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1. Introduction and notation

1.1. Introduction. In this paper we study a relationship between the representa-
tion theory of certain rational double affine Hecke algebras (= RDAHA) and the
representation theory of affine Kac-Moody algebras. Such a connection is not new
and has already appeared in several places in the literature. A first place is Suzuki’s
functor [34] which maps the Kazhdan-Lusztig category of modules over the affine

Kac-Moody algebra ŝln at a negative level to the representation category of the
RDAHA of slm. A second one is a cyclotomic version of Suzuki’s functor [36] which

maps a more general version of the parabolic category O of ŝln at a negative level
to the representation category of the cyclotomic RDAHA. A third one comes from
the relationship between the cyclotomic RDAHA and quiver varieties, see, e.g., [15],
and from the relationship between quiver varieties and affine Kac-Moody algebras.
Finally, a fourth one, which is closer to our study, comes from the relationship in
[33] between the Grothendieck group of cyclotomic RDAHA and the level � Fock

space Fm,� of ŝlm. In this paper we focus on a recent conjecture of Etingof [11]
which relates the support of the objects of the category O of H(Γn), the RDAHA
associated with the complex reflection group Γn = Sn� (Z�)

n, to a representation-
theoretic grading of the Fock space F� = F�,1. This grading is constructed using

the ĝl�-action on F� of level 1. These conjectures permit us in particular to compute
the number of finite-dimensional H(Γn)-modules. This was not known so far. The
appearance of the Fock space F� is due to the following two facts, already noticed

Licensed to Universite Bordeaux I. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 961

in [11]. First, the category O of the algebras H(Γn) with n � 0 categorifies Fm,�

by [33]. Next, the Fock space Fm,� admits a level 1 action of ĝl�, under which it
is identified with F�. It is well known that the Fock space Fm,� admits an action

of a Heisenberg algebra H of level m�, an action of ŝl� of level m and an action of

ŝlm of level � which commute with each other, by the level-rank duality. Our proof
consists precisely of interpreting the support of the H(Γn)-modules in terms of the

actions of ŝlm and H on Fm,�. Then, we interpret this construction in terms of the

ĝl�-action on F� of level 1. An important new ingredient is a categorification (in a
weak sense) of the action of the Heisenberg algebra H on Fm,�. The categorification
of the Heisenberg algebra has recently been studied by several authors. We’ll come
back to this in another publication.

1.2. Organisation. The organisation of the paper is the following.
Section 2 is a reminder on rational DAHA. We recall some basic facts concerning

parabolic induction/restriction functors. In particular we describe their behavior
on the support of the modules.

Section 3 contains basic notation for complex reflection groups, for the cyclotomic
rational DAHA H(Γn) and for affine Lie algebras. In particular we introduce the
category O(Γn) of H(Γn)-modules, the functor KZ, and Rouquier’s equivalence
from O(Sn) to the module category of the ζ-Schur algebra. Next we recall the

categorification of the Fock space representation of ŝlm in [33], and we describe the
filtration by the support on O(Γn).

Section 4 is more combinatorial. We recall several constructions related to Fock
spaces and symmetric polynomials. In particular we give a relation between sym-
metric polynomials and the representation ring of the group Γn, and we describe
several representations on the level � Fock space (of Heisenberg algebras and of
affine Kac-Moody algebras).

Section 5 is devoted to the categorification of the Heisenberg action on the Fock
space, usingO(Γn). Then we introduce a particular class of simple objects inO(Γn),
called the primitive modules, and we compute the endomorphism algebra of some
modules induced from primitive modules. Finally we introduce the operators ãλ
which are analogues for the Heisenberg algebra of the Kashiwara operators ẽq, f̃q
associated with Kac-Moody algebras.

Section 6 contains the main results of the paper. Using our previous construc-
tions we compare the filtration by the support on O(Γn) with a representation-
theoretic grading on the Fock space. This confirms a conjecture of Etingof and
yields, in particular, the number of finite-dimensional simple objects in O(Γn) for
integral �-charge (this corresponds to some rational values of the parameters of
H(Γn)).

Finally, there are three appendices containing basic facts on Hecke algebras,
Schur algebras, quantum groups, quantum Frobenius homomorphism and on the
universal R-matrix.

1.3. Notation. Now we introduce some general notation. Let A be a C-category,
i.e., a C-linear additive category. We’ll write Z(A) for the center of A, a C-algebra.
Let Irr(A) be the set of isomorphism classes of simple objects of A. If A = Rep(A),
the category of all finite-dimensional representations of a C-algebra A, we abbre-
viate

Irr(A) = Irr(Rep(A)).

Licensed to Universite Bordeaux I. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



962 P. SHAN AND E. VASSEROT

For an Abelian or triangulated category let K(A) denote its Grothendieck group.
We abbreviate K(A) = K(Rep(A)). We set

[A] = K(A)⊗ C.

For an object M of A we write [M ] for the class of M in [A]. For an Abelian
categoryA let Db(A) denote its bounded derived category. We abbreviateDb(A) =
Db(Rep(A)). The symbol “m” will denote both the complex

〈m〉 =
m−1⊕
i=0

C[−2i] ∈ Db(C)

and the integer m in K(C) = Z. Given two Abelian C-categories A, B which are
Artinian (i.e., objects are of finite length and Hom’s are finite dimensional) we
define the tensor product (over C)

⊗ : A× B → A⊗ B
as in [6, sec. 5.1, prop. 5.13]. Recall that for A = Rep(A) and B = Rep(B) we
have A ⊗ B = Rep(A ⊗ B). Given a category A and objects A,A′ ∈ A, we write
HomA(A,A′) for the collection of morphisms A → A′. Given categories A, B
and functors F, F ′ : A → B we write Hom(F, F ′) for the collection of morphisms
F → F ′. We denote the identity morphism A → A by 1A and the identity morphism
F → F by 1F . Given a category C and a functor G : B → C let G ◦ F be
the composed functor A → C. For a functor G′ : B → C and morphisms of
functors φ ∈ Hom(F, F ′), ψ ∈ Hom(G,G′) we write ψφ for the morphism of functors
G ◦ F → G′ ◦ F ′ given by

(ψφ)(A) = ψ(F ′(A)) ◦G(φ(A)) ∈ HomC
(
G(F (A)), G′(F ′(A))

)
, A ∈ A.

2. Reminder on rational DAHA’s

2.1. The category O(W ). Let W be any complex reflection group. Let h be the
reflection representation of W . Let S be the set of pseudo-reflections in W . Let
c : S → C be a map that is constant on the W -conjugacy classes. The rational
DAHA attached to W with parameter c is the quotient H(W ) of the smash product
of CW and the tensor algebra of h⊕ h∗ by the relations

[x, x′] = 0, [y, y′] = 0, [y, x] = 〈x, y〉 −
∑
s∈S

cs〈αs, y〉〈x, α̌s〉s,

for all x, x′ ∈ h∗, y, y′ ∈ h. Here 〈•, •〉 is the canonical pairing between h∗ and h,
the element αs is a generator of Im(s|h∗ − 1) and α̌s is the generator of Im(s|h − 1)
such that 〈αs, α̌s〉 = 2. Let Rx, Ry be the subalgebras generated by h∗ and h

respectively. We may abbreviate

C[h] = Rx, C[h∗] = Ry.

The category O of H(W ) is the full subcategory O(W ) of the category of H(W )-
modules consisting of objects that are finitely generated as C[h]-modules and h-
locally nilpotent. We recall from [14, sec. 3] the following properties of O(W ). It is
a quasi-hereditary category. The standard modules are labeled by the set Irr(CW )
of isomorphism classes of irreducible W -modules. Let Δχ be the standard module
associated with the module χ ∈ Irr(CW ). It is the induced module

Δχ = Ind
H(W )
W�Ry

(χ).
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Here χ is regarded as a W � Ry-module such that h∗ ⊂ Ry acts by zero. Let Lχ,
Pχ denote the top and the projective cover of Δχ.

Remark 2.1. The definitions above still make sense if h is any faithful finite-
dimensional CW -module. To avoid any confusion we may write

O(W, h) = O(W ), H(W, h) = H(W ).

2.2. The stratification of h. Let W be a complex reflection group. Let h be the
reflection representation of W . For a parabolic subgroup W ′ ⊂ W let X◦

W ′ be the
set of points of h whose stabilizer in W is conjugate (in W ) to W ′. By a theorem
of Steinberg, the sets X◦

W ′ , when W ′ runs over a set of representatives of the W -
conjugacy classes of parabolic subgroups of W , form a stratification of h by smooth
locally closed subsets; see also [13, sec. 6] and the references there. Let XW ′ be
the closure of X◦

W ′ in h. To avoid any confusion we may write X◦
W ′,h = X◦

W ′ and
XW ′,h = XW ′ . The set XW ′,h consists of points whose W -conjugacy class contains
a fixed point of W ′ in h. We have

XW ′,h =
⊔

X◦
W ′′,h,

where the union is over a set of representatives of the W -conjugacy classes of the
parabolic subgroups W ′′ of W which contain W ′. Further, the quotient XW ′,h/W
is an irreducible closed subset of h/W .

2.3. Induction and restriction functors on O(W ). Fix an element b ∈ h. Let
Wb ⊂ W be the stabilizer of b, and

πb : h → h/hWb

be the obvious projection onto the reflection representation of Wb. The parabolic
induction and restriction functors associated with the point b are respectively the
functors [2]

Indb : O(Wb, h/h
Wb) → O(W, h), Resb : O(W, h) → O(Wb, h/h

Wb).

Since the functors Indb, Resb do not depend on b up to isomorphism, see [2, sec. 3.7],
we may write

OIndWWb
= Indb,

OResWWb
= Resb

if this does not create any confusion. The support of a module M in O(W, h) is the
support of M regarded as a C[h]-module. It is a closed subset Supp(M) ⊂ h. By
[13, thm. 6.8] for any simple module L in O(W, h) we have Supp(L) = XW ′,h for
some parabolic subgroup W ′ ⊂ W . For b ∈ X◦

W ′,h the module Resb(L) is a nonzero

finite-dimensional module. See [2, sec. 3.8]. The support of a module is the union
of the supports of all its constituents. So the support of any module in O(W, h) is
a union of XW ′,h’s. Let us consider the behavior of the support under restriction.

Proposition 2.2. Let W ′ ⊂ W be a parabolic subgroup. Let h′ be the reflection
representation of W ′. Let X ⊂ h be the support of a module M in O(W, h). Let

X ′ ⊂ h′ be the support of the module M ′ = OResWW ′(M).
(a) We have M ′ 
= 0 if and only if XW ′,h ⊂ X.
(b) Assume that X = XW ′′,h with W ′′ ⊂ W a parabolic subgroup. If M ′ 
= 0,

then W ′′ is W -conjugate to a subgroup of W ′ and we have

X ′ =
⋃
W1

XW1,h′ =
⊔
W1

X◦
W1,h′ ,
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964 P. SHAN AND E. VASSEROT

where W1 runs over a set of representatives of the W ′-conjugacy classes of parabolic
subgroups of W ′ containing a subgroup W -conjugated to W ′′.

Proof. Part (a) is immediate from the definition of the restriction, because for b ∈ h

it implies that Resb(M) 
= 0 if and only if b ∈ X; see also Remark 2.3 below. Now
we prove (b). For a parabolic subgroup W1 ⊂ W ′ we have

XW1,h′ ⊂ X ′ ⇐⇒ OResW
′

W1
(M ′) 
= 0

⇐⇒ OResWW1
(M) 
= 0

⇐⇒ XW1,h ⊂ XW ′′,h.

Here the first and third equivalence follow from (a), while the second one follows
from the transitivity of the restriction functor [33, cor. 2.5]. Therefore X◦

W1,h′ ⊂ X ′

if and only if XW1,h′ ⊂ X ′ if and only if W1 contains a subgroup W -conjugate to
W ′′. �

Remark 2.3. For any closed point b of a scheme X we denote by X∧
b the completion

of X at b (a formal scheme). Assume that M ′ = OResWW ′(M) is nonzero. We define
X, X ′ as in the proposition above. Let π be the canonical projection h → h′ =
h/hW

′
. For b ∈ X◦

W ′,h the definition of the restriction functor yields the following
formula:

0 ∈ π−1(X ′), X∧
b = b+ π−1(X ′)∧0 .

Next, we consider the behavior of the support under induction. Before this we
need the following two lemmas. The C-vector space [O(W )] is spanned by the set
{[Δχ] : χ ∈ Irr(CW )}. Thus there is a unique C-linear isomorphism

(2.1) spe : [Rep(CW )] → [O(W )], [χ] 
→ [Δχ].

The parabolic induction/restriction functor is exact. We’ll need the following
lemma [2].

Lemma 2.4. Let W ′ ⊂ W be a parabolic subgroup. Let h′ be the reflection repre-
sentation of W ′. Under the isomorphism (2.1) the maps

OIndWW ′ : [O(W ′, h′)] → [O(W, h)], OResWW ′ : [O(W, h)] → [O(W ′, h′)]

coincide with the induction and restriction

IndWW ′ : [Rep(CW ′)] → [Rep(CW )], ResWW ′ : [Rep(CW )] → [Rep(CW ′)].

We’ll also need the following version of the Mackey induction/restriction theorem.
First, observe that for any parabolic subgroup W ′ ⊂ W and any x ∈ W there is a
canonical C-algebra isomorphism

ϕx : H(W ′) → H(x−1W ′x), w 
→ x−1wx, f 
→ x−1fx, f ′ 
→ x−1f ′x,

for w ∈ W ′, f ∈ Rx, f
′ ∈ Ry. It yields an exact functor

O(W ′) → O(x−1W ′x), M 
→ xM,

where xM is the H(x−1W ′x)-module obtained by twisting the H(W ′)-action on M
by ϕx.
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Lemma 2.5. Let W ′,W ′′ ⊂ W be parabolic subgroups. Let h′, h′′ be the reflection
representations of W ′, W ′′. For M ∈ O(W ′, h′) we have the following formula in
[O(W ′′, h′′)] :

(2.2) OResWW ′′ ◦OIndWW ′([M ]) =
∑
x

OIndW
′′

W ′′∩x−1W ′x ◦ x
(OResW ′

xW ′′x−1∩W ′([M ])
)
,

where x runs over a set of representatives of the cosets in W ′ \W/W ′′.

Proof. Use Lemma 2.4 and the usual Mackey induction/restriction theorem asso-
ciated with the triplet of groups W , W ′, W ′′. �

Remark 2.6. For a future use, note that the left-hand side of (2.2) is zero if and
only if each term in the sum of the right-hand side is zero, because each of these
terms is the class of a module in O(W ′′, h′′).

Now, we can prove the following proposition.

Proposition 2.7. Let W ′′ ⊂ W ′ ⊂ W be parabolic subgroups. Let h′ be the re-
flection representation of W ′. For a simple module L ∈ O(W ′, h′) with Supp(L) =
XW ′′,h′ , we have

OIndWW ′(L) 
= 0, Supp
(OIndWW ′(L)

)
= XW ′′,h.

Proof. First, note that OIndWW ′(L) 
= 0 by Lemma 2.5, because

OResWW ′ ◦OIndWW ′([L]) = [L] + [M ]

for some M ∈ O(W ′, h′) and [L] 
= 0. We abbreviate M = OIndWW ′(L). To compute
the support of M we first check that

XW ′′,h ⊂ Supp(M).

By Proposition 2.2 we have

XW ′′,h ⊂ Supp(M) ⇐⇒ X◦
W ′′,h ⊂ Supp(M)

⇐⇒ OResWW ′′(M) 
= 0.

By Remark 2.6 the last equality holds if and only if

OResW
′

xW ′′x−1∩W ′(L) 
= 0

for some x ∈ W . This identity is indeed true for x = 1 because W ′′ ⊂ W ′ and

XW ′′,h′ = Supp(L) ⇒ OResW
′

W ′′(L) 
= 0.

Next we prove the inclusion

Supp(M) ⊂ XW ′′,h.

Any point b of h\XW ′′,h is contained in the set X◦
W ′′′,h for some parabolic subgroup

W ′′′ ⊂ W such that W ′′ is not conjugate to a subgroup of W ′′′ : it suffices to set
W ′′′ = Wb. We must check that for such a subgroup W ′′′ ⊂ W we have

X◦
W ′′′,h 
⊂ Supp(M).

By Proposition 2.2 it is enough to check that

OResWW ′′′(M) = 0.
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966 P. SHAN AND E. VASSEROT

Now, by Lemma 2.5 we have the following formula in [O(W ′′′, h)]:

OResWW ′′′([M ]) =
∑
x

OIndW
′′′

W ′′′∩x−1W ′x ◦ x
(OResW ′

xW ′′′x−1∩W ′([L])
)
.

Here x runs over a set of representatives of the cosets in W ′ \W/W ′′′. Since W ′′ is
not conjugate to a subgroup of W ′′′ it is a fortiori not conjugate to a subgroup of
xW ′′′x−1 ∩W ′; i.e., we have

X◦
xW ′′′x−1∩W ′,h′ ∩XW ′′,h′ = ∅.

Therefore Proposition 2.2 yields

OResW
′

xW ′′′x−1∩W ′(L) = 0,

because Supp(L) = XW ′′,h′ . This implies that

OResWW ′′′([M ]) = 0.

Hence we have also
OResWW ′′′(M) = 0.

We are done. �

3. The cyclotomic rational DAHA

3.1. Combinatorics. For a sequence λ = (λ1, λ2, . . . ) of integers � 0 we set |λ| =
λ1 + λ2 + · · · . Let

Λ(�, n) = {λ = (λ1, λ2, . . . λ�) ∈ N� : |λ| = n}.

It is the set of compositions of n with � parts. Let Pn be the set of partitions of
n, i.e., the set of nonincreasing sequences λ of integers > 0 with sum |λ| = n. We
write λ′ for the transposed partition and l(λ) for its length, i.e., for the number of
parts in λ. We write also

(3.1) zλ =
∏
i�1

imi mi!,

where mi is the number of parts of λ equal to i. Given a positive integer m and a
partition λ we write also

mλ = (mλ1,mλ2, . . . ).

To any partition we associate a Young diagram, which is a collection of rows of
square boxes with λi boxes in the i-th row, i = 1, . . . , l(λ). A box in a Young
diagram is called a node. The coordinate of the j-th box in the i-th row is the pair
of integers (i, j). The content of the node of coordinate (i, j) is the integer j−i. Let
the set P0 consist of a single element, the unique partition of zero, which we denote
by 0. Let P =

⊔
n�0 Pn be the set of all partitions. We’ll abbreviate Z� = Z/�Z.

Let P� be the set of �-partitions, i.e., the set of all partition-valued functions on Z�.
Let P�

n be the subset of �-tuples λ = (λ(p)) of partitions with |λ| =
∑

p |λ(p)| = n.

Let Γ be the group of the �-th roots of 1 in C×. We define the sets PΓ, PΓ
n of

partition-valued functions on Γ in the same way.
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3.2. The complex reflection group Γn. Fix nonnegative integers �, n. Unless
specified otherwise we’ll always assume that �, n 
= 0. Let Sn be the symmetric
group on n letters and Γn be the semi-direct product Sn � Γn, where Γn is the
Cartesian product of n copies of Γ. We write also S0 = Γ0 = Γ0 = {1}. For
γ ∈ Γ let γi ∈ Γn be the element with γ at the i-th place and with 1 at the other
places. Let sij be the transposition (i, j) in Sn. We’ll abbreviate si = si,i+1. Write

sγij = sijγiγ
−1
j for γ ∈ Γ, i 
= j. For p ∈ Z� let χp : Γ → C× be the character

γ 
→ γp. The assignment p 
→ χp identifies Z� with the group of characters of Γ.
The group Γn is a complex reflection group. For � > 1 it acts on the vector space
h = Cn via the reflection representation. For � = 1 the reflection representation is
given by the permutation of coordinates on the hyperplane

Cn
0 = {x1 + · · ·+ xn = 0} ⊂ Cn.

We’ll be interested in the following subgroups of Γn.

• To a composition ν of n we associate the set

I = {1, 2, . . . , n− 1} \ {ν1, ν1 + ν2, . . . }.

Let Γν = Sν �Γn, where Sν = SI is the subgroup of Sn generated by the
simple reflections si,i+1 with i ∈ I.

• For integers m,n � 0 and a composition ν we set Γn,ν = Γn × Sν . If
ν = (m) we abbreviate Γn,m = Γn,(m) = Γn×Sm. Any parabolic subgroup
of Γn is conjugate to Γl,ν for some l, ν with l + |ν| � n.

3.3. Definition of the cyclotomic rational DAHA. Let h = Cn be the reflec-
tion representation of Γn. Denote by y1, . . . , yn the standard basis of h, and by
x1, . . . , xn its dual basis in h∗. The actions of the group Γn on h and on h∗ are
given as follows: for distinct i, j, k we have

γi(yi) = γyi, γi(yj) = yj , sij(yi) = yj , sij(yk) = yk,

γi(xi) = γ−1xi, γi(xj) = xj , sij(xi) = xj , sij(xk) = xk.

Fix k ∈ C and cγ ∈ C for each γ ∈ Γ. We can define the algebra H(W ) = H(W, h)
for W = Γn. We’ll call H(Γn) the cyclotomic rational DAHA. It is the quotient of
the smash product of CΓn and the tensor algebra of h⊕ h∗ by the relations

[yi, xi] = −k
∑
j �=i

∑
γ∈Γ

sγij −
∑
γ∈Γ

cγγi, c1 = −1,

[yi, xj ] = k
∑
γ∈Γ

γsγij if i 
= j,

[xi, xj ] = [yi, yj ] = 0.

Let Rx, Ry be the subalgebras generated by x1, x2, . . . , xn and y1, y2, . . . , yn re-
spectively. We’ll identify h, h∗ with the maximal spectrum of Rx, Ry. We’ll use
another presentation where the parameters are h, hp with p ∈ Z� where k = −h
and −cγ =

∑
p∈Z�

γ−php. Note that 1 =
∑

p hp.
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968 P. SHAN AND E. VASSEROT

3.4. The Lie algebras ŝl� and s̃l�. Given complex numbers hp, p ∈ Z�, with∑
p hp = 1, it is convenient to consider the following level 1 weight

(3.2) Λ =
∑
p

hp ωp.

Here the ωp’s are the fundamental weights of the affine Lie algebra

ŝl� = (sl� ⊗ C[�,�−1])⊕ C1,

where 1 is a central element and the Lie bracket is given by

(3.3) [x⊗�r, y ⊗�s] = [x, y]⊗�r+s + r(x, y)δr,−s1, (x, y) = τ (xyt),

where y 
→ yt is the transposition and τ is the trace. The affine Lie algebra ŝl� is
generated by the symbols ep, fp, p = 0, . . . , �−1, satisfying the Serre relations. For
p 
= 0 we have

ep = ep,p+1 ⊗ 1, e0 = e�,1 ⊗�, fp = ep+1,p ⊗ 1, f0 = e1,� ⊗�−1,

where ep,q is the usual elementary matrix in sl�. We’ll also use the extended affine

Lie algebras s̃l�, obtained by adding to ŝl� the 1-dimensional vector space spanned
by the scaling element D such that [D, x ⊗�r] = r x ⊗�r and [D,1] = 0. Let δ
denote the dual of D, i.e., the smallest positive imaginary root. We equip the space

of linear forms on the Cartan subalgebra of s̃l� with the pairing such that

〈ωp, ωq〉 = min(p, q)− pq/�, 〈ωp, δ〉 = 1, 〈δ, δ〉 = 0.

Let U(ŝl�) be the enveloping algebra of ŝl�, and let U−(ŝl�) be the subalgebra

generated by the elements fp with p = 0, . . . , �− 1. For r � 0 we write U−(ŝl�)r for

the subspace of U−(ŝl�) spanned by the monomials whose weight is the sum of r
negative simple roots.

3.5. Representations of Sn, Γn. The set of isomorphism classes of irreducible
Sn-modules is

Irr(CSn) = {L̄λ;λ ∈ Pn};

see [27, sec. I.9]. The set of isomorphism classes of irreducible Γn-modules is

Irr(CΓn) = {L̄λ;λ ∈ P�
n},

where L̄λ is defined as follows. Write λ = (λ(p)). The tuple of positive integers
νλ = (|λ(p)|) is a composition in Λ(�, n). Let

L̄λ(p)(χp−1)
⊗|λ(p)| ∈ Irr(CΓ|λ(p)|)

be the tensor product of the S|λ(p)|-module L̄λ(p) and the one-dimensional Γ|λ(p)|-

module (χp−1)
⊗|λ(p)|. The Γn-module L̄λ is given by

(3.4) L̄λ = IndΓn

Γνλ

(
L̄λ(1)χ

⊗|λ(1)|
� ⊗ L̄λ(2)χ

⊗|λ(2)|
1 ⊗ · · · ⊗ L̄λ(�)χ

⊗|λ(�)|
�−1

)
.
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3.6. The category O(Γn). Consider the C-algebra H(Γn) with the parameter Λ
in (3.2). The category O of H(Γn) is the quasi-hereditary category O(Γn). The
standard modules are the induced modules

Δλ = Ind
H(Γn)
Γn�Ry

(L̄λ), λ ∈ P�
n.

Here L̄λ is viewed as a Γn � Ry-module such that y1, . . . , yn act trivially. Let Lλ,
Pλ denote the top and the projective cover of Δλ. Recall the C-linear isomorphism

(3.5) spe : [Rep(CΓn)] → [O(Γn)], [L̄λ] 
→ [Δλ].

To avoid cumbersome notation for induction/restriction functors in

O(Γ) =
⊕
n�0

O(Γn)

we’ll abbreviate

(3.6)

OIndn = OIndΓn

Γn−1
, OResn = OResΓn

Γn−1
,

OIndn,(mr) =
OInd

Γn+mr

Γn,(mr)
, OResn,(mr) =

ORes
Γn+mr

Γn,(mr)
,

OIndn,mr = OInd
Γn+mr

Γn,mr
, OResn,mr = ORes

Γn+mr

Γn,mr
.

We write also
OInd(mr) =

OIndSmr

Sr
m

: O(Sr
m) → O(Smr),

ORes(mr) =
OResSmr

Sr
m

: O(Smr) → O(Sr
m).

3.7. The functor KZ. For ζ ∈ C× and v1, v2, . . . , v� ∈ C× let Hζ(n, �) be the
cyclotomic Hecke algebra associated with Γn and the parameters ζ, v1, . . . , v�; see
Section A.2. We’ll abbreviate H(Γn) = Hζ(n, �). Assume that

ζ = exp(2iπh), vp = v1 exp
(
−2iπ(h1 + h2 + · · ·+ hp−1)

)
.

Then the KZ-functor [14] is a quotient functor

KZ : O(Γn) → Rep(H(Γn)).

Since KZ is a quotient functor, it admits a right adjoint functor

S : Rep(H(Γn)) → O(Γn)

such that KZ ◦S = 1. By [14, thm. 5.3], for each projective module Q ∈ O(Γn) the
canonical adjunction morphism 1 → S ◦KZ yields an isomorphism

(3.7) Q → S(KZ(Q)).

3.8. The functor R. Let Hζ(m) be the Hecke algebra of GLm over C; see Section
A.2. Let Sζ(m) be the ζ-Schur algebra over C; see Appendix B. The module
categories of Sζ(m), Hζ(m) are related through the Schur functor

Φ∗ : Rep(Sζ(m)) → Rep(Hζ(m)).

Set

Λ(m)+ = Λ(m,m) ∩ Zm
+ , Zm

+ ={λ = (λ1, λ2, . . . , λm)∈Zm : λ1 � λ2 � · · · � λm}.
The category Rep(Sζ(m)) is quasi-hereditary with respect to the dominance order,
the standard objects being the modules ΔS

λ with λ ∈ Λ(m)+. The comultiplication
Δ yields a bifunctor (B.6)

⊗̇ : Rep(Sζ(m))⊗ Rep(Sζ(m
′)) → Rep(Sζ(m+m′)).
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Now, assume that h is a negative rational number with denominator d and let
ζ ∈ C× be a primitive d-th root of 1. Recall that h is the parameter of the C-
algebra H(Sm). If h /∈ 1/2 + Z, then Rouquier’s functor [32] is an equivalence of
quasi-hereditary categories

R : O(Sm) → Rep(Sζ(m)), Δλ 
→ ΔS
λ ,

such that KZ = Φ∗ ◦ R. For m = m′ + m′′ we have a canonical equivalence of
categories O(Sm′)⊗O(Sm′′) = O(Sm′×Sm′′) and the induction yields a bifunctor

(3.8) OIndm′,m′′ : O(Sm′)⊗O(Sm′′) → O(Sm).

We’ll abbreviate

O(S) =
⊕
n�0

O(Sn), Rep(Sζ) =
⊕
n�0

Rep(Sζ(n)).

Proposition 3.1. For h /∈ 1/2 + Z the functor R is a tensor equivalence O(S) →
Rep(Sζ).

Proof. We must check that R identifies the tensor product ⊗̇ with the induction
(3.8). First, fix two projective objects X ∈ O(Sm′) and Y ∈ O(Sm′′). We have

Φ∗(R(X)⊗̇R(Y )
)
= H Indm′,m′′

(
Φ∗R(X)⊗ Φ∗R(Y )

)
= H Indm′,m′′

(
KZ(X)⊗KZ(Y )

)
= KZ

(OIndm′,m′′(X ⊗ Y )
)

= Φ∗R
(OIndm′,m′′(X ⊗ Y )

)
.

The first equality follows from Corollary B.4, the second one and the fourth one
come from KZ = Φ∗ ◦ R, and the third one is the commutation of KZ and the
induction functors; see [33]. Since the modules R(X)⊗̇R(Y ) and R

(OIndm′,m′′(X⊗
Y )

)
are projective, and since Φ∗ is fully faithful on projectives we get that

R(X)⊗̇R(Y ) = R
(OIndm′,m′′(X ⊗ Y )

)
.

Now, since the functors (B.6), (3.8) are exact and coincide on projective objects, and
since the category O(Sm) has enough projectives, the proposition is proved. �

3.9. The categorification of s̃lm. Recall that Z(O(Γn)) is the center of the cat-
egory O(Γn). Let Dn(z) be the polynomial in Z(O(Γn))[z] defined in [33, sec. 4.2].
For any a ∈ C(z) the projection to the generalized eigenspace of Dn(z) with the
eigenvalue a yields an exact endofunctor Qn,a of O(Γn). Next, consider the point

bn = (0, 0, . . . , 0, 1) ∈ h, h = Cn.

The induction and the restriction relative to bn yield functors

OIndn : O(Γn−1) → O(Γn),
OResn : O(Γn) → O(Γn−1).

Definition 3.2 ([33, sec. 4.2]). The q-restiction and the q-induction functors

eq : O(Γn) → O(Γn−1), fq : O(Γn−1) → O(Γn), q = 0, 1, . . . ,m− 1

are given by

eq =
⊕

a∈C(z)

Qn−1,a/(z−ζq) ◦ OResn ◦Qn,a,

fq =
⊕

a∈C(z)

Qn,a(z−ζq) ◦ OIndn ◦Qn−1,a.
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We’ll abbreviate

E = e0 ⊕ e1 ⊕ · · · ⊕ em−1, F = f0 ⊕ f1 ⊕ · · · ⊕ fm−1.

Following [33, sec. 6.3], for L ∈ Irr(O(Γ)) we set

ẽq(L) = top(eq(L)), f̃q(L) = soc(fq(L)), ẽq(0) = f̃q(0) = 0.

Now, for each n we choose the parameters of H(Γn) in the following way:

(3.9) h = −1/m, hp = (sp+1 − sp)/m, sq ∈ Z, p 
= 0.

The following hypothesis is important for the rest of the paper:
from now on we’ll always assume that m > 1.

The C-vector space [O(Γ)] is canonically isomorphic to the level � Fock space F (s)
m,�

associated with the �-charge s = (sp); see (5.20) below for details. The latter is

equipped with an integrable representation of s̃lm of level �; see Section 4.6 below.

Proposition 3.3. (a) The functors eq, fq are exact and biadjoint.
(b) We have E = OResn and F = OIndn .
(c) For M ∈ O(Γn) we have E(M) = 0 (resp. F (M) = 0) iff E(L) = 0

(resp. F (L) = 0) for any constituent L of M .

(d) The operators eq, fq equip [O(Γ)] with a representation of ŝlm which is iso-

morphic via the map (5.20) to F (s)
m,�.

(e) The tuple (Irr(O(Γ)), ẽq, f̃q) has a crystal structure. In particular, for L,L′ ∈
Irr(O(Γ)) we have ẽq(L), f̃q(L) ∈ Irr(O(Γ)) � {0}, and ẽq(L) = L′ if and only if

f̃q(L
′) = L.

Proof. Parts (a), (b) follow from [33, prop. 4.4], part (e) is contained in [33, thm. 6.3],
part (c) is obvious, and part (d) is [33, cor. 4.5]. �
3.10. The filtration of [O(Γn)] by the support. Fix a positive integer n. As-
sume that � � 2. In this section we consider the tautological action of Γn on Cn.
For an integer l � 0 and a composition ν such that l + |ν| � n we abbreviate
X◦

l,ν = X◦
W,h and Xl,ν = XW,h, where W = Γl,ν . If ν = (mj) for some integer j � 0

such that l + jm � n we write

X◦
l,j = X◦

l,ν , Xl,j = Xl,ν .

Therefore Xl,j is the set of the points in Cn with l coordinates equal to zero and
j collections of m coordinates which differ from each other by �-th roots of one.
To avoid confusion we may write Xl,j,Cn = Xl,j . Unless specified otherwise, for
l, j,m, n as above we’ll set

(3.10) i = n− l − jm.

Definition 3.4. For i, j � 0 we set

Irr(O(Γn))i,j = {L ∈ Irr(O(Γn)) : Supp(L) = Xl,j}.

Definition 3.5. For i, j � 0 let Fi,j(Γn) be the C-vector subspace of [O(Γn)]
spanned by the classes of the modules whose support is contained in Xl,j , with l as
in (3.10). If i < 0 or j < 0 we write Fi,j(Γn) = 0.

Definition 3.6. We define a partial order on the set of pairs of nonnegative integers
(i, j) such that i+ jm � n given by (i′, j′) � (i, j) if and only if Xl′,j′ ⊂ Xl,j , where
l = n− i− jm and l′ = n− i′ − j′m.
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Since the support of a module is the union of the supports of all of its constituents,
the C-vector space Fi,j(Γn) is spanned by the classes of the modules in Irr(O(Γn))
whose support is contained in Xl,j , or, equivalently, Fi,j(Γn) is spanned by the
classes of the modules in ⋃

(i′,j′)�(i,j)

Irr(O(Γn))i′,j′ .

Remark 3.7. We have
⋃

i,j Fi,j(Γn) = [O(Γn)]. Indeed, for L ∈ Irr(O(Γn)) we have

Supp(L) = Xl,ν for some l, ν; see Section 2.2. For b ∈ X◦
l,ν the H(Γl,ν)-module

Resb(L) is finite dimensional. Thus, since the parameter h of H(Γl,ν) is equal to
−1/m the parts of ν are all equal to m. Hence we have Supp(L) = Xl,j for some
l, j as above.

The subspaces Fi,j(Γn) give a filtration of [O(Γn)]. Consider the associated graded
C-vector space

gr(Γn) =
⊕
i,j

gri,j(Γn).

The images by the canonical projection Fi,j(Γn) → gri,j(Γn) of the classes of the
modules in Irr(O(Γn))i,j form a basis of the C-vector space gri,j(Γn). So we may
regard gri,j(Γn) as the subspace of [O(Γn)] spanned by Irr(O(Γn))i,j . We’ll abbre-
viate

Fi,•(Γn) =
∑
j

Fi,j(Γn), F•,j(Γn) =
∑
i

Fi,j(Γn),

gri,•(Γn) =
⊕
j

gri,j(Γn), gr•,j(Γn) =
⊕
i

gri,j(Γn).

Now, let us study the filtration of [O(Γn)] in detail. The subgroup Γl,(mj) of Γn is
contained in the subgroups Γl+1,(mj), Γl,(mj+1) and Γl+m,(mj−1) (up to conjugation
by an element of Γn) whenever such subgroups exist. Thus we have the inclusions

Xl+1,j , Xl,j+1, Xl+m,j−1 ⊂ Xl,j ,

Fi−1,j(Γn), Fi−m,j+1(Γn), Fi,j−1(Γn) ⊂ Fi,j(Γn).

Proposition 3.8. (a) We have

Xl′,j′ � Xl,j ⇐⇒ Xl′,j′ ⊂ Xl+1,j ∪Xl,j+1 ∪Xl+m,j−1.

(b) We have an isomorphism of C-vector spaces

gri,j(Γn) = Fi,j(Γn)/
(
Fi−1,j(Γn) + Fi−m,j+1(Γn) + Fi,j−1(Γn)

)
.

Proof. First we prove (a). Recall that Xl,j is the set of the points in Cn with l
coordinates equal to zero and j collections of m coordinates which differ from each
other by �-th roots of one. Therefore we have

(3.11) Xl′,j′ ⊂ Xl,j ⇐⇒ i− i′ � max
(
0, (j′ − j)m

)
.

In particular this inclusion implies that l′ � l. We must prove that

Xl′,j′ � Xl,j ⇒ Xl′,j′ ⊂ Xl+1,j ∪Xl,j+1 ∪Xl+m,j−1.

First, assume that l′ = l. Since Xl′,j′ � Xl,j we have i > i′. Then (3.10) implies
that i−i′ = (j′−j)m, hence that j′ > j and i−i′ � m. So i−i′ � max(m, (j′−j)m),
and (3.11) implies that Xl′,j′ ⊂ Xl,j+1.
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Next, assume that l + m > l′ > l. Since Xl′,j′ ⊂ Xl,j we have i � i′. Further
(3.10) implies that i− i′ > (j′ − j)m and i′ − i > (j− j′ − 1)m. Thus i � i′ implies
indeed that i > i′ and j′ � j. So i− 1− i′ � max(0, (j′ − j)m), and (3.11) implies
that Xl′,j′ ⊂ Xl+1,j .

Finally, assume that l′ � l + m. Since Xl′,j′ ⊂ Xl,j we have i � i′. Further
(3.10) implies that i − i′ � (j′ − j + 1)m. So i − i′ � max(0, (j′ − j + 1)m), and
(3.11) implies that Xl′,j′ ⊂ Xl+m,j−1.

Part (b) is a consequence of (a) and of the definition of the filtration on [O(Γn)].
�

Remark 3.9. The sets Xl+1,j , Xl,j+1, Xl+m,j−1 do not contain each other. Indeed,
the variety Xl,j has the dimension i+ j. Thus the codimensions of Xl+1,j , Xl,j+1,
Xl+m,j−1 in Xl,j are 1,m− 1, 1 respectively. However, since a point in X◦

l,j+1 has
only l coordinates equal to 0, we have Xl,j+1 
⊂ Xl+1,j and Xl,j+1 
⊂ Xl+m,j−1.

Remark 3.10. We have F•,0(Γn) = [O(Γn)], because (i, j) � (i+ jm, 0).

Remark 3.11. We have (i′, j′) � (0, j) if and only if i′ = 0 and j′ � j.

Remark 3.12. Consider the set

Fi,j(Γn)
◦ = Fi,j(Γn) \

(
Fi−1,j(Γn) + Fi−m,j+1(Γn) + Fi,j−1(Γn)

)
.

For L ∈ Irr(O(Γn)), by Proposition 3.8 and Remark 3.7 we have

[L] ∈ Fi,j(Γn)
◦ ⇐⇒ Supp(L) = Xl,j

⇐⇒ L ∈ Irr(O(Γn))i,j .

Remark 3.13. A representation is finite dimensional if and only if its support is
zero. Thus Irr(O(Γn))0,0 is the set of isomorphism classes of finite-dimensional
modules in O(Γn). Note that (0, 0) � (i, j) for all (i, j).

Remark 3.14. If � = 1, then, by Remark 2.1 and Section 3.2 we have O(Sn) =
O(Sn,C

n
0 ). For an integer j � 0 we set Xj = X

S
j
m,Cn

0
; i.e., Xj is the set of the

points in Cn
0 with j collections of m equal coordinates. Then, we set i = n − jm

and the results of this section extend in the obvious way. In particular, we have

Xj′ ⊂ Xj ⇐⇒ j′ � j, Xj′ � Xj ⇐⇒ Xj′ ⊂ Xj+1.

Remark 3.15. For λ ∈ Pr, r � 1, the support of the module Lmλ ∈ Irr(O(Smr)) is

(3.12) Supp(Lmλ) = XSr
m,Cmr

0
.

Indeed, formula (5.16) below and Proposition 2.7 imply that

Supp(Lmλ) ⊂ Supp
(OInd(mr)(L

⊗r
(m))

)
= XSr

m,Cmr
0

.

Next, by Remark 3.7 there is j = 0, 1, . . . , r such that

Supp(Lmλ) = X
S

j
m,Cmr

0
.

Finally the inclusion X
S

j
m,Cmr

0
⊂ XSr

m,Cmr
0

implies that j = r by Remark 3.14.

Note that the equality (3.12) also follows from the work of Wilcox [37].
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3.11. The action of E, F on the filtration. Let E, F denote the C-linear
operators on [O(Γ)] induced by the exact functors E, F . Recall that the parameters
of H(Γ) are chosen as in (3.9).

Proposition 3.16. Let L ∈ Irr(O(Γn))i,j and l = n− i−mj.
(a) We have Supp(F (L)) = Xl,j,Cn+1 .
(b) We have E(L) = 0 iff i = 0. We have Supp(E(L)) = Xl,j,Cn−1 if i > 0.

Proof. Recall that

Supp(L) = Xl,j = Xl,j,Cn , E(L) = OResn(L), F (L) = OIndn(L).

Thus by Proposition 2.2 we have E(L) = 0 iff bn /∈ Xl,j . Since m > 1 the definition
of the stratum Xl,j in Section 3.10 shows that bn /∈ Xl,j iff i = 0. Now, assume
that i > 0. Then l +mj � n− 1, and Proposition 2.2 yields

Supp(E(L)) =
⋃
W

XW,Cn−1 ,

where W runs over the parabolic subgroups of Γn−1 which are Γn-conjugate to
Γl,(mj) (inside the group Γn). We claim that a subgroup W ⊂ Γn−1 as above is
Γn−1-conjugate to Γl,(mj) (inside the group Γn−1). Therefore, we have

Supp(E(L)) = Xl,j,Cn−1 .

Indeed, fix b′ ∈ Cn−1 such that W = (Γn−1)b′ . For b = (b′, z) with z ∈ C generic we
have (Γn)b = W , where W is regarded as a subgroup of Γn via the obvious inclusion
Γn−1 ⊂ Γn. Since W is Γn-conjugate to Γl,(mj), there is an element g ∈ Γn such
that the first l coordinates of g(b) are 0, the next mj ones consist of j collections
of m coordinates which are proportional to each other with a ratio given by an
�-th root of one, and the last i coordinates of g(b) are in generic position. We’ll
abbreviate

g(b) ∈ 0l(m)j ∗i .
Since z is generic it is taken by g to one of the coordinates of g(b) in the packet ∗i.
Composing g by an appropriate reflection in Sn we get an element g′ ∈ Γn−1 such
that

g′(b) = (g′(b′), z) ∈ 0l(m)j ∗i .
Thus we also have

g′(b′) ∈ 0l(m)j ∗i−1 .

This implies the claim. Hence, we have

Supp(E(L)) = Xl,j,Cn−1 .

Finally, since Supp(L) = Xl,j,Cn , Proposition 2.7 implies that

Supp(F (L)) = Xl,j,Cn+1 .

�

Corollary 3.17. (a) We have E(Fi,j(Γn)) ⊂ Fi−1,j(Γn−1). If i 
= 0 we also have
E(Fi,j(Γn)

◦) ⊂ Fi−1,j(Γn−1)
◦.

(b) For M ∈ O(Γn) with [M ] ∈ Fi,j(Γn)
◦ we have E([M ]) = 0 iff i = 0.

(c) We have F (Fi,j(Γn)) ⊂ Fi+1,j(Γn+1) and F (Fi,j(Γn)
◦) ⊂ Fi+1,j(Γn+1)

◦.
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Proof. First, let L ∈ Irr(O(Γn)) with [L] ∈ Fi,j(Γn). Thus L ∈ Irr(O(Γ))i′,j′ with
(i′, j′) � (i, j). Proposition 3.16 yields

Supp(F (L)) = Xl′,j′,Cn+1 , Supp
(
E(L)

)
= Xl′,j′,Cn−1 if i′ 
= 0.

Hence we have F ([L]) ∈ Fi+1,j(Γn+1) and E([L]) ∈ Fi−1,j(Γn−1). Part (b) follows
from Proposition 3.16 and Remarks 3.11, 3.12. Part (c) follows from Proposition
3.16 and Remark 3.12. The second part of (a) follows from Proposition 3.16 and
Remark 3.12. �

Corollary 3.18. Let L ∈ Irr(O(Γn))i,j.
(a) If ẽq(L) 
= 0, then ẽq(L) ∈ Irr(O(Γn−1))i−1,j.

(b) If f̃q(L) 
= 0, then f̃q(L) ∈ Irr(O(Γn+1))i+1,j.

Proof. Set L′ = ẽq(L). Assume that L′ 
= 0. By Proposition 3.3 we have

L′ ∈ Irr(O(Γn−1)), f̃q(L
′) = L.

Next, since L ∈ Irr(O(Γ))i,j and since ẽq(L) is a constituent of E(L), we have
[L′] ∈ Fi−1,j(Γn−1) by Corollary 3.17. We must prove that [L′] ∈ Fi−1,j(Γn−1)

◦. If
this is false, then we have [L′] ∈ Fi′,j′(Γn−1) with

(i′, j′) = (i− 2, j), (i−m− 1, j + 1), (i− 1, j − 1).

Thus, since f̃q(L
′) is a constituent of F (L′), by Corollary 3.17 we have

(3.13) [L] ∈ gri,j(Γn) ∩ Fi′+1,j′(Γn).

Therefore (3.11) yields i′ + 1 � i, so i′ = i − 1 and j′ = j − 1. So, applying (3.11)
once again we get a contradiction with (3.13). This proves (a). The proof of (b) is
similar. �

Corollary 3.19. (a) For x ∈ [O(Γ)] we have(
eq(x) = 0, ∀q = 0, 1, . . . ,m− 1

)
⇐⇒ x ∈ F0,•(Γ).

(b) For M ∈ O(Γ) we have

E(M) = 0 ⇐⇒ E([M ]) = 0 ⇐⇒ [M ] ∈ F0,•(Γ).

(c) The space F0,•(Γ) is spanned by the set

{[L] : L ∈ Irr(O(Γ))0,•} = {[L] : L ∈ Irr(O(Γ)), E(L) = 0}
= {[L] : L ∈ Irr(O(Γ)), ẽq(L) = 0, ∀q = 0, 1, . . . ,m− 1}.

Proof. For x ∈ [O(Γ)] we write x =
∑

L xL[L], where L runs over the set Irr(O(Γ)).
By [33, lem. 6.1, prop. 6.2], for each q we have

eq(x) = 0 ⇐⇒ xL = 0 if eq([L]) 
= 0.

Thus the C-vector space{
x ∈ [O(Γ)] : eq(x) = 0, ∀q = 0, 1, . . . ,m− 1

}
is spanned by the classes of the simple modules L such that eq([L]) = 0 for all
q = 0, 1, . . . ,m− 1. Then, apply Corollary 3.17. This proves (a). Parts (b), (c) are
obvious. Note that

ẽq(L) = 0, ∀q ⇐⇒ eq(L) = 0, ∀q,
because a nonzero finitely generated module has a nonzero top. �
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4. The Fock space

From now on we’ll abbreviate

R(S) =
⊕
n�0

[Rep(CSn)], R(Γ) =
⊕
n�0

[Rep(CΓn)].

4.1. The Hopf C-algebra λ. This section and the following one are reminders
on symmetric functions and the Heisenberg algebra. First, recall that the C-vector
space R(S) is identified with the C-vector space of symmetric functions

Λ = C[x1, x2, . . . ]
S∞

via the characteristic map [27, chap. I]

ch : R(S) → Λ.

The map ch intertwines the induction/restriction in R(S) with the multiplica-
tion/comultiplication in Λ. More precisely, for each m,n � 0 the restriction yields
a linear map

Resn,m : [Rep(CSn+m)] → [Rep(CSn)]⊗ [Rep(CSn)].

Then, under ch, the sum
⊕

n,m Resn,m is identified with the coproduct of Λ. The

map ch takes the class of the simple module L̄λ to the Schur function Sλ for each
λ ∈ P. The power sum polynomials are given by

Pλ = Pλ1
Pλ2

. . . , Pr =
∑
i

xr
i , P0 = 1, λ ∈ P, r > 0.

We equip the C-vector space Λ with the level 1 action of ŝlm given by

(4.1) eq(Sλ) =
∑
ν

Sν , fq(Sλ) =
∑
μ

Sμ, q = 0, . . . ,m− 1,

where ν (resp. μ) runs through all partitions obtained from λ ∈ P by removing
(resp. adding) a node of content q mod m. We equip Λ with the symmetric bilinear
form such that the Schur functions form an orthonormal basis. The operators eq,
fq are adjoint to each other for this pairing.

4.2. The Heisenberg algebra. The Heisenberg algebra is the Lie algebra H

spanned by the elements 1 and br, b
′
r, r > 0, satisfying the following relations:

[b′r, b
′
s] = [br, bs] = 0, [b′r, bs] = r1δr,s, r, s > 0.

Let U(H) be the enveloping algebra of H, and let U−(H) ⊂ U(H) be the subalgebra
generated by the elements br with r > 0. Write U−(H)r for the subspace of U−(H)
spanned by the monomials br1br2 · · · with

∑
i ri = r. For λ ∈ P and f ∈ Λ we

consider the following elements in U(H):

bλ = bλ1
bλ2

· · · , b′λ = b′λ1
b′λ2

· · · ,

bf =
∑
λ∈P

z−1
λ 〈Pλ, f〉 bλ, b′f =

∑
λ∈P

z−1
λ 〈Pλ, f〉 b′λ,

where zλ is as in (3.1). For any integer � we can equip Λ with the level � action
of H such that br acts by multiplication by �Pr and b′r acts by r∂/∂Pr

for r > 0.
The operators br, b

′
r are adjoint to each other for the pairing on Λ introduced in
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Section 4.1. Further, they commute with the ŝlm-action in (4.1); see, e.g., [35,
prop. 4.6]. We write V H

� = Λ regarded as a level � module of H. Consider the
Casimir operator

(4.2) ∂ =
1

�

∑
r�1

brb
′
r.

To avoid any confusion we may also call it the level � Casimir operator. This formal
sum defines a diagonalisable C-linear operator on V H

� such that

[∂, br] = rbr, [∂, b′r] = −rb′r.

For each integer j let V H
� [j] ⊂ V H

� be the eigenspace of ∂ associated with the
eigenvalue j. Below, we’ll equip Λ with the H-action of level 1, i.e., we’ll identify
Λ = V H

1 , unless mentioning explicitly the contrary.

4.3. The Lie algebras ĝlm and g̃lm. We define the Lie algebra ĝlm in the same

way as ŝlm, with glm instead of slm. We’ll also use the extended affine Lie algebra

g̃lm, obtained by adding to ĝlm the 1-dimensional vector space spanned by the
scaling element D such that [D, x⊗�r] = r x⊗�r and [D,1] = 0. The Lie algebra

(4.3)
(
ŝlm × H

)
/
(
m(1, 0)− (0,1)

)
is isomorphic to ĝlm via the obvious map, which takes the element b′r to

∑m
p=1 epp⊗

�r and the element br to
∑m

p=1 epp⊗�−r for each r > 0. Unless specified otherwise,

by a ĝlm-module we’ll always mean a module over the Lie algebra (4.3), i.e., an

ŝlm-module with a compatible H-action. Similarly, by a g̃lm-module we’ll always

mean a ĝlm-module with a scaling operator D such that

[D, x⊗�r] = r x⊗�r, [D, br] = −rbr, [D, b′r] = rb′r.

Let P
̂slm and P

˜slm be the weight lattices of ŝlm and s̃lm respectively. In other

words P
̂slm is the lattice spanned by the affine fundamental weights and P

˜slm is

the direct sum of P
̂slm and Zδ. We may write P

̂glm = P
̂slm and P

˜glm = P
˜slm .

By a dominant integral weight of ĝlm, g̃lm we’ll always mean a dominant integral

weight of ŝlm, s̃lm. We denote the sets of such weights by P
̂glm
+ , P

˜glm
+ or by P

̂slm
+ ,

P
˜slm
+ . For λ ∈ P

˜slm
+ let V

˜slm
λ and V

˜glm
λ be the irreducible integrable modules over

s̃lm, g̃lm with the highest weight λ. We have an isomorphism of g̃lm-modules

V
˜glm
ω0

= V
˜slm
ω0

⊗ V H
m .

Let Qslm , P slm be the root lattice and weight lattice of slm. The weights of the

module V s̃lm
ω0

are all the weights of the form

μ = ω0 + β − 1

2
〈β, β〉δ − iδ, β ∈ Qslm , i � 0.

Among those, the extremal weights are the weights for which i = 0. The set of the
extremal weights coincides with the set of the maximal weights, i.e., with the set

of the weights μ such that μ + δ is not a weight of V s̃lm
ω0

. A weight μ of V s̃lm
ω0

is
extremal if and only if

〈μ, μ〉 = 0.
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Note also that we have 〈μ, μ〉 = −2i if and only if μ+ iδ is an extremal weight. See,

e.g., [4, sec. 20.3, 20.5] for details. For any s̃lm-module (resp. g̃lm-module) V and
any weight μ we’ll denote by V [μ] the weight subspace in V of weight μ.

Now, let Tm be the standard maximal torus in SLm, and let tm be its Lie algebra.

Let Ŝm be the affine symmetric group. It is the semidirect product Sm � Qslm .
Note that Qslm is the group of cocharacters of Tm. We’ll regard it as a lattice in tm

in the usual way, and we’ll identify tm with t∗m via the standard invariant pairing

on tm. The Ŝm-action on t∗m ⊕ Cω0 ⊕ Cδ, see, e.g., [23, sec. 13.1], is such that the
element β in Qslm acts via the operator

(4.4) ξβ : μ 
→ μ+ μ(1)β −
(
〈μ, β〉+ 1

2
〈β, β〉μ(1)

)
δ.

In particular, we have

ξβ(ω0) = ω0 + β − 1

2
〈β, β〉δ.

We’ll use the same notation for the Ŝm-action on t∗m ⊕Cω0 ⊕Cδ and on t∗m ⊕Cω0,
hoping it will not create any confusion. Therefore, for μ ∈ t∗m ⊕ Cω0 the symbol
ξβ(μ) will denote both the weight given by (4.4) and the weight μ + μ(1)β. We
can view the cocharacter β ∈ Qslm as a group-scheme homomorphism Gm → Tm.
Thus the image β(�) of the element � ∈ K lies in Tm(K). The coadjoint action of
β(�) on t∗m ⊕Cω0 ⊕Cδ is given by ξ−1

β ; see, e.g., [30]. Therefore for any integrable

s̃lm-module V we have

(4.5) β(V [μ]) = V [ξ−1
β (μ)].

4.4. The Hopf C-algebra λΓ. Now, let us consider the Hopf C-algebras R(Γ).
Once again, the multiplication/comultiplication on R(Γ) is given by the induc-
tion/restriction. We equip R(Γ) with the symmetric C-bilinear form given by

〈f, g〉 = |Γn|−1
∑
x∈Γn

f(x)g(x−1), f, g ∈ [Rep(CΓn)].

Here we regard f, g as characters of CΓn. This bilinear form is a Hopf pairing. Next,
we consider the Hopf C-algebra ΛΓ = Λ⊗Γ. We’ll use the following elements in ΛΓ:

fγ = 1⊗ · · · ⊗ 1⊗ f ⊗ 1⊗ · · · ⊗ 1, f ∈ Λ, γ ∈ Γ,

with f at the γ-th place. We abbreviate

P γ
μ = (Pμ)

γ , Pλ =
∏
γ∈Γ

P γ
λ(γ), μ ∈ P, λ ∈ PΓ.

The comultiplication in ΛΓ is characterized by

Δ(P γ
r ) = P γ

r ⊗ 1 + 1⊗ P γ
r , r > 0, γ ∈ Γ.

Following [27, chap. I, app. B, (7.1)] we write

Pr,p = �−1
∑
γ∈Γ

γpP γ
r , r � 0, p ∈ Z�.

We equip ΛΓ with the Hopf pairing such that

〈Pr,p, Ps,q〉 = rδp,qδr,s, r, s > 0, p, q ∈ Z�.

The elements Pr,p, r > 0, are algebraically independent and generate the C-algebra
ΛΓ. Thus, we may regard Pr,p, r > 0, as the r-th power sum of a new sequence of
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variables xi,p, i > 0. We do not need to construct explicitly the elements xi,p, i > 0.
They are auxiliary variables which are only used to define the following elements:

(4.6) Sμ,p = Sμ(xi,p), Sλ =
∏
p∈Z�

Sλ(p),p, μ ∈ P, λ ∈ P�.

Here, the symbol Sμ denotes the Schur function associated to the partition μ. By
construction, the elements Sλ are indeed polynomials in the Pr,p’s. So they belong
to ΛΓ. The Hopf C-algebras R(Γ) and ΛΓ are identified via the characteristic map
[27, chap. I, app. B, (6.2)]

ch : R(Γ) → ΛΓ.

This map intertwines the induction in R(Γ) with the multiplication in ΛΓ by [27,
chap. I, app. B, (6.3)]. By [27, chap. I, app. B, (9.4)] and (3.4) we have

(4.7) ch(L̄λ) = Sτλ, λ ∈ P�,

where τ is the permutation of P� such that (τλ)(p) = λ(p+1) for each p ∈ Z�. For
λ ∈ PΓ we write

zλ =
∏
γ∈Γ

zλ(γ)�
l(λ(γ)),

where zλ(γ) is as in (3.1), and we define λ̄ ∈ PΓ by λ̄(γ) = λ(γ−1). Then we have

〈Sλ, Sμ〉 = δλ,μ, λ, μ ∈ P�,

〈Pλ, Pμ̄〉 = δλ,μzλ, λ, μ ∈ PΓ.
(4.8)

The first equality is proved as in [27, chap. I, app. B, (7.4)], while the second one
is [27, chap. I, app. B, (5.3′)]. By (4.7), (4.8) the map ch is an isometry. Thus it
intertwines the restriction in R(Γ) with the comultiplication in ΛΓ.

Proposition 4.1. (a) The restriction Rep(CΓn) → Rep(CSn) yields the C-algebra

homomorphism ResΓS : ΛΓ → Λ such that Sλ 
→
∏

p Sλ(p), Pr,p 
→ Pr.

(b) The induction Rep(CSn) → Rep(CΓn) yields the C-algebra homomorphism

IndΓS : Λ → ΛΓ such that Pr 
→ P 1
r =

∑
p∈Z�

Pr,p.

Proof. First, we concentrate on (a). Recall that Rep(CΓn), Rep(CSn) are iden-
tified with ΛΓ, Λ via the characteristic map, which is a C-algebra isomorphism.
Under this map, the restriction Rep(CΓn) → Rep(CSn), which is a C-algebra ho-

momorphism, can be regarded as a C-algebra homomorphism ResΓS : ΛΓ → Λ. It
takes Sλ to

∏
p Sλ(p) by formula (4.7), because, by formula (3.4), the simple module

L̄τ−1λ is induced from the tensor product of the representations associated with the
Sλ(p)’s. To prove that ResΓS(Pr,p) = Pr, observe that

ch(σr,p) = Pr,p, r > 0,

where σr,p is the class function on Γr which takes the value r(γ1γ2 · · · γr)p on pairs
(w, (γ1, γ2, . . . , γr)) such that w is an r-cycle, and 0 elsewhere; see [12, lem. 5.1].
Now, it is easy to see that the restriction of the class function σr,p to the group Sn

is precisely the class function associated to the symmetric polynomial Pr. Now we
concentrate on (b). Note that

ResΓS(P γ
0 ) = 1, ResΓS(P γ

r ) = �δγ,1Pr, r > 0.
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Therefore, for λ ∈ PΓ we have

ResΓS(Pλ) =
∏
γ∈Γ

ResΓS(P γ
λ(γ)) =

{
� l(λ(1))Pλ(1) if λ(γ) = ∅ for γ 
= 1,

0 else.

If f, g ∈ [Rep(CΓn)] are the characters of finite-dimensional Γn-modules V , W ,
then 〈f, g〉 is the dimension of the space of CΓn-linear maps V → W . Hence, by

Frobenius reciprocity, the operator IndΓS is adjoint to the operator ResΓS. Thus,

〈IndΓS(Pr), Pλ〉 =
{
r� l(λ(1))δλ(1),(r) if λ(γ) = ∅ for γ 
= 1,

0 else.

This implies that IndΓS(Pr) = aP 1
r for some a. To determine a, let λ be such that

λ(γ) = ∅ if γ 
= 1 and λ(1) = (r). Then we have

Pλ = P 1
r , 〈Pλ, Pλ〉 = r�.

This implies that a = 1. �

Remark 4.2. Let f 
→ f̄ be the C-antilinear involution of ΛΓ which fixes the Pλ’s
with λ ∈ PΓ; see [27, chap. I, app. B, (5.2)]. For λ ∈ P� let λ̄ be the �-partition
given by λ̄(p) = λ(−p). We have

P̄r,p = Pr,−p, S̄λ = Sλ̄, r > 0, p ∈ Z�, λ ∈ P�.

Remark 4.3. Setting � = 1 in ΛΓ we get the standard Hopf algebra structure and
the Hopf pairing of Λ.

Remark 4.4. We have [27, chap. I, app. B, (7.1′)]

P γ
r =

∑
p∈Z�

γ−pPr,p, r � 0, P γ
0 = 1, P0,p = δ0,p.

4.5. The level 1 Fock space. Fix once and for all a basis (ε1, . . . , εm) of Cm. The

level 1 Fock space of ŝlm is the space Fm of semi-infinite wedges of the C-vector
space Vm = Cm ⊗ C[t, t−1]. More precisely, we have

Fm =
⊕

d∈Z
F (d)

m ,

where F (d)
m is the subspace spanned by the semi-infinite wedges of charge d, i.e.,

the semi-infinite wedges of the form

(4.9) ui1 ∧ ui2 ∧ · · · , i1 > i2 > . . . , ui−jm = εi ⊗ tj ,

where ik = d− k + 1 if k � 0. We write

(4.10) |λ, d〉 = ui1 ∧ ui2 ∧ · · · , λ ∈ P, ik = λk + d− k + 1, k > 0.

The elements |λ, d〉 with λ ∈ P form a basis of F (d)
m . We equip F (d)

m with the
C-bilinear symmetric form such that this basis is orthonormal.

The Fock space F (d)
m is equipped with a level one representation of ŝlm in the

following way. First, the C-vector space Vm is given the level 0 action of ŝlm induced
by the homomorphism

(4.11) ŝlm → slm ⊗ C[t, t−1], 1 
→ 0, x⊗� 
→ x⊗ t
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and the obvious actions of slm and C[t, t−1] on Vm. Then, taking semi-infinite

wedges, this action yields a level 1 action of ŝlm on F (d)
m ; see, e.g., [35].

Next, observe that the multiplication by tr, r > 0, yields an endomorphism of

Vm. Taking semi-infinite wedges it yields a linear operator br on F (d)
m . Let b′r be

the adjoint of br. Then b′r, br define a level m action of H on F (d)
m . The ŝlm-action

and the H-action on F (d)
m glue together, yielding a level 1 representation of ĝlm on

F (d)
m ; see [35] again.

We have an isomorphism of (simple) ĝlm-modules

(4.12) F (d)
m = V

̂glm
ωdmodm

;

see [19, chap. 14] and the references there. It is unique up to a scalar. It identifies

the symmetric bilinear form of F (d)
m with the Shapovalov form on V

̂glm
ωdmodm , i.e.,

with the unique (up to a scalar) symmetric bilinear form such that the adjoints of
br, eq are b′r, fq respectively.

Remark 4.5. The C-linear isomorphism

(4.13) F (d)
m → Λ, |λ, d〉 
→ Sλ, λ ∈ P

takes the operators b′r, br, eq, fq on the left-hand side to the operators b′mr, bmr,
eq−d, fq−d on the right-hand side.

4.6. The level � Fock space. Fix a basis (ε1, . . . , εm) of Cm and a basis (ε̇1, . . . , ε̇�)

of C�. The level � Fock space of ŝlm is the C-vector space

Fm,� =
⊕

d∈Z
F (d)

m,�

of semi-infinite wedges of the C-vector space Vm,� = Cm⊗C�⊗C[z, z−1]. The latter
are defined as in (4.9) with

(4.14) ui+(j−1)m−km� = εi ⊗ ε̇j ⊗ zk.

Here i = 1, . . . ,m, j = 1, . . . , �, and k ∈ Z. Using the semi-infinite wedges of these

elements, we define basis elements |λ, d〉 of F (d)
m,� as in (4.10) with λ running over

P. We equip F (d)
m,� with the C-bilinear symmetric form such that the basis elements

|λ, d〉 are orthonormal. This yields a C-linear isomorphism

(4.15) F (d)
m,� → Λ, |λ, d〉 
→ Sλ, λ ∈ P.

We equip the C-vector space F (d)
m,� with the following actions; see [35] for details:

• The level m� action of H such that b′r, br are taken to the operators b′m�r,
bm�r on Λ under the isomorphism (4.15) for r > 0.

• The level � action of ŝlm defined as follows: equip the C[z, z−1]-module Vm,�

with the level 0 action of ŝlm given by the evaluation homomorphism (4.11)
and the obvious actions of slm and C[z, z−1] on Vm,�. Taking semi-infinite

wedges we get a level � action of ŝlm on F (d)
m,�.

• The level m action of ŝl� which is defined as above by exchanging the roles
of m and �.
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The actions of H, ŝlm and ŝl� commute with each other. An �-tuple of integers
s = (sp) is called an �-charge of weight d if

∑
p sp = d. Set

(4.16) γ̂(s,m) = (m− s1 + s�)ω0 +
�−1∑
p=1

(sp − sp+1)ωp.

The Fock space associated with the �-charge s is the subspace

(4.17) F (s)
m,� = F (d)

m,�[γ̂(s,m)]

consisting of the elements of weight γ̂(s,m) with respect to the ŝl�-action. It is an

ŝlm × H-submodule of F (d)
m,�. Consider the basis elements |λ, s〉, λ ∈ P�, of F (s)

m,�

defined in [35, sec. 4.1]. The representation of ŝlm on F (s)
m,� can be characterized in

the following way, see e.g., [18], [35],

(4.18) eq|λ, s〉 =
∑
ν

|ν, s〉, fq|λ, s〉 =
∑
μ

|μ, s〉,

where ν (resp. μ) runs through all �-partitions obtained by removing (resp. adding)
a node of coordinate (i, j) in the p-th partition of λ such that q = sp+ j− i modulo
m. Consider the C-vector space isomorphism

(4.19) ΛΓ → F (s)
m,�, Sτλ 
→ |λ, s〉, λ ∈ P�.

By [35, sec. 4.1] we have an equality of sets

(4.20) {|λ, s〉 : λ ∈ P�, s = (sp) ∈ Z�,
∑
p

sp = d} = {|λ, d〉 : λ ∈ P}.

Thus the elements |λ, s〉 form an orthonormal basis of F (d)
m,� and the map (4.19) pre-

serves the pairings by (4.8). The representation of H on F (s)
m,� can be characterized

in the following way.

Proposition 4.6. The operators b′r, br, r > 0, on F (s)
m,� are adjoint to each other.

Further br acts as the multiplication by the element P 1
mr =

∑
p Pmr,p of ΛΓ under

the isomorphism (4.19).

Proof. The first claim is [35, prop. 5.8]. To prove the second claim, consider the
isomorphism of vector spaces

(4.21) F (s)
m,�

∼→
⊗
p∈Z�

F (sp)
m , |λ, s〉 
→

⊗
p∈Z�

|τλ(p), sp〉.

Recall that τλ(p) = λ(p + 1). Next, for each p ∈ Z� let Λ(p) be the subalgebra of
ΛΓ generated by Pr,p, r > 0. We have a canonical algebra isomorphism

Λ(p) ∼→ Λ, Pr,p 
→ Pr, Sλ,p 
→ Sλ, ∀λ ∈ P;

see Section 4.4. Further, we have

(4.22)
⊗
p∈Z�

Λ(p) ∼→ ΛΓ,
⊗
p∈Z�

xp 
→
∏
p∈Z�

xp.
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These isomorphisms fit into a commutative diagram

F (s)
m,�

(4.21) ��

(4.19)

��

⊗
p∈Z�

F (sp)
m

��
ΛΓ

⊗
p∈Z�

Λ(p),
(4.22)��

where the right vertical arrow is given by (4.13) on each component. Now, the
formulas in [35, sec. 4.1, 4.3 and (25)] imply that (4.21) intertwines the operator br
on F (s)

m,� and the operator

br ⊗ 1⊗ · · · ⊗ 1 + 1⊗ br ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ br

on
⊗

p∈Z�
F (sp)

m . By Remark 4.5 the map (4.13) sends the operator br on F (sp)
m

to the operator bmr on Λ(p). The latter is given by the multiplication by Pmr,p.

Therefore br acts on F (s)
m,� by the multiplication by

∑
p∈Z�

Pmr,p = P 1
mr. �

Remark 4.7. The ŝlm-action on F (s)
m,� can be extended to an s̃lm-action such that

the weight of |λ, s〉 is

−Δ(s,m)δ +

�∑
p=1

ωsp modm −
m−1∑
q=0

nq(λ)αq;

see [35, sec. 4.2]. Here nq(λ) is the number of q-nodes in λ; i.e., it is the sum over
all p’s of the number of nodes of coordinate (i, j) in the p-th partition of λ such
that sp + j − i = qmodm. The integer sp + j − i is called the content of the node
(i, j) of λ. We also have used the notation

Δ(s,m) =
1

2

�∑
p=1

〈ωsp modm, ωsp modm〉+ 1

2

�∑
p=1

sp(sp/m− 1).

In particular, we have

D(|λ, s〉) = −(Δ(s,m) + n0(λ)) |λ, s〉.

5. The categorification of the Heisenberg algebra

We’ll abbreviate
O(Γ) =

⊕
n�0

O(Γn).

Assume that h, hp are rational numbers as in (3.9). Thus Λ is a rational weight of

ŝl� of level 1. Let m be the denominator of h. We’ll assume that m > 2.

5.1. The functors Aλ,!, A
∗
λ, Aλ,∗ on Db(O(Γ)). To simplify the exposition, from

now on we’ll assume that � > 1. All the statements below have an analogous
version for � = 1, by replacing everywhere Cn by Cn

0 . Let n, r be nonnegative
integers. Consider the point

bn,r = (0, . . . , 0, 1, . . . , 1) ∈ h = Cn+r,

with xi = 0 for 1 � i � n, and xi = 1 for n < i � n+ r. The centralizer of bn,r in
Γn+r is the parabolic subgroup Γn,r. We have

h/hΓn,r = Cn × Cr
0.
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Here Cn is the reflection representation of Γn and Cr
0 is the reflection representation

of Sr. Note that

O(Γn,r) = O(Γn,r,C
n × Cr

0), O(Sr) = O(Sr,C
r
0).

In particular we have a canonical equivalence of categories

O(Γn,r) = O(Γn)⊗O(Sr).

Thus the induction and restriction relative to bn,r yield functors

OIndn,r : O(Γn)⊗O(Sr) → O(Γn+r),

OResn,r : O(Γn+r) → O(Γn)⊗O(Sr).

Now consider the functors OIndn,mr,
OResn,mr. The parameters of H(Γn+mr) and

H(Γn) are h, Λ. The parameter of H(Smr) is h. Fix a partition λ ∈ Pr. We define
the functors

O(Γn)⊗O(Smr) → O(Γn),

M 
→ HomO(Smr)(M,Lmλ)
�, M 
→ HomO(Smr)(Lmλ,M),

as the tensor product of the identity of O(Γn) and of the functors

O(Smr) → Rep(C),

M 
→ HomO(Smr)(M,Lmλ)
∗, M 
→ HomO(Smr)(Lmλ,M).

Here the superscript ∗ denotes the dual C-vector space. Note that the space
HomO(Smr)(M,Lmλ) is finite dimensional because the category O(Smr) is Ar-
tinian. Thus, given a decomposition M =

⊕
i Mi ⊗Ni, we get

HomO(Smr)(M,Lmλ)
� =

⊕
i

Mi ⊗HomO(Smr)(Ni, Lmλ)
∗,

HomO(Smr)(Lmλ,M) =
⊕
i

Mi ⊗HomO(Smr)(Lmλ, Ni).

The functor HomO(Smr)(•, Lmλ)
� is right exact and the functor HomO(Smr)(Lmλ, •)

is left exact. We denote the corresponding derived functors in the following way:

M 
→ RHomDb(O(Smr))(M,Lmλ)
�, M 
→ RHomDb(O(Smr))(Lmλ,M).

Definition 5.1. For λ ∈ Pr with r � 0 we define the functors

Aλ,! : D
b(O(Γn+mr)) → Db(O(Γn)), M 
→ RHomDb(O(Smr))(

OResn,mr(M), Lmλ)
�,

A∗
λ : Db(O(Γn)) → Db(O(Γn+mr)), M 
→ OIndn,mr(M ⊗ Lmλ),

Aλ,∗ : D
b(O(Γn+mr)) → Db(O(Γn)), M 
→ RHomDb(O(Smr))(Lmλ,

OResn,mr(M)).

Proposition 5.2. We have a triple of exact adjoint endofunctors (Aλ,!, A
∗
λ, Aλ,∗)

of the triangulated category Db(O(Γ)). For M,N ∈ Db(O(Γ)) we have

RHomDb(O(Γ))(A
∗
λ(M), N) = RHomDb(O(Γ))(M,Aλ,∗(N)),

RHomDb(O(Γ))(Aλ,!(M), N) = RHomDb(O(Γ))(M,A∗
λ(N)).

Proof. This is obvious because the functors OIndn,mr and OResn,mr are exact and
biadjoint; see [2], [33]. �
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5.2. The Sr-action on (A!)
r, (A∗)r and (A∗)

r. For � =!, ∗ we write A∗ = A∗
(1)

and A� = A(1),�. For r � 1, the transitivity of the induction and restriction functors
[33, cor. 2.5] yield functor isomorphisms:

(5.1)

(A!)
r = RHomDb(O(S(mr)))

(OResn,(mr)(•), L
)�

,

(A∗)r = OIndn,(mr)(• ⊗ L) = OIndn,mr

(
• ⊗ OInd(mr)(L)

)
,

(A∗)
r = RHomDb(O(S(mr)))

(
L,OResn,(mr)(•)

)
.

Here, to unburden the notation we abbreviate L = L⊗r
(m). The goal of this section

is to construct an Sr-action on (A!)
r, (A∗)r and (A∗)

r, and to decompose these
functors using this action. To do this, let H(Γn,(mr)), H(Γn), H(Sm) be as in
Appendix A, with the parameters ζ and vp as in Section 3.7. There is an obvious
isomorphism

H(Γn,(mr)) = H(Γn)⊗H(Sm)⊗r.

Let τi ∈ Sn+mr be the unique permutation such that

• τi is minimal in the coset S(n,mr)τiS(n,mr),

• τi(vw1w2 . . . wr)τ
−1
i = vw1 . . . wi+1wi . . . wr for v ∈ Sn, w1, . . . , wr ∈ Sm.

Let τi also denote the algebra isomorphism H(Γn,(mr)) → H(Γn,(mr)) given by

x⊗ y1 ⊗ · · · ⊗ yr → x⊗ y1 ⊗ · · · ⊗ yi+1 ⊗ yi ⊗ · · · ⊗ yr.

We have the following relation in H(Γn+mr):

(5.2) Tτiz = τi(z)Tτi , z ∈ H(Γn,(mr)).

Therefore, the element Tτi belongs to the normalizer of H(Γn,(mr)) in H(Γn+mr).
The twist of a module by τi yields the functor

τi : Rep(H(Γn,(mr))) → Rep(H(Γn,(mr))),

M ⊗N1 ⊗ · · · ⊗Nr → M ⊗N1 ⊗ · · · ⊗Ni+1 ⊗Ni ⊗ · · · ⊗Nr.

We define the morphism of functors
Hτi :

HIndn,(mr) → HIndn,(mr) ◦τi, Hτi(M)(h⊗ v) = hTτi ⊗ τi(v),

h ∈ H(Γn+mr), v ∈ M, M ∈ Rep(H(Γn,(mr))).

It is well-defined by (5.2). Next, the permutation τi also yields a functor

τi : O(Γn,(mr)) → O(Γn,(mr)),

M ⊗N1 ⊗ · · · ⊗Nr → M ⊗N1 ⊗ · · · ⊗Ni+1 ⊗Ni ⊗ · · · ⊗Nr.

The functor KZ yields a C-algebra isomorphism [33, lem. 2.4]

(5.3) KZ : End
(OIndn,(mr)

)
→ End

(
KZ ◦OIndn,(mr)

)
= End

(
HIndn,(mr) ◦KZ

)
.

For the same reason we have also an isomorphism

KZ : Hom
(OIndn,(mr),

OIndn,(mr) ◦τi
)

→ Hom
(
HIndn,(mr) ◦KZ,HIndn,(mr) ◦τi ◦KZ

)
.

So there is a unique morphism of functors

Oτi :
OIndn,(mr) → OIndn,(mr) ◦τi

which satisfies the following identity:

(5.4) KZ(Oτi(M)) = Hτi(KZ(M)), M ∈ O(Γn,(mr)).
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The functor • ⊗ L yields a map

(5.5) Hom
(OIndn,(mr),

OIndn,(mr) ◦τi
)
→ End((A∗)r).

Let τ̄i denote the image of Oτi by this map.

Lemma 5.3. The following relations hold in End
(
(A∗)r

)
:

• τ̄2i = 1,
• τ̄iτ̄j = τ̄j τ̄i if j 
= i− 1, i+ 1,
• τ̄iτ̄i+1τ̄i = τ̄i+1τ̄iτ̄i+1.

Proof. We’ll write LS = (LS
(m))

⊗̇r. Consider the morphism of functors

(5.6)
Hτ0i : HInd(mr) → HInd(mr) ◦τi, Hτ0i (M)(h⊗ v) = hTτi ⊗ τi(v),

h ∈ H(Smr), v ∈ M, M ∈ Rep(H(Sm)⊗r).

It is well-defined by (5.2). By (5.3) there is a unique morphism of functors

Oτ0i : OInd(mr) → OInd(mr) ◦τi
such that

(5.7) KZ(Oτ0i (M)) = Hτ0i (KZ(M)).

We define the endomorphism τ̄0i of the module OInd(mr)(L) by

(5.8) τ̄0i = Oτ0i (L).

The transitivity of the induction functor [33, cor. 2.5] yields

(5.9)
(A∗)r(M) = OIndn,mr

(
M ⊗ OInd(mr)(L)

)
,

τ̄i(M) = OIndn,mr(1⊗ τ̄0i ).

Therefore, we are reduced to checking the following relations:

• (τ̄0i )
2 = 1,

• τ̄0i τ̄
0
j = τ̄0j τ̄

0
i if j 
= i− 1, i+ 1,

• τ̄0i τ̄
0
i+1τ̄

0
i = τ̄0i+1τ̄

0
i τ̄

0
i+1.

To prove this, recall that Rouquier’s functor R yields an equivalence

(5.10) O(Smr) → Rep(Sζ(mr)).

Here ζ is a primitive m-th root of 1. We have

(5.11) R(Lmλ) = LS
mλ.

By Proposition 3.1 we also have

R
(OInd(mr)(L)

)
= LS .

Thus the functor R yields a C-algebra isomorphism

EndO(Smr)

(OInd(mr)(L)
)
= EndSζ(mr)(L

S).

Therefore, we are reduced to checking the following relations in EndSζ(mr)(L
S):

• R(τ̄0i )
2 = 1,

• R(τ̄0i )R(τ̄0j ) = R(τ̄0j )R(τ̄0i ) if j 
= i− 1, i+ 1,

• R(τ̄0i )R(τ̄0i+1)R(τ̄0i ) = R(τ̄0i+1)R(τ̄0i )R(τ̄0i+1).
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By Proposition 3.1 there is an isomorphism of functors O(S(mr)) → Rep(Sζ(mr)):

(•)⊗̇r ◦R = R ◦ OInd(mr) ◦(•)⊗r.

Since 1R
Oτ0i 1(•)⊗r is an endomorphism of the right-hand side and since R is an

equivalence, there is a unique endomorphism Sτ0i of the functor

(•)⊗̇r : Rep(Sζ(m)) → Rep(Sζ(mr))

such that

(5.12) Sτ0i 1R = 1R
Oτ0i 1(•)⊗r .

Consider the diagram

End
(OInd(mr) ◦(•)⊗r

) KZ ��

R
��

End
(
HInd(mr) ◦KZ ◦(•)⊗r

)

End
(
(•)⊗̇r ◦R

)
.

Φ∗

������������������

The upper map is invertible by (5.3), the vertical one by Proposition 3.1, and the
lower one by Corollary B.4. The diagram is commutative because Φ∗ ◦ R = KZ.
By (5.7) and (5.12) the image of Oτ0i 1(•)⊗r is given by

Oτ0i 1(•)⊗r
� ��

�

��

Hτ0i 1KZ ◦(•)⊗r

Sτ0i 1R(•).

�

�������������
(5.13)

Now, recall the endomorphisms of functors R•,i, S•,i defined in (B.10), (B.9). By
Corollary B.7 the functor Φ∗ yields a map

End
(
(•)⊗̇r

)
→ End

(
HInd(mr) ◦(•)⊗r ◦ Φ∗), R•,i 
→ SΦ∗(•),i.

By (5.6) we have

SM,i =
Hτ0i (M

⊗r), M ∈ Rep(H(Sm)).

Therefore, by (5.13) we also have

(5.14) RM,i =
Sτ0i (M), M ∈ Rep(Sζ(m)).

Now, by (5.8), (5.11) and (5.12) we have

R(τ̄0i ) =
Sτ0i

(
LS
(m)

)
.

Thus, by (5.14) we must check that the operators RLS
(m)

,i satisfy the same relations

as above. The quantum Frobenius homomorphism yields a functor

Fr∗ : Rep(S1(r)) → Rep(Sζ(mr))

such that LS
(m) = Fr∗(L̄S

(1)); see Section B.7. It is a braided tensor functor by

Proposition B.9. Thus the claim follows from Proposition B.8. �

We can now prove the following, which is the main result of this subsection.
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Proposition 5.4. Let r � 1.
(a) The group Sr acts on the functors (A∗)r, (A∗)

r.
(b) We have the following Sr-equivariant isomorphisms of functors:

(A∗)r =
⊕
λ∈Pr

L̄λ ⊗A∗
λ, (A∗)

r =
⊕
λ∈Pr

L̄λ ⊗Aλ,∗.

Proof. First, we concentrate on part (a). To unburden the notation we abbreviate

L = L⊗r
(m), LS = (LS

(m))
⊗̇r.

By Lemma 5.3 the assignment si 
→ τ̄i yields a Sr-action on (A∗)r. Under the ad-
junction

(OIndn,(mr),
OResn,(mr)

)
the isomorphism Oτi yields a (right transposed)

isomorphism of OResn,(mr). We’ll denote it by Oτi again. By definition of the right
transposition, the following square is commutative for M ∈ O(Γn+mr):

HomO(Γn+mr)

(OIndn,(mr)(L),M
) ◦Oτi(L) �� HomO(Γn+mr)

(OIndn,(mr)(L),M
)

HomO(Γn,(mr))

(
L,OResn,(mr)(M)

)Oτi(M)◦�� HomO(Γn,(mr))

(
L,OResn,(mr)(M)

)
.

Here and in the rest of the proof, we use the canonical isomorphisms

HomO(Γn+mr)

(OIndn,(mr)(L),M
)
= HomO(Γn+mr)

(OIndn,(mr)(τi(L)),M
)
,

HomO(Γn,(mr))

(
L,OResn,(mr)(M)

)
= HomO(Γn,(mr))

(
L, τi(

OResn,(mr)(M))
)

given by τi(L) = L without mentionning them explicitly. We define the Sr-action
on (A∗)

r by

(5.15)
si(f) =

Oτi(M) ◦ f,
f ∈ (A∗)

r(M) = RHomDb(O(S(mr)))

(
L,OResn,(mr)(M)

)
.

Note that the formulas (5.15) do define an action of the group Sr by Lemma 5.3,
because the square above is commutative.

Now, we prove part (b). It is convenient to rewrite the Sr-action on (A∗)r in a
slightly different way. Setting n = 0 in the construction above we get a Sr-action
on OInd(mr)(L) such that si acts through the operator τ̄0i in (5.8), and by (5.9) the
reflection si acts on (A∗)r through the automorphism

OIndn,mr(1⊗ Oτ̄0i ).

We claim that the following identity holds in Rep(CSr)⊗O(Smr):

(5.16) OInd(mr)(L) =
⊕
λ∈Pr

L̄λ ⊗ Lmλ.

To prove (5.16) we use Rouquier’s functor R as in the proof of Lemma 5.3. It is
enough to check the following identity in Rep(CSr)⊗ Rep(Sζ(mr)):

LS =
⊕
λ∈Pr

L̄λ ⊗ LS
mλ.

To do that, note that by Proposition B.9 the functor in Section B.7,

Fr∗ : Rep(S1(r)) = Rep(S(−1)m(r)) → Rep(Sζ(mr)),
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given by the quantum Frobenius homomorphism, is a braided tensor functor. Fur-
ther we have

Fr∗(L̄S
λ) = LS

mλ, Fr∗((L̄S
(1))

⊗̇r) = LS ,

where L̄S
λ is the simple S1(r)-module with the highest weight λ. Therefore, to prove

(5.16) we are reduced to checking the following identity in Rep(CSr)⊗Rep(S1(r)):

(L̄S
(1))

⊗̇r =
⊕
λ∈Pr

L̄λ ⊗ L̄S
λ .

This is a trivial consequence of the Schur duality. The decomposition

(5.17) (A∗)r =
⊕
λ∈Pr

L̄λ ⊗A∗
λ

is a direct consequence of (5.16). The decomposition of the functor (A∗)
r follows

from (5.16) and the commutativity of the diagram above, because it implies that
the canonical isomorphism

(A∗)
r(M) = RHomDb(O(S(mr)))

(OInd(mr)(L),
OResn,mr(M)

)
is Sr-equivariant. �

Remark 5.5. Using an adjunction
(OResn,(mr),

OIndn,(mr)

)
for each r, we can con-

struct in a similar way a Sr-action on the functor (A!)
r such that we have the

decomposition

(A!)
r =

⊕
λ∈Pr

L̄λ ⊗Aλ,!.

Then, by Propositions 5.2 and 5.4, we have the triple
(
(A!)

r, (A∗)r, (A∗)
r
)
of adjoint

Sr-equivariant functors.

Remark 5.6. We have used the hypothesis m > 2 in the proof of Proposition 5.4
when using Rouquier’s functor R. Probably this is not necessary.

Proposition 5.7. For r � 1 we have an isomorphism of functors

(A!)
r[2r(1−m)] = (A∗)

r.

Proof. Once again we’ll abbreviate L = L⊗r
(m). Let Perv(Pm−1) be the category

of perverse sheaves on Pm−1 which are constructible with respect to the standard
stratification Pm−1 = C0 ∪ C1 ∪ · · · ∪ Cm−1. By [3, thm. 1.3] the category O(Sm)
decomposes as the direct sum of Perv(Pm−1) and semisimple blocks. Under this
equivalence the module L(m) is taken to be the perverse sheaf CPm−1 [m−1]. So, by

Verdier duality [20, (3.1.8)], we have an isomorphism of functors from Db(O(Sm))
to Db(C):

(5.18) RHomDb(O(Sm))(L(m), •) → RHomDb(O(Sm))(•, L(m))
∗[2(1−m)].

The tensor power of (5.18) is an isomorphism of functors Db(O(S(mr))) → Db(C):

θ0 : RHomDb(O(S(mr)))(L, •) → RHomDb(O(S(mr)))(•, L)
∗[2r(1−m)].

It yields an isomorphism of functors Db(O(Γn,(mr))) → Db(O(Γn)):

θ : RHomDb(O(S(mr)))(L, •) → RHomDb(O(S(mr)))(•, L)
�[2r(1−m)]
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such that

(5.19)
θ(τi(M))(τi(f)) = τi(θ(M)(f)),

M ∈ O(Γn,(mr)), f ∈ RHomDb(O(S(mr)))(L,M).

We define an isomorphism of functors Db(O(Γn+mr)) → Db(O(Γn)) by

θ′ = θ 1OResn,(mr)
.

More precisely, we have

θ′ : RHomDb(O(S(mr)))

(
L,OResn,(mr)(•)

)
→ RHomDb(O(S(mr)))

(OResn,(mr)(•), L
)�

[2r(1−m)].

By (5.1) we may view θ′ as an isomorphism (A∗)
r → (A!)

r[2r(1−m)]. �

Remark 5.8. Probably we can choose the Sr-action on (A!)
r in such a way that the

isomorphism (A∗)
r → (A!)

r[2r(1 − m)] is Sr-equivariant. This would imply that
for λ ∈ Pr we have Aλ,![2r(1−m)] = Aλ,∗. We’ll not use this.

Remark 5.9. The transitivity of the induction functor [33, cor. 2.5] yields an iso-
morphism of functors A∗

λ A
∗
μ = A∗

μ A
∗
λ for λ, μ ∈ P. Taking the adjoint functors we

also get the isomorphisms Aλ,! Aμ,! = Aμ,! Aλ,! and Aλ,∗ Aμ,∗ = Aμ,∗ Aλ,∗.

Remark 5.10. The functors Aλ,!, A
∗
λ, Aλ,∗ yield linear endomorphisms of the C-

vector space [O(Γ)]. Let us denote them by Aλ,!, A
∗
λ, Aλ,∗ again.

Remark 5.11. Recall that 〈m〉 =
⊕m−1

i=0 C[−2i]. For any object M of Db(O(Γ))
there should be a distinguished triangle

�〈m〉M �� A∗A
∗(M) �� A∗A∗(M)

+1 �� .

5.3. The functors a∗λ, aλ,∗ on O(Γ) and the H-action on the Fock space.
For i ∈ Z and � =!, ∗ we consider the endofunctor Hi(Aλ,�) of O(Γ) given by

Hi(Aλ,�)(M) = Hi(Aλ,�(M)), M ∈ O(Γ).

From now on we’ll write Raλ,� = Aλ,� and Riaλ,� = Hi(Aλ,�).

Definition 5.12. Let a∗λ be the restriction of A∗
λ to the Abelian category O(Γ).

Since a∗λ is an exact endofunctor of O(Γ), we may write a∗λ for A∗
λ if it does not

create any confusion. We abbreviate aλ,� = R0aλ,�. The functor aλ,∗ is a left exact
endofunctor of O(Γ), while aλ,! is right exact.

Consider the chain of C-linear isomorphisms which is the composition of (3.5), of
the characteristic map ch, and of (4.19),

(5.20)
[O(Γ)] → R(Γ) → ΛΓ → F (s)

m,�,

Δλ 
→ L̄λ 
→ Sτλ 
→ |λ, s〉.

Recall the symmetric bilinear form on F (s)
m,� defined in Section 4.6.

Proposition 5.13. (a) The map (5.20) identifies the symmetric C-bilinear form

on F (s)
m,� with the C-bilinear form

[O(Γ)]× [O(Γ)] → C, (M,N) 
→
∑
i

(−1)idimExtiO(Γ)(M,N).

Licensed to Universite Bordeaux I. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 991

(b) The map (5.20) identifies the operators bSλ
, b′Sλ

on F (s)
m,� with the operators

a∗λ, Raλ,∗ on [O(Γ)].

Proof. Part (a) is obvious because we have

dimExtiO(Γn)(Δλ,∇μ) = δi,0δλ,μ, [Δμ] = [∇μ], ∀λ, μ ∈ P�
n,

because O(Γn) is a quasi-hereditary category; see, e.g., [9, prop. A.2.2]. Now we
concentrate on (b). By (a) and Proposition 5.2, the pairs (bSλ

, b′Sλ
) and (a∗λ, Raλ,∗)

consist of adjoint linear operators on F (s)
m,�. So it is enough to check that under

(5.20) we have the following equality:

(5.21) bSλ
= a∗λ.

To do that, observe first that, by Proposition 4.1, for r > 0 the map ch : R(Γ) → ΛΓ

intertwines the operator

R(Γ) → R(Γ), M 
→ IndΓΓ×S

(
M ⊗ ch−1(Pmr)

)
and the multiplication by

∑
p∈Z�

Pmr,p. Here we have abbreviated

IndΓΓ×S =
⊕
n,r�0

Indn,mr .

Next, by Proposition 4.6, the map ΛΓ → F (s)
m,� above intertwines the multiplication

by
∑

p∈Z�
Pmr,p and the operator br. By definition, the plethysm with the power

sum Pm is the C-algebra endomorphism

ψm : Λ → Λ, f 
→
∑
λ∈P

z−1
λ 〈f, Pλ〉Pmλ.

The discussion above implies that the map R(Γ) → F (s)
m,� above identifies the action

of bSλ
on F (s)

m,� with the operator

R(Γ) → R(Γ), M 
→ IndΓΓ×S(M ⊗ ch−1 ψm(Sλ)).

Now, recall the maps

spe : [Rep(CΓn)] → [O(Γn)], spe : [Rep(CSmr)] → [O(Smr)].

By Lemma 2.4, they commute with the induction and restriction. We claim that

spe ◦ ch−1 ◦ψm(Sλ) = Lmλ.

Thus (5.21) follows from (5.20). To prove the claim, set ζ equal to a primitive m-th
root of 1. Then Rouquier’s functor yields an isomorphism, see (5.10),

[O(Smr)] = [Rep(Sζ(mr))].

Next, the quantum Frobenius homomorphism yields a commutative diagram

[Rep(S1(r))]
Fr∗ �� [Rep(Sζ(mr))]

Λ

χ ψ

���������������� ψm

�� Λ,

χ(5.22)
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where χ is the formal character; see, e.g., [16, sec. II.H.9]. Consider the chain of
maps

θ : [Rep(CSmr)]
(3.5)

[O(Smr)]
(5.10)

[Rep(Sζ(mr))] .

We have

ψ(Sλ) = LS
mλ, θ ch−1(Sμ) = ΔS

μ , λ ∈ Pr, μ ∈ Pmr.

Thus we have

χ(θ ch−1(Sμ)) = χ(ΔS
μ) = Sμ, μ ∈ Pmr.

Therefore we also have

χ(θ ◦ ch−1 ◦ψm(Sλ)) = ψm(Sλ) = χ(ψ(Sλ)) = χ(LS
mλ).

This implies that θ ◦ ch−1 ◦ψm(Sλ) = LS
mλ, proving the claim and the proposition.

�

Remark 5.14. It has been conjectured in [11, sec. 6.6] that the Shapovalov form

on V
̂gl�
ωdmod � should be related to the bilinear form on [O(Γ)] in Proposition 5.13.

Recall that

F (d)
� = V

̂gl�
ωdmod �

and that the Shapovalov form on the right-hand side is identified with the sym-
metric bilinear form on the left-hand side considered in Section 4.5. Further, the
isomorphism of vector spaces

F (d)
� = F (d)

m,�

defined by the bijection (4.20) identifies the bilinear form on the left-hand side with

the bilinear form on F (d)
m,� in Section 4.6. Thus Proposition 5.13 implies Etingof’s

conjecture.

Proposition 5.15. Let λ ∈ Pr with r � 0.
(a) We have a triple of adjoint functors (aλ,!, a

∗
λ, aλ,∗).

(b) For � = ∗, !, q = 0, 1, . . . ,m−1, and i � 0 there are isomorphisms of functors

eq R
iaλ,� = Riaλ,� eq, eq a

∗
λ = a∗λ eq, fq R

iaλ,� = Riaλ,� fq, fq a
∗
λ = a∗λ fq.

Proof. By definition of the functors Aλ,∗, Aλ,! we have

Aλ,∗(O(Γ)) ⊂ D�0(O(Γ)), Aλ,!(O(Γ)) ⊂ D�0(O(Γ)).

Thus, by Proposition 5.2 we have the triple of adjoint endofunctors of O(Γ):

(aλ,!, a
∗
λ, aλ,∗) = (H0(Aλ,!), A

∗
λ, H

0(Aλ,∗)).

This proves (a). Next, let us prove part (b). It is enough to give isomorphisms of
functors

(5.23) eq a
∗
λ = a∗λ eq, fq a

∗
λ = a∗λ fq.

Recall the functor F defined in Section 3.9. First, observe that we have an isomor-
phism of functors

(5.24) F a∗λ = a∗λ F.
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Indeed, for M ∈ O(Γn), the transitivity of the induction functor [33, cor. 2.5] yields

F a∗λ(M) = OIndn+mr
OIndn,mr(M ⊗ Lmλ)

= OInd
Γn+mr+1

Γn+mr

OInd
Γn+mr

Γn,mr
(M ⊗ Lmλ)

= OInd
Γn+mr+1

Γn,mr
(M ⊗ Lmλ),

a∗λF (M) = OIndn+1,mr(
OIndn(M)⊗ Lmλ)

= OInd
Γn+mr+1

Γn+1,mr

(OIndΓn+1

Γn
(M)⊗ Lmλ

)
= OInd

Γn+mr+1

Γn+1,mr

OInd
Γn+1,mr

Γn,mr
(M ⊗ Lmλ)

= OInd
Γn+mr+1

Γn,mr
(M ⊗ Lmλ).

By (5.24) for each M ∈ O(Γn) we have

(5.25)
⊕
q

fq a
∗
λ(M) =

⊕
q

a∗λ fq(M).

We must prove that we also have an isomorphism fq a
∗
λ(M) = a∗λ fq(M). Let

O(Γ)ν ⊂ O(Γ) be the full subcategory consisting of the modules whose class is a

weight vector of weight ν of [O(Γ)]. Here ν is any weight of the s̃lm-module [O(Γ)].
Recall that

Lemma 5.16. We have the block decomposition O(Γ) =
⊕

ν O(Γ)ν , where ν runs

over the set of all weights of the s̃lm-module [O(Γ)].

Proof. By [33, lem. 3.1] the image by KZ : [O(Γ)] → [Rep(H(Γ))] of the class of
a standard module is the class of a Specht module. By [24, thm. 2.11] we have a
block decomposition

Rep(H(Γ)) =
⊕
ν

Rep(H(Γ))ν ,

where ν runs over a set of weights of s̃lm and the block Rep(H(Γ))ν is generated by
the constituents of the Specht modules whose classes are the images by KZ of the
class of a standard module in O(Γ)ν . In particular, each Specht module belongs
to a single block of Rep(H(Γ)). Now, since the standard modules in O(Γ) are
indecomposable (they have a simple top), each of them belongs to a single block
and any block is generated by the constituents of the standard modules in this
block. Finally, by [14], the functor KZ induces a bijection from the blocks of O(Γ)
to the blocks of Rep(H(Γ)). Hence two standard modules belong to the same block
of O(Γ) if and only if their images by KZ belong to the same block of Rep(H(Γ)).
Therefore O(Γ)ν is a block of O(Γ). This proves the lemma. �

Therefore, to prove the isomorphism fq a
∗
λ(M) = a∗λ fq(M) we may assume that M

lies in O(Γ)ν . Then fq a
∗
λ(M) and a∗λ fq(M) belong to O(Γ)ν−αq

by Proposition
5.13. Thus the isomorphism above follows from (5.25). The second isomorphism in
(5.23) is proved. Next, let us prove that we have an isomorphism of functors

(5.26) E a∗λ = a∗λ E,

where E is the functor defined in Section 3.9. The first isomorphism in (5.23)
follows from (5.26) by a similar argument to the one above. For M ∈ O(Γn) we
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have

E a∗λ(M) = OResn+mr
OIndn,mr(M ⊗ Lmλ),

a∗λ E(M) = OIndn−1,mr(
OResn(M)⊗ Lmλ).

As above, we abbreviate L = L⊗r
(m). By Proposition 5.4 it is enough to prove that

we have a natural isomorphism

OResn+mr
OIndn,mr(M ⊗ OInd(mr)(L)) → OIndn−1,mr(

OResn(M)⊗ OInd(mr)(L))

that is equivariant with respect to the Sr-action induced by the Sr-action on
OInd(mr)(L) given in (5.16). To see this, note that Proposition A.2 yields the
following decomposition of functors:

HResn+mr ◦HIndn,mr =
(
HIndn−1,mr ◦ (HResn ⊗1)

)
⊕

(
HIndn,mr−1 ◦ (1⊗ HResmr)

)⊕�
.

Therefore we also have the following decomposition of functors:

KZ ◦OResn+mr ◦OIndn,mr

=
(
KZ ◦OIndn−1,mr ◦ (OResn ⊗1)

)
⊕

(
KZ ◦OIndn,mr−1 ◦ (1⊗ OResmr)

)⊕�
.

The induction and restriction functors on O(Γ) take projective modules to projec-
tive ones, because they are exact and biadjoint. Thus, by (3.7) we have a natural
isomorphism

OResn+mr
OIndn,mr(P )

= OIndn−1,mr (
OResn ⊗1)(P )⊕

(OIndn,mr−1 (1⊗ OResmr)(P )
)⊕�

for any projective module P ∈ O(Γ). Since O(Γ) has enough projective objects,
this yields an isomorphism of functors

OResn+mr
OIndn,mr = OIndn−1,mr (

OResn ⊗1)⊕
(OIndn,mr−1 (1⊗ OResmr)

)⊕�
.

In particular, the projection yields a morphism of functors

OResn+mr
OIndn,mr → OIndn−1,mr (

OResn ⊗1).

Applying this to the module M ⊗ OInd(mr)(L) yields an Sr-equivariant surjective
morphism

Ψ(M) : OResn+mr
OIndn,mr(M ⊗ OInd(mr)(L))

→ OIndn−1,mr(
OResn(M)⊗ OInd(mr)(L)).

Now, by (5.1), the left-hand side is equal to E ◦ (a∗)r(M) and the right-hand side
is equal to (a∗)r ◦E(M). So by Proposition 5.13 and the fact that the actions of H

and ŝlm on F (s)
m,� commute with each other, we have

[E ◦ (a∗)r(M)] = [(a∗)r ◦ E(M)].

Thus Ψ(M) is indeed an isomorphism. So (5.26) is proved. �
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5.4. Primitive modules.

Definition 5.17. A module M ∈ O(Γ) is primitive if Ra∗(M) = 0 and E(M) = 0
(or, equivalently, if Ria∗(M) = eq(M) = 0 for all q, i). Let PI(O(Γ)) be the set of
isomorphism classes of primitive simple modules.

Proposition 5.18. For L ∈ Irr(O(Γn)) the following are equivalent:
(a) L ∈ PI(O(Γn)),
(b) L ∈ Irr(O(Γn))0,0,
(c) dim(L) < ∞.

Proof. Assume that L ∈ Irr(O(Γn)). The equivalence of (b) and (c) is Remark
3.13. Let us prove that (a) ⇒ (b). Fix l, j � 0 such that Supp(L) = Xl,j . Set
i = n− l −mj. We first prove that j = 0. Assume that j > 0. Then we have

Γl,(mj) = Γl,(mj−1) ×Sm, Γl,(mj−1) ⊂ Γn−m.

There are modules Mμ ∈ O(Γn−m), μ ∈ Pm, such that in [O(Γn,m)] we have

[Resn,m(L)] =
∑

μ∈Pm

[Mμ ⊗ Lμ].

The transitivity of the restriction functor [33, cor. 2.5] yields the following formula:

[Res1(L)] =
∑
μ

[Res2(Mμ)⊗ Lμ], Res1 = OResΓn

Γl,(mj)
, Res2 = ORes

Γn−m

Γl,(mj−1)
.

The H(Γl,(mj))-module Res1(L) is finite dimensional, because Supp(L) = Xl,j .
Thus we have Res2(Mμ) = 0 unless μ = (m), and

(5.27) [Res1(L)] = [Res2(M(m))⊗ L(m)].

Next, since Ra∗([L]) = 0 we have

0 = [Res2 Ra∗(L)]

=
∑

μ∈Pm

[Res2(Mμ)⊗ RHomO(Sm)(L(m), Lμ)]

= [Res2(M(m))⊗ REndO(Sm)(L(m))].

Thus, using [3, thm. 1.3] we get Res2(M(m)) = 0. This yields a contradiction with
(5.27) because Res1(L) 
= 0. So we have j = 0. Next, since E(L) = 0, by Corollary
3.19 and Remark 3.11 we have i = 0.

Finally, we prove that (c) ⇒ (a). We must prove that if L is finite dimensional,
then it is primitive. This is obvious, because OResn,m(L) = OResn(L) = 0. �

Remark 5.19. By Proposition 5.18 the elements of PI(O(Γn)) form a basis of
F0,0(Γn).

5.5. Endomorphisms of induced modules. For r � 1 we consider the algebras

Br = Sr �C[x1, x2, . . . , xr], Br,� = Br/(x
�
1, x

�
2, . . . , x

�
r).

The following proposition is the main result of this subsection.

Proposition 5.20. Let r � 1.
(a) The C-algebra homomorphism CSr → EndO(Γ)((a

∗)r) in Proposition 5.4 ex-
tends to a C-algebra homomorphism Br → EndO(Γ)((a

∗)r) such that x1, x2, . . . , xr

map to nilpotent operators in EndO(Γ)((a
∗)r(L)) for each L ∈ O(Γ).
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(b) The C-algebra homomorphism Br → EndO(Γ)((a
∗)r) factors to an isomor-

phism Br,� = EndO(Γ)((a
∗)r(L)) for L ∈ PI(O(Γ)).

Proof. The proof of this proposition is done in several steps. LetH(Γn,(mr)), H(Γn)
and Xi be as in Appendix A. Consider the elements

ξi = Xn+m(i−1)+1Xn+m(i−1)+2 · · ·Xn+mi, i = 1, 2, . . . , r.

They belong to the centralizer of H(Γn,(mr)) in H(Γn+mr). Thus the right multipli-

cation by ξi, i = 1, 2, . . . , r, defines an automorphism Hξi of the functor
HIndn,(mr).

More precisely, for an H(Γn,(mr))-module M we set

Hξi(h⊗ v) = hξi ⊗ v, h ∈ H(Γn+mr), v ∈ M.

The functor KZ yields a C-algebra isomorphism (5.3)

KZ : End
(OIndn,(mr)

)
→ End

(
HIndn,(mr) ◦KZ

)
.

Thus there is a unique endomorphism Oξi of the functor OIndn,(mr) such that

(5.28) KZ(Oξi(M)) = Hξi(KZ(M)), ∀M ∈ O(Γn,(mr)).

The functor • ⊗ L : O(Γn) → O(Γn,(mr)) yields a C-algebra homomorphism

(5.29) End
(OIndn,(mr)

)
→ End((a∗)r).

Let ξ̄i denote the image of Oξi by the map (5.29). Next, recall the operators

τ̄i ∈ End((a∗)r) = End((A∗)r), i = 1, 2, . . . , r − 1

defined before Lemma 5.3.

Lemma 5.21. The following relations hold in End((a∗)r) for j 
= i, i+ 1:

τ̄i ◦ ξ̄i ◦ τ̄i = ξ̄i+1, τ̄i ◦ ξ̄j ◦ τ̄i = ξ̄j .

Proof. Recall the permutation τi and the morphism of functors Hτi defined in the
beginning of Section 5.2. By (5.28) and (5.4) it is enough to prove that

(Hτi 1τi) ◦ (Hξi 1τi) ◦ Hτi =
Hξi+1, (Hτi 1τi) ◦ (Hξj 1τi) ◦ Hτi =

Hξj .

To do so, we are reduced to checking the following relations in H(Γn+mr):

TτiξiTτi = ξi+1, TτiξjTτi = ξj .

Recall that ζ is an m-th root of 1. Let ai = n+ (i− 1)m+ 1, bi = n+ im, and

Kl = Tbi−lTbi−l+2 · · ·Tbi+l−2Tbi+l.

Since both words define the same element in the braid group, we have an equality

Tτi = K0K1 · · ·Km−2Km−1Km−2 · · ·K1K0.

Further, for 0 � l � m− 1 we have

KlXai
Xai+1 · · ·Xbi−l−2Xbi−l−1(Xbi−lXbi−l+2 · · ·Xbi+l)Kl

= ζl+1Xai
Xai+1 · · ·Xbi−l−2(Xbi−l−1Xbi−l+1Xbi−l+3 · · ·Xbi+l+1),

and for 0 � l � m− 2 we have

Kl(Xbi−lXbi−l+2 · · ·Xbi+l)Xbi+l+2Xbi+l+3 · · ·Xbi+mKl

= ζl+1(Xbi−l+1Xbi−l+3 · · ·Xbi+l−1)Xbi+l+1Xbi+l+2Xbi+l+3 · · ·Xbi+m.
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We deduce that

TτiξiTτi = TτiXai
Xai+1 · · ·XbiTτi

= ζ1+2+···+mK0 · · ·Km−2Xai+1Xai+3 · · ·Xbi+m−2Xbi+mKm−2 · · ·K0

= ζ1+2+···+mζ1+2+···+m−1Xai+mXai+m+1 · · ·Xbi+m

= ζm
2

ξi+1

= ξi+1.

The relation TτiξjTτi = ξj for j 
= i, i+ 1 is obvious. �

For any element w ∈ Sr and any decomposition w = si1si2 · · · sik , we set

τ̄w = τ̄i1 τ̄i2 · · · τ̄ik ∈ End((a∗)r).

This definition does not depend on the choice of the decomposition of w by Lemma
5.3. Next, for a tuple p = (p1, p2, . . . , pr) ∈ Zr such that 0 � pi < � we set

ξp = ξp1

1 ξp2

2 · · · ξpr
r , ξ̄p = ξ̄p1

1 ξ̄p2

2 · · · ξ̄pr
r .

Lemma 5.22. For any L ∈ Irr(O(Γ)) the elements ξ̄p τ̄w(L) of EndO(Γ)((a
∗)r(L)),

with w ∈ Sr and p ∈ [0, �)r, are linearly independent.

Proof. If the decomposition w = si1si2 · · · sik is reduced, then the length of τw is
the sum of the lengths of τi1 , τi2 , . . . , τik . For a tuple p as above, we define the
following elements in H(Γn+mr):

tw = Tτw , ξp = ξp1

1 ξp2

2 · · · ξpr
r .

Recall that the elements

Xp1

1 Xp2

2 · · ·Xpn+mr

n+mr Tu, pi ∈ [0, �), u ∈ Sn+mr,

form a C-basis of H(Γn+mr). Further ξp centralizes H(Γn,(mr)) and the element
τw above is minimal in its right S(n,mr)-coset. Therefore the left H(Γn,(mr))-
submodule of H(Γn+mr), spanned by

{ξptw ; w ∈ Sr, p ∈ [0, �)r},

is indeed the direct sum ⊕
p,w

H(Γn,(mr)) ξ
ptw,

where p runs over [0, �)r and w over Sr. In other words, there is an injective
H(Γn,(mr))-module homomorphism

(5.30) Hψ : H(Γn,(mr))
⊕�rr! → H(Γn+mr), (hp,w) 
→

∑
p,w

hp,w ξp tw,

where w, p run overSr, [0, �)
r respectively. Further, since ξp centralizesH(Γn,(mr)),

the relation (5.2) yields

zξptw = ξpztw = ξptwτw−1(z), z ∈ H(Γn,(mr)).

Therefore Hψ is a (H(Γn,(mr)),H(Γn,(mr)))-bimodule homomorphism, where the

right H(Γn,(mr))-action on H(Γn,(mr))
⊕�rr! is twisted in the obvious way. Since Hψ
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is injective, and both sides are free H(Γn,(mr))-modules, for each M ∈ O(Γn,(mr))
we have an injective homomorphism

Hψ(KZ(M)) :
⊕
p,w

τw KZ(M) → HResn,(mr) ◦HIndn,(mr) KZ(M)

= KZ ◦OResn,(mr) ◦OIndn,(mr)(M),

where τw : Rep(H(Γn,(mr))) → Rep(H(Γn,(mr))). Further, we have

τw ◦KZ = KZ ◦τw,
where τw : O(Γn,(mr)) → O(Γn,(mr)) is the twist by the permutation

H(Γn,(mr)) = H(Γn)⊗H(Sm)⊗r → H(Γn)⊗H(Sm)⊗r = H(Γn,(mr)).

Let S : Rep(H(Γ)) → O(Γ) be as in Section 3.7. The canonical adjunction mor-
phism P → S(KZ(P )) is an isomorphism for each projective module P ∈ O(Γ).
Further, the functors OResn,(mr) and OIndn,(mr) preserve the projective objects,
because they are bi-adjoint and exact. Therefore, applying the left exact functor S
to the map Hψ(KZ(P )), with P projective in O(Γn,(mr)), we get an injection

Oψ(P ) :
⊕
w

τw(P )⊕�r → O Resn,(mr) ◦O Indn,(mr)(P ).

Since the category O(Γn,(mr)) has enough projective objects and since the functor
O Resn,(mr) ◦O Indn,(mr) is exact, the five lemma implies that there is a functorial
injective morphism

Oψ(M) :
⊕
w

τw(M)⊕�r → O Resn,(mr) ◦O Indn,(mr)(M), M ∈ O(Γn,(mr)).

Now, set M = L ⊗ L⊗r
(m) with L ∈ Irr(O(Γ)). Then we have τw(M) = M for all w

as above. Therefore we get an injective linear map

C�rr! = HomO(Γ)(L⊗ L⊗r
(m), L⊗ L⊗r

(m))
⊕�rr!

→ HomO(Γ)(L⊗ L⊗r
(m),

O Resn,(mr) ◦O Indn,(mr)(L⊗ L⊗r
(m))) = EndO(Γ)((a

∗)r(L)).

It maps the canonical basis elements to the elements ξ̄p τ̄w(L) with w ∈ Sr and
p ∈ [0, �)r. �

Lemma 5.23. For L ∈ PI(O(Γn)) the following identity holds in [O(Γn,(mr))]:

[OResn,(mr)(a
∗)r(L)] = �rr! [L⊗ L⊗r

(m)].

Proof. By Lemma 2.5 the left-hand side is equal to∑
x

OInd
Γn,(mr)

x−1Wxx
◦ x

(OResΓn,(mr)

Wx
([L⊗ L⊗r

(m)])
)
,

where Wx = xΓn,(mr)x
−1 ∩ Γn,(mr) and x runs over a set of representatives of the

double cosets in Γn,(mr) \ Γn+mr/Γn,(mr). Since Wx is a parabolic subgroup of
Γn,(mr), it is generated by reflections. Hence we can decompose the group Wx in
the following way:

(5.31) Wx = W ′
x ×W ′′

x , W ′
x ⊂ Γn, W ′′

x ⊂ S
r
m.

Here W ′
x, W

′′
x are parabolic subgroups. We have

ORes
Γn,(mr)

Wx
(L⊗ L⊗r

(m)) =
OResΓn

W ′
x
(L)⊗ ORes

S
r
m

W ′′
x
(L⊗r

(m)),
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and a similar decomposition holds for the induction functor. Further, since L ∈
PI(O(Γn)) we have OResΓn

W ′
x
(L) = 0 if W ′

x is proper by Proposition 5.18. Thus we

can assume that W ′
x = Γn; i.e., we can assume that x belongs to the subgroup

{1} × Γmr ⊂ Γn+mr. We’ll abbreviate

S
r
m = {1} ×S

r
m, Γmr = {1} × Γmr.

Then we have W ′′
x = xSr

mx−1 ∩Sr
m, and we are reduced to checking that∑

x

OInd
S

r
m

x−1Wxx
◦ x

(OResSr
m

Wx
([L⊗r

(m)])
)
= �rr! [L⊗r

(m)],

where Wx = xSr
mx−1 ∩Sr

m and x runs over a set of representatives of the double
cosets in Sr

m \ Γmr/S
r
m. Now, observe that

ORes
S

r
m

Wx
(L⊗r

(m)) = 0

unless xSr
mx−1 = Sr

m, and that xSr
mx−1 = Sr

m if and only if x belongs to
NΓmr

(Sr
m), the normalizer of Sr

m in Γmr. Further, we have a group isomorphism

NΓmr
(Sr

m)/Sr
m = Γr.

This proves the lemma. �

Lemma 5.24. For L ∈ PI(O(Γ)) the elements ξ̄p τ̄w(L) with w ∈ Sr and p ∈ [0, �)r

form a basis of EndO(Γ)((a
∗)r(L)).

Proof. By Lemma 5.22 it is enough to check that

dim EndO(Γ)((a
∗)r(L)) � �rr!.

For L ∈ PI(O(Γn)) Lemma 5.23 yields

dim EndO(Γ)((a
∗)r(L)) = dimHomO(Γ)(L⊗ L⊗r

(m),
O Resn,(mr)(a

∗)r(L)) � �rr!.

�

Lemma 5.25. For i = 1, 2, . . . , r and L ∈ O(Γ) the operator ξ̄i(L)+1 on (a∗)r(L)
is nilpotent. Further, if L ∈ PI(O(Γ)) we have (ξ̄i(L) + 1)� = 0.

Proof. The C-vector space [O(Γ)] is equipped with an s̃lm-action via the isomor-

phism (5.20); see also Remark 4.7. For a weight μ of s̃lm let O(Γ)μ ⊂ O(Γ) be the
Serre subcategory generated by the simple modules L whose class in [O(Γ)] has the
weight μ. Set O(Γn)μ = O(Γ)μ ∩ O(Γn). Although we’ll not need this formula,
note that if Δλ ∈ O(Γn)μ, then we have

μ = μ0 −
m−1∑
q=0

nq(λ)αq,

where μ0 is a weight which does not depend on n, λ, and nq(λ) is the number of
q-nodes in the �-partition λ. The element

zn = X1X2 · · ·Xn

belongs to the center of H(Γn). Thus it yields an element Hzn in the center of
Rep(H(Γn)). Since KZ identifies the centers of O(Γn) and Rep(H(Γn)), it yields
also an element Ozn in the center of O(Γn). Let L ∈ Irr(O(Γn)μ). Then

Ozn acts on

L by multiplication by the scalar ζν(μ), where ν is a linear form such that ν(αi) = i
for i = 0, 1, . . . ,m − 1; see, e.g., [33, sec. 4.1]. Now the operator a∗ maps O(Γn)μ
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to O(Γn+m)μ+δ by Proposition 5.13. Thus Ozn+m acts on a∗(L) by multiplication

by the scalar ζν(μ+δ). Therefore ξ̄1 acts on a∗(L) by multiplication by the scalar

ζν(δ) = ζm(m−1)/2 = −1.

By Lemmas 5.21, 5.3, this implies that for any L ∈ O(Γ) we have (ξ̄i(L) + 1)N = 0
in EndO(Γ)((a

∗)r(L)) for i = 1, 2, . . . , r and N large enough.
Now, assume that L ∈ PI(O(Γ)). Let Ni be the minimal integer such that

(ξ̄i(L) + 1)Ni = 0. By Lemmas 5.21, 5.3 we have N1 = N2 = · · · = Nr. Hence, by
Lemma 5.22 we also have � = N1 = N2 = · · · = Nr. �

Now we complete the proof of Proposition 5.20. The previous lemmas imply that
the assignment

(5.32) xi 
→ ξ̄i + 1, sj 
→ τ̄j , i = 1, 2, . . . , r, j = 1, 2, . . . , r − 1,

yields a C-algebra morphism Br → EndO(Γ)((a
∗)r) such that xi maps to a nilpotent

operator in EndO(Γ)((a
∗)r(L)) for each L ∈ O(Γ). The action of sj on (a∗)r given

above is the same as the action of sj on (A∗)r in Proposition 5.4. This proves part
(a). Part (b) follows from Lemmas 5.24, 5.25. �

For a module M in O(Γ) the adjunction yields a morphism

η(M) : M ⊗ L⊗r
(m) →

OResn,(mr)(a
∗)r(M).

Corollary 5.26. For r � 1 and L ∈ PI(O(Γn)) the C-algebra isomorphism (5.32)

Br,� = EndO(Γ)((a
∗)r(L))

yields an isomorphism of Br,� ×H(Γn,(mr))-modules

Br,� ⊗ (L⊗ L⊗r
(m)) →

OResn,(mr)(a
∗)r(L), w ⊗ v 
→ OResn,(mr)(w) · η(L)(v).

Proof. The corollary follows from Proposition 5.20 and Lemma 5.23, because

EndO(Γ)((a
∗)r(L)) = HomO(Γ)(L⊗ L⊗r

(m),
OResn,(mr)(a

∗)r(L))

is a free Br,�-module of rank one and, in [O(Γn,(mr))], we have

[OResn,(mr)(a
∗)r(L)] = dim(Br,�) [L⊗ L⊗r

(m)].

�

Definition 5.27. For λ ∈ Pr, r � 1, we can regard the Sr-module L̄λ as a Br,�-
module such that x1, x2, . . . , xr act by zero. For L ∈ PI(O(Γn)) we define

ā∗λ(L) = L̄λ ⊗Br,�
(a∗)r(L) ∈ O(Γn+mr).

Definition 5.28. For r � 1 we define a functor O(Γn+mr) → Rep(Sr)⊗O(Γn) by

Ψ(M) = HomO(Sr
m)(L

⊗r
(m),

OResn,(mr)(M))

= HomO(Smr)(
OInd(mr)(L

⊗r
(m)),

OResn,mr(M)).

The Sr-action on Ψ(M) is the Sr-action on OInd(mr)(L
⊗r
(m)) in the proof of Propo-

sition 5.4. In other words, we have Ψ = (a∗)
r, viewed as a Sr-equivariant functor

as in the proof of Proposition 5.4.
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Corollary 5.29. For r � 1 and L ∈ PI(O(Γn)) we have an isomorphism

(L⊗ L⊗r
(m))

⊕dim(L̄λ) = OResn,(mr)(ā
∗
λ(L))

as H(Γn,(mr))-modules, and we have an isomorphism of Sr ×H(Γn)-modules

L̄λ ⊗ L = Ψ(ā∗λ(L)).

Proof. Corollary 5.26 yields an isomorphism

Br,� ⊗ (L⊗ L⊗r
(m)) =

OResn,(mr)

(
(a∗)r(L)

)
,

which factors to an isomorphism

(5.33) CSr ⊗ (L⊗ L⊗r
(m)) =

OResn,(mr)

(
(a∗)r(L)

)
,

with

(a∗)r(L) = (a∗)r(L)
/∑

i

xi (a
∗)r(L).

Further, by taking the isotypic components we see that the isomorphism (5.33)
factors to an isomorphism

(L⊗ L⊗r
(m))

⊕dim(L̄λ) = OResn,(mr)

(
ā∗λ(L)

)
.

This proves the first claim. To prove the second claim, observe that Corollary 5.26
and (5.33) yield compatible Sr ×Sr ×H(Γn)-module isomorphisms

(5.34) Br,� ⊗ L = Ψ
(
(a∗)r(L)

)
, CSr ⊗ L = Ψ

(
(a∗)r(L)

)
.

The first Sr-action on Ψ
(
(a∗)r(L)

)
is the Sr-action in the definition of Ψ, and the

first Sr-action on CSr⊗L is the contragredient of the right Sr-action on CSr, i.e.,
the action such that w ∈ Sr takes the element a⊗ b in CSr ⊗ L to aw−1 ⊗ b. The
second Sr-action on Ψ

(
(a∗)r(L)

)
is the Sr-action on (a∗)r(L) in Corollary 5.26,

and the second Sr-action on CSr ⊗ L is the left Sr-action on CSr. To identify
the actions as above, it is enough to note that the isomorphism

(5.35)
Br,� = HomO(Γn)(L,Br,� ⊗ L) = HomO(Γn)

(
L,Ψ(a∗)r(L)

)
= EndO(Γ)((a

∗)r(L))

given by (5.34) is equal to the isomorphism (5.32), and that the Sr-actions on
(a∗)r(L) are taken to the left and to the dual right Sr-action on Br,� by the map
(5.35). Next, write

CSr =
⊕
λ

L̄λ ⊗ L̄λ

as an Sr ×Sr-module, and take the isotypic component. �

5.6. Definition of the map ãλ.

Proposition 5.30. For λ ∈ Pr with r � 1 we have

a∗λ(Fi,j(Γn)) ⊂ Fi,j+r(Γn+mr), a∗λ(Fi,j(Γn)
◦) ⊂ Fi,j+r(Γn+mr)

◦.

Proof. By Remark 3.15 we have

Supp(Lmλ) = XSr
m,Cmr

0
.

Let L ∈ Irr(O(Γn)). First, assume that L ∈ Irr(O(Γn))i,j , i.e., that

Supp(L) = Xl,j,Cn
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by Remark 3.12. Hence the module L⊗ Lmλ has the following support:

Supp(L⊗ Lmλ) = Xl,j,Cn ×XSr
m,Cmr

0
.

So by Proposition 2.7 we have

Supp(a∗λ(L)) = Xl,j+r,Cn+mr .

Thus the class of a∗λ(L) belongs to Fi,j+r(Γn+mr)
◦ by Remark 3.12. Next, assume

that [L] ∈ Fi,j(Γn), i.e.,

Supp(L) = Xl′,j′,Cn , Xl′,j′,Cn ⊂ Xl,j,Cn .

Thus we have

Supp(a∗λ(L
′)) = Xl′,j′+r,Cn+mr .

So (3.11) yields

Xl′,j′+r,Cn+mr ⊂ Xl,j+r,Cn+mr ;

i.e., the class of a∗λ(L) lies in Fi,j+r(Γn+mr). �

Proposition 5.31. Let λ ∈ Pr with r � 1, and let L ∈ PI(O(Γn)). The module
top(ā∗λ(L)) has a unique constituent in Irr(O(Γn+mr))0,r.

Proof. Since the module L is primitive, it belongs to Irr(O(Γn))0,0 by Proposition
5.18. Thus [a∗λ(L)] ∈ F0,r(Γn+mr) by Proposition 5.30. Thus the constituents of
ā∗λ(L) belong to the set ⋃

j�r

Irr(O(Γn+mr))0,j

by Remark 3.11. Now, for L′ in Irr(O(Γn+mr))0,j we have OResn,(mr)(L
′) = 0 if

j < r, and dimOResn,(mr)(L
′) < ∞ if j = r. Further, the constituents of a finite-

dimensional module in O(Sr
m) are all isomorphic to L⊗r

(m), and, using [3, thm. 1.3]

as in the proof of Proposition 5.7, we get

Ext1O(Sr
m)(L

⊗r
(m), L

⊗r
(m)) = 0.

Thus if L′ is a constituent of top(ā∗λ(L)), then we have a surjective map

(5.36) Ψ(ā∗λ(L)) → Ψ(L′).

We also have

Ψ(L′) =
⊕
μ∈Pr

L̄μ ⊗HomO(Smr)(Lmμ,
OResn,mr(L

′)).

Finally, Corollary 5.29 yields an isomorphism of Sr ⊗H(Γn)-modules

L̄λ ⊗ L = Ψ(ā∗λ(L)).

Thus the surjectivity of (5.36) implies that

(5.37) HomO(Smr)(Lmμ,
OResn,mr(L

′)) = 0, ∀μ 
= λ.

Since the Sr ⊗H(Γn)-module L̄λ ⊗L is simple, the map (5.36) is invertible if it is
nonzero. Assume further that L′ ∈ Irr(O(Γn+mr))0,r. Then Proposition 2.2 yields

OResn,(mr)(L
′) 
= 0.

Since dimOResn,(mr)(L
′) < ∞ and the constituents of a finite-dimensional mod-

ule in O(Sr
m) are all isomorphic to L⊗r

(m), we also have Ψ(L′) 
= 0. Therefore
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(5.36) is indeed invertible. This implies that top(ā∗λ(L)) has a unique constituent
in Irr(O(Γn+mr))0,r. Indeed, otherwise we would have a surjective map

ā∗λ(L) → L′ ⊕ L′′, L′, L′′ ∈ Irr(O(Γn+mr))0,r,

yielding a surjective map

L̄λ ⊗ L = Ψ(ā∗λ(L)) → Ψ(L′)⊕Ψ(L′′) = (L̄λ ⊗ L)⊕2.

This is absurd. �

Definition 5.32. For λ ∈ Pr and L ∈ PI(O(Γ)) we define ãλ(L) to be the unique
constituent of top(ā∗λ(L)) in Irr(O(Γ))0,r.

Proposition 5.33. For L ∈ Irr(O(Γ))0,r there is L′ ∈ PI(O(Γ)), λ ∈ Pr such that
ãλ(L

′) � L. In other words, there is a surjective map

(5.38) PI(O(Γ))× Pr → Irr(O(Γ))0,r, (L′, λ) 
→ ãλ(L
′).

Proof. By Proposition 5.18 the module L is primitive if and only if r = 0. Thus
we can assume that r > 0, i.e., that a∗(L) 
= 0 by Corollary 3.19, else the claim
is obvious. Now, we first claim that there is a module L1 ∈ Irr(O(Γ))0,r−1 with
a surjective morphism ā∗(L1) → L. Indeed, since a∗(L) 
= 0, the adjunction map
ε : a∗(a∗(L)) → L is nonzero; hence it is surjective. Hence, there is a constituent
L1 of a∗(L) such that ε yields a surjective morphism a∗(L1) → L. We have the
following lemma whose proof is postponed to the end of the section.

Lemma 5.34. If L ∈ Irr(O(Γ))0,r and L1 is a constituent of a∗(L) such that a∗(L1)
maps onto L, then L1 ∈ Irr(O(Γ))0,r−1.

Fix the integer n such that L1 ∈ Irr(O(Γn)). Then ξ̄1 acts on a∗(L1) as the operator

Ozn+m(a∗(L1)) ◦ a∗(Ozn(L1))
−1.

The second factor is a scalar because L1 is a simple module. Hence x1 acts on
a∗(L1) as an element of the center of O(Γn+m); see (5.32). Therefore, since L is
simple and since the operator x1 on a∗(L1) is nilpotent by Proposition 5.20, the
operator x1 is 0 on L. Thus the map a∗(L1) → L factors to a surjective morphism

ε1 : ā∗(L1) → L.

This proves the claim.
Now, assume that for 0 < k < r there is a module Lk ∈ Irr(O(Γ))0,r−k with a

surjective homomorphism

εk : (a∗)k(Lk) → L, (a∗)k(Lk) = (a∗)k(Lk)
/∑

i

xi(a
∗)k(Lk).

By the claim above, there is a module Lk+1 ∈ Irr(O(Γ))0,r−k−1 with a surjective
homomorphism

ā∗(Lk+1) → Lk.

Applying the functor (a∗)k, which is exact, we get a surjective map

(a∗)kā∗(Lk+1) → (a∗)k(Lk).

Taking the quotient by the action of x2, . . . , xk, xk+1, it yields a surjective map

(a∗)kā∗(Lk+1)
/k+1∑
i=2

xi(a
∗)kā∗(Lk+1) → (a∗)k(Lk).
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Now, since a∗ is exact, we have

(a∗)kā∗(Lk+1) = (a∗)k+1(Lk+1)
/
x1(a

∗)k+1(Lk+1).

Therefore we get a surjective map

(a∗)k+1(Lk+1) = (a∗)k+1(Lk+1)
/k+1∑
i=1

xi(a
∗)kā∗(Lk+1) → (a∗)k(Lk).

Composing it with εk we get a surjective homomorphism

εk+1 : (a∗)k+1(Lk+1) → L.

By induction, this yields a module Lr ∈ Irr(O(Γ))0,0 with a surjective homomor-
phism

εr : (a∗)r(Lr) → L.

Then we have Lr ∈ PI(O(Γ)) by Proposition 5.18, and there is λ ∈ Pr such that
ā∗λ(Lr) maps onto L. The proposition follows from Proposition 5.31. �

Proof of Lemma 5.34. Fix i, j � 0 such that L1 ∈ Irr(O(Γ))i,j. By Proposition
5.15, since E(L) = 0 we have E a∗(L) = 0. Hence E(L1) = 0 by Proposition 3.3.
Thus i = 0 by Corollary 3.19. So, by Proposition 5.30 we have a∗(L1) ∈ F0,j+1(Γ).
Since a∗(L1) maps onto L, we also have [L] ∈ F0,j+1(Γ). Since L ∈ Irr(O(Γ))0,r
this implies that r � j + 1 by Remark 3.11.

Now, we prove that j + 1 � r. Fix n � 1 such that L ∈ O(Γn). Recall that

a∗(L) = HomO(Sm)

(
L(m),

OResn−m,m(L)
)
.

Thus there is an obvious inclusion

a∗(L)⊗ L(m) ⊂ OResn−m,m(L).

Hence, since L1 is a constituent of a∗(L), the module L1 ⊗L(m) is a constituent of
OResn−m,m(L). Let us abbreviate

W ′ = Γl,(mj), l = n− (j + 1)m,

regarded as a subgroup of Γn−m. Then W ′ × Sm ⊂ Γn−m × Sm in the obvious
way. Since L1 ∈ Irr(O(Γn−m))0,j , we have

Supp(L1 ⊗ L(m)) = XW ′×Sm,Cn−m×Cm
0
.

By Proposition 2.2 applied to the module M = L, we also have

Supp(L1 ⊗ L(m)) = XW1,Cn−m×Cm
0
,

where W1 is a parabolic subgroup of Γn−m,m containing a subgroup Γn-conjugate
to Γn−mr,(mr). Hence we have F0,j+1(Γn) ⊂ F0,r(Γn). Therefore we have j +1 � r
by Remark 3.11.

�

6. The filtration of the Fock space and Etingof’s conjecture

Recall that [O(Γ)] is identified with the Fock space F(s)
m,� via the map (5.20). The

aim of this section is to identify the filtration on [O(Γ)] defined in Section 3.10 in
terms of supports of irreducible modules, with a filtration on the Fock space given
by representation-theoretic tools. We’ll use the following notation: n,m, j, i are
integers with n � 0, m > 2, i, j � 0 and i = n− l − jm.
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6.1. The representation-theoretic interpretation of F0,0(Γ). The goal of this
section is to give a representation-theoretic interpretation of F0,0(Γ) using the ac-

tions of ŝlm and H on [O(Γ)] defined in the previous sections. Note that the set
Irr(O(Γ))0,0 is a basis of the C-vector space F0,0(Γ). Further, we have proved that
Irr(O(Γ))0,0 = PI(O(Γ)) in Proposition 5.18. Recall that the operators b′r, r � 1,

on F (s)
m,� given in Section 4.6 act on [O(Γ)] via the map (5.20).

Lemma 6.1. For L ∈ Irr(O(Γ)) we have L ∈ PI(O(Γ)) if and only if E([L]) =
b′r([L]) = 0 in [O(Γ)] for all r � 1.

Proof. It is enough to prove that for L ∈ PI(O(Γ)) we have b′r(L) = 0 for all r � 1.
A direct summand of the zero object is zero in any additive category. Further, for
L ∈ PI(O(Γ)) we have (Ra∗)

r(L) = 0 for r � 1. Thus we also have Raλ,∗(L) = 0
for all λ ∈ P by Proposition 5.4. By Proposition 5.13 the map (5.20) identifies the

C-linear operator Raλ,∗ on [O(Γ)] with the action of b′Sλ
on F (s)

m,� given in Section
4.6. This proves the lemma. �

In particular the lemma yields an inclusion

F0,0(Γ) ⊂ {x ∈ [O(Γ)] : eq(x) = b′r(x) = 0, ∀q, r}.

However it is not obvious that the right-hand side is spanned by classes of irreducible
objects of O(Γ). This follows indeed from the next proposition.

Proposition 6.2. We have

{x ∈ [O(Γ)] : eq(x) = b′r(x) = 0, ∀q, r} = F0,0(Γ).

Proof. Consider the set

F0,0(Γ)
′ = {x ∈ F0,•(Γ) : b′r(x) = 0, ∀r � 1}.

By Corollary 3.19 it is enough to prove that

F0,0(Γ) = F0,0(Γ)
′.

We have

F0,0(Γ)
′ =

⊕
n�0

F0,0(Γn)
′, F0,0(Γn)

′ = F0,0(Γ)
′ ∩ F0,•(Γn).

The actions of ŝlm and H on F (s)
m,� commute with each other. Thus, by Corollary

3.19 the C-vector space F0,•(Γ) is identified with an H-submodule of F (s)
m,� via the

map (5.20), and we have

(6.1)
∑
n�0

dim(F0,•(Γn)) · tn =
∑
n�0

� Irr(O(Γn))0,• · tn.

The representation theory of H yields the following formula in Z[[t]]:

(6.2)
(∑
k�0

dim(F0,0(Γk)
′) · tk

)(∑
r�0

�Pr · tmr
)
=

∑
n�0

dim(F0,•(Γn)) · tn.

Finally, Proposition 5.33 yields a surjective map

(6.3) PI(O(Γk))× Pr → Irr(O(Γn))0,r, (L, λ) 
→ ãλ(L)
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for k, r � 0 such that n = k +mr. From (6.1) and (6.3) we get

(6.4)
(∑
k�0

�PI(O(Γk)) · tk
)(∑

r�0

�Pr · tmr
)
−

∑
n�0

dim(F0,•(Γn)) · tn ∈ N[[t]].

By Corollary 3.19 and Lemma 6.1 we have PI(O(Γk)) ⊂ F0,0(Γk)
′; hence we have

�PI(O(Γk)) � dim(F0,0(Γk)
′).

Therefore, comparing (6.2) and (6.4), we get the equality

(6.5) �PI(O(Γk)) = dim(F0,0(Γk)
′).

In other words PI(O(Γk)) is a basis of F0,0(Γk)
′. Since PI(O(Γk)) is a basis of

F0,0(Γk) by Proposition 5.18, we also have

F0,0(Γk) = F0,0(Γk)
′.

�

Remark 6.3. The proof of Proposition 6.2 and Corollary 3.19 imply that the map
(6.3) yields a bijection

PI(O(Γk))× Pr → Irr(O(Γn))0,r, (L, λ) 
→ ãλ(L)

for k, r � 0 such that n = k +mr. Note that Proposition 5.18 yields

PI(O(Γk)) = Irr(O(Γk))0,0.

6.2. The representation-theoretic grading on [O(Γ)]. Using the actions of the

Lie algebras H and ŝlm we define another grading

[O(Γ)] =
⊕
i,j�0

[O(Γ)]i,j

as follows. First, let us consider the level m� Casimir operator

(6.6) ∂ =
1

m�

∑
r�1

brb
′
r;

see (4.2). Under the map (5.20) this formal sum defines a diagonalisable C-linear
operator on [O(Γ)]. For any integer j, let [O(Γ)]•,j be the eigenspace of ∂ with the
eigenvalue j. Note that [O(Γ)]•,j = 0 if j < 0. Next, given an integer i � 0 we
define [O(Γ)]i,• to be the image of⊕

μ,α

V
̂slm
μ [μ− α]⊗Hom

̂slm
(V

̂slm
μ , [O(Γ)])

under the canonical maps

V
̂slm
μ ⊗Hom

̂slm
(V

̂slm
μ , [O(Γ)]) → [O(Γ)].

Here the sum runs over all α, which is a sum of i affine simple roots of ŝlm, and

over all dominant affine weights μ of ŝlm. Recall also that V
̂slm
μ [μ− α] denotes the

(μ− α)-weight subspace of V
̂slm
μ . If i < 0 we set [O(Γ)]i,• = 0.

Definition 6.4. We define a grading on [O(Γ)] by the following formula:

[O(Γ)]i,j = [O(Γ)]i,• ∩ [O(Γ)]•,j , [O(Γn)]i,j = [O(Γ)]i,j ∩ [O(Γn)].

The following proposition compares this grading with the grading gri,j(Γ) asso-
ciated with the filtration by the support introduced in Section 3.10.

Licensed to Universite Bordeaux I. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 1007

Proposition 6.5. We have dim[O(Γn)]i,j = dim gri,j(Γn) for all n, i, j � 0.

Proof. The vector space [O(Γ)]0,• is an H-submodule of [O(Γ)]. Thus it is preserved
by the linear operator ∂, and [O(Γ)]0,j is the eigenspace with the eigenvalue j. Since
the H-action on [O(Γ)]0,• has the level m�, we have [∂, bj ] = jbj for all j > 0. Next,
we have

[O(Γ)]0,• = F0,•(Γ), [O(Γ)]0,0 = F0,0(Γ)

by Corollary 3.19 and Proposition 6.2. Further, the H-action yields an isomorphism

(6.7) U−(H)j ⊗ [O(Γ)]0,0 = [O(Γ)]0,j .

By Remark 6.3, for n = k +mj we have a bijection

(6.8) Irr(O(Γk))0,0 × Pj → Irr(O(Γn))0,j , (L, λ) 
→ ãλ(L).

Thus the isomorphism (6.7) yields the following equality:

(6.9) dim [O(Γn)]0,j = � Irr(O(Γn))0,j .

Now, to compare dim [O(Γn)]i,j and � Irr(O(Γn))i,j for any i � 0, we need some

tools from canonical bases. Since the integrable ŝlm-module [O(Γ)] is not simple, the
choice of a canonical basis of this module depends on a choice of a basis of [O(Γ)]0,•.
The general theory of canonical bases yields a bijection G between the canonical
basis of [O(Γ)] and its crystal basis, the latter being identified with Irr(O(Γ)) by
Proposition 3.3. The bijection G is such that a basis of [O(Γ)]0,• is given by

{G(L) : ẽq(L) = 0, ∀q}.
By Corollary 3.19 we have

{L ∈ Irr(O(Γ)) : ẽq(L) = 0, ∀q} = Irr(O(Γ))0,•

= {ãλ(L) : ∀λ ∈ P, ∀L ∈ Irr(O(Γ))0,0}.

We’ll choose the canonical basis of [O(Γ)] such that

G(ãλ(L)) = a∗λ(L), ∀λ ∈ P, ∀L ∈ Irr(O(Γ))0,0.

Then the set {G(L) : L ∈ Irr(O(Γ))0,j} is a basis of [O(Γ)]0,j by (6.7) and (6.8).

The ŝlm-action on [O(Γ)] commutes with the operator ∂. Thus [O(Γ)]•,j is an

ŝlm-module and the ŝlm-action yields a surjective C-linear map

(6.10) U−(ŝlm)i ⊗ [O(Γ)]0,j → [O(Γ)]i,j .

For weight reasons, the crystal of [O(Γ)] decomposes in the following way:

Irr(O(Γ)) =
⊔

i,j�0

Irr(O(Γ))′i,j, Irr(O(Γ))′i,j = {L ∈ Irr(O(Γ)) : G(L) ∈ [O(Γ)]i,j}.

Since {G(L) : L ∈ Irr(O(Γ))0,j} is a basis of [O(Γ)]0,j , we have

Irr(O(Γ))′0,j = Irr(O(Γ))0,j.

Next Irr(O(Γ))′•,j is the union of connected components of Irr(O(Γ)) whose high-
est weight vector is in Irr(O(Γ))′0,j, and by Corollary 3.18, the set Irr(O(Γ))•,j is
the union of connected components of Irr(O(Γ)) whose highest weight vector is in
Irr(O(Γ))0,j. Thus, for all n we have

Irr(O(Γn))
′
•,j = Irr(O(Γn))•,j .
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By Corollary 3.18 and (6.10), for all i we also have the inclusion

(6.11) Irr(O(Γn))
′
i,j ⊂ Irr(O(Γn))i,j .

Thus (6.11) is indeed an equality. By definition, we have

dim gri,j(Γn) = � Irr(O(Γn))i,j , dim [O(Γn)]i,j = � Irr(O(Γn))
′
i,j .

Thus the corollary is proved. �

Remark 6.6. Recall that gri,j(Γ) is identified with the subspace of [O(Γ)] spanned
by Irr(O(Γ))i,j; see Section 3.10. Proposition 6.5 does not imply that [O(Γ)]i,j =
gri,j(Γ). Indeed, the classes of the modules in Irr(O(Γ))i,j may not lie in [O(Γ)]i,j .
However, since

[O(Γ)]0,0 = {x ∈ [O(Γ)] : eq(x) = b′r(x) = 0, ∀q, r},

we do have [O(Γ)]0,0 = gr0,0(Γ) by Proposition 6.2.

6.3. Etingof’s conjecture. In this section we allow h, hp to be arbitrary complex
numbers with

∑
p∈Z�

hp = 1. Let αp,q be the root of the elementary matrix ep,q in
gl�. Recall that ω0, ω1, . . . , ω�−1 are the affine fundamental weights. Fix a level 1
weight

Λ =
∑
p

hp ωp.

Definition 6.7. Let ãΛ be the Lie subalgebra of g̃l� spanned by 1, D and the
elements ep,q ⊗ �r with p, q = 1, 2, . . . , � and r ∈ Z such that 〈Λ, αp,q〉 − hr ∈ Z.

We abbreviate ã = ãΛ and â = ã ∩ ĝl�.

We define the set of positive real roots of ã to be the set Δâ
+ consisting of the

real roots of ĝl� of the form

α− 〈Λ, α+ rδ〉
h

δ,

where α is a root of gl� and α+ rδ is a positive real root of ĝl�. Let P
ã
+ be the set

of dominant integral weights for ã, i.e., the set of integral weights λ of g̃l� such that
〈λ, β〉 � 0 for all β ∈ Δâ

+. For μ ∈ P ã
+ let V ã

μ be the irreducible integrable ã-module
of highest weight μ. We’ll say that a nonzero vector of an ã-module is primitive for
ã (or ã-primitive) if it is a weight vector whose weight belongs to P ã

+, and if it is
killed by the action of the weight vectors of ã whose weights are positive roots of ã.
Now, let h, hp be the parameters of the C-algebra H(Γn) for each n > 0. Assume
that h is a rational number with the denominator m > 1. The elements of H can
be regarded as elements of g̃l� as in (4.3). We have bmr, b

′
mr ∈ ã for each r > 0.

The formal sum

∂m =
1

m�

∑
r�1

bmrb
′
mr

acts on every ã-module V ã
μ . We’ll call ∂m the m-th Casimir operator of g̃l�. For

any weight λ and any integer j we denote by V ã
μ [λ, j] the subspace of weight λ and

eigenvalue j of ∂m. We are interested in the following conjecture [11, conj. 6.7].
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Conjecture 6.8. There exists an isomorphism of C-vector spaces

(6.12) gri,j(Γn) =
⊕
μ

V ã
μ [ω0 − nδ, j]⊗Homã(V

ã
μ , V

˜gl�
ω0

),

where the sum is over all weights μ ∈ P ã
+ such that 〈μ, μ〉 = −2i.

Remark 6.9. If Λ = ω0, then we have

ãω0
=

(
gl� ⊗ C[�m, �−m]

)
⊕ C1⊕ CD,

and the map (6.19) yields a Lie algebra isomorphism ãω0
= g̃l�.

Theorem 6.10. Assume that m > 2 and that h, hp are as in (3.9), i.e.,

h = −1/m, hp = (sp+1 − sp)/m, sq ∈ Z, p 
= 0.

Then Conjecture 6.8 holds.

The proof will be given in Section 6.6. In the next two subsections we give some
reminders that will be useful for the proof.

6.4. Reminder on the level-rank duality. For λ ∈ Z� we consider the weight

γ̂(λ,m) ∈ P
̂sl� defined in (4.16) and the weight

γ̃(λ,m) = γ̂(λ,m)−Δ(λ,m)δ ∈ P
˜sl� ;

see Remark 4.7. Note that the weight γ̃(λ,m) is dominant if and only if

(6.13) λ ∈ A(�,m) = {(λ1, λ2, . . . , λ�) ∈ Z�
+ : λ1 − λ� � m}.

For d ∈ Z we write

A(�,m)d = {λ ∈ A(�,m) :
∑
p

λp = d}.

The level-rank duality yields a bijection A(�,m)d → A(m, �)d, λ 
→ λ† such that

• we have the equality of weights

γ̂(λ,m) =

m∑
p=1

ωλ†
p mod �,

• we have an s̃lm × H× s̃l�-module isomorphism

(6.14) F (d)
m,� =

⊕
λ∈A(�,m)d

V
˜slm
γ̃(λ†,�)

⊗ V H
m� ⊗ V

˜sl�
γ̃(λ,m)

and there are highest weight vectors vγ̃(λ†,�), vm�, vγ̃(λ,m) of V
˜slm
γ̃(λ†,�)

, V H
m�,

V
˜sl�
γ̃(λ,m) such that |0, λ〉 = vγ̃(λ†,�) ⊗ vm� ⊗ vγ̃(λ,m) for λ ∈ A(�,m)d.

See, e.g., [29, (3.19)], [35, sec. 4.2, 4.3], for details. Let s = (sp) be an �-charge of
weight d. Setting d = 0, the formula (4.17) yields the following decomposition:

(6.15) F (s)
m,� =

⊕
λ∈A(�,m)0

V
̂slm
γ̂(λ†,�)

⊗ V H
m� ⊗

(
V

̂sl�
γ̂(λ,m)[γ̂(s,m)]

)
.

Here the bracket indicates the weight subspace for the ŝl�-action of level m.
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6.5. Comparison of the g̃l�-modules F (d)
m,� and V

˜gl�
ωdmod � . The Fock space Fm,�

can be equipped with a level 1 representation of g̃l� in the following way. The
assignment

z 
→ tm, εi 
→ t1−i, i = 1, 2, . . . ,m,

yields a C-linear isomorphism

(6.16)
Vm,� = Cm ⊗ C� ⊗ C[z, z−1] → C� ⊗ C[t, t−1] = V�,

ui+(j−1)m−km� 
→ uj+(i−1)�−km�;

see (4.9), (4.14). Taking semi-infinite wedges, it yields a C-linear isomorphism

(6.17) Fm,� → F�.

Pulling back the representation of g̃l� on F� in Section 4.5 and Remark 4.7 (with
the integers �, m in Remark 4.7 replaced by 1, �) by (6.17) we get a level 1 action

of g̃l� on Fm,� such that:

• For d ∈ Z the level 1 representation of g̃l� on Fm,� yields an isomorphism

(6.18) F (d)
m,� = V

˜gl�
ωdmod �

.

• The level m action of ĝl� in Fm,� given in Section 4.6 can be recovered from
the level 1 action by composing it with the Lie algebra homomorphism

(6.19) ĝl� → ĝl�, x⊗�r 
→ x⊗�mr, 1 
→ m1.

• Pulling back the level � representation of H on F� in Section 4.5 by (6.17)
we get a level � action of H on Fm,�. The level m� action of H in Fm,� given
in Section 4.6 can be recovered from the latter by composing it with the
Lie algebra homomorphism

(6.20) br 
→ bmr, b′r 
→ b′mr, 1 
→ m1.

Hence, the action of the Casimir operator associated with the level m�
representation of H on Fm,�,

∂ =
1

m�

∑
r�1

brb
′
r,

see (4.2), is the same as the action of the m-th Casimir operator

(6.21) ∂m =
1

m�

∑
r�1

bmrb
′
mr

associated with the level � representation of H on Fm,�.
• To a partition λ we associate an �-quotient λ∗, an �-core λc and a content
polynomial

cλ(X) =
∏

(i,j)∈λ

(X + c(i, j)),

where c(i, j) is the content of the node (i, j) in λ; see [27, chap. I]. In [25,
sec. 2.1] a bijection τ is given from the set of �-cores to the set of �-charges
of weight 0. By [35, rem. 4.2(i)] the inverse of the map (6.17) is given by

(6.22) F (0)
� → F (0)

m,�, |λ, 0〉 
→ |λ∗, τ (λc)〉.
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Now, the argument which is sketched in part (b) of [27, ex. I.11] shows that

(6.23) cλ(X) = cλc(X)
�−1∏
p=0

(X + p)|λ
∗| mod �.

Next, by Remark 4.7 the scaling element D of the level 1 representation of

g̃l� on F (0)
m,� is given by

(6.24) D(|λ, 0〉) = −n0(λ) |λ, 0〉,
where n0(λ) is the number of 0-nodes in λ. Note that n0(λ) is the largest
power of X which divides the polynomial cλ(X). Thus, comparing (6.22)
and (6.23), we get the following relation:

(6.25) [D, fp] = −fp,

where p = 0, 1, . . . ,m− 1 and the elements fp are the Chevalley generators

of ŝlm which act on F (0)
m,�; see Section 3.4. Formula (6.25) should be viewed

as an equality of operators on F (0)
m,�. Note also that (6.23) and (6.24) give

the following formula:

(6.26) D(|λ, 0〉) = −
(
n0(λ

c) + |λ∗|
)
|λ, 0〉.

6.6. Proof of Theorem 6.10. Set

(6.27) γ = −
�−1∑
p=1

hp

h
(ωp − ω0).

Note that by (3.9) we have γ ∈ P sl� because

γ =

�−1∑
p=1

(sp+1 − sp) (ωp − ω0).

We have α(γ) = −〈Λ, α〉/h for each root α of sl�. Let K̄ be the algebraic closure
of the field K = C((�)). We may view γ as the element γ(�) in T�(K̄). We have

(6.28) ã = ad(γ)−1(ãω0
).

Next, a short computation using the standard identification of ωp − ω0 with the
�-tuple

(6.29) (1p0�−p)− p�−1(1�)

shows that γ belongs to Qsl� if and only if the �-charge s has weight 0, i.e.,∑
p∈Z�

sp = 0. In this case we have γ ∈ T�(K). In other words, γ is a cochar-

acter of T�. Thus the element ξγ of the affine symmetric group Ŝ� is well-defined.
Assume from now on that s has weight 0. To simplify the exposition, we’ll only

give the proof of the theorem in this case. This will be done in several steps. The
proof for arbitrary weight d is similar; see Remark 6.14 for more details.

Step 1. We first relate [O(Γ)] to the level one ĝl�-module V
̂gl�
ω0 . To any level one

weight μ of ĝl� we associate the level m weight μ′ given by

(6.30) μ′ = mω0 +
�−1∑
p=1

μp(ωp − ω0), where μ = ω0 +
�−1∑
p=1

μp(ωp − ω0).
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Then by (4.4) we have

(6.31) γ̂(s,m) = ξ−1
γ (ω0)

′,

where γ̂(s,m) ∈ P
̂sl� is as in (4.16). Using this and (6.15) we get an ŝlm×H-module

isomorphism

F (s)
m,� =

⊕
λ∈A(�,m)0

V
̂slm
γ̂(λ†,�)

⊗ V H
m� ⊗

(
V

̂sl�
γ̂(λ,m)[ξ

−1
γ (ω0)

′]
)
.

Thus, by (4.17), (6.18) and (6.19) we have

(6.32) F (s)
m,� = V

̂gl�
ω0

[ξ−1
γ (ω0)],

where the bracket indicates the weight subspace for the ĝl�-action of level 1. Since

the map (5.20) yields an isomorphism [O(Γ)] = F (s)
m,�, we also get an isomorphism

(6.33) [O(Γ)] = V
̂gl�
ω0

[ξ−1
γ (ω0)].

Step 2. We show that for each n the isomorphism (6.33) restricts to an isomorphism

(6.34) [O(Γn)] = V
˜gl�
ω0

[ξ−1
γ (ω0)− nδ].

For any μ ∈ P�
n we need to compute the weight of |μ, s〉 in the right-hand side of

(6.32). By (6.22) there exists |λ, 0〉 ∈ F (0)
� such that λ∗ = μ and τ (λc) = s. Then

by applying Remark 4.7 to the s̃l�-action on F (0)
� and by (6.23) we see that

wt(|λ, 0〉) = wt(|λc, 0〉)− |λ∗|δ.

In other words we have

wt(|μ, s〉) = wt(|0, s〉)− |μ|δ = wt(|0, s〉)− nδ.

Here the symbol wt denotes the weight with respect to the level one g̃l�-action. This
implies the equality (6.34), because the weight of |0, s〉 is ξ−1

γ (ω0) by the following
lemma. Note that the proofs of Lemmas 6.11, 6.12, 6.13 below are postponed to
the end of the section.

Lemma 6.11. Let λ ∈ P.
(a) If λc is an �-core such that τ (λc) = s, then n0(λ

c) = 1
2 〈γ, γ〉.

(b) The element |0, s〉 is an extremal weight vector of the module F (0)
m,� = V

˜gl�
ω0

with the weight ξ−1
γ (ω0).

Step 3. Recall from Proposition 6.5 that for all i, j we have

dimgri,j(Γn) = dim[O(Γn)]i,j .

Therefore to prove the theorem we are reduced to showing that

dim[O(Γn)]i,j =
∑
μ

dim
(
V ã
μ [ω0 − nδ, j]⊗ Homã(V

ã
μ , V

˜gl�
ω0

)
)
,

where the sum is over all weights μ ∈ P ã
+ such that 〈μ, μ〉 = −2i.
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Step 4. Recall that

[O(Γn)]•,j =
⊕
i�0

[O(Γn)]i,j .

In this step we prove that

(6.35) dim [O(Γn)]•,j = dim
(
V

˜gl�
ω0

[ω0 − nδ, j]
)
.

Note that

dim
(
V

˜gl�
ω0

[ω0 − nδ, j]
)
= dim

(
V

˜gl�
ω0

[ξ−1
γ (ω0)− nδ, j]

)
,

because the m-th Casimir operator ∂m commutes with the γ-action on V
˜gl�
ω0 (since

the actions of H and ŝl� commute). Therefore it is enough to prove that under
(6.34) we have

(6.36) [O(Γn)]•,j = V
˜gl�
ω0

[ξ−1
γ (ω0)− nδ, j].

Recall that by definition [O(Γn)]•,j is the eigenspace of eigenvalue j for the action
of the Casimir operator ∂ associated with the H-action of level m� on [O(Γ)]. By
the discussion in Section 6.5, under (6.34) this action is sent to the action of the

m-th Casimir operator (6.21) associated with the H-action on V
˜gl�
ω0 of level �. So

the equation (6.36) follows from the definition of V
˜gl�
ω0 [ξ−1

γ (ω0)− nδ, j].

Step 5. Next, consider the case i = 0. Let Θn,0 be the image of

(6.37)
⊕
μ̃

V ã
μ̃ [ω0 − nδ, j]⊗Homã(V

ã
μ̃ , V

˜gl�
ω0

)

under the canonical maps V ã
μ̃ ⊗Homã(V

ã
μ̃ , V

˜gl�
ω0 ) → V

˜gl�
ω0 . Here μ̃ runs over the set of

all weights in P ã
+ with 〈μ̃, μ̃〉 = 0. In this step we prove that the image of [O(Γn)]0,j

by (6.34) is isomorphic to Θn,0 as a vector space. To do that, observe first that by
the definition of [O(Γn)]0,j the map (6.34) takes [O(Γn)]0,j onto the subspace

(6.38) V
˜gl�
ω0

[ξ−1
γ (ω0)− nδ] ∩

⊕
λ∈A(�,m)0

vγ̂(λ†,�) ⊗ V H
m�[j]⊗ V

̂sl�
γ̂(λ,m).

Note that vγ̂(λ†,�) ⊗ V H
m�[j]⊗ V

̂sl�
γ̂(λ,m) is the submodule of F (0)

m,� = V
̂gl�
ω0 generated by

the vector |0, λ〉 for the level m action of ĝl�. Note also that ãω0
� g̃l� by Remark

6.9. Finally, the set of weights of V
̂gl�
ω0 is

(6.39) Wt(V
̂gl�
ω0

) = {ω0 + β : β ∈ Qsl�},

see Section 4.3, and we have the following lemma.

Lemma 6.12. (a) We have ν ∈ P
âω0
+ if and only if ν′ ∈ P

̂gl�
+ .

(b) We have {ν′ : ν ∈ P
âω0
+ ∩Wt(V

̂gl�
ω0 )} = {γ̂(λ,m) : λ ∈ A(�,m)0}.

Thus, by Lemmas 6.11, 6.12 the subspace (6.38) of V
˜gl�
ω0 [ξ−1

γ (ω0)− nδ] is indeed
equal to

(6.40)
⊕
ν̃

V
ãω0

ν̃ [ξ−1
γ (ω0)− nδ, j],
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where the sum is over all extremal weights ν̃ in P
ãω0
+ ∩ Wt(V

˜gl�
ω0 ) and V

ãω0

ν̃ is

identified with the ãω0
-submodule of V

˜gl�
ω0 generated by a nonzero extremal weight

vector of weight ν̃. Now, let us consider the space Θn,0. Recall that 〈μ̃, μ̃〉 = 0 if and

only if μ̃ is an extremal weight of V
˜gl�
ω0 . Further the weight subspace corresponding

to an extremal weight is one-dimensional; see Section 4.3. Thus Θn,0 is equal to
the sum

(6.41)
⊕
μ̃

V ã
μ̃ [ω0 − nδ, j],

where μ̃ runs over the set of all extremal weights such that V
˜gl�
ω0 contains an ã-

primitive vector of weight μ̃. For such a weight μ̃, let vμ̃ be an ã-primitive vector

of weight μ̃. Then V ã
μ̃ is identified with the ã-submodule of V

˜gl�
ω0 generated by vμ̃.

Now, recall from (6.28) that

ã = ad(γ)−1(ãω0
).

Thus, the definition of Δâ
+ in Section 6.3 yields

ξγ(μ̃) ∈ P ã
+ ⇐⇒ μ̃ ∈ P

ãω0
+ .

Thus the γ-action yields a linear automorphism of V
˜gl�
ω0 such that

γ−1(V
ãω0

μ̃ [ξ−1
γ (ω0)− nδ, j]) = V ã

ξγ(μ̃)
[ω0 − nδ, j], ∀μ̃ ∈ P

ãω0
+ .

Thus (6.40) is equal to Θn,0 by the following lemma.

Lemma 6.13. For all weights μ in P
âω0
+ ∩Wt(V

̂gl�
ω0 ) the module V

˜gl�
ω0 contains an

ãω0
-primitive vector of weight μ̃, where μ̃ is the unique extremal weight in P

˜gl�

associated with μ.

Step 6. Now we prove the general case. Fix the integers n, j. Let Θn,i be the image
of ⊕

ν̃

V ã
ν̃ [ω0 − nδ, j]⊗Homã(V

ã
ν̃ , V

˜gl�
ω0

),

under the canonical maps V ã
ν̃ ⊗ Homã(V

ã
ν̃ , V

˜gl�
ω0 ) → V

˜gl�
ω0 . Here the sum is over all

weights ν̃ ∈ P ã
+ such that 〈ν̃, ν̃〉 = −2i. On the other hand, let Θ′

n,i be the image
of ⊕

μ̃

V
ãω0

μ̃ [ξ−1
γ (ω0)− nδ, j]⊗Homãω0

(V
ãω0

μ̃ , V
˜gl�
ω0

),

under the canonical map V
ãω0

μ̃ ⊗Homãω0
(V

ãω0

μ̃ , V
˜gl�
ω0 ) → V

˜gl�
ω0 , where the sum is over

all weights μ̃ ∈ P
ãω0
+ such that 〈μ̃, μ̃〉 = −2i. Then the same argument as in Step

5 implies that

Θn,i = γ−1(Θ′
n,i),

since the composition by the automorphism γ−1 of V
˜gl�
ω0 yields a linear isomorphism

Homã(V
ã
ξγ(μ̃)

, V
˜gl�
ω0

) = Homãω0
(V

ãω0

μ̃ , V
˜gl�
ω0

).
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Let us prove that (6.34) maps [O(Γn)]i,j onto Θ′
n,i. The proof of Step 5 implies

that (6.34) maps [O(Γn)]0,j onto Θ′
n,0. By (6.10) we have

U−(ŝlm)i
(
[O(Γn)]0,j

)
= [O(Γn)]i,j .

By (6.25) we also have

U−(ŝlm)i (Θ
′
n,0) ⊂ Θ′

n,i,

because the actions of ŝlm and âω0
commute with each other. Therefore, we have

[O(Γn)]i,j ⊂ Θ′
n,i.

On the other hand, Step 4 implies that

[O(Γn)]•,j =
⊕
i�0

Θ′
n,i.

Thus we have the equality [O(Γn)]i,j = Θ′
n,i. The theorem is proved. �

Proof of Lemma 6.11. A direct computation shows that

1

2
〈γ, γ〉 = 1

2

�∑
p=1

s2p.

Now, consider the partition λc = (λ1, . . . , λk�). We choose k to be large enough
such that λk� = 0. Write

λi − i+ 1 = (ai − 1)�+ bi, 1 � bi � �,

i− 1 = a′i�+ b′i, 0 � b′i � �− 1.

The number of 0-nodes in the i-th row of the Young diagram associated with λc is
equal to ai + a′i. So, by definition of n0(λ

c), we have

n0(λ
c) =

k�∑
i=1

(ai + a′i).

We have
k�∑
i=1

a′i =
−k(−k + 1)�

2
.

By the definition of the bijection τ in Section 6.5, see also [25, sec. 2.1], we have

k�∑
i=1

ai =
�∑

p=1

(
(−k + 1) + (−k + 2) + · · ·+ sp

)
=

1

2

�∑
p=1

s2p −
−k(−k + 1)�

2
.

This proves part (a). For part (b), note that (a) and (6.24) yield

D(|0, s〉) = −1

2
〈γ, γ〉|0, s〉.

Further |0, s〉 is a weight vector for the level one representation of ĝl� with the weight
ω0 − γ; see [35, (28)]. Thus |0, s〉 is a weight vector for the level one representation

of g̃l� with the weight

ξ−1
γ (ω0) = ω0 − γ − 1

2
〈γ, γ〉δ.
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The latter is an extremal weight; see Section 4.3. �

Proof of Lemma 6.12. Part (a) is easy and is left to the reader. It follows from the
formula for ãω0

in Remark 6.9. Next, we concentrate on part (b). By (6.13), the

set of all dominant integral weights of ŝl� of level m is

{
γ̂(λ,m) : λ ∈ A(�,m)

}
=

{
(m− λ1 + λ�)ω0 +

�−1∑
p=1

(λp − λp+1)ωp : λ ∈ A(�,m)
}

=
{
mω0 +

�−1∑
p=1

(λp − λp+1) (ωp − ω0) : λ ∈ A(�,m)
}
.

Set β =
∑�−1

p=1(λp −λp+1) (ωp −ω0) with λ ∈ A(�,m). Identifying ωp −ω0 with the

�-tuple (6.29), a short computation shows that β ∈ Qsl� if and only if λ belongs to
the subset A(�,m)0 of A(�,m). Therefore, by (6.39), we have{

γ̂(λ,m) : λ ∈ A(�,m)0
}
= {ν′ : ν ∈ Wt(V

̂gl�
ω0

), ν′ ∈ P
̂gl�
+ }.

Thus, part (b) follows from part (a). �

Proof of Lemma 6.13. Fix a weight μ in P
âω0
+ ∩Wt(V

̂gl�
ω0 ). Recall that

μ̃ = μ− 1

2
〈μ, μ〉δ.

Fix a nonzero element v ∈ V
˜gl�
ω0 of weight μ̃. We must prove that v is ãω0

-primitive.
The argument is taken from [11, sec. 6.2]. By Remark 6.9, it is enough to prove

that μ̃+ ν is not a weight of V
˜gl�
ω0 for any element ν in the set

{αp,p+1, μ̃− α1,� +mδ : p = 1, 2, . . . , �− 1}.

In fact, since μ̃ ∈ P ã
+, for such a ν we have

〈μ̃+ ν, μ̃+ ν〉 = 〈ν, ν〉+ 2〈μ̃, ν〉 = 2 + 2〈μ̃, ν〉 > 0.

Therefore μ̃+ ν is not a weight of V
˜gl�
ω0 by Section 4.3. �

Remark 6.14. Now, assume that the �-charge s has any weight d, i.e., that we have∑
p sp = d, where d may be nonzero. Thus γ belongs to P sl� but not necessarily to

Qsl� . So it defines an element ξγ in the extended affine Weyl group

Ŝet
� = S� � P sl� .

Thus it acts on P
̂sl� as in (4.4) and we have again

γ̂(s,m) = ξ−1
γ (ω0)

′.

Thus, by (4.17), (6.18) and (6.19) we have

F (s)
m,� = V

̂gl�
ωdmod �

[ξ−1
γ (ω0)].

Now, the left-hand side is identified with [O(Γ)] by (5.20). Further, the extended

affine Weyl group is isomorphic to the semi-direct product Ω � Ŝ�, where Ω =
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P sl�/Qsl� is the group of automorphisms of the Dynkin diagram of ŝl�; see, e.g., [5,
(3.1.6)]. Its braid group acts on the sum

�−1⊕
d=0

V
˜gl�
ω̃d

, ω̃d = ωdmod � −
1

2
〈ωdmod �, ωdmod �〉 = ξωdmod �−ω0

(ω0),

such that the action of the braid group of Ŝ� preserves each summand. A direct
computation using (6.29) shows that γ ∈ ωdmod �−ω0+Qsl� . Thus, for each integer
n � 0 we get an isomorphism

(6.42) V
˜gl�
ω̃d

[ξ−1
γ (ω0)− nδ] = V

˜gl�
ω0

[ω0 − nδ].

So using (6.18) we get an isomorphism

F (d)
m,� = V

˜gl�
ωdmod �

= V
˜gl�
ω̃d

,

where the second equality is given by a shift on the weight. Now, Lemma 6.11 has

the following analogue. The weight of |0, s〉, regarded as an element in V
˜gl�
ωdmod � , is

ξ−1
γ (ω0) +

1

2
〈ωdmod �, ωdmod �〉δ.

Thus its weight in V
˜gl�
ω̃d

is ξ−1
γ (ω0). Using the same argument as in Step 2 and

(6.42) this implies that

[O(Γn)] = V
˜gl�
ω0

[ω0 − nδ].

We can use this isomorphism to identify the filtration on the left-hand side in the
same way as above. For example, note that (6.42) identifies⊕

μ̃∈P
ãω0
+ ; 〈μ̃,μ̃〉=−2i

V
ãω0

μ̃ [ξ−1
γ (ω0)− nδ, j]⊗Homãω0

(V
ãω0

μ̃ , V
˜gl�
ω̃d

)

with ⊕
ν̃∈P ã

+; 〈ν̃,ν̃〉=−2i

V ã
ν̃ [ω0 − nδ, j]⊗Homã(V

ã
ν̃ , V

˜gl�
ω0

).

The same proof as in Lemma 6.12(b) yields that

{ν′ : ν ∈ P
âω0
+ ∩Wt(V

̂gl�
ωdmod �

)} = {γ̂(λ,m) : λ ∈ A(�,m)d}.

Further, under the action of ωdmod � −ω0, viewed as an element of the braid group

of Ŝet
� , Lemma 6.13 implies that the set P

âω0
+ ∩ Wt(V

̂gl�
ωdmod �) is in bijection with

the set of highest weights of the ãω0
-submodules in V

˜gl�
ω̃d

. The details are left to the
reader.

Appendix A. Reminder on Hecke algebras

A.1. Affine Hecke algebras. The affine Hecke algebra of type GLn with param-
eter ζ ∈ C× is the C-algebra Ĥζ(n) generated by the symbols X1, X2, . . . , Xn,
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T1, T2, . . . , Tn−1 modulo the defining relations

XiXj = XjXi, 1 � i, j � n,

TiXj = XjTi, j 
= i, i+ 1,

TiXiTi = ζXi+1, 1 � i � n− 1,

(Ti + 1)(Ti − ζ) = 0, 1 � i � n− 1,

TiTj = TjTi, |i− j| > 2,

TiTi+1Ti = Ti+1TiTi+1, 1 � i � n− 2.

For I ⊂ {1, 2, . . . , n−1} let Ĥζ(I) ⊂ Ĥζ(n) be the corresponding parabolic subalge-
bra. It is generated by the elements Ti, Xj with i ∈ I, j = 1, 2, . . . , n. For a reduced
expression w = si1si2 · · · sik of an element w ∈ Sn we write Tw = Ti1Ti2 · · ·Tik . We
abbreviate Tij = Tsij . Let DI be the set of minimal length representatives of the

left cosets in Sn/SI . We’ll abbreviate DI,J = D−1
I ∩DJ . For x ∈ DI,J the map

SI∩xJ → Sx−1I∩J , w 
→ x−1wx

defines a length-preserving homomorphism. Hence there is a C-algebra isomorphism

Ĥζ(I ∩ xJ) → Ĥζ(x
−1I ∩ J), Tw 
→ Tx−1wx, Xj 
→ Xx−1(j).

Let

Rep(Ĥζ(x
−1I ∩ J)) → Rep(Ĥζ(I ∩ xJ)), M 
→ xM

be the corresponding twist functor. The following is well known; see, e.g., [28,
thm. 1].

Lemma A.1 (Affine Mackey theorem). Let M ∈ Rep(Ĥζ(J)). The module

Res
Ĥζ(n)

Ĥζ(I)
Ind

Ĥζ(n)

Ĥζ(J)
(M)

admits a filtration with subquotients isomorphic to

Ind
Ĥζ(I)

Ĥζ(I∩xJ)

x Res
Ĥζ(J)

Ĥζ(x−1I∩J)
(M),

one for each x ∈ DI,J . The subquotients are taken in any order refining the Bruhat
order on DI,J . In particular we have the inclusion

Ind
Ĥζ(I)

Ĥζ(I∩J)
Res

Ĥζ(J)

Ĥζ(I∩J)
(M) ⊂ Res

Ĥζ(n)

Ĥζ(I)
Ind

Ĥζ(n)

Ĥζ(J)
(M).

A.2. Cyclotomic Hecke algebras. The cyclotomic Hecke algebra Hζ(n, �) asso-

ciated with Γn and the parameters ζ, v1, v2, . . . , v� ∈ C× is the quotient of Ĥζ(n)
by the two-sided ideal generated by the element

(X1 − v1)(X1 − v2) . . . (X1 − v�).

We’ll denote the image of the generator X1 in Hζ(n, �) by the symbol T0. For a
subset I ⊂ {0, 1, . . . , n−1} we define ΓI ⊂ Γn as the subgroup SI if 0 
∈ I, or as the
subgroup generated by SI\{0} and {γ1; γ ∈ Γ} otherwise. This yields all parabolic
subgroups of Γn. We consider also the parabolic subalgebra Hζ(I, �) ⊂ Hζ(n, �)
which is the subalgebra generated by the elements Ti with i ∈ I. Recall that
T0 = X1. To unburden the notation, we abbreviate

H(Γn) = Hζ(n, �), H(Sm) = Hζ(m), H(ΓI) = Hζ(I, �).
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For I = {0, 1, . . . , n+m} \ {n} we also write

H(Γn,m) = H(ΓI) ⊂ H(Γn+m).

Note that

H(Γn,m) � H(Γn)⊗H(Sm).

A.3. Induction/restriction for cyclotomic Hecke algebras. We’ll abbreviate

(A.1)

HIndn = Ind
H(Γn)
H(Γn−1)

, HResn = Res
H(Γn)
H(Γn−1)

,

HIndn,(mr) = Ind
H(Γn+mr)
H(Γn,(mr))

, HResn,(mr) = Res
H(Γn+mr)
H(Γn,(mr))

,

HIndn,mr = Ind
H(Γn+mr)
H(Γn,mr)

, HResn,mr = Res
H(Γn+mr)
H(Γn,mr)

.

We also write
HInd(mr) =

HIndSmr

Sr
m

: Rep(H(Sr
m)) → Rep(H(Smr)),

HRes(mr) =
HResSmr

Sr
m

: Rep(H(Smr)) → Rep(H(Sr
m)).

Now, we consider the Mackey decomposition of the functor

HResn+m ◦HIndn,m : Rep(H(Γn,m)) → Rep(H(Γn+m−1)).

A short computation shows that a set of representatives of the double cosets in

Γn+m−1 \ Γn+m/Γn,m

is {γn+m, sn,n+m : γ ∈ Γ}. For
I = {0, . . . , n+m− 1} \ {n− 1, n}, J = {0, . . . , n+m− 2} \ {n− 1}

we have

H(ΓI) ⊂ H(Γn,m), H(ΓJ ) = H(Γn−1,m) ⊂ H(Γn+m−1).

Further, there is an algebra isomorphism

ϕ : H(ΓJ ) → H(ΓI), Tw 
→ Tsws−1 , Xi 
→ Xsi,

where s = snsn+1 · · · sn+m−1. For each i, p we write Xp
i = (Xi)

p. We have the
following decomposition. It is well known in the casem = 1; see, e.g., [21, lem. 7.6.1]
in the degenerate case.

Proposition A.2. (a) We have an isomorphism of H(Γn+m−1)-modules

H(Γn+m) =
⊕

0�p<�

⊕
1�j�n+m

H(Γn+m−1)Tj,n+mXp
j .

(b) We have an isomorphism of
(
H(Γn+m−1),H(Γn,m)

)
-bimodules

H(Γn+m) = H(Γn+m−1)Tn,n+mH(Γn,m)⊕
⊕

0�p<�

H(Γn+m−1)X
p
n+mH(Γn,m).

(c) There are isomorphisms of
(
H(Γn+m−1),H(Γn,m)

)
-bimodules

H(Γn+m−1)Tn,n+mH(Γn,m) = H(Γn+m−1)⊗H(Γn−1,m) H(Γn,m),

H(Γn+m−1)X
p
n+mH(Γn,m) = H(Γn+m−1)⊗H(Γn,m−1) H(Γn,m),

where the algebra homomorphism H(Γn−1,m) → H(Γn,m) is given by ϕ.
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Proof. Part (a) is standard; see, e.g., [21, lem. 7.6.1] in the degenerate case. Let us
concentrate on (b). Write tj,i = TjTj−1 · · ·Ti for 1 � i � j, and tj,i = 1 for i > j.
By (a) we are reduced to proving the following identities:

(A.2)
⊕

0�p<�

⊕
1�j�n

H(Γn+m−1) tn+m−1,jX
p
j = H(Γn+m−1) tn+m−1,n H(Γn,m),

(A.3)
⊕

0�p<�

⊕
n<j�n+m

H(Γn+m−1) tn+m−1,jX
p
j =

⊕
0�p<�

H(Γn+m−1)X
p
n+mH(Γn,m).

We have

(A.4) u tn+m−1,n = tn+m−1,n ϕ(u), u ∈ H(Γn−1,m),

because for i = 1, 2, . . . , n− 1 and j ∈ J \ {0} we have

Tj tn+m−1,n = tn+m−1,nTs(j) = tn+m−1,nϕ(Tj),

Xi tn+m−1,n = tn+m−1,nXi = tn+m−1,nϕ(Xi).

Hence, by (a), the right-hand side of (A.2) is

=
⊕

0�p<�

⊕
1�j�n

H(Γn+m−1) tn+m−1,n H(ΓI) tn−1,j X
p
j

=
⊕

0�p<�

⊕
1�j�n

H(Γn+m−1)H(Γn−1,m) tn+m−1,n tn−1,j X
p
j

=
⊕

0�p<�

⊕
1�j�n

H(Γn+m−1) tn+m−1,j X
p
j .

This proves (A.2). Next, a short calculation involving the relation

Xp
j+1Tj − TjX

p
j ∈ C[Xj , Xj+1]

proves that the sum ∑
0�p<�

∑
n<j�n+m

H(Γn+m−1) tn+m−1,jX
p
j

is indeed a direct sum; i.e., it is equal to the left-hand side of (A.3). Thus the
identity (A.3) follows from the following equalities:

H(Γn+m−1)X
p
n+mH(Γn,m) =

∑
n<j�n+m

H(Γn+m−1)X
p
n+m Tj,n+m

=
∑

n<j�n+m

H(Γn+m−1)X
p
n+m tn+m−1,j

=
∑

n<j�n+m

H(Γn+m−1) tn+m−1,jX
p
j .

Finally, let us prove (c). To prove the second claim, note that the left mul-
tiplication by the element Xp

n+m, which is invertible, yields an isomorphism of(
H(Γn+m−1),H(Γn,m)

)
-sub-bimodules of H(Γn+m):

H(Γn+m−1)H(Γn,m) = Xp
n+mH(Γn+m−1)H(Γn,m) = H(Γn+m−1)X

p
n+mH(Γn,m).

Finally, the obvious epimorphism

φ : H(Γn+m−1)⊗H(Γn,m−1) H(Γn,m) → H(Γn+m−1)H(Γn,m)
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is also invertible. The reason is the following: consider the canonical isomorphisms

H(Γn,m) � H(Γn)⊗H(Sm), H(Γn,m−1) � H(Γn)⊗H(Sm−1).

By applying part (a) to H(Sm) we see that

H(Γn,m) =

n+m⊕
j=n+1

H(Γn,m−1)Tj,n+m.

Therefore the left-hand side of φ is a free left H(Γn+m−1)-module with basis {1⊗
Tj,n+m ; n < j � n+m}, and the sum

∑n+m
j=n+1 H(Γn+m−1)Tj,n+m in H(Γn+m) is

direct by (a) again. So φ is also injective. To prove the first claim in (c) we define
a map

H(Γn+m−1)×H(Γn,m) → H(Γn+m−1)Tn,n+mH(Γn,m),

(u, v) 
→ u tn+m−1,nv.

By (A.4) this map factors to a surjective homomorphism

ψ : H(Γn+m−1)⊗H(Γn−1,m) H(Γn,m) → H(Γn+m−1)Tn,n+m H(Γn,m).

Since we have

H(Γn,m) � H(Γn)⊗H(Sm), H(Γn−1,m) � H(Γn−1)⊗H(Sm),

by applying (a) to H(Γn) we see that the left-hand side of ψ is a free H(Γn+m−1)-
module on the basis

1⊗ tn−1,jX
p
j , 1 � j � n, 0 � p < �.

But ψ maps these elements to

tn+m−1,jX
p
j , 1 � j � n, 0 � p < �.

Further, the latter are H(Γn+m−1)-linearly independent in H(Γn+m) by (a) again.
Therefore ψ is injective. We are done. �

Appendix B. Reminder on ζ-Schur algebras

B.1. The quantized modified algebra. Let v be a formal variable. The quan-
tized modified algebra U̇(n) of gln is the associative Q(v)-algebra with generators
Ei, Fi, where i = 1, . . . , n− 1 and 1λ where λ ∈ Zn, with the defining relations [26,
sec. 23]

• 1λ1μ = δλ,μ1λ,
• EiFj − FjEi = δij

∑
λ[λi − λi+1]1λ,

• Ei1λ = 1λ+αi
Ei,

• 1λFi = Fi1λ+αi
,

• EiEj = EjEi if i 
= j ± 1, E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0 else,

• FiFj = FjFi if i 
= j ± 1, F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 else.

Here [m] is the usual v-analogue of m for any m ∈ N, and αi ∈ Zn is the root

(0, . . . , 0, 1,−1, 0, . . . , 0) with 1 at the i-th spot. The comultiplication of U̇(n) is
the Q(v)-algebra homomorphism

Δ : U̇(n) →
∏
λ,λ′

(
U̇(n)1λ ⊗ U̇(n)1λ′

)
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given by

• Δ(1λ) =
∏

λ=λ′+λ′′ 1λ′ ⊗ 1λ′′ ,

• Δ(Ei1λ) =
∏

λ=λ′+λ′′(Ei1λ′ ⊗ 1λ′′ + v(αi,λ
′)1λ′ ⊗ Ei1λ′′),

• Δ(Fi1λ) =
∏

λ=λ′+λ′′(Fi1λ′ ⊗ v−(αi,λ
′′)1λ′′ + 1λ′ ⊗ Fi1λ′′).

Set A = Z[v, v−1]. The integral quantized modified algebra is the A-subalgebra

U̇A(n) ⊂ U̇(n) generated by the 1λ’s and all quantum divided powers E
(d)
i , F

(d)
i .

The comultiplication yields an A-algebra homomorphism

U̇A(n) →
∏
λ,λ′

(
U̇A(n)1λ ⊗ U̇A(n)1λ′

)
.

For ε ∈ C× we consider the C-algebra

U̇ε(n) = U̇A(n)⊗A C[v, v−1]/(v − ε).

For V, V ′ ∈ Rep(U̇ε(n)) let sV,V ′ : V ⊗ V ′ → V ′ ⊗ V be the permutation v ⊗ v′ 
→
v′ ⊗ v. An R-matrix is a C-linear endomorphism RV,V ′ of V ⊗ V ′ such that the
composed map

RV,V ′ = sV,V ′ ◦RV,V ′

is an isomorphism of U̇ε(n)-modules V ⊗ V ′ → V ′ ⊗ V . We fix an R-matrix RV,V ′

as follows:

RV,V ′(v ⊗ v′) = R(v ⊗ v′), R = Π̄Θ̄,

Π̄ =
∏
λ,λ′

ε−(λ,λ′) 1λ ⊗ 1λ′ , Θ̄ ∈
∏
λ,λ′

(
U̇ε(n)1λ ⊗ U̇ε(n)1λ′

)
.

Here, the element Θ̄ is defined as in [26, sec. 32]. We call R the universal R-
matrix. To avoid confusion we may write Rε for R. We’ll write RV,V ′ again for the

braiding of right U̇ε(n)-modules V , V ′. If ε is a primitive 2d-th root of 1, then we

have εd
2

= (−1)d. Hence the quantum Frobenius homomorphism [26, sec. 35.1] is a
C-algebra homomorphism

Fr : U̇ε(n) → U̇(−1)d(n)

such that

• Fr(E
(m)
i 1λ) = E

(m/d)
i 1λ/d if m ∈ dZ and λ ∈ dZn, and 0 otherwise,

• Fr(F
(m)
i 1λ) = F

(m/d)
i 1λ/d if m ∈ dZ and λ ∈ dZn, and 0 otherwise.

The formulas in [26, sec. 3.1.5] imply that

Δ ◦ Fr = Fr ◦Δ.

Proposition B.1. We have (Fr⊗Fr)(Rε) = R(−1)d =
∏

λ,λ′(−1)d(λ,λ
′)(1λ ⊗ 1λ′).

Proof. To avoid confusion we’ll write Θ̄ε, Π̄ε for Θ̄, Π̄. If n = 2 the proposition
follows from the formula [26, sec. 4.1.4]. More precisely, since

Θ̄ε =
∏
λ,λ′

∑
k�0

(−1)kε−k(k−1)/2{k}εF (k)1λ ⊗ E(k)1λ′ , {k}ε =
k∏

i=1

(εi − ε−i),

we have the following formula:

(B.1) (Fr⊗Fr)(Θ̄ε) =
∏
λ,λ′

(1λ ⊗ 1λ′).
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Further, in U̇(−1)d(n)⊗ U̇(−1)d(n) we also have

(B.2) (Fr⊗Fr)(Π̄ε) =
∏
λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′)

and

(B.3) Θ̄(−1)d =
∏
λ,λ′

(1λ ⊗ 1λ′), Π̄(−1)d =
∏
λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′).

This proves the formula for n = 2. Now, let n be any integer � 2. The braid group
of Sn acts on U̇ε(n) via the operators T ′′

1,1, T
′′
2,1, . . . , T

′′
n−1,1 in [26, sec. 41]. For

i = 1, 2, . . . , n− 1 we set

Si = T ′′
i,1 ⊗ T ′′

i,1, θ̄i,ε =
∑
k�0

(−1)kε−k(k−1)/2{k}εF (k)
i ⊗ E

(k)
i .

For a reduced decomposition si1si2 · · · sir of the longest element inSn, the universal
R-matrix is given by the following formula (see [22, thm. 3]):

Θ̄ε =
∏
λ,λ′

θ̄ε(1λ ⊗ 1λ′), θ̄ε = S−1
ir

· · ·S−1
i3

S−1
i2

(θ̄i1,ε) · · ·S−1
ir

(θ̄ir−1,ε)θ̄ir,ε.

Thus (B.3) yields

Θ̄(−1)d =
∏
λ,λ′

(1λ ⊗ 1λ′).

Since the braid group action is compatible with the quantum Frobenius homomor-
phism, see [26, sec. 41.1.9], by (B.1) we also have

(Fr⊗Fr)(Θ̄ε) =
∏
λ,λ′

(1λ ⊗ 1λ′).

Finally, a direct computation yields

(Fr⊗Fr)(Π̄ε) =
∏
λ,λ′

(−1)d(λ,λ
′)(1λ ⊗ 1λ′) = Π̄(−1)d .

This proves the proposition. �

Remark B.2. It is proved in [26, prop. 33.2.3] that the assignment

Ei1λ 
→ (−1)id(λi−λi+1)Ei1λ, Fi1λ 
→ (−1)(i+1)d(λi−λi+1)+dEi1λ, 1λ 
→ 1λ

yields a C-algebra isomorphism U̇1(n) → U̇(−1)d(n). Thus we can regard Fr as a

map U̇ε(n) → U̇1(n). Note that the isomorphism above does not commute with
the comultiplication.

B.2. The ζ-Schur algebra. Recall the set Λ(n,m) from Section 3.1. The v-Schur
algebra S(n,m) is the associative Q(v)-algebra with 1 generated by Ei, Fi, where
i = 1, . . . , n − 1 and by 1λ, where λ ∈ Λ(n,m), modulo the defining relations [10,
thm. 2.4]

• 1λ1μ = δλ,μ1λ,
∑

λ 1λ = 1,
• EiFj − FjEi = δij

∑
λ[λi − λi+1]1λ,

• Ei1λ = 1λ+αi
Ei if λ+ αi ∈ Λ(n,m), 0 else,

• 1λEi = Ei1λ−αi
if λ− αi ∈ Λ(n,m), 0 else,

• Fi1λ = 1λ−αi
Fi if λ− αi ∈ Λ(n,m), 0 else,

Licensed to Universite Bordeaux I. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1024 P. SHAN AND E. VASSEROT

• 1λFi = Fi1λ+αi
if λ+ αi ∈ Λ(n,m), 0 else,

• EiEj = EjEi if i 
= j ± 1, E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0 else,

• FiFj = FjFi if i 
= j ± 1, F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 else.

The integral v-Schur algebra is the A-subalgebra SA(n,m) ⊂ S(n,m) generated

by the 1λ’s and all quantum divided powers E
(d)
i , F

(d)
i . In other words, we have a

canonical isomorphism

SA(n,m) = 1mU̇A(n)1m, 1m =
∑

λ∈Λ(n,m)

1λ.

The comultiplication of U̇A(n) factors through an A-algebra homomorphism

(B.4) Δ : SA(n,m) →
⊕

m=m′+m′′

SA(n,m
′)⊗ SA(n,m

′′).

For ζ, ε ∈ C× with ζ = ε2 we consider the C-algebra

Sζ(n,m) = SA(n,m)⊗A C[v, v−1]/(v − ε)

= 1mU̇ε(n)1m.

Indeed Sζ(n,m) depends only on ζ and not on the choice of ε. If ζ is a primitive d-th
root of 1, we choose ε to be a primitive 2d-th root of 1. Then the quantum Frobenius
homomorphism Fr : U̇ε(n) → U̇1(n) factors through a C-algebra homomorphism

(B.5) Fr : Sζ(n, dm) → S1(n,m).

Note that we have used the identification U̇(−1)d(n) = U̇1(n) in Remark B.2.

B.3. The module category of Sζ(n,m). Recall the set Zn
+ from Section 3.8. For

λ ∈ Zn
+, let ΔU

λ and LU
λ denote the Weyl module and the simple module with

highest weight λ in Rep(U̇ε(n)). See [31], [1] for the details. Set

Λ(n,m)+ = Λ(n,m) ∩ Zn
+.

The category Rep(Sζ(n,m)) is equivalent to the full subcategory of Rep(U̇ε(n))
consisting of the modules such that all constituents have a highest weight in the set
Λ(n,m)+. Parshall and Wang [31] were the first to show that the ζ-Schur algebra
is quasi-hereditary. It is quasi-hereditary with respect to the dominance order, the
standard objects being the modules ΔS

λ with λ ∈ Λ(n,m)+. Here, for λ ∈ Λ(n,m)+,
we write

ΔS
λ = ΔU

λ , LS
λ = LU

λ ,

regarded as objects in Rep(Sζ(n,m)).

B.4. The Schur functor. Assume that n � m. There is a C-algebra isomorphism
[10, sec. 11]

Hζ(m) = f Sζ(n,m) f, f = 1(1m0n−m).

Thus the vector space Tζ(n,m) = Sζ(n,m)f is a (Sζ(n,m),Hζ(m))-bimodule, and
Vζ(n,m) = fSζ(n,m) is a (Hζ(m),Sζ(n,m))-bimodule. Consider the triple of
adjoint functors (Φ!,Φ

∗,Φ∗):

Φ∗ : Rep(Sζ(n,m)) → Rep(Hζ(m)), M 
→ fM,

Φ∗ : Rep(Hζ(m)) → Rep(Sζ(n,m)), N 
→ HomHζ(m)(Vζ(n,m), N),

Φ! : Rep(Hζ(m)) → Rep(Sζ(n,m)), M 
→ Tζ(n,m)⊗Hζ(m) M.
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We call Φ∗ the Schur functor. It is a quotient functor; i.e., it is exact and the counit
Φ∗Φ∗ → 1 is invertible. The double centralizer property holds; i.e., we have

Sζ(n,m) = EndHζ(m)(Vζ(n,m)).

Equivalently, the functor Φ∗ is fully faithful on projectives, or, equivalently again,
the unit P → Φ∗ Φ

∗(P ) is invertible whenever P is projective. See [32, prop. 4.33]
for the details. Since Φ∗ is a quotient functor, the functor Φ! takes projectives to
projectives and the unit 1 → Φ∗Φ! is an isomorphism of functors. For m = m′+m′′

the comultiplication (B.4) yields a functor

(B.6) ⊗̇ : Rep(Sζ(n,m
′))⊗ Rep(Sζ(n,m

′′)) → Rep(Sζ(n,m)).

We’ll abbreviate H Indm′,m′′ = Ind
Hζ(m)

Hζ(m′)⊗Hζ(m′′).

Proposition B.3. (a) We have a (Sζ(n,m),Hζ(m
′)⊗Hζ(m

′′))-bimodule isomor-
phism can : Tζ(n,m

′)⊗̇Tζ(n,m
′′) → Tζ(n,m). For M ′ ∈ Rep(Hζ(m

′)), M ′′ ∈
Rep(Hζ(m

′′)) the map can yield an isomorphism

can : Φ!

(
H Indm′,m′′(M ′ ⊗M ′′)

)
→ Φ!(M

′)⊗̇Φ!(M
′′).

(b) We have an isomorphism of (Hζ(m
′) ⊗ Hζ(m

′′),Sζ(n,m))-bimodules can :
Vζ(n,m

′)⊗̇Vζ(n,m
′′) → Vζ(n,m). For M ′ ∈ Rep(Hζ(m

′)), M ′′ ∈ Rep(Hζ(m
′′))

the map can yields an isomorphism

can : Φ∗
(
H Indm′,m′′(M ′ ⊗M ′′)

)
→ Φ∗(M

′)⊗̇Φ∗(M
′′).

Proof. By definition Tζ(n,m) is the v-tensor space in [8, def. 2.6]. According to [7,
sec. 3.3, 4.4] it is identified with the m-th tensor power of the natural representation
of the (modified) quantized enveloping algebra of gln, in such a way that theHζ(m)-
action comes from the R-matrix; see also [17]. This proves part (a). Part (b) follows
also by taking the dual spaces. �

Corollary B.4. We have an isomorphism

can : H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′) → Φ∗(M ′⊗̇M ′′)

for M ′ ∈ Rep(Sζ(n,m
′)) and M ′′ ∈ Rep(Sζ(n,m

′′)).

Proof. For M ′ ∈ Rep(Sζ(n,m
′)) and M ′′ ∈ Rep(Sζ(n,m

′′)), Proposition B.3 yields
an isomorphism

Φ∗
H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′) = Φ∗Φ

∗M ′⊗̇Φ∗Φ
∗M ′′.

Composing it with Φ∗ we get an isomorphism

H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′) = Φ∗(Φ∗Φ
∗M ′⊗̇Φ∗Φ

∗M ′′).
Composing it with the unit 1 → Φ∗Φ

∗ we get a functorial map

Φ∗(M ′⊗̇M ′′) → H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′),

which is invertible whenever M ′, M ′′ are projectives, because the unit is invertible
on projective modules. Thus it is always invertible, because Φ∗ and H Indm′,m′′ are
exact and because there are enough projectives in Rep(Sζ(n,m)). �
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B.5. The braiding and the Schur functor. For M ′ ∈ Rep(Hζ(m
′)) and M ′′ ∈

Rep(Hζ(m
′′)) the R-matrix yields an isomorphism of Sζ(n,m)-modules

RΦ∗M ′,Φ∗M ′′ : Φ∗M
′⊗̇Φ∗M

′′ → Φ∗M
′′⊗̇Φ∗M

′.

Let τ ∈ Sm be the unique element such that

• τ is minimal in the coset (Sm′ ×Sm′′)τ (Sm′′ ×Sm′),
• we have τ−1(Sm′ ×Sm′′)τ = Sm′′ ×Sm′ .

We have the following formula in Hζ(m):

(B.7) Tτ (h
′′ ⊗ h′) = (h′ ⊗ h′′)Tτ , h′ ∈ Hζ(m

′), h′′ ∈ Hζ(m
′′).

Thus there is a unique functorial Hζ(m)-module isomorphism

SM ′,M ′′ : H Indm′,m′′(M ′ ⊗M ′′) → H Indm′′,m′(M ′′ ⊗M ′)

given by

SM ′,M ′′(h⊗ (v′ ⊗ v′′)) = hTτ ⊗ (v′′ ⊗ v′), h ∈ Hζ(m), v′ ∈ M ′, v′′ ∈ M ′′.

Proposition B.5. For M ′ ∈ Rep(Hζ(m
′)), M ′′ ∈ Rep(Hζ(m

′′)) the following
square is commutative:

Φ∗
H Indm′,m′′(M ′ ⊗M ′′)

can

��

Φ∗(SM′,M′′) �� Φ∗
H Indm′′,m′(M ′′ ⊗M ′)

can

��
Φ∗M

′⊗̇Φ∗M
′′ RΦ∗M′,Φ∗M′′

�� Φ∗M
′′⊗̇Φ∗M

′.

Proof. We abbreviate H = Hζ(m), H′ = Hζ(m
′), H′′ = Hζ(m

′′), V = Vζ(n,m),
V′ = Vζ(n,m

′) and V′′ = Vζ(n,m
′′). First, we have a commutative square

V′′⊗̇V′

can

��

RV′′,V′ �� V′⊗̇V′′

can

��
V

Tτ �� V,

(B.8)

where the lower map is the left multiplication with Tτ . See [17] and the discussion
in the proof of Proposition B.3. In particular, we have

RV′′,V′(h′′v′′ ⊗ h′v′) = (h′′ ⊗ h′)RV′′,V′(v′ ⊗ v′′),

v′ ∈ V′, v′′ ∈ V′′, h′ ∈ H′, h′′ ∈ H′′.

Therefore, the composition with RV′′,V′ yields a linear map

HomH′⊗H′′(V,M ′ ⊗M ′′) = Φ∗
H Indm′,m′′(M ′ ⊗M ′′)

→ HomH′′⊗H′(V,M ′′ ⊗M ′) = Φ∗
H Indm′′,m′(M ′′ ⊗M ′).

The commutativity of the square (B.8) implies that this map is equal to Φ∗(SM ′,M ′′).
It is easy to see that this map also coincides with RΦ∗M ′,Φ∗M ′′ . �
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Corollary B.6. For M ′ ∈ Rep(Sζ(n,m
′)), M ′′ ∈ Rep(Sζ(n,m

′′)) the following
square is commutative:

H Indm′,m′′(Φ∗M ′ ⊗ Φ∗M ′′)

can

��

SΦ∗M′,Φ∗M′′ �� H Indm′′,m′(Φ∗M ′′ ⊗ Φ∗M ′)

can

��
Φ∗(M ′⊗̇M ′′)

Φ∗(RM′,M′′ ) �� Φ∗(M ′′⊗̇M ′).

Proof. Use the same argument as in the proof of Corollary B.4. �

Let r � 1 and i = 1, 2, . . . , r − 1. For M ∈ Rep(Hζ(m)) we consider the automor-
phism of the Hζ(mr)-module H Ind(mr)(M

⊗r) given by

(B.9)
SM,i =

H Ind
Hζ(mr)
H (1⊗i−1 ⊗ SM,M ⊗ 1⊗r−i−1),

H = Hζ(m)⊗i−1 ⊗Hζ(2m)⊗Hζ(m)⊗r−i−1.

For M ∈ Rep(Sζ(n,m)) we consider the automorphism of the Sζ(n,mr)-module

M ⊗̇r given by

(B.10) RM,i = 1⊗̇i−1⊗̇RM,M ⊗̇1⊗̇r−i−1.

Corollary B.7. For M ∈ Rep(Sζ(n,m)), r � 1 and i = 1, 2, . . . , r − 1 we have a
commutative square with invertible vertical maps

H Ind(mr) Φ
∗(M)⊗r

��

SΦ∗(M),i �� H Ind(mr) Φ
∗(M)⊗r

��
Φ∗(M ⊗̇r)

Φ∗(RM,i) �� Φ∗(M ⊗̇r).

B.6. The braiding and the quantum Frobenius homomorphism. Recall
that if ζ is a primitive d-th root of 1, then the quantum Frobenius homomorphism
(B.5) yields a functor

Fr∗ : Rep(S1(n,m)) = Rep(S(−1)d(n,m)) → Rep(Sζ(n, dm)).

Here we have identified S(−1)d(n,m) and S1(n,m) as in Remark B.2. Let m′,m′′ >
0 with m = m′ + m′′. By Proposition B.1, for M ∈ Rep(S(−1)d(n,m)), M ′ ∈
Rep(S(−1)d(n,m

′)) the braiding operator

RM,M ′ : M⊗̇M ′ → M ′⊗̇M

is the composition of the permutation sM,M ′ and of the operator

RM,M ′ =
∏
λ,λ′

(−1)d(λ,λ
′)(1λ⊗̇1λ′).

Proposition B.8. For r � 1, i, j = 1, 2, . . . , r − 1, and M ∈ Rep(S(−1)d(n,m))

the following relations hold in EndS
(−1)d

(n,mr)(M
⊗̇r):

• R2
M,i = 1,

• RM,iRM,j = RM,jRM,i if j 
= i− 1, i+ 1,
• RM,iRM,i+1RM,i = RM,i+1RM,iRM,i+1 if i 
= r − 1.
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Proof. The first relation is obvious by the definition of the braiding operator; see
above. The other relations are consequences of the general properties of a braiding.

�

Further, the functor Fr∗ is a braided tensor functor; i.e., we have the following.

Proposition B.9. For M ∈ Rep(S(−1)d(n,m
′)), M ′ ∈ Rep(S(−1)d(n,m

′′)) we

have a functorial isomorphism Fr∗(M⊗̇M ′) = Fr∗(M)⊗̇Fr∗(M ′) in Rep(Sζ(n, dm))
such that Fr∗(RM,M ′) = RFr∗(M),Fr∗(M ′).

Proof. This is obvious by Proposition B.1. �

B.7. The algebra Sζ(m). We’ll abbreviate Sζ(m) = Sζ(m,m). If n � m the
algebra Sζ(n,m) is Morita equivalent to Sζ(m); see, e.g., [8, lem. 1.3]. Thus ⊗̇ can
be viewed as a functor (choosing n � m = m′ +m′′)

⊗̇ : Rep(Sζ(m
′))⊗ Rep(Sζ(m

′′)) → Rep(Sζ(m)).

If ζ is a primitive d-th root of 1, then the quantum Frobenius homomorphism can
be viewed as a functor (choosing n � dm)

Fr∗ : Rep(S1(m)) = Rep(S(−1)d(m)) → Rep(Sζ(dm)).

Appendix C. Remarks on the Fock space

We record here some remarks concerning the Fock space. They have not been
used in the paper. First, there is a tautological C-linear isomorphism Cm ⊗ C� =
Cm�. It yields C-linear isomorphisms Vm,� → Vm� and Fm,� → Fm�. Recall that

Fm� is equipped with a level 1 action of ŝlm�, and that Fm,� is equipped with a

level (�,m) action of ŝlm × ŝl�. Now, there is a well-known Lie algebra inclusion

(ŝlm × ŝl�)/(m(1, 0)− �(0,1)) ⊂ ŝlm�, (1, 0) 
→ �1, (0,1) 
→ m1.

This inclusion intertwines the ŝlm × ŝl� action on Fm,� and the ŝlm� action on

Fm,� = Fm�. Further, we want to compare the ŝlm� action on Fm,� with the

level one ŝl� action on Fm,� given in the beginning of this section. The C-linear
isomorphisms (6.16) and (6.17) yield a C-linear isomorphism

(C.1) F� → Fm,� = Fm�.

The right-hand side is equipped with a level 1 action of ŝlm�, and the left-hand side

with a level 1 action of ŝl�. Consider the following elements in slm ⊗ C[�,�−1]:

x(i+ km) =
m−i∑
j=1

ej,i+j ⊗�k +
m∑

j=m−i+1

ej,i+j−m ⊗�k+1,

1 � i � m, k ∈ Z.

For x ∈ slm ⊗ C[�,�−1] and p, q = 1, 2, . . . , � we define the element x(p,q) ∈
slm� ⊗ C[�,�−1] by

x(p,q) =
m∑

i,j=1

ei+(p−1)m, j+(q−1)m ⊗ ai,j for x =
m∑

i,j=1

ei,j ⊗ ai,j .
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The following claim is proved by a direct computation, which is left to the reader.

Proposition C.1. (a) There is a Lie algebra inclusion ŝl� ⊂ ŝlm� given by

1 
→ 1, ep,q ⊗�r 
→ x(r)(p,q), p, q = 1, 2, . . . , �, r ∈ Z.

(b) The map (C.1) intertwines the ŝl� action on F� and the ŝlm� action on Fm�.

Index of notation

1.3: Z(A), Irr(A), Rep(A), Irr(A), [A], Db(A), Db(A), 〈m〉, A⊗ B, 1F .

2.1: W , h, c, H(W ), Rx, Ry, O(W ), Δχ, O(W, h), H(W, h).

2.2: X◦
W ′ , XW ′ , X◦

W ′,h, XW ′,h.

2.3: Wb, πb, Indb, Resb,
OIndWWb

, OResWWb
, Supp(M), spe, xM .

3.1: |λ|, Λ(�, n), Pn, λ
′, l(λ), zλ, mλ, Z�, P�, P�

n, Γ, PΓ, PΓ
n .

3.2: Sn, Γn, γi, sij , si, s
γ
ij , χp, C

n
0 , Γν , Γn,ν , Γn,m.

3.3: xi, yi, H(Γn), h, hp.

3.4: Λ, ωp, ŝl�, 1, ep, fp, ep,q, s̃l�, D, U(ŝl�), U
−(ŝl�), U

−(ŝl�)r.

3.5: L̄λ.

3.6: Δλ, Lλ, Pλ,
OIndn,

OResn,
OIndn,(mr),

OResn,(mr),
OIndn,mr,

OResn,mr,
OInd(mr),

ORes(mr).

3.7: H(Γn), ζ, vp, KZ, S.

3.8: Hζ(m), Sζ(m), Φ∗, Λ(m)+, Z
m
+ , ΔS

λ , ⊗̇, R, O(S), Rep(Sζ).

3.9: Dn(z), bn, eq, fq, E, F , ẽq, f̃q, s = (sp), F (s)
m,�.

3.10: X◦
l,ν , Xl,ν , X◦

l,j , Xl,j , Xl,j,Cn , Irr(O(Γn))i,j , Fi,j(Γn), gr(Γn), gri,j(Γn),

Fi,•(Γn), F•,j(Γn), gri,•(Γn), gr•,j(Γn), Fi,j(Γn)
◦.

3.11: E, F .

4.1: R(S), R(Γ), Λ, ch, Sλ, Pr, Pλ.

4.2: H, 1, br, b
′
r, U(H), U−(H), U−(H)r, bλ, b

′
λ, bf , b

′
f , V

H
� , ∂, V H

� [j].

4.3: ĝlm, g̃lm, P
̂slm , P

˜slm , P
̂glm , P

˜glm , P
̂glm
+ , P

˜glm
+ , P

̂slm
+ , P

˜slm
+ , V

˜slm
λ , V

˜glm
λ ,

Qslm , P slm , V [μ], Tm, tm, Ŝm, ξβ, β(�).

4.4: ΛΓ, f
γ , P γ

μ , Pλ, Pr,p, Sμ,p, Sλ, ch, τ , zλ, λ̄.

4.5: εi, Fm, Vm, F (d)
m , ui, |λ, d〉.

4.6: ε̇i, Fm,�, Vm,�, ui, γ̂(s,m), F (s)
m,�, |λ, s〉, nq(λ), Δ(s,m).

5.1: O(Γ), bn,r, HomO(Smr)(•, Lmλ)
�, Aλ,!, A

∗
λ, Aλ,∗.

5.2: A∗, A∗, A!, τi,
Hτi,

Oτi, τ̄i.

5.3: Raλ,∗, Raλ,!, R
iaλ,∗, R

iaλ,!, a
∗
λ, aλ,∗, aλ,!.

5.4: PI(O(Γn)).

5.5: Br, Br,�,
Hξi,

Oξi, ξ̄i, τ̄w, ā
∗
λ, Ψ.

5.6: ãλ(L).

6.2: [O(Γ)]•,j , [O(Γ)]i,•, [O(Γ)]i,j , [O(Γn)]i,j .

6.3: αp,q, ãΛ, Δ
ã
+, P

ã
+, V

ã
μ , ∂m, V ã

μ [λ, j].
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6.4: γ̃(λ,m), A(�,m), A(�,m)d, λ
†.

6.5: λ∗, λc, τ (λc), cλ(X).

6.6: μ′, Ŝet
� , ω̃d.

A.1: Ĥζ(n), Xi, Ti, Ĥζ(I), Tw, Tij , DI , DI,J .

A.2: Hζ(n, �), T0, ΓI , Hζ(I, �), H(Γn), H(Sm), H(ΓI).

A.3: HIndn,
HResn,

HIndn,(mr),
HResn,(mr),

HIndn,mr,
HResn,mr,

HInd(mr),
HRes(mr).

B.1: U̇(n), 1λ, [m], Δ, A, ε, sV,V ′ , RV,V ′ , RV,V ′ , Π̄, Θ̄, Fr.

B.2: S(n,m), SA(n,m), Sζ(n,m).

B.3: ΔU
λ , L

U
λ , Λ(n,m)+, Δ

S
λ , L

S
λ .

B.4: f , Φ∗, Φ∗, Φ!, ⊗̇.

B.5: SM ′,M ′′ .

B.6: Fr∗.

B.7: Sζ(m).
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