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Abstract We compute the almost-sure Hausdorff dimension of the double points of
chordal SLEκ for κ > 4, confirming a prediction of Duplantier–Saleur (1989) for
the contours of the FK model. We also compute the dimension of the cut points of
chordal SLEκ for κ > 4 as well as analogous dimensions for the radial and whole-
plane SLEκ(ρ) processes for κ > 0. We derive these facts as consequences of a more
general result in which we compute the dimension of the intersection of two flow lines
of the formal vector field eih/χ , where h is a Gaussian free field and χ > 0, of different
angles with each other and with the domain boundary.
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1 Introduction

1.1 Overview

The Schramm-Loewner evolution SLEκ (κ > 0) is the canonical model for a
conformally invariant probability measure on non-crossing, continuous paths in a
proper simply connected domain D in C. SLEκ was introduced by Oded Schramm
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[32] as the candidate for the scaling limit of loop-erased random walk and for the
interfaces in critical percolation. Since its introduction, SLE has been proved to
describe the limiting interfaces in many different models from statistical mechan-
ics [4–6,11,21,23,38,38,39]. The purpose of this article is to study self-intersections
of SLE paths as well as the intersection of multiple SLE paths when coupled together
using the Gaussian free field (GFF). Our main results are Theorems 1.1–1.6 which
give the dimension of the self-intersection and cut points of chordal, radial, and whole-
plane SLEκ and SLEκ(ρ) processes as well as the dimension of the intersection of
such paths with the domain boundary. Theorems 1.1–1.4 are actually derived from
Theorem 1.5 which gives the dimension of the intersection of two SLEκ(ρ) processes
coupled together as flow lines of a GFF [8,10,12,25–29,34,36,40] with different
angles.

1.2 Main results

Throughout, unless explicitly stated otherwise we shall assume that κ ′ > 4 and κ =
16/κ ′ ∈ (0, 4). The first result that we state is the double point dimension for chordal
SLEκ ′ .

Theorem 1.1 Let η be a chordal SLEκ ′ process for κ ′ > 4 and let D be the set of

double points of η. Almost surely,

dimH(D) =

{
2 − (12−κ ′)(4+κ ′)

8κ ′ for κ ′ ∈ (4, 8)

1 + 2
κ ′ for κ ′ ≥ 8.

(1.1)

In particular, when κ ′ = 6, dimH(D) = 3
4 .

Recall that chordal SLEκ ′ is self-intersecting for κ ′ > 4 and space-filling for κ ′ ≥
8 [31]. The dimension in (1.1) for κ ′ ∈ (4, 8) was first predicted by Duplantier–
Saleur [33] in the context of the contours of the FK model. The almost sure Hausdorff
dimension of SLEκ is 1+ κ

8 for κ ∈ (0, 8) and 2 for κ ≥ 8 [3] and, by SLE duality, the
outer boundary of an SLEκ ′ process for κ ′ > 4 stopped at a positive and finite time is
described by a certain SLEκ process [7,26,28,29,45,46]. Thus (1.1) for κ ′ ≥ 8 states
that the double point dimension is equal to the dimension of the outer boundary of the
path. We note that chordal SLEκ ′ does not have triple points for κ ′ ∈ (4, 8) and the
set of triple points is countable for κ ′ ≥ 8; see Remark 5.3.

Our second main result is the dimension of the cut-set of chordal SLEκ ′ :

Theorem 1.2 Let η be a chordal SLEκ ′ process for κ ′ > 4 and let

K = {η(t) : t ∈ (0,∞), η(0, t) ∩ η(t,∞) = ∅}

be the cut-set of η. Then, for κ ′ ∈ (4, 8), almost surely

dimH(K) = 3 −
3κ ′

8
. (1.2)
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In particular, when κ ′ = 6, dimH(K) = 3
4 . For κ ′ ≥ 8, almost surely K = ∅.

The dimension (1.2) was conjectured in [9] by Duplantier. Note that we recover
the cut-set dimension for Brownian motion and SLE6 established in the works of
Lawler and Lawler-Schramm-Werner [15,17–19]. The dimension of the cut times

(with respect to the capacity parameterization for SLE), i.e. the set {t ∈ (0,∞) :
η(0, t) ∩ η(t,∞) = ∅} is 2 − κ ′

4 for κ ′ ∈ (4, 8) and was computed by Beffara in [2,
Theorem 5].

Our next result gives the dimension of the self-intersection points of the radial and
whole-plane SLEκ(ρ) processes for κ ∈ (0, 4). Unlike chordal SLEκ and SLEκ(ρ)

processes, such processes can intersect themselves depending on the value of ρ > −2.
The maximum number of times that such a process can hit any given point for κ > 0
is given by [29, Proposition 3.31]:

⌈Jκ,ρ⌉ where Jκ,ρ =
κ

2(2 + ρ)
. (1.3)

In particular, Jκ,ρ ↑ +∞ as ρ ↓ −2 and Jκ,ρ ↓ 1 as ρ ↑ κ
2 − 2. Recall that −2 is

the lower threshold for an SLEκ(ρ) process to be defined. For radial or whole-plane
SLEκ(ρ), the interval of ρ values in which such a process is self-intersecting is given
by (−2, κ

2 − 2) (see, e.g., [29, Section 2.1]) (For chordal SLEκ(ρ), this is the interval
of ρ values in which such a process is boundary intersecting). For ρ ≥ κ

2 − 2, such
processes are almost surely simple.

Theorem 1.3 Suppose that η is a radial SLEκ(ρ) process in D for κ ∈ (0, 4) and

ρ ∈
(
− 2, κ

2 − 2
)
. Assume that η starts from 1 and has a single boundary force point

of weight ρ located at 1− (immediately to the left of 1 on ∂D). For each j ∈ N, let

I j denote the set of points in (the interior of) D that η hits exactly j times. For each

2 ≤ j ≤ ⌈Jκ,ρ⌉, where Jκ,ρ is given by (1.3), we have that

dimH(I j ) =
1

8κ
(4 + κ + 2ρ − 2 j (2 + ρ))(4 + κ − 2ρ + 2 j (2 + ρ)) (1.4)

almost surely. For j > ⌈Jκ,ρ⌉, almost surely I j = ∅. These results similarly hold if

η is a whole-plane SLEκ(ρ) process.

Let B j be the set of points in ∂D that η hits exactly j times. For each 1 ≤ j ≤
⌈Jκ,ρ⌉ − 1, we have that

dimH(B j ) =
1

2κ
(κ − 2 j (2 + ρ))(2 + j (2 + ρ))

almost surely on {B j �= ∅}.
(1.5)

For each j > ⌈Jκ,ρ⌉ − 1, almost surely B j = ∅.

Note that Jκ,ρ + 1 is the value of j that makes the right side of (1.4) equal to
zero. Similarly, Jκ,ρ is the value of j that makes the right side of (1.5) equal to zero.
Inserting j = 1 into (1.4) we recover the dimension formula for the range of an SLEκ

process [3] (though we do not give an alternative proof of this result).

123



48 J. Miller, H. Wu

We next state the corresponding result for whole-plane and radial SLEκ ′(ρ)

processes with κ ′ > 4. Such a process has two types of self-intersection points. Those
which arise when the path wraps around its target point and intersects itself in either
its left or right boundary (which are defined by lifting the path to the universal cover of
the domain minus the target point of the path) and those which occur between the left
and right boundaries. It is explained in [29, Section 4.2] that these two self-intersection
sets are almost surely disjoint and the dimension of the latter is almost surely given by
the corresponding dimension for chordal SLEκ ′ (Theorem 1.1). In fact, the set which
consists of the multiple intersection points of the path where the path hits itself without
wrapping around its target point and are also contained in its left and right boundaries
is almost surely countable. The following gives the dimension of the former:

Theorem 1.4 Suppose that η′ is a radial SLEκ ′(ρ) process in D for κ ′ > 4 and

ρ ∈
(

κ ′

2 − 4, κ ′

2 − 2). Assume that η′ starts from 1 and has a single boundary force

point of weight ρ located at 1− (immediately to the left of 1 on ∂D). For each j ∈ N,

let I ′
j denote the set of points that η′ hits exactly j times and which are also contained

in its left and right boundaries. For each 2 ≤ j ≤ ⌈Jκ ′,ρ⌉ where Jκ ′,ρ is given by

(1.3), we have that

dimH(I ′
j ) =

1

8κ ′ (4 + κ ′ + 2ρ − 2 j (2 + ρ))(4 + κ ′ − 2ρ + 2 j (2 + ρ)) (1.6)

almost surely. For j > ⌈Jκ ′,ρ⌉, almost surely I ′
j = ∅. These results similarly hold if

η′ is a whole-plane SLEκ ′(ρ) process.

Similarly, let L′
j (resp. R′

j ) be the set of points on ∂D which η′ hits exactly j times

while traveling in the clockwise (resp. counterclockwise) direction. Then

dimH(L′
j ) =

1

2κ ′ (κ
′ − 2 j (2 + ρ))(2 + j (2 + ρ))

almost surely on {L′
j �= ∅}.

(1.7)

and

dimH(R′
j ) =

1

2κ ′ (κ
′ + 2ρ − 2 j (2 + ρ))(2 − ρ + j (2 + ρ))

almost surely on {R′
j �= ∅}. (1.8)

The reason that we restrict to the case that ρ > κ ′

2 − 4 is that for ρ ≤ κ ′

2 − 4 such
processes almost surely fill their own outer boundary. That is, for any time t , the outer
boundary of the range of the path drawn up to time t is almost surely contained in
η′([t,∞]) and processes of this type fall outside of the framework described in [29].

The proofs of Theorems 1.1 and 1.2 are based on using various forms of SLE duality
which arises in the interpretation of the SLEκ and SLEκ(ρ) processes for κ ∈ (0, 4) as

flow lines of the vector field eih/χ where h is a GFF and χ = 2√
κ
−

√
κ

2 [7,8,26,28,29].

We will refer to these paths simply as “GFF flow lines”. The flow line with angle θ ∈ R
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is the flow line with angle 0 of the field h +θχ . And the difference between the angles
of two flow lines is called the angle gap (An overview of this theory is provided in
Sect. 2.2). The duality statement which is relevant for the cut-set (see Fig. 5) is that
the left (resp. right) boundary of an SLEκ ′ process is given by an SLEκ flow line of a
GFF with angle π

2 (resp. −π
2 ). Thus the cut set dimension is given by the dimension

of the intersection of two flow lines with an angle gap of

θcut = π. (1.9)

Another form of duality which describes the boundary of an SLEκ ′ process before and
after hitting a given boundary point and also arises in the GFF framework allows us
to relate the double point dimension to the dimension of the intersection of GFF flow
lines with an angle gap of [28]

θdouble = π

(
κ − 2

2 − κ
2

)
. (1.10)

We will explain this in more detail in Sect. 5. The set of points which a whole-plane
or radial SLEκ(ρ) process for κ ∈ (0, 4) and ρ ∈ (−2, κ

2 − 2) hits j times (in the
interior of the domain) is locally absolutely continuous with respect to the intersection
of two flow lines with an angle gap of

θ j = 2π( j − 1)

(
2 + ρ

4 − κ

)
for 2 ≤ j ≤ ⌈Jκ,ρ⌉; (1.11)

see [29, Proposition 3.32]. The angle gap which gives the dimension of the self-
intersection set contained in the interior of the domain for κ ′ > 4 and ρ ∈ ( κ ′

2 −
4, κ ′

2 − 2) is given by

θ ′
j = π

(
2 j (2 + ρ) − 2ρ − κ ′

κ ′ − 4

)
for 2 ≤ j ≤ ⌈Jκ ′,ρ⌉; (1.12)

see [29, Proposition 4.10]. Thus Theorems 1.1–1.4 follow from [(with the exception
of (1.5), (1.7), (1.8)]:

Theorem 1.5 Suppose that h is a GFF on H with piecewise constant boundary data.

Fix κ ∈ (0, 4), angles

θ1 < θ2 < θ1 +
(

κπ

4 − κ

)
,

and let

ρ =
1

π
(θ2 − θ1)

(
2 −

κ

2

)
− 2.
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For i = 1, 2, let ηθi
be the flow line of h starting from 0 with angle θi . We have that

dimH(ηθ1 ∩ ηθ2 ∩ H) = 2 −
1

2κ

(
ρ +

κ

2
+ 2

) (
ρ −

κ

2
+ 6

)

almost surely on the event {ηθ1 ∩ ηθ2 ∩ H �= ∅}.

Theorem 1.5 gives the dimension of the intersection of two flow lines in the bulk.
The following result gives the dimension of the intersection of one path with the
boundary.

Theorem 1.6 Fix κ > 0 and ρ ∈ ((−2) ∨ ( κ
2 − 4), κ

2 − 2). Let η be an SLEκ(ρ)

process with a single force point located at 0+. Almost surely,

dimH(η ∩ R+) = 1 −
1

κ
(ρ + 2)

(
ρ + 4 −

κ

2

)
. (1.13)

(Recall that κ
2 − 4 is the threshold at which such processes become boundary

filling and −2 is the threshold for these processes to be defined). In the case that
ρ = θ

π
(2 − κ

2 )− 2 for θ > 0 and κ ∈ (0, 4), we say that η intersects ∂H with an angle
gap of θ . This comes from the interpretation of such an SLEκ(ρ) process as a GFF
flow line explained in Sect. 2.2. See, in particular, Fig. 4. By [29, Proposition 3.33],
applying Theorem 1.6 with an angle gap of θ j+1 where θ j is as in (1.11) gives (1.5)
of Theorem 1.3. Similarly, by [29, Proposition 4.11], applying Theorem 1.6 with an
angle gap of

φ j,L = π

(
4 − κ ′ + 2 j (2 + ρ)

κ ′ − 4

)
(1.14)

gives (1.7) and with an angle gap of

φ j,R = π

(
4 − κ ′ − 2ρ + 2 j (2 + ρ)

κ ′ − 4

)
(1.15)

gives (1.8). Theorem 1.6 is proved first by computing the boundary intersection dimen-
sion for κ ∈ (0, 4) and then using SLE duality to extend to the case that κ ′ > 4. We
obtain as a corollary (when ρ = 0) the following which was first proved in [1].

Corollary 1.7 Fix κ ′ ∈ (4, 8) and let η be an SLEκ ′ process in H from 0 to ∞. Then,

almost surely

dimH(η ∩ R) = 2 −
8

κ ′ .

One of the main inputs in the proof of Theorems 1.5 and 1.6 is the following
theorem, which gives the exponent for the probability that an SLEκ(ρ) process gets
very close to a given boundary point.
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Theorem 1.8 Fix κ > 0, ρ1,R > −2, ρ2,R ∈ R such that ρ1,R + ρ2,R > κ
2 − 4. Let

η be an SLEκ(ρ1,R, ρ2,R) process with force points (0+, 1). Let

α =
1

κ
(ρ1,R + 2)

(
ρ1,R + ρ2,R + 4 −

κ

2

)
. (1.16)

For each ǫ > 0, we let τǫ = inf{t ≥ 0 : η(t) ∈ ∂ B(1, ǫ)}. We have that

P[τǫ < ∞] = ǫα+o(1) as ǫ → 0. (1.17)

By taking ρ = ρ1,R ∈ ((−2) ∨ ( κ
2 − 4), κ

2 − 2) and ρ2,R = 0, Theorem 1.8 gives
the exponent for the probability that an SLEκ(ρ) process gets close to a fixed point on
the boundary. Theorem 1.8 is proved (in somewhat more generality) in Sect. 3.1 and
it implies the upper bound of the Hausdorff dimension in Theorem 1.6. We remark
that, all results in Sect. 3.1 are independent of Imaginary Geometry. In other words,
the upper bound of the dimension in Theorem 1.6 is derived without knowledge of
Imaginary Geometry. Whereas, the lower bound, derived in Sect. 3.2, uses the inter-
action behavior of flow lines. An alternative proof to the lower bound of Theorem 1.6
for κ ∈ (8/3, 4] is given in [44] using the relationship between the SLEκ(ρ) processes
for these κ values and the Brownian loop soups.

1.3 Outline

The remainder of this article is structured as follows. In Sect. 2, we will review the
definition and important properties of the SLEκ and SLEκ(ρ) processes. We will also
describe the coupling between SLE and the Gaussian free field. Next, in Sect. 3, we
will compute the Hausdorff dimension of SLEκ(ρ) intersected with the boundary. We
will extend this to compute the dimension of the intersection of two GFF flow lines
in Sect. 4. Note that, Sect. 3 proves Theorem 1.6 and Sect. 4 proves Theorem 1.5,
and they imply Theorems 1.2–1.4. Finally, in Sect. 5 we will explain the SLE duality
describing the boundary of SLEκ ′ process before and after hitting a given boundary
point and complete the proof of Theorem 1.1 from the SLE duality and Theorem 1.5.

2 Preliminaries

We will give an overview of the SLEκ and SLEκ(ρ) processes in Sect. 2.1. Next, in
Sect. 2.2, we will give an overview of the SLE/GFF coupling and then use the coupling
to establish several useful lemmas regarding the behavior of the SLEκ and SLEκ(ρ)

processes. In Sect. 2.3, we will compute the Radon-Nikodym derivative associated with
a change of domains and perturbation of force points for an SLEκ(ρ) process. Finally,
in Sect. 2.4 we will record some useful estimates for conformal maps. Throughout,
we will make use of the following notation. Suppose that f, g are functions. We will
write f ≍ g if there exists a constant C ≥ 1 such that C−1 f (x) ≤ g(x) ≤ C f (x) for
all x . We will write f � g if there exists a constant C > 0 such that f (x) ≤ Cg(x)

and f � g if g � f .
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2.1 SLEκ and SLEκ (ρ) processes

We will now give a very brief introduction to SLE. More detailed introductions can be
found in many excellent surveys of the subject, e.g., [16,43]. Chordal SLEκ in H from
0 to ∞ is defined by the random family of conformal maps (gt ) obtained by solving
the Loewner ODE

∂t gt (z) =
2

gt (z) − Wt

, g0(z) = z (2.1)

with W =
√

κ B and B a standard Brownian motion. Write Kt := {z ∈ H : τ(z) ≤ t}
where τ(z) is the swallowing time of z defined by sup{t ≥ 0 : mins∈[0,t] |gs(z) −
Ws | > 0}. Then gt is the unique conformal map from Ht := H\Kt to H satisfying
lim|z|→∞ |gt (z) − z| = 0.

Rohde and Schramm showed that there almost surely exists a curve η (the so-called
SLE trace) such that for each t ≥ 0 the domain Ht of gt is the unbounded connected
component of H\η([0, t]), in which case the (necessarily simply connected and closed)
set Kt is called the “filling” of η([0, t]) [31]. An SLEκ connecting boundary points x

and y of an arbitrary simply connected Jordan domain can be constructed as the image
of an SLEκ on H under a conformal transformation ϕ : H → D sending 0 to x and
∞ to y (The choice of ϕ does not affect the law of this image path, since the law of
SLEκ on H is scale invariant). For κ ∈ [0, 4], SLEκ is simple and, for κ > 4, SLEκ

is self-intersecting [31]. The dimension of the path is 1 + κ
8 for κ ∈ [0, 8] and 2 for

κ > 8 [3].
An SLEκ(ρ

L
; ρ

R
) process is a generalization of SLEκ in which one keeps track

of additional marked points which are called force points. These processes were first
introduced in [20, Section 8.3]. Fix x L = (xℓ,L < · · · < x1,L ≤ 0) and x R = (0 ≤
x1,R < · · · < xr,R). We associate with each xi,q for q ∈ {L , R} a weight ρi,q ∈ R.
An SLEκ(ρ

L
; ρ

R
) process with force points (x L ; x R) is the measure on continuously

growing compact hulls Kt generated by the Loewner chain with Wt replaced by the
solution to the system of SDEs:

dWt =
ℓ∑

i=1

ρi,L

Wt − V
i,L
t

dt +
r∑

i=1

ρi,R

Wt − V
i,R
t

dt +
√

κd Bt ,

dV
i,q
t =

2

V
i,q
t − Wt

dt, V
i,q
0 = xi,q , i ∈ N, q ∈ {L , R}.

(2.2)

It is explained in [26, Section 2] that for all κ > 0, there is a unique solution to (2.2)
up until the continuation threshold is hit — the first time t for which either

∑

i :V i,L
t =Wt

ρi,L ≤ −2 or
∑

i :V i,R
t =Wt

ρi,R ≤ −2.
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The almost sure continuity of the SLEκ(ρ) processes is proved in [26, Theorem1.3].
Let

ρ j,q =
j∑

i=0

ρi,q for q ∈ {L , R} and j ∈ N (2.3)

with the convention that ρ0,L = ρ0,R = 0, x0,L = 0−, xℓ+1,L = −∞, x0,R = 0+,
and xr+1,R = +∞. The value of ρk,R determines how the process interacts with the
interval (xk,R, xk+1,R) (and likewise when R is replaced with L). In particular:

Lemma 2.1 Suppose that η is an SLEκ(ρ
L
; ρ

R
) process in H from 0 to ∞ with force

points located at (x L ; x R).

(i) If ρk,R ≥ κ
2 − 2, then η almost surely does not hit (xk,R, xk+1,R).

(ii) If κ ∈ (0, 4) and ρk,R ∈ ( κ
2 − 4,−2], then η can hit (xk,R, xk+1,R) but cannot

be continued afterwards.

(iii) If κ > 4 and ρk,R ∈ (−2, κ
2 − 4], then η can hit (xk,R, xk+1,R) and be continued

afterwards. Moreover, η ∩ (xk,R, xk+1,R) is almost surely an interval.

(iv) If ρk,R ∈ ((−2)∨ ( κ
2 −4), κ

2 −2) then η can hit and bounce off of (xk,R, xk+1,R).

Moreover, η ∩ (xk,R, xk+1,R) has empty interior.

Proof See [26, Remark 5.3, Theorem 1.3] as well as [7, Lemma 15]. ⊓⊔

In this article, it will also be important for us to consider radial SLEκ and SLEκ(ρ)

processes. These are typically defined using the radial Loewner equation. On the unit
disk D, this is described by the ODE

∂t gt (z) = −gt (z)
gt (z) + Wt

gt (z) − Wt

, g0(z) = z (2.4)

where Wt is a continuous function which takes values in ∂D. For w ∈ ∂D, radial SLEκ

starting from w is the growth process associated with (2.4) where Wt = wei
√

κ Bt

and B is a standard Brownian motion. For w, v ∈ ∂D, radial SLEκ(ρ) with starting
configuration (w, v) is the growth process associated with the solution of (2.4) where
the driving function solves the SDE

dWt = −
κ

2
Wt dt + i

√
κWt d Bt −

ρ

2
Wt

Wt + Vt

Wt − Vt

dt, W0 = w (2.5)

with Vt = gt (v), the force point. The continuity of the radial SLEκ(ρ) processes for
ρ > −2 can be extracted from the continuity of chordal SLEκ(ρ) processes given in
[26, Theorem1.3]; this is explained in [29, Section 2.1]. The value of ρ for a radial
SLEκ(ρ) process has the same interpretation as in the setting of chordal SLEκ(ρ)

explained in Lemma 2.1. That is, the processes are boundary filling for ρ ∈ (−2, κ
2 −4]

(for κ > 4), boundary hitting but not filling for ρ ∈ ((−2) ∨ ( κ
2 − 4), κ

2 − 2), and
boundary avoiding for ρ ≥ κ

2 − 2. In particular, by the conformal Markov property
for radial SLEκ(ρ), such processes are self-intersecting for ρ ∈ (−2, κ

2 − 2) and fill
their own outer boundary for ρ ∈ (−2, κ

2 − 4] (κ > 4). The latter means that, for any
time t , the outer boundary of the range of η up to time t is almost surely contained in
η([t,∞)).
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2.1.1 Martingales

From the form of (2.2) and the Girsanov theorem, it follows that the law of an SLEκ(ρ)

process can be constructed by reweighting the law of an ordinary SLEκ process by
a certain local martingale, at least until the first time τ that W hits one of the force
points V i,q [42]. It is shown in [41, Theorem 6, Remark 7] that this local martingale
can be expressed in the following more convenient form. Suppose x1,L < 0 < x1,R

and define

Mt =
∏

i,q

∣∣g′
t (xi,q)

∣∣
(4−κ+ρi,q )ρi,q

4κ ×
∏

i,q

∣∣∣Wt − V
i,q
t

∣∣∣
ρi,q
κ

×
∏

(i,q) �=(i ′,q ′)

∣∣∣V i,q
t − V

i ′,q ′

t

∣∣∣
ρi,q ρ

i ′,q′
2κ

.

(2.6)

Then Mt is a local martingale and the law of a standard SLEκ process weighted by
M (up to time τ , as above) is equal to that of an SLEκ(ρ

L
; ρ

R
) process with force

points (x L ; x R). We remark that there is an analogous martingale in the setting of
radial SLEκ(ρ) processes [41, Equation 9], a special case of which we will describe
and make use of in Sect. 4.

One application of this that will be important for us is as follows. Suppose that η is
an SLEκ(ρL ; ρR) process with only two force points xL < 0 < xR . If we weight the
law of η by the local martingale

M L
t = |Wt − V L

t |
κ−4−2ρL

κ × |V L
t − V R

t |
(κ−4−2ρL )ρR

2κ (2.7)

then the law of the resulting process is that of an SLEκ(ρ̂L ; ρR) process where ρ̂L =
κ −4−ρL . If ρL < κ

2 −2 so that ρ̂L > κ
2 −2, Lemma 2.1 implies that the reweighted

process almost surely does not hit (−∞, xL).

2.2 SLE and the GFF

We are now going to give a brief overview of the coupling between SLE and the GFF.
We refer the reader to [26, Sections 1, 2] as well as [27, Section 2] for a more detailed
overview. Throughout, we fix κ ∈ (0, 4) and κ ′ = 16/κ > 4.

Suppose that D ⊆ C is a given domain. The Sobolev space H1
0 (D) is the Hilbert

space closure of C∞
0 (D) with respect to the Dirichlet inner product

( f, g)∇ =
1

2π

∫
∇ f (x) · ∇g(x)dx . (2.8)

The zero-boundary Gaussian free field (GFF) h on D is given by

h =
∑

n

αn fn (2.9)
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where (αn) is a sequence of i.i.d. N (0, 1) random variables and ( fn) is an orthonormal
basis for H1

0 (D). The sum (2.9) does not converge in H1
0 (D) (or any space of functions)

but rather in an appropriate space of distributions. The GFF h with boundary data f

is given by taking the sum of the zero-boundary GFF on D and the function F in D

which is harmonic and is equal to f on ∂ D. See [35] for a detailed introduction.
Let

χ =
2

√
κ

−
√

κ

2
, λ =

π
√

κ
, and λ′ =

π
√

κ ′
=

π

4

√
κ = λ −

π

2
χ. (2.10)

Suppose that η is an SLEκ(ρ
L
; ρ

R
) process in H from 0 to ∞ with force points

(x L ; x R), let (gt ) be the associated Loewner flow, W its driving function, and ft =
gt − Wt . Let h be a GFF on H with zero boundary values. It is shown in [8,10,12,25,
34,36,40] that there exists a coupling (η, h) such that the following is true. Suppose
τ is any stopping time for η. Let φ0

t be the function which is harmonic in H with
boundary values [(recall (2.3)]

{
−λ(1 + ρ j,L) if x ∈ [ ft (x j+1,L), ft (x j,L))

λ(1 + ρ j,R) if x ∈ ( ft (x j,R), ft (x j+1,R)].

Let
φt (z) = φ0

t ( ft (z)) − χ arg f ′
t (z).

Then the conditional law of (h +φ0)|H\Kτ given Kτ is equal to the law of h ◦ fτ +φτ .
In this coupling, η is almost surely determined by h [8,26,40]. For κ ∈ (0, 4), η has
the interpretation as being the flow line of the (formal) vector field ei(h+φ0)/χ [36]
starting from 0; we will refer to η simply as a flow line of h + φ0. See Fig. 1 for an
illustration of the boundary data. The notation x

∼
is used to indicate that the boundary

data for the field is given by x +χ · winding where “winding” refers to the winding of
the path or domain boundary. For curves or domain boundaries which are not smooth,

λ(1+ρ1,R)−λ(1+ρ1,L)

η

−λ λ

x1,L x1,R x2,R

λ(1+ρ1,R+ρ2,R)

x2,L

−λ(1+ρ1,L+ρ2,L)

−λ λ

Fig. 1 Suppose that h is a GFF on H whose boundary data is as indicated above. Then the flow line η of
h starting from 0 is an SLEκ (ρ2,L , ρ1,L ; ρ1,R , ρ2,R) process (κ ∈ (0, 4)) from 0 to ∞ with force points
located at x2,L < x1,L < 0 < x1,R < x2,R . The conditional law of h given η (or η up to a stopping
time) is that of a GFF off of η with the boundary data as illustrated on η; the notation x

∼
is shorthand for

x + χ · winding and is explained in detail in [26, Figures 1.9, 1.10]. The boundary data for the coupling of
SLEκ (ρ) with many force points arises as the obvious generalization of the above
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−λ (1+ρ1,R)λ (1+ρ1,L)

η

λ −λ

x1,L x1,R x2,R

−λ (1+ρ1,R+ρ2,R)

x2,L

λ (1+ρ1,L+ρ2,L)

λ −λ

λ −λ

Fig. 2 Suppose that h is a GFF on H whose boundary data is as indicated above. Then the counterflow line
η′ of h starting from 0 is an SLEκ ′ (ρ′

2,L
, ρ′

1,L
; ρ′

1,R
, ρ′

2,R
) process (κ ′ > 4) from 0 to ∞ with force points

located at x2,L < x1,L < 0 < x1,R < x2,R . The conditional law of h given η′ (or η′ up to a stopping time)
is that of a GFF off of η′ with the indicated boundary data; the notation x

∼
is shorthand for x + χ · winding

and is explained in detail in [26, Figures 1.9, 1.10]. The boundary data for the coupling of SLEκ ′ (ρ′) with
many force points arises as the obvious generalization of the above

it is not possible to make sense of the winding along the curve or domain boundary.
However, the harmonic extension of the winding does make sense. This notation as
well as this point are explained in detail in [26, Figures 1.9, 1.10]. When κ = 4, η has
the interpretation of being the level line of h + φ0 [40]. Finally, when κ ′ > 4, η′ has
the interpretation of being a “tree of flow lines” which travel in the opposite direction
of η′ [26,29]. For this reason, η′ is referred to as a counterflow line of h + φ0 in this
case.

If h were a smooth function, η a flow line of the vector field eih/χ , and ϕ a conformal
map, then ϕ(η) is a flow line of ei h̃/χ where

h̃ = h ◦ ϕ−1 − χ arg(ϕ−1)′; (2.11)

see [26, Figure 1.6]. The same is true when h is a GFF and this formula determines
the boundary data for coupling the GFF with an SLEκ(ρ

L
; ρ

R
) process on a domain

other than H. See also [26, Figure 1.9]. SLEκ flow lines and SLEκ ′ , κ ′ = 16/κ ∈
(4,∞), counterflow lines can be coupled with the same GFF. In order for both paths
to transform in the correct way under the application of a conformal map, one thinks
of the flow lines as being coupled with h as described above and the counterflow lines
as being coupled with −h. This is because χ(κ ′) = −χ(κ); see the discussion after
the statement of [26, Theorem 1.1]. This is why the signs of the boundary data in Fig. 2
are reversed in comparison to that in Fig. 1.

The theory of how the flow lines, level lines, and counterflow lines of the GFF
interact with each other and the domain boundary is developed in [26,29]. See, in par-
ticular, [26, Theorem 1.5]. The important facts for this article are as follows. Suppose
that h is a GFF on H with piecewise constant boundary data. For each θ ∈ R and
x ∈ ∂H, let ηx

θ be the flow line of h starting at x with angle θ (i.e., the flow line of
h + θχ starting at x). If θ1 < θ2 and x1 ≥ x2 then η

x1
θ1

almost surely stays to the right
of η

x2
θ2

. If θ1 = θ2, then η
x1
θ1

may intersect ηx2
θ2

and, upon intersecting, the two flow lines
merge and never separate thereafter. See Fig. 3. Finally, if θ2 +π > θ1 > θ2, then η

x1
θ1

may intersect η
x2
θ2

and, upon intersecting, crosses and possibly subsequently bounces
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x2

ηx2

θ2
ηx1

θ1

−λ −θ2χ λ −θ2χ

−λ −θ1χ λ −θ1χ

x1

· · ·· · · · · ·

x2

ηx2

θ
ηx1

θ

−λ − λ − −λ− λ −

x1

· · ·· · · · · ·

(a) (b)

θχ θχ θχ θχ

Fig. 3 Suppose that h is a GFF on H with piecewise constant boundary data and x1, x2 ∈ ∂H with x2 ≤ x1.
Fix angles θ1, θ2 and, for i = 1, 2, let η

xi
θi

be the flow line of h with angle θi starting from xi . If θ2 > θ1,

then η
x2
θ2

almost surely stays to the left of (but may bounce off of) η
x1
θ1

. If θ1 = θ2 = θ , then η
x1
θ

merges

with η
x2
θ

upon intersecting after which the paths never separate

x2

ηx2

θ2

ηx1

θ1

−λ −θ2χ λ −θ2χ

−λ −θ1χ λ −θ1χ

x1

· · ·· · · · · ·

ϕ

· · · · · ·−λ λ−θ2 −θ2χχ

ϕ(ηx1

θ1
)

−λ −θ1χ λ −θ1χ

ϕ(x1)

ηx2

θ2
(τ2)

ϕ(ηx2

θ2
(τ2))

Fig. 4 Assume that we have the same setup as in Fig. 3 and that τ2 is a stopping time for η
x2
θ2

. Then we can

compute the conditional law of η
x1
θ1

given η
x2
θ2

|[0,τ2]. Let ϕ be a conformal map which takes the unbounded

connected component of H\ηx2
θ2

([0, τ2]) to H and let h2 = h ◦ ϕ−1 − χ arg(ϕ−1)′. Then ϕ(η
x1
θ1

) is the
flow line of h2 starting from ϕ(x1) with angle θ1 and we can read off its conditional law from the boundary
data of h2 as in Fig. 1

off of η
x2
θ2

but never crosses back. It is possible to compute the conditional law of one
flow line given the realization of several others; see Fig. 4. For simplicity, we use ηθ

to indicate ηx
θ when x = 0. If η′ is a counterflow line coupled with the GFF, then its

outer boundary is described in terms of a pair of flow lines starting from the terminal
point of η′ [7,8,26,29]; see Fig. 5.

We are now going to use the SLE/GFF coupling to collect several useful lemmas
regarding the behavior of SLEκ(ρ) processes.

Lemma 2.2 Fix κ > 0. Suppose that (xn,L) (resp. (xn,R)) is a sequence of negative

(resp. positive) real numbers converging to xL ≤ 0− (resp. xR ≥ 0+) as n → ∞.

For each n, suppose that (W n, V n,L , V n,R) is the driving triple for an SLEκ(ρL ; ρR)

process in H with force points located at (xn,L ≤ 0 ≤ xn,R). Then (W n,L , V n,L , V n,R)

converges weakly in law with respect to the local uniform topology to the driving triple
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−i

i

η′

ηL

ηR

−λ+ 3
2
πχ−λ′ρ′

L
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

λ−
3
2
πχ+λ′ρ′

R
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

−λ′(1+ρ′
L)

✿✿✿✿✿✿✿✿✿✿

λ′(1+ρ′
R)

✿✿✿✿✿✿✿✿✿

−λ′−
1
2
πχ

✿✿✿✿✿✿✿✿✿

λ′−
1
2
πχ

✿✿✿✿✿✿✿✿

−λ′+ 1
2
πχ

✿✿✿✿✿✿✿✿✿

λ′+ 1
2
πχ

✿✿✿✿✿✿✿✿

−λ′

✿✿✿ λ′
✿

λ
✿

−λ
✿✿✿

Fig. 5 Let h be a GFF on [−1, 1]2 with the illustrated boundary data. Then the counterflow line η′ of h from
i to −i is an SLEκ ′ (ρ′

L
; ρ′

R
) process (κ ′ > 4) with force points located at (i)−, (i)+ (immediately to the

left and right of i). The left (resp. right) boundary ηL (resp. ηR ) of η′ is given by the flow line of h with angle
π
2 (resp. −π

2 ) starting from −i and targeted at i ; these paths can be drawn if ρ′
L
, ρ′

R
≥ κ ′

2 − 4. Explicitly,
ηL (resp. ηR ) is an SLEκ (κ −4+ κ

4 ρ′
L
; κ

2 −2 + κ
4 ρ′

R
) (resp. SLEκ ( κ

2 −2 + κ
4 ρ′

L
; κ −4+ κ

4 ρ′
R
)) process

in [−1, 1]2 from −i to i with force points located at (−i)−, (−i)+ (κ = 16/κ ′ ∈ (0, 4)). The cut-set of
η′ is given by ηL ∩ ηR and η′ ∩ ∂([−1, 1]2) = (ηL ∪ ηR) ∩ ∂([−1, 1])2. The same holds if [−1, 1]2 is
replaced by a proper, simply-connected domain and the boundary data of the GFF is transformed according

to (2.11). Finally, if ρ′
L
, ρ′

R
≥ κ ′

2 − 4, then conditional law of η′ given ηL and ηR is independently that of

an SLEκ ′ ( κ ′
2 − 4; κ ′

2 − 4) in each of the bubbles of [−1, 1]2\(ηL ∪ ηR) which lie to the right of ηL and
to the left of ηR

(W, V L , V R) of an SLEκ(ρL ; ρR) process with force points located at (xL ≤ 0 ≤ xR)

as n → ∞. The same likewise holds in the setting of multi-force-point SLEκ(ρ)

processes.

Proof See [26, Section 2]. ⊓⊔

Lemma 2.3 Fix κ > 0. Suppose that η is an SLEκ(ρ
L
; ρ

R
) process in H from 0 to

∞ with force points located at (x L ; x R) with x1,L = 0− and x1,R = 0+ (possibly

by taking ρ1,q = 0 for q ∈ {L , R}). Assume that ρ1,L , ρ1,R > −2. Suppose that

γ : [0, T ] → R is any deterministic simple curve in H starting from 0 and otherwise

does not hit ∂H. Fix ǫ > 0, let A(ǫ) be the ǫ neighborhood of γ ([0, T ]), and define

stopping times

σ1 = inf{t ≥ 0 : |η(t) − γ (T )| ≤ ǫ} and σ2 = inf{t ≥ 0 : η(t) /∈ A(ǫ)}.

Then P[σ1 < σ2] > 0.

Proof See Fig. 6 for an illustration. We will use the terminology “flow line”, but the
proof holds for κ > 0. By running η for a very small amount of time and using that

123



Intersections of SLE Paths: the double and cut point… 59

A( )

0

η

γ(T )

γ

Fig. 6 Suppose that η is an SLEκ (ρ
L
; ρ

R
) process in H from 0 to ∞ with x1,L = 0− and x1,R = 0+

with ρ1,L , ρ1,R > −2 and fix any deterministic curve γ : [0, T ] → H. For each ǫ > 0, let A(ǫ) be the ǫ

neighborhood of γ . We show in Lemma 2.3 that with positive probability, η gets within distance ǫ of γ (T )

before leaving A(ǫ)

P[Wt = V
1,L
t ] = P[Wt = V

1,R
t ] = 0 for all t > 0 before the continuation threshold is

reached [26, Section 2] and then conformally mapping back, we may assume without
loss of generality that ρ1,L = ρ1,R = 0. Let U be a Jordan domain which contains
γ ([0, T ]) and is contained in A(ǫ). Assume, moreover, that ∂U ∩ [x2,L , x2,R] is an
interval, say [yL , yR], which contains 0. Suppose κ ∈ (0, 4) and let h be a GFF
on H whose boundary data has been chosen so that its flow line η from 0 is an
SLEκ(ρ

L
; ρ

R
) process as in the statement of the lemma. Pick a point x0 ∈ ∂U with

|γ (T ) − x0| ≤ ǫ. Let h̃ be a GFF on U whose boundary conditions are chosen
so that its flow line η̃ starting from 0 is an SLEκ process from 0 to x0. Let σ̃1 =
inf{t ≥ 0 : |̃η(t) − γ (T )| ≤ ǫ}. Since η̃|(0,̃σ1] almost surely does not hit ∂U , it
follows that X̃ ≡ dist(̃η|[0,̃σ1], ∂U\[yL , yR]) > 0 almost surely. For each δ > 0,
let Uδ = {x ∈ U : dist(x, ∂U\[yL , yR]) > δ}. Then the laws of h|Uδ

and h̃|Uδ
are

mutually absolutely continuous [26, Proposition 3.2]. Thus the result follows since
we can pick δ > 0 sufficiently small so that P[X̃ > δ] > 0. This proves the result for
κ ∈ (0, 4). For κ ′ > 4, one chooses the boundary data for h̃ so that the counterflow
line is an SLEκ ′( κ ′

2 − 2; κ ′

2 − 2) process (recall Lemma 2.1). ⊓⊔

Lemma 2.4 Fix κ > 0. Suppose that η is an SLEκ(ρL ; ρR) process in H from 0 to ∞
with force points located at (xL ≤ 0 ≤ xR) and with ρR > −2. Let γ : [0, 1] → H

be the unit segment connecting 0 to i . Fix ǫ > 0 and define stopping times σ1, σ2 as

in Lemma 2.3. For each x L
0 < 0 there exists p0 = p0(x L

0 , ǫ) > 0 such that for every

xL ∈ (−∞, x L
0 ] and xR ≥ 0, we have that

P[σ1 < σ2] ≥ p0. (2.12)

If ρL > −2, then there exists p0 = p0(ǫ) such that (2.12) holds for x L
0 = 0−.

Proof We know that this event has positive probability for each fixed choice of xL , xR

as above by Lemma 2.3. Therefore the result follows from Lemma 2.2 and the results
of [16, Section 4.7]. ⊓⊔
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A( )

0 xk,R xk+1,R

η

γ

Fig. 7 Suppose that η is an SLEκ (ρ
L
; ρ

R
) process in H from 0 to ∞ with x1,L = 0− and x1,R = 0+

with ρ1,L , ρ1,R > −2 and fix any deterministic curve γ : [0, T ] → H which connects 0 to [xk,R , xk+1,R ]
where k is such that

∑k
j=1 ρ j,R ∈ ( κ

2 − 4, κ
2 − 2). For each ǫ > 0, let A(ǫ) be the ǫ neighborhood of γ .

We show in Lemma 2.5 that with positive probability, η hits [xk,R , xk+1,R ] before leaving A(ǫ)

Lemma 2.5 Fix κ > 0. Suppose that η is an SLEκ(ρ
L
; ρ

R
) process in H from 0 to

∞ with force points located at (x L ; x R) with x1,L = 0− and x1,R = 0+ (possibly by

taking ρ1,q = 0 for q ∈ {L , R}). Assume that ρ1,L , ρ1,R > −2. Fix k ∈ N such that

ρ =
∑k

j=1 ρ j,R ∈ ( κ
2 − 4, κ

2 − 2) and ǫ > 0. There exists p1 > 0 depending only on

κ, maxi,q |ρi,q |, ρ, and ǫ such that if |x2,q | ≥ ǫ for q ∈ {L , R}, xk+1,R − xk,R ≥ ǫ,

and xk,R ≤ ǫ−1 then the following is true. Suppose that γ is a simple curve starting

from 0, terminating in [xk,R, xk+1,R], and otherwise does not hit ∂H. Let A(ǫ) be the

ǫ neighborhood of γ ([0, T ]) and let

σ1 = inf{t ≥ 0 : η(t) ∈ (xk,R, xk+1,R)} and σ2 = inf{t ≥ 0 : η(t) /∈ A(ǫ)}.

Then P[σ1 < σ2] ≥ p1.

Proof See Fig. 7 for an illustration. We will use the terminology “flow line”, but the
proof holds for κ > 0. Arguing as in the proof of Lemma 2.3, we may assume without
loss of generality that ρ1,L = ρ1,R = 0. Let U be a Jordan domain which contains
γ and is contained in A(ǫ). Assume, moreover, that ∂U ∩ [x2,L , x2,R] is an interval
which contains 0 and ∂U ∩ [xk,R, xk+1,R] is also an interval, say [yL , yR]. Suppose
κ ∈ (0, 4). Let h be a GFF on H whose boundary data has been chosen so that its flow
line η from 0 is an SLEκ(ρ

L
; ρ

R
) process as in the statement of the lemma. Let h̃ be a

GFF on U whose boundary conditions are chosen so that its flow line η̃ starting from
0 and targeted at yR is an SLEκ(ρ) process with a single force point located at yL with
ρ as in the statement of the lemma. Let σ̃1 be the first time that η̃ hits [yL , yR]. Since
η̃|(0,̃σ1] almost surely does not hit ∂U\[yL , yR], it follows that

dist(̃η|[0,̃τ ], ∂U\([x2,L , x2,R] ∪ [yL , yR])) > 0

almost surely. Since η̃ almost surely hits [yL , yR], the assertion follows using the same
absolute continuity argument for GFFs as in the proof of Lemma 2.3. As in the proof of
Lemma 2.3, one proves the result for κ ′ > 4 by taking the boundary conditions for h̃ on
U so that the counterflow line starting from 0 is an SLEκ ′( κ ′

2 −2; κ ′

2 −2, ρ − ( κ ′

2 −2))

process. ⊓⊔

123



Intersections of SLE Paths: the double and cut point… 61

–1 1xL
0 xL

xR

η

0

Fig. 8 Suppose that η is an SLEκ (ρL ; ρR) process in H starting from 0 to ∞ with force points located
at xL ≤ 0 ≤ xR with ρL ∈ ( κ

2 − 4, κ
2 − 2) and ρR > −2. We show in Lemma 2.6 that for each choice

of x L
0 ∈ (−1, 0) there exists p2 = p2(x L

0 ) ∈ [0, 1) such that the probability that η hits ∂ B(0, 1) before

hitting (−∞, xL ] is at most p2 uniformly in xL ∈ [x L
0 , 0]

Lemma 2.6 Fix κ > 0. Suppose that η is an SLEκ(ρL ; ρR) process in H from 0 to ∞
with force points located at (xL ≤ 0 ≤ xR) with ρL ∈ ( κ

2 − 4, κ
2 − 2) and ρR > −2.

For each x L
0 ∈ (−1, 0) there exists p2 = p2(x L

0 ) ∈ [0, 1) such that the following is

true. Fix xL ∈ [x L
0 , 0] and define stopping times

σ1 = inf{t ≥ 0 : |η(t)| = 1} and τ L
0 = inf{t ≥ 0 : η(t) ∈ (−∞, xL ]}.

Then we have that

P[σ1 ≤ τ L
0 ] ≤ p2.

Proof See Fig. 8. Lemma 2.5 implies that this event has probability strictly smaller
than 1 for each fixed choice of xL , xR as above. Therefore the result follows from
Lemma 2.2. ⊓⊔

2.3 Radon-Nikodym derivative

Following [7, Lemma 13], we will now describe the Radon-Nikodym derivative
between SLEκ(ρ) processes arising from a change of domains and the locations and
weights of the force points. Let c = (D, z0, x L , x R, z∞) be a configuration consisting
of a Jordan domain D in C with ℓ + r + 2 marked points on ∂ D. An SLEκ(ρ

L
; ρ

R
)

process η with configuration c is given by the image of an SLEκ(ρ
L
; ρ

R
) process η̃ in

H under a conformal transformation ϕ taking H to D with ϕ(0) = z0, ϕ(∞) = z∞,
and which takes the force points of η̃ to those of η.

Suppose that c = (D, z0, x L , x R, z∞) and c̃ = (D̃, z0, x̃ L , x̃ R, z̃∞) are two con-
figurations such that D̃ agrees with D in a neighborhood U of z0. Let μU

c denote the
law of an SLEκ(ρ

L
; ρ

R
) process in c stopped at the first time τ that it exits U and

define μU
c̃ analogously. Let

ρ∞ = κ − 6 −
∑

i,q

ρi,q
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and

Z(c) = HD(z0, z∞)−
ρ∞
2κ ×

∏

i,q

HD(z0, xi,q)−
ρi,q
2κ

×
∏

(i,q) �=(i ′,q ′)

HD(xi,q , xi ′,q ′)−
ρi,q ρ

i ′,q′
4κ ×

∏

i,q

HD(xi,q , z∞)−
ρi,q ρ∞

4κ (2.13)

where HD is the Poisson excursion kernel of the domain D. We also let

ξ =
(6 − κ)(8 − 3κ)

2κ
,

cτ = (D\Kτ , η(τ ), xτ
L , xτ

R, z∞),

m(D; K , K ′) = μloop (ℓ : ℓ ⊆ D, ℓ ∩ K �= ∅, ℓ ∩ K ′ �= ∅

)
,

where Kτ is the compact hull associated with η([0, τ ]) and μloop the Brownian loop
measure on unrooted loops in C (see [22] for more on the Brownian loop measure).
Also, xτ

i,q = xi,q if xi,q is not swallowed by time τ , otherwise xτ
i,L (resp. xτ

i,R) is the
leftmost (resp. rightmost) point of ∂Kτ ∩∂ D in the clockwise (resp. counterclockwise)
arc on ∂ D from z0 to z∞,.

The following result is proved in [7, Lemma 13] in the case that U is at a positive
distance from the marked points of c, c̃ other than z0. We are now going to use the
SLE/GFF coupling described in the previous section to extend the result to the case
that U is at a positive distance from the marked points of c, c̃ which are different.

Lemma 2.7 Assume that we have the setup described just above. Suppose that U is

at a positive distance from those marked points of c, c̃ which differ. The probability

measures μU
c̃ and μU

c are mutually absolutely continuous and

dμU
c̃

dμU
c

(η) =
(

Z (̃cτ )/Z (̃c)

Z(cτ )/Z(c)

)
exp

(
− ξm(D; Kτ , D\D̃) + ξm(D̃; Kτ , D̃\D)

)

(2.14)

Proof We are first going to prove the result in the case that x1,L �= z0 �= x1,R .
We know that we can couple η ∼ μU

c (resp. η̃ ∼ μU
c̃ ) with a GFF h (resp. h̃) on

D (resp. D̃) so that η (resp. η̃) is the flow line of h (resp. h̃) starting from z0. By
our hypotheses, the boundary data of h and h̃ agree with each other in the boundary
segments which are also contained in ∂U . Consequently, the laws of h|U and h̃|U
are mutually absolutely continuous [26, Proposition 3.2]. Since η (resp. η̃) is almost
surely determined by h (resp. h̃) [26, Theorem 1.2], it follows that μU

c and μU
c̃ are

mutually absolutely continuous. Thus, to complete the proof, we just need to identify
f (η) := (dμU

c̃ /dμU
c )(η). By [7, Lemma13], we know that f (η) is equal to the right

side of (2.14) for paths η which intersect the boundary only in the counterclockwise
segment of ∂ D from x1,L to x1,R (and this only happens for κ > 4). Therefore, to
complete the proof, we need to show that the same equality holds for paths η which
intersect the other parts of the domain boundary. Note that the right hand side of (2.14)
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is a continuous function of η with respect to the uniform topology on paths. Therefore,
to complete the proof, it suffices to show that the Radon-Nikodym derivative f (η) is
also continuous with respect to the same topology. Indeed, then the result follows since
both functions are continuous and agree with each other on a dense set of paths. We are
going to prove that this is the case using that η, η̃ are coupled with h, h̃, respectively.

Let νU
c (resp. νU

c̃ ) denote the joint law of (η, h|U ) (resp. (̃η, h̃|U )). As explained
above, νU

c and νU
c̃ are mutually absolutely continuous. Moreover, the Radon-Nikodym

derivative dνU
c̃ /dνU

c is a function of h alone since h, h̃ almost surely determine η, η̃,
respectively. Let νU

c (· | ·) (resp. νU
c̃ (· | ·)) denote the conditional law of h|U given η

(resp. h̃|U given η̃). Note that

η �→
dνU

c̃ (· | η)

dνU
c (· | η)

is continuous in η with respect to the uniform topology on continuous paths. Let νU
c,h(·)

(resp. νU
c̃,h(·)) denote the law of h|U (resp. h̃|U ). Then we have that

dνU
c̃,h

dνU
c,h

(·) =
dνU

c̃

dνU
c

(η, ·) =
dνU

c̃

dνU
c

(· | η) ×
dμU

c̃

dμU
c

(η) =
dνU

c̃

dνU
c

(· | η) × f (η).

Rearranging, we see that

f (η) =
dνU

c̃,h(·)
dνU

c,h(·)
×

dνU
c (· | η)

dνU
c̃ (· | η)

(the right side does not depend on the choice of · since the left side does not depend
on ·). This implies the desired result in the case that x1,L �= z0 �= x1,R since the latter
factor on the right side is continuous in η, as we remarked above. The result follows
in the case that one or both of x1,L , x1,R agrees with z0 since the laws converge as one
or both of x1,L , x1,R converge to z0 (Lemma 2.2). ⊓⊔

Lemma 2.8 Assume that we have the same setup as in Lemma 2.7 with D = H,

D̃ ⊆ H, U ⊆ H bounded, and z0 = 0. Fix ζ > 0 and suppose that the distance

between U and H\D̃ is at least ζ , the force points of c, c̃ in U are identical, the

corresponding weights are also equal, and the force points which are outside of U are

at distance at least ζ from U. There exists a constant C ≥ 1 depending on U, ζ , κ ,

and the weights of the force points such that

1

C
≤

dμU
c̃

dμU
c

≤ C.

Proof Note that 0 ≤ m(H; Kτ , H\D̃) ≤ m(H; U, H\U ζ ) where U ζ is the ζ -
neighborhood of U . Moreover, we have that m(H; U, H\U ζ ) is bounded from above
by a finite constant depending on U and ζ since the mass according to μloop of the loops
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which are contained in H, intersect U , and have diameter at least ζ is finite [14, Corol-
lary 4.6]. Consequently, by Lemma 2.7, we only need to bound the quantity Z (̃cτ )/Z (̃c)

Z(cτ )/Z(c)
.

Recall from (2.13) that the terms in Z (̃cτ )/Z (̃c)
Z(cτ )/Z(c)

are ratios of terms of the form

HX (u, v) where X is one of H, Hτ , D̃, D̃τ and u, v are two marked points on the
boundary of X . We will complete the proof by considering several cases depending
on the location of the marked points.

Case 1 At least one marked point is outside of U ζ . This is the case handled in the
proof of [7, Lemma 14].

Case 2 Both marked points u, v are contained in U and u �= v. It is enough to bound
from above and below the ratios:

A =
HD̃(x, y)

HH(x, y)
and B =

HD̃τ
(xτ , yτ )

HHτ (xτ , yτ )

where x, y ∈ ∂U ∩ R are distinct and xτ , yτ ∈ ∂Hτ ∩ U are distinct.
We can bound A as follows. Let ϕ : D̃ → H be the unique conformal transforma-

tion with ϕ(x) = x , ϕ(y) = y, and ϕ′(x) = 1. Then A = |ϕ′(y)| which, by [20,
Proposition 4.1], is equal to the mass of those Brownian excursions in H connecting x

and y which avoid H\D̃. We will write q(H, x, y, H\D̃) for this quantity. Since this is
given by a probability, we have that |ϕ′(y)| ≤ 1 and it follows that |ϕ′(y)| is bounded
from below by q(H, x, y, U ζ ) > 0. This lower bound is a positive continuous function
in x, y ∈ ∂U ∩ ∂H hence yields a uniform lower bound. Consequently, A is bounded
from both above and below.

Similarly, B is equal to the mass q(H\Kτ , xτ , yτ , H\D̃) of those Brownian
excursions in H\Kτ which connect xτ and yτ and avoid H\D̃. As before, this quan-
tity is bounded from above by 1. We will now establish the lower bound. Let g

be the conformal map from H\Kτ onto H which sends the triple (xτ , yτ ,∞) to
(0, 1,∞). Note that g can be extended to C\(Kτ ∪ K̄τ ) by Schwarz reflection where
K̄τ = {z ∈ C : z̄ ∈ Kτ }. We will view g as such an extension. Then it is clear that

q(H\Kτ , xτ , yτ , H\D̃) ≥ q(H\Kτ , xτ , yτ , H\U ζ )

= q(H, 0, 1, H\g(U ζ )).

Note that q(H, 0, 1, H\g(U ζ )) is a continuous functional on compact hulls K inside
U equipped with the Hausdorff metric. Indeed, suppose that (Kn) is a sequence of
compact hulls inside U converging towards K in the Hausdorff metric and, for each
n, let gn be the corresponding conformal map. Then gn converges to g uniformly
away from K ∪ K̄ . In particular, gn(U

ζ ) converges to g(U ζ ) in Hausdorff metric.
Let φn (resp. φ) be the conformal map from H\gn(U

ζ ) (resp. H\g(U ζ )) onto H

which fixes 0, 1 and has derivative 1 at 1. Then φ′
n(0) converges to φ′(0). Thus

q(H, 0, 1, H\gn(U ζ )) = φ′
n(0) converges to q(H, 0, 1, H\g(U ζ )) = φ′(0) which

explains the continuity of q(H, 0, 1, H\g(U ζ )) in K . Since the set of compact hulls
inside U endowed with Hausdorff metric is compact, there exists q0 > 0 depending
only on U and ζ such that
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q(H\Kτ , xτ , yτ , H\D̃) ≥ q(H, 0, 1, H\g(U ζ )) ≥ q0.

Case 3 A single marked point u contained in U . The ratios which involve terms of
the form HX (u, u) are interpretted using limits hence are uniformly bounded by the
argument of Case 2. ⊓⊔

2.4 Estimates for conformal maps

For a proper simply connected domain D and w ∈ D, let CR(w; D) denote the
conformal radius of D with respect to w, i.e., CR(w; D) ≡ f ′(0) for f the unique
conformal map D → D with f (0) = w and f ′(0) > 0. Let rad(w; D) ≡ inf{r :
Br (w) ⊇ D} denote the out-radius of D with respect to w. By the Schwarz lemma
and the Koebe one-quarter theorem,

dist(w, ∂ D) ≤ CR(w; D) ≤ [4 dist(w, ∂ D)] ∧ rad(w; D). (2.15)

Further (see e.g., [30, Theorem 1.3])

|ζ |
(1 + |ζ |)2 ≤

| f (ζ ) − w|
CR(w; D)

≤
|ζ |

(1 − |ζ |)2 (2.16)

As a consequence,
|ζ |
4

≤
| f (ζ ) − w|
CR(w; D)

≤ 4|ζ | (2.17)

where the right-hand inequality above holds for |ζ | ≤ 1/2.
Finally, we state the Beurling estimate [16, Theorem 3.76] which we will frequently

use in conjunction with the conformal invariance of Brownian motion.

Theorem 2.9 (Beurling estimate) Suppose that B is a Brownian motion in C and

τD = inf{t ≥ 0 : B(t) ∈ ∂D}. There exists a constant c < ∞ such that if γ : [0, 1] →
C is a curve with γ (0) = 0 and |γ (1)| = 1, z ∈ D, and Pz is the law of B when started

at z, then

Pz[B([0, τD]) ∩ γ ([0, 1]) = ∅] ≤ c|z|1/2.

3 The intersection of SLEκ(ρ) with the boundary

3.1 The upper bound

The main result of this section is the following theorem, which in turn implies Theo-
rem 1.8.

Theorem 3.1 Fix κ > 0, ρ1,R > −2, and ρ2,R ∈ R such that ρ1,R +ρ2,R > κ
2 −4. Fix

xR ∈ [0+, 1) and let η be an SLEκ(ρ1,R, ρ2,R) process with force points (xR, 1). Let

α =
1

κ
(ρ1,R + 2)

(
ρ1,R + ρ2,R + 4 −

κ

2

)
. (3.1)
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For each ǫ > 0, let τǫ = inf{t ≥ 0 : η(t) ∈ ∂ B(1, ǫ)} and, for each r > 0, let

σr = inf{t ≥ 0 : η(t) ∈ ∂(rD)}. For each δ ∈ [0, 1) and r ≥ 2 fixed, let

Eδ,r
ǫ = {τǫ < σr , Im(η(τǫ)) ≥ δǫ}. (3.2)

We have that

P[Eδ,r
ǫ ] = ǫα+o(1) as ǫ → 0. (3.3)

The o(1) in the exponent of (3.3) tends to 0 as ǫ → 0 and depends only on κ ,
δ, xR , and the weights ρ1,R , ρ2,R . The o(1), however, is uniform in r ≥ 2. Taking
ρ1,R > (−2) ∨ ( κ

2 − 4) and ρ2,R = 0, we have that

α =
1

κ
(ρ + 2)

(
ρ + 4 −

κ

2

)
. (3.4)

Thus Theorem 3.1 leads to the upper bound of Theorem 1.6. We begin with the
following lemma which contains the same statement as Theorem 3.1 except is restricted
to the case that δ ∈ (0, 1) and, in particular, is not applicable for δ = 0.

Lemma 3.2 Assume that we have the same setup and notation as in Theorem 3.1.

Then for each δ ∈ (0, 1) and r ≥ 2 fixed, we have that

P[Eδ,r
ǫ ] ≍ ǫα

where the constants in ≍ depend only on κ , δ, xR , and the weights ρ1,R , ρ2,R .

Proof For η, the SLEκ(ρ1,R, ρ2,R) process with force points (xR, 1), let (gt ) be the
associated Loewner evolution and let V R

t denote the evolution of xR . From (2.6) we
know that

Mt =
(

gt (1) − V R
t

g′
t (1)

)−α (
gt (1) − Wt

gt (1) − V R
t

)− 2
κ
(ρ1,R+ρ2,R+4−κ/2)

is a local martingale and the law of η reweighted by M is that of an SLEκ(ρ1,R, ρ̃2,R)

process where ρ̃2,R = −2ρ1,R−ρ2,R−8+κ . We write K = Kτǫ and K = {z : z ∈ K }.
Let G be the extension of gτǫ to C\(K ∪ K ) which is obtained by Schwarz reflection.
By (2.15), we have

G ′(x)dist(x, K ) ≍ dist(G(x), G(K ∪ K )). (3.5)

Observe that G(K ∪ K ) = [O L
τǫ

, O R
τǫ

] where O L
t (resp. O R

t ) is the image of the
leftmost (resp. rightmost) point of Kt ∩ R under gt . Note that (3.5) implies

ǫg′
τǫ

(1) ≍ gτǫ (1) − O R
τǫ

.

It is clear that gt (1) − Wt ≥ gt (1) − O R
t ≥ gt (1) − V R

t . On the event Eδ,r
ǫ , we

run a Brownian motion started from the midpoint of the line segment [1, η(τǫ)]. Then
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0 1xR

η

B(1 )

B(0, r)

ϕ

− =ϕ(∞) ϕ(xR)

ϕ(η)

B(− 1)=ϕ(B(1 ))

0

Fig. 9 The image of an SLEκ (ρ1,R , ρ2,R) process in H from 0 to ∞ with force points (xR , 1) under
ϕ(z) = ǫz/(1 − z) has the same law as an SLEκ (ρL ; ρR) process in H from 0 to ∞ with force points
(−ǫ; ǫxR/(1 − xR)) where ρR = ρ1,R and ρL = κ − 6 − (ρ1,R + ρ2,R)

this Brownian motion has uniformly positive (though δ-dependent) probability to exit
H\K through each of the left side of K , the right side of K , the interval [xR, 1], and
the interval (1,∞). Consequently, by the conformal invariance of Brownian motion,

gτǫ (1) − Wτǫ ≍ gτǫ (1) − O R
τǫ

≍ gτǫ (1) − V R
τǫ

on Eδ,r
ǫ .

These facts imply that Mτǫ ≍ ǫ−α on Eδ,r
ǫ where the constants in ≍ depend only

on κ , δ, xR , and the weights ρ1,R , ρ2,R . Thus

P[Eδ,r
ǫ ] ≍ ǫαE[Mτǫ 1

E
δ,r
ǫ

] = ǫαP⋆[Eδ,r
ǫ ]

where P⋆ is the law of η weighted by the martingale M . As we remarked earlier, P⋆

is the law of an SLEκ(ρ1,R, ρ̃2,R) with force points (xR, 1).
We now perform a coordinate change using the Möbius transformation ϕ(z) =

ǫz/(1 − z). Then the law of the image of a path distributed according to P⋆ under ϕ is
equal to that of an SLEκ(2 + ρ1,R + ρ2,R; ρ1,R) process in H from 0 to ∞ with force
points (−ǫ; ǫxR/(1 − xR)) (see Fig. 9). Note that 2 + ρ1,R + ρ2,R ≥ κ

2 − 2 by the
hypotheses of the lemma. Let η⋆ be an SLEκ(2+ρ1,R +ρ2,R; ρ1,R) process in H from
0 to ∞ with force points (−ǫ; ǫxR/(1 − xR)). In particular, by Lemma 2.1, η⋆ almost
surely does not hit (−∞,−ǫ). Under the coordinate change, the event Eδ,r

ǫ becomes
{σ ⋆

1,ǫ < ξ ⋆
ǫ,r , Im(η⋆(σ ⋆

1,ǫ)) ≥ δ} where σ ⋆
1,ǫ is the first time that η⋆ hits ∂ B(−ǫ, 1),

ξ ⋆
ǫ,r is the first time that η⋆ hits ∂ B(−ǫr2/(r2 − 1), ǫr/(r2 − 1)). By Lemma 2.4, the

probability of the event {σ ⋆
1,ǫ < ξ ⋆

ǫ,r , Im(η⋆(σ ⋆
1,ǫ)) ≥ δ} is bounded from below by a

positive constant depending only on κ , δ, ρ1,R , and ρ2,R . Thus P⋆[Eδ,r
ǫ ] ≍ 1 which

implies P[Eδ,r
ǫ ] ≍ ǫα and the constants in ≍ depend only on κ , δ, xR , and the weights

ρ1,R , ρ2,R . ⊓⊔

Corollary 3.3 Fix κ > 0, ρL > −2, ρ1,R > −2 and ρ2,R ∈ R such that ρ1,R+ρ2,R >
κ
2 − 4. Fix xL ≤ 0, xR ∈ [0+, 1) and let η be an SLEκ(ρL ; ρ1,R, ρ2,R) process

with force points (xL ; xR, 1). Let Eδ,r
ǫ be the event as in Theorem 3.1, then for each

δ ∈ (0, 1) and r ≥ 2 fixed, we have that
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P[Eδ,r
ǫ ] ≍ ǫα

where the constants in ≍ depend only on κ , δ, r , xL , xR , and the weights ρL , ρ1,R , ρ2,R .

Proof Let (gt ) be the Loewner evolution associated with η and let V L
t , V R

t denote the
evolution of xL , xR , respectively, under gt . From (2.6) we know that

Mt =
(

gt (1) − V R
t

g′
t (1)

)−α

×
(

gt (1) − Wt

gt (1) − V R
t

)− 2
κ
(ρ1,R+ρ2,R+4−κ/2)

× (gt (1) − V L
t )−

ρL
κ

(ρ1,R+ρ2,R+4−κ/2)

is a local martingale which yields that the law of η reweighted by M is that of an
SLEκ(ρL ; ρ1,R, ρ̃2,R) process where ρ̃2,R = −2ρ1,R − ρ2,R − 8 + κ . Note that, by
similar analysis in Lemma 3.4, the term gτǫ (1)− V L

τǫ
is bounded both from below and

above by positive finite constants depending only on r on the event Eδ,r
ǫ . The rest of

the analysis in the proof of Lemma 3.2 applies similarly in this setting. ⊓⊔

Throughout the rest of this subsection, we let:

T = R × (0, 1). (3.6)

Lemma 3.4 Let η be a continuous curve in H starting from 0 with continuous Loewner

driving function W and let (gt ) be the corresponding family of conformal maps. For

each t ≥ 0, let O L
t (resp. O R

t ) be the leftmost (resp. rightmost) point of gt (η([0, t])) in

R. There exists a universal constant C ≥ 1 such that the following is true. Fix ϑ > 0
and let σ be the first time that η exits ϑT. Then

|Wσ − Oq
σ | ≥

ϑ

C
for q ∈ {L , R}. (3.7)

Let ζ be the first time that η exits D ∩ ϑT. Then

|Wt − O
q
t | ≤ Cϑ for q ∈ {L , R} and all t ∈ [0, ζ ]. (3.8)

Finally, if η exits D ∩ ϑT through the right side of ∂D ∩ ϑT, then

|Wζ − O L
ζ | ≥

1

C
. (3.9)

Proof For z ∈ C, we let Pz denote the law of a Brownian motion B in C started at z.
By [16, Remark 3.50] we have that

|Wσ − O L
σ | = lim

y→∞
yPyi [B exits H\η[0, σ ] on the left side of η([0, σ ])] .
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Let τ be the exit time of B from H\ϑT and let I = [η(σ ) − ϑ, η(σ )]. Then

|Wσ − O L
σ | ≥ lim

y→∞
yPyi [Bτ ∈ I ]

× Pyi [B exits H\η([0, σ ]) on the left side of η([0, σ ]) | Bτ ∈ I ] .

(3.10)

We have,

lim
y→∞

yPyi [Bτ ∈ I ] = lim
y→∞

∫

I−ϑi

1

π

y(y − ϑ)

w2 + (y − ϑ)2 dw

=
∫

I−ϑi

1

π
dw =

ϑ

π
(3.11)

(recall the form of the Poisson kernel on H, see e.g., [16, Exercise 2.23]). It is easy to
see that there exists a universal constant p0 > 0 such that for any z ∈ I ,

Pz [B exits H\η[0, σ ] on the left side of η([0, σ ])] ≥ p0. (3.12)

Combining (3.10) with (3.11) and (3.12) gives (3.7). The bounds (3.8) and (3.9) are
proved similarly. ⊓⊔

Lemma 3.5 Fix κ > 0, ρL ∈ ( κ
2 −4, κ

2 −2), and ρR > −2. Let η be an SLEκ(ρL ; ρR)

process with force points (−ǫ; xR) for xR ≥ 0+ and ǫ > 0. Let σ1 = inf{t ≥ 0 :
η(t) ∈ ∂D}. Define, for u ≥ 0, T L

u = inf{t ≥ 0 : Wt − V L
t = u}, where V L

t denotes

the evolution of x L . Let p2 = p2(
1
2 ) be the constant from Lemma 2.6. There exists

constants ǫ0 > 0, ϑ0 > 0, and C > 0 such that for all ǫ ∈ (0, ǫ0) and ϑ ∈ (0, ϑ0) we

have

P[σ1 < T L
0 ∧ T L

ϑ ] ≤ p
1/(Cϑ)
2 .

Proof Let Eϑ = {σ1 < T L
0 ∧ T L

ϑ }. By definition, we have that

|Wt − V L
t | < ϑ for all t ∈ [0, σ1] on Eϑ . (3.13)

By (3.7) of Lemma 3.4 there exists a constant C1 > 0 such that η([0, σ1]) ⊆ C1ϑT.
Moreover, η exits D ∩

(
C1ϑT

)
on its left side for all ϑ > 0 small enough because

a Brownian motion argument [(analogous to (3.9)] implies there exists a constant
C2 > 0 such that |Wσ1 − V L

σ1
| ≥ C2 on the event that η exits through the right side,

contradicting (3.13).
Suppose C > 0; we will set its value later in the proof. For each 1 ≤ k ≤ 1

Cϑ
, we

let

Lk = {z ∈ H : Re(z) = −kCϑ} and ζk = inf{t ≥ 0 : η(t) ∈ Lk}.
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gζk
(·)−Wζk

Wζk
−V L

ζk

−kCϑ−(k+1)Cϑ

η
zϑ

k =η(ζk)−ϑ

LkLk+1

zϑ
k

ϑ

0−1

Lk+1

Fig. 10 Illustration of the justification of (3.14) in the proof of Lemma 3.5

On Eϑ , we have that ζ1 < ζ2 < · · · < σ1 < T L
0 . For each k, let Fk = {ζk < T L

ϑ }
and let Fk be the σ -algebra generated by η|[0,ζk ]. To complete the proof, we will show
that

P[ζk+1 < T L
0 | Fk]1Fk

≤ p21Fk
for each 1 ≤ k ≤

1

Cϑ

where p2 = p2(
1
2 ) is the constant from Lemma 2.6. To see this, we just need to show

that gζk
(η|[ζk ,ζk+1]) satisfies the hypotheses of Lemma 2.6 and that with

L̃k+1 =
gζk

(Lk+1) − Wζk

Wζk
− V L

ζk

we have that L̃k+1 ∩ 2D = ∅ on Fk .
Therefore it suffices to prove

dist(Wζk
, gζk

(Lk+1))

Wζk
− V L

ζk

→ ∞ on Fk as C → ∞. (3.14)

Let B be a Brownian motion starting from zϑ
k = η(ζk) − ϑ and let Hk+1 = {z ∈ H :

Re(z) ≥ −(k + 1)Cϑ} be the subset of H which is to the right of Lk+1 (see Fig. 10).
The probability that B exits Hk+1\η([0, ζk]) through the right side of η([0, ζk]) (blue)
is � 1, through (−(k + 1)Cϑ,−kCϑ) (green) is � 1, and through Lk+1 (orange) is
� 1/C (since this probability is less than the probability that the Brownian motion
exits {z ∈ C : −(k + 1)Cϑ < Re(z) < −kCϑ} through Lk+1 which is less than
1/C). Let

z̃ϑ
k ≡ x̃ϑ

k + ỹϑ
k i ≡

gζk
(zϑ

k ) − Wζk

Wζk
− V L

ζk

.

By the conformal invariance of Brownian motion, we have that

dist(̃zϑ
k , L̃k+1)

ỹϑ
k

� C. (3.15)
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Indeed, the probability of a Brownian motion started from z̃ϑ
k to exit H̃k+1 :=

(gζk
(Hk+1) − Wζk

)/(Wζk
− V L

ζk
) through L̃k+1 is bounded from below by a positive

universal constant times the probability that a Brownian motion starting from z̃ϑ
k exits

B(̃zϑ
k , d̃) ∩ H, d̃ = dist(̃zϑ

k , L̃k+1), through ∂ B(̃zϑ
k , d̃) ∩ H. This latter probability is

bounded from below by a positive universal constant times ỹϑ
k /d̃ . Thus 1/C � ỹϑ

k /d̃,
as desired.

The conformal invariance of Brownian motion and the estimates above also imply
that sin(arg(̃zϑ

k )) ≍ 1, hence |̃zϑ
k | ≍ |̃yϑ

k |. Combining this with (3.15) implies that

dist(̃zϑ
k , L̃k+1)

|̃zϑ
k |

� C.

Thus, by the triangle inequality,

dist(L̃k+1, 0) � C |̃zϑ
k |

(provided C is large enough). Since |̃zϑ
k | ≍ 1, this proves (3.14), hence the lemma. ⊓⊔

Proof of Theorem 3.1 Lemma 3.2 implies the lower bound in (3.3) because we can
take, e.g., δ = 1

2 . In order to prove the upper bound, it is sufficient to show

P[τǫ < ∞] ≤ ǫα+o(1) as ǫ → 0.

We are first going to perform a change of coordinates. Let ϕ : H → H be the
Möbius transformation z �→ ϕ(z) := ǫz/(1 − z). Fix x̃ R ∈ [0+, 1) and let η̃ be an
SLEκ(ρ1,R, ρ2,R) process with force points located at (̃x R, 1) as in Theorem 3.1. Then
the law of η = ϕ(̃η) is that of an SLEκ(ρL ; ρR) process with force points (−ǫ; xR)

where xR = ǫ x̃ R/(1 − x̃ R) and

ρL = κ − 6 −
(
ρ1,R + ρ2,R

)
and ρR = ρ1,R . (3.16)

Let σ1 be the first time that η hits ∂D and let V L
t , V R

t denote the evoltuion of xL , xR

under gt , respectively. For u ≥ 0, define T L
u = inf{t ≥ 0 : Wt − V L

t = u} (as in
the statement of Lemma 3.5). Then it is sufficient to prove P[σ1 < T L

0 ] ≤ ǫα+o(1).
Note that the exponent α comes from the sum of the exponent of |V L

t − V R
t | and the

exponent of |Wt − V L
t | in the left martingale M L from (2.7) with these weights. For

u ≥ 0, define τ L
u = inf{t ≥ 0 : M L

t = u}. Note that τ L
0 = T L

0 . Fix β ∈ (0, 1) and set
ϑ = ǫβ . For u > 0, we have the bound

P[σ1 < τ L
0 ] ≤ P[τ L

u < τ L
0 ] + P[σ1 < τ L

0 < τ L
u ]. (3.17)

We claim that exists constants C1 > 0 and γ > 0 depending only on ρL , ρR , and
κ such that

|Wt − V L
t |γ ≤ C1 M L

t for all t ∈ [0, σ1]. (3.18)
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Since ρ1,R + ρ2,R > κ
2 − 4 it follows that ρL < κ

2 − 2. Therefore the sign of the
exponent of |V L

t −V R
t | in the definition of M L

t is the same as the sign of ρR . If ρR ≥ 0,
then the exponent has a positive sign. In this case, M L

t ≥ |Wt − V L
t |α so that we can

take γ = α. Now suppose that ρR < 0. By (3.8) of Lemma 3.4 we know that there
exists a constant C2 > 0 such that

|V L
t − V R

t | ≤ C2 for all t ∈ [0, σ1]. (3.19)

Thus, in this case, there exists a constant C3 > 0 such that M L
t ≥ C3|Wt −

V L
t |(κ−4−2ρL )/κ . Therefore we can take γ = (κ −4−2ρL)/κ . This proves the claimed

bound in (3.18).
Set u = ϑγ /C1. To bound the second term on the right side of (3.17), we first note

by (3.18) that
P[σ1 < τ L

0 < τ L
u ] ≤ P[σ1 < T L

0 ∧ T L
ϑ ]. (3.20)

By Lemma 3.5, we know that

P[σ1 < T L
0 ∧ T L

ϑ ] ≤ p
1/(Cϑ)
2 . (3.21)

We will now bound the first term on the right side of (3.17). Since τ L
0 , τ L

u are
stopping times for the martingale M L and Mτ0∧τu = uP[τ L

u < τ L
0 ], we have that

P[τ L
u < τ L

0 ] =
1

u
E[M L

τ0∧τu
] =

M L
0

u
=

ǫα

u(1 − x̃ R)(κ−4−2ρL )ρR/(2κ)
. (3.22)

Combining (3.17) with (3.21) and (3.22) we get that P[σ1 < T L
0 ] ≤ ǫα+o(1), as

desired. ⊓⊔

Recall that (see for example [24, Section 4]) the β-Hausdorff measure of a set
A ⊆ R is defined as

H
β(A) = lim

ǫ→0+
H

β
ǫ (A)

where

H
β
ǫ (A) := inf

⎧
⎨
⎩
∑

j

|I j |β : A ⊆ ∪ j I j and |I j | ≤ ǫ for all j

⎫
⎬
⎭ .

Proof of Theorem 1.6 for κ ∈ (0, 4), upper bound Fix κ ∈ (0, 4), ρ ∈ (−2, κ
2 − 2).

Let η be an SLEκ(ρ) process with a single force point located at 0+. Let α ∈ (0, 1)

be as in (3.4). Fix 0 < x < y. We are going to prove the result by showing that

dimH(η ∩ [x, y]) ≤ 1 − α almost surely. (3.23)

For each k ∈ Z and n ∈ N we let Ik,n = [k2−n, (k + 1)2−n] and let zk,n be the center
of Ik,n . Let In be the set of k such that Ik,n ⊆ [x/2, 2y] and let Ek,n be the event that
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η gets within distance 21−n of zk,n . Therefore there exists n0 = n0(x, y) such that for
every n ≥ n0 we have that {Ik,n : k ∈ In, Ek,n occurs} is a cover of η ∩ [x, y].

Fix ζ > 0. Theorem 3.1 implies that there exists a constant C1 > 0 (independent
of n) and n1 = n1(ζ ) such that

P[Ek,n] ≤ C12−(α−ζ )n for each n ≥ n1 and k ∈ In .

Consequently, there exists a constant C2 > 0 such that

E
[
H

β

2−n (η ∩ [x, y])
]

≤ E

⎡
⎣∑

k∈In

2−βn1Ek,n

⎤
⎦ ≤ C22−βn × 2n × 2−(α−ζ )n .

By Fatou’s lemma,

E
[
H

1−α+2ζ (η ∩ [x, y])
]

≤ lim inf
n

E
[
H

1−α+2ζ

2−n (η ∩ [x, y])
]

≤ lim inf
n

C22−nζ = 0.

This implies that H1−α+2ζ (η ∩ [x, y]) = 0 almost surely. This proves (3.23) which
completes the proof of the upper bound. ⊓⊔

3.2 The lower bound

Throughout, we fix κ ∈ (0, 4) and ρ ∈ (−2, κ
2 − 2) and let h be a GFF on H with

boundary data −λ on R− and λ(1 + ρ) on R+ (Recall the values in (2.10) as well
as Fig. 1). For each x ≥ 0, we let ηx be the flow line of h starting from x and
let η = η0. Note that η is an SLEκ(ρ) process in H from 0 to ∞ with a single
force point located at 0+, i.e., has configuration (H, 0, 0+,∞) (recall the notation of
Sect. 2.3). By Lemma 2.1, it follows that η can hit (0,∞). For each x > 0, ηx is
an SLEκ(2 + ρ,−2 − ρ; ρ) process with configuration (H, x, (0, x−), (x+),∞). By
Lemma 2.1, it follows that ηx can hit (x,∞) and, if ρ > −κ/2, then ηx can also hit
(0, x). Fix δ ∈ (0, 1), a > log 8, and let

ǫn = e−an for each n ∈ N.

We will eventually take limits as a → ∞ and δ → 0+. For U ⊆ H, we let

σ x (U ) = inf{t ≥ 0 : ηx (t) ∈ U }. (3.24)

We will omit the superscript in (3.24) if x = 0. For k ∈ N and x ∈ [1,∞), we let

xk =

{
x − 1

4ǫk if k ≥ 2 and

0 if k = 1.
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xxkxk−1

ηxk−1

ηxk

B( k)

B( k+1)

λ(1+ρ) λ(1+ρ) λ(1+ρ)

−λ λ

−λ λ

−λ

λ −
π
2
χ

0

−λ

Fig. 11 On E1
k−1(x), ηxk−1 hits B(x, ǫk ) and does so for the first time above the horizontal line through

iδǫk . Given that E1
k
(x) has occurred, E2

k
(x) is the event that ηxk−1 merges with ηxk before the path leaves

the annulus B(x, 1
2 ǫk−1)\B(x, ǫk+1). Also indicated is the boundary data for h along ∂H as well as along

the paths ηxk−1 and ηxk

We also let
σ x

m = σ xm (B(x, ǫm+1)). (3.25)

Let E1
k (x) be the event that

(i) σ x
k < ∞ and Im(ηxk (σ x

k )) ≥ δǫk+1 and
(ii) ηxk hits B(x, ǫk+1) before exiting B(x, 1

2ǫk).

We let E2
k (x) be the event that ηxk−1 |[σ x

k−1,∞) merges with ηxk |[0,σ x
k ] before exiting

the annulus B(x, 1
2ǫk−1)\B(x, ǫk+1) (see Fig. 11). Finally, we let Ek(x) = E1

k (x) ∩
E2

k (x),

Em,n(x) = E1
m+1(x) ∩

n⋂

k=m+2

Ek(x), and En(x) = E0,n(x).

The following is the main input into the proof of the lower bound.

Proposition 3.6 For each δ ∈ (0, 1), there exists a constant c(δ) > 0 such that for

all x, y ∈ [1, 2] and m ∈ N such that 1
2ǫm+1 ≤ |x − y| < 1

2ǫm we have

P[En(x), En(y)] ≤ c(δ)−mǫ−α
m P[En(x)]P[En(y)].

The main steps in the proof of Proposition 3.6 are contained in the following three
lemmas.

Lemma 3.7 For each x ≥ 1 and m, n ∈ N with m ≤ n, we have that

P[Em,n(x), Em(x)] ≍ P[Em,n(x)]P[Em(x)] (3.26)

If, moreover, y ≥ 1 and 1
2ǫm+2 < |x − y| ≤ 1

2ǫm+1, then we have that

P[Em+1,n(x), Em+1,n(y), Em(x)] ≍ P[Em+1,n(x)]P[Em+1,n(y)]P[Em(x)].
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x
xm+1

xm−1 v

ω

u+u−

η

ηxm−1

ηxm

ηxm+1

B(x, m+1

2
)

B( m+1)

ωxm+1
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−λ

λ −
π
2
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−λ

λ −
π
2
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λ(1+ρ) λ(1+ρ) λ(1+ρ)

−λ λ

Fig. 12 Let H (shown in red) be the closure of the complement of the unbounded connected component
of H\ ∪m

j=1 η
x j ([0, σ x

j
]) and let K (shown in blue) be the closure of the complement of the unbounded

connected component of H\ηxm+1 ([0, τ ]) where τ is the first time that ηxm+1 leaves U = B(x,
ǫm+1

2 ).
Then dist(H, K ) � diam(U ) (color figure online)

In each of the above, the constants in ≍ depend only on δ, κ and ρ.

Proof We begin by proving (3.26) which is equivalent to

P[Em,n(x) | Em(x)] ≍ P[Em,n(x)].

Recall that ηxm+1 is an SLEκ(2 + ρ,−2 − ρ; ρ) process with configuration

c = (H, xm+1, (0, x−
m+1), (x+

m+1),∞).

Let ω = η(σ (B(x, ǫm))), let H be the closure of the complement of the unbounded
connected component of H\ ∪m

j=1 ηx j ([0, σ x
j ]), and let v be the rightmost point of

H ∩ R (see Fig. 12). The conditional law of ηxm+1 given ηx1 |[0,σ x
1 ], . . . , η

xm |[0,σ x
m ] on

Em(x) is that of an SLEκ(2, ρ,−2 − ρ; ρ) process in

c̃ = (H\H, xm+1, (ω, v, x−
m+1), (x+

m+1),∞)

(recall Fig. 4).
Let U = B(x, 1

2ǫm+1), τ = σ xm+1(H\U ), K be the closure of the complement of
the unbounded connected component of H\ηxm+1([0, τ ]), ωxm+1 = ηxm+1(τ ), and let
u−, u+ be the leftmost (resp. rightmost) point of K ∩R. By Lemma 2.7, we have that

dμU
c̃

dμU
c

=
Z (̃cτ )/Z (̃c)

Z(cτ )/Z(c)
exp(−ξm(H; H, K ))

where

cτ = (H\K , ωxm+1 , (0, u−), (u+),∞),

c̃τ = (H\(H ∪ K ), ωxm+1 , (ω, v, u−), (u+),∞).
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Fig. 13 Assume that we are working on Em (x) ∩ Em,n(x). Let H (shown in red) be the closure of the
complement of the unbounded connected component of H\ ∪m

j=1 η
x j ([0, σ x

j
]) and let K (shown in blue)

be the closure of the complement of the unbounded connected component of H\ ∪n
j=m+1 η

x j ([0, σ x
j
]).

Let zm be the point that lies at distance δǫm+1 from ω along the line connecting ω to x . Then a Brownian
motion starting from zm has positive probability to exit H\(H ∪ K ) through each of the left side of H , the
right side of H , and the left side of K

Note that H ⊆ H\B(x, 3
4ǫm+1), K ⊆ B(x, 1

2ǫm+1), and diam(U ) = ǫm+1. Conse-
quently,

dist(H, K )

diam(U )
� 1.

Therefore Lemma 2.8 implies there exists C1 ≥ 1 so that

1

C1
≤

dμU
c̃

dμU
c

≤ C1. (3.27)

This proves (3.26) in the case that n = m + 1. We now suppose that n ≥ m + 2.
Given ηxm+1 |[0,τ ], we similarly have that the Radon-Nikodym derivative between
the conditional law of ηxn stopped upon exiting the connected component of
B(x, 1

2ǫn)\ηxm+1([0, τ ]) with xn on its boundary with respect to the law in which
we additionally condition on H on Em(x) is bounded from above and below by C1
and C−1

1 , respectively, possibly by increasing the value of C1 > 1 (see Fig. 13). More-
over, conditional on both of the paths ηxm+1 |[0,σ xm+1 (B(x,ǫn+1))] and ηxn |[0,σ x

n ] as well
as the event that they have merged before exiting U , the joint law of ηx j |[0,σ x

j ] for

j = m + 2, . . . , n − 1 is independent of ηxk |[0,σ x
k ] for k = 1, . . . , m (see Fig. 13).

This proves (3.26).
The second part of the lemma is proved similarly. ⊓⊔

Lemma 3.8 For each x ≥ 1 and m, n ∈ N with m ≤ n we have that

P[En(x)] ≍ P[Em(x)]P[Em,n(x)] (3.28)

where the constants depend only on δ, κ , and ρ.
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Proof The upper bound follows from (3.26) of Lemma 3.7. To complete the proof of
the lemma, it suffices to show that

P[E2
m+1(x) | Em(x), Em,n(x)] ≍ 1.

Throughout, we assume that we are working on Em(x)∩Em,n(x). To see this, we let H

(resp. K ) be the closure of the complement of the unbounded connected component of
H\∪m

j=1 ηx j ([0, σ x
j ]) (resp. H\∪n

j=m+1 ηx j ([0, σ x
j ])). Let ω = ηxm (σ x

m) and let zm be
the point which lies at distance δǫm+1 from ω along the line segment connecting ω to
x (see Fig. 13). Note that the probability that a Brownian motion starting from zm exits
H\(H ∪ K ) in the left (resp. right) side of H is ≍ 1 (though this probability decays as
δ ↓ 0) and likewise for the left side of K . Let ϕ : H\(H ∪ K ) → H be the conformal
map which takes zm to i and ω to 0. Let xL (resp. xR) be the image of the leftmost (resp.
rightmost) point of H ∩ R under ϕ. The conformal invariance of Brownian motion
implies that there exists ǫ > 0 depending only on δ such that |xq | ≥ ǫ for q ∈ {L , R}.
Let yL (resp. y) be the image of the leftmost point of K ∩ R (resp. ηxm+1(σ x

m+1))
under ϕ. By shrinking ǫ > 0 if necessary (but still depending only on δ), it is likewise
true that y − yL ≥ ǫ and yL ≤ ǫ−1. Consequently, it follows from Lemma 2.5 that
ηxm |[σ x

m ,∞) has a positive chance (depending only on δ, κ , and ρ) of hitting (hence
merging into) the left side of ηxm+1 |[0,σ x

m+1)
before leaving B(x, 1

2ǫm)\B(x, ǫm+2). ⊓⊔

Lemma 3.9 For each δ ∈ (0, 1) there exists a constant c(δ) > 0 such that the

following is true. For each x ≥ 1, we have that

P[Em(x)] ≥ c(δ)m × ǫα
m .

Proof By (3.26) of Lemma 3.7, we know that

P[E1
k (x) | Ek−1(x)] ≍ P[E1

k (x)].

Therefore we just have to show that there exists a constant c(δ) > 0 such that

P[E1
k (x)] ≥ c(δ)

(
ǫk+1

ǫk

)α

= c(δ)e−aα and (3.29)

P[E2
k (x) | Ek−1(x), E1

k (x)] ≍ 1. (3.30)

Note that (3.30) follows from Lemma 2.5 using the same argument as in the proof
of Lemma 3.8. We know that ηxk is an SLEκ(2 + ρ,−2 − ρ; ρ) process within
the configuration c = (H, xk, (0, x−

k ), (x+
k ),∞). Consequently, (3.29) follows by

combining Corollary 3.3 and Lemma 2.8. The latter is used to get that the Radon-
Nikodym derivative between the law of an SLEκ(2 + ρ,−2 − ρ; ρ) process with
configuration (H, xk, (0, x−

k ), (x+
k ),∞) and the law of an SLEκ(−2 − ρ; ρ) process

with configuration (H, xk, (x−
k ), (x+

k ),∞), where each path is stopped upon exiting
B(x,

ǫk

2 ), is bounded both from below and above by universal positive and finite
constants. ⊓⊔
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Proof of Proposition 3.6 We have that,

P[En(x), En(y)] ≤ P[En(x), Em,n(y)]
� P[Em(x)]P[Em+1,n(x)]P[Em+1,n(y)] (Lemma 3.7)

=
P[Em(x)]P[Em(y)]

P[Em(y)]
P[Em+1,n(x)]P[Em+1,n(y)]

�
P[En(x)]P[En(y)]

c(δ)mǫα
m

(Lemmas 3.8 and 3.9)

⊓⊔

Proof of Theorem 1.6 We are first going to give the lower bound forκ ∈ (0, 4) and then
explain how to extract the dimension result for κ ′ > 4 from the result for κ ∈ (0, 4).
For each β ∈ R and Borel measure μ, let

Iβ(μ) :=
∫∫

μ(dz)μ(dw)

|z − w|β

be the β-energy of μ. To prove the lower bound, we will show that, for each ζ > 0,
there exists a nonzero Borel measure supported on η∩[1, 2] that has finite (1−α−2ζ )-
energy.

Fix n ∈ N. We divide [1, 2] into ǫ−1
n intervals of equal length ǫn and let z j,n = ( j −

1
2 )ǫn +1 be the center of the j th such interval for j = 1, . . . , ǫ−1

n . Let Cn be the subset
of Dn = {z j,n : j = 1, . . . , ǫ−1

n } for which En(z) occurs. Let In(z) = [z − ǫn

2 , z + ǫn

2 ]
be the interval with center z and length ǫn . Finally, we let

C =
⋂

k≥1

⋃

n≥k

⋃

z∈Cn

In(z).

It is easy to see that

C ⊆ η
⋂

R+.

Let μn be the measure on [1, 2] defined by

μn(A) =
∫

A

∑

z∈Dn

1En(z)

P[En(z)]
1In(z)(z

′)dz′ for A ⊆ [1, 2] Borel.

Then E[μn([1, 2])] = 1. Moreover, we have that

E[μn([1, 2])2] = ǫ2
n

∑

z,w∈Dn

P[En(z) ∩ En(w)]
P[En(z)]P[En(w)]

= ǫ2
n

∑

z,w∈Dn
z �=w

P[En(z) ∩ En(w)]
P[En(z)]P[En(w)]

+ ǫ2
n

∑

z∈Dn

1

P[En(z)]
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� ǫ2
n

∑

z,w∈Dn
z �=w

|z − w|−α−ζ

+ ǫ2
n

∑

z∈Dn

ǫ−α−ζ
n (Proposition 3.6 and Lemma 3.9)

� 1

provided we choose n and a large enough. Set β = 1 − α − 2ζ . We also have that

E[Iβ(μn)] =
∑

z,w∈Dn
z �=w

P[En(z) ∩ En(w)]
P[En(z)]P[En(w)]

∫∫

In(z)×In(w)

dz′dw′

|z′ − w′|β

=
∑

z,w∈Dn
z �=w

P[En(z) ∩ En(w)]
P[En(z)]P[En(w)]

∫∫

In(z)×In(w)

dz′dw′

|z′ − w′|β

+
∑

z∈Dn

1

P[En(z)]

∫∫

In(z)×In(z)

dz′dw′

|z′ − w′|β

�
∑

z,w∈Dn
z �=w

P[En(z) ∩ En(w)]
P[En(z)]P[En(w)]

ǫ2
n

|z − w|β
+

∑

z∈Dn

1

P[En(z)]
ǫ2−β

n

�
∑

z,w∈Dn
z �=w

|z − w|−α−ζ ǫ2
n |z − w|−β +

∑

z∈Dn

ǫ−α−ζ
n ǫ2−β

n � 1.

Consequently, the sequence (μn) has a subsequence (μnk
) that converges weakly to

some nonzero measure μ. It is clear that μ is supported on C and has finite (1−α−2ζ )-
energy. From [24, Theorem 4.27], we know that

P
[
dimH(η

⋂
R+) ≥ 1 − α − 2ζ

]
> 0.

Since η is conformally invariant, by 0-1 law (see [3]), we have that

P
[
dimH(η

⋂
R+) ≥ 1 − α − 2ζ

]
= 1

for any ζ > 0. This proves the lower bound for κ ∈ (0, 4).
It is left to prove the result for κ ′ > 4. Fix ρ′ ∈ ( κ ′

2 − 4, κ ′

2 − 2). Consider a
GFF h on [−1, 1]2 with the boundary values as depicted in Fig. 5 with ρ′

R = ρ′ and
ρ′

L = 0, and let η′ be the counterflow line of h from i to −i . Then η′ is an SLEκ ′(ρ′)
process with a single force point located at (i)+, i.e., immediately to the right of i .
As explained in Fig. 5, the right boundary of η′ is equal to the flow line ηR of h with
angle −π

2 starting from −i . In particular, ηR is an SLEκ( κ
2 − 2; κ − 4 + κ

4 ρ′) process
with force points ((−i)−; (−i)+) where κ = 16

κ ′ ∈ (0, 4). The intersection of η′ with
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the counterlcockwise segment S of ∂([−1, 1]2) from −i to i coincides with ηR ∩ S.
Consequently, it follows that the dimension of η′ ∩ S is given by

1 −
1

κ

(
κ − 2 +

κ

4
ρ′
) (κ

2
+

κ

4
ρ′
)

= 1 −
1

κ ′
(
ρ′ + 2

) (
ρ′ + 4 −

κ ′

2

)
.

⊓⊔

4 The intersection of flow lines

In this section, we will prove Theorem 1.5. We begin in Sect. 4.1 by proving an estimate
for the derivative of the Loewner map associated with an SLEκ(ρ) process when it
gets close to a given point. Next, in Sect. 4.2 we will prove the one point estimate
which we will use in Sect. 4.3 to prove the upper bound. Finally in Sect. 4.4 we will
complete the proof by establishing the lower bound.

4.1 Derivative estimate

Recall from Sect. 2.4 that for a point w in a simply connected domain U , CR(w; U )

denotes the conformal radius of U as viewed from w. Fix κ ∈ (0, 4), let η be an
ordinary SLEκ process in H from 0 to ∞ and, for each t , let Ht denote the unbounded
connected component of H\η([0, t]). We use the notation of [13, Section 6.1]. We let

Z t = Z t (z) = X t + iYt = gt (z) − Wt .

For z ∈ H, we let

�t = |g′
t (z)|, ϒt =

Yt

|g′
t (z)|

, �t = arg Z t , and St = sin �t . (4.1)

We note that ϒt = 1
2 CR(z; Ht ) ≍ dist(z, ∂Ht ). For each r ∈ R, we also let

ν = ν(r) =
r2

4
κ + r

(
1 −

κ

4

)
and ξ = ξ(r) =

r2

8
κ. (4.2)

(In the notation of [13], a = 2/κ). Then we have that [13, Proposition 6.1]:

Mt = Mt (z) = |Z t |r Y
ξ
t �ν

t = S−r
t ϒ

ξ+r
t �ν+r

t (4.3)

is a local martingale. This martingale also appears in [41, Theorem 6], though it is
expressed there in a slightly different form (The martingale in (2.6) is of the same
type, though there we have not included the interior force points). For each ǫ > 0 and
R > 0, we let

τǫ = inf{t ≥ 0 : ϒt = 1
2ǫ} = inf{t ≥ 0 : CR(z; Ht ) = ǫ} and

σR = inf{t ≥ 0 : |η(t)| = R}.
(4.4)
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Lemma 4.1 Fix r < 1
2 − 4

κ
, δ ∈ (0, π

2 ), and z ∈ H such that arg(z) ∈ (δ, π − δ). Let

P⋆ be the law of η weighted by M. We have that,

P⋆[τǫ < ∞] = 1 (4.5)

and

E⋆[Sr
τǫ

] ≍ 1 (4.6)

where the constants depend only on δ, κ , and r. We also have that

P⋆[�τǫ ∈ (δ, π − δ)] ≍ 1 (4.7)

where constants depend only on δ, κ , and r. Finally, we have that

P⋆[σR ≤ τǫ] → 0 as R → ∞ (4.8)

uniformly over ǫ > 0.

Proof Note that (4.5) and (4.6) are proved in [13, Equation (6.9)], so we will not
repeat the arguments here. Following [13], we define the radial parametrization (i.e.,
by log conformal radius) u(t) by

ϒ̂t = ϒu(t) = e−4t/κ

and write η̂(t) = η(u(t)) and �̂t = �u(t). Then �̂t satisfies the SDE (see [13, Section
6.3])

d�̂t =
(

1 −
4

κ
− r

)
cot(�̂t )dt + dŴt (4.9)

where Ŵ is a P⋆-Brownian motion. The process �̂ almost surely does not hit {0, π}
(see [16, Lemma 1.27]) and the density with respect to Lebesgue measure on [0, π ]
for the stationary distribution for (4.9) is given by

f (θ) = c(sin θ)
2
(

1− 4
κ

−r
)

where c > 0 is a normalizing constant (see [16, Lemma 1.28]). Moreover, as t → ∞,
the law of �̂t converges to the stationary distribution with respect to the total variation
norm.

We can use this to extract (4.7) as follows. Fix 0 < T < ∞. We first note that by
the Girsanov theorem the law of �̂|[0,T ] stopped upon leaving ( δ

2 , π − δ
2 ) is mutually

absolutely continuous with respect to that of B|[0,T ] where B is a Brownian motion
starting from �̂0, also stopped upon leaving ( δ

2 , π − δ
2 ). Fix 0 ≤ t ≤ T . Then a

Brownian motion starting from �̂0 ∈ [δ, π − δ] has a uniformly positive chance of
staying in ( δ

2 , π − δ
2 ) during the time interval [0, t] and then being in (δ, π − δ) at

time t . Therefore it is easy to see that (4.7) holds for all 0 ≤ t ≤ T .
The lower bound, however, that comes from this estimate decays as T increases.

We are now going to explain how we make our choice of T as well as get a uniform
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lower bound for t ≥ T . We suppose that �̂1, �̂2 are solutions of (4.9) where �̂1
0 = δ

and �̂2
0 = π − δ. We assume further that the Brownian motions driving �̂, �̂1, and

�̂2 are independent of each other until the time that any two of the processes meet,
after which we take the Brownian motions for the pair to be the same. This gives us a
coupling (�̂1, �̂, �̂2) such that �̂1

t ≤ �̂t ≤ �̂2
t for all t ≥ 0 almost surely. Note that

after �̂1 first hits �̂2, all three processes stay together and never separate. Let qδ > 0
be the mass that the stationary distribution puts on (δ, π − δ). We then take T > 0
sufficiently large so that:

1. For all t ≥ T , the total variation distance between the law of �̂1
t and the stationary

distribution is at most qδ

2 .
2. Let ξ = inf{t ≥ 0 : �̂1

t = �̂2
t }. Then P[ξ ≥ T ] ≤ qδ

4 .

With this particular choice of T , we have that

P⋆[�̂t ∈ (δ, π−δ)] ≥ P⋆[�̂1
t ∈ (δ, π − δ)] − P⋆[ξ ≥ T ]

≥
qδ

2
−

qδ

4
=

qδ

4
for all t ≥ T .

This proves (4.7).
For (4.8), note that, under P⋆, η̂ has the same law as a radial SLEκ(ρ) in H from 0

to z with a single boundary force point located at ∞ of weight ρ = κ −6−rκ ≥ κ
2 −2

(see [41, Theorems 3, 6]). Define σ̂R = inf{t ≥ 0 : |̂η(t)| = R}. Then

P⋆[σR < τǫ] ≤ P⋆[̂σR < ∞].

The endpoint continuity of the radial SLEκ(ρ) processes with ρ > −2 [29, Theo-
rem 1.12] implies that P⋆ [̂σR < ∞] → 0 as R → ∞, as desired. ⊓⊔

We are now going to use Lemma 4.1 to estimate the moments of g′
t (z) at times

when η is close to z. We will actually prove this for general SLEκ(ρ) processes which
is why we truncate on various events in the estimates proved below.

Lemma 4.2 Fix r < 1
2 − 4

κ
and δ ∈ (0, π

2 ). There exists R0 = R0(r) > 0 such that

for all R ≥ R0 the following holds. Suppose η ∼ SLEκ(ρ) in H from 0 to ∞ where

the force points lie outside of 2RD. Fix z ∈ D ∩ H with arg(z) ∈ (δ, π − δ). For each

ǫ > 0 and R > 0 we let τǫ and σR be as in (4.4). Then

E
[∣∣g′

τǫ
(z)

∣∣ν+r
1{τǫ<σR}

]
≍ ǫ−ξ−r provided CR(z; H) ≥ ǫ (4.10)

where the constants depend only on δ, κ , and the weights ρ of the force points. Fix a

constant C > 1 and suppose that ζǫ is a stopping time for η such that τCǫ ≤ ζǫ ≤ τǫ/C .

Let

Eδ
ǫ,R = {ζǫ < σR, �ζǫ ∈ (δ, π − δ)}. (4.11)
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Then we have that

E

[∣∣∣g′
ζǫ

(z)

∣∣∣
ν+r

1Eδ
ǫ,R

]
≍ ǫ−ξ−r provided CR(z; H) ≥ ǫ (4.12)

where the constants depend only on C, δ, κ , and the weights ρ of the force points.

Proof It suffices to prove the result for an ordinary SLEκ process since it is clear from
the form of (2.6) that the Radon-Nikodym derivative between the law of an SLEκ

and an SLEκ(ρ) process whose force points lie outside of 2RD stopped at time σR is
bounded from above and below by finite and positive constants which depend only on
the total (absolute) weight of the force points and κ .

We are now going to prove the upper bound of (4.10) and the lower bound of (4.12)
with τǫ = ζǫ . We have that,

E
[∣∣g′

τǫ
(z)

∣∣ν+r
1{τǫ<σR}

]
≤ E

[∣∣g′
τǫ

(z)
∣∣ν+r

1{τǫ<∞}
]

≍ ǫ−ξ−r E[Mτǫ Sr
τǫ

1{τǫ<∞}]

= ǫ−ξ−r M0E⋆[Sr
τǫ

]

� ǫ−ξ−r (by 4.6).

This proves the upper bound of (4.10). For the lower bound, we compute

E
[∣∣g′

τǫ
(z)

∣∣ν+r
1Eδ

ǫ,R

]
≍ ǫ−ξ−r E

[
Mτǫ Sr

τǫ
1Eδ

ǫ,R

]

≥ ǫ−ξ−r E
[

Mτǫ 1Eδ
ǫ,R

]

= ǫ−ξ−r M0P⋆[Eδ
ǫ,R].

To bound P⋆[Eδ
ǫ,R], we have

P⋆[Eδ
ǫ,R] = P⋆[τǫ < σR, �τǫ ∈ (δ, π − δ)]

≥ P⋆[�τǫ ∈ (δ, π − δ)] − P⋆[σR < τǫ].

From (4.7), we know that P⋆[�τǫ ∈ (δ, π − δ)] is bounded from below uniformly in
ǫ > 0. From (4.8), we know that P⋆[σR < τǫ] converges to zero as R → ∞ uniformly
over ǫ > 0. These show that P⋆[Eδ

ǫ,R] is bounded from below which proves the lower
bound for (4.12). The upper bound in the case that we replace τǫ with ζǫ is proved
similarly. For the lower bound, it is not difficult to see that

P⋆[�t ∈ (δ, π − δ) for all t ∈ [τCǫ, τǫ/C ] | �τCǫ
∈ (δ, π − δ)] > 0

uniformly in ǫ > 0 and

P⋆[σR ≤ ζǫ] ≤ P⋆[σR ≤ τǫ/C ] → 0 as R → ∞

uniformly in ǫ > 0. ⊓⊔
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4.2 Hitting probabilities

Fix an angle θ ∈ (π − 2λ/χ, 0). This is the range so that GFF flow lines with angles
0, θ are able to intersect each other where the flow line with angle θ stays to the right
of the flow line with angle 0 [26, Theorem 1.5]. Let

A =
1

2κ

(
ρ +

κ

2
+ 2

) (
ρ −

κ

2
+ 6

)
where ρ = −

θχ

λ
− 2. (4.13)

Lemma 4.3 Fix C > 2, let x1 = 0, and fix x2 ≥ 2R0 where R0 is the constant from

Lemma 4.2 with

r = −
2

κ

(
ρ + 6 −

κ

2

)
.

Let h be a GFF on H with boundary data as illustrated in Fig. 14. That is,

h|(−∞,x1) ≡ −λ, h|[x1,x2] ≡ λ, and h|(x2,∞) ≡ λ − θχ. (4.14)

Let η1 (resp. η2) be the flow line of h starting from x1 (resp. x2) with angle 0 (resp. θ ).

Fix δ ∈ (0, π
2 ) and let z ∈ D ∩ H with arg(z) ∈ (δ, π − δ). For i = 1, 2, let ζ i

ǫ be the

first time that ηi hits ∂ B(z, ǫ) and let �1
t be the process as in Lemma 4.2 for η1.

(i) Let Gδ
ǫ(z) be the event that η1 hits ∂ B(z, ǫ) before hitting ∂ B(0, R0), �1

ζ 1
ǫ

∈
(δ, π − δ), and that η2 hits ∂ B(z, ǫ). Then we have that

P[Gδ
ǫ(z)] = ǫA+o(1) (4.15)

where the o(1) term depends only on δ, κ , θ , and x2.

z

x1

η1

η2

x2

∂B( )

g1
ζ1

g1
ζ1(η1(ζ

1)) g1
ζ1(x2)

g1
ζ1(∂B( ))

g1
ζ1(η2)

λ−λ− λλ −λ λ−θχθχ

Fig. 14 Illustration of the setup of Lemma 4.3, the one point estimate for the intersection dimension. On
the left side, η1 (resp. η2) is a flow line of a GFF on H with the indicated boundary data with angle 0
(resp. θ ∈ (π − 2λ/χ, 0)) starting from x1 (resp. x2 > x1). Note that η1 (resp. η2) is an SLEκ (−θχ/λ)

(resp. SLEκ (2, −θχ/λ − 2)) process. The force point for η1 is located at x2 and the force points for η2 are
located at x1 and x−

2 . By Fig. 4, the conditional law of η2 given η1 drawn up to any stopping time is also

an SLEκ (2, −θχ/λ − 2) process. Shown is the event Gδ
ǫ(z) that η1 hits ∂ B(z, ǫ), say for the first time at

ζ 1
ǫ , before exiting B(0, R0) where R0 > 0 is a large, fixed constant, the harmonic measure of the left (resp.

right) side of η1 stopped upon hitting ∂ B(z, ǫ) is not too small, and that η2 also hits ∂ B(z, ǫ). We estimate
the probability of Gδ

ǫ(z) by combining Lemma 4.2 with Theorem 3.1

123



Intersections of SLE Paths: the double and cut point… 85

(ii) On Gδ
ǫ(z), let ϕ be the unique conformal map which takes the unbounded con-

nected component of H\(η1([0, ζ 1
ǫ ]) ∪ η2([0, ζ 2

ǫ ])) to H sending z to i and fixing

∞. There exists a constant R1 > 0 such that with

H δ
ǫ (z) = Gδ

ǫ(z) ∩ {max
i=1,2

|ϕ(ηi (ζ
i
ǫ ))| ≤ R1, η2([0, ζ 2

ǫ ]) ⊆ B(0, 10x2)}

we have that

P[H δ
ǫ (z)] � ǫA (4.16)

where the constants depend only on δ, κ , θ , and x2.

The same likewise holds if h is a GFF on H with piecewise constant boundary condi-

tions which change values a finite number of times and in the interval [−20x2, 20x2]
takes the form in (4.14). In this case, the constants also depend on ‖h|R‖∞.

Proof For each t ≥ 0, let H1
t be the unbounded connected component of H\η1([0, t]),

let τ 1
ǫ = inf{t ≥ 0 : CR(z; H1

t ) = ǫ}, σ 1
R0

= inf{t ≥ 0 : η1(t) /∈ B(0, R0)}, and let

(g1
t ) be the Loewner evolution associated with η1. By (2.17), note that τ 1

4ǫ ≤ ζ 1
ǫ . It

then follows from Theorem 3.1 that

P[Gδ
ǫ(z) | η1|[0,τ 1

4ǫ ]
] ≤ |(g1

τ 1
4ǫ

)′(z)ǫ|α+o(1).

Note that r < 1 − 8
κ

< 1
2 − 4

κ
since ρ > −2 and κ ∈ (0, 4). With this choice of r , we

have

ν + r = α and ν − ξ = A.

Thus, by (4.10) of Lemma 4.2, we have that

P[Gδ
ǫ(z)] ≤ E

[
|(g1

τ 1
4ǫ

)′(z)ǫ|α+o(1)1{τ 1
4ǫ≤σ 1

R0
}

]
≤ ǫA+o(1).

This gives the upper bound for (4.15).
Let Eδ

ǫ,R0
= {ζ 1

ǫ < σ 1
R0

, �1
ζ 1
ǫ

∈ (δ, π − δ)}. On Eδ
ǫ,R0

and {ζ 2
ǫ < ∞}, we let

wǫ = g1
ζ 1
ǫ
(η2(ζ

2
ǫ )) and rǫ = |(g1

ζ 1
ǫ
)′(z)|ǫ. From Lemma 3.2, we have that

P
[
Gδ

ǫ(z) | η1|[0,ζ 1
ǫ ]

]
1Eδ

ǫ,R0
� rα

ǫ 1Eδ
ǫ,R0

.

We see from (4.12) of Lemma 4.2 that P[Gδ
ǫ(z)] � ǫA.

We will now explain how to prove the result for H δ
ǫ (z) in place of Gδ

ǫ(z). First of all,
we note that on Eδ

ǫ,R0
, it follows from [16, Corollary 3.44] that |g1

ζ 1
ǫ
(w) − w| ≤ 3R0

for all w ∈ H1
ζ 1
ǫ
. Consequently,

B(g1
ζ 1
ǫ
(z), 10x2 − 6R0) ⊆ g1

ζ 1
ǫ
(B(z, 10x2)); (4.17)
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recall that 10x2 ≥ 20R0. By Lemma 3.2 and (4.17), we have that,

P
[
ζ 2
ǫ < ∞, η2([0, ζ 2

ǫ ]) ⊆ B(z, 10x2), Im(wǫ) ≥ δrǫ | η1|[0,ζ 1
ǫ ]

]
1Eδ

ǫ,R0

� rα
ǫ 1Eδ

ǫ,R0
.

On the event in the probability above, a Brownian motion starting from z has a uni-
formly positive chance (depending on δ) of hitting both the left side of η1([0, ζ 1

ǫ ]) and
right side of η2([0, ζ 2

ǫ ]). Consequently, the desired result follows by applying (4.12)
from Lemma 4.2.

The final claim of the lemma follows from (2.6) to compare the case with extra
force points to the case without considered above. ⊓⊔

In order for Lemma 4.3 to be useful, we need that as η1 gets progressively closer to
a given point z, it is unlikely that �1 /∈ (δ, π − δ) for some δ > 0. This is the purpose
of the following estimate.

Lemma 4.4 Suppose that η is an SLEκ process in H from 0 to ∞ with κ ∈ (0, 4). Fix

z ∈ H and let nz = − log2 Im(z) so that n ≥ nz implies that B(z, 2−n) ⊆ H. Let � be

the process as in (4.1). For each n, let ζn be the first time that η hits ∂ B(z, 2−n) and,

for each δ ∈ (0, π
2 ), let Eδ

n = {ζn < ∞, �ζn /∈ (δ, π − δ)}. There exists a function

p : (0, 1) → [0, 1] with p ↓ 0 as δ ↓ 0 such that for each r ≥ nz we have that

P[∩r
m=n Eδ

m] ≤ (p(δ))r−n for all nz ≤ n ≤ r.

Proof Since the SLEκ processes are scale-invariant in law, almost surely transient,
and do not intersect the boundary for κ ∈ (0, 4) [31], it follows that

lim
s→∞

P
[
η hits [s, s + 2] × [0, 2]

]
= lim

s→∞
P
[
η hits [1, 1 + 2

s
] × [0, 2

s
]
]

= 0.

(For otherwise η would intersect the boundary with positive probability.) Conse-
quently, it follows that there exists a function q : (0, 1) → [0, 1] with q(δ) ↓ 0 as
δ ↓ 0 such that the following is true. If z ∈ H with Im(z) = 1 and arg(z) /∈ (δ, π − δ),
then

P[η hits B(z, 1)] ≤ q(δ). (4.18)

For each n ≥ nz , on the event {ζn < ∞}, let ϕn : H\η([0, ζn]) → H be the unique
conformal map with ϕn(η(ζn)) = 0, ϕn(∞) = ∞, and satisfies Im(ϕn(z)) = 1. Note
that ϕn(B(z, 2−n−3))) ⊆ B(ϕn(z), 1) by [16, Corollary 3.25]. Therefore it follows
from (4.18) that

P[Eδ
n+3 | η|[0,ζn ]]1Eδ

n
≤ q(δ)1Eδ

n
. (4.19)

Iterating (4.19) and taking p(δ) = (q(δ))1/3 proves the lemma. ⊓⊔

For each n ∈ N, we let Dn be the set of squares with side length 2−n which are
contained in H and with corners in 2−nZ2. For each Q ∈ Dn , let z(Q) be the center
of Q and let Q̃n(Q) = B(z(Q), 21−n). For each z ∈ H, let Qn(z) be the element of
Dn which contains z and let Q̃n(z) = Q̃n(Qn(z)). See Fig. 15 for an illustration.
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Qn(z)

Qn(z)

z

Dn

Fig. 15 Shown in the illustration are Qn(z) and Q̃n(z) for a given point z ∈ H

Lemma 4.5 Suppose that η is an SLEκ process in H from 0 to ∞ with κ ∈ (0, 4).

For each z ∈ H, let �z be the process from (4.1) (with respect to z) and let ζz,n =
inf{t ≥ 0 : η(t) ∈ ∂ Q̃n(z)}. Let Sδ

n be the set of points z ∈ H such that Eδ
z,n = {ζz,n <

∞, �z
ζz,n

/∈ (δ, π − δ)} occurs and let Sδ = ∪∞
n=1 ∩∞

m=n Sδ
m . There exists δ0 > 0 such

that for every δ ∈ (0, δ0) we have that Sδ = ∅ almost surely.

Proof Fix z ∈ H and let nz = − log2 Im(z). Note that Q̃n(z) ⊆ B(z, 22−n) so that
Q̃n(z) ⊆ H provided n ≥ nz + 2. By Lemma 4.4, we have that

P[∩r
m=n Eδ

z,m] ≤
(

p(δ)
)r−n

for all nz + 2 ≤ n ≤ r (4.20)

(where p(δ) is as in the statement of Lemma 4.4).
Suppose that Q ∈ Dm and suppose that n ∈ N with n ≤ m. Then the function

Q → R given by w �→ �w
ζw,n

is positive and harmonic. Consequently, it follows from
the Harnack inequality [16, Proposition 2.26] that there exists a universal constant
K ≥ 1 (independent of m, n) such that the following is true. If Eδ

w,m occurs for any
w ∈ Q, then E K δ

z(Q),m occurs. Thus letting Eδ
Q,m = ∪w∈Q Eδ

w,m we have that

P[∩r
m=n Eδ

Q,m] ≤ P[∩r
m=n E K δ

z(Q),m] for any nz(Q) + 2 ≤ n ≤ r. (4.21)

Combining this with Lemma 4.4 implies that

P[∩r
m=n Eδ

Q,m] ≤ (p(K δ))r−n for any nz(Q) + 2 ≤ n ≤ r. (4.22)

Fix ω ∈ (0, 1) and let n = − log2 ω. For each r ≥ n + 2, let V
ω,δ
r be the collection of

squares Q in Dr with Q ⊆ {z ∈ H : |z| < 1
ω
, Im(z) ≥ ω} and for which ∩r

m=n Eδ
Q,m

occurs. Then (4.22) implies that there exists a constant C > 0 such that

∞∑

r=n

E
[
|Vω,δ

r |
]

≤
C

ω2

∞∑

r=n

22r
(

p(K δ)
)r−n

. (4.23)
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Take δ0 > 0 so that δ ∈ (0, δ0) implies that 4p(K δ) < 1. Then for δ ∈ (0, δ0), the
summation on the right side of (4.23) is finite. This implies that for every ω ∈ (0, 1),
V

ω,δ
r = ∅ for all but finitely many r almost surely. This, in turn, implies the desired

result since ω ∈ (0, 1) was arbitrary and V
ω,δ
r increases as ω decreases. ⊓⊔

4.3 The upper bound

Now that we have established Lemmas 4.3 and 4.5, we can prove the upper bound in
Theorem 1.5.

Proposition 4.6 Suppose that h is a GFF on H with piecewise constant boundary

conditions which change values a finite number of times. Let η1 (resp. η2) be the flow

line of h starting from x1 = 0 (resp. x2 > 0) with angle 0 (resp. θ ∈ (π − 2λ/χ, 0)).

We have that

dimH(η1 ∩ η2 ∩ H) ≤ 2 − A almost surely

where A is as in (4.13).

Proof We are going to prove the proposition assuming that the boundary data is as in
Lemma 4.3. This suffices by absolute continuity for GFFs. Fix 0 < ǫ < δ

2 < δ < π
4 .

For each t > 0, we let H1
t be the unbounded connected component of H\η1([0, t]).

For each z ∈ H, we let ζ 1
z,ǫ = inf{t ≥ 0 : η1(t) ∈ ∂ B(z, ǫ)} and let �1,z be the

process as in (4.1) for η1 and z. We let I ǫ,δ consist of those z ∈ η1 ∩ η2 ∩ B(0, δ−1)

such that

(i) Im(z) ≥ δ.
(ii) �

1,z
t ∈ (2δ, π − 2δ) for all t ∈ [ζ 1

z,ǫ/2, ζ
1
z,2ǫ].

(iii) Let ζ 1
z be the first time that η1 hits z and σ 1

z,δ be the first time after ζ 1
z,ǫ that η1

hits ∂ B(z, δ). Then ζ 1
z ≤ σ 1

z,δ .

By the transience, continuity, and simplicity of the SLEκ(ρ) processes for κ ∈ (0, 4)

(which almost surely do not hit the continuation threshold) [26, Theorem 1.3], we
have that η1 ∩η2 ∩H ⊆ ∪ǫ∈Q+ ∪δ∈Q+ I ǫ,δ almost surely. (If this were not true then we
would be led to the contradiction that η1 has double points with positive probability.)
We are going to prove the result by showing that for every ǫ, δ > 0,

dimH(I ǫ,δ) ≤ 2 − A almost surely.

It in fact suffices to show that this is the case for 0 < ǫ < δ
2 < δ < δ0 where δ0 is as

in Lemma 4.5. Let Dn and z(Q) be as before the statement of Lemma 4.5. We let U
ǫ,δ
n

consist of those Q ∈ Dn which are hit by both η1 and η2, contained in B(0, δ−1), and:

(i) Im(z(Q)) ≥ δ.
(ii) �

1,z(Q)

ζ 1
z(Q),ǫ

∈ (δ, π − δ) and �
1,z(Q)
ζz(Q),2−n

∈ (δ, π − δ).

(iii) After ζ 1
z(Q),ǫ

, η1 hits Q before σ 1
z(Q),δ

.
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z

0

η1

η2

−λ λ−θχ

Fig. 16 Suppose that h is a GFF on H with the illustrated boundary data. Let η1 (resp. η2) be the flow line
of h starting from 0 with angle 0 (resp. θ ∈ (π − 2λ/χ, 0)). Shown is an illustration of the construction of
the event that a given point, say z ∈ H, is a “perfect point” for the intersection of η1 and η2. Each of the
green flow lines has angle θ — the same as that of η2 — and start at points along η1 which get progressively
closer to z. The reason that we introduce the auxiliary green flow lines is that this is what gives us the
approximate independence necessary for the two point estimate, see e.g., Fig. 20 (color figure online)

We are now going to show that, for every n ∈ N, W
ǫ,δ
n = ∪m≥nU

ǫ,δ
m is a cover of

I ǫ,δ . To see this, we fix z ∈ I ǫ,δ and let (Qk) be a sequence of squares in ∪m≥nDm

such that z ∈ Qk for every k and |Qk | → 0 as k → ∞. Let zk = z(Qk). Since
ζ 1

zk ,ǫ
∈ [ζ 1

z,ǫ/2, ζ
1
z,2ǫ] for all k large enough, there exists K0 = K0(z) such that for all

k ≥ K0, we have that �
1,zk

ζ 1
zk ,ǫ

∈ (δ, π − δ). Since z ∈ Qk , we have that η1 hits Qk . If

there exists a subsequence (k j ) such that, for every j , η1 hits ∂ B(zk j
, δ) after hitting

∂ B(zk j
, ǫ) and before hitting Qk j

, we get a contradiction that z ∈ I ǫ,δ . Therefore there
exists K1 = K1(z) such that for every k ≥ K1, we have that, after hitting ∂ B(zk, ǫ),
η1 hits Qk before hitting ∂ B(zk, δ). Combing this with Lemma 4.5 implies that there
exists a sequence (k j ) such that Qk j

∈ W
ǫ,δ
n for all j , which proves our claim.

By running η1 until time ζ 1
z,ǫ and then conformally mapping back, Lemma 4.3

implies for Q ∈ Dm with Q ⊆ B(0, δ−1) and Im(z(Q)) ≥ δ that P[Q ∈ U
ǫ,δ
m ] ≤

2−m(A+o(1)) provided m is large enough and ǫ > 0 is small enough relative to δ > 0.
(The purpose of choosing ǫ > 0 smaller than δ > 0 is so that the force points of η1 are
mapped far away from η1(ζ

1
z,ǫ) relative to the distance of z.) Consequently, it follows

that there exists C = C(ǫ, δ) > 0 such that for each ξ > 0, we have

E[H2−A+2ξ (I ǫ,δ)] ≤ C

∞∑

m=n

22m × 2−m(A−ξ) × 2−m(2−A+2ξ) < ∞.

Since the above holds for every n, we therefore have that H2−A+2ξ (I ǫ,δ) = 0 almost
surely. Since ξ > 0 was arbitrary, we have that dimH(I ǫ,δ) ≤ 2 − A almost surely, as
desired. ⊓⊔
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4.4 The lower bound

We are now going to prove the lower bound for Theorem 1.5. As in the proof of
Theorem 1.6, we will accomplish this by introducing a special class of points, so-
called “perfect points”, which are contained in the intersection of two flow lines whose
correlation structure is easy to control (see Fig. 16). Fix β̃ > β2 > β > 1; we will
eventually send β̃ → ∞ but we will take β fixed and large.

4.4.1 Definition of the events

We are going to define the perfect points as follows. Suppose that γ1 is a path in
H starting from 0 and γ2 is a path starting from x2 ∈ [0, eβ ]. Let ζ̃1 be the first
time that γ1 hits ∂ B(i, e−β̃) and suppose that γ̃2 is a path starting from γ1(̃ζ1). Fix

u ∈ R\[0, x2]. We let E
β,β̃
u (γ1, γ̃2, γ2) be the event that the following hold (see Fig. 17

for an illustration):

(i) γ1 hits ∂ B(i, e−β) before leaving the e−2β neighborhood of [0, i],
(ii) The first time ζ1 (resp. ζ2) that γ1 (resp. γ2) hits ∂ B(i, e−β̃−β) (resp. ∂ B(i, e−β̃))

is finite and γi ([0, ζi ]) ⊆ B(i, e2β) for i = 1, 2.
(iii) The first time ζ̃2 that γ̃2 hits γ2 is finite and γ̃2([0, ζ̃2]) does not intersect either

∂ B(i, 1
2 e−β̃) or ∂ B(i, 2e−β̃).

(iv) The connected component of H\(γ1([0, ζ1]) ∪ γ̃2([0, ζ̃2]) ∪ γ2([0, ζ2])) which
contains i also contains u on its boundary.

(v) The probability that a Brownian motion starting from i exits H\(γ1([0, ζ1]) ∪
γ̃2([0, ζ̃2]) ∪ γ2([0, ζ2])) on the left (resp. right) side of γ1([0, ζ1]) is at least
1
2 −e−β/4 and the probability of exiting on the left (resp. right) side of γ̃2([0, ζ̃2])
(resp. γ2([0, ζ2])) is at least e−β . We take H to be the connected component
of H\γ1([0, ζ1]) with u on its boundary and let ϕ = ϕ(γ1) be the conformal
transformation H → H which fixes i and with ϕ(γ1(ζ1)) = 0. Finally, the image
of (the right side of) γ1(̃ζ1) under ϕ is contained in [0, eβ ] and ϕ(γ̃2([0, ζ̃2])) ⊆
B(i, eβ).

The purpose of Part (i) above is that, by drawing a path up until hitting ∂ B(i, e−β)

and then conformally mapping back, the resulting configuration of paths satisfies the
hypotheses of Lemma 4.3.

Lemma 4.7 Suppose that we have the same setup described just above. There exists a

constant C1 > 0 such that the following is true. On the event E
β,β̃
u (γ1, γ̃2, γ2), withϕ =

ϕ(γ1), for each α ∈ (0, 1) we have that B(i, C1e(1−α)(β+β̃)/2) ⊆ ϕ(B(i, e−α(β+β̃))).

Proof Throughout, we shall suppose that E
β,β̃
u (γ1, γ̃2, γ2) occurs. Fix α ∈ (0, 1).

The probability that a Brownian motion starting from i hits ∂ B(i, e−α(β+β̃)) before
hitting ∂H ∪ γ1([0, ζ1]) is O(e−(1−α)(β+β̃)/2) by the Beurling estimate. By the
conformal invariance of Brownian motion, the probability of the event X that a
Brownian motion starting from i exits ϕ(B(i, e−α(β+β̃))) in ϕ(∂ B(i, e−α(β+β̃))) is
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i

∂B(i, e−β)

0 x2

γ1

γ2

ϕ=ϕ(γ1)
i

0=ϕ(γ1(ζ1)) ϕ(x2)

∂B(i, e−β−β)

ϕ(γ2)

γ2

ϕ(γ2)

∂B(i, e−β)

Fig. 17 Suppose that γ1, γ2 are paths in H starting from 0, x2 ∈ R, respectively, with x2 ∈ [0, eβ ]. Let

ζ̃1 be the first time that γ1 hits ∂ B(i, e−β̃ ) and let γ̃2 be a path starting from γ1 (̃ζ1). Fix u ∈ R\[0, x2].
Then E

β,β̃
u (γ1, γ̃2, γ2) is the event that the following hold. First, γ1 hits ∂ B(i, e−β ) before leaving the

e−2β neighborhood of [0, i]. Second, γ1 (resp. γ2) hits ∂ B(i, e−β̃−β ) (resp. ∂ B(i, e−β̃ )) before leaving
B(i, e2β ). Let ζ1, ζ2 be the first hitting times for γ1, γ2, respectively, for these small circles. Third, the first

time ζ̃2 that γ̃2 hits γ2 is finite and γ̃2([0, ζ̃2]) is disjoint from both ∂ B(i, 1
2 e−β̃ ) and ∂ B(i, 2e−β̃ ). Fourth,

the three paths stopped at the aforementioned times do not separate i from u. Fifth, the probability that a
Brownian motion starting from i exits H\(γ1([0, ζ1]) ∪ γ̃2([0, ζ̃2]) ∪ γ2([0, ζ2])) in the left (resp. right)
side of γ1 is at least 1

2 − e−β/4 and in the left (resp. right) side of γ̃2([0, ζ̃2]) (resp. γ2([0, ζ2])) is at least

e−β . We take H to be the connected component of H\γ1([0, ζ1]) with u on its boundary and let ϕ = ϕ(γ1)

be the conformal transformation H → H fixing i and with ϕ(γ1(ζ1)) = 0. Then the image of (the right

side of) γ1 (̃ζ1) under ϕ is contained in [0, eβ ] and ϕ(γ̃2([0, ζ̃2])) ⊆ B(i, eβ )

also O(e−(1−α)(β+β̃)/2). Let

d = dist(ϕ(∂ B(i, e−α(β+β̃))), i).

We claim P[X ] � d−1. Indeed, X1 ∩ X2 ⊆ X where X1 is the event that the Brownian
motion exits ∂ B(0, d) before hitting ∂H at a point with argument in [π

4 , 3π
4 ] and X2

is the event that it hits ϕ(∂ B(i, e−α(β+β̃))) after hitting ∂ B(0, d) before hitting ∂H. It
is easy to see that P[X1] � d−1 and P[X2 | X1] � 1. Consequently, e−(1−α)(β+β̃)/2 �

d−1 hence d � e(1−α)(β+β̃)/2, as desired . ⊓⊔

4.4.2 Flow line estimates

Fix θ ∈ (π − 2λ/χ, 0); recall that this is the range of angles so that a GFF flow line
with angle θ can hit and bounce off of a GFF flow line wiith angle 0 on its right side. We
will now use the events introduced in Sect. 4.4.1 to define the perfect points. Suppose
that h1 is a GFF on H with the following boundary data: suppose x1,1 = x1,2 = 0 and
u1 ∈ R\{0}. If u1 < x1,1 = x1,2 = 0, the boundary data is

h|(−∞,u1] ≡ λ + (2π − θ)χ, h|(u1,0] ≡ −λ, and h|(0,∞) ≡ λ − θχ.
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ϕ

ϕ(η1(ζ
1
ǫ )) ϕ(η2(ζ

2
ǫ ))

i = ϕ(z)z

x1

η1

η2

x2

∂B(z, ǫ)

λ−θχλ−λ

Fig. 18 (Continuation of Fig. 14.) Let ζ 1
ǫ , ζ 2

ǫ be the times that η1, η2 hit ∂ B(z, ǫ), respectively, and let ϕ

be the unique conformal map that uniformizes the unbounded connected component of H\(η1([0, ζ 1
ǫ ]) ∪

η2([0, ζ 2
ǫ ])) with z sent to i and ∞ fixed. For the lower bound of Theorem 1.5, we will also need to

estimate the probability of the event Hδ
ǫ (z) that Gδ

ǫ(z) occurs (as described in Fig. 14), that the diameter
of η2([0, ζ 2

ǫ ]) is not too large, and that the images of ηi (ζ
i
ǫ ) for i = 1, 2 under ϕ are not too far from i as

illustrated on the right

If u1 > x1,1 = x1,2 = 0, then the boundary data is

h|(−∞,0] ≡ −λ, h|(0,u1] ≡ λ − θχ, and h|(u1,∞) ≡ −λ − 2πχ.

These two possibilities correspond to the boundary data that arises when one takes a
GFF with boundary conditions as in Figs. 14 and 18 and then applies a change of
coordinates which takes a given point z ∈ H to i . In either case, we let η1,1 (resp. η1,2)
be the flow line of h1 starting from x1,1 (resp. x1,2) of angle 0 (resp. θ ). We also let
ζ̃1,1 be the first time that η1 hits ∂ B(i, e−β̃) and let η̃1,2 be the flow line of h1 starting
from (the right side of) η1,1(̃ζ1,1) with angle θ .

Let E1 = E
β,β̃
u1 (η1,1, η̃1,2, η1,2). Let ζ1,1 (resp. ζ1,2) be the first time that η1,1

(resp. η1,2) hits ∂ B(i, e−β̃−β) (resp. ∂ B(i, e−β̃)) and let ζ̃1,2 be the first time that
η̃1,2 hits η1,2. Let ϕ1 be the unique conformal map from the connected component of
H\η1,1([0, ζ1,1]) with u1 on its boundary which fixes i and sends the tip η1,1(ζ1,1) to
0.

Suppose that the events E j have been defined as well as paths η j,1, η̃ j,2, η j,2, GFFs
h j , and conformal transformations ϕ j for 1 ≤ j ≤ k. On the event that ηk,1 hits

∂ B(i, e−β−β̃), we take ηk+1,1 = ϕk(ηk,1) and ηk+1,2 = ϕk (̃ηk,2). Note that ηk+1,1 is
the flow line of the GFF hk+1 = hk ◦ ϕ−1

k − χ arg(ϕ−1
k )′ starting from 0. Similarly,

ηk+1,2 is the flow line of hk+1 starting from xk+1,2 = ϕk(ηk,1(̃ζk,1)) with angle θ . We
let ζ̃k+1,1 be the first time that ηk+1,1 hits ∂ B(i, e−β̃) and let η̃k+1,2 be the flow line
starting from (the right side of) ηk+1,1(̃ζk+1,1) with angle θ and let uk+1 = ϕk(uk).

On the event that ηk+1,1 hits ∂ B(i, e−β̃−β), say for the first time at time ζk+1,1,
we let ϕk+1 be the conformal transformation which uniformizes the connected
component of H\ηk+1,1([0, ζk+1,1]) with uk+1 on its boundary fixing i and with
ϕk+1(ηk+1,1(ζk+1,1)) = 0. We then define the event Ek+1 in terms of the paths ηk+1,1,
η̃k+1,2, and ηk+1,2 analogously to E1 as well as stopping times ζk+1,2, ζ̃k+1,2. For each
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n ≥ m we let
Em,n = ∩n

k=m+1 Ek and En = E0,n . (4.24)

Remark 4.8 (i) Note that Em,n for n > m ≥ 1 can occur even if only a subset of (or
none of) E1, . . . , Em occur.

(ii) The conformal maps ϕ j are measurable with respect to η1,1. Note that each of the
paths η̃k,2 is given by the conformal image of a flow line which starts at a point in
the range of η1,1. The starting points of these flow lines are likewise measurable
with respect to η1,1. These facts will be important when we establish the two point
estimate for the lower bound of Theorem 1.5 at the end of this subsection.

We will now work towards proving the one point estimate for the perfect point i .

Proposition 4.9 There exists β0 > 1 such that for all β̃ > β2 > β ≥ β0 we have

P[En] ≍ e
−β̃(1+Oβ (1)oβ̃ (1))n A (4.25)

where A is the constant from (4.13) and the constants in the ≍ of (4.25) depend only

on u1, κ , and θ .

In the statement of Proposition 4.9, we write oβ̃(1) to indicate a quantity which

converges to 0 as β̃ → ∞ and Oβ(1) for a term which is bounded by some constant
which depends only on β. In particular, for β fixed, Oβ(1)oβ̃(1) → 0 as β̃ → ∞.
The first step in the proof of Proposition 4.9 is Lemma 4.10. The second step, which
allows one to iterate the estimate in (4.26), is Lemma 4.12 and is stated and proved
below.

Lemma 4.10 There exists β0 > 1 such that for all β̃ > β2 > β ≥ β0 we have

P[E1] ≍ e
−β̃(1+Oβ (1)oβ̃ (1))A (4.26)

where A is the constant from (4.13) and the constants in the ≍ of (4.26) depend only

on u1, κ , and θ .

Proof By Lemma 2.3, we know that η1,1 has a positive chance of being uniformly close
to [0, i] before hitting ∂ B(i, e−β). Let τ be the first time that η1,1 hits ∂ B(i, e−β) and
let g be the conformal transformation from the connected component of H\η1,1([0, τ ])
containing i which fixes i and sends η1,1(τ ) to 0. By choosing β0 sufficiently large, it
is clear that g(η1,1) and g(η1,2) satisfy the hypotheses of (4.16) of Lemma 4.3. From
this, we deduce that the probability that η1,1 and η1,2 both hit ∂ B(i, 2e−β̃) before
leaving B(i, e2β) and such that the harmonic measure of the left (resp. right) side of
each of the paths stopped at this time as viewed from i is bounded from below by

some universal constant is equal to e
−β̃(1+Oβ (1)oβ̃ (1))A. The rest of the lemma follows

from repeated applications of Lemmas 2.3 and 2.5. ⊓⊔

For each z ∈ H, we let ψz be the unique conformal transformation H → H taking
z to i and fixing 0. For each k ∈ N, we let ηz

k,i for i = 1, 2 and η̃z
k,2 be the paths after
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applying the conformal map ψz and we let ζ z
k,i , ζ̃ z

k,i be the corresponding stopping
times. We define

Em,n(z) = Em,n(ηz
1,1, η̃

z
1,2, η

z
1,2) and

En(z) = E0,n(z).
(4.27)

In other words, Em,n(z) and En(z) are the events corresponding to Em,n and En

defined in (4.24) but with respect to the flow lines of the GFF h1 ◦ψ−1
z −χ arg(ψ−1

z )′

starting from 0. Let ϕk,z be the corresponding conformal maps. We let

ϕ
j,k
z = ϕ j+1,z ◦ · · · ◦ ϕk,z for each 0 ≤ j ≤ k and ϕk

z = ϕ0,k
z . (4.28)

For each n ∈ N and z ∈ H, we also let

V n(z) = B(z, 2−8n−4Im(z)e−n(β+β̃)) and

V n(z) = B(z, 28n+4Im(z)e−n(β+β̃)).

Lemma 4.11 There exists β0 > 1 such that for all β̃ > β2 > β ≥ β0, the following

is true. For each m, n ∈ N with m ≥ n + 2, on Em(z) we have both

(i) ψ−1
z ◦ (ϕm−1

z )−1(γ ) ⊆ V n(z) for γ = ηz
m,i ([0, ζ z

m,i ]) for i = 1, 2 and γ =
η̃z

m,2([0, ζ̃ z
m,2]) and

(ii) ψ−1
z ◦ (ϕm−1

z )−1(γ ) ∩ V m(z) = ∅ for γ = ηz
m,i ([0, ζ z

m,i ]) for i = 1, 2 and

γ = η̃z
m,2([0, ζ̃ z

m,2]).

Proof We will only give the proof of (i); the proof of (ii) is analogous. We are first going
to give the proof in the case that z = i . Fix m, n ∈ N with m ≥ n + 2. Throughout,
we shall assume that we are working on Em . It follows from [16, Corollary 3.25] that
if r ∈ (0, 1

2 ) then

ϕ−1
k (B(i, r)) ⊆ B(i, 16re−β̃−β) for 1 ≤ k ≤ m. (4.29)

Iterating (4.29) implies that

(ϕk)−1(B(i, 1
2 )) ⊆ B(i, 28ke−k(β̃+β)) for 1 ≤ k ≤ m (4.30)

(provided we take β0 large enough).
Note that ηm,i ([0, ζm,i ]) ⊆ B(i, e2β) for i = 1, 2 by the definition of the events.

Consequently, it follows from Lemma 4.7 that ϕ−1
m−1(ηm,i ([0, ζm,i ])) ⊆ B(i, e−β̃/4)

for i = 1, 2 provided β0 is large enough. We also assume that β0 is sufficiently large
so that e−β̃/4 < 1

2 . Applying (4.30) proves the result for ηm,i ([0, ζm,i ]) for i = 1, 2
and η̃m,2([0, ζ̃m,2]). This proves the result for z = i . For the case that z �= i , we note
that applying [16, Corollary 3.25] again yields,

ψ−1
z (B(i, r)) ⊆ B(i, 16r Im(z)). (4.31)

Combining (4.30) with (4.31) gives the desired result. ⊓⊔
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For each m ∈ N and z ∈ H, let Fm(z) be the σ -algebra generated by ηz
k,i |[0,ζ z

k,i ] for

i = 1, 2 and η̃z
k,2|[0,̃ζ z

k,2]
for 1 ≤ k ≤ m.

Lemma 4.12 There exists β0 > 1 such that for all β̃ > β2 > β ≥ β0 the following

is true. Fix δ ∈ (0, π
2 ) and z ∈ D ∩ H with arg(z) ∈ (δ, π − δ). For each m ∈ N we

have that

P[Em,n(z) | Fm(z)]1Em(z) ≍ e
Oβ (1)oβ̃ (1)β̃

P[En−m]1Em (z) (4.32)

where the constants in ≍ depend only on δ, κ , and θ .

Proof By applying ψz , we may assume without loss of generality that z = i . Recall
the definition of the GFF hm+1 as well as the paths ηk,i for i = 1, 2 and η̃k,2 from just
before Remark 4.8. By the definition of Em and the conformal invariance of Brownian
motion, we know that there exists a constant c1 > 0 such that the boundary data for
hm+1 in (−c1, 0) (resp. (0, c1)) is given by −λ (resp. λ). The same is likewise true for
h1. Moreover, by Lemma 4.7, it follows that the auxiliary paths coupled with hm+1
are far away from i provided β0 is large enough. Consequently, by Lemma 2.8, the
laws of ηm+1,1 (given Em) and η1,1 stopped upon exiting the c1

2 neighborhood of the
line segment from 0 to i are mutually absolutely continuous with Radon-Nikodym
derivative which is bounded from above and below by universal positive and finite
constants which depend only on κ and θ .

On Em,n , ηm+1,1 does not leave this tube before getting very close to i and neither
does η1,1 on En−m . For a given choice of η, by Lemma 2.8, we moreover have that the
Radon-Nikodym derivative of the conditional law of η̃m+1,2 given ηm+1,1 = η stopped
upon exiting the tube with respect to that of η̃1,2 given η1,1 = η is bounded from above
and below by universal finite and positive constants which do not depend on the specific
choice of η. On this event, the same is also true for the Radon-Nikodym derivative
of the conditional law of (ϕm,n−1)−1(̃ηn,2) given ηm+1,1 = η and η̃m+1,2 = η̃ with
respect to the conditional law of (ϕn−m−1)−1(̃ηn−m,2) given η1,1 = η and η̃1,2 = η̃.
The conditional law of (ϕm, j−1)−1(̃η j,2) for m + 2 ≤ j ≤ n − 1 stopped upon hitting
η̃m+1,2 given ηm+1,1, η̃m+1,2, and η̃n,2 is independent of the boundary data of hm+1
(as well as the other auxiliary paths) (see Fig. 19). The same is likewise true for the
conditional law of (ϕ j−1)−1(̃η j,2) for 2 ≤ j ≤ n − m − 1 stopped upon hitting η̃1,2
given η1,1, η̃1,2, and η̃n−m,2.

Let K be the compact hull associated with these paths and let g be the conformal
transformation H\K → H with g(z) ∼ z as z → ∞. Conditionally on all of these
paths and the event that they are contained in B(i, 2e−β̃), the probability that ηm+1,2

hits ∂ B(i, 10e−β̃) before leaving B(i, e2β) is ≍ |g′(i)e−β̃ |α+Oβ (1)oβ̃ (1) (as in the proof
of Lemma 4.3; the extra force points only change the probability by a positive and
finite factor by Lemma 2.8.) Given that ηm+1,2 has hit ∂ B(i, 10e−β̃), the conditional
probability that it then merges with η̃m+1,2 before the latter has hit ∂ B(i, 1

2 e−β̃) or

∂ B(i, 2e−β̃) is positive by Lemma 2.5. The same is true with η1,2 in place of ηm+1,2,
which completes the proof. ⊓⊔

Proof of Proposition 4.9 This follows by combining Lemma 4.10 with Lemma 4.12.
⊓⊔
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ηm+1,1

ηm+1,2

i

0

(ϕm,n−1)−1(ηn,2)

Fig. 19 Illustration of the configuration of paths used in the proof of Lemma 4.12. On Em,n , ηm+1,1,
η̃m+1,2, and (ϕm,n−1)−1 (̃ηn,2) separate the paths (ϕm, j−1)−1 (̃η j,2) for m + 2 ≤ j ≤ n − 1 (shown in

green) stopped upon hitting η̃m+1,2 from i . Thus, once ηm+1,1, η̃m+1,2, and (ϕm,n−1)−1 (̃ηn,2) have been
fixed, the conditional law of the remaining paths does not depend on the boundary data of hm+1 or on the
other auxiliary paths (color figure online)

Lemma 4.13 Fix δ ∈ (0, π
2 ) and z, w ∈ D∩H distinct with arg(z), arg(w) ∈ (δ, π −

δ) and let m be the smallest integer such that V m−1(z) ∩ V m−1(w) = ∅. Let Pw be

the event that η1,1 hits V m(w) before hitting V m(z). There exists β0 > 1 such that for

every β̃ > β2 > β ≥ β0 we have that

P[Em,n(z) | Fk(w)]1Ek (w),Pw
≤ eOβ (1)β̃P[En−m]1Ek (w),Pw

(4.33)

for all k ≥ m.

Proof We are going to extract (4.33) from (4.32) of Lemma 4.12. As before, by
applying ψz , we may assume without loss of generality that z = i . Fix k ≥ m. By
Proposition 4.9, it suffices to prove

P[Em+1,n | Em+1,Fk(w)]1Ek(w),Pw
� P[En−m−1]1Ek (w),Pw

(4.34)

in place of (4.33). By Lemma 4.11, we know that the paths involved in Em,n are
disjoint from those involved in Ek(w) due to the choice of m. By Lemma 4.11, we
know that the paths involved in Em,n are contained in V m−1(i), and that the paths
involved in Ek(w) are outside of V m−2(i), due to the choice of m. Thus, the paths
involved in Em+1,n are disjoint from those involved in Ek(w), and by conformally
mapping back (see Fig. 20) and applying Lemma 2.8 as in the proof of Lemma 4.12,
it is therefore not hard to see that

P[Em+1,n | Em+1,Fk(w)]1Ek (w),Pw
≍ P[E1,n−m | E1]1Ek (w),Pw

.

Combining this with (4.32) completes the proof. ⊓⊔
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w z

η1

η2

0

ϕ

i=ϕ(z)

0

Vn(w) Vn(z)

Fig. 20 Illustration of the setup for the two point estimate (Lemmas 4.12, 4.14) in the case that η1 gets
close first to w and then to z. Conformally map back η1,1 drawn up until the path hits the neighborhood of
z. Then all of the auxiliary paths are outside of a large ball which is far from i = ϕ(z), so we can apply
the one point estimate for perfect points (Lemma 4.10) for this region as before. We can also apply the one
point estimate for the paths near z. Finally, to complete the proof, we apply the one point estimate a final
time for the paths up to when they hit a neighborhood containing both z and w

Lemma 4.14 For every ǫ > 0 and δ ∈ (0, π
2 ) there exists β0 > 1 such that for all

β̃ > β2 > β ≥ β0 there exist constants C > 0 and n0 ∈ N such that the following is

true. Fix z, w ∈ D∩H distinct with arg(z), arg(w) ∈ (δ, π − δ). Let m be the smallest

integer such that V m−1(z) ∩ V m−1(w) = ∅. Then

P[En(z), En(w)] ≤ Ceβ̃(1+ǫ)m AP[En(z)]P[En(w)] for all n ≥ n0.

Proof Suppose that z, w ∈ H are as in the statement of the lemma. Let Pw be the
event that η1 hits V m(w) before hitting V m(zs) and lsset Pz be the event in which the
roles of z and w are swapped. We have that

sP[En(z), En(w)]s = P[En(z), Ens(w), Pw] + P[En(z), En(w), Pz]
s ≤ P[En(z) | En(w), Pw]P[En(w)] + P[En(w) | En(z), Pz]P[s En(z)]. (4.35)

We are going to bound the first summand; the second is bounded analogously. We
have,

P[En(z) | En(w), Pw] ≤ P[Em,n(z) | En(w), Pw]. (4.36)

By (4.33) of Lemma 4.13, we have that

P[Em,n(z) | En(w), Pw] ≤ eOβ (1)β̃P[En−m]. (4.37)

By (4.32) of Lemma 4.12 and Proposition 4.9, we have that

P[En−m] ≤ eβ̃(1+ǫ)m AP[En(z)] (4.38)
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(possibly increasing β0). The same likewise holds when we swap the roles of Pw and
Pz . Combining (4.35)–(4.38) gives the result. ⊓⊔

We can now complete the proof of Theorem 1.5.

Proof of Theorem 1.5 We suppose that h is a GFF on H with boundary conditions

h|(−∞,0] ≡ −λ and h|(0,∞) ≡ λ − θχ

and let η1 (resp. η2) be the flow line of h starting from 0 with angle 0 (resp. θ ∈
(π − 2λ/χ, 0)). We have already established the upper bound for dimH(η1 ∩ η2 ∩ H)

in Proposition 4.6. We will now establish the lower bound. Once we have proved this,
we get the corresponding dimension when h has general piecewise constant boundary
data as described in the theorem statement by absolute continuity for GFFs.

The proof is completed in the same manner as the proof of Theorem 1.6. Indeed,
we let ǫn = 28n+4e−(β+β̃)n . We divide [−1, 1] × [1, 2] into 2ǫ−2

n squares of equal
side length ǫn and let zn

j be the center of the j th such square for j = 1, . . . , 2ǫ−2
n . Let

Cn be the set of centers z of these squares for which En(z) occurs. Let Sn(z) be the
square with center z and length ǫn . Finally, we let

C =
⋂

k≥1

⋃

n≥k

⋃

z∈Cn

Sn(z).

It is easy to see that

C ⊆ η1 ∩ η2 ∩ H.

The argument of the proof of Theorem 1.6 combined with Lemma 4.14 implies, for
each ξ > 0, that P[dimH(η1∩η2) ≥ 2−A−ξ ] > 0. To finish the proof, we only need to
explain the 0-1 argument: that for each d ∈ [0, 2], P[dimH(η1∩η2∩H) = d] ∈ {0, 1}.
For r > 0, let Dr = dimH(η1 ∩ η2 ∩ B(0, r) ∩ H). It is clear that 0 < r1 < r2
implies Dr1 ≤ Dr2 . By the scale invariance of the setup, we have that Dr1 has the
same law as Dr2 . Thus Dr1 = Dr2 almost surely for all 0 < r1 < r2. In particular,
P[D∞ = Dr ] = 1 for all r > 0. Thus the events {D∞ = d} and {Dr = d} are the
same up to a set of probability zero. The latter is measurable with respect to the GFF
restricted to B(0, r). Letting r ↓ 0, we see that this implies that the event {D∞ = d}
is trivial, which completes the proof. ⊓⊔

5 Proof of Theorem 1.1

We will first work towards proving (1.1) for κ ′ ∈ (4, 8); let κ = 16
κ ′ ∈ (2, 4). It

suffices to compute the almost sure Hausdorff dimension of the double points of the
chordal SLEκ ′( κ ′

2 − 4; κ ′

2 − 4) processes. Indeed, this follows since the conditional
law of an SLEκ ′ process given its left and right boundaries is independently that of
an SLEκ ′( κ ′

2 − 4; κ ′

2 − 4) in each of the bubbles which lie between these boundaries

123



Intersections of SLE Paths: the double and cut point… 99

−λ + π
2
χ

λ −
3π
2

χ

w = η1
z(τ

1
z )

η1
z([0, τ

1
z ])

P (z)

η2
z([0, τ

2
z ])

z

Fig. 21 Suppose that h is a GFF on the horizontal strip T = R×(0, 1) with the illustrated boundary data and

let η′ be the counterflow line of h starting from +∞ and targeted at −∞. Then η′ is an SLEκ ′ ( κ ′
2 −4; κ ′

2 −4)

with force points located immediately to the left and right of the starting point of the path. Fix z in the
lower boundary ∂L T = R of T and let t (z) be the first time that η′ hits z. Since η′ is boundary filling,
t (z) < ∞ almost surely. Let η1

z be the outer boundary of η′([0, t (z)]). Then η1
z is equal to the flow line

of h with angle π
2 starting from z and stopped at time τ1

z , the first time that it hits ∂U T. Let w = η1
z (τ1

z ).

Given η1
z ([0, τ1

z ]), let η2
z be the outer boundary of η′([t (z), ∞)). Then η2

z is equal to the flow line of h

given η1
z ([0, τ1

z ]) with angle π
2 started from w stopped at time τ2

z , the first time it hits z. Let P(z) be the

region between η1
z ([0, τ1

z ]) and η2
z ([0, τ2

z ]) (indicated in gray). Given P(z), the conditional law of η′ in

each component C of T\P(z) is independently that of an SLEκ ′ ( κ ′
2 − 4; κ ′

2 − 4) from the first point in C

visited by η′ to the last. The points η1
z ([0, τ1

z ]) ∩ η2
z ([0, τ2

z ]) are double points of η′

(recall Fig. 5). In order to establish this result, we are going to make use of the path
decomposition developed in [28] which was used to prove the reversibility of SLEκ ′ for
κ ′ ∈ (4, 8). This, in turn, makes use of the duality results established in [26, Section 7].
For the convenience of the reader, we are going to review the path decomposition here.

Throughout, we suppose that h is a GFF on the horizontal strip T = R×(0, 1) with
boundary values given by −λ + π

2 χ = −λ′ on the lower boundary ∂LT = R of the
strip and λ − 3π

2 χ = λ′ − πχ on the upper boundary ∂U T = R × {1} of the strip [see
Fig. 21 for an illustration of the setup and recall the identities from (2.10)]. Let η′ be the
counterflow line of h from +∞ to −∞. Then η′ is an SLEκ ′( κ ′

2 −4; κ ′

2 −4) process in
T from +∞ to −∞ where the force points are located immediately to the left and right
of the starting point of the path. Recall that κ ′

2 − 4 is the critical threshold at or below
which an SLEκ ′(ρ) process fills the domain boundary. Fix z ∈ ∂T and let t (z) be the
first time t that η′ hits z. Then t (z) < ∞ almost surely (and this holds for all boundary
points simultaneously). Assume further that z ∈ ∂LT and let η1

z be the outer boundary
of η′([0, t (z)]). Explicitly, η1

z is equal to the flow line of h with angle π
2 starting from

z stopped at time τ 1
z , the first time that it hits ∂U T (see Fig. 21). The conditional law of

η′ given η1
z ([0, τ 1

z ]) in each of the connected components C of T\η1
z ([0, τ 1

z ]) which

lie to the right of η1
z ([0, τ 1

z ]) is independently that of an SLEκ ′( κ ′

2 −4; κ ′

2 −4) process
starting from the first point of C visited by η′ and terminating at the last.

Let w = η1
z (τ

1
z ) ∈ ∂U T. Since η′ is boundary filling and cannot enter the loops

it creates with itself or with the domain boundary, the first point on ∂U T that η′ hits
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after time t (z) is w. Let η2
z be the outer boundary of η′([t (z),∞)). Then η2

z is the flow
line of h given η1

z ([0, τ 1
z ]) with angle π

2 starting from w and stopped at time τ 2
z , the

first time the path hits z. Let P(z) be the region which lies between η1
z ([0, τ 1

z ]) and
η2

z ([0, τ 2
z ]). Then P(z) separates the set of points that η′ visits before and after hitting

z. The right (resp. left) boundary of P(z) is given by η1
z ([0, τ 1

z ]) (resp. η2
z ([0, τ 2

z ])).
The conditional law of η′ given P(z) is independently that of an SLEκ ′( κ ′

2 −4; κ ′

2 −4)

process in each of the components C of T\P(z) starting from the first point of C hit by
η′ and terminating at the last — the same as that of η′ up to a conformal transformation.
This symmetry allows us to iterate this exploration procedure to eventually discover
the entire path. Note that the intersection points η1

z ([0, τ 1
z ]) ∩ η2

z ([0, τ 2
z ]) are double

points of η′. If z ∈ ∂U T, then we can define the paths η1
z , η

2
z analogously except the

angle π
2 is replaced with −π

2 . This is because when η′ hits z ∈ ∂U T, only its right
boundary is visible from −∞ which is contrast to the case when it hits z ∈ ∂LT when
only its left boundary is visible from −∞.

The following lemma allows us to relate the dimension of the double points of η′ to
the intersection dimension of GFF flow lines given in Theorem 1.5. This immediately
leads to the lower bound in Theorem 1.1 for κ ′ ∈ (4, 8). We will explain a bit later
how to extract from this the upper bound as well.

Lemma 5.1 Let P∩(z) = η1
z ([0, τ 1

z ]) ∩ η2
z ([0, τ 2

z ]). We have that

dimH(P∩(z)) = 2 −
(12 − κ ′)(4 + κ ′)

8κ ′ almost surely.

That is, dimH(P∩(z)) is almost surely equal to the Hausdorff dimension of the inter-

section of two GFF flow lines with an angle gap of θdouble (recall (1.10)) as given in

Theorem 1.5.

Proof See Fig. 22 for an illustration of the argument. We shall assume throughout
for simplicity that z ∈ ∂LT. A similar argument gives the same result for z ∈ ∂U T.
Suppose that h̃ is a GFF on H with the boundary data as indicated in the left side of
Fig. 22. Let η1

0 be the flow line of h̃ from 0 with angle π
2 . Given η1

0, let η2
0 be the flow

line of h̃ with angle π
2 from ∞ in the component L of H\η1

0 which is to the left of
η1

0. Note that η1
0 is an SLEκ( κ

2 − 2;− κ
2 ) process in H from 0 to ∞. Moreover, the

conditional law of η2
0 given η1

0 is an SLEκ(κ − 4;− κ
2 ) process in L from ∞ to 0; see

[28, Lemma 3.3]. (The κ − 4 force point lies between η1
0 and η2

0.) By the main result
of [27], the time-reversal η̃2

0 of η2
0 is an SLEκ(− κ

2 ; κ − 4) process in L from 0 to ∞.
As explained in Fig. 23, it consequently follows from Theorem 1.5 that

dimH(η1
0 ∩ η2

0) = 2 −
(12 − κ ′)(4 + κ ′)

8κ ′ almost surely (5.1)

since this is the almost sure dimension of η̂1
0 ∩ η̂2

0 (using the notation of Fig. 23). Thus
to complete the proof, we just have to argue that dimH(P∩(z)) is also given by this
value.
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−λ+ π
2
χ
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z(τ

1
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1
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P (z)

η2
z([0, τ

2
z ])
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−λ+ π
2
χ
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3π
2

χ
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η1
0η2
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η1
1η2

1

ϕ

U1

Fig. 22 (Continuation of Fig. 21.) Suppose that h̃ is a GFF on H with the boundary data indicated on
the left side. Let η1

0 be the flow line of h̃ from 0 to ∞ with angle π
2 . Given η1

0 , let η2
0 be the flow line of

h̃ given η1
0 from ∞ with angle π

2 in the connected component of H\η1
0 which is to the left of η1

0 . Then

η1
0 is an SLEκ ( κ

2 − 2;− κ
2 ) in H from 0 to ∞. Moreover, the conditional law of η2

0 given η1
0 is that of

an SLEκ (κ − 4;− κ
2 ) in the component of H\η1

0 which is to the left of η1
0 from ∞ to 0 (the κ − 4 force

point lies between the paths). Shown is the boundary data for the conditional law of h̃ given (η1
0, η2

0) in

the component U1 of H\(η1
0 ∪ η2

0) which contains 1 on its boundary. Let ϕ : U1 → H be the conformal
transformation with ϕ(1) = z and which takes leftmost (resp. rightmost) point of ∂U1 ∩ ∂H to −∞ (resp.
+∞). Then h̃ ◦ ϕ−1 − χ arg(ϕ−1)′ has the boundary data shown on the right side. Let (η1

1, η2
1) be a pair

of paths defined in the same way as (η1
0, η2

0) except starting from 1. Then the image of the region in U1

between η1
1 and η2

1 under ϕ has the same law as P(z) described in Fig. 21 (see also [28, Figure 3.2])

0

η1
0η2

0

00

Fig. 23 Suppose that ĥ is a GFF on H with zero boundary conditions as illustrated. Let η̂1
0 (resp. η̂2

0)

be the flow line of ĥ starting from 0 with angle − 1
2 θdouble (resp. 1

2 θdouble); recall (1.10). Then η̂1
0 is an

SLEκ ( κ
2 −2; − κ

2 ) process in H from 0 to ∞ (Fig. 1) and the conditional law of η̂2
0 given η̂1

0 in the connected

component of H\η̂1
0 which is to the left of η̂1

0 is an SLEκ (− κ
2 ; κ−4) process from 0 to ∞ (Fig. 4). Similarly,

η̂2
0 is an SLEκ (− κ

2 ; κ
2 − 2) process in H from 0 to ∞ (Fig. 1) and the conditional law of η̂1

0 given η̂2
0 is an

SLEκ (κ − 4;− κ
2 ) process from 0 to ∞ in the component of H\η̂2

0 which is to the right of η̂2
0 (Fig. 4). In

particular, by the main result of [27], the joint law of the ranges of η̂1
0 and η̂2

0 is equal to the joint law of the

ranges of η1
0 and η2

0 from the left side of Fig. 22. Consequently, we can use Theorem 1.5 to compute the
almost sure dimension of the intersection of the latter

Let U1 be the component of H\(η1
0 ∪ η2

0) which contains 1 on its boundary. Let
ϕ : U1 → T be the conformal transformation which takes 1 to z and the leftmost
(resp. rightmost) point of ∂U1 ∩ R to −∞ (resp. +∞). Let (η1

1, η
2
1) be a pair of paths

constructed in exactly the same manner as (η1
0, η

2
0) except starting from 1 rather than 0.
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z1

z2

P (z1)

P (z2)

η1
z1

(τ 1
z1

)

η1
z2

(τ 1
z2

)

η1
z1

([0, τ 1
z1

])

η2
z1

([0, τ 2
z1

])
η1

z2
([0, τ 1

z2
])

η2
z2

([0, τ 2
z2

])

Fig. 24 Suppose that we have the same setup as described in Fig. 21. Shown is P(z1) where z1 ∈ ∂T is

fixed. The conditional law of η′ given P(z1) is independently that of an SLEκ ′ ( κ ′
2 − 4; κ ′

2 − 4) in each

of the components C of T\P(z1) starting from the first point of C hit by η′ and exiting at the last. Fix
z2 on the boundary of a component C of T\P(z1). Then we can consequently form the set P(z2) which
describes the interface between the set of points that η′, viewed as a path in C , hits before and after hitting
z2. The intersection of the left and right boundaries of P(z2) consists of double points of η′. Moreover, the

conditional law of η′ given both P(z1) and P(z2) is independently that of an SLEκ ′ ( κ ′
2 − 4; κ ′

2 − 4) in
each of the components of T\(P(z1) ∪ P(z2)). Consequently, we can iterate this procedure to eventually
explore the entire trajectory of η′ (and, as we will explain in Lemma 5.2, the double points of η′). We will
use this in Lemma 5.2 to reduce the double point dimension to computing the intersection dimension of
GFF flow lines with an angle gap of θdouble (recall (1.10))

We consequently have that the image under ϕ of the region between η1
1 and η2

1 is equal
in distribution to P(z) as described before the lemma statement. Since dimH(η1

1 ∩η2
1)

is also almost surely given by the value in (5.1), the desired result follows. ⊓⊔

Let D be the set of double points of η′. To complete the proof of Theorem 1.1, we will
show that every double point of η′ is in fact in some P∩(z). To this end, we explore the
trajectory of η′ as follows. Let (d j ) j∈N be a sequence that traverses N × N in diagonal
order, i.e. d1 = (1, 1), d2 = (1, 2), d3 = (2, 1), etc. Let (z1,k)k∈N be a countable dense
subset of ∂T, and set z1 = zd1 . Let P(z1) be the set which separates T into the set of
points visited by η′ before and after hitting z1, as in Fig. 21. We then let (z2,k)k∈N be a
countable dense subset of ∂(T\P(z1)) and set z2 = zd2 . Recall that the conditional law
of η′ given P(z1) is independently that of an SLEκ ′( κ ′

2 − 4; κ ′

2 − 4) process in each of
the components of T\P(z1) — this is the same as the law of η′ itself, up to conformal
transformation. Consequently, once we have fixed P(z1), we define P(z2) analogously
in terms of the segment of η′ which traverses the component of T\P(z1) with z2 on
its boundary (see Fig. 24). Generally, given P(z1), . . . , P(zn), we let (zn+1,k)k∈N be
a countable dense subset of ∂(T\ ∪n

j=1 P(z j )) and set zn+1 = zdn+1 . The conditional

law of η′ given P(z1), . . . , P(zn) is independently that of an SLEκ ′( κ ′

2 − 4; κ ′

2 − 4) in
each of the components of T\ ∪n

j=1 P(z j ). Thus given P(z1), . . . , P(zn), we define
P(zn+1) analogously in terms of the segment of η′ which traverses the component
which has zn+1 on its boundary. For each n ∈ N, η′ almost surely hits zn only once at
time t (zn). Moreover, from the construction, we have that (t (zn))n∈N is a dense set of
times in [0,∞) (see [28, Section 3.3]).
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Lemma 5.2 Almost surely, D ⊆ ∪∞
j=1 P∩(z j ).

Proof For each ω ∈ D, let t f (ω) and tℓ(ω) be the first and last time that η′ hits ω.
For each δ > 0 we let Dδ = {ω ∈ D : tℓ(ω) − t f (ω) ≥ δ}. Clearly, the sets Dδ

increase as δ > 0 decreases and D = ∪δ>0Dδ . Therefore it suffices to show that
Dδ ⊆ ∪∞

n=1 P∩(zn) for each δ > 0. Fix ω ∈ Dδ and consider P(z1). If t f (ω) <

t (z1) < tℓ(ω), then ω ∈ P∩(z1) and we stop the exploration. If t (z1) > tℓ(ω) or
t (z1) < t f (ω), then ω is a double point of η′|[0,t (z1)] or a double point of η′|[t (z1),∞),
respectively. Consider P(z2). If t f (ω) < t (z2) < tℓ(ω), then ω ∈ P∩(z2) and we
stop the exploration. If t (z2) < t f (ω) or t (z2) > tℓ(ω), we continue the exploration.
We continue to iterate this until the first k that ω ∈ P(zk). To see that the exploration
terminates after a finite number of steps, recall that (t (zn))n∈N is a dense set of times
in [0,∞). In particular, letting

k = min
{

j ≥ 1 : t f (ω) < t (z j ) < tℓ(ω)
}

we have that ω ∈ P∩(zk). ⊓⊔

We now have all of the ingredients to complete the proof of Theorem 1.1 for
κ ′ ∈ (4, 8).

Proof of Theorem 1.1 For κ ′ ∈ (4, 8) Lemmas 5.1 and 5.2 together imply that
dim(D) = 2 − (12 − κ ′)(4 + κ ′)/(8κ ′) almost surely, as desired. ⊓⊔

We finish by proving Theorem 1.1 for κ ′ ≥ 8.

Proof of Theorem 1.1 For κ ′ ≥ 8 Fix κ ′ ≥ 8 and let κ = 16
κ ′ ∈ (0, 2]. Let η′ be an

SLEκ ′ process in H from 0 to ∞ and let D be the set of double points of η′. Then η′ is
space-filling [31]. For each point z ∈ H, let t (z) be the first time that η′ hits z and let
γ (z) be the outer boundary of η([0, t (z)]). It follows from [29, Theorems 1.1, 1.13]
and [3] that the dimension of γ (z) is equal to 1+ κ

8 = 1+ 2
κ ′ . Given γ (z), η′([t (z),∞))

is an SLEκ ′ process in the remaining domain, and thus almost surely hits every point on
γ (z) except the point z. This implies that every point on γ (z) except for z is contained
in D. This gives the lower bound for dimH(D).

Let (zk)k∈N be a countable dense set in H. For the upper bound, we will show
that every element of D is in fact on γ (zk) for some k. Note that (t (zk))k∈N is a
dense set of times in [0,∞) because η′ is continuous. For each ω ∈ D, let t f (ω)

and tℓ(ω) be the first and last times, respectively, that η′ hits ω. For each δ > 0,
Dδ = {ω ∈ D : tℓ(ω) − t f (ω) ≥ δ}. Then D = ∪δ>0Dδ . Since the sets Dδ are
increasing as δ > 0 decreases, it suffices to show that Dδ ⊆ ∪kγ (zk) for each δ > 0.
Fix δ > 0 and ω ∈ Dδ . Since (t (zk))k∈N is dense, we have that

k = min{ j ≥ 1 : tℓ(ω) > t (z j ) > t f (ω)} < ∞.

Clearly, ω ∈ γ (zk). This completes the proof for κ ′ ≥ 8. ⊓⊔
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Remark 5.3 We note that SLE′
κ for κ ′ ∈ (4, 8) does not have triple points and, when

κ ′ ≥ 8, the set of triple points is countable. Indeed, to see this we note that if z is a
triple point of an SLE′

κ process η′ then there exists rational times t1 < t2 such that z

is a single-point of and contained in the outer boundary of η′|[0,t1] and a double point
of and contained in the outer boundary of η′|[0,t2]. For each pair t1 < t2 there are
precisely two points which satisfy these properties. The claim follows for κ ′ ∈ (4, 8)

since SLE′
κ for κ ′ ∈ (4, 8) almost surely does not hit any given boundary point distinct

from its starting point. The claim likewise follows for κ ′ ≥ 8 because this describes a
surjection from Q+ × Q+, Q+ = (0,∞) ∩ Q, to the set of triple points.
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