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Abstract

A computational method, based on `1-minimization, is proposed for the
problem of link flow correction, when the available traffic flow data on many
links in a road network are inconsistent with respect to the flow conservation
law. Without extra information, the problem is generally ill-posed when a
large portion of the link sensors are unhealthy. It is possible, however, to
correct the corrupted link flows accurately with the proposed method under
a recoverability condition if there are only a few bad sensors which are
located at certain links. We analytically identify the links that are robust to
miscounts and relate them to the geometric structure of the traffic network
by introducing the recoverability concept and an algorithm for computing
it. The recoverability condition for corrupted links is simply the associated
recoverability being greater than 1. In a more realistic setting, besides
the unhealthy link sensors, small measurement noises may be present at
the other sensors. Under the same recoverability condition, our method
guarantees to give an estimated traffic flow fairly close to the ground-truth
data and leads to a bound for the correction error. Both synthetic and
real-world examples are provided to demonstrate the effectiveness of the
proposed method.
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1 Introduction

Link volume/flow data is an important data source in both long-term planning
and short-term operation applications. The examples include but are not lim-
ited to signal timing, toll road pricing, origin-destination trip matrix estimation,
transportation planning, traffic safety (e.g. [14, 16, 19, 17] and the references
therein).

The flow conservation in a traffic network implies that the total in-flow equals
the total out-flow at each non-centroid node. The centroids are nodes where traffic
originates/is destined to, and non-centroids nodes denotes all the other nodes.
Practically, when looking at traffic flow counts over a sufficiently long time period
(e.g. daily cumulative flow), we expect that the sum of cumulative link flows
entering the non-centroid node equals the sum of cumulative link flows leaving it.

The flow conservation law is an important property, which has been exploited
in many different applications. For example, the widely used first-order traffic flow
model, the LWR model [15, 22], is derived based on the conservation of traffic.
In [6], the authors mentioned that a path flow estimator (PFE) needs reasonably
consistent link flows, meaning that the flow conservation law should be satisfied
within a certain error bound, to reproduce feasible path flow solutions.

In practice, the flow conservation law can be violated due to numerous flow
measuring errors; i.e., the observed flow counts are generally corrupted and cause
data inconsistency issues. In [23], the network sensor health problem (NSHP)
([23]) is proposed to evaluate individual sensors’ health indices based on the level
of flow data consistency. Assuming flow counting sensors are already installed on
some of the links where at least one base set exists, the NSHP tries to find the
least inconsistent base set that ‘‘minimizes the sum of squares of the differences
between observed and calculated link flows’’. The health index of a specific sensor
is evaluated based on the frequency that it appears in the least inconsistent set.

Several studies have looked into the problem of correcting inconsistent flow
data according to flow conservation. To solve a similar problem in transit planning,
Kikuchi et al. [12] studied the passenger flow balancing problem and proposed
a least square correction method to adjust the flows, so that the counts are
conserved and close to the observed values. van Zuylen and Branston [25] assumed
that the observed link flows follow probability distributions constrained by flow
conservation. The study derived the formula for constrained maximum likelihood
estimates of the link flows. Kikuchi et al. [13] examined and compared six
different methods to adjust observed flow rate according to flow conservation.
All of the methods have the same constraints but different objective functions.
Vanajakshi and Rilett [24] studied flow inconsistency problem between neighboring
upstream and downstream loop detectors. A nonlinear optimization problem is
proposed to correct loop detector data, in the case when observed data violates
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flow conservation.
In summary, given the observed cumulative flows on different links, all of the

existing flow correction methods adopted optimization approaches that try to meet
the following principles:

• Ensure that flow conservation be followed exactly at all non-centroid nodes
after adjustment using a set of constraints,

• Preserve the integrity of the observed data as much as possible by minimizing
the distance between adjusted and observed flows.

However, all of the studies are limited to simple hypothetical networks or networks
with simple topologies. Also, no systematic study has been done regarding the
effectiveness and applicability of the methods.

In this study, we propose a method to estimate the true link flow from corrupted
data on observed links as well as unobserved links via `1-minimization. Similar
to the existing methods, the link flow correction method is also formulated as an
optimization problem to minimize the difference between observed and estimated
link flows. As an improvement over the existing methods, the node-based formu-
lation of flow conservation is introduced to handle general road network where
link flows are only observed on monitored links, not on all links as assumed in
many existing studies. More importantly, we adopt the `1-minimization method
from compressed sensing [4, 3] to analytically derive the condition for exact/stable
recovery of the true cumulative flow counts. The `1 norm is the unique convex
sparsity promoting penalty. Though it is not differentiable, various efficient scal-
able numerical methods exist to date for its minimization [1, 2, 7, 9, 28] besides
linear programming. In addition to `1 norm, other non-convex sparsity promoting
penalty functions can also be considered; see [29, 30, 18] and references therein.
Their minimization is computationally more expensive than `1, and we shall leave
such a study for a future work.

The rest of the paper is organized as follows. In section 2, we state the link
flow correction problem formulation, the exact and stable recovery theorem, the
recoverability condition and the connection with compressed sensing. In section 3,
we use a toy example to illustrate the conditions for exact and stable link flow
recovery. In section 4, we use real-world loop detector data as an application for
this method. In both the toy and real world examples, the recoverability condition
is verified analytically. The concluding remarks are in section 5.

Notations

Let us fix some notations. Rn represents the real coordinate space of n dimensions.
Let x ∈ Rn, ‖x‖1 :=

∑n
i=1 |xi| takes the `1 norm of x, and ‖x‖ denotes the
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Euclidean (`2) norm. Given any index set I ⊆ {1, 2, . . . , n}, |I| counts the number
of elements in I; Ic := {1, 2, . . . , n} \ I is the complement set of I. xI ∈ R|I|
consists of the elements in x restricted to the index set I. 0(n) ∈ Rn denotes the
vector containing zeros only, while I(n) ∈ Rn×n denotes the identity matrix of
order n. For any matrix A ∈ Rm×n, A> is the transpose of A; AI ∈ R|I|×n is the
submatrix of A restricted to the row index set I ⊆ {1, 2, . . . ,m}, and AI ∈ Rm×|I|

is the submatrix of A restricted to the column index set I ⊆ {1, 2, . . . , n}; e.g.,
A{1,2} extracts the first two rows of A, and A{1,2} extracts the first two columns
of A. Ker(A) := {x ∈ Rn : Ax = 0(m)} represents the kernel space of A, while
Ran(A) := {h ∈ Rm : h = Ax for some x ∈ Rn} represents the range space of A.

2 Methodology

2.1 Problem setup

Given a traffic network with non-centroid nodes only, the node-link incidence
matrix A ∈ Rn×l with n being the number of nodes and l the number of links, can
be expressed as

Aij =


−1 if the j-th link is outgoing link of node i

1 if the j-th link is incoming link of node i

0 otherwise.

Then A is always of full (row) rank as proved in [21], and traffic flow data f̂ ∈ Rl

obeys the flow conservation:
Af̂ = 0(n). (2.1)

Suppose M⊆ {1, 2, . . . , l} is the set of links whose link flows are observed, and
|M| = m. We call M as ‘‘monitored set’’ thereafter. We assume that

fM = f̂M + eM ∈ Rm,

is the observed inconsistent flow data corrupted by sensing errors eM ∈ Rm.

The flow correction problem is to derive an estimate of f̂ , denoted by f ∗, from
the corrupted data fM. Here we impose an underlying assumption on M for the
flow correction problem to be well-posed. We will need the concept of base set
introduced in [23].

Assumption 2.1. M contains at least one base set K ⊆ M, meaning that
|K| = l − n and AK

c ∈ Rn×n is invertible.
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For the consistent data f̂M = fM (i.e., eM = 0(m)), of course we have f̂K = fK
since K ⊆M. Then the f̂ can be uniquely recovered by performing [21, 23]:

f̂K = fK and f̂Kc = −(AK
c

)−1AKfK.

IfM contains more than one base set, the f̂ recovered in the above from different
fK will be consistent.

Assumption 2.1 is the sufficient and necessary condition for the whole link
flows to be inferable. It guarantees that the whole flow data can be deduced from
at least one subset of the observed link flows. Without this assumption, however,
some of the link flows cannot be estimated from available data and the problem is
unsolvable [21], whether the measured flows are consistent or not.

2.2 Flow correction via `1-minimization

Since A is of full row rank, Ker(A) is an (l − n)-dimensional subspace of Rl.
Suppose Z ∈ Rl×(l−n) is the matrix whose columns form a basis of Ker(A). Since
f̂ ∈ Ker(A), we have

f̂ = Zx, for some x ∈ Rl−n.

As a result, f̂M must be of the form ZMx for some x ∈ Rl−n.

Remark 2.1. Clearly the existence of Z is non-unique, but f ∗ is invariant to the
choice of Z and only depends on the structure of the traffic network. Indeed f ∗ is
the one in Ran(Z) whose restriction onM has the least absolute deviation from
fM. So f ∗ only depends on Ran(Z) which is same as Ker(A). Note that A is the
node-link matrix uniquely determined by the network structure.

The following result not only gives a concrete construction of Z, but also
interprets x∗ in (2.2) as an estimate of f̂K for some base set K (not necessarily a
subset of M).

Theorem 2.1. Let K be any base set. Without loss of generality, suppose A is
partitioned as [AK, AK

c
] with AK

c ∈ Rn×n being invertible. Then

Z =

[
I(l−n)

−(AK
c
)−1AK

]
∈ Rl×(l−n)

is a basis matrix of Ker(A). Moreover, by choosing such Z, x∗ from (2.2) is an
estimate of f̂K.

We will show the proof in Appendix C. Our proposed method consists of the
following two steps:
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1. We first solve an `1-minimization problem:

x∗ = arg min
x∈Rl−n

‖ZMx− fM‖1, (2.2)

That is, we seek an estimate of eM = fM−f̂M in the affine space {fM−ZMx :
x ∈ Rl−n} with the least `1 norm. The problem (2.2) can be efficiently solved
by the alternating direction method of multipliers (ADMM) [2]; see Appendix
A for the implementation details.

2. f̂ is then estimated by
f ∗ = Zx∗. (2.3)

Zx∗ may have non-integer entries, in this case, we can just perform rounding.

2.3 Connections with compressed sensing

Compressed sensing [3, 8] aims to recover a sparse signal (vector) y from an under-
determined linear system that generally has infinitely many solutions. It enables
recovery of the signal y from far fewer samples than required by the Nyquist-
Shannon sampling theorem. Major ingredients of the standard compressed sensing
technique include

• Sparsity: most of the entries in y are zeros.

• `1-minimization: minimizing ‖y‖1 to exploit the sparsity of y.

Let us return to the flow correction problem, which is in essence equivalent to
the estimation of eM. In an extreme case, suppose all the sensors are bad, leading
to large sensing errors. Without further information, it is clearly impossible to get
a good estimate of f̂ from fM by any means. Intuitively, however, reconstructing
f̂ is promising if most of the sensors record consistent flow data. Mathematically
speaking, eM is sparse. The flow correction problem thus can be viewed as sparse
error correction problem [4, 27], which is similar to compressed sensing. Note that,
however, the flow correction problem deviates from the traditional compressed
sensing problem, where the matrix A would be random.

3 Correction results

Note that our proposed method does not take advantage of any prior information
about the possible bad sensors. Apparently one can not always hope for a good
estimation f ∗ to f̂ , even if there is only one bad sensor in the network. For
instance, in the network shown in Figure 1, if the sensor on link 1 gives very wrong
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count, then basically there is no way to reasonably correct this error because links
1 and 2 are equivalent in the topology of the network. With that said, without
extra information, obtaining a good estimate of f̂ is possible only when the bad
sensors are located at some particular links. These locations tolerating miscount
are somehow determined by the network structure. In the following, we shall
introduce the concept of recoverability.

Definition 3.1. Given a network with node-link incidence matrix A and monitored
link setM, we define the recoverability for the subset S ⊆M by

Rec(S;A,M) := inf
h∈Ker(A):‖hS‖1 6=0

‖hM\S‖1
‖hS‖1

, (3.4)

which is a function of the subset S and also determined by both the network
structure A and the monitored link setM.

Since for any h ∈ Ker(A), it holds that h = Zv for some v ∈ Rl−n, then we
can rewrite (3.4) as

Rec(S;A,M) = inf
v∈Rl−n:ZSv 6=0

‖ZM\Sv‖1
‖ZSv‖1

, (3.5)

which resembles the classical Rayleigh quotient for the principal eigenvalue µ
of the generalized eigenvalue problem [26]: Z>S ZS v = µZ>M\S ZM\S v if `2 norm
replaces the `1 norm. The optimization of the ratio of two homogeneous functions
of degree one has been studied in [10], where an inverse power iterative algorithm
was proposed. Based on [10], we propose an efficient algorithm to solve problem
(3.5) which will be detailed in Appendix B.

3.1 Exact recovery

We first consider the case where some sensors are bad, which introduce incon-
sistency of the flow data. The following Theorem 3.1 asserts that when the bad
sensors are located at certain link set S whose size is expected to be small, then
no matter how large the errors are, we are able to exactly recover f̂ from fM.

Theorem 3.1 (Exact recovery). Let S := {i ∈ M : ei 6= 0}, which means
miscounts only occur at the link set S. If Rec(S;A,M) > 1, then the estimation
f ∗ computed by (2.3) is equal to f̂ . That is, the links in S are robust to miscounts
if Rec(S;A,M) > 1.

The proof is omitted here, since the above theorem is a special case of Theorem
3.2 in section 3.2. We remark that the lower bound for Rec(S;A,M) in the
recoverability condition is sharp. Indeed the method can fail when Rec(S;A,M) =
1, as will be seen in the following example.
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Figure 1: A Toy Network. The solid links are monitored. The numbers in
parentheses denote the ground-truth traffic counts.

Example 3.1. Let us consider the traffic network associated with the 3×6 node-
link incidence matrix

A =

1 1 −1 −1 0 0
0 0 1 0 −1 0
0 0 0 1 1 −1

 ,

and the ground-truth network flow f̂ =


300
200
300
200
300
500

 as in Figure 1, the node and links

are labeled with their ID with ground truth link flows in the parentheses.
Then Theorem 2.1 gives that

Z =


−1 0 1
1 0 0
0 1 0
0 −1 1
0 1 0
0 0 1

 .

Let the monitored link set beM = {1, 2, 4, 5, 6}, then

ZM =


−1 0 1
1 0 0
0 −1 1
0 1 0
0 0 1

 .
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Let the observation be fM =


f1
f2
f4
f5
f6

 =


300
200
200
300
600

, i.e., the observed link flow on

link 6 is inflated by 100 due to sensor error. So eM = fM − f̂M =


0
0
0
0

100

,
S = {i ∈M : ei 6= 0} = {6}, andM\ S = {1, 2, 4, 5}.

We can verify by either an analytic approach or Algorithm 2 that the recov-
erability condition Rec(S;A,M) = 2 > 1 is satisfied. Then Theorem 3.1 asserts
that f ∗ derived from (2.2) and (2.3) must be equal to f̂ . It is indeed true because

x∗ =

200
300
500

, and therefore

f ∗ = Zx∗ =


300
200
300
200
300
500

 = f̂ .

Compare this result with the ground truth link flows, we can conclude that the
errors are completely eliminated.

Remark 3.1. We have two remarks below.

• Without knowing the count at link 3, i.e., M = {1, 2, 4, 5, 6}, the pro-
posed method would fail exact recovery if the count was corrupted at any
other link except link 6. Take link 1 for example, it is easy to check that
Rec({1};A,M) = 1. Therefore, link 1 is not guaranteed to be robust to
miscount by our theory. Indeed this is the case as mentioned in the beginning
of this section.

• Suppose link 3 was also monitored, i.e.,M = {1, 2, . . . , 6}, then any counting
error at one of the links 3, 4, 5 and 6 could be accurately corrected.

3.2 Stable recovery

In a more realistic setting, we assume that all the elements in eM are non-zeros,
yet most of them are relatively small compared with the other few. This refers to
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approximate sparsity in compressed sensing. In this case, it is still possible for f ∗

to be close enough to f̂ . In another word, the estimation errors are bounded from
above in this case.

Theorem 3.2 (Stability). For any S ⊆ M, if Rec(S;A,M) = α > 1, then f ∗

computed by (2.3) obeys

‖f ∗ − f̂‖1 ≤ λ(α,A,M)‖eM\S‖1, (3.6)

for some constant λ(α,A,M) > 0 depending only on α, A and M. Moreover,
λ(α,A,M) decreases in α, meaning that larger recoverability leads to higher
correction accuracy.

In view of (3.6), f ∗ is a good estimation if ‖eM\S‖1 is small. On the other hand,
the estimation error does not rely on eS . Theorem 3.1 is essentially a corollary of
Theorem 3.2 in the special case ‖eM\S‖1 = 0. The proof of Theorem 3.2 will be
given in Appendix C, in which we derive an explicit expression for the constant
factor λ(α,A,M).

Example 3.2. We consider the same setting as in Example 3.1 except that the
other observed data contains small sensing noise besides the large corruption at link

6. Specifically, let fM =


302
201
198
301
600

 and eM = fM − f̂M =


302
201
198
301
600

−


300
200
200
300
500

 =


2
1
−2
1

100

.
Again we take S = {6}. Since Rec(S) = 2 > 1, it is asserted by Theorem 3.2 that
the `1 norm of the estimation error ‖f ∗ − f̂‖1 is comparable to

‖eM\S‖1 = 2 + 1 + 2 + 1 = 6.

This is true, as we obtain that x∗ =

201
303
503

 by (2.2), f ∗ =


302
201
303
200
303
503

 , and

‖f ∗ − f̂‖1 = 12.

Note that the original counting error at Link 6 is 100, in sharp contrast to the
error after correction which is just 3.
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Figure 2: A parallel highway network.

4 Test Examples

In this section, we provide both synthetic and real-world examples to demonstrate
effectiveness of our proposed method.

4.1 A synthetic network

Figure 2 shows a parallel highway network [11, 21] with 9 nodes and 18 links
among which 15 links are monitored. We create the ground-truth and observed
flow data and list them in Table 1, where the estimation errors equal the differences
between the estimated and ground-truth values, and the percentage differences
equal the relative differences between the estimated and observed values. The
data on links 3, 10 and 14 are unobservable. They are marked by ‘‘N/A’’ in
the table and by dashed line in the plot. The recorded data on links 6 and 16
are severely corrupted, while the other data contain small noise. So basically
M = {1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18} and S = {6, 16}. It is clear that
our estimation by Algorithm 1 is fairly close to the ground-truth, and the miscounts
on links 6 and 16 are successfully detected. In fact, we can check by Algorithm
2 that the recoverability condition Rec(S;A,M) = 1.5 > 1 holds. Therefore,
Theorem 3.2 provides guarantee for our correction result.

4.2 A real-world example

The daily cumulative flow data in this example is from Caltrans Performance
Measurement System (PeMS) database, collected on I-405 northbound in the city
of Irvine, on April 28, 2016. The network has 18 links and 9 nodes as illustrated
in Figure 3. The loop detectors are installed on all links except for links 3, 13, and
14, which are represented by dashed lines. The links are labeled with their IDs
and corresponding observed flows in the parentheses.

The estimated link flows by (2.2) and (2.3) are compared with the observed
link flows in Table 2, where unobserved links flows are marked by ‘‘N/A’’. Our
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Table 1: Computational results for Example 1. Links with corrupted data are
labeled with *.

Link ID Ground-truth Observation Estimation Estimation Error Percentage Difference
1 10000 9950 9950 -10 0.0%
2 70000 69887 69887 -113 0.0%
3 8000 N/A 7953 -47 N/A
4 2000 1997 1997 -3 0.0%
5 15000 15010 15104 104 0.6%
6* 55000 39751 54783 -217 37.8%
7 20000 20043 20043 43 0.0%
8 3000 3014 3014 14 0.0%
9 7000 6977 6977 23 0.0%
10 9000 N/A 9009 9 N/A
11 5000 5045 5046 46 0.0%
12 48000 47770 47771 -229 0.0%
13 25500 25397 25505 5 0.4%
14 1500 N/A 1515 15 N/A
15 20000 20000 20000 0 0.0%
16* 33000 45302 32817 -183 -27.6%
17 45500 45912 45505 5 -0.9%
18 34500 34332 34332 -168 0.0%

2

3 5

86

7

12

9

4

14

16

15

18

17
1

10

11 13(123714)

(4835) (105748)

(15479)

(11127)

(127073) (110997)

(16194) (2809)

(113002)

(10941)

(124437)

(15393)

(113411)

(10907)

Traffic Direction

Sand Canyon Ave Jeffrey Rd Culver Dr

Links without sensors

Links with sensors

Figure 3: A road network on I-405 northbound in the city of Irvine.

12



Table 2: Computational results for Example 2.

Link ID Observation Estimation Difference Percentage Difference
1 123714 123714 0 0.0%
2 4835 4835 0 0.0%
3 N/A 128549 N/A N/A
4 15479 15479 0 0.0%
5 105748 113070 7322 6.9%
6 11127 13661 2534 22.8%
7 127073 126731 -342 -0.3%
8 16194 16194 0 0.0%
9 110997 110537 -460 -0.4%
10 2809 2757 -52 -1.9%
11 113002 113295 293 0.3%
12 10941 10941 0 0.0%
13 N/A 124236 N/A N/A
14 N/A 139715 N/A N/A
15 124437 124322 -115 -0.1%
16 15393 15393 0 0.0%
17 113411 113413 2 0.0%
18 10907 10909 2 0.0%

correction result shows that the percentage difference at link 6 is much larger
than all other links. Since there is no ground-truth data available in this example,
we can not check the correction quality directly. However, link 6 is flagged as
unhealthy sensor by PeMS, which is consistent with our estimation. On the other
hand, if link 6 is indeed the only unhealthy sensor, the quality of the estimated
link flow listed in Table 2 is guaranteed by Theorem 3.2, in which we have
M = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18} and S = {6}. It can be verified
that the recoverability condition Rec(S;A,M) = 2 > 1 holds.

5 Conclusion

In this study, we systematically studied the link flow correction problem in a
traffic network based on flow conservation. The problem is formulated as an
`1-minimization problem, in which the differences between the estimated and
observed link flows are minimized. We introduced the recoverability concept for
a subset of links and specifically derived the recoverability condition for exactly
retrieving the missing data: when certain sensors are malfunctioning, no matter
how large the errors are, the ground truth flow can be exactly recovered. That is,
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some links are robust to miscounts. Furthermore, when small errors are present in
observed link flows, the estimation error bound is found such that we can estimate
the link flows that are close enough to ground-truth under the recoverability
condition. We also showed an efficient algorithm for computing recoverability.

For the real-world example in Section 4.2, the percentage differences between
estimated and observed values in Table 2 seem to be higher for links (e.g., link 5)
closer to the one (link 6 in this case) with an unhealthy sensor. In the future we
will be interested in exploring the relationship between the percentage differences
and the distances to unhealthy sensors. However, for the synthetic example in
Section 4.1, such a relation is not so obvious in Table 1; this suggests that the `1
norm can effectively prevent error spreading, and a sensor close to an unhealthy
sensor does not have to have a relatively large percentage difference.

A few more follow-up study topics can be interesting both theoretically and
practically. In addition to the `1 norm, it will be interesting to investigate
the feasibility and efficiency of other sparsity promoting penalty functions for
formulating and solving the flow correction problem. The recoverability defined
in (3.4) is central to the flow correction problem, as it determines whether exact
recovery is possible or not (see Theorem 3.1) and also the error bound in stable
recovery (see (3.6)). In the future we will be interested in examining with Algorithm
2 how the road network’s structure impacts the recoverability of a subset of links,
and such a study could provide guidelines for installing flow counting sensors
especially in a large-scale network.
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Appendix A. ADMM for solving (2.2)

The following alternating direction method of multipliers (ADMM) [2] is an
thresholding-based iterative algorithm. In Algorithm 1, z ∈ Rm and u ∈ Rm are
auxiliary variables. ’shrink’ is the so-called soft-thresholding operator on Rm. For
any z ∈ Rm and r > 0, shrink(z, r) performs component-wise operation on z given
by

(shrink(z, r))i = sign(zi) max{|zi| − r, 0}, i = 1, . . . ,m.

The algorithm stops after some maximum number of iterations.
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Algorithm 1 ADMM for solving minx∈Rl−n ‖ZMx− fM‖1.
Input: ZM, fM, δ > 0
Initialize: x(0), z(0), u(0)

for i = 0, 1, . . . , k1 − 1 do
x(i+1) = (Z>MZM)−1Z>M(fM + z(i) − u(i))
z(i+1) = shrink(ZMx

(i+1) − fM + u(i), 1
δ
)

u(i+1) = u(i) + ZMx
(i+1) − z(i+1) − fM

end for

Output: x∗ = x(k1)

Appendix B. An inverse power algorithm for solv-

ing (3.5)

We present Algorithm 2 to solve the following optimization problem (3.5):

min
v∈Rl−n

‖ZM\Sv‖1
‖ZSv‖1

.

The output λ∗ is the computed recoverability in (3.5), i.e., Rec(S;A,M). Note

Algorithm 2 An inverse power algorithm [10] for solving (3.5).

Input: ZM\S , ZS

Initialize: v(0), λ(0) =
‖ZM\Sv(0)‖1
‖ZSv(0)‖1

for i = 0, 1, . . . , k2 − 1 do
v(i+1) = arg minv ‖ZM\Sv‖1 − λ(i)〈Z>S sign(ZSv

(i)), v〉 subject to ‖v‖ ≤ 1

λ(i+1) =
‖ZM\Sv(i+1)‖1
‖ZSv(i+1)‖1

end for

Output: λ∗ = λ(k2)

that in Algorithm 2, updating v under the unit ball constraint is non-trivial and
requires extra effort. We write an ADMM solver for this subproblem in Algorithm
3 below.

Appendix C. Technical proofs

Proof of Theorem 2.1. To prove Z =

[
I(l−n)

−(AK
c
)−1AK

]
∈ Rl×(l−n) gives a basis

of Ker(A), it suffices to show that
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Algorithm 3 ADMM for updating v.

Input: ZM\S , ZS , b = λ(i)Z>S sign(ZSv
(i)) from Algorithm 2, and δ > 0

Initialize: v(0), z(0), u(0)

for j = 0, 1, . . . , k3 − 1 do

v(j+1) = (Z>M\SZM\S)−1
(
Z>M\S(z(j) + u(j)

δ
) + b

δ

)
v(j+1) = v(j+1)

‖v(j+1)‖ if ‖v(j+1)‖ > 1

z(j+1) = shrink(ZM\Sv
(j+1) + u(j)

δ
, 1
δ
)

u(j+1) = u(j) + δ(z(j+1) − ZM\Sv(j+1))
end for

Output: v(i+1) in Algorithm 2

1. AZ = O is a zero matrix. It is true since AZ = [AK, AK
c
]

[
I(l−n)

−(AK
c
)−1AK

]
=

AK − AKc
(AK

c
)−1AK = O.

2. Z has full rank, i.e., rank(Z) = l− n. This is also true because, on one hand
rank(Z) ≤ l − n, on the other hand, rank(Z) ≥ rank(I(l−n)) = l − n since
I(l−n) is a submatrix of Z.

Then by (2.3), we have

f ∗ =

[
I(l−n)

−(AK
c
)−1AK

]
x∗ =

[
x∗

−(AK
c
)−1AKx∗

]
.

Since f̂ =

[
f̂K

f̂K
c

]
, we conclude that x∗ is an estimate of f̂K.

Proof of Theorem 3.2. Suppose f ∗ = f̂ + v, since f ∗, f̂ ∈ Ran(Z), then we
have

v ∈ Ran(Z).

Moreover, since f ∗M = ZMx
∗ and f̂M ∈ Ran(ZM), (2.2) implies that

‖f ∗M − fM‖1 = ‖ZMx∗ − fM‖1 ≤ ‖f̂M − fM‖1. (5.7)

Bear in mind that eM = fM − f̂M is the sensing error, so on the right hand side
of (5.7),

‖f̂M − fM‖1 = ‖eM‖1 = ‖eS‖1 + ‖eM\S‖1, (5.8)

and on the left hand side,

‖f ∗M − fM‖1 = ‖(f̂ + v)M − fM‖1 = ‖vM − eM‖1
= ‖vS − eS‖1 + ‖vM\S − eM\S‖1
≥ ‖eS‖1 − ‖vS‖1 + ‖vM\S‖1 − ‖eM\S‖1 (5.9)
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In (5.9), we used the triangle inequality for `1 norm. Combining (5.7), (5.8), and
(5.9), we have

‖eS‖1 + ‖eM\S‖1 ≥ ‖eS‖1 − ‖vS‖1 + ‖vM\S‖1 − ‖eM\S‖1

or
2‖eM\S‖1 ≥ −‖vS‖1 + ‖vM\S‖1 (5.10)

By the assumption that

Rec(S;A,M) := inf
h∈Ker(A):‖hS‖1 6=0

‖hM\S‖1
‖hS‖1

= α > 1,

we have α‖hS‖1 ≤ ‖hM\S‖1 holds for all h ∈ Ker(A) = Ran(Z). Since v ∈ Ran(Z)
as aforementioned, we have further ‖vM‖1 ≥ (1 + α)‖vS‖1, then it follows from
(5.10) that

2‖eM\S‖1 ≥ ‖vM‖1 − 2‖vS‖1 ≥ (1− 2

1 + α
)‖vM‖1,

and thus

‖(f ∗ − f̂)M‖1 = ‖vM‖1 ≤
2(α + 1)

α− 1
‖eM\S‖1. (5.11)

In what follows, we derive an upper bound for ‖(f ∗ − f̂)Mc‖1. Without loss
generality, suppose A = [AK, AK

c
] with K ⊆M being any base set. Since both

f ∗ and f̂ obey flow conservation, we have

0(n) = A(f ∗ − f̂) = [AK, AK
c

]

[
(f ∗ − f̂)K
(f ∗ − f̂)Kc

]
,

which gives
(f ∗ − f̂)Kc = −(AK

c

)−1AK(f ∗ − f̂)K.

Since K ⊆M, we haveMc ⊆ Kc. Therefore, (f ∗− f̂)K is contained in (f ∗− f̂)M,
and (f ∗ − f̂)Mc is contained in (f ∗ − f̂)Kc . Using the above facts, we have

‖(f ∗ − f̂)Mc‖1 ≤ ‖(f ∗ − f̂)Kc‖1 = ‖ − (AK
c

)−1AK(f ∗ − f̂)K‖1
≤ ‖(AKc

)−1AK‖1‖(f ∗ − f̂)K‖1 ≤ ‖(AK
c

)−1AK‖1‖(f ∗ − f̂)M‖1

≤ 2(α + 1)

α− 1
‖(AKc

)−1AK‖1‖eM\S‖1. (5.12)

In the second inequality above, ‖(AKc
)−1AK‖1 is the operator norm of (AK

c
)−1AK

induced by `1 norm. And in the last inequality, we used (5.11).
Finally, combining (5.11) and (5.12) gives that

‖f ∗ − f̂‖1 ≤
2(α + 1)

α− 1
(‖(AKc

)−1AK‖1 + 1)‖eM\S‖1.
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Note that the above inequality holds for arbitrary base set K ⊆M. Therefore,

‖f ∗ − f̂‖1 ≤
2(α + 1)

α− 1
min
K⊆M

K is base set

{‖(AKc

)−1AK‖1 + 1}‖eM\S‖1,

which concludes the proof.
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