is invertible also. Apply Lemma 2.3. We find that [M ]fl = [M ′]fl + [M ′′]fl is
invertible.

Since [M ]fl is invertible, we get a flabby resolution of M , 0 → M → P → E → 0
where P is permutation and E is invertible. By Step 1, M is coflabby. Hence the exact
sequence 0 → M → P → E → 0 splits by Lemma 2.3. We get P ' M ⊕ E. Thus M
is invertible.

Step 4. We will show that M ′′ is a flabby Rπ′′-lattice.
For any subgroup π′ of π, we will show that H−1(π′,M ′′) = 0.
If π′ = {1}, it is clear that H−1(π′,M ′′) = 0.
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Now assume π′ ) {1}. Write π′ = 〈σd〉 with d | n and d 6= n. Then M ′π′
:=

{u ∈ M ′ : λ · u = u for any λ ∈ π′} = 0 because, for any v ∈ M ′π′
, Φn(σ) · v = 0,

(σd − 1) · v = 0, and M ′ is torsion-free. From the exact sequence 0 = H−1(π′,M) →
H−1(π′,M ′′)→ Ĥ0(π′,M ′) = 0, we find H−1(π′,M ′′) = 0.

Now that M ′′ is flabby as an Rπ-lattice, it is flabby as an Rπ′′-lattice (where π′′ =
π/〈σq〉) because every subgroup of π′′ may be written as π1/〈σq〉 for some subgroup
〈σq〉 ⊂ π1 and H1(π1/〈σq〉,M ′′) → H1(π1,M

′′) is injective by the five-term exact
sequence of the Hochschild-Serre’s spectral sequence. Done.

(1)⇒ (2) In general, [I0Rπ]fl is flabby. By (1), it is invertible.

(2) ⇒ (3) Let π be a group of order n. Let IRπ be the augmentation ideal. Then
we have an exact sequence 0→ IRπ → Rπ → R→ 0. Thus H1(π, IRπ) = R/nR.

If [I0Rπ]fl is invertible, then we have an exact sequence 0 → I0Rπ → P → E → 0
where P is permutation and E is invertible. Taking the dual of each lattice, we get
0 → E0 → P 0 → IRπ → 0. Note that P 0 is also permutation and E0 is invertible.
Moreover, we have 0 = H1(π, P 0) → H1(π, IRπ) → H2(π,E0). Thus there is an
embedding (i.e. an injective map of R-modules) 0→ R/nR→ H2(π,E0).

Write E0 ⊕ E ′ = Q where Q is some permutative Rπ-lattice. It follows that there
is also an embedding 0→ R/nR→ H2(π,Q).

Write Q =
⊕

iRπ/πi where πi’s are subgroups of π. Then H2(π,Q) =
⊕

iH
2(π,

Rπ/πi) '
⊕

iH
2(πi, R).

Since p is unramified in R, choose a prime ideal P containing pR. Let RP be the
localization of R at P . Consider RP ⊗ Q. In other words, we may assume that R is
a DVR with maximal ideal pR. We will show that all the Sylow subgroups of π are
cyclic. Let p be a prime divisor of n (:= |π|). Write n = ptn′ with t ≥ 1 and p - n′.

Since 0 → R/nR → H2(π,Q) '
⊕

iH
2(πi, R) and R/nR ' R/ptR ⊕ R/n′R, it

follows that there is an embedding 0→ R/ptR→ H2(πi, R) for some i, because R/ptR
is an indecomposable R-module.

Thus the proof is finished by the following lemma. �

Lemma 4.2 ([Sw3, Lemma 4.5]) Let π be a finite group of order n, p be a prime divisor
of n. Let R be a DVR such that charR = 0 and the maximal ideal of R is pR. Write
n = ptn′ where t ≥ 1 and p - n′. If there is an embedding 0 → R/ptR → H2(π,R),
then the p-Sylow subgroup of π is cyclic of order pt.

Proof. From the exact sequence 0→ R
pt−→ R→ R/ptR→ 0 of Rπ-modules, we get

0 = H1(π,R) → H1(π,R/ptR) → H2(π,R)
pt−→ H2(π,R), it follows that there is an

embedding 0→ R/ptR→ H1(π,R/ptR). Since H1(π,R/ptR) ' Hom(π,R/ptR), there
is a group homomorphism f : π → R/ptR such that the annihilator AnnR(f) = ptR
(here Hom(π,R/ptR) is regarded as an R-module). Hence π contains an element of
order pt. �

The following two examples are due to Shizuo Endo.
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Example 4.3 Let p be an odd prime number and R = Z[ζp]. Write ζ = ζp. Let
π = 〈σ〉 ' Cp be the cyclic group of order p. Then p is ramified in R; in fact,
pR = (1− ζ)p−1.

Let M = R · u be the cyclic Rπ-lattice defined by σ · u = ζu. Taking a flabby
resolution of M0 and then taking the dual, we obtain an exact sequence of Rπ-lattices
0 → E → P → M → 0 where P is a permutation lattice and E is a coflabby lattice
(and also a flabby lattice by the periodicity of cohomolgy groups). We will show that
E is not an invertible lattice.

It is easy to show that H−1(π,M) = R/(1− ζ), and Ĥ0(π,Q) = (R/(1− ζ)p−1)(n)

if Q = R(n) ⊕ (Rπ)(n
′) is a permutation lattice.

Suppose that E is an invertible lattice, then Ĥ0(π,E) is a direct summand of
(R/(1 − ζ)p−1)(m) for some integer m. Since the module (R/(1 − ζ)p−1)(m) satis-
fies the ascending chain condition and the descending chain condition, the Krull-
Schmidt-Azumaya Theorem may be applied to it [CR, page 128, Theorem 6.12]. Hence
Ĥ0(π,E) ' (R/(1− ζ)p−1)(m

′) for some integer m′.
From the exact sequence 0 → E → P → M → 0, we get an exact sequence of

R-modules 0 → H−1(π,M) → Ĥ0(π,E) → Ĥ0(π, P ) → 0, i.e. an exact sequence
0 → R/(1 − ζ) → (R/(1 − ζ)p−1)(m

′) → (R/(1 − ζ)p−1)(n) → 0. Counting the lengths
of these modules, we find a contradiction.

For the case p = 2, let R = Z[
√
−1] and π = 〈σ〉 ' C2 be the cyclic group of order

2. Let M = R · u be the cyclic Rπ-lattice defined by σ · u = −u. We can find a flabby
Rπ-lattice E which is not invertible as before.

More generally, let π be a group of order n such that there is a quotient group π′

of π with |π′| = p where p is a prime divisor of n (for example, π is a solvable group).
Suppose that R is a Dedekind domain such that (i) charR = 0, (ii) every prime divisor
of n is not invertible in R, and (iii) ζp ∈ R if p is odd (resp.

√
−1 ∈ R if p = 2). Then

we may find a flabby, but not invertible Rπ′-lattice E as above. As an Rπ-lattice, E
is flabby and is not invertible (see, for example, [CTS, page 180, Lemma 2]).

If π is a finite group such that all the Sylow subgroups of π are cyclic, it is known
that π is solvable [Is, page 160, Corollary 5.15]. Thus the assumption of unramifiedness
in Theorem 1.4 is indispensable.

Example 4.4 Let p be an odd prime number. Let π = 〈σ〉 ' Cp, and R = Z[
√
−p] if

p ≡ 1 (mod 4), R = Z[
√
p] if p ≡ 3 (mod 4). Then R is a Dedekind domain in which

p ramifies.
Note that R and Z[ζp] are linearly disjoint over Z, because the unique quadratic sub-

field of Q(ζp) is Q(
√
p) if p ≡ 1 (mod 4) (resp. Q(

√
−p) if p ≡ 3). Thus R[X]/〈Φp(X)〉

is an integral domain and we will write it as R[ζp].
We will show that there is a flabby Rπ-lattice which is not invertible. This shows

that Lemma 4.1 fails without the unramifiedness assumption.
To establish the above claim, it suffices to show that, there is some torsion-free

R[ζp]-module N such that E is not invertible with E defined by the exact sequence of
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Rπ-lattices 0 → E → P → N → 0 where E is a coflabby lattice, P is a permutation
lattice.

Suppose not. We will find a contradiction. The strategy is to show that the homo-
logical dimension of N is ≤ 1 (as a torsion-free R[ζp]-module).

Let Q be the prime ideal of R with pR = Q2. Denote by RQ the localization of R
at Q; write EQ = RQ ⊗R E. Since we assume that E is an invertible Rπ-lattice, EQ
becomes a permutation RQπ-lattice by Theorem 1.7.

Tensoring RQπ/〈Φp(σ)〉 with the exact sequence 0 → EQ → PQ → NQ → 0 over

RQπ, we get Tor
RQπ
1 (RQ[ζp], NQ) → EQ/Φp(σ)EQ → PQ/Φp(σ)PQ → NQ → 0. Since

Tor
RQπ
1 (RQ[ζp], NQ) is a torsion group, we may apply [Sw3, Lemma 5.4] and we get an

exact sequence of RQ[ζp]-modules 0→ (EQ/Φp(σ)EQ)0 → (PQ/Φp(σ)PQ)0 → NQ → 0
where, for an RQ[ζp]-module L, L0 is defined as L/{torsion elements}. This exact
sequence is just the same as 0 → (RQ[ζp])

(n′) → (RQ[ζp])
(n) → NQ → 0. In summary,

as an RQ[ζp]-module, the homological dimension of NQ is ≤ 1.
On the other hand, if Q′ is a prime ideal of R with p /∈ Q′, then p is invertible in

RQ′ and RQ′π is a maximal order. Hence NQ′ is a projective module over RQ′π. Apply
the same arguments as above. We find that, as an RQ′ [ζp]-module, NQ′ is projective.

We conclude that, as an R[ζp]-module, the homological dimension of N is ≤ 1.
Since N is an arbitrary torsion-free R[ζp]-module, it follows that the homological

dimension of any finitely generated R[ζp]-module is ≤ 2. Hence R[ζp] is a regular
domain by Serre’s Theorem [Na, page 101, Exercise 2]; thus it is a Dedekind domain.

We will see that, in fact, R[ζp] is not a Dedekind domain. By this, we get a
contradiction. This also shows that, without the unramifiedness assumption, Theorem
3.3 would break down.

Let K be the quotient field of R. Since K(ζp) contains Q(ζp) and R, it follows that√
−1 ∈ K(ζp). It is not difficult to show that K(ζp) = Q(ζ4p) and the integral closure

of R[ζp] is Z[ζ4p]. On the other hand,
√
−1 ∈ Z[ζ4p], but

√
−1 /∈ R[ζp] = R ⊗Z Z[ζp].

Thus R[ζp] is not a Dedekind domain.

For the convenience of the reader, we reproduce a proof of Theorem 1.7.

Proof of Theorem 1.7.
Let M be an invertible Rπ-lattice. We will show that M is permutation.
Write M ⊕M ′ = P for some permutation Rπ-lattice and some M ′.
Denote by R̂ the completion of R at its maximal ideal. In the category of R̂π-

lattices, R̂π/π′ is indecomposable for any subgroup π′ of π by [CR, page 678, Theorem
32.14] (note that the assumptions of [CR, Theorem 32.11] are satisfied).

Since the Krull-Schmidt-Azumaya Theorem is valid in the category of R̂π-lattices
[CR, page 128, Theorem 6.12], from R̂M ⊕ R̂M ′ = R̂P , we find a permutation Rπ-

lattice Q such that R̂M ' R̂Q. By [CR, page 627, Proposition (30.17)] we find that
M ' Q. �
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§5. The flabby class group

Let R be a Dedekind domain. Recall that the class group of R, denoted by C(R),
is defined as C(R) = I(R)/P (R) where I(R) is the group of fractional ideals of R and
P (R) is the group of principal ideals of R. If J is a fractional ideal of R, [J ] denotes
the image of J in C(R). The group operation in C(R) is written multiplicatively.

Let R be a Dedekind domain and M be a finitely generated torsion-free R-module.
Then M is isomorphic to a direct sum of a free module and a non-zero ideal of R; write
M ' R(m−1)⊕I where I is a non-zero ideal of R. Define the Steinitz class of M , denoted
by cl(M), by cl(M) = [I] (see [CR, page 85]). If M1 and M2 are finitely generated
torsion-free R-modules, it is not difficult to verify that cl(M ⊕N) = cl(M) · cl(N).

Definition 5.1 Let R be a Dedekind domain, M be a finitely generated R-module.
Define M0 = M/{torsion elements in M}.

Theorem 5.2 Let π = 〈σ〉 be a cyclic group of order n and R be a Dedekind domain
satisfying that (i) charR = 0, (ii) every prime divisor of n is not invertible in R, and
(iii) p is unramified in R for any prime divisor p of n. Define a group homomorphism
c : FRπ →

⊕
d|nC(Rπ/〈Φn(σ)〉) by c([M ]) = (. . . , cl((M/Φd(σ)M)0), . . .) where M is

a flabby Rπ-lattice. Then c is an isomorphism.

Remark. By Theorem 1.4, FRπ is a group. By Theorem 3.3, Rπ/〈Φd(σ)〉 ' R[X]/
〈Φd(X)〉 ' R[ζd] is a Dedekind domain; thus C(Rπ/〈Φd(σ)〉) is well-defined.

The proof of Theorem 5.2 follows by the same way as in [Sw3, Sections 5 and 6].
Before giving the proof of it, we recall a key lemma in [Sw3].

Theorem 5.3 Let π and R be the same as in Theorem 5.2. If M is an invertible
Rπ-lattice, then

[M ]fl =
∑
d|n

[(M/Φd(σ)M)0]
fl,

[(M/Φn(σ)M)0]
fl =

∑
d|n

µ
(n
d

)
[M/(σd − 1)M ]fl.

Proof. The proof of Theorem 5.1 and Corollary 5.2 in [Sw3, Section 5] works as
well in the present situation. The details are omitted. �

Proof of Theorem 5.2.
First of all, we will show that c is injective. Let M be a flabby Rπ-lattice. It is

invertible by Theorem 1.4. If c([M ]) = 0 in
⊕

d|nC(Rπ/〈Φd(σ)〉), then (M/Φd(σ)M)0
is a free module over Rπ/〈Φd(σ)〉 for all d | n. Since [Rπ/〈Φd(σ)〉]fl = 0 (by applying
Theorem 5.3 with M = Rπ), we find [(M/Φd(σ)M)0]

fl = 0. By Theorem 5.3, we find

12



[M ]fl = 0. Thus we have a flabby resolution of M , 0→ M → P1 → P2 → 0 where P1

and P2 are permutation Rπ-lattices. Since M is invertible, we may apply Lemma 2.3
to conclude that P1 'M ⊕ P2. Thus M ∼ P1 and [M ] = 0 in FRπ.

It remains to show that c is surjective. We also follow the proof of [Sw3, page
247–248].

Step 1. Let K0(Rπ) be the Grothendieck group of the category of finitely generated
projective Rπ-modules. Every such projective module is isomorphic to a direct sum of
a free module and a projective ideal A [Sw1, Theorem A]. Define C(Rπ) as a subgroup
of K0(Rπ) by C(Rπ) = {[A]− [Rπ] ∈ K0(Rπ) : A is a projective ideal over Rπ}. The
group C(Rπ) is called the locally free class group of Rπ [CR, page 659; EM, page 86].

Step 2. Define a map c′ : C(Rπ)→ FRπ by c′([A]− [Rπ]) = [A] ∈ FRπ. Since A is
a projective ideal over Rπ, it is an invertible Rπ-lattice; thus c′ is well-defined.

We will show that the composition map c ◦ c′ : C(Rπ) → FRπ →
⊕

d|nC(Rπ/

〈Φd(σ)〉) is surjective in the next step. Once it is proved, c is also surjective.

Step 3. We will show that c ◦ c′ : C(Rπ)→ FRπ →
⊕

d|nC(Rπ/〈Φd(σ)〉) is surjec-
tive.

Let K be the quotient field of R. Write ΩRπ :=
∏

d|nRπ/〈Φd(σ)〉. It is not difficult

to verify that ΩRπ is the maximal R-order in Kπ containing Rπ [CR, page 559 and
page 563]. We may define the locally free class group C(ΩRπ) as in the case C(Rπ)
(see [CR, page 659]). It follows that C(ΩRπ) '

⊕
d|nC(Rπ/〈Φd(σ)〉).

The composite map c ◦ c′ turns out to be c ◦ c′([A]− [Rπ]) = [ΩRπ ⊗Rπ A]− [ΩRπ]
∈ C(ΩRπ), which is just the natural map C(Rπ) → C(ΩRπ) (the map induced by the
inclusion map Rπ → ΩRπ). Thus the surjectivity of c◦c′ is equivalent to the surjectivity
of the map C(Rπ) → C(ΩRπ). However, the map C(Rπ) → C(ΩRπ) is surjective by
[Ri, Corollary 11]; in applying Rim’s Theorem, we should verify the fact that Rπ has
no nilpotent ideal, which may be see from the embedding Rπ ↪→ Kπ '

∏
d|nK(ζd) and

hence Rπ has no nilpotent element. This finishes the proof that c ◦ c′ is surjective.
Alternatively, the reader may show that C(Rπ)→ C(ΩRπ) is surjective by modify-

ing the proof of [Sw3, Lemma 6.1]. �

Now we give a partial generalization of Theorem 1.5.

Theorem 5.4 Let π be a cyclic group of order n, R be a semilocal Dedekind domain
satisfying (i) charR = 0, (ii) every prime divisor of n is not invertible in R, and (iii)
p is unramified in R for every prime divisor p of n. Then FRπ = {0} and all the
flabby Rπ-lattices are stably permutation, i.e. if M is a flabby Rπ-lattice, there are
permutation Rπ-lattices P1 and P2 such that M ⊕ P1 ' P2.

Proof. Apply Theorem 5.2. It suffices to show that C(Rπ/〈Φd(σ)〉) = 0 where
π = 〈σ〉 is of order n and d | n. Note that Rπ/〈Φd(σ)〉 ' R[ζd] is a Dedekind domain
integral over R. Since R is semilocal, R[ζd] is also semilocal. Thus R[ζd] is a principal
ideal domain and C(R[ζd]) = 0. Thus FRπ = {0}.

If M is a flabby Rπ-lattice, from [M ] ∈ FRπ = {0}, we find that [M ] = 0, i.e.
M ∼ 0 which is equivalent to that M is stably permutation. �
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Remark. In the above theorem, if R is a local ring, then this theorem is reduced
to Theorem 1.5. On the other hand, if R is not a local ring, it is necessary that R
is not a complete semilocal ring because we assume R is an integral domain (note
that a complete semilocal ring is isomorphic to a direct product of complete local
rings). In such a situation, it is impossible to strengthen the above result about stable
permutation as the following example shows (also see [Dr, page 273]).

Let π be a finite group which is not a p-group. Let R be the same in Theorem 5.4
and, by abusing the notation, denote R the Rπ-lattice on which π acts trivially.

For each prime divisor p of | π |, choose a p-Sylow subgroup πp. Write the coset

decomposition π = ∪iσ(p)
i πp. Define a morphism φp : R→ Rπ/πp by φp(1) =

∑
i σ

(p)
i ∈

Rπ/πp. Find integers ap such that
∑

p ap[π : πp] = 1.
Define a permutation Rπ-lattice P = ⊕pRπ/πp. Consider the morphisms φ : R →

P and ε : P → R where ε is the augmentation map and φ(1) = (. . . , apφp(1), . . .).
Since εφ = id, it follows that P = R ⊕ E for some Rπ-lattice E. Thus E is stably
permutation.

But E is not a permutation lattice in general. For examples, consider the special
case when π is a group of order pq and p, q are distinct odd prime numbers. Suppose E is
a permutation lattice. From H0(π, P ) = H0(π,R) ⊕H0(π,E) (the usual cohomology
groups), we find that E = Rπ/π′ for some subgroup π′. Counting the R-ranks of
P = R⊕ E, we find that [π : π′] = p+ q − 1, which is impossible.

In general, if π is any finite group admitting a surjective group homomorphism
π → π0 where π0 is a group of order pq and p, q are distinct odd prime numbers, the
lattice E constructed through Rπ0 is a stably permutation Rπ-lattice, but is not a
permutation lattice.
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