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Abstract We study the problem of constructing sparse and fast mean revert-
ing portfolios. The problem is motivated by convergence trading and formu-
lated as a generalized eigenvalue problem with a cardinality constraint [6]. We
use a proxy of mean reversion coefficient, the direct Ornstein-Uhlenbeck (OU)
estimator, which can be applied to both stationary and nonstationary data.
In addition, we introduce three different methods to enforce the sparsity of
the solutions. One method uses the ratio of {; and I norms and the other two
use /1 norm. We analyze various formulations of the resulting non-convex opti-
mization problems and develop efficient algorithms to solve them for portfolio
sizes as large as hundreds. By adopting a simple convergence trading strat-
egy, we test the performance of our sparse mean reverting portfolios on both
synthetic and historical real market data. In particular, the [; regularization
method, in combination with quadratic program formulation as well as differ-
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ence of convex functions and least angle regression treatment, gives fast and
robust performance on large out-of-sample data set.
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1 Introduction

Convergence trade is a trade designed to benefit from the phenomenon that
the price of a portfolio may fluctuate around a certain level. Since the devia-
tions from this level are temporary, investors can build an appropriate trading
strategy when they observe the deviations and expect to profit by the amount
of convergence. Ideally, convergence trading will be market-neutral and in-
vestors will always make profits if the convergence happens. However, the risk
of convergence trade is that the expected convergence does not happen, or
that it takes too long so that it possibly diverges before converging. Therefore,
it is important to quantify how fast the portfolio will converge and how an
optimal portfolio could be constructed based on this criterion. In addition, a
sparse portfolio may be preferred in convergence trade since sparsity typically
means less transaction costs. However, there will be a trade-off between the
sparsity and the convergence rate. This makes constructing such a fast mean
reverting portfolio from a set of assets a challenging problem.

Classical methods include cointegration [9] and canonical correlation analy-
sis [13], but researchers did not consider sparsity constraints when they applied
these theories. A new optimization framework for constructing sparse mean re-
verting portfolios is proposed in [6]. The author uses the idea of predictability
[2] as a proxy for the rate of mean reversion. By presetting the desired car-
dinality, an optimization problem is formulated and it is essentially a sparse
generalized eigenvalue problem. In [5], the authors replace the cardinality con-
straint by the variance constraint in order to improve profits during arbitrage
opportunities, while in [11], the authors discuss more details about parame-
ter estimation and trading strategies. In [30], the authors propose a method
called DC-PCA which solves for sparse generalized eigenvectors using the dif-
ference of convex algorithms. However, the authors only test their algorithm
for principal component analysis.

Based on [6], the sparse optimization problem can be formulated as

min, 27 Az /z" Bz
st Jallo < k 1)
zll2 =1,

where ||z||o is the number of the non-zero entries of z and A and B are both
positive definite matrices.
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Without the cardinality constraint, the problem is a generalized eigenvalue
problem. The goal is to find the unit vector z, such that

Bx = Mz

where A\ has the largest possible value. When the matrix A is the identity
matrix, then the problem reduces to finding the first principal component.
Sparse principal component analysis problems are well-studied, see for instance
[7,17,18,29,34]. In [29], the authors discuss 8 different formulations of the
sparse PCA problem and introduce alternating maximization (AM) method
to solve them efficiently.

In our work, we take the approach set forth in [6] as a starting point and
develop three optimization methods that use [; based norms to enforce the
sparsity of the portfolio.

The first method extends the AM method to the generalized eigenvalue
problem. We use [; constraint to enforce sparsity. The problem formulation is

max, z! Bz

st Jalh <5

2T Az < 1,

The second method uses the ratio of /1 and I3 norms as a penalty function
assuming limited prior information of the assets. Such a penalty term arises
in non-negative matrix factorization (NMF), blind deconvolution, and sparse
representation in coherent dictionaries [10,14,16,19,32]. For example, the non-
negative least squares (NNLS) problem under such penalty takes the following
form [10]:

min || Xz — Y||35 + yP(z)
x>0

where P(z) = H;H;, X is an m x n matrix and Y is an m x 1 vector. For our

problem, we formulate the following minimization:

2T Ax lz|l1

a0 27 Bz | ||z|2

(2)

where A and B are positive definite matrices and ~ is a nonnegative tuning
parameter. The first term of the objective function of (2) models predictability
and the second term promotes sparsity. The details are in section 4. The [y
norm regularization technique for variational problems under non-convex (or-
thogonality /unit ball) constraints has been actively developed lately to con-
struct compactly supported eigen-functions [1,20,25,26]. In fact (2) is simply
imposing l; regularization on the unit ball in ls.

Due to the non-convexity of (2), finding a global minimum is challenging.
To deal with this aspect of global optimization, we shall incorporate a recent
variant of simulated annealing, the so called intermittent diffusion method
with discontinuous diffusion coefficient [4]. The combined local minimization
of (2) and random search for global minimum is however expensive for large
size portfolio computation.
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The third method uses [; norm and our partial knowledge on the collection
of assets. We reformulate the problem as a quadratic program:

flr)= max  x! Bx —ral Az (3)
zi=1,[lz[1<m

where A and B are both positive definite matrices, r is a nonnegative number,
x; is the ith entry of the vector z, and the choice of (i, m) will be addressed
later. The ratio minimization problem:

xT Ax

min —_
zi=1,|z|r<m T Bx

will be shown to be equivalent to finding the positive root of f(r).

Non-convexity still exists and a special algorithm designed to minimize a
difference of convex functions [12] can be applied to overcome this difficulty in
combination with convex algorithms such as the least angle regression [8]. The
resulting algorithm is faster than the above methods and can handle portfolios
with hundreds of assets. The combined difference of convex function and least
angle regression method for root finding of f(r) is our main contribution for
computing large size (over 100’s assets) portfolios with a significant speedup
over other non-convex methods.

The paper is organized as follows. As background, we restate the problem
of sparse and fast mean reverting portfolio proposed in [6] (section 2.1) and
discuss two proxies of the mean reversion coefficient (section 2.2). One of them
is the direct OU estimator which we found to work better. In section 3, we
present the optimization problem in finding the desired portfolios and give a
brief introduction to existing methods for solving it. In sections 4, 5 and 6, we
introduce three new approaches in constructing portfolios. We formulate new
optimization problems and develop the algorithms to solve them. Numerical
experiments are presented in section 7. We perform in-sample tests and out-
of-sample tests on both synthetic data and historical market data.

Before we introduce the portfolio problem, let us summarize some nota-
tions.

= (z,y) =2y
— For z € R, ()4 = max(x,0);

XA(X){O :XEA;

o0 : else

2 Background
2.1 Sparse and fast mean reverting portfolio problem

We briefly review the formulation in [6]. Suppose that Sy is the value at
time ¢ of the ith asset with ¢ = 1,2...,n and t = 1,2,...,], we want to form
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a portfolio P; of these assets with coefficients z;, and assume it follows an
Ornstein-Uhlenbeck process given by:

dP, = )\(,u — Pt)dt + odW; with P, = szsm
=1

where A > 0, 0 > 0 and p are parameters and W; is a standard Brownian
motion.

The objective here is to maximize the mean reversion coefficient A of P;
by adjusting the portfolio weights z; under the normalization Z?Zl r?=1.In
addition, we want to limit the number of assets in the portfolio, i.e. we want
to balance the number of nonzeros of x;’s and the mean reversion coefficient.

2.2 Proxy of the mean reversion coefficients

In [5], the authors discuss three different criteria to measure how fast a port-
folio is mean-reverting. They are predictability, the portmanteau statistic and
the crossing statistic. In our paper, we mainly consider two proxies. One is
predictability and the other one is called the direct OU estimator.

2.2.1 Predictability

The idea of predictability of a time series is first derived in [2]. They consider
a stationary vector autoregressive (VAR) model:

St =8".8+2] (4)

where the column vector S; = (S, ..., Sin)?, B € R™*", Z, is a vector of i.i.d
Gaussian noise with zero mean and a covariance matrix Y, independent of
Si_1.

In the univariate case,

E[S?] = E[(S;-18)*] + E[Z{]

which can be rewritten as 07 = 07 ; + X. Box & Tiao (1977) measure the

predictability of stationary series by:

In [6], d’Aspremont proposed to use this measure of predictability as a proxy
for the mean reversion parameter A in an Ornstein-Uhlenbeck process.

In the multivariate case, consider a portfolio P, = S¥x with weights = €
R™, then by multiplying both sides of (4) by x, we get

STe=ST pa+ Zlx
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and we can measure its predictability as:

2T BT B
v(z) = 2Tz

where I' is the covariance matrix of S;. Minimizing the predictability v;(x)
corresponds to maximizing .

2.2.2 Direct OU estimator

The Ornstein-Uhlenbeck process plays an important role in constructing sparse

and fast mean reverting portfolios. We will use the mean reversion coefficient,

A, to test the performance of a portfolio. Therefore, we will need an estimator

for the mean reversion coefficient and will use this estimator as its proxy value.
Consider an Ornstein-Uhlenbeck process:

dPt = )\(M—Pt)dt+Uth (5)

We can estimate the parameters of an OU process by linear regression. We
refer the readers to [15,33] for more details. By writing (5) in a discrete form,
we have

Pt - Pt—At = /\,UAt — )\Pt_AtAt + O'AWt

Note that it can be written as:
Py = At + Pi_pi(1 — MNAL) + 0 AW,
It is equivalent to the linear regression:
y=a+bxr+e

Therefore, we could estimate all the parameters by regressing P, — P;_ A on

Pi_ A¢. Then nr r Xas —2 . fias <2 and & as 24
At en we can recover \ as At,ua&/\madaasm

Maximizing the estimated mean reversion coefficient A corresponds to min-
imizing the estimated slope of b. Note that

o cov(P; — Pi_a¢, Pi—ar) o cov(Py, P at)
b= = -1
Var(Pt,At) Var(Ptht)

Replacing P; by Sf'z , we have:

cov(SEz, SE 1x)

var(SE | x)

b= ~1

We define the direct OU estimator as:

cov(Sfz, ST )

var(SE ,,x)

va(x) =
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If S; is stationary, then we can rewrite (6) in the following form:

aT (cov(Sy, Si—ar) + cov(Sy, Si—ar)")x
2xTvar(Si_a¢)x

Z/Q(J)) =

Minimizing the predictability vo(x) corresponds to maximizing A.

This proxy is a special case of the crossing statistics in [5] when p = 1.
The special assumption needed is that the linear combinations of the asset
STz is stationary. This phenomenon is called cointegration [9]. According to
our numerical tests, the portfolios constructed under this proxy gives better
trading performance.

3 Sparse optimization problem and existing methods

In the previous section, we discussed two proxies of the mean reversion coeffi-
cient. Note that both of them can be written as

2T Ax
2T Bx

where A and B are n X n positive definite matrices and we will make this
assumption for the rest of the paper. The estimation procedures for A and B
for two proxies are discussed in the Appendix B.

If we do not penalize the cardinality of z, then minimizing these proxies
is the same as a generalized eigenvalue problem. In order to obtain a sparse
solution, d’Aspremont in [6] proposed the following sparse optimization prob-
lem:

min, 27 Az /2T Bz
st oo <k )
]2 =1,

where the [y norm of a vector z is the number of nonzero entries of x. This
problem has been proved to be NP-hard [23]. When the dimension of the prob-
lem is large, we cannot expect to find the optimal solution. Several methods
for solving (7) have been proposed in [6,11,30]. We give a brief summary here:

— Exhaustive search method: it tests all ﬁlk), possible combinations of
assets and find the smallest generalized eigenvalue and eigenvectors. This
method yields an optimal solutions and works very well when n is small.
However, it will be extremely slow when n is large.

— Greedy search: denote Ij as the support of the solution and set I, = 0
initially. Each time, we pick one asset from {1,2,...,n}\ I} such that it has
smallest objective among all the other choices. Then we add it to I and
repeat this procedure k times. This method gives a sub-optimal solution.
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— Truncation method: first we solve the unconstrained problem and find x .
Then we find the index set Jy of the largest k& components of |zop| =
(|z1], -, |])T. Next we solve the generalized eigenvalue problem on the
set Ji by taking the corresponding part of matrices A and B. It is the
fastest among all the listed methods, but it sacrifices performance [11].

— Semidefinite relaxation method: this method reformulates the problem
(7) as a semidefinite program. This can be considered as an extension of
DSPCA in [34]. We found that this relaxation method can be considered as
replacing the ||z||o < & by ||z||1/]|z]|2 < VE. For more details, we refer the
readers to [6] and the Appendix A. The major drawback of this algorithm
is that it is not scalable to high-dimensional datasets [30].

— DC-PCA: the problem (7) is formulated as difference of convex functions
problem and the authors apply the difference of convex functions algo-
rithm(DCA) to efficiently solve the optimization problem. In [30], this
method was proven to be efficient for solving various PCA problems, but
the authors do not apply it for the generalized eigenvalue problems.

In the next three sections, we will present three approaches for approxi-
mating the optimal solution to the problem (7).

4 Optimization problems based with l; constraint (I; DC-PCA)

In this section, we consider using the l; constraint in the sparse generalized
eigenvalue problem. This can be considered as an extension of the I; con-
strained sparse principal component analysis problem. The problem is formu-

lated as
max, ! Bz

st [z < /s (8)

2T Ax <1,

One way to tackle this problem is to treat the problem as a difference of
convex functions and using the DC (difference of convex functions) algorithm.
DC programming is extensively studied in [12,22,27,28]. Here we offer the
algorithm in raw form in algorithm 1:

Algorithm 1 DC algorithm
Choose g € R™ ;
repeat
choose yy, € Oh(xy)
choose zy11 € 99* (yx)
until convergence

g* denotes the conjugate function of g and dg denotes the subgradient of
g. For the detailed definition, we refer to [12]. The method aims to minimize
a function g — h where both g and h are convex functions on the whole space.
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In most of the literature on DC programming, an algorithm to find a local
optimum is used. In practice, the local algorithm often approximates well a
global minimum.

For (8), we have g(z) = xr(z) and h(z) = —2? Bz, where F = {x :
2T Az < 1, ||z|1 < V/s}.

Therefore, we will update = by solving the following problem by the DC
algorithm:

) = argmax, (2Bz*~V) )

st Jall < s (9)

2T Az <1,

where 2(*) is the z in the kth interation.

In fact, we could also obtain the same formulation by the generalized power
iteration [18] and alternating maximization [29]. When the A is the identity
matrix, then we reduce to a sparse PCA problem. The explicit solution is
discussed in [18,29]. For a general A, the maximizer of (9) is then

A~ v - 2)
V@ —2)TA (v —2z)

where v = 2Bz(*~1) and z is the optimizer of the dual problem of (9):

min ~ A\/s+ \/(v —2)TAY(v - 2)

AZ0, 2[00 <A

¥ =

When A = (4;;) is a diagonal matrix, then the above reduces to a closed-
form expression:
o Agsgn(w)(ul -~ ).
VI A (ol = M2
This method (I; DC-PCA)is similar to the DC-PCA in [30] which deals

with an [y penalized optimization problem. The authors approximate the ||z||o
by >, log(|x;| 4 €) and formulate

max, r’ Bx — p Y, log(|z;| +¢€)

st. zTAz <1, (10)

After reformulating the object function with an indicator function and apply-
ing the DC algorithm (see details in [30]), we will need to solve the following
problem at each iteration:

maxy <D(x(k_1))Bx(k_1)’x> - §||37||1 (11)
sit. a7 D(x*=D)AD(z(F—Dz < 1,

where D(xz) is the diagonal matrix whose diagonal entries D;; = x,;. The next
2® follows 2¥) k=1) k=1 _ 0 then
(k)

i i
x; = 0. Therefore, the initial 2(® has to be a non-zero vector in the space
{z:2TAx < 1}.

= xE x;. One thing to note is that if x
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When A = (4;;) is a diagonal matrix, then we also have an explicit solution
to the problem (11):

(ci) " 'sgn(vi)(Jvil—p/2)+ x
ol = Ve (vil—p/2)2
0 T

ED %0
1(1971) —0
where ¢; = Aii(xgkfl))2 and v = D(z*~)Bx*—1),

For non-diagnoal matrix A, the algorithm is a sequence of QCQPs with a
multiplicative update. More details can be found in [30].

These two algorithms are very efficient if the matrix A is a diagonal matrix
due to the existence of the explicit solution. When A is not a diagonal matrix,
we have not found them efficient to handle a large size problem. Since these
two DC-PCA algorithms directly apply DC algorithm, we refer to [21] for the
convergence analysis.

5 Optimization problems based on the ratio of I; and Il norms
(11 /13 regularization)

5.1 Motivation

One popular method in handling a cardinality constraint is to use a norm

penalization. Standard choices include {; and [, (0 < p < 1). In our case,
[Ed[
[EIB
invariant constraint is required for ||z||; and ||z||, penalties otherwise they can-

not enforce sparsity. The reason is that we could simply decrease the penalty
by decreasing the scale of all the elements of x. For analysis of sparsity pro-
moting properties of ratio of {1 and Il norms, we refer to [32].

In the following sections, we will present two formulations of sparse mean
reverting problems (7) and discuss the algorithms to solve them. We will also
show that the ratio of [; and [l norms can enforce the sparsity.

we would prefer using since our problem (2) is scale invariant. The scale

5.2 Two formulations

We could reformulate the problem (7) in the following way:

min, 27 Az /2T Bz
stz <o (12)
llll2

x #0,

This problem can be reformulated as the semidefinite programming problem
in [6]. The details can be found in Appendix A.
In addition, we could also modify the problem (7) in the following way:

2T Ax lz||1

«£0 xT Bz l|lz|2

(13)
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where v is a regularizer.

Comparing with the problem (7), the problem (13) does not specify the car-
dinality beforehand. In this way, we can consider the /1 norm in the numerator
as a way to quantify the uniform transaction costs.

5.3 Algorithm to solve (13)

The major difficulty comes from the non-convexity of the problem. Most opti-
mization algorithms will only provide a local minimizer. Since the performance
of local minimizers may vary a lot, it is important to develop an algorithm to
approximate the global minimizer. The intermittent diffusion(ID) algorithm
proposed in [4] can be helpful. The main idea of this algorithm is "to add in-
termittent, instead of continuously diminishing, random perturbations to the
gradient flow generated by the objective, so that the trajectories can quickly
escape from the trap of one minimizer and then approach others.” For more
theoretical analysis of the ID algorithm, we refer to [4].

Algorithm 2 Solve (13)

Input A, B and ~;
Let « be the scale of diffusion strength, x be the scale for diffusion time and
N be the total number of realizations. .
Set the initial state xzo as the minimizer of iTgf; with the constraint that
lzoll2 = 1, i.e. the generalized eigenvector associated with the smallest eigen-
value
Find a local minimizer &y of problem (13) given z( and set X, = Zo.
fort=1to N do
Generate two positive random numbers d, s within [0, 1] by uniform dis-
tribution and let ¢ := ad and T := ks.
Solve the stochastic equation for ¢ € [0, T

dz(t,w) = — vV° F(z(t,w))dt + cdW (t), x(0,w) = Xop

where 7° F is the gradient of the objective (13) and record the final state
xp = x(T,w). The sub-gradient of ||z||; is used to calculate the gradient
of (13).
Find a local minimizer Z; of problem (13) by line search algorithm with
starting point xp.
Xopt =& if f(:i.z) < f(Xopt)‘

end for
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5.4 Analysis of the ratio of [; and ls penalty

In this section, we want to prove some useful properties of the solutions to
the problem (13). Theorem 1 indicates that an almost 1-sparse solution can
always be recovered if the value of v is large enough.

We will define f(z,v), L(x) and P(x) as:

xT Az I ||
f(mvy)_ $TB(E ||$H2
xT Az
L(z) = T Bx
[EIE
P =
@) = Tl

We denote the set of minimizers of the problem (13) by X () and we will
set their I3 norm to 1. When + is fixed, the existence of the minima of f(x,~)
is due to its continuity on the unit sphere and the compactness of the unit
sphere. Since #7 Az /2T Bz is scale invariant, any vector on the same direction
yields the same value. If there are different directions that yield the same
f(x,7), then we always prefer those with the smaller ratio of I and ls norms.
Therefore, the set of the optimizers, x(y), has a unique value of the function
P(-) on this set (and then a unique value of L(-)). Mathematically, it can be
defined in the following way:

2" Az HZHl
+
HZ||2

X(7)={z eR": |z]s = 1 = mi
(M ={z R flallz =1, f(e.7) = min {7p

H

z(y) ={r € X(7) : P(z) = min{P(y) : y € X(7)}}

Under this definition, P(x(y)), L(z(y)) and f(z(7y),~) are well-defined, since
P(), L(-) and f(-,7) are constant on x(-y).
In the following proof, we will use the notations:

B(z,0) = {2’ : |2’ — z|]2 < 6}

Sk={r eR" : [|lz[2 = 1, [|zllo <k}
St={z eR":|z|2 =1}
AU, V) =min{||jz —y|2:x €U, y €V, U and V are compact sets in R"}

Theorem 1 Denote () as the set of optimal solutions of problem (13) given
v. Given A = {a;;} and B = {b;;} both n x n positive-definite matrices, then
for any € > 0, there exists a number y(¢), a vector x and a I-sparse vector e,
such that for any v > ~v(€), ||z — ell2 < €, where z € z(v), e minimizes L(x)
and |le||2 = 1.
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Proof First, note that the problem (13) is scale invariant, therefore, we could
constrain the problem on the sphere ||z||2 = 1. All the vectors in our proof
have 5 norm 1.

Note that the 1-sparse minimizers of L(z) on the sphere ||z|| = 1 are the
vectors +e; with all Os except for a 1 in the ith coordinate. The i is determined
by

: Qi
i = argmin{—

Without loss of generality, we will assume that ¢ = 1 and this corresponds

to a unique minimizer, i.e.
aiy Qi
b b’

Note that both f(z,v) and L(x) are even functions of . We could further
restrict our region to Sy = {r = (21,...,2,)T 121 >0 and ||z|2 = 1}.

Since L(x) is continuous on Sy, then 3¢;, for any point z in the region
{z |z —el <6} NS4, L(z) > L(er) = ¢, for i = 2,3, ..., n.

Denote D; = {x : ||z — e;]| < &;} for i = 2,3,...,n, then for all the points
x € Sy N(UryD;), L(z) > L(er) and ||z||1/||z]]2 > 1. Therefore, for all the
points z € S1 N (UM, D;), f(z,v) > f(e1,7).

For any € > 0, let D1 = {z : ||z — e1]|| < €}, then Si(e) = S+ \ (U], D;) is
a closed and bounded set. If we want D; to be the only region that can obtain
the minimizer of (13), v(e) must satisfy the following inequality:

fler,v(€) < f(z,7(€)),  Va e Si(e).

This is equivalent to

foralli#1

LU ~v(e) < L(z) + v(e) ”le, for any x € S4(e).
bix 1]l
And it implies:
]2

—1), foranyz € Si(e).

v(e) > (T — L())/(

]l

The previous line holds, since for any = € S, (e), % is guaranteed to be
greater than 1. Note that the function (§** — L(z))/( Hi”; — 1) is well-defined

b1
and continuous on S4 (€). Therefore, v(€) only needs to satisfy:

S S o [EE! _

In the case that the minimal ratio is achieved by several indices, the proof
is similar by modifying S, (¢) accordingly.

Assume 31 = .. = §¥ = min;{§*}. Due to the same reason, 34;, for
any point = in the region {z : ||z — ;|| < 6;} NSy, f(z,v) > f(e1,7), for
i=k+1,..,n Forany e > 0,let D; = {x: ||z —e;]| <€} for 1 <i <k and
D; ={z: |z —e <} for k+ 1 <1i < n. We can apply the same logic on
St(e) =S4\ (U1 D;) to get the same conclusion.
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6 Optimization problems based on the I; norm and prior
knowledge (DC-LAR)

6.1 Motivation

In the previous section, we applied a stochastic algorithm in searching for a
global optimizer of the problem (13). The major drawback of the algorithms
is that we can not guarantee a global optimizer. Based on the theory of the
intermittent diffusion(ID) algorithm, we could increase the probability of find-
ing the global optimizer by increasing the number of realizations N. However,
choosing N is problem-dependent and it will be a difficult task when the di-
mension of the problem is large. We have to balance the efficiency and the
performance of the solution.

Therefore, an efficient global optimization algorithm is desired. In addition,
we may prefer a simpler norm to enforce sparsity, because it will lead to simpler
algorithms. We also would like to keep the number of tuning parameters as
low as possible.

6.2 Formulation

Note that the problem (7) is equivalent to:

max ! Bx /2T Az
st |zllo < k
lzllz =1

We use the l; norm to enforce the sparsity and consider the following
problem:

f(ry= max 2TBz—raT Az (14)
zi=1,[|z][1<m
where 7 is a predetermined fixed number. We could choose i based on our
prior knowledge or our investment need. For example, we could choose i by
selecting the asset which has the largest entry in absolute value by solving
the unconstraint problem. The constraint z; = 1 enables using the /; norm to
enforce the sparsity and also simplifies the problem to a quadratic program.
Now, we would like to show that

Theorem 2 Let

f(ry= max 2"Bzx—raT Az
zi=1,[lz[1<m

where A and B are both positive definite matrices, then

a) For any given R > 0, (14) is continuous on 0 <r < R;
b) f(r) is an non-increasing function of r;
¢) there exists r. such that f(r.) = 0;
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d) suppose the optimizer at r. is x., then x, is the optimizer of the following
problem:

mMaXg£o 2T Bz /2T Ax
st x;=1 (15)
Jally < m

Proof In the following proof, we define g(z,7) = 27 Bz — ra” Ax.

a) For any given R > 0, since g(z,r) is continuous on the closed and
bounded set {(z,7),z; = 1,||z|1 < m,0 < r < R}, all the optimizers are
obtainable. Due to the uniform continuity, f(r) is continuous.

b) Suppose r1 > ro, g(x1,71) = f(r1) and g(z2,7r2) = f(r2), then we must
have

fri) = f(ra)
< f(r1) — glar,r2)
= (T Bxy — r2T Azy) — (2T By — roaT Axy)

= (ro — )T Az; <0

since A is positive definite and x; # 0. Therefore, it is non-increasing in r.

c¢) Notice that f(0) > 0. Since A is positive definite, there must exist an
R > 0 such that B — RA is negative definite. Therefore, f(R) < 0. Due to the
continuity of f(r), there exists r, such that f(r.) =0.

d) Suppose there exists a feasible u such that

Then we must have:

0 = ul'Bu—riul Au
= v Bu — rou’ Au — (r; — r.)u” Au
T T T
<z, Br, —r.x; Az, — (11 —ro)u” Au

—(r1 —r)ul Au < 0

Therefore, the result is shown by contradiction.

This theorem tells us that if we can find a root of f(r) and the correspond-
ing maximizer, then we have found the global maximizer of problem (15).

The conversion of the ratio minimization problem to a sequence of dif-
ference minimization problems has been proposed in solving the trace ratio
optimization problem arising in machine learning and high dimensional data
analysis [24]. Here in Theorem 6.1, we considered the additional /; constraint.
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6.3 DC-LAR method

First, we present the Algorithm for finding r.. We used a binary search algo-
rithm.

Algorithm 3 Find 7,

Input the matrices B and A, a threshold € > 0 for stopping, initial z(%),
TminsTmaz, 1, M and maximum iterations NMAX;
Set N =1;
while N < NMAX do
Set o = %(rm,in + Tma:t);
Solve the quadratic program (14) with 7o and obtain the maximizer z(*);
if |27 Bz — ro(2(0)T Az)] < € OR paw — Tmin < € then
Stop
end if
if ()T Bz©) —ro(20)T A2 > 0 then
Tmin = T0
else

Tmax = T0
end if
end while

The difficult part is solving the quadratic program (14). It is a non-convex
optimization problem. Therefore, classical algorithms can not guarantee a
global optimizer. In addition, the computational cost is expensive when the di-
mension of the problem is large(> 100). We will again apply the DC algorithm
to solve the problem.

In order to apply the DC algorithm, we could first reformulate the problem
(14) in the following way by plugging in the constraint x; = 1:

min rz’ Ve +clae —2TUx
[llls <m’

where U and V are the submatrices of B and A without the ¢th row and
column and z € R* 1.

In addition, by a standard method in DC algorithm, we could change it to
an unconstraint problem:

minrz’ Va + 'z — 2T Uz + x|y <o (7) (16)
Let
g(@) =ra" Ve + 'z + Xjpay < (2)  h(z) =" Uz

then the objective is a difference of g and h. We now can use the following DC
algorithm:
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Algorithm 4 Solve (16) for a given r

Choose z(© in R*~1;
repeat
Set yF) = 202",
Solve the optimizer zF*! of the convex program:

inf{ra?Va + 'z — 2Ty® + Xlafy<m (€), © € R"™1} (17)

until convergence

The problem (17) can be considered as a quadratic program with {; con-
straint.
min rz”Va + Tz + 2Ty®

st o1 <m’ (18)

It can also be rewritten as a least squares optimization with [y constraint.
This problem has been well studied in the literature. The major difficulty is
handling the [; constraint. We apply the least angle regression method to solve
this problem.

The idea is that we first reformulate (18) as a LASSO problem [31]. Notice
that the objective of a LASSO problem is

Xz — Y2+ Mz = 27X Xz — 2YTXa + Y'Y + Az,

where X is a matrix of predictor variables, Y is an outcome vector and A is a
tuning parameter.

Therefore, by solving the following system for X and Y, we retrieve a
LASSO type problem from (18):

rV=X"X c+y=-2XTY

The first equation can be solved by Cholesky decomposition and then the sec-
ond equation is easy to solve. Finally, we could apply the least angel regression
algorithm (LARS) [8].

7 Numerical tests

Our procedures are implemented in Matlab R2015a. We used the optimiza-
tion package YALMIP. Computations are performed on a Dell desktop with
8G RAM and 3.4 GHz i7 CPU. We have used two historical data sets. One
is the U.S. daily swaps data for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y
and 30Y from July 3, 2000 until July 15, 2005. The data are obtained from
www.Economagic.com. The total number of data is 1257 x 8. The data are
in percentage with two digits after the decimal point. The other one is the
daily closed prices of S&P 500 companies. The data are collected from Yahoo
finance. In order to obtain a large sample set, we only select those companies
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that have been in the list since July 2005. After this preselection procedure, we
have 458 companies left. We used the stock prices of the first 100 companies
according to the alphabetical order of the ticker symbols. The data size in our
numerical test is 2000 x 100.

In the following sections, we performed several tests:

— Scalability and performance tests of DC-PCA and [;-constraint DC-PCA.
Details are in section 7.1.

— In-sample and out-of-sample tests for the performance of the portfolios
constructed under two mean reverting proxies: predictability and direct
OU estimator on synthetic data. Details are in section 7.2.

— The impact of the size of training set on out-of-sample performance. Details
are in section 7.3.

— In-sample and out-of-sample tests for the ratio of [y and Il norms approach
on the U.S. swaps data. Details are in section 7.4.

— In-sample tests for the I; norm with prior knowledge approach on the
historical daily closing prices of 100 stocks. Details are in section 7.5.1.

— In-sample and out-of-sample tests for the [; norm with prior knowledge
approach on the U.S. swaps data. Details are in section 7.5.2.

— In-sample and out-of-sample tests for the /; norm with prior knowledge
approach on synthetic data with 100 assets. Details are in section 7.5.3.

— In-sample and out-of-sample tests using a set of trading rules with risk
control measures. Details are in section 7.6.

7.1 Scalability and performance tests of DC-PCA and [;-constraint DC-PCA

In [30], the numerical tests show that the DC-PCA is preferred over SPCA|[7]
and DSPCA[34] on sparse PCA problem. The solution of DC-PCA gives larger
explained variance and smaller computational costs relatively. Now we want
to see how well our proposed method and DC-PCA perform on the sparse
generalized eigenvalue problem.

We have performed two tests on synthetic data. The first test is a scala-
bility test. We apply these two method on randomly chosen problems of size
n ranging from 200 to 2500 for 6 different values of p and s and compute the
average time costs. The matrices A and B are both positive definite and A is
a diagonal matrix. The second test is to compare the explained variances of
two methods. We generate the two positive definite matrices A and B of size
3000 x 3000 where A is a diagonal matrix. We compute a series of solutions
with different sparse parameters p and s and compare the explained variances
of the solutions with the same numbers of non-zero loadings.

The results are shown in Figure 1. The left plot shows the average CPU
time vs. n(the number of rows of the matrix) for these two methods with
the empirical complexity growing as O(nP), where p = 1.61 for our proposed
l1 constraint DC-PCA and p = 2.40 for DC-PCA. We could see that the
l; constraint formulation is more efficient than the DC-PCA. The right plot
shows the comparative performance (explained variance vs. sparsity) of the
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two methods for the first generalized eigenvector. The amount of variance
explained by the first generalized eigenvector is 23%. In this case, the two
methods are very close and DC-PCA is slightly better than our proposed
method.

0 028

l; DG-FCA
DC-PCA

02

=
m

(=}

Timecosts(s)
=
Euxplained variance

0.08

n 0 ! . n
10 iy 10 e 1o’ 10t 0 1€
Problem size n Mumber of non-zero loadings

Fig. 1 Comparison between [1 constraint DC-PCA and DC-PCA in DC-PCA in scalability
and performance.

From this test, two methods are seen to be very efficient when the matrix
A is diagonal. The computation can be done in less than one second even if
the problem is of size of 2500.

7.2 Comparison of two mean reverting proxies

Here we will compare the performance of portfolio selection via two proxies
that we discussed in section 3.

We set the matrix § and the noise covariance matrix X in the VAR(1)
model (4) as our estimations based on the U.S. swaps data. We generated a
data set of size 350 x 8, so there are 350 observations for each asset and there
are 8 assets in total. We used the first 100 x 8 samples as the training set and
the rest as the test set. Next we made estimations of parameters and solved for
the optimal solutions by the exhaustive search method based on the training
set. We repeated our simulation 1000 times and then we compared the average
of the estimated mean reversion coefficients of our sparse portfolios on both
the training set and the test set.

Next we tested the performance of the sparse portfolios based on a sim-
ple convergence trading strategy. In most of the application of convergence
trading, investors will consider two parameters p and 7, where pu is the esti-
mated average asset value and 7 is the tolerance of mispricing. In [11], the
authors developed a strategy that only takes advantages of underpricing of
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the portfolio. We generalized their strategy and took advantages of both the
underpricing and overpricing of the portfolio. For simplicity, we also assumed
that we have the ability to buy and sell assets without any transaction costs
and the ability to short sell. Our objective here is using a simple procedure
to evaluate portfolio performance but not building an ”optimal” convergence
trading strategy. A trading opportunity means the observation that the price
converges after out-of-tolerance mispricing. We use P; to denote the portfolio
value at time t¢.

The trading strategy can be summarized as follows:

— If the observed sample P; > p + 7, close long position if we already hold
any. Open a short position if we are not in any position. Otherwise we
perform no action.

— If the observed sample P; < u — 7, close short position if we already short
any. Open a long position if we are not in any position. Otherwise we
perform no action.

— If the observed sample u—7 < P; < pu+ 7, close any long or short position.
Otherwise we perform no action.

Figure 2 will be helpful in understanding the trading strategy. The X-axis
shows the time periods are from day 1 to day 60. The Y-axis shows the values
of the portfolio. The green dashed line is y = p, the red solid line (overpriced
bound) is y = p + 7 and the teal solid line (underpriced bound) is y = p — 7.

A trading opportunities will occur if we have a high price or low price
before returning to the normal range.

The simulation test is similar as before. After we found the optimal solu-
tions to the problem (7) of a given k by the exhaustive search method, we
tested the trading strategy on the test set. We repeated 1000 times and cal-
culated the averages. The estimation of p and 7 is based on the training set.
We set u as the sample mean and 7 as the sample standard deviation.

The results are shown in Figure 3. The top left plot is the average in-sample
mean reversion coefficients versus cardinality. The top right plot is the average
out-of-sample mean reversion coefficients versus cardinality. The bottom plot
is the average out-of-sample trading opportunities versus cardinality.

We see that the solutions under direct OU estimator usually perform better
than that under the predictability. We can also note that the trading opportu-
nities/returns go down somewhat for the portfolios constructed under direct
OU estimator when the cardinalities increase from 4 to 8. This could be caused
by choice of the parameter 7. A higher 7 may increase the profit at each trad-
ing opportunity, but decrease the total number of trades. We remark that in [5]
the authors use a variance constraint to improve the profits during arbitrage
opportunities.
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Fig. 2 Trading Opportunities (Not all are marked in the plot.)

7.3 The impact of the size of training set on out-of-sample performance

From our numerical results, we notice that the size of the training set will affect
the out-of-sample performance. To illustrate this, we perform the following
tests.

After presetting proper § and X, we generate a data set of 10 assets for
400 observations based on the VAR(1) model (4). We use the last 50, 100,
200 and 400 observations as the training set and estimate A’s and B’s in
(7) respectively. Next, we construct the portfolios under different cardinality
constraints by the exhaustive search method by using those A’s and B’s.

We then generate the test data sets. Each has 400 observations of 10 as-
sets. They follow the same VAR(1) model. The starting values are the final
observations of the training data. In total, we have 100 test data sets and we
compare the average out-of-sample mean reversion coefficients of the portfolios
constructed based on the training set. If we use the last 50 observations of the
training set for estimation, then we will only test those portfolios on the first
50 observations of each test set, and so forth.

Figure 4 shows the results. It illustrates the impact of the size of training
set on out-of-sample performance. We compare the in-sample mean reversion
coefficients with the average out-of-sample mean reversion coefficients under
different cardinality constraints. The portfolios are constructed by solving the
problem (7) by the exhaustive search method. The top left uses 50 observations
of the training set and 50 observations of the test set; the top right uses
100 observations of the training set and 100 observations of the test set; the

B0
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Fig. 3 Comparison of the average performance of sparse mean reverting portfolios solved
under different proxies using the exhaustive search method on synthetic data from VAR(1)
model (4). Top left: average in-sample mean reversion coefficients versus cardinality; Top
right: average out-of-sample mean reversion coefficients versus cardinality; Bottom: average
out-of-sample trading opportunities versus cardinality.

bottom left uses 200 observations of the training set and 200 observations of
the test set; the bottom right uses 400 observations of the training set and
400 observations of the test set. Notice that when the size of the training
set increases, the out-of-sample performance becomes closer to the in-sample
performance.

7.4 Tests of the ratio of [; and I norms approach

We performed in-sample and out-of-sample tests on the U.S. swaps data and
tried to solve the following problem in section 4:

[EI

2|2

2T Az /2T Bx + ~

by using intermittent diffusion algorithm (ID algorithm) [4]. After each itera-
tion of the line search algorithm [3], we fix the I3 norm to 1.

In our tests of ID algorithm, we let a = 20, kK = 20 and N = 20. In addition,
to satisfy the conditions of ID algorithm so that a global minimizer exists in
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Fig. 4 The tests of the impact of the size of training set on out-of-sample performance
based on synthetic data. The portfolios are constructed by the exhaustive search method
under different cardinality constraints. Top left: 50 observations of the training set and 50
observations of the test set; Top right: 100 observations of the training set and 100 observa-
tions of the test set; Bottom left: 200 observations of the training set and 200 observations
of the test set; Bottom right: 400 observations of the training set and 400 observations of
the test set;

a bounded set, we also add a penalty function p(x,8,¢,¢) to f(x):

p(gjv 0a§7 C) = Zu(xia 0767 C)

2

where
5(3:7;—0)5, x; >0
u(xi797£ag) = 07 |x’L| S 0
5(9 — .Z‘i)c, T, < —0

We set 8 = 10, £ = 2 and ¢ = 100 in our test.

For in-sample tests, we used the entire U.S. swaps data set to estimate the
parameters A and B and calculated the solutions for different . We found the
minimizers to the problem (13) by the algorithm 2 in section 4 for different
v’s between 0 and 1.5 with a step size 0.02. Then we calculated the estimated
mean reversion coefficients and counted the trading opportunities of the whole
period for all the minimizers. The results are shown in Figure 5. It shows the
estimated mean reversion coefficients/trading opportunities versus the values
of v of this in-sample test on the entire swap data set.
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For out-of-sample tests, we used every 100 consecutive observations to es-
timate those parameters and found the minimizers for different v’s between
0 and 1.5 with a step size 0.02. This time, we calculated the estimated mean
reversion coefficients and counted the trading opportunities for both these 100
days and the next 100 trading days. The results are shown in Figure 6. It
shows the average estimated mean reversion coefficients/trading opportunities
versus the values of « from in-sample and out-of-sample tests.

In-sample test: A In-sample test: trading opportunities
280 280
- -
200 200
i)
= c
5 180 £ 1580
2 g
8 =
T =
Z 100 £ 100
z pid
& =
T
=
50 ] 50
0 . - 0 . -
0 0.s 1 15 0 0.s 1 15
v v

Fig. 5 In-sample tests on the whole data set of the U.S. swaps. Estimated mean reversion
coefficients/trading opportunities versus the values of « using the intermittent diffusion(ID)
algorithm with the ratio of /1 and l2 norms penalty.

From the numerical results, we see that as the v increases the mean re-
version coeflicients and the trading opportunities have a decreasing trend for
both in-sample and out-of-sample tests. There are big jumps in Figure 5. Af-
ter checking those portfolios, we found that we only recovered portfolios of
cardinality 1, 5, 6, 7 and 8. We failed to recover the portfolios of cardinality
2, 3 and 4. The reason could be that we got trapped in the local minima.

The curves in Figure 6 look smoother, since they are the average perfor-
mance of portfolios on about 12 data sets. Normally, the in-sample perfor-
mance is better than the out-of-sample performance. However, if we treat the
in-sample performance as a benchmark, we can still maintain about 60% of
the performance.

When v is close to 1.5, the minimizer will be an 1-sparse vector. This
shows that the ratio of 1 and ls norms indeed enforces extreme sparsity in our
problem.

The advantages of the ratio of /1 and ls norms approach are: 1. It does
not require any prior knowledge of the assets; 2. It does not predetermine
the cardinality. This approach also has its disadvantages: 1. It is difficult to
recover a portfolio whose cardinalities are intermediate. We could encounter
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Fig. 6 In-sample and out-of-sample tests on the U.S. swaps. Average estimated mean re-
version coefficients/trading opportunities versus the values of v using the intermittent dif-
fusion(ID) algorithm with the ratio of I1 and l3 norms penalty.

big jumps of the mean reversion coefficients and trading opportunities as we
change the tuning parameter ; 2. The algorithm is not very efficient. It takes
more than 5 minutes in solving a problem of size 100 (100 different assets for
us to choose). If we compare this speed with methods of the next section, it
is relatively slow.

7.5 Tests of the methods in section 6
7.5.1 In-Sample tests on 100 stocks

In this test, we applied the method in section 6 to a data set of 100 stocks.
These stocks are the first 100 S&P stocks in ticker symbols’ alphabetical order
from our preselected list of S& P 500 stocks. Therefore, the size of the matrices
A and B is 100 x 100.

When the problem is of this size, we are not able to use the exhaustive
search method to get the optimal solution for the middle cardinalities. There-
fore, in order to set up a criterion, we will treat the {! contraint-free solution as
a benchmark. This solution should give us the largest possible mean reversion
coefficient based on the data set.

For our data set, the largest possible mean reversion coefficient is 109.97.
In addition, we will set the weight of the No. 43 stock (ticker symbol: AMAT)
to be 1, since it has the largest weight among all in the densest solution.

Figure 7, 8 and 9 give the numerical results. The I; constraints, m, are
in the range of 3 to 16 with a step size 1. Figure 7 demonstrates the mean
reversion coefficients of portfolios built under different m’s. The X-axis shows
the level of m and the Y-axis is the mean reversion coeflicients. Figure 7 also
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demonstrates the cardinality of those portfolios and Figure 8 shows the trading
opportunities. Figure 9 displays the weights of 100 stocks.

Mean Rewversion Coefficients Cardinalities
120 100
100 a0
80
= B0
£
~ B0 =
=t
S o
40
a0 20
0 L L L 0 . . 1
0 A 10 15 20 0 A 10 15 20
Iy level {m) Iy level (m)

Fig. 7 Mean reversion coefficients/cardinality versus different l; constraints using the
method of the least angle regression and the difference of convex functions algorithm on
100 stocks. The horizontal line in the left plot shows the largest possible mean reversion
coefficient.

The average computational cost of the method of all these tests is 4.928
seconds. This is a remarkable improvement over the other non-greedy-search
computational methods to date in terms of performance, efficiency and speed.
The following table shows the computational cost of the three methods in the
paper in this test:

Iy DC-PCA | [/l Regularization | DC-LAR
Time costs(s) 100+ 100+ 4.9

In addition, Figure 10 shows the portfolios built by the DC-LAR method
can achieve the similar performance as those built by semidefinite relaxation
method in [6] when the exhaustive method and the greedy-search method are
used as benchmarks.

7.5.2 Out-of-sample tests on the U.S. swaps

We also performed out-of-sample tests. We still worked on the U.S. swap data.
Each time, we used 100 days data as the training data and built a sparse mean
reverting portfolio. Then we estimated the mean reversion coefficients of the
portfolio on these 100 days, next 50 days and next 100 days.

Figure 11 shows the numerical results of the average A and Figure 12 shows
the numerical results of the average trading opportunities. Both the X-axes
are the [; level. The range is from 1.5 to 2.7 with a step size 0.1. For each level,
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Fig. 8 Trading opportunities versus different [1 constraints using the method of the least
angle regression and DCA on 100 stocks.

we performed several tests and the Y-axis is the average of the estimated mean
reversion coefficients and the trading opportunities of all these tests.

From Figure 11, we see that as expected the in-sample performance is bet-
ter. Our portfolios could maintain about 70% of the in-sample mean reversion
coefficients during the 50 out-of-sample days and maintain about 65% of the
in-sample mean reversion coefficients during the 100 out-of-sample days.

In order to make a fair comparison of the trading opportunities, we per-
formed the following counts. We counted the trading opportunities of the last
50 days of the training period and compare it with the trading opportunities of
the next 50 days. We counted the trading opportunities of the last 100 days of
the training period and compare it with the trading opportunities of the next
100 days. In this experiment, the total lengths of trading days are identical for
in-sample and out-of-sample tests. We find that in both cases our portfolios
can maintain about 75% of the in-sample trading opportunities during the
out-of-sample period.

7.5.8 Out-of-sample tests on high dimensional synthetic data

In this section, we perform in-sample and out-of-sample tests on high dimen-
sional synthetic data.

By presetting the matrix § and the noise covariance matrix X in the
VAR(1) model (4), we generate a data set of size 1000 x 100. The eigen-
values of the matrix 3 lie inside the unit circle. We consider this set as the
training set and estimate the matrices A and B based on this set. After picking
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Fig. 9 Solutions under different [1 constraints using the method of the least angle regression
and the difference of convex functions algorithm on 100 stocks.
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Fig. 10 In-sample and out-of-sample tests on 8-dimensional synthetic data. For the exhaus-
tive method and the greedy search method, we plot the average in-sample and out-of-sample
mean reversion coefficients for each cardinality. For DC-LAR, in each data set, we calcu-
lated the solutions for 20 different [; values and select the best vector for each cardinality.
The red line shows the average mean reversion coefficients of the DC-LAR method for each
cardinality.

an appropriate i, we solve for the optimal solutions under different m’s (from
1.0683 to 17.0933 with a step size 1.0683) by the least angle regression and
the difference of convex functions algorithm.
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Fig. 11 In-sample and out-of-Sample tests on the U.S. swaps. Average mean reversion
coefficients versus different /1 constraints using the method of the least angle regression and
DCA.
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Fig. 12 In-sample and out-of-sample tests on the U.S. swaps. Average trading opportunities
versus different /1 constraints using the method of the least angle regression and DCA.

We also test another two special portfolios. One is a uniform portfolio
which has equal weights on 100 assets. The other one is a random portfolio.
We set the weight of the same ith asset to 1. For all the other assets, their
weights are independently and identically distributed random variables which
follows a uniform distribution in the interval [—1, 1]. These two portfolios can
be considered as two benchmarks. We expect that the portfolios constructed
under our algorithms will beat them in out-of-sample performance.

We generate 1000 x 100 observations based on the same VAR(1) model in
each trial. These are test sets on which to evaluate our constructed portfolios
and those two benchmark portfolios.
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We generate 100 different test sets and then we compare the average of
the estimated mean reversion coefficients and trading opportunities of these
portfolios on both the training set and the test set. When we count the out-
of-sample trading opportunities, we still use the mean and standard deviation
of the training set, since we are not supposed to know the future mean or
variance.

The results are shown in Figure 13. The blue curves show the in-sample per-
formance and the green curves show the out-of-sample performance. The red
horizontal lines show the level of average mean reversion coefficients/trading
opportunities of a random portfolio. The light blue horizontal dashed lines
show the level of average mean reversion coefficients/trading opportunities of
a uniform portfolio. We notice that it is very hard to maintain a high level of
mean reversion coefficients when the dimension of the problem is high. They
are about 22% of the in-sample levels. We believe that the estimations of A and
B will impact this performance. When the number of observations increases,
we can expect that the out-of-sample performance will be better. The numbers
of trading opportunities do not decrease so dramatically. They are about 55%
of the in-sample trading opportunities. In fact, this is more important since
the profits of convergence trading strategy come directly from those trading
opportunities. The out-of-sample performance of the uniform portfolio and
the random portfolio are much lower than our sparse and fast mean reverting
portfolios.
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Fig. 13 In-sample and out-of-sample tests on high dimensional synthetic data from VAR(1)
model. Average mean reversion coefficients/trading opportunities versus different 11 con-
straints using the method of the least angle regression and the difference of convex functions
algorithm. The blue curves show the in-sample performance and the green curves show the
out-of-sample performance. The red horizontal line shows the level of average mean reversion
coefficients/trading opportunities of a random portfolio. The light blue horizontal dashed
line shows the level of average mean reversion coefficients/trading opportunities of a uniform
portfolio.
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7.6 Portfolio annual return performance tests

Trading opportunities used in the previous sections can be considered as a
metric for optimistic investors who believe that the mean reverting will defi-
nitely happen in the future. However, in reality, investors normally will carry
out some risk control measures. In this section, we applied a similar trading
strategy used in [11] with an additional risk control rule.

The trading strategy can be summarized as follows:

— If the observed sample P; > p + 7, close long position if we already hold
any. Otherwise we perform no action.

If the observed sample P, < p — 7, open a long position if we are not in
any position. Otherwise we perform no action.

If the observed sample u—7 < P, < u+7, close any long position. Otherwise
we perform no action.

— Close position if we lose 20% of position value.

We performed two tests using this new set of trading rules. One is an
in-sample test on 100 S&P 500 stocks which is similar to section 7.5.1. The
other one is an out-of-sample test on high dimensional synthetic data which
is similar to section 7.5.3.

Figure 14 shows the number of trading opportunities under the risk control
trading strategy and average annual returns for different [; constraints using
real market data. When the [; level is above 10, the average annual returns
are above 15%. The return on S&P 500 index was roughly 5% for this period
of data.
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Fig. 14 Trading opportunities under risk control measure and average annual returns versus
different /1 constraints using the method of the least angle regression and DCA on 100 stocks.

Figure 15 shows the number of trading opportunities under the risk control
trading strategy and average annual returns versus different [; constraints
using synthetic data. The random portfolio and uniform portfolio are very
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under-performed comparing with our results. The risk control measures also
shrink the differences between in-sample and out-of-sample results.
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Fig. 15 In-sample and out-of-sample tests on high dimensional synthetic data from VAR(1)
model. Trading opportunities under risk control measures and average annual returns versus
different [1 constraints using the method of the least angle regression and the difference of
convex functions algorithm. The blue curves show the in-sample performance and the green
curves show the out-of-sample performance. The red horizontal line shows the level of trading
opportunities under risk control measures/average annual return of a random portfolio. The
light blue horizontal dashed line shows the level of trading opportunities under risk control
measures/average annual return of a uniform portfolio.

8 Conclusion

In this work, we used a proxy of mean reversion coefficient: direct OU es-
timator. From numerical tests, the portfolios constructed under this proxy
perform better in convergence trading than the portfolios constructed under
predictability.

We developed several different types of optimization problems for building
sparse mean reverting portfolios.

Without any prior knowledge of the assets, we used two [;-based con-
straint /penalty to enforce the sparsity. If we used l; norm, the problem could
be considered as a simple extension of the sparse PCA. Using the algorithms
in [18,29], we could solve the problem efficiently in some special cases. We
also studied the properties of the ratio of [; and Iy norms and designed an
algorithm in solving the penalized optimization problem.

With prior knowledge of the assets, we adapted the /1 norm to enforce the
sparsity and we simplified the problem to a non-convex quadratic program.
We developed various algorithms for approximating the global minimizer.
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In our numerical tests, we applied our methods on both historical market
data and synthetic data. We presented the in-sample and out-of-sample per-
formance of the portfolios constructed under different algorithms and different
problem settings. We also compared the computation costs of different algo-
rithms for non-trivial sparse generalized eigenvalue problem (neither A nor B
is a diagonal matrix).

Our numerical tests suggest that the combination of the least angle regres-
sion and the difference of convex functions algorithm is the best choice for
non-trivial generalized eigenvalue problems. We carried out efficient computa-
tion for portfolios with hundreds of assets. The in-sample and out-of-sample
performances of mean reversion coefficients, trading opportunities and an-
nual returns have a similar performance trend as functions of cardinality or I
penalty level.
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A Semi-definite relaxation method derived from Iy /Il

By setting X = 2z, then the problem (12) is equivalent to

miny trace(AX)/trace(BX)

1TIX | 2

s.t. trace(X) <m
rank(X) =1
X>0

where |X| means we take the absolute value for each entry of X.
Then after a change of variables:

X 1
= , zZ=
trace(BX) trace(BX)

and dropping the rank constraint, the previous problem can be written as a semidefinite
programming problem:
miny trace(AY")
st. 1T|Y|1 < m2z
trace(Y) —z=0 (19)
trace(BY) =1
Y >0

If we set Card(x) = k = m?, this is exactly the semidefinite relaxation in [6].

B Estimation of the matrices A and B

For the estimations below, we assume that each column of the data matrix S represents an
asset and its mean is 0. Its size is [ X n, so we have [ observations and n assets.
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We define S¢ and Sy in the following way:

ST S11 ... Sin
se=| =
Sy Si—1,1 -+ Si—1n
ST So21 ... Sap
;=\ =]
S.ZT 5.11 S;n

where Sy; is the value at time t of the ith asset.

B.1 Predictability

In [11], the authors discussed several methods in estimating 8 and I in VAR(1) model (4).
In most cases, the number of the observations of assets values [ is greater than the number
of assets n. Under this case and previous assumptions, we could use the following estimates:

. . 1
B=(SISe) 1 (s2sp)  I'= ﬁSCTSc

Therefore, the matrices in problem 7 can be estimated as:

A=pTIg B=1

B.2 Direct OU estimator

Using a similar method as B.1, we estimate the matrices A and B as follows:

~ 1 A~ 2
A= —(STs; +5Ts, B=-"-=-_58Tg,
l*l(e s f ) 1—1°¢
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