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Abstract We compute the almost-sure Hausdorff dimension of the double points of
chordal SLE, for « > 4, confirming a prediction of Duplantier—Saleur (1989) for
the contours of the FK model. We also compute the dimension of the cut points of
chordal SLE, for x > 4 as well as analogous dimensions for the radial and whole-
plane SLE, (p) processes for k > 0. We derive these facts as consequences of a more
general result in which we compute the dimension of the intersection of two flow lines
of the formal vector field ¢/X | where h is a Gaussian free field and x > 0, of different
angles with each other and with the domain boundary.

Keywords Schramm-Loewner evolution (SLE) - Hausdorff dimension - Double
points - Cut points - Gaussian free field (GFF) - Imaginary geometry

Mathematics Subject Classification Primary 60J67; Secondary 60D05

1 Introduction
1.1 Overview
The Schramm-Loewner evolution SLE, (k > 0) is the canonical model for a

conformally invariant probability measure on non-crossing, continuous paths in a
proper simply connected domain D in C. SLE, was introduced by Oded Schramm
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[32] as the candidate for the scaling limit of loop-erased random walk and for the
interfaces in critical percolation. Since its introduction, SLE has been proved to
describe the limiting interfaces in many different models from statistical mechan-
ics [4-6,11,21,23,38,38,39]. The purpose of this article is to study self-intersections
of SLE paths as well as the intersection of multiple SLE paths when coupled together
using the Gaussian free field (GFF). Our main results are Theorems 1.1-1.6 which
give the dimension of the self-intersection and cut points of chordal, radial, and whole-
plane SLE, and SLE, (p) processes as well as the dimension of the intersection of
such paths with the domain boundary. Theorems 1.1-1.4 are actually derived from
Theorem 1.5 which gives the dimension of the intersection of two SLE, (p) processes
coupled together as flow lines of a GFF [8,10,12,25-29,34,36,40] with different
angles.

1.2 Main results

Throughout, unless explicitly stated otherwise we shall assume that ' > 4 and k =
16/’ € (0, 4). The first result that we state is the double point dimension for chordal
SLE,.

Theorem 1.1 Let 1 be a chordal SLE,: process for k' > 4 and let D be the set of
double points of n. Almost surely,

2 — (2 (@d+i) e (4.8
dimH(D)z{ 8 for '€ 4.8)

1.1
1+% for «’ > 8. (1.1

In particular, when k' = 6, dimy (D) = %.

Recall that chordal SLE,/ is self-intersecting for «” > 4 and space-filling for ¥’ >
8 [31]. The dimension in (1.1) for «’ € (4, 8) was first predicted by Duplantier—
Saleur [33] in the context of the contours of the FK model. The almost sure Hausdorff
dimension of SLE, is 1 + % fork € (0, 8) and 2 for k > 8 [3] and, by SLE duality, the
outer boundary of an SLE, process for «’ > 4 stopped at a positive and finite time is
described by a certain SLE,. process [7,26,28,29,45,46]. Thus (1.1) for «” > 8 states
that the double point dimension is equal to the dimension of the outer boundary of the
path. We note that chordal SLE, does not have triple points for ¥’ € (4, 8) and the
set of triple points is countable for x’ > 8; see Remark 5.3.

Our second main result is the dimension of the cut-set of chordal SLE,:

Theorem 1.2 Let n be a chordal SLE, process for k' > 4 and let
K={n@):1e(0,00), n0,1)Nn(t, o0) = }
be the cut-set of 1. Then, for ' € (4, 8), almost surely

dimp () = 3 — 3% (1.2)
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In particular, when ' = 6, dimy(K) = %. For k' > 8, almost surely K = &.

The dimension (1.2) was conjectured in [9] by Duplantier. Note that we recover
the cut-set dimension for Brownian motion and SLEg established in the works of
Lawler and Lawler-Schramm-Werner [15,17-19]. The dimension of the cut times
(with respect to the capacity parameterization for SLE), i.e. the set {t € (0, c0) :
n(0,1) Nn(t,o00) = T}is 2 — % for k' € (4, 8) and was computed by Beffara in [2,
Theorem 5].

Our next result gives the dimension of the self-intersection points of the radial and
whole-plane SLE, (p) processes for k € (0, 4). Unlike chordal SLE, and SLE, (p)
processes, such processes can intersect themselves depending on the value of p > —2.
The maximum number of times that such a process can hit any given point for « > 0
is given by [29, Proposition 3.31]:

K

J, h Je p = ———.
Hepl whete Jep =500

(1.3)

In particular, Ji, + +ooas p | —2and J,, | 1 as p + 5 — 2. Recall that -2 is
the lower threshold for an SLE, (p) process to be defined. For radial or whole-plane
SLE, (p), the interval of p values in which such a process is self-intersecting is given
by (-2, % —2) (see, e.g., [29, Section 2.1]) (For chordal SLE, (p), this is the interval
of p values in which such a process is boundary intersecting). For p > 5 — 2, such
processes are almost surely simple.

Theorem 1.3 Suppose that n is a radial SLE, (p) process in D for k € (0,4) and
p € ( -2,5— 2). Assume that n starts from 1 and has a single boundary force point
of weight p located at 1~ (immediately to the left of 1 on dD). For each j € N, let
Z; denote the set of points in (the interior of) D that n hits exactly j times. For each
2 < j = [Jepl, where J , is given by (1.3), we have that

dimy(Z;) = §(4+K +20 =22+ p))@+Kk—=2p+2j2+ p)) (1.4)

almost surely. For j > [J 1, almost surely T; = @. These results similarly hold if
n is a whole-plane SLE, (p) process.

Let B be the set of points in 0D that n hits exactly j times. For each 1 < j <
[Jc,p]1 — 1, we have that

1
dimH(Bj)=ﬂ(K—Zj(2+p))(2+j(2+p)) (1.5)

almost surely on {B; # @}.

For each j > [Jc ] — 1, almost surely B; = @.

Note that J , 4 1 is the value of j that makes the right side of (1.4) equal to
zero. Similarly, Ji , is the value of j that makes the right side of (1.5) equal to zero.
Inserting j = 1 into (1.4) we recover the dimension formula for the range of an SLE,
process [3] (though we do not give an alternative proof of this result).
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We next state the corresponding result for whole-plane and radial SLE,.(p)
processes with k" > 4. Such a process has two types of self-intersection points. Those
which arise when the path wraps around its target point and intersects itself in either
its left or right boundary (which are defined by lifting the path to the universal cover of
the domain minus the target point of the path) and those which occur between the left
and right boundaries. It is explained in [29, Section 4.2] that these two self-intersection
sets are almost surely disjoint and the dimension of the latter is almost surely given by
the corresponding dimension for chordal SLE,s (Theorem 1.1). In fact, the set which
consists of the multiple intersection points of the path where the path hits itself without
wrapping around its target point and are also contained in its left and right boundaries
is almost surely countable. The following gives the dimension of the former:

Theorem 1.4 Suppose that ' is a radial SLE,(p) process in D for k' > 4 and
pE (’% — 4, ’% — 2). Assume that 0 starts from 1 and has a single boundary force
point of weight p located at 1~ (immediately to the left of 1 on D). For each j € N,
let 7', denote the set of points that 0 hits exactly j times and which are also contained
in its left and right boundaries. For each 2 < j < [J ,] where Js , is given by

(1.3), we have that
1
dimp(T)) = e (4+K +2p =2 Q4+ )@+ =20 +2jQ+p)  (16)

almost surely. For j > [J 1, almost surely I} = . These results similarly hold if

n' is a whole-plane SLE, (p) process.
Similarly, let L', (resp. R/j ) be the set of points on 9D which 0’ hits exactly j times
while traveling in the clockwise (resp. counterclockwise) direction. Then

1
dimy (L)) = ﬁ(K’ —2j2+p)2+j2+p)

1.7
almost surely on {L'; # @}.
and
. 1 . ;
dimy(R}) = 2—IC,(K’ +2p—=2j2+p)2—-p+j2+p))
almost surely on {R'; # @}, (1.8)
The reason that we restrict to the case that p > '% — 4 is that for p < "7/ — 4 such

processes almost surely fill their own outer boundary. That is, for any time ¢, the outer
boundary of the range of the path drawn up to time ¢ is almost surely contained in
n'([t, oc]) and processes of this type fall outside of the framework described in [29].

The proofs of Theorems 1.1 and 1.2 are based on using various forms of SLE duality

which arises in the interpretation of the SLE, and SLE, (p) processes forxk € (0,4) as
flow lines of the vector field e/ X where h is a GFF and X = \/LE — ‘/TE [7,8,26,28,29].
We will refer to these paths simply as “GFF flow lines”. The flow line with angle# € R
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is the flow line with angle 0 of the field & 4 6 x. And the difference between the angles
of two flow lines is called the angle gap (An overview of this theory is provided in
Sect. 2.2). The duality statement which is relevant for the cut-set (see Fig. 5) is that
the left (resp. right) boundary of an SLE, process is given by an SLE, flow line of a
GFF with angle 7 (resp. —7). Thus the cut set dimension is given by the dimension
of the intersection of two flow lines with an angle gap of

Ocut = 7. (1.9)

Another form of duality which describes the boundary of an SLE, process before and
after hitting a given boundary point and also arises in the GFF framework allows us
to relate the double point dimension to the dimension of the intersection of GFF flow
lines with an angle gap of [28]

K—2
Odouble = T ( P ) . (1.10)

2-3

We will explain this in more detail in Sect. 5. The set of points which a whole-plane
or radial SLE, (p) process for « € (0,4) and p € (=2, 5 — 2) hits j times (in the
interior of the domain) is locally absolutely continuous with respect to the intersection
of two flow lines with an angle gap of

0; =27(j — 1) (Lf) for 2<j < [Je,l; (1.11)

2

4 —
see [29, Proposition 3.32]. The angle gap which gives the dimension of the self-
intersection set contained in the interior of the domain for ¥’ > 4 and p € ('% —

4, ’% — 2) is given by

2j2+p)—2p — i’
e}zn( J( +p/) p K) for 2<j < [Je,l: (1.12)
k' —4 '

see [29, Proposition 4.10]. Thus Theorems 1.1-1.4 follow from [(with the exception
of (1.5), (1.7), (1.8)]:

Theorem 1.5 Suppose that h is a GFF on H with piecewise constant boundary data.
Fix k € (0, 4), angles

91<92<9]—|—( il ),
4 —«

and let

p=%(92—91)(2—§)—2.
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Fori =1, 2, let ng; be the flow line of h starting from 0 with angle ;. We have that

1 K K
di A g, NH :2——( £ 2)( - 6)
imy (g, N g, ) PG + 5 + P37 +

almost surely on the event {ng, N ng, NH # }.

Theorem 1.5 gives the dimension of the intersection of two flow lines in the bulk.
The following result gives the dimension of the intersection of one path with the
boundary.

Theorem 1.6 Fix x > 0 and p € ((=2) vV (5 —4), 5 — 2). Let n be an SLE,(p)
process with a single force point located at 0. Almost surely,

. 1 K
dimy(mNRy) =1-=(p+2) (p+4——). (1.13)
K 2

(Recall that 5 — 4 is the threshold at which such processes become boundary
filling and —2 is the threshold for these processes to be defined). In the case that
p = %(2 — %) —2forf > 0and k € (0,4), we say that n intersects dH with an angle
gap of 6. This comes from the interpretation of such an SLE, (p) process as a GFF
flow line explained in Sect. 2.2. See, in particular, Fig. 4. By [29, Proposition 3.33],
applying Theorem 1.6 with an angle gap of 61 where 6; is as in (1.11) gives (1.5)
of Theorem 1.3. Similarly, by [29, Proposition 4.11], applying Theorem 1.6 with an
angle gap of

4—k"+2j2+p)
N 1.14
o)L 77( o —4 ( )
gives (1.7) and with an angle gap of
4—Kk'"=2p4+2j2+p)
$jp =7 ( Lt ) (1.15)

gives (1.8). Theorem 1.6 is proved first by computing the boundary intersection dimen-
sion for k € (0, 4) and then using SLE duality to extend to the case that ’ > 4. We
obtain as a corollary (when p = 0) the following which was first proved in [1].

Corollary 1.7 Fix«’ € (4, 8) and let n be an SLE,+ process in H from 0 to oo. Then,
almost surely

. 8
dimy(nNR) =2 — P

One of the main inputs in the proof of Theorems 1.5 and 1.6 is the following
theorem, which gives the exponent for the probability that an SLE, (p) process gets
very close to a given boundary point.
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K

Theorem 1.8 Fix« > 0, p1.g > =2, p2.r € R such that p1 g + p2.r > 5= 4. Let
n be an SLE, (p1,Rr, p2.R) process with force points (0%, 1). Let

1 K
a=—(p1,r +2) (pl,R+/02,R+4——)- (1.16)
K 2

For each e > 0, we let . = inf{t > 0 : n(t) € dB(1, €)}. We have that

Plr. < 00] = €*T°D 45 € — 0. (1.17)

By taking p = p1,r € (=2) V (5 —4), 5 —2) and po g = 0, Theorem 1.8 gives
the exponent for the probability that an SLE, (p) process gets close to a fixed point on
the boundary. Theorem 1.8 is proved (in somewhat more generality) in Sect. 3.1 and
it implies the upper bound of the Hausdorff dimension in Theorem 1.6. We remark
that, all results in Sect. 3.1 are independent of Imaginary Geometry. In other words,
the upper bound of the dimension in Theorem 1.6 is derived without knowledge of
Imaginary Geometry. Whereas, the lower bound, derived in Sect. 3.2, uses the inter-
action behavior of flow lines. An alternative proof to the lower bound of Theorem 1.6
fork € (8/3, 4] is given in [44] using the relationship between the SLE, (p) processes
for these « values and the Brownian loop soups.

1.3 Outline

The remainder of this article is structured as follows. In Sect. 2, we will review the
definition and important properties of the SLE, and SLE, (p) processes. We will also
describe the coupling between SLE and the Gaussian free field. Next, in Sect. 3, we
will compute the Hausdorff dimension of SLE, (p) intersected with the boundary. We
will extend this to compute the dimension of the intersection of two GFF flow lines
in Sect. 4. Note that, Sect. 3 proves Theorem 1.6 and Sect. 4 proves Theorem 1.5,
and they imply Theorems 1.2—1.4. Finally, in Sect. 5 we will explain the SLE duality
describing the boundary of SLE, process before and after hitting a given boundary
point and complete the proof of Theorem 1.1 from the SLE duality and Theorem 1.5.

2 Preliminaries

We will give an overview of the SLE, and SLE, (p) processes in Sect. 2.1. Next, in
Sect. 2.2, we will give an overview of the SLE/GFF coupling and then use the coupling
to establish several useful lemmas regarding the behavior of the SLE, and SLE, (p)
processes. In Sect. 2.3, we will compute the Radon-Nikodym derivative associated with
a change of domains and perturbation of force points for an SLE, (p) process. Finally,
in Sect. 2.4 we will record some useful estimates for conformal maps. Throughout,
we will make use of the following notation. Suppose that f, g are functions. We will
write f < g if there exists a constant C > 1 such that C_lf(x) < gx) < Cf(x) for
all x. We will write f < g if there exists a constant C > 0 such that f(x) < Cg(x)

and f = gifg < f.
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2.1 SLE, and SLE, (p) processes

We will now give a very brief introduction to SLE. More detailed introductions can be
found in many excellent surveys of the subject, e.g., [16,43]. Chordal SLE, in H from
0 to oo is defined by the random family of conformal maps (g;) obtained by solving
the Loewner ODE

2
= = 2.1
9:8:(2) @) — W, g0(2) =z 2.1)

with W = /k B and B a standard Brownian motion. Write K; := {z e H : 7(z) < 1}
where 7(z) is the swallowing time of z defined by sup{tr > 0 : minse[o] |gs(z) —
Ws| > 0}. Then g, is the unique conformal map from H, := H\ K, to H satisfying
limy;|— 00 1g:(2) — 2| = 0.

Rohde and Schramm showed that there almost surely exists a curve 1 (the so-called
SLE trace) such that for each ¢ > 0 the domain H; of g; is the unbounded connected
component of H\7n ([0, ¢]), in which case the (necessarily simply connected and closed)
set K; is called the “filling” of ([0, ¢]) [31]. An SLE, connecting boundary points x
and y of an arbitrary simply connected Jordan domain can be constructed as the image
of an SLE, on H under a conformal transformation ¢ : H — D sending O to x and
oo to y (The choice of ¢ does not affect the law of this image path, since the law of
SLE, on H is scale invariant). For k € [0, 4], SLE, is simple and, for « > 4, SLE,
is self-intersecting [31]. The dimension of the path is 1 + % for « € [0, 8] and 2 for
Kk > 8 [3].

An SLE(p, ; pp) process is a generalization of SLE, in which one keeps track
of additional marked points which are called force points. These processes were first
introduced in [20, Section 8.3]. Fix x; = (xg; < -~ <x1 <0)andxp = (0 <
X1,R < --+ < XR). We associate with each x; ;, for ¢ € {L, R} a weight p; , € R.
An SLE.(p,; PP ) process with force points (x; ; x ) is the measure on continuously
growing compact hulls K, generated by the Loewner chain with W; replaced by the
solution to the system of SDEs:

L r
aw, => Pt g > PR g4 JkdB,,
=W el 22)
2

dvti)q - -—dt» V(;.’q = 'xivq’ l € N’ q € {L’ R}

It is explained in [26, Section 2] that for all « > 0, there is a unique solution to (2.2)
up until the continuation threshold is hit — the first time ¢ for which either

Z Pi.L = -2 or Z Pi.R = —2.
=W

=W,
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The almost sure continuity of the SLE, (B) processes is proved in [26, Theorem1.3].

Let
J

Pig= Zpi,q for q € {L,R} and j eN (2.3)
i=0
with the convention that pg 1 = por = 0, x0. = 07, Xg41,L = —00, X0, = ot,

and x, 41, g = +00. The value of p;, g determines how the process interacts with the
interval (xg g, xx+1,r) (and likewise when R is replaced with L). In particular:

Lemma 2.1 Suppose that n is an SLE, (p 1} PR) process in H from 0 to oo with force
points located at (x; xp).

O Ifor g > % — 2, then n almost surely does not hit (Xk, R, Xk+1.R)-
(i) Ifk € (0,4) and py g € (5 — 4, —2], then 1) can hit (xx g, Xx+1,R) but cannot
be continued afterwards.
(iii) Ifx > 4andpy g € (=2, % — 4], then n can hit (xk,R, Xk+1,R) and be continued
afterwards. Moreover, n N (xk R, Xk+1,R) is almost surely an interval.
(V) If o g € (=2) V(5 —4), 5 —2) then n can hit and bounce off of (Xx, R, Xk+1.R)-
Moreover, n N (X R, Xk+1,r) has empty interior.

Proof See [26, Remark 5.3, Theorem 1.3] as well as [7, Lemma 15]. O

In this article, it will also be important for us to consider radial SLE, and SLE, (p)
processes. These are typically defined using the radial Loewner equation. On the unit
disk D, this is described by the ODE

_ g1(2) + Wy i
9:81(2) = gt(z)—g;(z) W, g0(z) =z (2.4)

where W, is a continuous function which takes values in 0D. For w € 0D, radial SLE,
starting from w is the growth process associated with (2.4) where W, = wel V< B
and B is a standard Brownian motion. For w, v € 9D, radial SLE, (p) with starting
configuration (w, v) is the growth process associated with the solution of (2.4) where
the driving function solves the SDE

W, +V,
dW; = _ng dt +i/kW, dB, — BWt o

dt, Wy = 2.5
VW o=w (2.5)

with V; = g;(v), the force point. The continuity of the radial SLE, (p) processes for
p > —2 can be extracted from the continuity of chordal SLE, (p) processes given in
[26, Theorem1.3]; this is explained in [29, Section 2.1]. The value of p for a radial
SLE, (p) process has the same interpretation as in the setting of chordal SLE, (p)
explained in Lemma 2.1. That is, the processes are boundary filling for p € (-2, 5 —4]
(for k > 4), boundary hitting but not filling for p € ((=2) v (5 —4), 5 — 2), and
boundary avoiding for p > 5 — 2. In particular, by the conformal Markov property
for radial SLE, (p), such processes are self-intersecting for p € (-2, 5 — 2) and fill
their own outer boundary for p € (-2, ’% — 4] (k > 4). The latter means that, for any
time ¢, the outer boundary of the range of n up to time ¢ is almost surely contained in

n([t, 00)).
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2.1.1 Martingales

From the form of (2.2) and the Girsanov theorem, it follows that the law of an SLE,. (p)
process can be constructed by reweighting the law of an ordinary SLE, process by
a certain local martingale, at least until the first time t that W hits one of the force
points V4 [42]. Tt is shown in [41, Theorem 6, Remark 7] that this local martingale
can be expressed in the following more convenient form. Suppose x1;, < 0 < x1 g

and define ‘
(4=K+pj g)Pj g Pig.

M =TTleiol = <[[|wi-vi|"
i.q

i.q

(2.6)

/’i.q/’i/yq/
2K

< 1

(.9)#0'.q")

. VA
L,q .q
v -y

Then M, is a local martingale and the law of a standard SLE, process weighted by
M (up to time 7, as above) is equal to that of an SLE.(p, ; p ) process with force
points (x;; x). We remark that there is an analogous martingale in the setting of
radial SLE, (p) processes [41, Equation 9], a special case of which we will describe
and make use of in Sect. 4.

One application of this that will be important for us is as follows. Suppose that 7 is
an SLE, (pr; pr) process with only two force points x;, < 0 < xp. If we weight the
law of n by the local martingale

(k=4=2p1 )pR

x [VE—vRT—=2 2.7

—2pp

Kk—4
ME =W, — VE|

then the law of the resulting process is that of an SLE, (o1; pr) process where py, =
K

k —4—pr.1f pp < 5 —2sothat oL > 5 —2,Lemma 2.1 implies that the reweighted
process almost surely does not hit (—oo, x7).

2.2 SLE and the GFF

We are now going to give a brief overview of the coupling between SLE and the GFF.
We refer the reader to [26, Sections 1, 2] as well as [27, Section 2] for a more detailed
overview. Throughout, we fix k € (0, 4) and ¥’ = 16/x > 4.

Suppose that D C C is a given domain. The Sobolev space HO1 (D) is the Hilbert
space closure of C3°(D) with respect to the Dirichlet inner product

1
(f.00 = 5 [ V500 Vs, @38)
The zero-boundary Gaussian free field (GFF) & on D is given by

h=72 anfy 2.9)
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where (¢,) is a sequence of i.i.d. N (0, 1) random variables and ( f;,) is an orthonormal
basis for HO1 (D). The sum (2.9) does not converge in Hé (D) (or any space of functions)
but rather in an appropriate space of distributions. The GFF / with boundary data f
is given by taking the sum of the zero-boundary GFF on D and the function F in D
which is harmonic and is equal to f on d D. See [35] for a detailed introduction.

Let

2 Ve

i , 14
——, A=—=, and A =—

=T 2 NG I

Suppose that 7 is an SLE, (p P R) process in H from 0 to oo with force points
(x5 xg), let (g;) be the associated Loewner flow, W its driving function, and f; =
g: — W;. Let h be a GFF on H with zero boundary values. It is shown in [8,10,12,25,
34,36,40] that there exists a coupling (n, h) such that the following is true. Suppose
T is any stopping time for 7. Let ¢? be the function which is harmonic in H with
boundary values [(recall (2.3)]

T

X (210)

T
= — = A —
4\/_

[—k(l +00) if x € [fi(xjt1,0), fi(xjL))
A1+pjp) if x € (fixjR), fi(xj41,R)]

Let
¢ (2) = ¢ (f1(2)) — x arg f/(2).

Then the conditional law of (% + ¢o)|H\k, given K is equal to the law of h o fr + ¢-.
In this coupling, 1 is almost surely determined by 4 [8,26,40]. For « € (0,4), n has
the interpretation as being the flow line of the (formal) vector field e *+#0)/x [36]
starting from 0; we will refer to n simply as a flow line of 7 + ¢¢. See Fig. 1 for an
illustration of the boundary data. The notation x is used to indicate that the boundary

data for the field is given by x 4 x - winding where “winding” refers to the winding of
the path or domain boundary. For curves or domain boundaries which are not smooth,

n

oL 1,1 T1,R T2,R

NU4prptper) —Al4pir) =N A Al+pir) M1l+pLr+por)

Fig. 1 Suppose that / is a GFF on H whose boundary data is as indicated above. Then the flow line 7 of
h starting from O is an SLE, (02,1, p1,L5 01,R» £2,R) Process (k € (0, 4)) from 0 to oo with force points
located at xp ;| < x1, < 0 < x1 g < x2,g. The conditional law of & given 5 (or 1 up to a stopping
time) is that of a GFF off of n with the boundary data as illustrated on n; the notation X is shorthand for

x + x - winding and is explained in detail in [26, Figures 1.9, 1.10]. The boundary data for the coupling of
SLE, (p) with many force points arises as the obvious generalization of the above
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€T2,L

N(tprpt+ohe) N(A+pip) N =N =N(1+p)p) =N (L+pptphg)

Z,

Fig.2 Suppose that /2 is a GFF on H whose boundary data is as indicated above. Then the counterflow line
1’ of h starting from O is an SLE,+ (0} ; , p} ;.3 P} g» £5 g) Process (k" > 4) from 0 to oo with force points

located at xp j, < x1,1 <0 < x| g < x2,g. The conditional law of  given n’ (or n’ up to a stopping time)
is that of a GFF off of n” with the indicated boundary data; the notation x is shorthand for x + x - winding

and is explained in detail in [26, Figures 1.9, 1.10]. The boundary data for the coupling of SLE,, (B’) with
many force points arises as the obvious generalization of the above

it is not possible to make sense of the winding along the curve or domain boundary.
However, the harmonic extension of the winding does make sense. This notation as
well as this point are explained in detail in [26, Figures 1.9, 1.10]. When « = 4, n has
the interpretation of being the level line of & + ¢q [40]. Finally, when «’ > 4, " has
the interpretation of being a “tree of flow lines” which travel in the opposite direction
of ' [26,29]. For this reason, n’ is referred to as a counterflow line of h + ¢y in this
case.

If 7 were a smooth function, » a flow line of the vector field X and ¢ aconformal
map, then ¢ (1) is a flow line of ¢!/ where

h=hoo ' — yarg(p); 2.11)

see [26, Figure 1.6]. The same is true when £ is a GFF and this formula determines
the boundary data for coupling the GFF with an SLE, (p 1P R) process on a domain
other than H. See also [26, Figure 1.9]. SLE, flow lines and SLE,/, ¥’ = 16/« €
(4, 00), counterflow lines can be coupled with the same GFF. In order for both paths
to transform in the correct way under the application of a conformal map, one thinks
of the flow lines as being coupled with 4 as described above and the counterflow lines
as being coupled with —#. This is because x (k') = —x («); see the discussion after
the statement of [26, Theorem 1.1]. This is why the signs of the boundary data in Fig. 2
are reversed in comparison to that in Fig. 1.

The theory of how the flow lines, level lines, and counterflow lines of the GFF
interact with each other and the domain boundary is developed in [26,29]. See, in par-
ticular, [26, Theorem 1.5]. The important facts for this article are as follows. Suppose
that & is a GFF on H with piecewise constant boundary data. For each 8 € R and
x € dH, let ) be the flow line of & starting at x with angle 6 (i.e., the flow line of
h + 0 x starting at x). If 6] < 6, and x| > x; then ngll almost surely stays to the right
of my; . 1f 61 = 6, then 17, may intersect 1> and, upon intersecting, the two flow lines
merge and never separate thereafter. See Fig. 3. Finally, if 6> + 7 > 0; > 65, then ngll

may intersect 77“922 and, upon intersecting, crosses and possibly subsequently bounces
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Fig.3 Suppose that / is a GFF on H with piecewise constant boundary dataand x1, xp € dH withxp < x;.
Fix angles 01, 6, and, fori = 1,2, let n;f be the flow line of & with angle ; starting from x;. If 6, > 61,
1

then ngzz almost surely stays to the left of (but may bounce off of) 77;11 f 0 = 6, = 0, then ngl merges

with ngz upon intersecting after which the paths never separate

Mo, (72)

-*/\*02/\-)\*02/\ _ e

(15, (2)) (1)

Fig.4 Assume that we have the same setup as in Fig. 3 and that t; is a stopping time for ngz Then we can
compute the conditional law of 77;11 given 7);22 [[0,7,]- Let ¢ be a conformal map which takes the unbounded
connected component of H\ngj([o, n])toHand leth) = ho (pfl - X arg(qf' ). Then (p(ng:) is the

flow line of & starting from ¢ (x1) with angle 61 and we can read off its conditional law from the boundary
data of 7 as in Fig. 1

off of ngzz but never crosses back. It is possible to compute the conditional law of one
flow line given the realization of several others; see Fig. 4. For simplicity, we use 7y
to indicate 7 when x = 0. If n’ is a counterflow line coupled with the GFF, then its
outer boundary is described in terms of a pair of flow lines starting from the terminal
point of " [7,8,26,29]; see Fig. 5.

We are now going to use the SLE/GFF coupling to collect several useful lemmas
regarding the behavior of SLE, (3) processes.

Lemma 2.2 Fix « > 0. Suppose that (x,.1) (resp. (X, r)) is a sequence of negative
(resp. positive) real numbers converging to x; < 0~ (resp. xg > 0%) as n — oo.
For each n, suppose that (W", vl ynRy s the driving triple for an SLE, (pr; pr)
process in Hwith force points located at (x,,1, <0 < x5, r). Then (wml ynL yn.Ry
converges weakly in law with respect to the local uniform topology to the driving triple
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Fig.5 LethbeaGFFon[—1, 112 with the illustrated boundary data. Then the counterflow line 1’ of 4 from
i to —i is an SLE,/ (0] ; p) process (k" > 4) with force points located at (i)™, ()t (immediately to the
left and right of i ). The left (resp. right) boundary 1 (resp. ng) of ’ is given by the flow line of / with angle
% (resp. 7%) starting from —i and targeted at i; these paths can be drawn if pi, p}e > %/ — 4. Explicitly,
np (resp.ng)isan SLE, (k —4+ 50} 1 5 =24 § o)) (resp. SLE( (5 =24 § o] s k —4+ 4 p)) process
in [—1, 1]2 from —i to i with force points located at (—i)™, D)t (k = 16/k’ € (0, 4)). The cut-set of
1 is given by nz Nng and 7’ N 3([—1, 11%) = (nz Ung) N 3([—1, 11)2. The same holds if [—1, 1]? is
replaced by a proper, simply-connected domain and the boundary data of the GFF is transformed according
to (2.11). Finally, if p} , p > %/ — 4, then conditional law of »’ given n;, and ng is independently that of
an SLEK/('% —4; %/ — 4) in each of the bubbles of [—1, 1]2\(17L U ng) which lie to the right of 7 and
to the left of np

(W, VE VR ofan SLE, (pr; pr) process with force points located at (x; < 0 < xg)
as n — oo. The same likewise holds in the setting of multi-force-point SLE (p)
processes.

Proof See [26, Section 2]. O

Lemma 2.3 Fix k > 0. Suppose that n is an SLE,(p 1P R) process in H from 0 to
oo with force points located at (x; ; x ) with x1,, = 0~ and x g = 07 (possibly
by taking p1,4 = 0 for g € {L, R}). Assume that p1,., p1,r > —2. Suppose that
y: [0, T] — R is any deterministic simple curve in H starting from 0 and otherwise

does not hit 0H. Fix € > 0, let A(€) be the € neighborhood of y ([0, T1), and define
stopping times

op=inf{t > 0:|nit) —y(T)| <€} and oy =inf{t > 0:n() ¢ A(e)}.
Then Plo] < 03] > O.

Proof See Fig. 6 for an illustration. We will use the terminology “flow line”, but the
proof holds for x > 0. By running n for a very small amount of time and using that
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Fig. 6 Suppose that  is an SLE, (py; pg) process in H from 0 to oo with x1 ;7 = 07 and x1 g = 0t
with p1 1, p1,g > —2 and fix any deterministic curve y : [0, T] — H. For each € > 0, let A(¢) be the €
neighborhood of y. We show in Lemma 2.3 that with positive probability, n gets within distance € of y (T')
before leaving A(e)

P[W; = V,I’L 1 =P[W; = V,I’R] = Oforall r > 0 before the continuation threshold is
reached [26, Section 2] and then conformally mapping back, we may assume without
loss of generality that p; 1 = p1,g = 0. Let U be a Jordan domain which contains
y ([0, T]) and is contained in A(e€). Assume, moreover, that dU N [x2, 1, x2 g] is an
interval, say [yr, ygr], which contains 0. Suppose ¥ € (0,4) and let & be a GFF
on H whose boundary data has been chosen so that its flow line n from O is an
SLE, (p P R) process as in the statement of the lemma. Pick a point xg € dU with

ly(T) — xol < €. Let i be a GFF on U whose boundary conditions are chosen
so that its flow line 7 starting from O is an SLE, process from 0 to xo. Let o7 =
inf{r > 0 : |n@t) — y(T)| < €}. Since 7|(,5,] almost surely does not hit dU, it
follows that X = dist(n][0.5,1. 9U\[yr, yr]) > 0 almost surely. For each § > 0,
let Us = {x € U : dist(x, dU\[yr, yr]) > &}. Then the laws of &|y, and }~1|U5 are
mutually absolutely continuous [26, Proposition 3.2]. Thus the result follows since
we can pick § > 0 sufficiently small so that P[X > 4] > 0. This proves the result for
k € (0,4). For «’ > 4, one chooses the boundary data for 4 so that the counterflow
line is an SLEK/(’% —-2; ’% — 2) process (recall Lemma 2.1). O

Lemma 2.4 Fix« > 0. Suppose that 1 is an SLE, (pr; pr) process in H from 0 to co
with force points located at (x; < 0 < xg) and with pg > —2. Let y: [0, 1] — H
be the unit segment connecting 0 to i. Fix € > 0 and define stopping times o1, o> as
in Lemma 2.3. For each xé‘ < 0 there exists po = po (x(l)‘, €) > 0 such that for every
xp € (—o0, xé‘] and xgr > 0, we have that

Plo1 < 02] = po. (2.12)

If pr. > —2, then there exists po = po(€) such that (2.12) holds for xé =0".

Proof We know that this event has positive probability for each fixed choice of x;,, xr
as above by Lemma 2.3. Therefore the result follows from Lemma 2.2 and the results
of [16, Section 4.7]. O
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0 Tk,R Tkt,R
Fig. 7 Suppose that n is an SLE, (BL; BR) process in H from 0 to oo with xy 7, = 07 and xq g = ot
with py 1, o1, g > —2 and fix any deterministic curve y : [0, T'] — H which connects 0 to [xg g, Xk+1,R]

where k is such that ZI}':I pj.R € (5 —4,%5 —2). Foreach € > 0, let A(¢) be the € neighborhood of y.
We show in Lemma 2.5 that with positive probability, » hits [x; g, xx4+1, g] before leaving A(e)

Lemma 2.5 Fix k > 0. Suppose that n is an SLE, (P BR) process in H from 0 to
oo with force points located at (x;; x g) with x1,;, = 0~ and x1,g = 07 (possibly by
taking p1,4 = 0 for g € {L, R}). Assume that p1 1, p1,r > —2. Fix k € N such that
p = ZI;-:I pj.R € (5 —4,5 —2)and e > 0. There exists p1 > 0 depending only on
Kk, max; g4 |pi gl p, and € such that if |x2 4| > € for g € {L, R}, Xp11,R — Xk,R = €,
and xg r < €~ then the following is true. Suppose that y is a simple curve starting
from 0, terminating in [xx g, Xk+1,R], and otherwise does not hit 9H. Let A(¢€) be the
€ neighborhood of y ([0, T]) and let

o1 =inf{t > 0:n(t) € (xk,r, Xk+1,R)} and op =inf{t > 0: n(t) ¢ A(e)}.

Then Ploy < 02] > p1.

Proof See Fig. 7 for an illustration. We will use the terminology “flow line”, but the
proof holds for « > 0. Arguing as in the proof of Lemma 2.3, we may assume without
loss of generality that p1;, = p1,g = 0. Let U be a Jordan domain which contains
y and is contained in A(€). Assume, moreover, that 9U N [x2, 1, X2, g] is an interval
which contains 0 and dU N [xx g, Xk+1,r] is also an interval, say [y, yr]. Suppose
k € (0, 4). Let h be a GFF on H whose boundary data has been chosen so that its flow
line 1 from O is an SLE, (B P R) process as in the statement of the lemma. Let hbea
GFF on U whose boundary conditions are chosen so that its flow line 7 starting from
0 and targeted at yg is an SLE, (p) process with a single force point located at y;, with
p as in the statement of the lemma. Let &7 be the first time that 7 hits [yz, yg]. Since
71(0.7,] almost surely does not hit dU\[yr, yr], it follows that

dist(9lfo,77, dU\([x2,2, x2,r1U [yL, yr1)) > 0

almost surely. Since 77 almost surely hits [yz, yg], the assertion follows using the same
absolute continuity argument for GFFs as in the proof of Lemma 2.3. As in the proof of
Lemma 2.3, one proves the result for «’ > 4 by taking the boundary conditions for / on
U so that the counterflow line starting from 0 is an SLE,/ (’% —-2; ’% —2,p— '% —2))
process. O
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Laxp 0 TR 1

Fig. 8 Suppose that 1 is an SLE, (py; pg) process in H starting from 0 to oo with force points located
atx; <0 < xp with py € (§ —4,%5 —2)and pg > —2. We show in Lemma 2.6 that for each choice

of x§ € (—1,0) there exists py = pp(x%) € [0, 1) such that the probability that 5 hits 3 B(0, 1) before
hitting (—o0, x7,] is at most pp uniformly in x7, € [xé, 0]

Lemma 2.6 Fix« > 0. Suppose that n is an SLE, (pr; pr) process in H from 0 to oo
with force points located at (x;, < 0 < xg) with p;, € (5 —4,5 —2) and pg > —2.
For each xé € (—1,0) there exists pp = pz(xé) € [0, 1) such that the following is

true. Fix xj, € [xé‘, 0] and define stopping times
oy =inf{t > 0:|n()| =1} and r({‘ =inf{t > 0: n(t) € (—oo, x]}.
Then we have that
Ploy < tf1 < pa.

Proof See Fig. 8. Lemma 2.5 implies that this event has probability strictly smaller
than 1 for each fixed choice of x7, xg as above. Therefore the result follows from
Lemma 2.2. O

2.3 Radon-Nikodym derivative

Following [7, Lemma 13], we will now describe the Radon-Nikodym derivative
between SLE, (p) processes arising from a change of domains and the locations and
weights of the force points. Let ¢ = (D, zg, X L» X g Z00) be a configuration consisting
of a Jordan domain D in C with £ 4 r + 2 marked points on d D. An SLE, (BL; BR)
process n with configuration c is given by the image of an SLE, (p 1P R) process 77 in
H under a conformal transformation ¢ taking H to D with ¢(0) = zg, ¢(00) = zo,
and which takes the force points of 7 to those of .

Suppose that ¢ = (D, z0, X, X g, Zoo) and ¢ = (D, z0,X;,Xpg, Zoo) are two con-
figurations such that D agrees with D in a neighborhood U of zp. Let ,ug denote the
law of an SLE, (p P R) process in ¢ stopped at the first time 7 that it exits U and

define [Lg analogously. Let
Poo = K _6_Zpi,q
iq
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and

00 Pig
Z(0) = Hp(20. 200) " % x [ [ M0, i) >
i,q
Pighil g
X H HD(xlq’xz q’) RS XHHD(xlquoo)
(.)#0".q") i.q

lqp

(2.13)

where H p is the Poisson excursion kernel of the domain D. We also let

_ (6—x)(8—3k)

o 2k ’

= (D\K'L'a 77(75)7 lzy i‘;@v ZOO)v

m(D; K, K') =P (¢:¢C D, tNK #2, LNK' #2),

§

where K is the compact hull associated with 1 ([0, t]) and ,ulOOP the Brownian loop
measure on unrooted loops in C (see [22] for more on the Brownian loop measure).
Also, xi g = Yig if x; 4 is not swallowed by time 7, otherwise xif ; (resp. xif ) is the
leftmost (resp. rightmost) point of d K; Nd D in the clockwise (resp. counterclockwise)
arc on 0D from z¢ to Zso,-

The following result is proved in [7, Lemma 13] in the case that U is at a positive
distance from the marked points of ¢, ¢ other than zg. We are now going to use the
SLE/GFF coupling described in the previous section to extend the result to the case
that U is at a positive distance from the marked points of ¢, ¢ which are different.

Lemma 2.7 Assume that we have the setup described just above. Suppose that U is
at a positive distance from those marked points of ¢, ¢ which differ. The probability
measures ,u,g and y,fj are mutually absolutely continuous and

u-gf( y= (Z@/Z@
Z(c)/Z(©)

) exp (— &m(D; K, D\D) + &m(D; K-, D\D))
(2.14)

Proof We are first going to prove the result in the case that x1,, # zo # X1,R.
We know that we can couple n ~ uc (resp. 7 ~ uU) with a GFF h (resp. h) on
D (resp. D) so that n (resp. 7) is the flow line of & (resp. h) starting from zg. By
our hypotheses, the boundary data of 7 and h agree with each other in the boundary
segments which are also contained in dU. Consequently, the laws of h|y and h|y
are mutually absolutely contmuous [26, Proposition 3.2]. Since n (resp n) is almost
surely determined by h (resp. h) [26, Theorem 1.2], it follows that ,uc and p.
mutually absolutely continuous. Thus, to complete the proof, we just need to 1dent1fy
f() = (d,ug/d,ug)(n). By [7, Lemmal3], we know that f(n) is equal to the right
side of (2.14) for paths n which intersect the boundary only in the counterclockwise
segment of 9D from x; 7 to xi g (and this only happens for « > 4). Therefore, to
complete the proof, we need to show that the same equality holds for paths 1 which
intersect the other parts of the domain boundary. Note that the right hand side of (2.14)
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is a continuous function of n with respect to the uniform topology on paths. Therefore,
to complete the proof, it suffices to show that the Radon-Nikodym derivative f(n) is
also continuous with respect to the same topology. Indeed, then the result follows since
both functions are continuous and agree with each other on a dense set of paths. We are
going to prove that this is the case using that 7, 77 are coupled with 7, h, respectively.

Let vf./ (resp. vg ) denote the joint law of (1, k|y) (resp. (7, h|y)). As explained
above, vU and v~ are mutually absolutely continuous. Moreover, the Radon-Nikodym
derivative dv oy d v is a function of & alone since , h almost surely determine 7, 77,
respectively. Let vU( [-) (resp. v Y(.]-)) denote the conditional law of &|y given n
(resp. h|U given 7). Note that

dv? (- n)
dv¥ (-1

is continuous in n with respect to the uniform topology on continuous paths. Let vgh )
(resp. vg »(+)) denote the law of h|y (resp. E|U). Then we have that

, dv¥ y= dv¥
dvcl{h vy dvl"

Rearranging, we see that

dvc h() dVLU( [7)
() dv¥ (- n)

fn =

(the right side does not depend on the choice of - since the left side does not depend
on -). This implies the desired result in the case that x 7, # zo # X1 g since the latter
factor on the right side is continuous in 7, as we remarked above. The result follows
in the case that one or both of x; 1, x1 r agrees with z¢ since the laws converge as one
or both of x; 1, x| g converge to zg (Lemma 2.2). |

Lemma 2.8 Assume that we have the same setup as in Lemma 2.1 with D = H,
DCHUCH bounded, and zo = 0. Fix { > 0 and suppose that the distance
between U and H\D is at least ¢, the force points of ¢, in U are identical, the
corresponding weights are also equal, and the force points which are outside of U are
at distance at least ¢ from U. There exists a constant C > 1 depending on U, ¢, «,
and the weights of the force points such that

du%’
m

=

<C.

al =
.
°Q

Proof Note that 0 < m(H; K, H\D) < m(H; U, H\U®) where U¢ is the ¢-
neighborhood of U. Moreover, we have that m(H; U, H\U ¢) is bounded from above
by a finite constant depending on U and ¢ since the mass according to 1£'°°P of the loops
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which are contained in H, intersect U, and have diameter at least ¢ is finite [ 14, Corol-
lary 4.6]. Consequently, by Lemma 2.7, we only need to bound the quantity GG

2G/ 2@ Z(cr)/Z(c)"
Cr c .
Zen/Z© are ratios of terms of the form

Hx (1, v) where X is one of H, H;, D, D; and u, v are two marked points on the
boundary of X. We will complete the proof by considering several cases depending
on the location of the marked points.

Recall from (2.13) that the terms in

Case 1 At least one marked point is outside of U¢. This is the case handled in the
proof of [7, Lemma 14].

Case 2 Both marked points u, v are contained in U and u # v. It is enough to bound
from above and below the ratios:

Hp, (x7,y7)

_ Hp(x,y) _
Hu, (x7, y7)

=———— and B
Hu(x, y)
where x, y € U N R are distinct and x7, y* € dH, N U are distinct.

We can bound A as follows. Let ¢: D — H be the unique conformal transforma-
tion with ¢(x) = x, ¢(y) = y, and ¢’(x) = 1. Then A = |¢'(y)| which, by [20,
Proposition 4.1], is equal to the mass of those Brownian excursions in H connecting x
and y which avoid H\ D. We will write ¢ (H, x, y, H\ D) for this quantity. Since this is
given by a probability, we have that |¢'(y)| < 1 and it follows that |¢’(y)| is bounded
from below by ¢(H, x, y, U®) > 0. This lower bound is a positive continuous function
inx, y € oU N dH hence yields a uniform lower bound. Consequently, A is bounded
from both above and below.

Similarly, B is equal to the mass g(H\K., x7, y7, H\?) of those Brownian
excursions in H\ K; which connect x* and y* and avoid H\ D. As before, this quan-
tity is bounded from above by 1. We will now establish the lower bound. Let g
be the conformal map from H\K; onto H which sends the triple (x7, y?, 00) to
(0, 1, 00). Note that g can be extended to C\ (K, U K) by Schwarz reflection where
K, ={z € C:Z e K;}. We will view g as such an extension. Then it is clear that

gH\K., x", y", H\D) > g(H\K, x*, y*, H\U®)
=q(H,0, 1,H\g(U")).

Note that ¢ (H, 0, 1, H\g(U*)) is a continuous functional on compact hulls K inside
U equipped with the Hausdorff metric. Indeed, suppose that (K,,) is a sequence of
compact hulls inside U converging towards K in the Hausdorff metric and, for each
n, let g, be the corresponding conformal map. Then g, converges to g uniformly
away from K U K. In particular, g,(U¢) converges to g(U%) in Hausdorff metric.
Let ¢, (resp. ¢) be the conformal map from H\g,(U?%) (resp. H\g(U%)) onto H
which fixes 0, 1 and has derivative 1 at 1. Then ¢},(0) converges to ¢’(0). Thus
g(H,0,1,H\g,(U%)) = ¢/(0) converges to q(H,0, 1, H\g(U*)) = ¢'(0) which
explains the continuity of ¢(H, 0, 1, H\g(U*)) in K. Since the set of compact hulls
inside U endowed with Hausdorff metric is compact, there exists go > 0 depending
only on U and ¢ such that
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q(H\K.,x%, y", H\D) > q(H, 0, 1, H\g(U*)) > go.

Case 3 A single marked point u contained in U. The ratios which involve terms of
the form Hx (u, u) are interpretted using limits hence are uniformly bounded by the
argument of Case 2. O

2.4 Estimates for conformal maps

For a proper simply connected domain D and w € D, let CR(w; D) denote the
conformal radius of D with respect to w, i.e., CR(w; D) = f’(0) for f the unique
conformal map D — D with f(0) = w and f/(0) > 0. Let rad(w; D) = inf{r :
B,(w) 2 D} denote the out-radius of D with respect to w. By the Schwarz lemma
and the Koebe one-quarter theorem,

dist(w, dD) < CR(w; D) < [4dist(w, dD)] A rad(w; D). (2.15)
Further (see e.g., [30, Theorem 1.3])

g _f@-wl _ Kl

2.16
(I+1¢h? = CRw; D) — (1 —¢? (10
As a consequence,
e @17)
4 CR(w; D)

where the right-hand inequality above holds for |¢| < 1/2.
Finally, we state the Beurling estimate [ 16, Theorem 3.76] which we will frequently
use in conjunction with the conformal invariance of Brownian motion.

Theorem 2.9 (Beurling estimate) Suppose that B is a Brownian motion in C and
p = inf{t > 0 : B(t) € dD}. There exists a constant ¢ < oo such that ify : [0, 1] —
Cisacurvewithy(0) = 0and |y (1)| = 1, z € D, and P? is the law of B when started
at z, then

P*[B([0, tp]) Ny ([0, 1]) = @] < c|z|"/.

3 The intersection of SLE, (p) with the boundary
3.1 The upper bound

The main result of this section is the following theorem, which in turn implies Theo-
rem 1.8.

Theorem 3.1 Fixk > 0, p1,g > —2, and p2,g € Rsuchthat py r+p2,r > 5—4. Fix
xg € [0F, 1) and let n be an SLE,, (p1,R, P2.R) process with force points (xg, 1). Let

1 K
a=—(p,r+2) (PI,R +pooRr+4— —) . 3.1
K 2
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For each € > 0, let T = inf{t > 0 : n(t) € dB(l,¢€)} and, for each r > 0, let
o, =1inf{t > 0:n() € d(rD)}. Foreach § € [0, 1) and r > 2 fixed, let

EY" = (1. <o, Im(n(zc)) > Se). (3.2)

€

We have that
PIE} 1 =D a5 € — 0. (3.3)

The o(1) in the exponent of (3.3) tends to 0 as ¢ — 0 and depends only on «,
8, xg, and the weights p; g, p2.g. The o(1), however, is uniform in » > 2. Taking
p1.R > (=2) V (5 —4) and pp g = 0, we have that

a:%(p+2)(p+4—§). (3.4)

Thus Theorem 3.1 leads to the upper bound of Theorem 1.6. We begin with the
following lemma which contains the same statement as Theorem 3.1 except is restricted
to the case that 6 € (0, 1) and, in particular, is not applicable for § = 0.

Lemma 3.2 Assume that we have the same setup and notation as in Theorem 3.1.
Then for each § € (0, 1) and r > 2 fixed, we have that

P(E}"] < *
where the constants in < depend only on k, 8, xg, and the weights p1 r, p2.Rr.

Proof For n, the SLE, (p1,r, p2,r) process with force points (xg, 1), let (g;) be the
associated Loewner evolution and let VIR denote the evolution of xg. From (2.6) we
know that

(1) — VR e =W, —2(p1.R+p2, RH4—K/2)
M, =
t ( g(1) ) (g:(l) - v,R)
is a local martingale and the law of 1 reweighted by M is that of an S_LEK (01.R» P2.R)
process where pp g = —2p1 R —p2,R—8+k. Wewrite K = K and K = {z: z € K}.
Let G be the extension of g;. to C\(K U K) which is obtained by Schwarz reflection.
By (2.15), we have
G'(x)dist(x, K) = dist(G(x), G(K UK)). 3.5)

Observe that G(K U K) = [0L, OF] where O} (resp. OF) is the image of the
leftmost (resp. rightmost) point of K; N R under g;. Note that (3.5) implies

egl (1) = g (1) — OF.

It is clear that g(1) — W; > g/(1) — OF > g(1) — V. On the event E2”, we
run a Brownian motion started from the midpoint of the line segment [1, n(z¢)]. Then
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" T ra 0 %
0 o —e=p(c0) ¢(zr)

Fig. 9 The image of an SLE (o1, g, 02, g) process in H from 0 to co with force points (xg, 1) under
¢(z) = €z/(1 — z) has the same law as an SLE, (py; pr) process in H from 0 to co with force points
(—€; exg/(1 —xg)) where pg = py g and pp, =k — 6 — (p1,R + P2,R)

this Brownian motion has uniformly positive (though §-dependent) probability to exit
H\ K through each of the left side of K, the right side of K, the interval [xg, 1], and
the interval (1, 0o). Consequently, by the conformal invariance of Brownian motion,

g () = Wy, < gr.(1) = OF < gr. (1) = VE on E}".

These facts imply that M, < €~ % on Ef” where the constants in < depend only
on k, §, xg, and the weights p1 g, p2,g. Thus

P[E}"] < €“E[M; 1.1 = P [EX"]

where P* is the law of n weighted by the martingale M. As we remarked earlier, P*
is the law of an SLE, (o1 r, p2,g) with force points (xg, 1).

We now perform a coordinate change using the Mobius transformation ¢(z) =
€z/(1 — z). Then the law of the image of a path distributed according to P* under ¢ is
equal to that of an SLE, (2 4 p1, g + p2,r; p1,r) process in H from 0 to oo with force
points (—¢; exg/(l — xg)) (see Fig. 9). Note that 2 + p; g + p2.g > & — 2 by the
hypotheses of the lemma. Let n* be an SLE, (2+ p1. g + p2.r; p1.r) process in H from
0 to oo with force points (—¢; exg /(1 — xg)). In particular, by Lemma 2.1, n* almost
surely does not hit (—oo, —¢). Under the coordinate change, the event E f” becomes
{0'1*’6 < &, Im(n*(al*’é)) > §} where 01*’6 is the first time that n* hits 0 B(—e, 1),

. is the first time that n* hits dB(—er?/(r* — 1), er/(r* — 1)). By Lemma 2.4, the
probability of the event {al’” e <&, Im(n*(af» .)) > 8} is bounded from below by a
positive constant depending only on «, 8, p1 g, and pz g. Thus P*[Ef”] = 1 which
implies P[Ef*’] = €“ and the constants in < depend only on k, 8, xg, and the weights
P1,R> P2,R- O

Corollary 3.3 Fixx > 0, p, > =2, p1,p > —2and p> g € Rsuchthat p1 p+p2.r >
% — 4. Fix x; < 0,xg € [07, 1) and let n be an SLE,(oL; p1.R, P2.R) process

with force points (xp; xg, 1). Let Ef" be the event as in Theorem 3.1, then for each
8 € (0, 1) and r > 2 fixed, we have that
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P[E}"] <
where the constants in < depend only onk, 8, r, x,, X, and the weights pr., p1,Rr, P2.R-

Proof Let (g;) be the Loewner evolution associated with 7 and let VL, VIR denote the
evolution of x7,, xg, respectively, under g;. From (2.6) we know that

M, = (M)_a « (M)—ﬁw.,ﬁmw_m)
=
&M g () — VE
x (gi(1) = VIL)JTL(/’I,R+/>2,R+4—K/2)

is a local martingale which yields that the law of n reweighted by M is that of an
SLE, (pL; p1.R, P2.R) process where po g = —2p1 g — p2.r — 8 + k. Note that, by
similar analysis in Lemma 3.4, the term g, (1) — VT’: is bounded both from below and

above by positive finite constants depending only on r on the event E 3 ", The rest of
the analysis in the proof of Lemma 3.2 applies similarly in this setting. O

Throughout the rest of this subsection, we let:
T=Rx (0, 1). (3.6)

Lemma 3.4 Let ) be a continuous curve in H starting from 0 with continuous Loewner
driving function W and let (g;) be the corresponding family of conformal maps. For
eacht > 0, let OIL (resp. OIR) be the leftmost (resp. rightmost) point of g:(n([0, t])) in
R. There exists a universal constant C > 1 such that the following is true. Fix ¥ > 0
and let o be the first time that n exits V'T. Then

[We — 0] > % for q € {L,R}. 3.7
Let ¢ be the first time that n exits D N 9'T. Then
W, — 0| <CO for q€{L,R} andall 1€ [0,¢]. (3.8)
Finally, if n exits D N 9T through the right side of 0D N ¥'T, then
W, — Of| = é (3.9)

Proof For z € C, we let P* denote the law of a Brownian motion B in C started at z.
By [16, Remark 3.50] we have that

Wy — OF| = lim yP” [B exits H\n[0, o'] on the left side of n([0, o'])].
y—0o0
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Let t be the exit time of B from H\¢'T and let I = [n(c) — ¢, n(c)]. Then

|Wy — OF| > lim yP” [B; € I]
y—>00

x PV [B exits H\n ([0, o]) on the left side of n([0,0]) | B; € I].

(3.10)
We have,
. 1 -0
lim yP" [B, € I] = lim 1 6=
y—00 y=00 Jrpi mw? 4 (y — 9)?
1 %
— Zdw=2 3.11)
1-9i 70 T

(recall the form of the Poisson kernel on H, see e.g., [16, Exercise 2.23]). It is easy to
see that there exists a universal constant pg > 0 such that for any z € I,

P? [B exits H\n[0, o] on the left side of n([0, o])] > po. (3.12)

Combining (3.10) with (3.11) and (3.12) gives (3.7). The bounds (3.8) and (3.9) are
proved similarly. O

Lemma 3.5 Fixx > 0, py € (5—4, 5—2),and pg > —2. LetnbeanSLE, (pr; pr)
process with force points (—e; xg) for xg > 07 and € > 0. Let 01 = inf{t > 0 :
n(t) € oD}. Define, for u > 0, TML =inf{t >0: W, — V[L = u}, where VIL denotes
the evolution of x*. Let py = pz(%) be the constant from Lemma 2.6. There exists
constants €y > 0, 99 > 0, and C > 0 such that for all € € (0, €g) and ¥ € (0, ¥g) we
have

Plo) < T& AT < py/ .

Proof Let Ey = {0 < T A TF}. By definition, we have that
|W; — V,L| < forall te€[0,01] on Ey. (3.13)

By (3.7) of Lemma 3.4 there exists a constant C; > 0 such that ([0, o1]) € C;9T.
Moreover, n exits D N (C 113‘T) on its left side for all ¥ > 0 small enough because
a Brownian motion argument [(analogous to (3.9)] implies there exists a constant
Cy > 0 such that |W,, — VC,L|| > (3 on the event that n exits through the right side,
contradicting (3.13).

Suppose C > 0; we will set its value later in the proof. Foreach 1 < k < oo e
let

Ly ={ze€H:Re(z) = —kCv¥} and ¢ =inf{t > 0:n() € Li}.
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WOV L
e 3
T 20=n(G)—9 &
9 E n
1 L ‘ Ly, RIS iy
—~(k+1)CY kY T 0

Fig. 10 Tllustration of the justification of (3.14) in the proof of Lemma 3.5

On Ey, we have that §; < & < -+ < o1 < T¢. For each k, let Fi = {& < Tf}
and let F be the o -algebra generated by (o, ¢, . To complete the proof, we will show
that

1

Pt < TE | Fillp, < polp, foreach 1<k < 5

where p) = pz(%) is the constant from Lemma 2.6. To see this, we just need to show
that g¢, (1lg,¢.11) satisfies the hypotheses of Lemma 2.6 and that with

= 8o (Liy1) — Wy
Liy) = —————

Wy — Vc%
we have that Zk+1 N 2D = @ on F.
Therefore it suffices to prove
dist(We,, L
(Wey &g (Lit1) — o0 on Fp as C — oo. (3.14)

L
W, — Vé“k

Let B be a Brownian motion starting from zZ =n() — v andlet Hyyp ={z e H:
Re(z) > —(k 4+ 1)C?¥} be the subset of H which is to the right of L (see Fig. 10).
The probability that B exits Hx+1\n([0, {x]) through the right side of 1 ([0, ¢x]) (blue)
is 2 1, through (—(k + 1)C¥, —kC?¥) (green) is = 1, and through L4 (orange) is
< 1/C (since this probability is less than the probability that the Brownian motion
exits {z € C: —(k + 1)CY¥ < Re(z) < —kCv} through L4 which is less than
1/C). Let

?
~ | ~.  8alzy)— W

g}{?Engy;j,EQk—L?k
We, =V,

By the conformal invariance of Brownian motion, we have that

dist(z} Lit1)

. >cC. (3.15)
Vi
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Indeed, the probability of a Brownian motion started from ZZ to exit ﬁk+1 =

(8 (Hiy1) — Wi )/ (We, — Vi) through Zk+1 is bounded from below by a positive

universal constant times the probability that a Brownian motion starting from ZZ exits

B(Z,’f, dynH,d = d1st(ZZ Lk+1) through aB(Z}? d) N H. This latter probablhty is
bounded from below by a positive universal constant times y, iy d. Thus 1 /C 2y /d
as desired.

The conformal invariance of Brownian motion and the estimates above also imply
that sin(arg(z} ) < 1, hence [Z} | < |3} |. Combining this with (3.15) implies that

dist@} Li1) -
27| ~

Thus, by the triangle inequality,
dist(Li+1,0) 2 CIZ} |

(provided C is large enough). Since |'z"}f| =< 1, this proves (3.14), hence the lemma. O

Proof of Theorem 3.1 Lemma 3.2 implies the lower bound in (3.3) because we can
take, e.g., § = % In order to prove the upper bound, it is sufficient to show

atoD) a5 € — 0.

Pltc <o0] <€

We are first going to perform a change of coordinates. Let ¢: H — H be the

Mobius transformation z — ¢(z) = €z/(1 — z). Fix X® € [0T, 1) and let 77 be an

SLE, (p1.r, p2,r) process with force points located at (x R 1) asin Theorem 3.1. Then

the law of n = ¢(7) is that of an SLE, (pr; pr) process with force points (—e; xg)
where xg = €x®/(1 — x¥R) and

pr =k —6—(pi.,r + p2,r) and pg = pi1&. (3.16)

Let o1 be the first time that » hits dD and let VL, VIR denote the evoltuion of x;, xp
under g;, respectively. For u > 0, define TML =inf{r > 0: W, — V,L = u} (as in
the statement of Lemma 3.5). Then it is sufficient to prove Plo] < TOL] < exto)
Note that the exponent & comes from the sum of the exponent of |V,X — V.X| and the
exponent of |W; — V,I| in the left martingale ML from (2.7) with these weights. For
u > 0, define T/ = inf{r > 0: M/ = u}. Note that r = T Fix B € (0, 1) and set
¥ = P, For u > 0, we have the bound

Plo < r({‘] < P[ruL < rOL] + Plo; < rOL < tuL]. (3.17)

We claim that exists constants C; > 0 and y > 0 depending only on py,, pg, and
k such that
W, —vEy <cyME forall 1€ [0,01]. (3.18)
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K K

Since p1.r + p2.r > 5= 4 it follows that p; < 5= 2. Therefore the sign of the
exponent of |V, — V.R| in the definition of M/ is the same as the sign of pg.If pg > 0,
then the exponent has a positive sign. In this case, M,L > W, — V,L | so that we can
take y = o. Now suppose that pr < 0. By (3.8) of Lemma 3.4 we know that there
exists a constant C > 0 such that

\VE— VR <, forall 1e[0,01]. (3.19)

Thus, in this case, there exists a constant C3 > 0 such that MtL > C3|W, —
VtL |(c=4=2pL)/% Therefore we can take y = (k —4 —2p;)/k. This proves the claimed
bound in (3.18).
Setu = ©7 /C. To bound the second term on the right side of (3.17), we first note
by (3.18) that
Ploy < 1 < tf]1 < Ploy < TE ATE] (3.20)

By Lemma 3.5, we know that

1/(C)

Ploy < TS AT < py (3.21)

We will now bound the first term on the right side of (3.17). Since 7/, tf are

stopping times for the martingale M~ and My n;, = uP[tl < t}], we have that

1 ML o
Plr) <7)]=~E[M}, ]=~L <

AT Ty, - u(l — xR)(k—=4=2p1)pr/Qe) " (3:22)

Combining (3.17) with (3.21) and (3.22) we get that Plo] < TF] < €*To(0D as
desired. O

Recall that (see for example [24, Section 4]) the S-Hausdorff measure of a set
A C R is defined as

HP(A) = lim HP(A)
e—0t

where
HE(A) :=inf 1 D ;1P ACU;I; and |I;] <€ forall j
j

Proof of Theorem 1.6 for k € (0,4), upper bound Fix k € (0,4), p € (-2, % —-2).

Let n be an SLE, (p) process with a single force point located at 0. Let a € (0, 1)

be as in (3.4). Fix 0 < x < y. We are going to prove the result by showing that
dimy(n N [x, y]) <1 —« almost surely. (3.23)

Foreachk € Zandn € N welet Iy , = [k27", (k 4+ 1)27"] and let z; ,, be the center
of I ». Let Z, be the set of k such that Iy , < [x/2,2y] and let Ey , be the event that
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1 gets within distance 2! =" of Zk,n- Therefore there exists ng = no(x, y) such that for
every n > ngo we have that {I; , : k € Z,,, E} , occurs} is a cover of n N [x, y].

Fix ¢ > 0. Theorem 3.1 implies that there exists a constant C; > 0 (independent
of n) and ny = n1(¢) such that

P[E;,] < C127@O" foreach n>n; and k €7Z,.
Consequently, there exists a constant C> > 0 such that
E [Hzﬂ‘" (7 0, y])] =E Z 27 g, | < 2P x 2" x 27D,
keZ,
By Fatou’s lemma,

E [Hl—a+2£ (0 [x, y])] < liminf E [Hé:la—ﬂ{ (n N [x, )’])]

< liminf C,27"% = 0.
n

This implies that H!~*+2¢(n N [x, y]) = 0 almost surely. This proves (3.23) which
completes the proof of the upper bound. O

3.2 The lower bound

Throughout, we fix k € (0,4) and p € (-2, % — 2) and let & be a GFF on H with
boundary data —XA on R_ and A(1 + p) on R} (Recall the values in (2.10) as well
as Fig. 1). For each x > 0, we let * be the flow line of % starting from x and
let n = 5°. Note that 5 is an SLE,(p) process in H from 0 to oo with a single
force point located at 0T, i.e., has configuration (H, 0, 0, co) (recall the notation of
Sect. 2.3). By Lemma 2.1, it follows that n can hit (0, co). For each x > 0, n* is
an SLE, (2 + p, —2 — p; p) process with configuration (H, x, (0, x ™), (xT), 0o0). By
Lemma 2.1, it follows that n* can hit (x, co) and, if p > —« /2, then n* can also hit
(0, x).Fix 6 € (0, 1), a > log 8, and let

€n =e " foreach n eN.

We will eventually take limits as a — oo and § — 0F.For U C H, we let
o (U) =inf{r > 0: n*(r) € U}. (3.24)
We will omit the superscript in (3.24) if x = 0. For k € N and x € [1, 00), we let

x—1te if k>2 and
Xk =
0 if k=1.

@ Springer



74 J. Miller, H. Wu

- B('T7Ek+1) '

h‘ 1
o Mltp) |
5k—1 T T

et )

Fig. 11 On E ,Ll (x), n*k=1 hits B(x, €;) and does so for the first time above the horizontal line through
id€). Given that E ]l (x) has occurred, E]% (x) is the event that n*k—1 merges with nk before the path leaves

the annulus B(x, %ek_l)\B(x, €x+1)- Also indicated is the boundary data for 7 along dH as well as along
the paths n*k—1 and n*k

We also let
oy = 0" (B(X, €py1)). (3.25)

m

Let £ ,1 (x) be the event that

(i) of < ooandIm(n™(0})) > derq1 and
(ii) 7™ hits B(x, ex41) before exiting B(x, Jex).

We let E,f (x) be the event that n**-1 llof_,.00) merges with n*k 0,01 before exiting
the annulus B(x, %ek,l)\B(x, €x+1) (see Fig. 11). Finally, we let E;(x) = E,i x)N
EF(x)

k ’

E™"(x)=Ep ()N (] Ex(x), and E"(x) = E*"(x).
k=m+2

The following is the main input into the proof of the lower bound.

Proposition 3.6 For each § € (0, 1), there exists a constant ¢(8) > 0 such that for
all x,y € [1,2] and m € N such that %Em_l,_] <|lx—yl < %em we have

PIE" (x), E"(V)] < c(8) "€, “PIE" ()IP[E" (y)].

The main steps in the proof of Proposition 3.6 are contained in the following three
lemmas.

Lemma 3.7 Foreach x > 1 and m,n € N with m < n, we have that
PLE™"(x), E"(x)] < PLE™" (x)]P[E" (x)] (3.26)
If, moreover, y > 1 and %6m+2 <|lx—yl < %€m+1, then we have that

PLE" 1" (x), EMHH(y), E™ ()] < PLE™ 1" (0 IPLE™ 1 () IPLE™ (x)].
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)
]
1
° é Lo
0 T T W, T

U Ty U

Fig. 12 Let H (shown in red) be the closure of the complement of the unbounded connected component
of H\ U;f’: 1 7 ([0, aj‘]) and let K (shown in blue) be the closure of the complement of the unbounded

connected component of H\n*»+1 ([0, t]) where t is the first time that n*m+1 leaves U = B(x, €"’T“).
Then dist(H, K) Z diam(U) (color figure online)

In each of the above, the constants in < depend only on §, k and p.

Proof We begin by proving (3.26) which is equivalent to
PLE™"(x)| E™(x)] < PLE™" (x)].
Recall that n*»+! is an SLE, (2 + p, —2 — p; p) process with configuration

¢ =H, xmr1. (0, %, 1), (x;1,1), 00).

Let w = n(o(B(x, €,))), let H be the closure of the complement of the unbounded
connected component of H\ U;”:] n*i ([0, U]’.‘ ]), and let v be the rightmost point of
H N R (see Fig. 12). The conditional law of n*+! given n*! 10,6575 - - - » n'™[[0,0] ON
E™(x) is that of an SLE, (2, p, —2 — p; p) process in

T = (H\H, xps1, (@, 0,55, ), (51, ), 00)

(recall Fig. 4).

Let U = B(x, %€m+]), T = o™+ (H\U), K be the closure of the complement of
the unbounded connected component of H\n*»+1 ([0, t]), @*+! = p*m+1(7), and let
u~, u™ be the leftmost (resp. rightmost) point of K NR. By Lemma 2.7, we have that

A YAG)
dpl " Z(eo)/Z(e)

exp(=ém(H; H, K))

where

C‘L’ == (H\Ka wxm+l’ (O’ M_)v (I/t+), OO),
& = (H\(HUK), o™+ (w,v,u”), (u™), 00).
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0 I Tl Ip T

Fig. 13 Assume that we are working on E™ (x) N E™"(x). Let H (shown in red) be the closure of the
complement of the unbounded connected component of H\ U’;’zl i ([0, o;‘]) and let K (shown in blue)
be the closure of the complement of the unbounded connected component of H\ U;!:m 41 7 ([0, (rj‘ D.

Let z;;, be the point that lies at distance ¢,,4+1 from w along the /ine connecting w to x. Then a Brownian
motion starting from z,, has positive probability to exit H\(H U K) through each of the left side of H, the
right side of H, and the left side of K

Note that H € H\B(x, %6m+1), K C B(x, %€m+l), and diam(U) = €;,+1. Conse-
quently,

dist(H, K) N
diam(U) ~

Therefore Lemma 2.8 implies there exists C; > 1 so that

<. (3.27)

This proves (3.26) in the case that n = m + 1. We now suppose that n > m + 2.
Given n*m+!|[p ], we similarly have that the Radon-Nikodym derivative between
the conditional law of n* stopped upon exiting the connected component of
B(x, %en)\nxm+1 ([0, ]) with x, on its boundary with respect to the law in which
we additionally condition on H on E,,(x) is bounded from above and below by C
and C| t respectively, possibly by increasing the value of C; > 1 (see Fig. 13). More-
over, conditional on both of the paths 71| sxm+1 (B(x,e,,1))1 @0d 777" [[0,03] as well
as the event that they have merged before exiting U, the joint law of n*/ |[07(,;] for
j=m+2,...,n—1is independent of nxk|[o,gi:] fork = 1,...,m (see Fig. 13).
This proves (3.26).

The second part of the lemma is proved similarly. O

Lemma 3.8 Foreach x > 1 and m,n € N withm < n we have that
P[E"(x)] < P[E™ (x)]P[E"™" (x)] (3.28)

where the constants depend only on 8, k, and p.
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Proof The upper bound follows from (3.26) of Lemma 3.7. To complete the proof of
the lemma, it suffices to show that

P[E;  (x)| E™(x), E™"(x)] < L.

Throughout, we assume that we are working on E" (x) N E"™ " (x). To see this, we let H
(resp. K) be the closure of the complement of the unbounded connected component of
H\ U;f‘:l 7% ([0, a]).‘]) (resp. H\ U?’:m—&—l n*i ([0, oj.‘])). Letw = n*"(o;,) and let z,,, be
the point which lies at distance §¢,,41 from w along the line segment connecting w to
x (see Fig. 13). Note that the probability that a Brownian motion starting from z,, exits
H\(H U K) in the left (resp. right) side of H is < 1 (though this probability decays as
6 | 0) and likewise for the left side of K. Let ¢ : H\(H U K) — H be the conformal
map which takes z,, toi and w to 0. Let xy, (resp. xr) be the image of the leftmost (resp.
rightmost) point of H N R under ¢. The conformal invariance of Brownian motion
implies that there exists € > 0 depending only on § such that |x,| > € forq € {L, R}.
Let yp (resp. y) be the image of the leftmost point of K N R (resp. n*"+! (o, 1))
under ¢. By shrinking € > 0 if necessary (but still depending only on §), it is likewise
true that y — y; > € and y; < e 1. Consequently, it follows from Lemma 2.5 that
" |[o.00) has a positive chance (depending only on 4, «, and p) of hitting (hence
merging into) the left side of n*+1| o, o) before leaving B(x, %em)\B(x, €m+2). O

Lemma 3.9 For each § € (0, 1) there exists a constant ¢(8§) > 0 such that the
following is true. For each x > 1, we have that

PE™(x)] = c(8)" x €p,.
Proof By (3.26) of Lemma 3.7, we know that
1 k—1 1
PlE,(x) | E* (x)] < P[E;(X)].

Therefore we just have to show that there exists a constant ¢(§) > 0 such that

P[E}(x)] > c(8) (i—“) =c(8)e " and (3.29)
k
PIEZ(x) | EX 1 (x), B} (x)] = 1. (3.30)

Note that (3.30) follows from Lemma 2.5 using the same argument as in the proof
of Lemma 3.8. We know that n** is an SLE, (2 + p, —2 — p; p) process within
the configuration ¢ = (H, x, (0, x; ), (x,j), 00). Consequently, (3.29) follows by
combining Corollary 3.3 and Lemma 2.8. The latter is used to get that the Radon-
Nikodym derivative between the law of an SLE, (2 + p, —2 — p; p) process with
configuration (H, xx, (0, x, ), (x,j), 00) and the law of an SLE, (-2 — p; p) process
with configuration (H, xi, (x; ), (x,:r ), 00), where each path is stopped upon exiting
B(x, %), is bounded both from below and above by universal positive and finite
constants. O
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Proof of Proposition 3.6 We have that,

P[E"(x), E"(y)] < P[E"(x), E™" ()]
< PLE™(x)[PLE™ 1 (x)JP[E™ 1" ()] (Lemma 3.7)
_ PLE"(0)]P[E™ (y)]
B P[E™(y)]
PLE" (x)]P[E" (y)]
~ c(§)mes

PLE™ T () [PLE™ T ()]

(Lemmas 3.8 and 3.9)

m}

Proof of Theorem 1.6 We are first going to give the lower bound fork € (0, 4) and then
explain how to extract the dimension result for ¥’ > 4 from the result for ¥ € (0, 4).
For each B € R and Borel measure u, let

u(dz)p(dw)
T )= // lz — w|?
be the B-energy of n. To prove the lower bound, we will show that, for each ¢ > 0,
there exists a nonzero Borel measure supported on nN[1, 2] that has finite (1 —a —2¢)-
energy.

Fixn € N. We divide [1, 2] into en’l intervals of equal length €, and let z; ,, = (j —
%)e,, + 1 be the center of the jth suchintervalfor j =1, ..., ¢, 1 LetC, be the subset
of Dy, ={zjn:j=1,...,€ "} for which E"(z) occurs. Let I,,(z) = [z — 2,2+ %]
be the interval with center z and length €,. Finally, we let

c=NU U ne.

k>1n>k zeC,

It is easy to see that

anﬂR+.

Let i, be the measure on [1, 2] defined by

1gne) N
fin(A) = /Z P )]1,n(z)(z )dz' for A C[1,2] Borel.

Then E[u,([1, 2])] = 1. Moreover, we have that

P[E"(z) N E™(w)]
PE"(2)IP[E™(w)]

Eln, (12D =€ >
weD,
P[E"(z) N E”(w)]
=62 Z n n Z n
i, PLE" IPLE"(w)] = P[E @]
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Sea D le—wE

queDn

ZFEW

+ e,% Z €, *=¢ (Proposition 3.6 and Lemma 3.9)
26D,

<1

provided we choose n and a large enough. Set § = 1 — o — 2¢. We also have that

P[E"(z) N E" dz'd
Ellp (1)) = Z 02 W) // v

P[E"(2)[P[E" (w)] 12 —w'P

z;éw I ()% In (w)

_ z P[E"(z) N E™"(w)] // dz/dw
— PIE"()IP[E" ()] i —wP
Zyg;éw In(Z)Xln(w)

d7’ dw’
+Z E”(z)] // 7 —wP

In(2)x 1y (Z)

<y PE"(z) N E"(w)] €2 N Z b 2-p

= PIE"@IPE"(w)] |z — wlp P[E"( )]
Z;éwn
S Z Iz —w| @bz —w|” ﬁ+26_°‘ fe2P < 1.
z,weD, zeD,
ZFW

Consequently, the sequence (i) has a subsequence (u,, ) that converges weakly to
some nonzero measure . Itis clear that u is supported on C and has finite (1 —a—2¢)-
energy. From [24, Theorem 4.27], we know that

P[dimH(nﬂRg >1-a —25] -~ 0.

Since 7 is conformally invariant, by 0-1 law (see [3]), we have that

P[dimH(nﬂR+)Zl—a—2§]=1

for any ¢ > 0. This proves the lower bound for « € (0, 4).

It is left to prove the result for k" > 4. Fix p’ € ("7/ — 4, ’% — 2). Consider a
GFF h on [—1, 1]*> with the boundary values as depicted in Fig. 5 with pr = p’ and
p; =0, and let 0" be the counterflow line of A from i to —i. Then 1’ is an SLE(p")
process with a single force point located at (i)™, i.e., immediately to the right of i.
As explained in Fig. 5, the right boundary of n’ is equal to the flow line ng of & with
angle —7 starting from —i. In particular, ng is an SLE, (5 —2; k —4 + 7 p) process
with force points ((—i)™; (—i)™) where k = % € (0, 4). The intersection of n’ with
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the counterlcockwise segment S of 9([—1, 17%) from —i to i coincides with ngNS.
Consequently, it follows that the dimension of ' N S is given by

! 1( 2+/(,)(K+K,)_1 1(/+2) ‘44 K’
o \° 4?) G gr) T TV P 2 )

4 The intersection of flow lines

In this section, we will prove Theorem 1.5. We begin in Sect. 4.1 by proving an estimate
for the derivative of the Loewner map associated with an SLE, (p) process when it
gets close to a given point. Next, in Sect. 4.2 we will prove the one point estimate
which we will use in Sect. 4.3 to prove the upper bound. Finally in Sect. 4.4 we will
complete the proof by establishing the lower bound.

4.1 Derivative estimate

Recall from Sect. 2.4 that for a point w in a simply connected domain U, CR(w; U)
denotes the conformal radius of U as viewed from w. Fix « € (0, 4), let n be an
ordinary SLE, process in H from 0 to oo and, for each ¢, let H; denote the unbounded
connected component of H\7n ([0, 7]). We use the notation of [13, Section 6.1]. We let

Zy = Z:(2) = Xy + 1Y = g(2) — W,

For z € H, we let

Al = |g;(z)|, Tl‘ ®l = arg Zla and Sf = sin ®l' (41)

_ t
lgr (@)
We note that Y, = 1CR(z; H;) = dist(z, 9H,). For each r € R, we also let

r2 K rz
V=V =k (1 — Z) and § = §() = k. 4.2)

(In the notation of [13], @ = 2/«). Then we have that [13, Proposition 6.1]:
_ _ FyvE AV _ qerArET A vt
My =M(z) =|Z:'Y, Ay = 8,770 A 4.3)

is a local martingale. This martingale also appears in [41, Theorem 6], though it is
expressed there in a slightly different form (The martingale in (2.6) is of the same
type, though there we have not included the interior force points). For each € > 0 and
R > 0, we let

T =inf{t >0: Y, = e} =inf{t > 0: CR(z; H,) = ¢} and

) 4.4)
or = inf{t > 0: |n(t)| = R}.
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Lemma 4.1 Fixr < % — %, 8 €(0,%), and z € H such that arg(z) € (8, w — 8). Let
P* be the law of n weighted by M. We have that,

P[t. <o0] =1 4.5)

and

E*SI =1 (4.6)

where the constants depend only on 8, k, and r. We also have that
PO, € 6,7 — 8] =1 4.7)

where constants depend only on §, k, and r. Finally, we have that
Plop <17c]— 0 as R — oo (4.8)

uniformly over € > Q.

Proof Note that (4.5) and (4.6) are proved in [13, Equation (6.9)], so we will not
repeat the arguments here. Following [13], we define the radial parametrization (i.e.,
by log conformal radius) u(z) by

,/Y\‘t — Tu([) — e—4t/l(

and write 7(¢) = n(u(t)) and @, = Ou(). Then @, satisfies the SDE (see [13, Section
6.3])

. 4 . .
de, = (1 - —— r) cot(©,)dt + dW; 4.9
K

where W is a P*-Brownian motion. The process © almost surely does not hit {0, 7}
(see [16, Lemma 1.27]) and the density with respect to Lebesgue measure on [0, 7]
for the stationary distribution for (4.9) is given by

£(0) = c(sin 9)2(1’%”)

where ¢ > 0 is a normalizing constant (see [16, Lemma 1.28]). Moreover, as t — oo,
the law of @, converges to the stationary distribution with respect to the total variation
norm.

We can use this to extract (4.7) as follows. Fix 0 < T < oco. We first note that by
the Girsanov theorem the law of @l[o 71 stopped upon leaving (g, g) is mutually
absolutely continuous with respect to that of B||0 T] where B is a Brownian motion
starting from @0, also stopped upon leaving 3 5,7 2) Fix 0 <t < T. Then a
Brownian motion starting from ©g € [8, 7 — 8] has a uniformly positive chance of
staying in (%, T - %) during the time interval [0, #] and then being in (6, # — §) at
time 7. Therefore it is easy to see that (4.7) holds forall 0 <7 < T.

The lower bound, however, that comes from this estimate decays as T increases.
We are now going to explain how we make our choice of 7' as well as get a uniform
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lower bound for 7 > T'. We suppose that ®!, ®2 are solutions of (4.9) where @0 =4
and @0 = — 6. We assume further that the Brownian motions driving O, 6!, and
©? are independent of each other until the time that any two of the processes meet,
after which we take the Brownian motions for the pair to be the same. This gives us a
coupling (©!, ®, ©?) such that @1 <0 < @2 for all + > 0 almost surely. Note that
after ©! first hits ©2, all three processes stay together and never separate. Let gs > 0
be the mass that the stationary distribution puts on (§, ¥ — §). We then take 7 > 0
sufficiently large so that:

1. Forallt > T, the total variation distance between the law of @[1 and the stationary
distribution is at most 4.
2. Leté =inf{r > 0: ®) = ©?}. Then P[§ > T] < 2.

With this particular choice of 7', we have that

P[0, € 5, 7—8)] > P*[O) € (8.7 — 8)] — P*[£ > T]

LB _ B ogyan > T
24 4

This proves (4.7).
For (4.8), note that, under P*, 77 has the same law as a radial SLE, (p) in H from 0
to z with a single boundary force point located at oo of weight p =k —6—rk > 5 -2

(see [41, Theorems 3, 6]). Define 6g = inf{r > 0 : |7(¢)| = R}. Then
P*[UR < T] < P*[&‘R < o9].

The endpoint continuity of the radial SLE, (p) processes with p > —2 [29, Theo-
rem 1.12] implies that P*[6r < oo] — 0 as R — 00, as desired. O

We are now going to use Lemma 4.1 to estimate the moments of g/(z) at times

when 7 is close to z. We will actually prove this for general SLE, (p) processes which
is why we truncate on various events in the estimates proved below.
Lemma 4.2 Fixr < % — % and § € (0, 5). There exists Ry = Ro(r) > 0 such that
for all R > Ry the following holds. Suppose n ~ SLE, (p) in H from 0 to co where
the force points lie outside of 2RD. Fix z € D N H with arg(z) € (8, w — 8). For each
€ > 0and R > 0 we let t. and o be as in (4.4). Then

E[lg), @ Y con] = €57 provided CR@H)>¢  (410)

where the constants depend only on é, k, and the weights p of the force points. Fix a
constant C > 1 and suppose that {. is a stopping time for n such that tce < e < T¢/c.
Let

E g ={¢c <oR, Op € (8, =) 4.11)
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Then we have that

gl

where the constants depend only on C, 8, k, and the weights p of the force points.

v+r
gl (z)‘ 1E5R} =€ 57" provided CR(z;H) > ¢ (4.12)

Proof It suffices to prove the result for an ordinary SLE, process since it is clear from
the form of (2.6) that the Radon-Nikodym derivative between the law of an SLE,
and an SLE, (p) process whose force points lie outside of 2RD stopped at time o, is
bounded from above and below by finite and positive constants which depend only on
the total (absolute) weight of the force points and k.

We are now going to prove the upper bound of (4.10) and the lower bound of (4.12)
with . = ¢.. We have that,

E I:’g‘/fe (Z)’U+r 1{‘[5<0'R}] = E I:’g‘/fe (Z)’V+r I{Te <OO}]
= € STE[My, 57 1z, <00}
= e 5 MoE*[S] ]
<e T (by4.6).

This proves the upper bound of (4.10). For the lower bound, we compute
+ —E—
Bl @ 1, | =< B Ms 1 |
- B M1 ]
=€ ST MoP*[EL g ).
To bound P*[ES,R], we have
P*[E! ] =P*[tc < og. O € (8,7 —§)]

> PO, € 8,7 —8)] —P'lor < el

From (4.7), we know that P*[®, € (§, m — §)] is bounded from below uniformly in
€ > 0. From (4.8), we know that P*[or < t.] converges to zero as R — oo uniformly
over € > 0. These show that P*[E f r] is bounded from below which proves the lower
bound for (4.12). The upper bound in the case that we replace t. with ¢ is proved
similarly. For the lower bound, it is not difficult to see that

P*[®; € (8,7 — &) forallt € [tce, Te/c]| O, € (8,1 —8)] >0
uniformly in € > 0 and
P*log < ¢] <P*[or < Te/c] >0 as R — o0

uniformly in € > 0. O
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4.2 Hitting probabilities

Fix an angle 6 € (m — 2A/x, 0). This is the range so that GFF flow lines with angles
0, 6 are able to intersect each other where the flow line with angle 0 stays to the right
of the flow line with angle 0 [26, Theorem 1.5]. Let

A= ( +K+2)( K+6) h ox 5 (4.13)
=— - - = where p = ——> —2. .
2% P35 P73 P y

Lemma 4.3 Fix C > 2, let x1 = 0, and fix xo > 2Ry where Ry is the constant from
Lemma 4.2 with

!

Let h be a GFF on H with boundary data as illustrated in Fig. 14. That is,
hl—oox)) = =&y Al ) =A, and hl|(x,00) =2 —0x. (4.14)
Let n1 (resp. ny) be the flow line of h starting from x| (resp. x2) with angle O (resp. 6).

Fix 8 € (0, %) and let z € DN H with arg(z) € (8, w — 8). Fori = 1,2, let g“ei be the
first time that n; hits 0 B(z, €) and let @,1 be the process as in Lemma 4.2 for 1.

(1) Let Gg(z) be the event that 1y hits dB(z, €) before hitting d B(0, Ry), ®é§ €
(8, m — §), and that 0> hits 0 B(z, €). Then we have that

P[G ()] = Ao (4.15)

where the o(1) term depends only on $, k, 6, and x».

n

9}(1 (7'2)

Fig. 14 Tllustration of the setup of Lemma 4.3, the one point estimate for the intersection dimension. On
the left side, n1 (resp. 1) is a flow line of a GFF on H with the indicated boundary data with angle O
(resp. 6 € (w — 24/, 0)) starting from x1 (resp. xp > x). Note that n (resp. n2) is an SLE, (—6 x /)
(resp. SLE (2, —0 x /A — 2)) process. The force point for 17 is located at x, and the force points for 1, are
located at x) and x, . By Fig. 4, the conditional law of 7, given 5 drawn up to any stopping time is also
an SLE, (2, —0x /A — 2) process. Shown is the event Gé (z) that nq hits dB(z, €), say for the first time at
;el , before exiting B(0, Rp) where Ry > 0 is a large, fixed constant, the harmonic measure of the left (resp.
right) side of 1] stopped upon hitting d B(z, €) is not too small, and that 7, also hits 9 B(z, €). We estimate
the probability of Gé (z) by combining Lemma 4.2 with Theorem 3.1
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(i) On Gé (2), let ¢ be the unique conformal map which takes the unbounded con-
nected component of H\ (n1([0, Cel]) U na ([0, {3])) to H sending z to i and fixing
o0. There exists a constant Ry > 0 such that with

H)(2) = G3(z) N {max lo(ni ()] < Ry, m2(10, ¢21) € B(0, 10x2)}

we have that
P[H?(2)] = € (4.16)

where the constants depend only on §, k, 0, and x».

The same likewise holds if h is a GFF on H with piecewise constant boundary condi-
tions which change values a finite number of times and in the interval [—20x3, 20x3]
takes the form in (4.14). In this case, the constants also depend on ||h|R || co-

Proof Foreacht > 0, let H,1 be the unbounded connected component of H\n; ([0, 7]),
let 7] = inf{t > 0: CR(z; H}) = €}, o = inf{t > 0: 11 (2) ¢ B(0, Ro)}, and let
(gtl) be the Loewner evolution associated with n1. By (2.17), note that 1:416 < §51~ It
then follows from Theorem 3.1 that

PGl ()| M1 4] = Kgi; Y (2)e|*+om,

% since p > —2 and k € (0, 4). With this choice of r, we

Note that » <1—% <
have

L
2

v+r=«a and v—-§=A.

Thus, by (4.10) of Lemma 4.2, we have that
PIGL@] < E[I(e] ) @el D1y o ] = et

This gives the upper bound for (4.15).

Let E2 , = {¢! < a,go, @éé e (8,7 —8)}. On EjRO and {¢2 < oo}, we let

We = gil (n2(§€2)) andre = |(g;€1 )'(z)|e. From Lemma 3.2, we have that

PG o] 1es, 2 re1ps

€,Rp

We see from (4.12) of Lemma 4.2 that P[Gg(z)] P €A,
We will now explain how to prove the result for H, f (z) in place of Gi (z). First of all,
we note that on ES’RO, it follows from [16, Corollary 3.44] that |g§11 (w) —w| < 3Ry

forallw € Hé 1 Consequently,

B(g},(2), 10x2 = 6Ro) < gl (B(z, 10x2); (4.17)

@ Springer



86 J. Miller, H. Wu

recall that 10x, > 20Ry. By Lemma 3.2 and (4.17), we have that,

P [{3 < 00, M2([0, £2]) € B(z, 10x2), Im(we) > 8r¢ | 771||o,gg]] Ips %

Rrele,
On the event in the probability above, a Brownian motion starting from z has a uni-
formly positive chance (depending on §) of hitting both the left side of 71 ([0, g“el ]) and
right side of n2 ([0, {62]). Consequently, the desired result follows by applying (4.12)
from Lemma 4.2.
The final claim of the lemma follows from (2.6) to compare the case with extra
force points to the case without considered above. O

In order for Lemma 4.3 to be useful, we need that as 1 gets progressively closer to
a given point z, it is unlikely that ®! ¢ (8, 7 — &) for some 8 > 0. This is the purpose
of the following estimate.

Lemma 4.4 Suppose that n is an SLE, process in H from 0 to oo with k € (0, 4). Fix
z € Handletn; = —log, Im(z) so that n > n; implies that B(z,2™"") C H. Let ® be
the process as in (4.1). For each n, let ¢, be the first time that n hits 0 B(z,2™") and,
for each § € (0, %), let E,‘z = {{y < 00, O, & (8,1 — 8)}. There exists a function
p:0,1) — [0, 1]with p | 0as d | O such that for each r > n; we have that

PN, _ ES1< (p@8) ™ forall n,<n<r.

Proof Since the SLE, processes are scale-invariant in law, almost surely transient,
and do not intersect the boundary for « € (0, 4) [31], it follows that

lim P[n hits [s, s + 2] x [0, 2]] = lim P[n hits [1, 1 + %] x [0, %]] =0.
§—>00 §—> 00 ! !

(For otherwise 1 would intersect the boundary with positive probability.) Conse-
quently, it follows that there exists a function g: (0, 1) — [0, 1] with g(8) | O as
8 | 0 such that the following is true. If z € H with Im(z) = 1 and arg(z) ¢ (8, & —§),
then

P[n hits B(z, 1)] < q(3). (4.18)

For each n > n,, on the event {¢, < oo}, let ¢, : H\n([0, {,]) — H be the unique
conformal map with ¢, (1(¢,)) = 0, ¢, (00) = 00, and satisfies Im(¢, (z)) = 1. Note
that ¢, (B(z, 27773y) C B(¢,(2), 1) by [16, Corollary 3.25]. Therefore it follows
from (4.18) that

PLE) 5 [ nli0.6001gs < q(8)1g. (4.19)

Iterating (4.19) and taking p(§) = (g )3 proves the lemma. O

For each n € N, we let D,, be the set of squares with side length 27" which are
contained in H and with corners in 27Z2. For each Q € D, let z(Q) be the center
of Q and let én(Q) = B(z(Q), 21=m)_ For each z € H, let 0, (2) be the element of
D,, which contains z and let én () = én(Q,, (z)). See Fig. 15 for an illustration.
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D,

Fig. 15 Shown in the illustration are Q,(z) and én (z) for a given point z € H

Lemma 4.5 Suppose that n is an SLE, process in H from 0 to oo with k € (0, 4).
For each z € H, let ©F be the process from (4.1) (with respect to z) and let {; n, =
inf{t >0:n() € 00,2} Let"S"S be the set of points z € H such that E?,n ={{n <
0, @27 ¢ (8, —8)} occurs and let S = U, Nos

that for every § € (0, 8g) we have that S® = @ almost surely.

an. There exists o > 0 such

m=n

Iiroof Fix z € H and let n; = —log, Im(z). Note that én (z) C B(z,2*™) so that
0,(z) € H provided n > n; + 2. By Lemma 4.4, we have that
P, _,E2, 1< (p®) " forall n,+2<n<r (4.20)

(where p(8) is as in the statement of Lemma 4.4).

Suppose that Q € D,, and suppose that n € N with n < m. Then the function
0 — Rgivenby w — @w . is positive and harmonic. Consequently, it follows from
the Harnack inequality [16 Proposition 2.26] that there exists a universal constant
K > 1 (independent of m, n) such that the following is true. If El‘i)’m occurs for any
w € Q, then Ez(Q) . occurs. Thus letting ES m= Uweo Ei,m we have that

P[M,_,Ep .1 <PIM,_,EX)) 1 forany nygy+2<n<r 4.21)

Combining this with Lemma 4.4 implies that

PN, _ nE‘SQ ml < (p(K8) ™" forany nygy+2<n<r. 4.22)
Fix w € (0, 1) and let n = —log, w. For each r>n+42,let Vﬁ”"s be the collection of
squares Q in D, with Q C {ze H: |z] < 5, Im(z) > w} and for which N}, _ E‘SQ m
occurs. Then (4.22) implies that there exists a constant C > 0 such that
o
> E[Ve] < 222’ (p(k&) ™" (4.23)
r=n r=n
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Take §o > 0 so that § € (0, §g) implies that 4p(K35) < 1. Then for § € (0, §p), the
summation on the right side of (4.23) is finite. This implies that for every w € (0, 1),
125 % = & for all but finitely many r almost surely. This, in turn, implies the desired
result since w € (0, 1) was arbitrary and V;’ % increases as w decreases. O

4.3 The upper bound

Now that we have established Lemmas 4.3 and 4.5, we can prove the upper bound in
Theorem 1.5.

Proposition 4.6 Suppose that h is a GFF on H with piecewise constant boundary
conditions which change values a finite number of times. Let 1 (resp. 12) be the flow
line of h starting from x; = 0 (resp. x5 > 0) with angle O (resp. 6 € (m — 21/ x,0)).
We have that

dimy(n N2 NH) <2 — A almost surely

where A is as in (4.13).

Proof We are going to prove the proposition assuming that the boundary data is as in
Lemma 4.3. This suffices by absolute continuity for GFFs. Fix 0 < € < % <é< 7.
For each t > 0, we let H,1 be the unbounded connected component of H\#n ([0, ¢]).
For each z € H, we let ¢!, = inf{r > 0 : »'(r) € 9B(z, €)} and let ®'< be the
process as in (4.1) for n; and z. We let 1 consist of those z € 71 N 12 N B(0, s~
such that

(i) Im(z) = 6.
(i) ©,% e @8, —28) forallt € [¢! . ¢}, 1.
(iii) Let ;Zl be the first time that n; hits z and aZI’ s be the first time after g“zl, . that nq
hits 9 B(z, 8). Then ¢! < o ;.

By the transience, continuity, and simplicity of the SLE, (p) processes for « € (0, 4)
(which almost surely do not hit the continuation threshol_d) [26, Theorem 1.3], we
have that n; N2 NH C Uecq, Useq, 1 €3 almost surely. (If this were not true then we
would be led to the contradiction that n; has double points with positive probability.)
We are going to prove the result by showing that for every €, § > 0,

dimy(I1¢%) <2 — A almost surely.

It in fact suffices to show that this is the case for 0 < € < % < § < &g where § is as

in Lemma 4.5. Let D, and z(Q) be as before the statement of Lemma 4.5. We let U;; -4
consist of those Q € D, which are hit by both ; and 7,, contained in B(0, §~1), and:

(@) Im(z(Q)) = 6.

20 B 5 1.2(0) N
(ii) ch(g)f €61 —8)and O °) <@ —9).

(iff) After ¢} .. m1 hits Q before o) ;.
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o

T2

—) A—0y
0

Fig. 16 Suppose that  is a GFF on H with the illustrated boundary data. Let 1 (resp. n2) be the flow line
of h starting from 0 with angle O (resp. 8 € (& — 24/ x, 0)). Shown is an illustration of the construction of
the event that a given point, say z € H, is a “perfect point” for the intersection of 7 and 7,. Each of the
green flow lines has angle 6 — the same as that of 7, — and start at points along 1] which get progressively
closer to z. The reason that we introduce the auxiliary green flow lines is that this is what gives us the
approximate independence necessary for the two point estimate, see e.g., Fig. 20 (color figure online)

We are now going to show that, for every n € N, Wﬁ"s = umznu,;"s is a cover of
I€9. To see this, we fix z € 1¢°% and let (Qk) be a sequence of squares in Uy,>, Dy,
such that z € Qy for every k and |Qy| — 0 as k — oo. Let zx = z(Qy). Since
g“zlk, . € [;;, /2 §;,2 ] for all k large enough, there exists Ko = Ko(z) such that for all

k > Ko, we have that @;’fk € (8, r — §). Since z € Qy, we have that n| hits Q. If

there exists a subsequencek '(k j) such that, for every j, n; hits 9 B(zk;, §) after hitting
0 B(zkj , €) and before hitting ij , we get a contradiction thatz € 1 €3 Therefore there
exists K1 = Kj(z) such that for every k > K1, we have that, after hitting 0 B(zg, €),
n1 hits Qi before hitting 9 B(zk, §). Combing this with Lemma 4.5 implies that there
exists a sequence (k;) such that Qy; € Wfl’a for all j, which proves our claim.

By running 7; until time ;Zl’e and then conformally mapping back, Lemma 4.3
implies for Q € D, with 0 € B(0,8~!) and Im(z(Q)) > & that P[Q € Z/lf,;‘s] <
2~mA+o(1) provided m is large enough and € > 0 is small enough relative to § > 0.
(The purpose of choosing € > 0 smaller than § > 0 is so that the force points of 1 are
mapped far away from 1 (g“zl, ¢) relative to the distance of z.) Consequently, it follows
that there exists C = C(e, §) > 0 such that for each & > 0, we have

o0
E[H27A+2§'(1€,8)] < C Z 22m X 27M(A7§') X 27m(27A+2§) < 00.

m=n

Since the above holds for every n, we therefore have that HZA+2E (1€9) = ( almost
surely. Since & > 0 was arbitrary, we have that dims(/¢%) < 2 — A almost surely, as
desired. O

@ Springer



90 J. Miller, H. Wu

4.4 The lower bound

We are now going to prove the lower bound for Theorem 1.5. As in the proof of
Theorem 1.6, we will accomplish this by introducing a special class of points, so-
called “perfect points”, which are contained in the intersection of two flow lines whose
correlation structure is easy to control (see Fig. 16). Fix E > B2 > B > 1; we will
eventually send B — oo but we will take B fixed and large.

4.4.1 Definition of the events

We are going to define the perfect points as follows. Suppose that y; is a path in
H starting from 0 and y, is a path starting from xp € [0, eP]. Let {1 be the first

time that y; hits B(i, e f) and suppose that y; is a path starting from y; (¢1). Fix

u € R\[0, x2]. We let Ef’ﬂ(yl, 2, y2) be the event that the following hold (see Fig. 17
for an illustration):

(i) yp hits dB(i, e —#) before leaving the e 2P neighborhood of [0, i],

(i) The first time &1 (resp. ¢») that y; (resp. y») hits d B(i, e‘ﬁ By (resp. I B(, e‘ﬂ))
is finite and y; ([0, &; 1) < B(, e*Py fori =1, 2.

(ii1) The ﬁrst time &, that », hits y» is finite and > ([0, {2]) does not intersect either
IB(i, te ~PB) or 9B(i, 2¢7F).

(iv) The connected component of H\ (y; ([0, ¢1]) U 32([0, EZ]) U »2([0, &2])) which
contains i also contains « on its boundary.

(v) The probab1l1ty that a Brownian motion starting from i exits H\ (y; ([0, ¢1]) U
» ([0, {2]) U »2([0, £2])) on the left (resp. right) side of ([0, {1]) is at least
% — ¢~ A% and the probability of exiting on the left (resp. right) side of ([0, [3)
(resp. »2([0, £2])) is at least e #. We take H to be the connected component
of H\y1 ([0, ¢1]) with u on its boundary and let ¢ = @(y1) be the conformal
transformation H — H which fixes i and with ¢(y(¢1)) = 0. Finally, the image
of (the right side of) y; (El) under ¢ is contained in [0, e#] and ¢ (7> ([0, Ez])) -
B(i, eP).

The purpose of Part (i) above is that, by drawing a path up until hitting 3 B(i, e #)
and then conformally mapping back, the resulting configuration of paths satisfies the
hypotheses of Lemma 4.3.

Lemma 4.7 Suppose that we have the same setup described just above. There exists a

constant Cy > Osuch that the following is true. On the event E,f # (Y1, ¥2, v2), withg =
@(y1), for each o € (0, 1) we have that B(i, C1e1 = B+P)/2y C o(B(i, e *B+P)Y)),

Proof Throughout, we shall suppose that E,’? B (v1, ¥2, y2) occurs. Fix a € 0, 1).
The probability that a Brownian motion starting from i hits 9 B(i, e~ B+P)) before
hitting dH U y;([0, ¢1]) is O (e~ (1=®B+P)/2) by the Beurling estimate. By the
conformal invariance of Brownian motion, the probability of the event X that a
Brownian motion starting from i exits ¢(B(i, e *#+P))) in @3B, e *B+P))) is
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Fig. 17 Suppose that y1, y, are paths in H starting from 0, x» € R, respectively, with x, € [0, eP]. Let
Zl be the first time that y; hits dB(, e~ P) and let 7, be a path starting from y (E]). Fix u € R\[0, x2].
Then E,f B (71, Y2, v2) is the event that the following hold. First, y; hits 3 B(i, e P before leaving the

—2p neighborhood of [0, i]. Second, y (resp. y2) hits dB(i, e P—B ) (resp. dB(i, e —B )) before leaving
B(z e2P). Let 1, & be the first hitting times for yy, v, respectively, for these small circles. Third, the first

time {2 that 3 hits y is finite and ([0, {2]) is disjoint from both 0 B(i, e*ﬁ) and dB(i, 2e™ ﬁ) Fourth,
the three paths stopped at the aforementioned times do not separate i from u. Fifth, the probability that a
Brownian motion starting from i exits H\(y ([0, ¢1]) U ([0, {2]) U 20, ¢21)) in the left (resp. right)
side of y is at least l — e~P/% and in the left (resp. right) side of 7, ([0, ;‘2]) (resp. ¥2([0, ¢21)) is at least

e~ P. We take H to be the connected component of H\y1 ([0, ¢1]) with  on its boundary and let ¢ = ¢(y1)
be the conformal transformation H — H fixing i and with ¢(y1(¢1)) = O Then the image of (the right
side of) y1 (;1) under ¢ is contained in [0, eﬂ] and (72 ([0, &21)) € B(, e )

also O (e~1=0B+P)/2) et
d = dist(p(dBG, e *B+P)y) ).

We claimP[X] 2 d —1 Indeed, X; N X, C X where X is the event that the Brownian
motion exits d B(0, d) before hitting 0H at a point with argument in [” ] and X
is the event that it hits ¢ (3 B(7, e“"(ﬂ“}))) after hitting 0 B(0, d) before h1tt1ng JH. It
is easy to see that P[X] ,>V~d’1 and P[X; | X] = 1. Consequently, e~ (1m0 (B+£)/2 >
d~ " hence d > eI~ B+P)/2 a5 desired . O

4.4.2 Flow line estimates

Fix 0 € (m — 2A/x, 0); recall that this is the range of angles so that a GFF flow line
with angle 6 can hit and bounce off of a GFF flow line wiith angle 0 on its right side. We
will now use the events introduced in Sect. 4.4.1 to define the perfect points. Suppose
that /1 is a GFF on H with the following boundary data: suppose x1,; = x;2 = 0 and
u; € R\{0}. If u1 < x1,1 = x12 = 0, the boundary data is

h|(foo,u|] =A+Qr —0)y, h|(u1,0] = —A, and h|(0,oo) =Ar—0y.
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Fig. 18 (Continuation of Fig. 14.) Let {el, {3 be the times that 11, 17 hit d B(z, €), respectively, and let ¢
be the unique conformal map that uniformizes the unbounded connected component of H\ (1 ([0, {El Hhu
n2 ([0, ;3])) with z sent to i and oo fixed. For the lower bound of Theorem 1.5, we will also need to
estimate the probability of the event He‘s (z) that Gé(z) occurs (as described in Fig. 14), that the diameter
of n2([0, ;3]) is not too large, and that the images of n; ({é) for i = 1, 2 under ¢ are not too far from i as
illustrated on the right

Z1

If u; > x1,1 = x1,2 = 0, then the boundary data is
hl(—00,01 = =&, hl©u1 =2 —0x, and hlw,c0) = —4—27x.

These two possibilities correspond to the boundary data that arises when one takes a
GFF with boundary conditions as in Figs. 14 and 18 and then applies a change of
coordinates which takes a given point z € H to i. In either case, we let i 1 (resp. n1,2)
be the flow line of A starting from x; 1 (resp. x12) of angle O (resp. 8). We also let
El,l be the first time that 1 hits 0 B(, e B ) and let 771 2 be the flow line of 4 starting
from (the right side of) 11, (El,l) with angle 6.

Let £y = E,fl’ﬁ(m,l, N1.2,11,2). Let ¢1,1 (resp. ¢12) be the first time that 7 |
(resp. 11,2) hits 0B, e PP (resp. dB(i, e~ #)) and let 21,2 be the first time that
11,2 hits 71 2. Let ¢ be the unique conformal map from the connected component of
H\71,1([0, ¢1,1]) with u; on its boundary which fixes i and sends the tip n1,1(£1,1) to
0.

Suppose that the events E ; have been defined as well as paths 1.1, 77,2, 1,2, GFFs
hj, and conformal transformations ¢; for 1 < j < k. On the event that 7 ; hits
dB(i, e PP), we take meq1,1 = @ (k1) and ner1.2 = @i (k.2)- Note that mjyq,1 is
the flow line of the GFF hy1 = hy o gok_l — x arg(g, ty starting from 0. Similarly,
Nk+1,2 1s the flow line of Ay starting from xg41 2 = @k (Mk.1(Lk.1)) with angle 6. We
let Zk+1,1 be the first time that ;41 1 hits dB(I, e~ #) and let Nk+1.2 be the flow line
starting from (the right side of) nx1.1 (Ek+ ~1,1) with angle 6 and let ux4+1 = @x (ug).

On the event that 11,1 hits dB(i, e’ﬂ’ﬂ), say for the first time at time {411,
we let ¢r41 be the conformal transformation which uniformizes the connected
component of H\nx41,1([0, {k+1,1]) with ux41 on its boundary fixing i and with
Ok+1(Mk+1,1(Ck+1.1)) = 0. We then define the event E; 1 in terms of the paths 11,1,
Nk+1.2, and Ng41 2 analogously to E as well as stopping times {x+1 2, Ek+1,2~ For each
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n > m we let
E™" =n}_,.1Ex and E"=E"" (4.24)

Remark 4.8 (i) Note that E™" for n > m > 1 can occur even if only a subset of (or
none of) EL, ..., E™ occur.

(ii) The conformal maps ¢; are measurable with respect to 11 1. Note that each of the
paths 7 2 is given by the conformal image of a flow line which starts at a point in
the range of 1 1. The starting points of these flow lines are likewise measurable
with respect to 171 ,1. These facts will be important when we establish the two point
estimate for the lower bound of Theorem 1.5 at the end of this subsection.

We will now work towards proving the one point estimate for the perfect point i.

Proposition 4.9 There exists fo > 1 such that for all E > B% > B > Bo we have
P[En] - e*E(l+05(l)og(l))nA (4.25)

where A is the constant from (4.13) and the constants in the < of (4.25) depend only
onui, kK, and 6.

In the statement of Proposition 4.9, we write 0z(1) to indicate a quantity which
converges to 0 as B — oo and Og(1) for a term which is bounded by some constant
which depends only on B. In particular, for g fixed, 0/3(1)05(1) — Qas B — oo.
The first step in the proof of Proposition 4.9 is Lemma 4.10. The second step, which
allows one to iterate the estimate in (4.26), is Lemma 4.12 and is stated and proved
below.

Lemma 4.10 There exists Bo > 1 such that for all ,5 > B2 > B > By we have
P(E|] = e—g(1+0ﬁ(1)0§(1))A (4.26)

where A is the constant from (4.13) and the constants in the < of (4.26) depend only
onui, k,and 6.

Proof By Lemma 2.3, we know that 1 | has a positive chance of being uniformly close
to [0, i] before hitting  B(i, e~#). Let T be the first time that 71 hits d B(i, e~ #) and
let g be the conformal transformation from the connected component of H\ 711 ([0, 7])
containing ¢ which fixes i and sends 11,1 (7) to 0. By choosing By sufficiently large, it
is clear that g(n1,1) and g(n12) satisfy the hypotheses of (4.16) of Lemma {.3. From
this, we deduce that the probability that 11 ; and n; > both hit dB(i, 26’/3) before
leaving B(i, ¢2#) and such that the harmonic measure of the left (resp. right) side of
each of the paths stopped at this time as viewed from i is bounded from below by
some universal constant is equal to e PUHOsMFUNA The regt of the lemma follows
from repeated applications of Lemmas 2.3 and 2.5. O

For each z € H, we let ¥, be the unique conformal transformation H — H taking
z to i and fixing 0. For each k € N, we let n,i ; fori = 1,2 and ﬁ,i , be the paths after
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applying the conformal map 1, and we let g“,f’l., E,fl be the corresponding stopping

times. We define

E™"(z) = E™"(n} 1, 7] 5, M} ,) and
., o (4.27)
E"(z) = E™(2).

In other words, E™"(z) and E"(z) are the events corresponding to E""" and E"
defined in (4.24) but with respect to the flow lines of the GFF hy o' — x arg(y 1)’
starting from 0. Let ¢y ; be the corresponding conformal maps. We let

o =g 0 op, foreach 0<j<k and ¢f =0k (4.28)
For eachn € N and z € H, we also let

V,(2) = B(z, 2_8"_4Im(z)e_”(ﬂ+g)) and
V(@) = Bz, 25 m(z)e "D,

Lemma 4.11 There exists By > 1 such that for all E > B2 > B > Py, the following

is true. For each m,n € N withm > n + 2, on E™(z) we have both

M) vt o @ )T S V@ fory = u5, (10,5, D fori = 1,2 and y =
ﬁfn,z([os {,;2]) and

i) ' o (@ Y N NV, () = @ fory =, (0.4, ,D) for i = 1,2 and
Y= ﬁ;,z([(), é‘,i,z])

Proof We will only give the proof of (i); the proof of (ii) is analogous. We are first going

to give the proof in the case that z = i. Fix m, n € N with m > n + 2. Throughout,

we shall assume that we are working on E™. It follows from [16, Corollary 3.25] that
if r € (0, 3) then

o (B, 1) € B, 16re PPy for 1 <k <m. (4.29)
Iterating (4.29) implies that
@71 (BG. 4) € BG. 2% ) for 1<k <m (430)

(provided we take By large enough).

Note that n,, ; ([0, &m.i]) € B(, 62/3) for i = 1, 2 by the definition of the events.
Consequently, it follows from Lemma 4.7 that <p,;1_1(nm,i([0, tm.i])) € B(, e‘ﬁ/4)
fori = 1,2 provided By is large enough. We also assume that By is sufficiently large
so that e #/4 < % Applying (4.30) proves the result for n,, ; ([0, &p ;]) fori = 1,2
and 7,2 ([0, Em,z]). This proves the result for z = i. For the case that z # i, we note
that applying [16, Corollary 3.25] again yields,

v (B, ) C B, 16rIm(2)). (4.31)

Combining (4.30) with (4.31) gives the desired result. O
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Foreachm € N and z € H, let F,,(z) be the o-algebra generated by 77;2(,,- Io. &l for
i=1,2and ’ﬁi’2|[0szz] forl <k < m.

Lemma 4.12 There exists fo > 1 such that for all ,g > B2 > B > By the following
is true. Fix § € (0, 7) and z € D N H with arg(z) € (8, w — 8). For each m € N we
have that _

PLE™" (@) | Fn(D)gn(e) =< e PPV VPPLE " 1 gn ) (4.32)

where the constants in < depend only on §, k, and 6.

Proof By applying v,, we may assume without loss of generality that z = i. Recall
the definition of the GFF A, as well as the paths nx ; fori = 1, 2 and 7 2 from just
before Remark 4.8. By the definition of E™ and the conformal invariance of Brownian
motion, we know that there exists a constant ¢; > 0 such that the boundary data for
hm41in (—cq, 0) (resp. (0, c1)) is given by —A (resp. A). The same is likewise true for
h1. Moreover, by Lemma 4.7, it follows that the auxiliary paths coupled with 7,1
are far away from i provided By is large enough. Consequently, by Lemma 2.8, the
laws of 1,+1.1 (given E™) and 11,1 stopped upon exiting the ‘7‘ neighborhood of the
line segment from O to i are mutually absolutely continuous with Radon-Nikodym
derivative which is bounded from above and below by universal positive and finite
constants which depend only on « and 6.

On E™", 41,1 does not leave this tube before getting very close to i and neither
does 11,1 on E"~"™. For a given choice of 17, by Lemma 2.8, we moreover have that the
Radon-Nikodym derivative of the conditional law of 7,41 2 given 1,,41,1 = 7 stopped
upon exiting the tube with respect to that of 71 2 given n1,; = 5 is bounded from above
and below by universal finite and positive constants which do not depend on the specific
choice of 1. On this event, the same is also true for the Radon-Nikodym derivative
of the conditional law of (<pm’"’1)’1(ﬁ'n,2) given 1,411 = n and N41,2 = 7 with
respect to the conditional law of (¢~ 1)~! (M—mp) givenn; 1 =nand 12 =17
The conditional law of (¢™/~1)~! (Mj,2) form+2 < j < n— 1 stopped upon hitting
Nm-+1.2 IVeN Nm+1.1, Tm+1.2, and 7, 2 is independent of the boundary data of /41
(as well as the other auxiliary paths) (see Fig. 19). The same is likewise true for the
conditional law of (¢/=1)~!(5;2) for 2 < j < n —m — 1 stopped upon hitting 7; »
given 01,1, 71,2, and 7, 2.

Let K be the compact hull associated with these paths and let g be the conformal
transformation H\K — H with g(z) ~ z as z — oo. Conditionally on all of these
paths and the event that they are contained in B(i, Ze’ﬂz, the probability that 1,41 2
hits d B(i, 10e#) before leaving B(i, ¢*f) is < |g'(i)e P |* T V%W (45 in the proof
of Lemma 4.3; the extra force points only change the probability by a positive and
finite factor by Lemma 2.8.) Given that 1,41 2 has hit 9 B(i, 10e=#), the conditional
probability that it then merges with 7,41 2 before the latter has hit 3 B(i, %e’ﬁ) or

JdB(i, 26’5) is positive by Lemma 2.5. The same is true with 71 > in place of 1,41 2,
which completes the proof. O

Proof of Proposition 4.9 This follows by combining Lemma 4.10 with Lemma 4.12.
(]
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Mm+1,1

0

Fig. 19 Tllustration of the configuration of paths used in the proof of Lemma 4.12. On E™", 5,11 1,
Tm+1,2, and (wm’"*l)*l(ﬁn.z) separate the paths ((pmmi*l)*l(ﬁjyz) form +2 < j <n—1(shown in
green) stopped upon hitting 77,41 2 from i. Thus, once 7, 41,1, 41,2, and (</Jm’”_1)_l (17n,2) have been
fixed, the conditional law of the remaining paths does not depend on the boundary data of /,,4.1 or on the
other auxiliary paths (color figure online)

Lemma 4.13 Fix$ € (0, 5) and z, w € DNH distinct with arg(z), arg(w) € (8, 7 —
8) and let m be the smallest integer such that V1) NVp_1(w) = @. Let Py, be
the event that 1 1 hits Vo (w) before hitting Vo (2). There exists Bo > 1 such that for
every E > B% > B > By we have that

PLE™"(2) | Fi(w) gr () p, < PP DPPLE"™ 1 gk () p, (4.33)

forall k > m.

Proof We are going to extract (4.33) from (4.32) of Lemma 4.12. As before, by
applying v;, we may assume without loss of generality that z = i. Fix k > m. By
Proposition 4.9, it suffices to prove

PIE™ " | Epgr, Fe ) gy p, S PLE" ™™ Mgk ). p, (4.34)

in place of (4.33). By Lemma 4.11, we know that the paths involved in E"" are
disjoint from those involved in E¥(w) due to the choice of m. By Lemma 4.11, we
know that the paths involved in E™" are contained in Vou—1(i), and that the paths
involved in EX (w) are outside of V,,_,(i), due to the choice of m. Thus, the paths
involved in E”*17 are disjoint from those involved in EX(w), and by conformally
mapping back (see Fig. 20) and applying Lemma 2.8 as in the proof of Lemma 4.12,
it is therefore not hard to see that

P[Em-i-l,n | Eppt1, fk(w)]lEk(w),Pw = P[Elsn—m | El]lEk(w),Pw'

Combining this with (4.32) completes the proof. O
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0 0

Fig. 20 Illustration of the setup for the two point estimate (Lemmas 4.12, 4.14) in the case that | gets
close first to w and then to z. Conformally map back 711 drawn up until the path hits the neighborhood of
z. Then all of the auxiliary paths are outside of a large ball which is far from i = ¢(z), so we can apply
the one point estimate for perfect points (Lemma 4.10) for this region as before. We can also apply the one
point estimate for the paths near z. Finally, to complete the proof, we apply the one point estimate a final
time for the paths up to when they hit a neighborhood containing both z and w

Lemma 4.14 For every € > 0 and § € (0, ) there exists fo > 1 such that for all
B > B% > B > Po there exist constants C > 0 and ny € N such that the following is
true. Fix z, w € D_ﬂH distinct_with arg(z), arg(w) € (8, m —98). Let m be the smallest
integer such that V ,,,_1(z2) N Vy—1(w) = @. Then

PIE"(2), E"(w)] < CePUHOmAP[E ()IP[E"(w)] forall n > no.
Proof Suppose that z, w € H are as in the statement of the lemma. Let Py, be the
event that 1y hits V,, (w) before hitting V,, (zs) and Isset P, be the event in which the

roles of z and w are swapped. We have that

sP[E" (2), E"(w)]s = P[E" (2), E"s(w), Py] + P[E"(2), E"(w), P,]
s <P[E"(2) | E"(w), PyIP[E"(w)] + P[E" (w) | E"(2), PIP[sE"(2)]. (4.35)

We are going to bound the first summand; the second is bounded analogously. We
have,

P[E"(2) | E"(w), Py] < P[E™"(2) | E"(w), Py]. (4.36)
By (4.33) of Lemma 4.13, we have that
PE™"(2) | E"(w), P,] < 9 WPPE"—™]. (4.37)
By (4.32) of Lemma 4.12 and Proposition 4.9, we have that

PIE"™] < eE(1+e)mAP[En(Z)] (4.38)
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(possibly increasing f). The same likewise holds when we swap the roles of P,, and
P,. Combining (4.35)—(4.38) gives the result. O

We can now complete the proof of Theorem 1.5.

Proof of Theorem 1.5 We suppose that h is a GFF on H with boundary conditions
hl(=s0,00 = —A and h|,ec) = A — 6%

and let 1y (resp. 172) be the flow line of 7 starting from O with angle O (resp. 6 €
(r —2Xx/x,0)). We have already established the upper bound for dims (11 N1 N H)
in Proposition 4.6. We will now establish the lower bound. Once we have proved this,
we get the corresponding dimension when £ has general piecewise constant boundary
data as described in the theorem statement by absolute continuity for GFFs.

The proof is completed in the same manner as the proof of Theorem 1.6. Indeed,
we let ¢, = 284~ (F+An We divide [—1, 1] x [1, 2] into 2¢,, 2 squares of equal
side length €, and let 2"t be the center of the jth such square for j =1, ..., 2¢, 2 Let
Cy, be the set of centers z of these squares for which E"(z) occurs. Let S, (z) be the
square with center z and length ¢,. Finally, we let

c=U U .

k=1n=k zeCy
It is easy to see that
CCmNnNH.

The argument of the proof of Theorem 1.6 combined with Lemma 4.14 implies, for
each& > 0,thatP[dimy(n1Nn2) > 2—A—£&] > 0. To finish the proof, we only need to
explain the 0-1 argument: that for each d € [0, 2], P[dimy (n1 Nn2NH) = d] € {0, 1}.
For r > 0, let D, = dimy(n N2 N B(O,r) N H). Itis clear that 0 < ;] < ry
implies D,; < D,,. By the scale invariance of the setup, we have that D,, has the
same law as D,,. Thus D,, = D,, almost surely for all 0 < r|; < r,. In particular,
P[Ds = D,] = 1 for all r > 0. Thus the events {Dy, = d} and {D, = d} are the
same up to a set of probability zero. The latter is measurable with respect to the GFF
restricted to B(0, r). Letting r | 0, we see that this implies that the event { Dy, = d}
is trivial, which completes the proof. O

5 Proof of Theorem 1.1

We will first work towards proving (1.1) for ¥’ € (4,8); let k = % e (2,4). It

suffices to compute the almost sure Hausdorff dimension of the double points of the
chordal SLE,(/(’% — 4, ’% — 4) processes. Indeed, this follows since the conditional
law of an SLE, process given its left and right boundaries is independently that of
an SLE, (’% — 4, ’% — 4) in each of the bubbles which lie between these boundaries
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A+ 35X

z

Fig.21 Suppose that /1 is a GFF on the horizontal strip T = R x (0, 1) with the illustrated boundary data and
let ' be the counterflow line of / starting from +o0 and targeted at —oo. Then 7’ is an SLE, s ("7, —4; « —4)
with force points located immediately to the left and right of the starting point of the path. Fix z in the
lower boundary 9, T = R of T and let #(z) be the first time that »’ hits z. Since 1’ is boundary filling,
1(z) < oo almost surely. Let nzl be the outer boundary of 1’ ([0, #(z)]). Then 1721 is equal to the flow line
of h with angle % starting from z and stopped at time ‘L'Zl, the first time that it hits 9y T. Let w = r]zl (rzl).
Given nzl ([0, rz] D, let n% be the outer boundary of 1’ ([¢(z), 00)). Then n% is equal to the flow line of &
given nzl ([0, rzl 1) with angle % started from w stopped at time 12, the first time it hits z. Let P(z) be the
region between 1 ([0, 71 1) and #2([0, z2]) (indicated in gray). Given P(z), the conditional law of #’ in
each component C of T\ P(z) is independently that of an SLE, ("7/ —4; "7/ — 4) from the first point in C
visited by 1’ to the last. The points n% ([0, le]) n n%([O, ‘[zz]) are double points of 1’

(recall Fig. 5). In order to establish this result, we are going to make use of the path
decomposition developed in [28] which was used to prove the reversibility of SLE, for
k" € (4, 8). This, in turn, makes use of the duality results established in [26, Section 7].
For the convenience of the reader, we are going to review the path decomposition here.

Throughout, we suppose that 4 is a GFF on the horizontal strip T = R x (0, 1) with
boundary values given by —A + 5 x = —1’ on the lower boundary 9, T = R of the
strip and A — 37”)( = A" — 7 x on the upper boundary 3y T = R x {1} of the strip [see
Fig. 21 for an illustration of the setup and recall the identities from (2.10)]. Let " be the
counterflow line of / from +o00 to —oco. Then 1’ is an SLEK/(’% —4; ’% —4) process in
T from +o00 to —oo where the force points are located immediately to the left and right
of the starting point of the path. Recall that ’% — 4 is the critical threshold at or below
which an SLE,/(p) process fills the domain boundary. Fix z € 9T and let 7 (z) be the
first time ¢ that n’ hits z. Then £(z) < oo almost surely (and this holds for all boundary
points simultaneously). Assume further that z € 9, T and let né be the outer boundary
of ([0, #(2)]). Explicitly, lel is equal to the flow line of /2 with angle 7 starting from
z stopped at time rzl, the first time that it hits 9y T (see Fig. 21). The conditional law of
n' given n;([O, ‘L'Zl]) in each of the connected components C of T\nzl([O, rzl]) which
lie to the right of nzl ([o, rzl ]) is independently that of an SLE, (’% —4; ’% —4) process
starting from the first point of C visited by " and terminating at the last.

Let w = nzl (rzl) € dyT. Since 5’ is boundary filling and cannot enter the loops
it creates with itself or with the domain boundary, the first point on 9y T that n’ hits
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after time 7 (z) is w. Let n? be the outer boundary of 7' ([ (z), c©)). Then n% is the flow
line of A given nzl ([0, rzl]) with angle 7 starting from w and stopped at time rzz, the
first time the path hits z. Let P(z) be the region which lies between 7711 (10, rzl]) and
77%([0, t?]). Then P (z) separates the set of points that 5 visits before and after hitting
z. The right (resp. left) boundary of P(z) is given by n; ([0, rzl]) (resp. ng([O, rzz])).
The conditional law of " given P (z) is independently that of an SLE, (’% —4; ’% —4)
process in each of the components C of T\ P (z) starting from the first point of C hit by
7" and terminating at the last — the same as that of " up to a conformal transformation.
This symmetry allows us to iterate this exploration procedure to eventually discover
the entire path. Note that the intersection points n;([O, rzl]) N n?([O, t?]) are double
points of n’. If z € 9y T, then we can define the paths n;, ng analogously except the
angle 5 is replaced with —7.. This is because when 7’ hits z € 9y T, only its right
boundary is visible from —oo which is contrast to the case when it hits z € 9, T when
only its left boundary is visible from —oo.

The following lemma allows us to relate the dimension of the double points of i’ to
the intersection dimension of GFF flow lines given in Theorem 1.5. This immediately
leads to the lower bound in Theorem 1.1 for «’ € (4, 8). We will explain a bit later
how to extract from this the upper bound as well.

Lemma 5.1 Let Pn(z) = 1! ([0, ©1) N n2([0, t21). We have that

(12 = k4 +«")

dimy((Pn(2)) =2 — /
8k

almost surely.

That is, dimy(Pn(z)) is almost surely equal to the Hausdorff dimension of the inter-
section of two GFF flow lines with an angle gap of O4ouble (recall (1.10)) as given in
Theorem 1.5.

Proof See Fig. 22 for an illustration of the argument. We shall assume throughout
for simplicity that z € 9, T. A similar argument gives the same result for z € 9y T.
Suppose that & is a GFF on H with the boundary data as indicated in the left side of
Fig. 22. Let n(l) be the flow line of & from 0 with angle % Given 17(1), let n(2) be the flow
line of & with angle % from oo in the component L of H\n(l) which is to the left of
17(1). Note that 77(1) is an SLEK(g —-2; —%) process in H from 0 to co. Moreover, the
conditional law of n(z) given n(l) isan SLE, (k — 4; —%) process in L from oo to 0; see
[28, Lemma 3.3]. (The ¥ — 4 force point lies between n(l) and r)(z).) By the main result
of [27], the time-reversal 7]% of n% is an SLEK(—g; k — 4) process in L from 0 to oco.
As explained in Fig. 23, it consequently follows from Theorem 1.5 that

(12 —«H(d +«')

™ almost surely 5D
K

dimy¢(ny N ) =2 —

since this is the almost sure dimension of ﬁ(l) ﬁﬁ% (using the notation of Fig. 23). Thus
to complete the proof, we just have to argue that dimy;(Pn(z)) is also given by this
value.
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Fig. 22 (Continuation of Fig. 21.) Suppose that I is a GFF on H with the boundary data indicated on
the left side. Let n(l) be the flow line of 4 from 0 to co with angle % Given 77(1), let 77(% be the flow line of

n given n(l) from oo with angle % in the connected component of H\n(l) which is to the left of n(l). Then
77(1) is an SLEK(% —-2; 7%) in H from 0 to co. Moreover, the conditional law of n(z) given n(l) is that of
an SLE, (x — 4; —%) in the component of H\n(]) which is to the left of né from oo to O (the ¥ — 4 force
point lies between the paths). Shown is the boundary data for the conditional law of h given (17(1), 17(2)) in

the component U; of H\(n(l) ) n(z)) which contains 1 on its boundary. Let ¢: U; — H be the conformal
transformation with (1) = z and which takes leftmost (resp. rightmost) point of dU; N dH to —oo (resp.
+00). Then h o <p_1 - X arg(qo_l )’ has the boundary data shown on the right side. Let (n]l, r;]2) be a pair

of paths defined in the same way as (n(l), n(z)) except starting from 1. Then the image of the region in Uy
between n{ and n% under ¢ has the same law as P (z) described in Fig. 21 (see also [28, Figure 3.2])

~2 =1
o U

0

Fig. 23 Suppose that T is a GFF on H with zero boundary conditions as illustrated. Let 'ﬁ(l) (resp. 'ﬁ(z))
be the flow line of 7 starting from 0 with angle _%edouble (resp. %edouble); recall (1.10). Then ’ﬁ(]) is an
SLE, (5§ —2; —%) process in H from 0 to oo (Fig. 1) and the conditional law of ;7\(2) given ﬁé in the connected
component of H\ﬁé which is to the left of 7]\(1) isan SLE, (— %; k —4) process from 0 to co (Fig. 4). Similarly,
'n% is an SLE, (=% & — 2) process in H from 0 to oo (Fig. 1) and the conditional law of ﬁ(]) given 'r]% is an
SLE (k — 4, —%) process from O to oo in the component of H\ﬁ(z) which is to the right of 77% (Fig. 4). In
particular, by the main result of [27], the joint law of the ranges of 77\(1) and ;7\(2) is equal to the joint law of the

ranges of n(l) and n(z) from the left side of Fig. 22. Consequently, we can use Theorem 1.5 to compute the
almost sure dimension of the intersection of the latter

Let U; be the component of H\(n(l) U n%) which contains 1 on its boundary. Let
¢: Uy — T be the conformal transformation which takes 1 to z and the leftmost
(resp. rightmost) point of dU; N R to —oo (resp. +-00). Let (n%, n%) be a pair of paths
constructed in exactly the same manner as (n(l), ng) except starting from 1 rather than 0.
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n2,(10,73,])

21 5, (72,)

Fig. 24 Suppose that we have the same setup as described in Fig. 21. Shown is P(z1) where z1 € 9T is

fixed. The conditional law of 1’ given P(z1) is independently that of an SLEK/(%, —4; ’% — 4) in each

of the components C of T\ P(z;) starting from the first point of C hit by 1’ and exiting at the last. Fix
z2 on the boundary of a component C of T\ P(z1). Then we can consequently form the set P(z7) which
describes the interface between the set of points that 5/, viewed as a path in C, hits before and after hitting
2». The intersection of the left and right boundaries of P(z;) consists of double points of 1. Moreover, the

conditional law of " given both P(z1) and P(z3) is independently that of an SLE, ./ ( ’% — 4, "7/ —4)in
each of the components of T\(P(z1) U P(z2)). Consequently, we can iterate this procedure to eventually
explore the entire trajectory of 7’ (and, as we will explain in Lemma 5.2, the double points of 1"). We will
use this in Lemma 5.2 to reduce the double point dimension to computing the intersection dimension of
GFF flow lines with an angle gap of O4ouple (recall (1.10))

We consequently have that the image under ¢ of the region between 7711 and n% is equal
in distribution to P(z) as described before the lemma statement. Since dimH(n% N n%)
is also almost surely given by the value in (5.1), the desired result follows. O

Let D be the set of double points of ’. To complete the proof of Theorem 1.1, we will
show that every double point of %’ is in fact in some Pn(z). To this end, we explore the
trajectory of " as follows. Let (d;) jeN be a sequence that traverses N x N in diagonal
order,i.e.d; = (1, 1),d> = (1, 2),d3 = (2, 1), etc. Let (21 x)keN be a countable dense
subset of 9T, and set z; = z4,. Let P(z1) be the set which separates T into the set of
points visited by n’ before and after hitting z, as in Fig. 21. We then let (22,1 )reN be a
countable dense subset of 0 (T\ P(z1)) and set 2o = z4,. Recall that the conditional law
of n’ given P(z;) is independently that of an SLE,/ (’% —4; ’(7, —4) process in each of
the components of T\ P(z1) — this is the same as the law of n’ itself, up to conformal
transformation. Consequently, once we have fixed P(z), we define P (z3) analogously
in terms of the segment of " which traverses the component of T\ P(z;) with z, on
its boundary (see Fig. 24). Generally, given P(z1), ..., P(z,), we let (2,+1.k)keN be
a countable dense subset of 9 (T\ U;?: | P(z;)) and set z, 41 = z4,,,,. The conditional
law of ' given P(z1), ..., P(z,) is independently that of an SLE,(/(’% —4; "7/ —4)in
each of the components of T\ U;?:l P(z;). Thus given P(z1), ..., P(z;), we define
P (z,41) analogously in terms of the segment of 1’ which traverses the component
which has z,,1| on its boundary. For each n € N, n’ almost surely hits z,, only once at
time 7(z,). Moreover, from the construction, we have that (7 (z,;)),eN is a dense set of
times in [0, 0o) (see [28, Section 3.3]).
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Lemma 5.2 Almost surely, D C U?’;le(Zj).

Proof For each w € D, let tf (w) and % () be the first and last time that n’ hits w.
For each § > O we let Dy = {w € D : t*(w) — t/ (w) > §)}. Clearly, the sets Ds
increase as § > 0 decreases and D = Ug-oDs. Therefore it suffices to show that
D5 € U2 | Pn(zy) for each § > 0. Fix w € Ds and consider P(zy). If tf(w) <
t(z1) < tY(w), then @ € Pn(z1) and we stop the exploration. If #(z1) > tY(w) or
t(z1) < t/ (w), then w is a double point of 1'[j0.;(;,)] or a double point of 1’| (z,).c0)s
respectively. Consider P(z3). If tH(w) < t(z2) < tY(w), then v € P~(z2) and we
stop the exploration. If 7 (z2) < tf (w) or 1(z2) > t*(w), we continue the exploration.
We continue to iterate this until the first k that w € P(zx). To see that the exploration
terminates after a finite number of steps, recall that (¢ (z,)),eN is a dense set of times
in [0, 00). In particular, letting

k =min{j > 11/ () <1(z)) < t@(w)}

we have that w € Pn(zx). O

We now have all of the ingredients to complete the proof of Theorem 1.1 for
k' € (4,8).

Proof of Theorem 1.1 For k' € (4,8) Lemmas 5.1 and 5.2 together imply that
dim(D) =2 — (12 — k') (4 + k') /(8«") almost surely, as desired. O

We finish by proving Theorem 1.1 for ¥’ > 8.

Proof of Theorem 1.1 For k' > 8 Fix k¥’ > 8 and let k = L—? € (0,2]. Let n’ be an
SLE, process in H from 0 to oo and let D be the set of double points of 1. Then ' is
space-filling [31]. For each point z € H, let 7(z) be the first time that 5’ hits z and let
¥ (2) be the outer boundary of 7 ([0, #(z)]). It follows from [29, Theorems 1.1, 1.13]
and [3] that the dimension of y (z) isequalto I+ = 1+ % Given y (2), 7' ([t (z), 00))
is an SLE, process in the remaining domain, and thus almost surely hits every point on
y (z) except the point z. This implies that every point on y (z) except for z is contained
in D. This gives the lower bound for dim4 (D).

Let (zk)ken be a countable dense set in H. For the upper bound, we will show
that every element of D is in fact on y(zx) for some k. Note that (#(zx))keN 1S a
dense set of times in [0, 00) because 1’ is continuous. For each w € D, let tf (w)
and r*(w) be the first and last times, respectively, that 1’ hits . For each § > 0,
Ds = {w € D : tz(a)) — tf(a)) > §}. Then D = Us-oDs. Since the sets Dy are
increasing as § > 0 decreases, it suffices to show that Ds C Uy (zx) for each § > 0.
Fix § > 0 and w € Ds. Since (1 (zx))reN is dense, we have that

k=min{j > 1: “(w) > t(zj) > tf(a))} < 00.

Clearly, w € y (zx). This completes the proof for ’ > 8. O
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Remark 5.3 We note that SLE,. for " € (4, 8) does not have triple points and, when
k' > 8, the set of triple points is countable. Indeed, to see this we note that if z is a
triple point of an SLE/, process n’ then there exists rational times #; < , such that z
is a single-point of and contained in the outer boundary of n’|j0 ;7 and a double point
of and contained in the outer boundary of #'|[0,,,]. For each pair #; < t, there are
precisely two points which satisfy these properties. The claim follows for ¢’ € (4, 8)
since SLE/ fork’ € (4, 8) almost surely does not hit any given boundary point distinct
from its starting point. The claim likewise follows for «’ > 8 because this describes a
surjection from Q4 x Q4+, Q4+ = (0, co) N Q, to the set of triple points.
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