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1. INTRODUCTION AND NOTATION

1.1. Introduction. In this paper we study a relationship between the representa-
tion theory of certain rational double affine Hecke algebras (= RDAHA) and the
representation theory of affine Kac-Moody algebras. Such a connection is not new
and has already appeared in several places in the literature. A first place is Suzuki’s
functor [34] which maps the Kazhdan-Lusztig category of modules over the affine
Kac-Moody algebra ;[n at a negative level to the representation category of the
RDAHA of sl,,,. A second one is a cyclotomic version of Suzuki’s functor [36] which
maps a more general version of the parabolic category O of sA[n at a negative level
to the representation category of the cyclotomic RDAHA. A third one comes from
the relationship between the cyclotomic RDAHA and quiver varieties, see, e.g., [15],
and from the relationship between quiver varieties and affine Kac-Moody algebras.
Finally, a fourth one, which is closer to our study, comes from the relationship in
[33] between the Grothendieck group of cyclotomic RDAHA and the level ¢ Fock
space Fp, ¢ of 5A[m. In this paper we focus on a recent conjecture of Etingof [11]
which relates the support of the objects of the category O of H(T',,), the RDAHA
associated with the complex reflection group T',, = &,, X (Z¢)™, to a representation-
theoretic grading of the Fock space Fy = F;1. This grading is constructed using
the gA[Z—action on Fy of level 1. These conjectures permit us in particular to compute
the number of finite-dimensional H(I',,)-modules. This was not known so far. The
appearance of the Fock space Fy is due to the following two facts, already noticed
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HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 961

n [II]. First, the category O of the algebras H(I',)) with n > 0 categorifies F,, ¢

by [33]. Next, the Fock space F, ¢ admits a level 1 action of gl,, under which it
is identified with F;. It is well known that the Fock space F,, ; admits an action

of a Heisenberg algebra $) of level m/¢, an action of sA[g of level m and an action of
sl,, of level ¢ which commute with each other, by the level-rank duality. Our proof
consists precisely of interpreting the support of the H(T',,)-modules in terms of the

actions of s?[m and $ on F,, ¢. Then, we interpret this construction in terms of the

~

gl,-action on Fy of level 1. An important new ingredient is a categorification (in a
weak sense) of the action of the Heisenberg algebra $) on F,, ;. The categorification
of the Heisenberg algebra has recently been studied by several authors. We’ll come
back to this in another publication.

1.2. Organisation. The organisation of the paper is the following.

Section 2 is a reminder on rational DAHA. We recall some basic facts concerning
parabolic induction/restriction functors. In particular we describe their behavior
on the support of the modules.

Section 3 contains basic notation for complex reflection groups, for the cyclotomic
rational DAHA H(T,,) and for affine Lie algebras. In particular we introduce the
category O(T,,) of H(T',)-modules, the functor KZ, and Rouquier’s equivalence
from O(&,,) to the module category of the (-Schur algebra. Next we recall the
categorification of the Fock space representation of 5A[m in [33], and we describe the
filtration by the support on O(T',).

Section 4 is more combinatorial. We recall several constructions related to Fock
spaces and symmetric polynomials. In particular we give a relation between sym-
metric polynomials and the representation ring of the group I'j,, and we describe
several representations on the level ¢ Fock space (of Heisenberg algebras and of
affine Kac-Moody algebras).

Section 5 is devoted to the categorification of the Heisenberg action on the Fock
space, using O(T',,). Then we introduce a particular class of simple objects in O(T,,),
called the primitive modules, and we compute the endomorphism algebra of some
modules induced from primitive modules. Finally we introduce the operators ay
which are analogues for the Heisenberg algebra of the Kashiwara operators é,, fq
associated with Kac-Moody algebras.

Section 6 contains the main results of the paper. Using our previous construc-
tions we compare the filtration by the support on O(T',,) with a representation-
theoretic grading on the Fock space. This confirms a conjecture of Etingof and
yields, in particular, the number of finite-dimensional simple objects in O(T';,) for
integral ¢-charge (this corresponds to some rational values of the parameters of
H(T,)).

Finally, there are three appendices containing basic facts on Hecke algebras,
Schur algebras, quantum groups, quantum Frobenius homomorphism and on the
universal R-matrix.

1.3. Notation. Now we introduce some general notation. Let A be a C-category,
i.e., a C-linear additive category. We’'ll write Z(.A) for the center of A, a C-algebra.
Let Irr(.A) be the set of isomorphism classes of simple objects of A. If A = Rep(A),
the category of all finite-dimensional representations of a C-algebra A, we abbre-
viate

Irr(A) = Trr(Rep(A)).
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962 P. SHAN AND E. VASSEROT

For an Abelian or triangulated category let K (A) denote its Grothendieck group.
We abbreviate K (A) = K(Rep(A)). We set

[A] = K(A) ® C.

For an object M of A we write [M] for the class of M in [A]. For an Abelian
category A let D*(A) denote its bounded derived category. We abbreviate D’(A) =
DP(Rep(A)). The symbol “m” will denote both the complex

m—1

(m) = @ Cl-2i] € D"(C)

and the integer m in K(C) = Z. Given two Abelian C-categories A, B which are
Artinian (i.e., objects are of finite length and Hom’s are finite dimensional) we
define the tensor product (over C)

Q:AxB—-ARB

as in [6, sec. 5.1, prop. 5.13]. Recall that for A = Rep(A) and B = Rep(B) we
have A ® B = Rep(A ® B). Given a category A and objects A, A’ € A, we write
Hom 4 (A, A’) for the collection of morphisms A — A’. Given categories A, B
and functors F, F’ : A — B we write Hom(F, F') for the collection of morphisms
F — F’. We denote the identity morphism A — A by 14 and the identity morphism
F — F by 1p. Given a category C and a functor G : B — C let G o F' be
the composed functor A — C. For a functor G’ : B — C and morphisms of
functors ¢ € Hom(F, F'), v € Hom(G, G') we write 9 ¢ for the morphism of functors
GoF — G' o F' given by

(¥9)(A) = ¥ (F'(A)) 0 G($(A)) € Home (G(F(A)), G'(F'(4))), A€ A

2. REMINDER ON RATIONAL DAHA’S

2.1. The category O(W). Let W be any complex reflection group. Let § be the
reflection representation of W. Let S be the set of pseudo-reflections in W. Let
c: S — C be a map that is constant on the W-conjugacy classes. The rational
DAHA attached to W with parameter ¢ is the quotient H (W) of the smash product
of CW and the tensor algebra of h @ h* by the relations

2,21 =0, [y,4]=0, [y,2] = (w,9) = colas,y)(z, ds)s,
ses
for all z,2’ € b*, y,y’ € h. Here (o, @) is the canonical pairing between h* and b,
the element «; is a generator of Im(s|y — 1) and & is the generator of Im(s|, — 1)
such that (as,ds) = 2. Let R,, R, be the subalgebras generated by h* and h
respectively. We may abbreviate
C[b] = R., C[h*] =R,.

The category O of H(W) is the full subcategory O(W) of the category of H(W)-
modules consisting of objects that are finitely generated as C[h]-modules and b-
locally nilpotent. We recall from [14] sec. 3] the following properties of O(W). It is
a quasi-hereditary category. The standard modules are labeled by the set Irr(CW)
of isomorphism classes of irreducible W-modules. Let A, be the standard module
associated with the module x € Irr(CW). Tt is the induced module

H(W
A, = IndW([xR)y (x)-
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HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 963

Here x is regarded as a W x Ry,-module such that h* C R, acts by zero. Let L,,
P, denote the top and the projective cover of A,.

Remark 2.1. The definitions above still make sense if h is any faithful finite-
dimensional CW-module. To avoid any confusion we may write

O(W,h) = O(W), H(W,b)=H(W).

2.2. The stratification of ). Let W be a complex reflection group. Let h be the
reflection representation of W. For a parabolic subgroup W’ C W let X7y}, be the
set of points of h whose stabilizer in W is conjugate (in W) to W’. By a theorem
of Steinberg, the sets X7,,, when W’ runs over a set of representatives of the W-
conjugacy classes of parabolic subgroups of W, form a stratification of f by smooth
locally closed subsets; see also [I3] sec. 6] and the references there. Let Xy be
the closure of Xy, in h. To avoid any confusion we may write Xy p = Xy and
Xwy = Xwr. The set Xy p consists of points whose W-conjugacy class contains
a fixed point of W’ in . We have

XW',PJ == I_lX‘?V//JV
where the union is over a set of representatives of the W-conjugacy classes of the

parabolic subgroups W of W which contain W’. Further, the quotient Xy 5 /W
is an irreducible closed subset of h/W.

2.3. Induction and restriction functors on O(W). Fix an element b € h. Let
Wy, C W be the stabilizer of b, and

m b — b/p"
be the obvious projection onto the reflection representation of Wj. The parabolic
induction and restriction functors associated with the point b are respectively the
functors [2]

Indy, : O(Wh, b/6"%) — O(W,h), Resy : O(W,h) — O(Wy, h/6").

Since the functors Indy, Res;, do not depend on b up to isomorphism, see [2, sec. 3.7],
we may write
OInd%b = Ind,, ORes%b = Resy

if this does not create any confusion. The support of a module M in O(W, ) is the
support of M regarded as a Clh]-module. It is a closed subset Supp(M) C h. By
[13, thm. 6.8] for any simple module L in O(W, h) we have Supp(L) = Xy for
some parabolic subgroup W/ C W. For b € X3y p the module Resy(L) is a nonzero
finite-dimensional module. See [2] sec. 3.8]. The support of a module is the union
of the supports of all its constituents. So the support of any module in O(W, ) is
a union of Xy p’s. Let us consider the behavior of the support under restriction.

Proposition 2.2. Let W C W be a parabolic subgroup. Let b’ be the reflection
representation of W'. Let X C b be the support of a module M in O(W,b). Let
X' C b be the support of the module M' = Resly. (M).

(a) We have M’ # 0 if and only if Xwp C X.

(b) Assume that X = Xy g with W' C W a parabolic subgroup. If M' # 0,
then W' is W-conjugate to a subgroup of W' and we have

X' = UXWl,,,, = |_|X§V1,h,,
W1 W1
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964 P. SHAN AND E. VASSEROT

where W1 runs over a set of representatives of the W’ -conjugacy classes of parabolic
subgroups of W' containing a subgroup W -conjugated to W".

Proof. Part (a) is immediate from the definition of the restriction, because for b € f
it implies that Res, (M) # 0 if and only if b € X; see also Remark below. Now
we prove (b). For a parabolic subgroup W; C W' we have
Xleh/ CcX «— ORGS%;(M/) 7é 0
= ORes%I (M) #0
— XW1,h C XW”,h~
Here the first and third equivalence follow from (a), while the second one follows

from the transitivity of the restriction functor [33, cor. 2.5]. Therefore Xy, ,, C X'

if and only if Xw, v C X’ if and only if W; contains a subgroup W-conjugate to
W//. |:|

Remark 2.3. For any closed point b of a scheme X we denote by X' the completion
of X at b (a formal scheme). Assume that M’ = ©Resjy, (M) is nonzero. We define
X, X' as in the proposition above. Let 7 be the canonical projection h — b’ =

h/ f)W/. For b € Xy, , the definition of the restriction functor yields the following
formula:

0cr HX"), X{P=b+n X,

Next, we consider the behavior of the support under induction. Before this we
need the following two lemmas. The C-vector space [O(W)] is spanned by the set
{[A,] : x € Irr(CW)}. Thus there is a unique C-linear isomorphism

(2.1) spe : [Rep(CW)] = [O(W)],  [x] = [Ay].

The parabolic induction/restriction functor is exact. We’ll need the following
lemma [2].

Lemma 2.4. Let W C W be a parabolic subgroup. Let b’ be the reflection repre-
sentation of W'. Under the isomorphism (21)) the maps

“Indyy, - [OW',5)] = [O(W,h)],  “Resyy : [O(W,h)] = [O(W', )]
coincide with the induction and restriction
Indyy, : [Rep(CW’)] — [Rep(CW)], Res}y, : [Rep(CW)] — [Rep(CW”)].

We'll also need the following version of the Mackey induction/restriction theorem.
First, observe that for any parabolic subgroup W/ C W and any x € W there is a
canonical C-algebra isomorphism

0r: HW') = Hz " 'W'z), w o wz, fr a2 f, ot fx,
forwe W', f € R,, f' € R,. It yields an exact functor
OW') = O(xz~'W'z), M~ “M,

where M is the H(z~'W'z)-module obtained by twisting the H(W')-action on M
by ¢q.
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Lemma 2.5. Let W/, W C W be parabolic subgroups. Let b, b" be the reflection
representations of W', W". For M € O(W’,b’') we have the following formula in
[(9(‘/‘///7 h//)] .

(22) OResy, 0 OIndyy, (IM]) =Y Ind i, 1y, 0 (PRes Ny n 1w (M),

where x runs over a set of representatives of the cosets in W'\ W/W".

Proof. Use Lemma 2] and the usual Mackey induction/restriction theorem asso-
ciated with the triplet of groups W, W', W". |

Remark 2.6. For a future use, note that the left-hand side of ([2.2)) is zero if and
only if each term in the sum of the right-hand side is zero, because each of these
terms is the class of a module in O(W”, §").

Now, we can prove the following proposition.

Proposition 2.7. Let W" C W' C W be parabolic subgroups. Let b’ be the re-
flection representation of W'. For a simple module L € O(W', ") with Supp(L) =
Xw y, we have

OIndyy/ (L) # 0, Supp(olndw,(L)) = Xw p.
Proof. First, note that ©Indyy, (L) # 0 by Lemma 2.5 because
OResly, 0 CIndyy. ([L]) = [L] + [M]

for some M € O(W’, ') and [L] # 0. We abbreviate M = ©IndJ}. (L). To compute
the support of M we first check that

Xwrp C Supp(M).
By Proposition we have
Xwp CSupp(M) <= Xy C Supp(M)
<« YResyyn (M) #0.
By Remark the last equality holds if and only if
ORes) Ny g1 (L) # 0
for some x € W. This identity is indeed true for z = 1 because W"’ c W’ and
Xy = Supp(L) = OResW./ (L) # 0.
Next we prove the inclusion
Supp(M) C Xwr .

Any point b of h\ Xy p is contained in the set X3y p for some parabolic subgroup
W' C W such that W” is not conjugate to a subgroup of W’ : it suffices to set
W' = W,. We must check that for such a subgroup W' C W we have

X{;}V///,h ¢ Supp(M)
By Proposition it is enough to check that
ORGS%/// (M) == 0.
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966 P. SHAN AND E. VASSEROT
Now, by Lemma we have the following formula in [O(W' §)]:

ORGS%/// ([M]) = Z OInd%:xﬂx—l W'z © r (ORGSE/V;//Hm—lmW/ ([LD) .
x

Here x runs over a set of representatives of the cosets in W'\ W/W"'. Since W" is
not conjugate to a subgroup of W' it is a fortiori not conjugate to a subgroup of
Wz~ NW'; ie., we have

X;W”'Iflﬂw/,h’ ﬂ XW//J]/ - @
Therefore Proposition yields
OReS‘w}VV;////w—lmW/ (L) = 0,
because Supp(L) = Xy p-. This implies that
ORGS%///([M]) - O

Hence we have also
ORGS%/// (M) = 0
We are done. O

3. THE CYCLOTOMIC RATIONAL DAHA

3.1. Combinatorics. For a sequence A = (A1, Ag,...) of integers > 0 we set || =
>\1+)\2+ Let

A,n) ={x= (A, Aa,... N) €N 1 [N =n).

It is the set of compositions of n with £ parts. Let P, be the set of partitions of
n, i.e., the set of nonincreasing sequences A of integers > 0 with sum |A| = n. We
write A’ for the transposed partition and I(X) for its length, i.e., for the number of
parts in A\. We write also

(3.1) Z = Hz"“ m;!,

i>1

where m; is the number of parts of A equal to ¢. Given a positive integer m and a
partition A we write also

mA = (mA,mhy,...).

To any partition we associate a Young diagram, which is a collection of rows of
square boxes with \; boxes in the i-th row, ¢ = 1,...,l(A). A box in a Young
diagram is called a node. The coordinate of the j-th box in the i-th row is the pair
of integers (¢, 7). The content of the node of coordinate (i, 7) is the integer j—i. Let
the set Py consist of a single element, the unique partition of zero, which we denote
by 0. Let P = | |,5,Pn be the set of all partitions. We'll abbreviate Z, = Z/(Z.
Let P* be the set of £-partitions, i.e., the set of all partition-valued functions on Z,.
Let P% be the subset of (-tuples A = (A(p)) of partitions with |A\| = >, A@) =n.
Let T’ be the group of the /-th roots of 1 in C*. We define the sets P¥, PL of
partition-valued functions on I' in the same way.
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3.2. The complex reflection group I',,. Fix nonnegative integers ¢, n. Unless
specified otherwise we’ll always assume that £,n # 0. Let &, be the symmetric
group on n letters and I',, be the semi-direct product &, x I'", where I'"" is the
Cartesian product of n copies of I'. We write also &y = '’ = I'y = {1}. For
v € I' let 7; € I'™ be the element with v at the i-th place and with 1 at the other
places. Let s;; be the transposition (¢, j) in &,,. We'll abbreviate s; = s; ;1. Write
s;’J = sij’ymj_l for v € I', i # j. For p € Zy let x, : I' = C* be the character
v +— . The assignment p — X, identifies Z, with the group of characters of I'.
The group I, is a complex reflection group. For ¢ > 1 it acts on the vector space
h = C™ via the reflection representation. For ¢ = 1 the reflection representation is
given by the permutation of coordinates on the hyperplane

Cy={x1+ - -+x,=0} CC".

We'll be interested in the following subgroups of T',,.

e To a composition v of n we associate the set
I={1,2,...,n=1}\{v1,v1 + va,... }.

Let I'), = 6, x '™, where 6,, = & is the subgroup of &,, generated by the
simple reflections s; ;41 with i € I.

e For integers m,n > 0 and a composition v we set I'y,, =T, x &,. If
v = (m) we abbreviate I', ,, = 'y, () = I'n X &, Any parabolic subgroup
of T, is conjugate to I'; , for some I, v with [ + |v| < n.

3.3. Definition of the cyclotomic rational DAHA. Let h = C™ be the reflec-
tion representation of I',,. Denote by ¥1,...,y, the standard basis of h, and by
T1,...,Ty, its dual basis in h*. The actions of the group I';, on h and on h* are
given as follows: for distinct i, j, k we have

Yiyi) = i, ’Yi(yj) =Y Sij(yi) =Yj Sij(yk) = Yk,

Yilw:) =y @, Vilws) = x5, si(@) = x5, siy(ak) = .
Fix k € C and ¢ € C for each v € I'. We can define the algebra H(W) = H(W, )

for W =T,,. We’ll call H(T'),) the cyclotomic rational DAHA. Tt is the quotient of
the smash product of CI',, and the tensor algebra of hh @ h* by the relations

yirws) = =kY_ D sli—Y e a=—1,

Jj#i yel yel

i i) =k qs); ifi#j,

yel

(@i, %5] = [yi, y;] = 0.
Let R;, R, be the subalgebras generated by zy,%2,..., 2, and y1,¥2,...,yn Te-
spectively. We'll identify b, h* with the maximal spectrum of R,, R,. We'll use

another presentation where the parameters are h, h, with p € Z; where k = —h
and —cy =3, 7 Phy. Note that 1=3" h,.
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968 P. SHAN AND E. VASSEROT

3.4. The Lie algebras f/y\[[ and ;[g. Given complex numbers h,, p € Z;, with
Zp hp, =1, it is convenient to consider the following level 1 weight

(3.2) A= "hyw,.

Here the w,’s are the fundamental weights of the affine Lie algebra
sl = (sl ® Clw, w™1]) @ C1,
where 1 is a central element and the Lie bracket is given by

(3.3) @ y® o] =[z,y) @@+ r(x,y)d—s1, (x,9) = 7(xy),

~

where y — y! is the transposition and 7 is the trace. The affine Lie algebra sl, is
generated by the symbols e,, f,, p =0,...,¢—1, satisfying the Serre relations. For
p # 0 we have

—1
ep=€ppr1 V1, e=e€,1®@w, fr=er1,®1, fo=e/Q@m

where e, 4 is the usual elementary matrix in sl,. We'll also use the extended affine

Lie algebras ;[g, obtained by adding to ﬁA[g the 1-dimensional vector space spanned
by the scaling element D such that [D,z @ @"] = r& @ w” and [D,1] = 0. Let §
denote the dual of D, i.e., the smallest positive imaginary root. We equip the space
of linear forms on the Cartan subalgebra of sl, with the pairing such that

(wp,wq) = min(p, q) — pg/l, (wp,0) =1, (4,9)=0.

Let U (;[g) be the enveloping algebra of sly, and let U~ (;[g) be the subalgebra
generated by the elements f, with p=0,...,¢— 1. For r > 0 we write U~ (sly), for

the subspace of U _(;[g) spanned by the monomials whose weight is the sum of r
negative simple roots.

3.5. Representations of S,,, I',,. The set of isomorphism classes of irreducible
S,,-modules is

Ir(CS,,) = {Lx; A € Pn};

see [27, sec. 1.9]. The set of isomorphism classes of irreducible I',-modules is
Irr(CT,,) = {Lx; A € PLY,

where Ly is defined as follows. Write A = (A(p)). The tuple of positive integers
vx = (|A(p)]) is a composition in A(¢,n). Let

L) xp—1)®P € e (CT 5 )

be the tensor product of the &)y (,)-module E,\(p) and the one-dimensional T Pl
module (y,_1)®*®). The T',,-module Ly is given by

(3.4) Ly = Indpr (Laayxy ™' @ Lo @ @ @ Ly 3™).

Licensed to Universite Bordeaux |. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 969

3.6. The category O(I'),). Consider the C-algebra H(I',) with the parameter A
in (32). The category O of H(T,,) is the quasi-hereditary category O(T';,). The
standard modules are the induced modules

Ay =Indf (3 (L), AePL.

Here L, is viewed as a ', x R,-module such that yi,...,y, act trivially. Let Ly,
P, denote the top and the projective cover of Ay. Recall the C-linear isomorphism
(3.5) spe : [Rep(CT,)] = [O(TW)],  [La] = [An:

To avoid cumbersome notation for induction/restriction functors in

or) =@or,)

n>0
we’ll abbreviate
©Ind,, = OIndgL17 ORes, = ORGSF:,N
(3 Ond ey = I 7 OResn oy = Rest

We write also
Ind(,,ry = CIndgy™ : O(61,) = O(G,y),

ORes(mr) = OReng?” :O0(Gpr) — O(67).
3.7. The functor KZ. For ( € C* and v1,v2,...,u, € C* let H¢(n,¢) be the

cyclotomic Hecke algebra associated with I'), and the parameters (, vy, ..., vy; see
Section We'll abbreviate H(I',,) = H¢(n, £). Assume that

¢ =exp(2imh), v, =u exp(—2i7r(h1 +hy+---+ hp_l)).
Then the KZ-functor [14] is a quotient functor
KZ: O(T',)) — Rep(H(L,)).
Since KZ is a quotient functor, it admits a right adjoint functor
S :Rep(H(T,,)) — O(Ty,)

such that KZo S = 1. By [14, thm. 5.3], for each projective module @ € O(T',,) the
canonical adjunction morphism 1 — S o KZ yields an isomorphism

(3.7) Q — S(KZ(Q)).

3.8. The functor R. Let H¢(m) be the Hecke algebra of GL,, over C; see Section
Let S¢(m) be the ¢-Schur algebra over C; see Appendix [Bl The module
categories of S¢(m), H¢(m) are related through the Schur functor

®* : Rep(S¢(m)) — Rep(H¢(m)).
Set
A(m)+:A(m,m)ﬂZT, ZT:{)\:()\l,AQ,...,Am)GZm : )\12)\222)\7,1}

The category Rep(S¢(m)) is quasi-hereditary with respect to the dominance order,
the standard objects being the modules Af with A € A(m)4. The comultiplication
A yields a bifunctor (B.6))

@ : Rep(S¢(m)) @ Rep(S¢(m’)) = Rep(S¢(m +m')).
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Now, assume that h is a negative rational number with denominator d and let
¢ € C* be a primitive d-th root of 1. Recall that h is the parameter of the C-
algebra H(&,,). If h ¢ 1/2 4+ Z, then Rouquier’s functor [32] is an equivalence of
quasi-hereditary categories

R:0(6,,) = Rep(S¢(m)), Ay~ A,

such that KZ = ®* o R. For m = m’ + m” we have a canonical equivalence of
categories O(S,, ) R0(6,,) = O(6,, x &) and the induction yields a bifunctor

(38) OIde/’mH : O(Gm/) & O(Gm//) — O(Gm)
We’ll abbreviate
0(6) = 0(&,), Rep(Sc) = EP Rep(Sc(n)).

n>0 n>0
Proposition 3.1. For h ¢ 1/2+4 7Z the functor R is a tensor equivalence O(&) —
Rep(S¢).
Proof. We must check that R identifies the tensor product ® with the induction
B8). First, fix two projective objects X € O(S,,) and Y € O(S,,+). We have
* (R(X)®R(Y)) = HIndyy (2" R(X) ® @*R(Y))

=H"Indy m (KZ(X) @ KZ(Y))

=KZ(°Indn/ i (X @ Y))

= ®*R(°Ind (X ®Y)).
The first equality follows from Corollary [B.4] the second one and the fourth one

come from KZ = ®* o R, and the third one is the commutation of KZ and the
induction functors; see [33]. Since the modules R(X)®R(Y) and R(“Ind,y m (X ®

Y)) are projective, and since ®* is fully faithful on projectives we get that
R(X)QR(Y) = R( Indy m (X @ Y))
Now, since the functors (B.f), (B.8)) are exact and coincide on projective objects, and

since the category O(&,,) has enough projectives, the proposition is proved. ([l

3.9. The categorification of sl,,. Recall that Z(O(T',)) is the center of the cat-
egory O(T';,). Let D, (z) be the polynomial in Z(O(T;,))[z] defined in [33] sec. 4.2].
For any a € C(z) the projection to the generalized eigenspace of D, (z) with the
eigenvalue a yields an exact endofunctor @y, 4 of O(T',,). Next, consider the point

b, =(0,0,...,0,1) e, Hh=C".
The induction and the restriction relative to b, yield functors
°Ind,, : O(T',_1) = OI,), “Res, : O',) = OT,_1).
Definition 3.2 ([33] sec. 4.2]). The g-restiction and the g-induction functors
eq: OT,) = O(Ty1), fe:0Tp-1) = 0T,), ¢=0,1,....m—1

are given by

€q = @ Qn—La/(z—Cq) © OResn OQn,av
acC(z)

fq = @ Qn,a(zf(q) o Olndn o Qn—l,a-

aeC(z)
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We’ll abbreviate
E=e®e1® - @en1, F=fo@/i® O fm
Following [33] sec. 6.3], for L € Irr(O(T")) we set

€q(L) =top(eq(L)), fq(L) =soc(fq(L)), &4(0) = fq(0) =0.

Now, for each n we choose the parameters of H(I',) in the following way:
(3.9) h=-=1/m, hy,=(Sp+1—Sp)/m, Sq€Z, p#0.
The following hypothesis is important for the rest of the paper:

from now on we’ll always assume that m > 1.
The C-vector space [O(I')] is canonically isomorphic to the level £ Fock space }"T(,i)e
associated with the (-charge s = (sp); see ([.20) below for details. The latter is
equipped with an integrable representation of ;[m of level ¢; see Section below.

Proposition 3.3. (a) The functors ey, fq are exact and biadjoint.

(b) We have E = “Res,, and F = ©Ind,, .

(¢) For M € OT,,) we have E(M) = 0 (resp. F(M) = 0) iff E(L) = 0
(resp. F(L) =0) for any constituent L of M.

(d) The operators eq, fq equip [O(')] with a representation of sl, which is iso-
morphic via the map [B20) to -7:7(;,)5'

(e) The tuple (Irr(O(T)), &y, f,) has a crystal structure. In particular, for L, L €
Irr(O(T)) we have é4(L), fo(L) € Irr(O(T')) U {0}, and é,(L) = L' if and only if
fo(L') = L.

Proof. Parts (a), (b) follow from [33, prop. 4.4], part (e) is contained in [33, thm. 6.3],
part (c) is obvious, and part (d) is [33, cor. 4.5]. O

3.10. The filtration of [O(T',)] by the support. Fix a positive integer n. As-
sume that ¢ > 2. In this section we consider the tautological action of I',, on C™.
For an integer I > 0 and a composition v such that | + |v| < n we abbreviate
X7, =Xy and X;, = Xwyp, where W =17 ,. If v = (m/) for some integer j > 0
such that [ 4+ jm < n we write

e} o
Xl,j = Xz,w Xij =X

Therefore X; ; is the set of the points in C™ with [ coordinates equal to zero and
j collections of m coordinates which differ from each other by ¢-th roots of one.
To avoid confusion we may write X; jc» = X;;. Unless specified otherwise, for
l,j,m,n as above we’ll set

(3.10) i=n—1—jm.
Definition 3.4. For i,5 > 0 we set
Irr(O(T'n))i; = {L € Irr(O(T'y)) = Supp(L) = X5}
Definition 3.5. For i,j > 0 let F; ;(I',,) be the C-vector subspace of [O(T},)]

spanned by the classes of the modules whose support is contained in X ;, with [ as
in BI0). If <0 or j < 0 we write F; ;(I'y,) = 0.

Definition 3.6. We define a partial order on the set of pairs of nonnegative integers
(4,j) such that i+ jm < n given by (¢, j') < (4, ) if and only if X;/ ;; C X; ;, where
l=n—i—jmandl'=n—14 — j'm.

Licensed to Universite Bordeaux |. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



972 P. SHAN AND E. VASSEROT

Since the support of a module is the union of the supports of all of its constituents,
the C-vector space F; ;(I',) is spanned by the classes of the modules in Irr(O(T,,))
whose support is contained in X j, or, equivalently, F; ;(I',) is spanned by the
classes of the modules in

U Iomn))i
(#,3) < (57)

Remark 3.7. We have |, ; Fi,;(I'n) = [O(I';)]. Indeed, for L € Irr(O(I';,)) we have
Supp(L) = X, for some [, v; see Section For b € X7, the H(I';,)-module
Resy(L) is finite dimensional. Thus, since the parameter h of H(I';,) is equal to
—1/m the parts of v are all equal to m. Hence we have Supp(L) = X; ; for some
l,7 as above.

The subspaces F; ;(I',) give a filtration of [O(I',,)]. Consider the associated graded
C-vector space

gr(l'y) = @ gr; ; (I'n).

The images by the canonical projection F; ;(I'y) — gr; ;(I';) of the classes of the
modules in Trr(O(T',,)); ; form a basis of the C-vector space gr; ;(I';). So we may
regard gr, ;(I',) as the subspace of [O(I',,)] spanned by Irr(O(I',,)); ;. We'll abbre-

viate
Fio(Tp) =Y Fij(Tn), Foj(Tn) =Y F;;(Tn),
J i

gri,o(rn) = @gri,j (Fn)’ Ele j (Fn) = @gri,j (Fn)

Now, let us study the filtration of [O(I',)] in detail. The subgroup I'; (,,,5y of ', is
contained in the subgroups I'j 1 (mi), It (mi+1) and Ty, (mi-1y (up to conjugation
by an element of T',,) whenever such subgroups exist. Thus we have the inclusions

Xit1,5> Xij+1, Xigm,i—1 C Xp 5,
Fi1;(Tn); Fimmj+1(Tn), Fij—1(Tn) C Fij(I).
Proposition 3.8. (a) We have
Xy @ Xy = Xvj CXip1,; UXp 1 UXipm j-1-
(b) We have an isomorphism of C-vector spaces
97;;(Cn) = Fi j(Tn)/(Fic1,5(Cn) 4+ Ficmjy1(Tn) 4+ Fij—1(Tn)).

Proof. First we prove (a). Recall that X ; is the set of the points in C™ with [
coordinates equal to zero and j collections of m coordinates which differ from each
other by /-th roots of one. Therefore we have

(311) Xllﬁj/ - lej = i1 = max((), (]/ —j)m)
In particular this inclusion implies that I’ > I. We must prove that
X g G Xij = Xurjr C X j U X U Xipm i1

First, assume that " = [. Since Xy j» C X;; we have ¢ > ¢’. Then (3I0) implies
that i—4’ = (j'—7)m, hence that 7' > j and i—i’ > m. Soi—i’ > max(m, (j'—j)m),
and (BII) implies that Xy ;v C Xj j41.
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Next, assume that { +m >’ > [. Since Xy j C X;; we have i > /. Further
(BI0) implies that ¢ —¢' > (j' — j)m and ' —i > (j — j' — 1)m. Thus ¢ > ¢’ implies
indeed that ¢ > 4" and j' > j. So i — 1 — 4 > max(0, (j' — j)m), and BII) implies
that X[/J/ C Xl+17j.

Finally, assume that I’ > [ + m. Since Xy jy C X;,; we have ¢ > ¢'. Further
3I0) implies that i — i > (' — 7 + 1)m. So i — ¢ > max(0, (5’ — j + 1)m), and
BI1I) implies that Xy j» C Xiym j—1.

Part (b) is a consequence of (a) and of the definition of the filtration on [O(T',)].

]

Remark 3.9. The sets X415, Xi,j+1, Xi+m,j—1 do not contain each other. Indeed,
the variety X; ; has the dimension ¢ + j. Thus the codimensions of X; 41 j, X i1,
Xitm,j—1 in X ; are 1,m — 1,1 respectively. However, since a point in chjj+1 has
only [ coordinates equal to 0, we have X; ;41 ¢ X1, and X ;41 & Xijgm j—1-

Remark 3.10. We have F, o(T',) = [O(T'},)], because (4, j) < (i + jm,0).
Remark 3.11. We have (¢/,5') < (0,7) if and only if i/ = 0 and j' < j.
Remark 3.12. Consider the set

Fij(Tn)° =F;j(Tp) \ (Fi1,;(Tn) + Fimmj11(Tn) + Fij—1(T0)).
For L € Irr(O(Ty,)), by Proposition B8 and Remark 3.7 we have

[L] € F; ;(I'n)° <= Supp(L) = Xy,
< Lehr(0T,)):;.

Remark 3.13. A representation is finite dimensional if and only if its support is
zero. Thus Irr(O(T',,))o,0 is the set of isomorphism classes of finite-dimensional
modules in O(T',,). Note that (0,0) < (¢, 7) for all (i, 7).

Remark 3.14. If ¢ = 1, then, by Remark 2] and Section we have O(6,,) =
0(6,,Cy). For an integer j > 0 we set X, = XGZ,L,CZ;; i.e., X; is the set of the
points in C§ with j collections of m equal coordinates. Then, we set i = n — jm
and the results of this section extend in the obvious way. In particular, we have

Xy CcX; <= j>j, X;yCX, <= XjCXjn.
Remark 3.15. For A € P,., r > 1, the support of the module L, € Irr(O(&,,,)) is
(3.12) Supp(Lma) = Xer, cpr-
Indeed, formula (EI6) below and Proposition 27 imply that
Supp(Lu,n) C Supp(oInd(mT)(LE@Wz))) = Xer, cor-
Next, by Remark 3.7 there is j = 0,1,...,r such that
Supp (L) = X, cpr-

Finally the inclusion Xg; cpr C X cpr implies that j = 7 by Remark [3.141
Note that the equality [BI2) also follows from the work of Wilcox [37].
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3.11. The action of E, F on the filtration. Let E, F' denote the C-linear
operators on [O(T")] induced by the exact functors E, F. Recall that the parameters
of H(T) are chosen as in ([3.9).

Proposition 3.16. Let L € Irr(O(T',)); ; and | =n —i —mj.
(a) We have Supp(F(L)) = X; jcn+1-
(b) We have E(L) =0 iff i = 0. We have Supp(E(L)) = X, jcn-1 if i > 0.

Proof. Recall that
Supp(L) = X;; = X; jcn, E(L)=%Res,(L), F(L)=°Ind,(L).

Thus by Proposition 22l we have E(L) = 0 iff b,, ¢ X, ;. Since m > 1 the definition
of the stratum X; ; in Section BI0 shows that b, ¢ X ; iff i = 0. Now, assume
that ¢ > 0. Then [ +mj < n — 1, and Proposition yields

Supp(E(L)) = | Xw.er1,
w

where W runs over the parabolic subgroups of I',_; which are I',,-conjugate to
L'} (msy (inside the group I',). We claim that a subgroup W C I',,_; as above is
I';—1-conjugate to I'; (,5) (inside the group I',,_1). Therefore, we have

Supp(E(L)) = X; jcn-1.

Indeed, fix &’ € C"~! such that W = (I',_1)p. For b= (¥, z) with z € C generic we
have (T',,), = W, where W is regarded as a subgroup of T';, via the obvious inclusion
I'—1 C Ty Since W is T'y-conjugate to I'y (,,5), there is an element g € T', such
that the first | coordinates of g(b) are 0, the next mj ones consist of j collections
of m coordinates which are proportional to each other with a ratio given by an
{-th root of one, and the last ¢ coordinates of g(b) are in generic position. We’ll
abbreviate
g(b) € 0'(m)7 " .
Since z is generic it is taken by g to one of the coordinates of g(b) in the packet x*.
Composing g by an appropriate reflection in &,, we get an element ¢’ € I',,_; such
that
g'(0) = (g'(t),2) € 0'(m)” + .
Thus we also have
J(¥) € 0 (m)

This implies the claim. Hence, we have

Supp(E(L)) = X; jcn-1.
Finally, since Supp(L) = X j cn, Proposition 27 implies that

Supp(F'(L)) = X j e+t

O

Corollary 3.17. (a) We have E(F; ;(T'y)) C Fi—1,;(Tn=1). If i # 0 we also have
E(F;j(Tn)°) C Fio1;(Tn-1)°.

(b) For M € O(T'y,) with [M] € F; ;(T'y)° we have E([M]) =0 iff i = 0.

(C) We have F(FL](P")) - FiJrLj(PnJrl) and F(Fi’j(].—\n)o) C FiJrLj(PnJrl)O.
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Proof. First, let L € Irr(O(T',,)) with [L] € F; ;(T'y). Thus L € Irr(O(T")) s ;» with
(i',4") < (4,7). Proposition yields
Supp(F(L)) = Xl/,j’,C"+17 Supp(E(L)) = Xl’,j/,(c”’l lf i/ # O

Hence we have F([L]) € Fiy1,;(T'n41) and E([L]) € F;_1,;(T'n—1). Part (b) follows
from Proposition and Remarks BT} Part (c) follows from Proposition
and Remark The second part of (a) follows from Proposition and
Remark O

Corollary 3.18. Let L € Irr(O(T',,)); ;-
(a) If éq(L) # 0, then éq(L) € Irr(O(T'n—1))i-1,;-
(b) If fo(L) # 0, then fo(L) € Irr(O(Tnt1))it1,5-
Proof. Set L' = é,(L). Assume that L’ # 0. By Proposition [3.3] we have
L elr(OT,_1)), f (L')=L.

Next, since L € Irr(O(T'));; and since é,(L) is a constituent of E(L), we have
[L'] € F;_1 ;(T'y—1) by Corollary BI7l We must prove that [L'] € F;_q ;(T'y—1)°. If
this is false, then we have [L'] € Fy j/(I',—1) with

(i) =06—-2,9), i—m—1,7+1), (i—1,5—1).
Thus, since f,(L') is a constituent of F(L'), by Corollary BT we have
(3.13) (2] € g1, (Ta) O Firy1,5(T).

Therefore (BI]) yields ¢/ +1 >4, s04 =i— 1 and 5/ = j — 1. So, applying (B.I1)
once again we get a contradiction with (3I3]). This proves (a). The proof of (b) is
similar. ]

Corollary 3.19. (a) For x € [O(T")] we have
(eq(x) =0, Yg=0,1,...,m—1) < =z € Fy(I).
(b) For M € O(T') we have
EM)=0 < E(M])=0 < [M] € Fy.(T).
(c) The space Fy o(T") is spanned by the set
{I[L]: L e Irr(OM))o.e} = {[L] : L € Irr(O(T")), E(L) =0}
={[L] : L e r(OT)), &,(L) =0, YV¢=0,1,...,m — 1}.
Proof. For x € [O(I")] we write x = ), xr[L], where L runs over the set Irr(O(T")).
By [33] lem. 6.1, prop. 6.2], for each ¢ we have
eq(2) =0 < zp =0if e,([L]) #0.
Thus the C-vector space
{z € [O)] : ez) =0, Vg=0,1,...,m—1}

is spanned by the classes of the simple modules L such that e,([L]) = 0 for all
q=0,1,...,m — 1. Then, apply Corollary 317 This proves (a). Parts (), (c) are
obvious. Note that

éq(L) =0, Vg < eq(L) =0, Vg,

because a nonzero finitely generated module has a nonzero top. ([l
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4. THE FOCK SPACE

From now on we’ll abbreviate

R(6) = BIRep(CS,)], R(I') = @D[Rep(CT,,)-

n=0 n>0

4.1. The Hopf C-algebra A. This section and the following one are reminders
on symmetric functions and the Heisenberg algebra. First, recall that the C-vector
space R(G) is identified with the C-vector space of symmetric functions

A= (C[:L‘l,wg, .. .]GW
via the characteristic map [27, chap. 1]
ch: R(6) — A.

The map ch intertwines the induction/restriction in R(&) with the multiplica-
tion/comultiplication in A. More precisely, for each m,n > 0 the restriction yields
a linear map

Resp m : [Rep(CS,4m)] = [Rep(CE,,)] ® [Rep(CS,,)].

Then, under ch, the sum €, ,, Res;, ,,, is identified with the coproduct of A. The

map ch takes the class of the simple module Ly to the Schur function Sy for each
A € P. The power sum polynomials are given by

Py=P\,P,..., Przzxg, Py=1, XeP, r>0.
i

We equip the C-vector space A with the level 1 action of 5A[m given by

(4.1) eg(SN) = S, fo(S) =D Su q=0,....m—1,
v I

where v (resp. p) runs through all partitions obtained from A € P by removing
(resp. adding) a node of content ¢ mod m. We equip A with the symmetric bilinear
form such that the Schur functions form an orthonormal basis. The operators e,
fq are adjoint to each other for this pairing.

4.2. The Heisenberg algebra. The Heisenberg algebra is the Lie algebra $
spanned by the elements 1 and b,, b,., r > 0, satistying the following relations:

[b,b.] = [by,bs] =0, [b.,bs] =718,5, 1,8>0.

T8

Let U($) be the enveloping algebra of §), and let U~ ($)) C U($)) be the subalgebra
generated by the elements b, with r > 0. Write U~ (), for the subspace of U~ ()
spanned by the monomials b, b, --- with ) .r; = r. For A € P and f € A we
consider the following elements in U($)):

by =baby, -, by =0 by,
by= Yz (Pa,f)ba, by =D 2Py f)bh,
\eP \eP

where z is as in (B]). For any integer ¢ we can equip A with the level ¢ action
of $ such that b, acts by multiplication by ¢P,. and b, acts by rd/dp, for r > 0.
The operators b,., b. are adjoint to each other for the pairing on A introduced in
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Section @Il Further, they commute with the sl,,-action in @ID); see, e.g., [35]
prop. 4.6]. We write Vf = A regarded as a level £ module of §. Consider the
Casimir operator

1
(4.2) 0= > b

r>1
To avoid any confusion we may also call it the level ¢ Casimir operator. This formal
sum defines a diagonalisable C-linear operator on V,” such that

[0,b.] =7b., [0,b.] = —rb].

For each integer j let Vf” [1] € Vfj be the eigenspace of 9 associated with the
eigenvalue j. Below, we’ll equip A with the $)-action of level 1, i.e., we’ll identify
A =V unless mentioning explicitly the contrary.

4.3. The Lie algebras 5{ and 5[ . We define the Lie algebra g[m in the same
way as 5[m, with gl,, instead of sl,,. We'll also use the extended affine Lie algebra

[m, obtained by adding to g[ the 1-dimensional vector space spanned by the
scaling element D such that [D,x @ w"] = r£®w"” and [D, 1] = 0. The Lie algebra

(4.3) (st x $)/(m(1,0) - (0,1))

is isomorphic to 5[ via the obvious map, which takes the element b/. to Zp 1€pp®
w" and the element b, to Z 1 epp@u " for each r > 0. Unless specified otherwise,
by a g -module we’ll always mean a module over the Lie algebra ([@3]), i.e., an
5[ -module with a compatible $)-action. Similarly, by a g[ -module we’ll always

mean a g[m-module with a scaling operator D such that
[Diz@w"|=rzew’, [D,b]=-rb. [D,b.]=rb.

Let P'= and P*' be the weight lattices of ;[m and 5~[m respectively. In other
words P®'m is the lattice spanned by the affine fundamental weights and Pstm s
the direct sum of P*' and Z6. We may write PSln = Psim and PSln = Psim,

By a dominant mtegral weight of g s g[ we’ll always mean a dominant integral

weight of 5[m, sl,,. We denote the sets of such weights by Pg[’” Pg[ or by P;[

P; [m For A € P} [m let VY st and Vg ol be the irreducible mtegrable modules over
[m, g[ with the highest weight \. We have an isomorphism of g[ -modules

al,, _ 1/5lm g
VEm =Vim @V,

Let Q%'m, ~P5["" be the root lattice and weight lattice of sl,,. The weights of the
module V5 are all the weights of the form

p=wo 8- (05—, FEQ, i>0

Among those, the extremal weights are the weights for which 7 = 0. The set of the
extremal weights coincides with the set of the mazimal weights, i.e., with the set
of the weights u such that u + § is not a weight of Vj; A weight p of Vj(f is
extremal if and only if

{p:p) =0.
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Note also that we have (u, u) = —2i if and only if g+ ¢4 is an extremal weight. See,
e.g., [ sec. 20.3, 20.5] for details. For any sl,,,-module (resp. g~[m-module) V and
any weight p we’ll denote by V{u] the weight subspace in V' of weight p.

Now, let T}, be the standard maximal torus in SL,,, and let t,, be its Lie algebra.
Let @m be the affine symmetric group. It is the semidirect product &,, x Q%'.
Note that Q%' is the group of cocharacters of T},,. We’ll regard it as a lattice in t,,
in the usual way, and we’ll identify t,,, with t;, via the standard invariant pairing
on t,,,. The &,,-action on tf, @ Cuwgy @ CJ, see, e.g., [23] sec. 13.1], is such that the
element B in Q%' acts via the operator

1
(44) &t prr gt p(1)B = (1, B) + 5(8, BH(1))d.
In particular, we have
Es(wo) = wo + f — 5(8, 8)6.

We'll use the same notation for the ém—action on tf & Cwy® Cé and on t), & Cwo,
hoping it will not create any confusion. Therefore, for u € t}, & Cwy the symbol
&s(p) will denote both the weight given by (@4) and the weight p + u(1)5. We
can view the cocharacter 8 € Q' as a group-scheme homomorphism G,, — T},.
Thus the image (w) of the element w € K lies in T,,,(K). The coadjoint action of
B(w) on t&, & Cwy & C4 is given by §§1§ see, e.g., [30]. Therefore for any integrable

;[m—module V we have
(4.5) BV = VIEs ().

4.4. The Hopf C-algebra Ar. Now, let us consider the Hopf C-algebras R(T).
Once again, the multiplication/comultiplication on R(T') is given by the induc-
tion/restriction. We equip R(T") with the symmetric C-bilinear form given by

(f9)=ITul™" > f@)g(a™), f.g € [Rep(CT,)].
zely,

Here we regard f, g as characters of CI',,. This bilinear form is a Hopf pairing. Next,
we consider the Hopf C-algebra Ar = A®T". We’ll use the following elements in Ar:

=12 -1 felew---1, feA, ~el,
with f at the y-th place. We abbreviate
Py =(P), P=][F, neP, rxeP.
~eT

The comultiplication in Ar is characterized by

APN)=P’®1+1®P), r>0, yel.
Following [27], chap. I, app. B, (7.1)] we write

P.,= ¢t Zprﬂ, r=0, peEZy.
yer

We equip Ar with the Hopf pairing such that

(Prpy Psg) =10p.g0rs, 1,8>0, p,q€Zy.

The elements P, ,, r > 0, are algebraically independent and generate the C-algebra
Ar. Thus, we may regard P, ,, r > 0, as the r-th power sum of a new sequence of

Licensed to Universite Bordeaux |. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 979

variables x; ,,, © > 0. We do not need to construct explicitly the elements x; ,, i > 0.
They are auxiliary variables which are only used to define the following elements:

(4.6) Sup=Su(@ip), Sn=]] Sxwp wrEP, AP

PELy
Here, the symbol S, denotes the Schur function associated to the partition u. By
construction, the elements Sy are indeed polynomials in the P, ,’s. So they belong
to Ar. The Hopf C-algebras R(T") and Ar are identified via the characteristic map
[27, chap. I, app. B, (6.2)]

ch: R(F) — AF.

This map intertwines the induction in R(T") with the multiplication in Ar by [27]
chap. I, app. B, (6.3)]. By [27 chap. I, app. B, (9.4)] and (34]) we have

(4.7) ch(Ly) = S;x, AePE,
where 7 is the permutation of P¢ such that (7A)(p) = A\(p+ 1) for each p € Z,. For

A € P we write
2y = H Z}\(v)gl(k(v))7
yel
where zy(,) is as in (3., and we define A € PT' by A(y) = A(y~!). Then we have

<S)\7 S,u> = 5)\,;“ Aa,“f € ,Péa

(4.8) i
(Px,Pg) = 0xu2x, Ap€eP.

The first equality is proved as in [27], chap. I, app. B, (7.4)], while the second one
is [27, chap. I, app. B, (5.3')]. By (1), (£]) the map ch is an isometry. Thus it
intertwines the restriction in R(I') with the comultiplication in Arp.

Proposition 4.1. (a) The restriction Rep(CI',,) — Rep(C&,,) yields the C-algebra
homomorphism Resg : Ar — A such that Sy — Hp Sxp)s Prp — Pr.

(b) The induction Rep(CS,,) — Rep(CT',,) yields the C-algebra homomorphism
Indg : A — Ar such that P, — P} = P,

pEZLy ~ THP*

Proof. First, we concentrate on (a). Recall that Rep(CI'),), Rep(C&,,) are iden-
tified with Ap, A via the characteristic map, which is a C-algebra isomorphism.
Under this map, the restriction Rep(CI',,) — Rep(C&,,), which is a C-algebra ho-
momorphism, can be regarded as a C-algebra homomorphism Reslé cAr = AL Tt
takes Sy to [[,, Sx(p) by formula ([.T), because, by formula (3.4), the simple module
L. -1, is induced from the tensor product of the representations associated with the
Sx(p)’s. To prove that Resg(P,,) = Py, observe that

ch(oyp) = Prp, 1T >0,

where o, is the class function on I', which takes the value 7(y1y2 - - - 7»)? on pairs
(w, (71,725 - - -»¥r)) such that w is an r-cycle, and 0 elsewhere; see [12] lem. 5.1].
Now, it is easy to see that the restriction of the class function o, , to the group &,
is precisely the class function associated to the symmetric polynomial P,.. Now we
concentrate on (b). Note that

Resg(P)) =1, Resg(P))=105,1P,, r>0.
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Therefore, for A € PT we have

Resc Py) = H Resb /\(w)
~yel

If f,g € [Rep(CT,)] are the characters of finite-dimensional I';,-modules V, W,
then (f, g) is the dimension of the space of CI',-linear maps V' — W. Hence, by
Frobenius reciprocity, the operator Indg is adjoint to the operator Resl(;. Thus,

if AM(y) =0 for v #1,
else.

{él NPyay ifA(y)=0for v #1,

0 else.

P
(IndX (P,), Py) = {S A1), (r)

This implies that Indg(P,.) = aP} for some a. To determine a, let A be such that
A7) =0if v # 1 and A(1) = (r). Then we have

P)\:Prl, <P)\,P)\> =7/
This implies that a = 1. O

Remark 4.2. Let f — f be the C-antilinear involution of Ar which fixes the Py\’s
with A €PF; see [27, chap. I, app. B, (5.2)]. For A € P’ let A be the (-partition
given by A(p) = A(—p). We have

P,=P. _, S\=85, r>0, peZy, P

Remark 4.3. Setting £ = 1 in Ar we get the standard Hopf algebra structure and
the Hopf pairing of A.

Remark 4.4. We have |27, chap. I, app. B, (7.1)]

PY=3 7Py, 120, Fl=1 Py,=0o,.
PEZLy

4.5. The level 1 Fock space. Fix once and for all a basis (€1, ..., €y,) of C™. The

level 1 Fock space of s?[m is the space JF,,, of semi-infinite wedges of the C-vector
space V,, = C™ ® C[t,t~!]. More precisely, we have

Fm = @dezfg)>

where ]—"7(,31 ) is the subspace spanned by the semi-infinite wedges of charge d, i.e.,
the semi-infinite wedges of the form

(49) Ujy AUy Aoy 1 > 09> ..., ui_jm:ei®tj,
where i, =d—k+ 1if £ > 0. We write
(410) |)\,d>:ui1/\uiz/\-~-, AeEP, =X +d—-k+1, k>0

The elements |\, d) with A € P form a basis of .7-',(,?). We equip .F,(,f) with the
C-bilinear symmetric form such that this basis is orthonormal.

The Fock space ]-',(ﬁl ) is equipped with a level one representation of sA[m in the
following way. First, the C-vector space V,, is given the level 0 action of sl,,, induced
by the homomorphism

(4.11) sl = 5L, @C[LETY, 10, 2@ z®t
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and the obvious actions of sl,, and C[t,t7!] on V,,. Then, taking semi-infinite

wedges, this action yields a level 1 action of ;[m on ]:7(7?); see, e.g., [35].

Next, observe that the multiplication by t", » > 0, yields an endomorphism of
V. Taking semi-infinite wedges it yields a linear operator b, on }'T(,ff ). Let bl be
the adjoint of b.. Then b/, b, define a level m action of $) on }'r(,?). The ;[m—action
and the $-action on ]-'7(751 ) glue together, yielding a level 1 representation of le on
FD: see [35] again.

We have an isomorphism of (simple) gl,,,-modules
(4.12) Fld) = yotn

m Wdmod m’
see [19, chap. 14] and the references there. It is unique up to a scalar. It identifies

the symmetric bilinear form of ]-",(,fl ) with the Shapovalov form on V} L ie.,

Wd mod m ?

with the unique (up to a scalar) symmetric bilinear form such that the adjoints of
by, eq are b, f, respectively.

Remark 4.5. The C-linear isomorphism

(4.13) FD 5 A, Nd) Sy, AEP

takes the operators b/, b,, €4, f, on the left-hand side to the operators b/, ,., by,

€q—d; fq—aq on the right-hand side.

4.6. The level ¢ Fock space. Fix abasis (€1, ..., €,) of C™ and a basis (é1,. .., €)
of C. The level £ Fock space of sl,, is the C-vector space

d
]:m,é = @dEZ ]:7(717)€

of semi-infinite wedges of the C-vector space V,,, y = C"®@C*®C[z, 2~ !]. The latter
are defined as in (£9]) with

(4.14) Ui (j—)ym—kmt = € @ € @ 2",

Heret=1,...,m,5=1,...,¢, and k € Z. Using the semi-infinite wedges of these
elements, we define basis elements |\, d) of ]-'7(;{ )z as in (AI0) with A running over

P. We equip f'r(rlzi,)é with the C-bilinear symmetric form such that the basis elements
|\, d) are orthonormal. This yields a C-linear isomorphism

(4.15) F

m, £

— A, |Nd)y— S\, AeP.

We equip the C-vector space }'f:f )13 with the following actions; see [35] for details:

/

e The level m{ action of § such that b)., b, are taken to the operators b/ ,,,

bmer on A under the isomorphism ([@I5) for » > 0.
e The level ¢ action of sl,, defined as follows: equip the C[z, z~1]-module Vin,e

with the level 0 action of sl,, given by the evaluation homomorphism &1
and the obvious actions of sl,, and C[z,27'] on V,, ;. Taking semi-infinite

wedges we get a level £ action of ;[m on .7-'7(7?[.

e The level m action of 5A[g which is defined as above by exchanging the roles
of m and /.
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The actions of $), ﬁA[m and ;[g commute with each other. An /-tuple of integers
s = (sp) is called an (-charge of weight d if }_ s, = d. Set

{—1

(4.16) Y(s,m) = (m — 81+ s¢)wo + Z(sp — Spt1)Wp-
p=1

The Fock space associated with the /-charge s is the subspace
(4.17) Fore = Foali(s, m)]

consisting of the elements of weight 4(s, m) with respect to the f?[g—action. It is an
sl X $-submodule of ]-'7(7:17)[. Consider the basis elements |\, s), A € P, of Fio

m,{
defined in [35] sec. 4.1]. The representation of sl,, on ]:r(rf,)l can be characterized in
the following way, see e.g., [18], [35],

(4.18) eqlA, 8) = Z lv,s),  fqlA )= Z 1, s),

where v (resp. p) runs through all £-partitions obtained by removing (resp. adding)
a node of coordinate (i, j) in the p-th partition of X such that ¢ = s, +j — modulo
m. Consider the C-vector space isomorphism

(4.19) Ar— FE, S As), AePh
By [35] sec. 4.1] we have an equality of sets

(4.20) {INs) : XePls=(sp) €2, s, =d} ={|\,d) : XeP}.

Thus the elements |\, s) form an orthonormal basis of .7-"7(,?)4 and the map ([@.I9]) pre-
serves the pairings by (£8]). The representation of £ on ]:r(rf,)l can be characterized
in the following way.

Proposition 4.6. The operators b,., b., r > 0, on ]-"7(5))5 are adjoint to each other.

Further b, acts as the multiplication by the element P}, = Zp Porp of Ar under
the isomorphism ([{I19).

Proof. The first claim is [35, prop. 5.8]. To prove the second claim, consider the
isomorphism of vector spaces

(4.21) FOr S Q FED, Ins) = Q) ITAD), sp)-

PELy PEZy

Recall that 7A(p) = A(p + 1). Next, for each p € Z, let A®) be the subalgebra of
Ar generated by P, ,, r > 0. We have a canonical algebra isomorphism

AP Z A Py Py Sy Sy, YA EP;

see Section 44l Further, we have

(4.22) ® AP 3 Ap, ® Tp H Tp-

DPEZLy PEZLy PELy
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These isomorphisms fit into a commutative diagram
E&2zD)
fvS’f?Z ®p€Zg 7(;?)
l
®p€Z[ A(p)7

where the right vertical arrow is given by (I3]) on each component. Now, the
formulas in [35] sec. 4.1, 4.3 and (25)] imply that ([@2]) intertwines the operator b,

on .7-"7(5)5 and the operator

h®l® - ®1+10601Q--- @14+ +1®---®1®b,
on @,cz, T, By Remark the map (LI3) sends the operator b, on Fiw)
to the operator by, on A®. The latter is given by the multiplication by P p.
Therefore b, acts on fr(,j’)g by the multiplication by Y. _, P, = P} O

Ar

PEZLe

Remark 4.7. The ;[m—action on .7-'7(;7)5 can be extended to an g[m—action such that
the weight of |A, s) is

)4 m—1
—A(s,m)d + Zwsp modm — Z ng(A)ayg;
p=1 q=0

see [35] sec. 4.2]. Here n,(A) is the number of g-nodes in A; i.e., it is the sum over
all p’s of the number of nodes of coordinate (7, ;) in the p-th partition of A such
that s, + 7 — ¢ = ¢modm. The integer s, + j — i is called the content of the node
(4,7) of \. We also have used the notation

¢ 1
Z(wsp mod m wsp modm> + 5 pz; Sp(sp/m - 1)

p=1

A(s,m) =

N~

In particular, we have
D(|A, 5)) = =(A(s,m) +no(A)) [A, 5).

5. THE CATEGORIFICATION OF THE HEISENBERG ALGEBRA

We'll abbreviate
or) =or,).
n>=0
Assume that h, h, are rational numbers as in (33]). Thus A is a rational weight of
E[g of level 1. Let m be the denominator of h. We’ll assume that m > 2.
5.1. The functors A, , A}, Ay . on D°(O(T)). To simplify the exposition, from
now on we’ll assume that ¢ > 1. All the statements below have an analogous

version for ¢ = 1, by replacing everywhere C" by Cf. Let n,r be nonnegative
integers. Consider the point

by =(0,...,0,1,...,1) € h =C"*",

with z; =0 for 1 < ¢ < n, and z; =1 for n < i < n+r. The centralizer of b, , in
Iy, is the parabolic subgroup I'y, .. We have

b/pTr = € x T,
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Here C" is the reflection representation of I';, and Cj) is the reflection representation
of &,.. Note that

or,,)=0T,,C"xCp), 06, =0(6,,Cp).
In particular we have a canonical equivalence of categories
O, =0, ®0(6&,).
Thus the induction and restriction relative to b, , yield functors
%Ind,,, : O(T',) ® O(&,) = O[Ty,
OResy,y 1 OTnsr) = O(1y) ® O(S,.).
Now consider the functors OIndn,mr, OResn?mr. The parameters of H ('), 4,,) and

H(T,) are h, A. The parameter of H(S,,,) is h. Fix a partition A € P,. We define
the functors

oT,) ® O(6,,) — O(Ty,),
M — Homo(GmT)(M, Lm)\)®, M — Hom@(gmr)(Lm)\, M),
as the tensor product of the identity of O(T,,) and of the functors

O(6,,,) = Rep(C),

M — Homo(g (M, Lm)\)*, M — Homo(gm)(Lm)\, M)

mr)

Here the superscript * denotes the dual C-vector space. Note that the space
Homp(s,,,)(M, Limy) is finite dimensional because the category O(&,,,) is Ar-
tinian. Thus, given a decomposition M = €, M; ® N;, we get

Homo(gm)(M, Lm)\)® = @ Ml X Hom@(gmqn)(Ni, Lm)\)*,

3

Homope,,, ) (Lmx, M) = @ M; ® Homos,,,.) (Limx, Ni).-

The functor Homeg,,, )(®, Limr)® is right exact and the functor Homep(s,,, (Lmax, )
is left exact. We denote the corresponding derived functors in the following way:

M — RHome(O(Gw))(M, Ln)®, M RHome(o(GmT))(Lm)\,M).
Definition 5.1. For A € P, with » > 0 we define the functors
Axy i DY(O(Cgmr)) = DP(O(T)), M = RHompe(os,,,)) (“RESnmr (M), Linx)®,
Ay :DY(O(T,) = DY(OThimr))s M CIndy e (M @ L),
Az DY(O(T s 4mr)) = DP(O(Ty,)), M + RHompsos,.,)) (Lmr, CReSp mr (M)).

Proposition 5.2. We have a triple of exact adjoint endofunctors (Ax,, A%, Axx)
of the triangulated category D*(O(T)). For M, N € D*(O(T")) we have
RHomps(o(r)) (AX (M), N) = RHompsor)) (M, Ax,«(N)),
RHom pe(ory) (Ax (M), N) = RHompsory) (M, AX(N)).

Proof. This is obvious because the functors Olndnﬂm and OResmmr are exact and
biadjoint; see [2], [33]. O
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5.2. The &,-action on (A))", (A*)" and (A,)". For b =, we write A* = Af,,

and A, = A(y)p. For r > 1, the transitivity of the induction and restriction functors
[33, cor. 2.5] yield functor isomorphisms:
(

®
A))" = RHomps(o(s ) (PRES, (mr) (0), L),
(5.1) (A*)" = ©Ind,, () (® ® L) = “Ind,, iy (¢ @ “Ind ) (L)),
(A*)T = RHome(@(G(mm)) (L, OReSm(mr)(O)).

Here, to unburden the notation we abbreviate L = L((@W:). The goal of this section

is to construct an &,-action on (A)", (A*)" and (A.)", and to decompose these
functors using this action. To do this, let H(T',, (,,ry), H(I'y), H(&,,) be as in
Appendix [A]l with the parameters ¢ and v, as in Section B7l There is an obvious
isomorphism
H(Fn,(m““)) = H(Fn) ® H(Gm)(@r.
Let 7; € G,,4m, be the unique permutation such that
e 7; is minimal in the coset &y, mm TS (n,mr),

o T(vwiwy. .. wp)T, T = VW .. Wi Wi ... Wy for v € Gy, wr, ..., Wy € Gy

Let 7; also denote the algebra isomorphism H(I',, (;,r)) — H(I'), (55,m)) given by
TOUR QY 2 TQYN @ DYip1 QY @ QY.

We have the following relation in H(T'; {1 ):

(5.2) Tz =7(2)Ty, z€HT, @)

Therefore, the element T, belongs to the normalizer of H(T',, (rpry) in H(T)ymr).
The twist of a module by 7; yields the functor

7 : Rep(H(L'y,, (mr))) — Rep(H(T,,, (mr))),
MIN @ QN > MOIN; ®---QNi;z1 QN; @--- @ N,.
We define the morphism of functors
Hr:Hnd,, () = PInd, () ori,  Pr(M)(h @ v) = hT;, @ 73(v),
he HTymr), veM, M eRep(H(T), 1))
It is well-defined by (52). Next, the permutation 7; also yields a functor
7 Oy (mry) = O(Ly (mr)),
MIN® - QON, = MRIN; ®---@N;11 @N; ®---® N,..
The functor KZ yields a C-algebra isomorphism [33] lem. 2.4]
(5.3) KZ:End(®Ind, () — End(KZo®Ind,, (nry) = End(®nd,, (nr) 0 KZ).
For the same reason we have also an isomorphism
KZ: Hom(OIndn’(mr)7 OIndn}(mr) OTi)
— Hom (MInd,, (,r) 0 KZ, ®Ind,, ;) o7; 0 KZ).
So there is a unique morphism of functors
Or CI)Indm(mr) — OIndnv(mr) oT;
which satisfies the following identity:
(5.4) KZ(%r(M)) = Br(KZ(M)), M € O(Ty (ury)-
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986 P. SHAN AND E. VASSEROT

The functor e ® L yields a map
(5.5) Hom (®Ind,, (), ©Ind,, () 07:) — End((A*)").
Let 7; denote the image of ©7; by this map.
Lemma 5.3. The following relations hold in End((A*)"):
. 7_'1»2 =1,
o BF =TT ifjAi—1i+1,
® TiTit1Ti = Tit1TiTit1-
Proof. We'll write L® = (L(S ))®7". Consider the morphism of functors
Hr0: HInd () — Flnd (o, Hr(M)(h @ 0) = hTy, @ 73(v),
heH(S,,), veEM, M e Rep(H(S,,)%").
It is well-defined by (52). By (B3) there is a unique morphism of functors

(5.6)

OTiO : OInd(mr) — Olnd(mr) oT;

such that

(5.7) KZ(©r)(M)) = B2 (KZ(M)).

We define the endomorphism 7 of the module “Ind,,~)(L) by
(5.8) 7 =97r0(L).

The transitivity of the induction functor [33], cor. 2.5] yields
(5.9) (A*)"(M) = ®Indy ymr (M @ Ind (L)),
' (M) = “Indy mr (1 ® 7).

Therefore, we are reduced to checking the following relations:

.« (2=,

o 770 =707 1fj7$z—1z—|—1
~0-0

b Tz TerlTO - T’LJrl ’LO z+1
To prove this, recall that Rouquier’s functor R yields an equivalence
(5.10) O(S,,r) = Rep(Sc(mr)).
Here ( is a primitive m-th root of 1. We have

(5.11) R(Lyy) = L3

mA\*
By Proposition Bl we also have
R(®Ind(;ry(L)) = L®.
Thus the functor R yields a C-algebra isomorphism
EndO(qun) (OInd(m’") (L)) = EndS((mr) (LS)
Therefore, we are reduced to checking the following relations in Endg <(m,,)(LS ):
° R(? ) =1,

o R(7)R(7] ) = R(r
o R(7)R(7, z+1) (73

O)R

0 . . . .
3 i)lfj#z_lvl_'_L

(
R(72)R(T))R(T ).
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By Proposition 3.1l there is an isomorphism of functors O(& ) — Rep(S¢(mr)):
()" o R=Ro ©Ind ) o(e)®".

Since 1p OTiO 1(e)o- is an endomorphism of the right-hand side and since R is an
equivalence, there is a unique endomorphism S7{ of the functor

()" : Rep(S¢(m)) — Rep(S¢(mr))
such that
(5.12) St015 =170 Ligyer.

Consider the diagram

End (©Ind ) o(#)®") — 2> End (HInd,,r) o KZ o(e)")

Rl /

End((0)®r oR).

The upper map is invertible by (B3], the vertical one by Proposition Bl and the
lower one by Corollary [B.4l The diagram is commutative because ®* o R = KZ.

By (1) and (5.I2) the image of “70 1(4)e- is given by

OTZ»O].(.)®7- — HT,L-O 1KZo(o)®"

(5.13) | /

S’TZQ 1R(o)'

Now, recall the endomorphisms of functors R ;, Se; defined in (BI0), (B.9). By
Corollary the functor ®* yields a map

End((0)®T) — End(MInd () 0()®" 0 @%),  Rai > Sp=(e),i-
By (B6) we have
S = Tr)(M®"), M € Rep(H(S,,)).
Therefore, by (BI3) we also have
(5.14) R, = StO(M), M e Rep(S¢(m)).

K2

Now, by (58), (EI1)) and (EI2]) we have
— S s

K2

Thus, by (5.14]) we must check that the operators R LS, . satisfy the same relations
as above. The quantum Frobenius homomorphism yields a functor

Fr* : Rep(S1(r)) — Rep(S¢(mr))

such that L(Sm) = Fr*(f/(sl)); see Section It is a braided tensor functor by
Proposition Thus the claim follows from Proposition [B.8l O

We can now prove the following, which is the main result of this subsection.
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Proposition 5.4. Letr > 1.
(a) The group &, acts on the functors (A*)", (A.)".
(b) We have the following &,-equivariant isomorphisms of functors:

(A) = @ Loay, (A) = @ Lo A
AEP, AEP,
Proof. First, we concentrate on part (a). To unburden the notation we abbreviate
— 79 S_ (715 \®
L—L(Wg)7 L” = (L(m)) "
By Lemma [5.3] the assignment s; — 7; yields a &,.-action on (A*)". Under the ad-
junction (OIndny(mr), OResnﬁ(mv-)) the isomorphism ©r; yields a (right transposed)
isomorphism of OResnﬁ(mr). We’ll denote it by ©r; again. By definition of the right
transposition, the following square is commutative for M € O(T, {imr):

o o%r; (L)
( Indm(mr) (L), M) E—— Homo(p

H o OT'L(M)O
Homo(r, (,.r) (L, Resn,(mr)(M)) —— Hompr

(OIndm(mr)(L), M)

(L, OResn’(mr) (M)) .

Homo(p

n+mr) n+mr)

n‘(wtr))

Here and in the rest of the proof, we use the canonical isomorphisms
Hom@(pnmr) (Olndn’(mr) (L), M) = Hom@(pn+mr) (OIndm(mr) (7‘1(11))7 M),
HomO(F,h(,,er»)) (La OReSn,(mT) (M)) = HOmO(F”,(,"r)) (L; Ti(OReSn,(m’”) (M)))

given by 7;(L) = L without mentionning them explicitly. We define the &,.-action
on (A,)" by

si(f) = Oni(M) o f,
fe (A*)T(M) = RHome(O(G(mr))) (L, OResn’(mr) (M))
Note that the formulas (B.15) do define an action of the group &, by Lemma (3]
because the square above is commutative.

Now, we prove part (b). It is convenient to rewrite the &,-action on (A*)" in a
slightly different way. Setting n = 0 in the construction above we get a &,.-action
on “Ind(,,~) (L) such that s; acts through the operator 7 in (5.8), and by (5.9) the
reflection s; acts on (A*)" through the automorphism

“Ind,, (1 @ OF).
We claim that the following identity holds in Rep(C&,) @ O(S,y,):

(5.16) CInd(ry(L) = @ L ® Lina.
AEP,

(5.15)

To prove (BI6) we use Rouquier’s functor R as in the proof of Lemma B3l Tt is
enough to check the following identity in Rep(C&,) ® Rep(S¢(mr)):

L% = @ Ly® L5,
AEP,.
To do that, note that by Proposition [B.9 the functor in Section [B.7,

Fr* : Rep(S1(r)) = Rep(S(_1) (1)) — Rep(Sc(mr)),
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given by the quantum Frobenius homomorphism, is a braided tensor functor. Fur-
ther we have

B (L) = L, B ((L8)®7) = L7,

where Ef is the simple S; (r)-module with the highest weight A. Therefore, to prove
(E18) we are reduced to checking the following identity in Rep(C&,.) @ Rep(S1(r)):

L) = P Lo L.
AEP,
This is a trivial consequence of the Schur duality. The decomposition
(5.17) (A" = P La® A3
AEP,

is a direct consequence of (BI6). The decomposition of the functor (A,)" follows
from (BI6]) and the commutativity of the diagram above, because it implies that
the canonical isomorphism

(A*)T(M) = RHomD”(O(G(mr))) (OInd(mr) (L), OResn)mr(M))
is 6,-equivariant. O

Remark 5.5. Using an adjunction (OResm(mT), OIndny(mr)) for each r, we can con-
struct in a similar way a &,-action on the functor (A4;)" such that we have the

decomposition
AI)T = @ .Z/)\ ®A)\,!.
AEP,

Then, by Propositions[5.2land 5.4l we have the triple ((A[)T, (A", (A*)r) of adjoint
S,-equivariant functors.

Remark 5.6. We have used the hypothesis m > 2 in the proof of Proposition 5.4
when using Rouquier’s functor R. Probably this is not necessary.

Proposition 5.7. For r > 1 we have an isomorphism of functors
(A)'[2r(1 —m)] = (A,)".
Proof. Once again we’ll abbreviate L = L( ) Let Perv(P™~1) be the category

of perverse sheaves on P™~! which are constructible with respect to the standard
stratification P! = COUC! U---UC™~ L. By [3, thm. 1.3] the category O(&,,)
decomposes as the direct sum of Perv(P™~!) and semisimple blocks. Under this
equivalence the module L, is taken to be the perverse sheaf Cpm-1[m —1]. So, by
Verdier duality [20, (3.1.8)], we have an isomorphism of functors from D*(O(&,,))
to D*(C):

(5.18) RHompe(o(s,,)) (L(m),®) = RHomps(o(s,,)) (®, Lim)) " [2(1 — m)].

The tensor power of (.I8) is an isomorphism of functors D*(O(& ) — D*(C):
6° : RHompi(o (e, (s ®) = RHOMpb (06, (8, L) *[27(1 = m)].

It yields an isomorphism of functors D*(O(L,, () = DP(O(Ty)):

0: RHome(o(G(mr)))( ) — RHome(O(G(mr)))( ) [27‘(1 — )]
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such that
0(7i(M))(7i(f)) = m(O(M)([)),
M € O(Ty (mr)), [ € RHomps (o » (L, M).
We define an isomorphism of functors D*(O(T',,4 ) — D*(O(T},)) by
0" =0loges,

(5.19)
S (mm)

(m7) "

More precisely, we have
0 - RHome(@(G(mT)))(L, OResn’(mr)(o))
— RHompy (o(,r))) (PRes,, (mr) (o), L)®[2r(1 —m)].
By (BI) we may view ¢’ as an isomorphism (A.)" — (A1) [2r(1 —m)]. O
Remark 5.8. Probably we can choose the &,-action on (A;)" in such a way that the

isomorphism (A,)" — (A)"[2r(1 —m)] is &,-equivariant. This would imply that
for A € P, we have Ay [2r(1 —m)] = Ay .. We'll not use this.

Remark 5.9. The transitivity of the induction functor [33] cor. 2.5] yields an iso-
morphism of functors A} Ay = A}, AJ for A, u € P. Taking the adjoint functors we
also get the isomorphisms Ay A, = A, 1 Axyand Ay o Ay = Ay A s

Remark 5.10. The functors Ay, A%, A, . yield linear endomorphisms of the C-
vector space [O(I')]. Let us denote them by Ay, A}, A\ . again.

Remark 5.11. Recall that (m) = @?:01@[—22'}. For any object M of D*(O(T))
there should be a distinguished triangle

Um)M — A, A*(M) — A*A, (M) ——> .

5.3. The functors a3, ay . on O(T') and the $-action on the Fock space.

For i € Z and b =!, * we consider the endofunctor H*(A, ;) of O(I') given by
H'(Ay,) (M) = H'(Ay,(M)), M€ O).

From now on we’ll write Ray, = Ay, and Rlay, = H'(Ay}).

Definition 5.12. Let af be the restriction of A} to the Abelian category O(T').
Since a} is an exact endofunctor of O(T'), we may write a} for A} if it does not
create any confusion. We abbreviate ay , = Roa,\,b. The functor ay . is a left exact
endofunctor of O(T"), while ay is right exact.

Consider the chain of C-linear isomorphisms which is the composition of ([B1]), of
the characteristic map ch, and of (@19,

OT)] — RT) — Apr — F

5.20 A A
( ) A)\ — Ly — ST)\ — ‘)\, S> .
Recall the symmetric bilinear form on ]-'f:?e defined in Section

Proposition 5.13. (a) The map (B20) identifies the symmetric C-bilinear form
on fr(,j’)g with the C-bilinear form

(O] x [OT)] = C, (M,N)— Z(—1)idimExt§9(r)(M, N).
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b) The map identifies the operators bg, , bls  on F) with the operators
A Sa m,L
a}, Ray . on [O()].

Proof. Part (a) is obvious because we have
dim Extiop, ) (Ax, Vi) = 6i.00x 0 [Au] = [Vul, VA u€ Py,

because O(T';,) is a quasi-hereditary category; see, e.g., [9, prop. A.2.2]. Now we
concentrate on (b). By (a) and Proposition[5.2} the pairs (bs,, b, ) and (ay, Rax «)

consist of adjoint linear operators on ]-"frf)g. So it is enough to check that under
(E20) we have the following equality:

(5.21) bs, = a.

To do that, observe first that, by Proposition &1l for 7 > 0 the map ch : R(T") — Ar
intertwines the operator

R(I) = R(T'), M+ Indj,e(M ®ch™ (Pp,))

and the multiplication by ZpeZe Pyrp. Here we have abbreviated

Indp, e = €D Indymy -

n,r>0

Next, by Proposition LGl the map Ar — fﬁf?z above intertwines the multiplication
by Z;DGZe Py, p and the operator b,. By definition, the plethysm with the power
sum P, is the C-algebra endomorphism

e A= A, [ Y 20N P P
AEP

The discussion above implies that the map R(I") — FS?Z above identifies the action
of bg, on fS?Z with the operator
R(T) — R(), M+ Indf, (M ® ch™t¢™(Sy)).
Now, recall the maps
spe : [Rep(CT,)] = [O(T,)],  spe : [Rep(C& )] = [O(Smr)].
By Lemma 24l they commute with the induction and restriction. We claim that
speoch™! o)™ (S)) = L.

Thus (&21]) follows from (520). To prove the claim, set ¢ equal to a primitive m-th
root of 1. Then Rouquier’s functor yields an isomorphism, see (.10,

[O(Smr)] = [Rep(S¢(mr))].
Next, the quantum Frobenius homomorphism yields a commutative diagram
[Rep(S1(r))] — [Rep(Sc(mr))

(5.22) N X

A,
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where y is the formal character; see, e.g., [16, sec. IL.LH.9]. Consider the chain of
maps

B3 os,,) &L

0 : [Rep(C&p,)] [O(Smr)] [Rep(S¢(mr))] -

We have
W(Sy) =L5,, 0ch ' (S,) =A%, NeP,, pePu,.
Thus we have
X(0 ch™H(S.) = x(A)) = Sy, 11 € Py

Therefore we also have
x(0och™op™(Sy)) = ™ (Sh) = x(¥(S)) = x(L5,)-

This implies that 6 o ch ™" ot)™(S)) = L%, proving the claim and the proposition.
O

Remark 5.14. It has been conjectured in [I1] sec. 6.6] that the Shapovalov form
on Vfd"imde should be related to the bilinear form on [O(T")] in Proposition (.13
Recall that
(d) _ 1,0
]:Z - V‘gdt;nodé
and that the Shapovalov form on the right-hand side is identified with the sym-
metric bilinear form on the left-hand side considered in Section Further, the
isomorphism of vector spaces

FO = 5@

m,f

defined by the bijection ([@20]) identifies the bilinear form on the left-hand side with

the bilinear form on ]:7(: )Z in Section Thus Proposition B.13] implies Etingof’s
conjecture.

Proposition 5.15. Let A € P, with r > 0.
(a) We have a triple of adjoint functors (ax,, aX, ax ).
(b) Forb=x1,q=0,1,...,m—1, and i > 0 there are isomorphisms of functors

eqgRlay, = Rlayy ey egay =aleq, fqR'an, = Rlayy fy, foas=a} fy
Proof. By definition of the functors Ay ., Ay, we have
Ar-(O(1)) € DZP(O(I)),  Ax(O(T)) € DSU(O(I)).
Thus, by Proposition we have the triple of adjoint endofunctors of O(T"):
(axy, aXs ans) = (H(Axy), A3, HO(Ax4))-

This proves (a). Next, let us prove part (b). It is enough to give isomorphisms of
functors

(5.23) eqay =ayeq, fqa) =a} fq

Recall the functor F' defined in Section B9l First, observe that we have an isomor-
phism of functors

(5.24) Fa) =a} F.
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Indeed, for M € O(T',,), the transitivity of the induction functor [33] cor. 2.5] yields
F a3 (M) = °Indyirmy ©Indy, (M @ Lipy)

Cngmr
= CIndp" 7 CIndp" " (M @ Liny)

r

= OInd™ ™ (M @ Ly,

aiF(M) = °Indpit mr(CInd, (M) @ Lo
A ,
= OIndp" ™+ (Olnd "+ (M) @ Ly )

n+1,m
Tntmer In ,mr
= CIndp" 7 CInd " (M ® Ly
= OIndp" " (M @ Liyy).
By (B24) for each M € O(T'),) we have

(5.25) P fiax (M) = P ag f,(M).

We must prove that we also have an isomorphism f;al(M) = a} fo(M). Let
O), € O(T') be the full subcategory consisting of the modules whose class is a
weight vector of weight v of [O(T)]. Here v is any weight of the sl,,-module [O(T')].
Recall that

Lemma 5.16. We have the block decomposition O(I') = @, O(I'),, where v runs
over the set of all weights of the sl,,-module [O(T)].

Proof. By [33, lem. 3.1] the image by KZ : [O(T')] — [Rep(H(I'))] of the class of
a standard module is the class of a Specht module. By [24] thm. 2.11] we have a
block decomposition

Rep(H(T)) = @D Rep(H(T)),,

where v runs over a set of weights of sl,, and the block Rep(H(T')), is generated by
the constituents of the Specht modules whose classes are the images by KZ of the
class of a standard module in O(T"),. In particular, each Specht module belongs
to a single block of Rep(H(T")). Now, since the standard modules in O(T') are
indecomposable (they have a simple top), each of them belongs to a single block
and any block is generated by the constituents of the standard modules in this
block. Finally, by [14], the functor KZ induces a bijection from the blocks of O(T")
to the blocks of Rep(H(I")). Hence two standard modules belong to the same block
of O(T) if and only if their images by KZ belong to the same block of Rep(H(T")).
Therefore O(T), is a block of O(T'). This proves the lemma. O

Therefore, to prove the isomorphism f, a3 (M) = a} f;(M) we may assume that M
lies in O(T'),. Then f,a}(M) and a} f(M) belong to O(I'), _n, by Proposition
[EI3l Thus the isomorphism above follows from (£:28). The second isomorphism in
(E23) is proved. Next, let us prove that we have an isomorphism of functors

(5.26) Ea} =a} F,

where E is the functor defined in Section B9 The first isomorphism in (5.23)
follows from (526) by a similar argument to the one above. For M € O(T,,) we
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have
E a5 (M) = °Respimr CIndy, yr (M @ L),
ay B(M) = ©°Ind,, 1 mr (PResy (M) @ Liyy).

As above, we abbreviate L = L®" . By Proposition [5.4] it is enough to prove that

(m)°
we have a natural isomorphism

OResytmr “Indpy mr (M @ ©Ind () (L)) — Indy—1 my (PRes, (M) @ ©Ind (L))

that is equivariant with respect to the G,-action induced by the &,-action on
©Ind ;) (L) given in ([EIG). To see this, note that Proposition yields the
following decomposition of functors:

HReanrmT o HIndn,mr = (HIndn,l,m,« o (HResn ® 1))
@(Hlndnﬂm_l o(1® HResmT))@Z.
Therefore we also have the following decomposition of functors:
KZ oOReanrmr o CI)Indn,mr
= (KZo%Ind,_1mr 0 (PRes, ©1)) & (KZo CIndy, pmr—1 0 (1 @ “Resyny)) &

The induction and restriction functors on O(I") take projective modules to projec-
tive ones, because they are exact and biadjoint. Thus, by (8] we have a natural
isomorphism

0R€Sn+mr OIndn,mr(P)
= %Tnd,, 1 mr (Res, @ 1)(P) & (CTndyy 1 (1® CResy,)(P)) "

for any projective module P € O(T'). Since O(T") has enough projective objects,
this yields an isomorphism of functors

OResp4mr OIndn,mT = OIndn_LmT (OResn ®1) @ (OIndn,mr_l 1 OResmT))€BZ
In particular, the projection yields a morphism of functors
OResn4mr oIndn’mr — OIndn,l,mr (OResn ®1).

Applying this to the module M ® ©Ind(,,r)(L) yields an &,-equivariant surjective
morphism

T(M) : °Resptmr CIndp e (M @ ©Ind 1y (L))
— ©Indy,—1,mr(PRes, (M) ® “Ind () (L))

Now, by (B1)), the left-hand side is equal to E o (a*)" (M) and the right-hand side
is equal to (a*)" o E(M). So by Proposition and the fact that the actions of $

and sl,, on fS?Z commute with each other, we have

[E o (a®)"(M)] = [(a")" o E(M)].

Thus ¥(M) is indeed an isomorphism. So (5:2) is proved. O
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5.4. Primitive modules.
Definition 5.17. A module M € O(T) is primitive if Ra,(M) =0 and E(M) =0
(or, equivalently, if R'a.(M) = e,(M) = 0 for all ¢,4). Let PI(O(T)) be the set of
isomorphism classes of primitive simple modules.
Proposition 5.18. For L € Irr(O(T',,)) the following are equivalent:

(a) L € PI(O(T,)),

(b) L e II‘I‘(O(Fn))QQ,

(c) dim(L) < oo.

Proof. Assume that L € Irr(O(T',,)). The equivalence of (b) and (c¢) is Remark
BI3l Let us prove that (a) = (b). Fix [,j > 0 such that Supp(L) = X; ;. Set
i =n—1—mj. We first prove that j = 0. Assume that j > 0. Then we have
I1l,(mj) = Fl,(mﬂ'*l) X G, Ijl,(mj*l) Cln—m.
There are modules M,, € O(I'y,—y), tt € P, such that in [O(T';, ;)] we have
[Resn,m(L)] = Z (M, @ Ly].
HEPm

The transitivity of the restriction functor [33] cor. 2.5] yields the following formula:

Res 1 (L)] = Reso(M,,)) ® L], Res; = OResL» , Resy = OReshn—m
p I3 ) (i) r

Lmi—1)
”w

The H (T (m))-module Res;(L) is finite dimensional, because Supp(L) = Xy ;.
Thus we have Resq(M,,) = 0 unless u = (m), and

(m.

(5.27) [Res1 (L)] = [Resz(M 1)) ® L))
Next, since Ra.([L]) = 0 we have
0 = [Ress Ra.(L)]
= Z [RGSQ(MM) X RHom@(Gm)(L(m),LM)]
HEPm

= [Resa(M(y)) ® REndp(s,, ) (Lm))]-

Thus, using [3, thm. 1.3] we get Resy(M(,,)) = 0. This yields a contradiction with
(EZ10) because Resy (L) # 0. So we have j = 0. Next, since E(L) = 0, by Corollary
B19 and Remark B11] we have ¢ = 0.

Finally, we prove that (¢) = (a). We must prove that if L is finite dimensional,
then it is primitive. This is obvious, because Res,, (L) = Res, (L) = 0. O

Remark 5.19. By Proposition the elements of PI(O(T,,)) form a basis of
Foo(Ty).

5.5. Endomorphisms of induced modules. For r > 1 we consider the algebras

B, =6, x Clzy,x9,...,2,], Bng:Br/(:cli,xé,... xé).

) T

The following proposition is the main result of this subsection.

Proposition 5.20. Letr > 1.

(a) The C-algebra homomorphism C&, — Endpr)((a*)") in Proposition 5.4 ex-
tends to a C-algebra homomorphism B, — Endory((a*)") such that x1,xs,. .., x,
map to nilpotent operators in Endpry((a*)"(L)) for each L € O(T').
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(b) The C-algebra homomorphism B, — Endpr)((a*)") factors to an isomor-
phism By, = Endory((a*)"(L)) for L € PI(O(I)).

Proof. The proof of this proposition is done in several steps. Let H(I',, (), H(T',)
and X; be as in Appendix [Al Consider the elements

&= Xn+m(i—1)+1Xn+m(i—l)+2 to Xneri, i=1,2,...,7
They belong to the centralizer of H(I',, (,r)) in H(I';14 ). Thus the right multipli-
cation by &, i = 1,2,...,r, defines an automorphism H¢; of the functor HIndn)(mr).

More precisely, for an H(I',, (,))-module M we set
He(hov)=h& v, he HTimr), v M.
The functor KZ yields a C-algebra isomorphism (53]
KZ : End(®Ind,, (n,r)) — End(MInd,, () 0 KZ).

Thus there is a unique endomorphism ©&; of the functor OIndn’(mr) such that

(5.28) KZ(9&(M)) = H&(KZ(M)), VM € O(T (mr))-
The functor e ® L : O(I',,) — O(I'y, () yields a C-algebra homomorphism
(5.29) End(°Ind,, () — End((a*)").

Let & denote the image of ©¢; by the map (5.29). Next, recall the operators
7; € End((a*)") = End((4")"), i=1,2,...,r—1
defined before Lemma [5.3]
Lemma 5.21. The following relations hold in End((a*)") for j #1i,i+ 1:
70807 =&, ﬂ'of_j oT; :f_j-
Proof. Recall the permutation 7; and the morphism of functors H7; defined in the
beginning of Section By (£28) and (54) it is enough to prove that
(Mrilr)o (M) o r =Hg,  (Fnly)o (Mg 1y,) oMy =g,
To do so, we are reduced to checking the following relations in H(T', 4 ):
1781 = &iv1, Tr&Tr =&
Recall that ¢ is an m-th root of 1. Let a; =n+ (i — 1)m + 1, b; = n + im, and
Ky =Ty, 1Ty, 112 Tor1-2Tp, 11
Since both words define the same element in the braid group, we have an equality
Ty, = KoK1 -+ KooK 1Km—2 - K1 K.
Further, for 0 <1 < m — 1 we have
K1 X, Xa, 41 X120 Xp,—1-1(Xp, -1 Xp, 142 - X, 1) K
="M X Xair X 1-2(Xby—1-1 X — 141 X143+ + Xbti41)s
and for 0 <1 < m — 2 we have
Ki(Xp,—1Xp,—142 - Xoyp1) Xy 4142 X v 4143 - Xoyym K

I+1
= MM (X111 X —143  Xpyr1—1) X, 1141 X0, 1142 X0, 4143 -+ - Xbm-
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We deduce that
T‘rifiT‘ri = TTiXaiXaiJrl t XbiTTi
= <1+2+m+mKO e Km—ZXai+1Xai+3 t 'Xb,i+m—2Xbi+me—2 e KO
— (R el 2Ly
m2
=¢" &in
= £i+1~

The relation T7,&;T;, = &; for j # 4,7+ 1 is obvious. ([l

ai+mXai+m+1 U Xbier

For any element w € &, and any decomposition w = s;, s, - - - 54, We set
Tw = TiyTig " * " Ty, € End((a*)r).

This definition does not depend on the choice of the decomposition of w by Lemma
Next, for a tuple p = (p1,p2,...,pr) € Z" such that 0 < p; < £ we set

=gy g, =8

Lemma 5.22. For any L € Irr(O(I)) the elements &P 7,(L) of Endo(ry((a®)"(L)),
with w € &, and p € [0,£)", are linearly independent.

Proof. If the decomposition w = s;,8;, - - - S;, is reduced, then the length of 7, is
the sum of the lengths of 7, ,7i,,..., 7, . For a tuple p as above, we define the
following elements in H(T';, 1 ):

tw =Tr,, & =€1& &
Recall that the elements
X{HXSQ .. )(Pn-%—mrjwu7 pi c [0,6), = 6n+mr,

n+mr

form a C-basis of H(I';,1yn,). Further &7 centralizes H(I',, (,,,~y) and the element
T, above is minimal in its right &, ,,r)-coset. Therefore the left H(L, (y,r))-
submodule of H(T',, 4, ), spanned by

{&Ptw; we S, pe|0,0)},

is indeed the direct sum

@ H(Fm(mr)) é.ptwa
p,w

where p runs over [0,¢)" and w over &,. In other words, there is an injective
H(T',, (;,ry)-module homomorphism

(530) Hd’ : H(Fn,(mrﬂeawrl — H(Fn+mr)v (hp,w) — Z hp,w gp twa
p,w

where w, p run over &,., [0, £)" respectively. Further, since £? centralizes H(I',, (7)),
the relation (B.2)) yields

prtw = §pztw = gpthwfl(Z)u S H(Fn,(mr))

Therefore H1) is a (H(T'y,, (mry)s H(I'n, () )-bimodule homomorphism, where the
right H(T',, (;,r))-action on H(T', (n,r))®¢ ™ is twisted in the obvious way. Since Hy

Licensed to Universite Bordeaux |. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



998 P. SHAN AND E. VASSEROT

is injective, and both sides are free H(I',, (,~))-modules, for each M € O(T',, ()
we have an injective homomorphism

Hy(KzZ(M EB 7w KZ(M) — HRes,, ey 0 FInd,, (,r) KZ(M)

= KZoRes,, (sur) © “Ind,,, (1nry (M),
where 7, : Rep(H(I',; (n,r))) = Rep(H(I',; (yr))). Further, we have
Tw © KZ = KZ o,
where 7, : O(I'y, (mry) = O(I'yy (mry) is the twist by the permutation
H(y (mry) = HIy) @ H(6,,)®" — H(T,) @ H(G,:,)%" = H(Ty, ().

Let S : Rep(H(I')) — O(T') be as in Section Bl The canonical adjunction mor-
phism P — S(KZ(P)) is an isomorphism for each projective module P € O(T").
Further, the functors OResm(mT) and OIndny(mr) preserve the projective objects,
because they are bi-adjoint and exact. Therefore, applying the left exact functor S
to the map Hy(KZ(P)), with P projective in O(I'y,(mr)), we get an injection

P): @ 7u(P)® — © Resy, (mr) 0 Indyy (1 (P).

Since the category O(I',, (n,r)) has enough projective objects and since the functor
© Resp,(mr) © o Ind,, (,,,r) is exact, the five lemma implies that there is a functorial
injective morphism

M) : @Tw(M)GBZT — OResn,(mT) oOIndm(mr)(M), M e O( n, mr))

Now, set M = L ® Lf@mr) with L € Irr(O(T")). Then we have 7,(M) = M for all w

as above. Therefore we get an injective linear map
(Cé"r! _ HOmO(F) (L ® L((%T:)v L® L‘(@é))@["r!

ReSn’(mT) 0% Indn’(mr) (L ® LE@JL))) = Endo(p)((a*)r(L)).

It maps the canonical basis elements to the elements £ 7, (L) with w € &, and
pe0,6)". O

Lemma 5.23. For L € PI(O(I',)) the following identity holds in [O(T, (mr))]:
[OResy ey (a")(L)] = 7} [L & LET .
Proof. By Lemma the left-hand side is equal to
mT Fn, mT T
Zolndm s 0 (CResy ™ (L@ LEND),

— Hom@(p) (L ® L%

(m)’

where W, = xfnﬁ(mv-)x_ N Ty, (mr) and z runs over a set of representatives of the
double cosets in I';, (pry \I’nerr/I‘ny(mr). Since W, is a parabolic subgroup of
[y, (mry, it is generated by reflections. Hence we can decompose the group W, in
the following way:

(5.31) W, =W.xW" W.cT, W/ c&.
Here W, W/ are parabolic subgroups. We have

Ty (mr s n 67“ T
ORGSW L@ L‘?m)) = OResl‘;Vg,D (L)® OResW,,(L?m))
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and a similar decomposition holds for the induction functor. Further, since L €
PI(O(T',)) we have OResg[?; (L) = 0 if W/ is proper by Proposition EI8 Thus we
can assume that W, = T',; i.e., we can assume that z belongs to the subgroup
{1} x Ty C Tpoine. We'll abbreviate

G, ={1} x6;,, Tun ={1} x T
Then we have W/ = 267 271 N &7, and we are reduced to checking that

S" Sy T T T
Z OlndeiWIz o”(OReSWT([L((@m)])) =L [L((X)m)L

where W, = 267 x~1 N &’ and  runs over a set of representatives of the double
cosets in &7\ Iy, /S7 .. Now, observe that

OResy (LEn) = 0

unless z&7 z~! = &7, and that &7 27! = &7 if and only if = belongs to

Nr,,.(67],), the normalizer of &}, in I',,,. Further, we have a group isomorphism
Nr, . (67)/6,, =T,.
This proves the lemma. O

Lemma 5.24. For L € PI(O(T")) the elements &P 7, (L) withw € &,. andp € [0,£)"
form a basis of Endory((a*)"(L)).
Proof. By Lemma it is enough to check that
dim Endopy((a*)" (L)) < £'rl.
For L € PI(O(T'},)) Lemma [5.23] yields
dim Endop((e*)"(L)) = dim Homep ) (L ® L‘?mr), © Res,,, (mry (™) (L)) < L7l
(]

Lemma 5.25. Fori=1,2,...,r and L € O(T) the operator &(L) +1 on (a*)"(L)
is milpotent. Further, if L € PI(O(T)) we have (&(L) +1)¢ = 0.

mr

Proof. The C-vector space [O(T')] is equipped with an ;[m—action via the isomor-
phism (.20); see also Remark Bl For a weight j of sl,, let o), c O) be the
Serre subcategory generated by the simple modules L whose class in [O(T")] has the
weight p. Set O(I'y,), = O(I'), N O(T',,). Although we’ll not need this formula,
note that if Ay € O(I',),, then we have

m—1
M=o — Z nq(A)ag,
q=0
where p is a weight which does not depend on n, A, and ng4(A) is the number of
g-nodes in the f-partition A\. The element

Zn :X1X2Xn
belongs to the center of H(T,). Thus it yields an element ¥z, in the center of
Rep(H(T',,)). Since KZ identifies the centers of O(T',) and Rep(H(T',)), it yields
also an element ©z,, in the center of O(T',,). Let L € Irr(O(I',,),,). Then @z, acts on

L by multiplication by the scalar ¢¥(#), where v is a linear form such that via;) =1
for i =0,1,...,m — 1; see, e.g., [33] sec. 4.1]. Now the operator a* maps O(T',,),
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to O(T'ytm)u+s by Proposition 513l Thus © 2nim acts on a*(L) by multiplication
by the scalar ¢*(#+9) Therefore &; acts on a*(L) by multiplication by the scalar

CV(J) — Cm(mfl)/Q - 1.
By Lemmas [5.21] 53] this implies that for any L € O(T) we have (§;(L) +1)Y =0

in Endp(ry((a*)"(L)) for i =1,2,...,r and N large enough.
Now, assume that L € PI(O(T')). Let N; be the minimal integer such that

(& (L) + 1)N: = 0. By Lemmas [5.21] 5.3 we have N; = Ny = --- = N,.. Hence, by
Lemma [5.22] we also have £ = Ny = Ny = --- = N,.. O

Now we complete the proof of Proposition (.200 The previous lemmas imply that
the assignment

(5.32) =&+, s T, =12, j=1,2...,r—1,

yields a C-algebra morphism B, — Endery((a*)") such that z; maps to a nilpotent
operator in Endepry((a*)"(L)) for each L € O(T"). The action of s; on (a*)" given
above is the same as the action of s; on (A*)" in Proposition [.4l This proves part
(a). Part (b) follows from Lemmas [5.24] O

For a module M in O(T') the adjunction yields a morphism
n(M): M @ L = “Res, (e (a*)" (M).
Corollary 5.26. Forr > 1 and L € PI(O(T,,)) the C-algebra isomorphism (5.32)
B¢ = Endory((a®)" (L))
yields an isomorphism of By x H(L';, (nr))-modules

B,y ®(L® L‘?m")) — OResm(mT)(a*)r(L), wWR U OResnﬁ(mv-)(w) -n(L)(v).

Proof. The corollary follows from Proposition and Lemma [5.23] because
Endo(r)((a*)"(L)) = Homo(ry(L @ L&), “Resy (mr(a*)" (L))

(m

is a free B, -module of rank one and, in [O(T', (,,-))], we have
[OReSn,(mr)(a*)T(L)] = dim(Brﬁz) [L & L((gn:)].
O

Definition 5.27. For A € P., r > 1, we can regard the &,-module L, as a By -
module such that x1, 9, ..., 2, act by zero. For L € PI(O(T,,)) we define

ay(L) = Lx ®s,, (a")" (L) € O(Cpimy)-
Definition 5.28. For r > 1 we define a functor O(T';, ymr) — Rep(S,) @ O(T',,) by
W(M) = Homo(ey,) (L) “Resp, () (M))

= Homo(s,,,) (“Id () (LEny ), CRESnmr (M)).
The &,-action on W(M) is the &,-action on “Ind,, (L‘a’;)) in the proof of Propo-
sition .4l In other words, we have ¥ = (a,)", viewed as a &,-equivariant functor

as in the proof of Proposition [5.4l
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Corollary 5.29. Forr > 1 and L € PI(O(T'),)) we have an isomorphism

(L® Lfbﬂ;))@dim(m) = OResn,(mr)(&i(L))

as H(T',, (mry)-modules, and we have an isomorphism of &, x H(I',)-modules
Ly®L=Y(as(L)).
Proof. Corollary yields an isomorphism
B ®(L® L®T)) = OReSn’(mr) ((a*)”"(L))7

(m

which factors to an isomorphism

(5.33) C&, @ (L® LE) = “Resy (mr) ((a*)7(L)),

(m
with

(a*)"(L) = (a*)r(L)/in (@®)"(L).

Further, by taking the isotypic components we see that the isomorphism (£.33)
factors to an isomorphism

(L@ L2 — ORes, 0 (a3(D)).
This proves the first claim. To prove the second claim, observe that Corollary [£.20l
and (533) yield compatible &, x &, x H(T';,)-module isomorphisms

(5.34) B,y ®L=¥((a")"(L)), C&,&L=Y((a*)(L)).

The first &,-action on ¥((a*)"(L)) is the &,-action in the definition of ¥, and the
first &,-action on CS,.® L is the contragredient of the right &,.-action on C&,., i.e.,
the action such that w € &, takes the element a ® b in C&, ® L to aw™ ® b. The
second &,-action on ¥((a*)"(L)) is the &,-action on (a*)"(L) in Corollary E.20]
and the second &,-action on CS,. ® L is the left &,.-action on CS,.. To identify
the actions as above, it is enough to note that the isomorphism

B, = I‘IOIIIO(F”)(L7 B,,® L) = Hom@(pn) (L, \Il(a*)T(L))
= Endo(r)((a”)"(L))

given by (B534) is equal to the isomorphism (E32), and that the &,-actions on
(a*)"(L) are taken to the left and to the dual right &,-action on B, , by the map

(E35). Next, write

(5.35)

C&, =P Lr® Ly
as an 6, x &,-module, and take the iso‘/c\ypic component. O
5.6. Definition of the map a,.
Proposition 5.30. For A € P, with r > 1 we have

ax(Fi,j(Tn)) C Fijyr(Tngmr),  ax(Fij(Tn)?) C Fijr(Cngme)°.
Proof. By Remark we have
Supp(Lma) = Xer, cpr-

Let L € Irr(O(T',,)). First, assume that L € Irr(O(T,,)), 5, i.e., that

Supp(L) = Xy j,cn
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by Remark [3.12] Hence the module L ® L,,» has the following support:
Supp(L ® Lina) = X500 X Xey, cppr-
So by Proposition 2.7 we have

Supp(ax (L)) = Xi jrcntmr
Thus the class of a} (L) belongs to F; jtr(I'y4mr)® by Remark Next, assume
that [L] € F; ;(T,,), ie.,
Supp(L) = Xy jr.cny  Xijron C Xpjcn-
Thus we have
Supp(a}(L')) = X jrir,cotmr.
So (BII) yields

Xl/’j/Jrr’(Cn#»mr C Xl’j+r,(cn+7‘rl7‘;
i.e., the class of a3 (L) lies in F; j4r(Trprmr)- O

Proposition 5.31. Let A € P, with r > 1, and let L € PI(O(T,,)). The module
top(ai (L)) has a unique constituent in Irr(O(Tptmr))o.r-

Proof. Since the module L is primitive, it belongs to Irr(O(I',))o,0 by Proposition
BI8 Thus [a}(L)] € Fo,r(I'ntmr) by Proposition Thus the constituents of
a} (L) belong to the set

U Irr(O(Ttmr) o,

j<r
by Remark BIIl Now, for L' in Irr(O(Ly4mr))o,; We have Res,, (ry(L') = 0 if
j < r,and dimOResm(mr)(L’) < oo if j = r. Further, the constituents of a finite-
dimensional module in O(&7,) are all isomorphic to sz’w:), and, using [3, thm. 1.3]
as in the proof of Proposition 5.7 we get

1 r ®r \ _

Extoer) (Limy Limy) = 0-

Thus if L is a constituent of top(a (L)), then we have a surjective map
(5.36) U(ay(L)) — ¥(L).
We also have

U(L) = @ L, ® Homo(e,,) (Limg, “Respmr (L))
HEP,

Finally, Corollary yields an isomorphism of &, ® H (T, )-modules
Ly® L =Y(a;(L)).

Thus the surjectivity of (5.30) implies that

(5.37) Homos,,,) (Limnus “Respmr (L) =0, Y # A

Since the &, ® H(T',)-module Ly ® L is simple, the map (5.30) is invertible if it is
nonzero. Assume further that L' € Irr(O(T'y,4mr))o,-- Then Proposition yields

ORes,,, (mr) (L") # 0.

mr)

Since dim®Res,, () (L’) < oo and the constituents of a finite-dimensional mod-
ule in O(6],) are all isomorphic to L%’:), we also have W(L') # 0. Therefore
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(&36)) is indeed invertible. This implies that top(a}(L)) has a unique constituent
in Irr(O(Ty4mr))o,r- Indeed, otherwise we would have a surjective map
ax(Ly = L' e L", L', L" €lrr(OT ntmr))or
yielding a surjective map
Ly®L=9@(L)) = 9(L)oU(L") = (Lyo L)%
This is absurd. O

Definition 5.32. For A € P, and L € PI(O(T")) we define a)(L) to be the unique
constituent of top(a} (L)) in Irr(O(T"))o,-

Proposition 5.33. For L € Irr(O(I))o,, there is L' € PI(O(T")), A € P, such that
ax(L') ~ L. In other words, there is a surjective map

(5.38) PI(O(T)) x Py — Tr(O))o,r, (L', N) 5 ax(L').

Proof. By Proposition B.I8 the module L is primitive if and only if » = 0. Thus
we can assume that r > 0, i.e., that a.(L) # 0 by Corollary B9 else the claim
is obvious. Now, we first claim that there is a module Ly € Irr(O(T"))o,r—1 with
a surjective morphism a*(L;) — L. Indeed, since a.(L) # 0, the adjunction map
€ : a*(ax(L)) — L is nonzero; hence it is surjective. Hence, there is a constituent
Ly of a.(L) such that € yields a surjective morphism a*(L;) — L. We have the
following lemma whose proof is postponed to the end of the section.

Lemma 5.34. If L € Irr(O(T"))o, and L is a constituent of a.(L) such that a*(Ly)
maps onto L, then Ly € Irr(O(T))g,r—1-

Fix the integer n such that L; € Irr(O(T',,)). Then £; acts on a*(L;) as the operator
Oszrm(a*(Ll)) oa” (OZH(LI))_1~

The second factor is a scalar because Ly is a simple module. Hence z; acts on
a*(Ly) as an element of the center of O(Ty4m); see (532). Therefore, since L is
simple and since the operator x1 on a*(Lq) is nilpotent by Proposition 520, the
operator x1 is 0 on L. Thus the map a*(L;) — L factors to a surjective morphism

€ :a" (L) — L.

This proves the claim.
Now, assume that for 0 < k < r there is a module Ly € Irr(O(T'))o ,—x with a
surjective homomorphism

et (a*)*(Ly) — L, (a*)k(Li) = (a*)k(Lk)/Z zi(a*)*(Ly).

By the claim above, there is a module Liy; € Irr(O(T'))g r—r—1 with a surjective
homomorphism
a*(Lg+1) = Ly.
Applying the functor (a*)¥, which is exact, we get a surjective map
(04" (L) = (@) ().
Taking the quotient by the action of zo, ..., xk, xx11, it yields a surjective map
E+1

(a*)k&*(bkm/z 2i(a")*a* (Lyya) = (a)F(Ly).
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Now, since a* is exact, we have
(a*)*a" (Ly+1) = (@) (Lirr) f21(a") (L)
Therefore we get a surjective map
k+1

(@) (L) = (@) (Lrgn) /D wila™)*a* (Liega) = (a)F(Ly).
=1

Composing it with ¢, we get a surjective homomorphism
€pt1 : ()Pt (Lygyq) — L.
By induction, this yields a module L, € Irr(O(T'))g,o with a surjective homomor-
phism
e : (a*)"(L,) — L.
Then we have L, € PI(O(T)) by Proposition (I8 and there is A € P, such that
a%(L,) maps onto L. The proposition follows from Proposition £.311 a

Proof of Lemma 534 Fix 4,j > 0 such that Ly € Irr(O(T")); ;. By Proposition
BI8 since E(L) = 0 we have Ea,(L) = 0. Hence E(L;) = 0 by Proposition B3
Thus ¢ = 0 by Corollary So, by Proposition 530l we have a*(L1) € Fy j4+1(T).
Since a*(L1) maps onto L, we also have [L] € Fp j1(I'). Since L € Irr(O(T))o,r
this implies that r < 7 + 1 by Remark B.111

Now, we prove that j + 1 < r. Fix n > 1 such that L € O(T,,). Recall that

a.(L) = Homes,,) (Lm), OResn,mﬁm(L)).
Thus there is an obvious inclusion
(L) ® Ly C “Resp—m,m(L).

Hence, since L is a constituent of a. (L), the module L ® L) is a constituent of
OResn_,,wn(L). Let us abbreviate

W' = Ll miy, 1=n—(+1)m,
regarded as a subgroup of I',,_,,,. Then W' x &,, c I',,_,, X &,, in the obvious
way. Since Ly € Irr(O(T'),—))o,j, we have

Supp(L1 ® L(m)) = Xwixe,,,cn—mxci-

By Proposition applied to the module M = L, we also have

Supp(L1 ® L(m)) = Xw,, cn-mxcps

where W, is a parabolic subgroup of I',,_, ,, containing a subgroup I',-conjugate
to 'y, (mry- Hence we have Iy j11(I'n) C For(I'n). Therefore we have j+1 <7
by Remark B.111

O

6. THE FILTRATION OF THE FOCK SPACE AND ETINGOF’S CONJECTURE

Recall that [O(T")] is identified with the Fock space ]:7(;:,)2 via the map (5.20). The
aim of this section is to identify the filtration on [O(T")] defined in Section 310 in
terms of supports of irreducible modules, with a filtration on the Fock space given
by representation-theoretic tools. We’ll use the following notation: n,m,j,i are
integers withn >0, m>2,¢,j>0andt=n—10— jm.
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6.1. The representation-theoretic interpretation of I o(I'). The goal of this
section is to give a representation-theoretic interpretation of Fy o(I') using the ac-

tions of sl,, and § on [O(T)] defined in the previous sections. Note that the set
Irr(O(T))o,0 is a basis of the C-vector space Fp o(I'). Further, we have proved that
Irr(O(T))o,0 = PI(O(I")) in Proposition [5.I8 Recall that the operators b, r > 1,

on féf?z given in Section .6l act on [O(T)] via the map (B.20]).

Lemma 6.1. For L € Irr(O(T")) we have L € PI(O")) if and only if E([L]) =
bl.([L]) =0 in [O(D)] for all r > 1.

Proof. 1t is enough to prove that for L € PI(O(T")) we have b].(L) = 0 for all r > 1.
A direct summand of the zero object is zero in any additive category. Further, for
L € PI(O(T)) we have (Ras)"(L) = 0 for r > 1. Thus we also have Ra) (L) =0

for all A € P by Proposition [5.4l By Proposition 513 the map (5.20) identifies the

C-linear operator Ray . on [O(I")] with the action of b on }'éf)é given in Section

This proves the lemma. |

In particular the lemma yields an inclusion
Foo(l) c {z € [OI)] : eq(x) =b.(z) =0, Yg,r}.

However it is not obvious that the right-hand side is spanned by classes of irreducible
objects of O(T"). This follows indeed from the next proposition.

Proposition 6.2. We have
{z e [OM)] : e4(x) =b.(x) =0,Vg,r}=Fyo(l).
Proof. Consider the set
Fool) ={z € Fyo(l') : b.(x)=0,Vr =1}
By Corollary it is enough to prove that
Foo(T) = Foo(T)".
We have
FooT) =@ Foo(Thn), Fooln) = Fool) NFpe(Tn).

n=0

The actions of f/s\[m and § on FS_)Z commute with each other. Thus, by Corollary

the C-vector space Fj o(I") is identified with an $-submodule of -7:7(:,)2 via the
map (E20), and we have

(6.1) > dim(Fpe(Tn) " =D ¢ 1rr(O(Tn))o,e - .
n=>0 n>0
The representation theory of ) yields the following formula in Z][[¢]]:
(6.2) (> dim(Foo(Tk)) - tF) (D _tPr - t7™) =Y dim(Fo.o(Tn)) - £
£>0 >0 n>0
Finally, Proposition (£.33] yields a surjective map
(6.3) PI(O(Tk)) x Pr = Irr(O(T0))o,r, (L, A) = ax(L)
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for k,r > 0 such that n = k + mr. From (6.1) and ([6.3]) we get
64) O 4PIOML) - ) (D #P, - +7) = > dim(Fye()) - " € N[[t]].
k>0 >0 n>0
By Corollary and Lemma [6.1] we have PI(O(I'y)) C Fo,0(I'x)’; hence we have
FPI(O(TY)) < dim(Fyo(T)).
Therefore, comparing ([6:2)) and (G.4]), we get the equality
(6.5) §PI(O(T'k)) = dim(Fo,0(I'x)").-
In other words PI(O(T';)) is a basis of Fyo(I'x)". Since PI(O(T'y)) is a basis of
Fy,0(T'x) by Proposition [5.I8, we also have
Foo(Tk) = Foo(Tx)".
O
Remark 6.3. The proof of Proposition and Corollary imply that the map
[63) yields a bijection
PI(O(Tk)) x Pr = Irr(O(Tn))o.r, (L, A) = ax(L)
for k,r > 0 such that n = k + mr. Note that Proposition yields
PI(O(T))) = Irr(O(T'k))o,0-
6.2. The representation-theoretic grading on [O(T)]. Using the actions of the
Lie algebras $) and sl,,, we define another grading

om)] = @om):;
i,j>0
as follows. First, let us consider the level m¢ Casimir operator
1 /
(6.6) 0=—; > b
r>1

see (£2). Under the map (5.20) this formal sum defines a diagonalisable C-linear
operator on [O(T")]. For any integer j, let [O(T')]s ; be the eigenspace of 0 with the
eigenvalue j. Note that [O(T')]s; = 0 if j < 0. Next, given an integer i > 0 we
define [O(T")];,o to be the image of

PVt i - o] @ Homg (V' [O(T)))
e
under the canonical maps

Veln @ Hom (V2 [O(T)]) = [O(T)].

5lm

Here the sum runs over all o, which is a sum of ¢ affine simple roots of f/s\[m, and
over all dominant affine weights 4 of sl,;,. Recall also that V7 tm [ — ] denotes the

(1 — a)-weight subspace of V;AIM. If i <0 we set [O(T)]; e =0.
Definition 6.4. We define a grading on [O(T")] by the following formula:
[OM@)]i; = [OM)]ie N[OM)]e 5, [OT0)i; = [OT))i; NV[OT)].

The following proposition compares this grading with the grading gr; ; (I") asso-
ciated with the filtration by the support introduced in Section B.10l

Licensed to Universite Bordeaux |. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 1007

Proposition 6.5. We have dim[O(I',)]; ; = dim gr; ;(I'n) for all n,i,j > 0.

Proof. The vector space [O(T)]o,e is an $-submodule of [O(T")]. Thus it is preserved
by the linear operator 9, and [O(T")]o ; is the eigenspace with the eigenvalue j. Since
the $)-action on [O(I')]o e has the level m¢, we have [0, b;] = jb; for all j > 0. Next,
we have

[OD)]o,e = Fo,e(I'),  [O(I)]o,0 = Fo,0(I)
by Corollary and Proposition[6.2l Further, the $-action yields an isomorphism
(6.7) U~ (9); @ [0@)]o,0 = [O)]o,;-
By Remark [6.3] for n = k + mj we have a bijection
(6.8) Irr(O(Tk))o0,0 X Pj = Iir(O(T'n))o,5, (L, A) = ax(L).
Thus the isomorphism ([G.7) yields the following equality:
(69) dim [O(Fn)]o,] = ﬁII‘I'(O(Fn))O)]
Now, to compare dim [O(T',)];,; and §Irr(O(T',));,; for any i > 0, we need some
tools from canonical bases. Since the integrable sl,,,-module [O(I")] is not simple, the
choice of a canonical basis of this module depends on a choice of a basis of [O(T")]g.e-
The general theory of canonical bases yields a bijection G between the canonical

basis of [O(T")] and its crystal basis, the latter being identified with Irr(O(T")) by
Proposition B3l The bijection G is such that a basis of [O(I')]o.e is given by

{G(L) : &(L) =0, Yq}.

By Corollary we have

{L eir(O(I")) : é4(L) =0, VYq} =TIrr(O(I))o,e

= {ax(L) : YA€ P, VL € Ir(OI))oo}.
We'll choose the canonical basis of [O(T")] such that
G(ax(L)) = ai(L), YAeP, VL e Ir(O(T))oo.
Then the set {G(L) : L elr(O))o,;} is a basis of [O(I')]p,; by @.7) and ([E.5).
The sl-action on [(2(1‘)] commutes with the operator 0. Thus [O(T')], ; is an
sl,-module and the sl,,,-action yields a surjective C-linear map
(6.10) U™ (slm)i @ [OM)o,; = [0
For weight reasons, the crystal of [O(T')] decomposes in the following way:
Irr(OI)) = |_| Irr(O(T)); 4, Irr(O(T));; = {L € Irr(O(T')) = G(L) € [O(D)];5}-
§,5>0
Since {G(L) : L € Irr(O(T'))o,;} is a basis of [O(I')]o,;, we have
Irr((’)(F))é)j =Irr(O(I))o,;-

Next Trr(O(T')), ; is the union of connected components of Trr(O(T')) whose high-

est weight vector is in Irr(O(I))g, ;, and by Corollary [B.18] the set Irr(O(T'))s ; is
the union of connected components of Irr(O(T')) whose highest weight vector is in
Irr(O(T))o,;. Thus, for all n we have

Ir(O(T))s ; = Irr(O(T')))a, -

*.J
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By Corollary and (6.I0), for all ¢ we also have the inclusion
(6.11) Irr(O(T)); ; € Irr(O(T'n) )iy
Thus (6I7) is indeed an equality. By definition, we have

dimgr, ;(T,) = §Irr(O(Ty))i g, dim [O(T,)]i; = tIrr(O(T));

YN

Thus the corollary is proved. O

Remark 6.6. Recall that gr; ;(I') is identified with the subspace of [O(T")] spanned
by Irr(O(T")); ;; see Section Proposition does not imply that [O(I')]; ; =
gr; ;(I'). Indeed, the classes of the modules in Irr(O(I")); ; may not lie in [O(T')]; ;.
However, since

[OM)]o.0 ={z € [OM)] : eqx) =by.(z) =0, Vg, 1},
we do have [O(T)]o,0 = grg o(I") by Proposition

6.3. Etingof’s conjecture. In this section we allow h, h, to be arbitrary complex
numbers with > ., h, = 1. Let a4 be the root of the elementary matrix e, q in
gle. Recall that wg,wq,...,wr_1 are the affine fundamental weights. Fix a level 1

weight
A= Z hp wp.
P

Definition 6.7. Let aj be the Lie subalgebra of g[z spanned by 1, D and the
elements e,  ® w” with p,¢ = 1,2,...,¢ and r € Z such that (A, 4) — hr € Z.

We abbreviate a = ay and a = angl,.

We define the set of positive real roots of a to be the set A‘i consisting of the
real roots of gl, of the form

o <A,ah—|— 70) s,

where « is a root of gl; and « + rd is a positive real root of gAlg. Let Pf be the set

of dominant integral weights for a, i.e., the set of integral weights A of g[[ such that
(\B) = 0forall g e Ai. For p € Pf let VMEl be the irreducible integrable a-module
of highest weight . We’ll say that a nonzero vector of an a-module is primitive for
a (or a-primitive) if it is a weight vector whose weight belongs to Pji, and if it is
killed by the action of the weight vectors of a whose weights are positive roots of a.
Now, let h, h, be the parameters of the C-algebra H(I',) for each n > 0. Assume
that h is a rational number with the denominator m > 1. The elements of § can
be regarded as elements of gl, as in ({3)). We have by, b}, € a for each r > 0.

The formal sum
1
Om = — E b bl

mil
r>1

acts on every a-module V,f‘. We'll call 0, the m-th Casimir operator of gNIZ. For
any weight A and any integer j we denote by Vlf‘ [, j] the subspace of weight A\ and
eigenvalue j of 9,,,. We are interested in the following conjecture [I1} conj. 6.7].
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Conjecture 6.8. There exists an isomorphism of C-vector spaces

(6.12) gr;.;(T) = D Vilwo — 1, j] © Homa(VE, VEY),

where the sum is over all weights pn € P$ such that (u, p) = —2i.
Remark 6.9. If A = wg, then we have
du, = (gl ® Clw™, @ ™]) @ C1& CD,
and the map (6.19) yields a Lie algebra isomorphism a,,, = g~[4.
Theorem 6.10. Assume that m > 2 and that h, h, are as in (39), i.e.,
h=—1/m, hp=(spt1—sp)/m, sq€Z, p#0.
Then Conjecture holds.

The proof will be given in Section In the next two subsections we give some
reminders that will be useful for the proof.

6.4. Reminder on the level-rank duality. For A € Z* we consider the weight
4(A,m) € P*" defined in ([@.I6)) and the weight

A\ m) =5\, m) — A\, m)d € P,
see Remark 7] Note that the weight (A, m) is dominant if and only if
(6.13) A€ A(l,m) ={( A1, ha, .. X)) €Z5 1 A= N < ml.
For d € Z we write
A(l,m)g = {\ € A(l,m) pr_d}

The level-rank duality yields a bijection A(¢,m)q — A(m, £)q, X — Al such that
e we have the equality of weights

m
m) = E :W,\Lmodev
p=1

e we have an sl,, X ) X slp-module isomorphism

d m 51

(6.14) Fh= @ Vi, eVievii,
EA(Z m)d

and there are highest weight vectors vy(xt ), Vme, V5(a,m) of V&;([%,e)v Vo

me?
V~([‘ \,m) such that 10, A) = v5(xt,0) ® Vit @ Vy(x,m) for A € A(L,m)q.

See, e.g., [29] (3.19)], [35, sec. 4.2, 4.3], for details. Let s = (s,) be an ¢-charge of
weight d. Setting d = 0, the formula ([@I7) yields the following decomposition:

(6.15) f,gj}ez ) VBI;”W ®vnz®(vs‘f (s, m))).
AEA(L,m)o

Here the bracket indicates the weight subspace for the E,A[g—action of level m.
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6.5. Comparison of the gNIZ-modules Féi)z and ngymodz. The Fock space Fiy, ¢

can be equipped with a level 1 representation of 5[4 in the following way. The
assignment
2= t™ gt i=1,2,....m

)

yields a C-linear isomorphism
(6.16) Ve =C"®C'®Clz,27 —» C* @ CJt,t ™1 = V4,
. Wit (j—1)ym—kme "7 Uj4(i—1)0—kmb;

see (L), [@I). Taking semi-infinite wedges, it yields a C-linear isomorphism
(6.17) Fme = Fu.

Pulling back the representation of gN[Z on Fy in Section and Remark .7 (with
the integers ¢, m in Remark [ replaced by 1, ¢) by (6I7) we get a level 1 action
of gl, on F,, ¢ such that:

e For d € Z the level 1 representation of 5[5 on Fp, ¢ yields an isomorphism

(6.18) Fib, =y

m Wdmod £”

e The level m action of E[Z in Fy, ¢ given in Section [0 can be recovered from
the level 1 action by composing it with the Lie algebra homomorphism

(6.19) 5[5 — g/;\lg, rQ@w —rw™, 1—ml.

e Pulling back the level £ representation of ) on F, in Section by (@I7)
we get a level £ action of $) on F,,, o. The level m{ action of $ in Fp, ¢ given
in Section can be recovered from the latter by composing it with the
Lie algebra homomorphism

(6.20) by + by, bl b 1+— ml.

mnr)

Hence, the action of the Casimir operator associated with the level m/
representation of $ on F, ¢,

1
0=—> bib,

r>1

see ([A2)), is the same as the action of the m-th Casimir operator

1
21 = 2 /
(6.21) Om 7 brmrbiy

r>1

associated with the level ¢ representation of § on Fp, ¢.
e To a partition A\ we associate an £-quotient A*, an ¢-core A\° and a content
polynomial
aX) =[] (X +c i),
(i,9)EX
where ¢(i, j) is the content of the node (7,7) in A; see [27, chap. I]. In [25]
sec. 2.1] a bijection 7 is given from the set of ¢-cores to the set of ¢-charges
of weight 0. By [35], rem. 4.2(7)] the inverse of the map (GI7) is given by

(6.22) FO = O A 0) = X, (X)),

m, e’

Licensed to Universite Bordeaux |. Prepared on Mon Feb 23 16:22:46 EST 2015 for download from IP 147.210.130.33.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HEISENBERG ALGEBRAS, RATIONAL DOUBLE AFFINE HECKE ALGEBRAS 1011

Now, the argument which is sketched in part (b) of [27), ex. I.11] shows that
-1
(6.23) ex(X) = exe(X) [J(X + ) mod .
p=0
Next, by Remark 7] the scaling element D of the level 1 representation of
g[l on .F( )e is given by

(6.24) D(|A,0)) = —no(A) |2, 0),

where ng(A) is the number of 0-nodes in A. Note that ng(\) is the largest
power of X which divides the polynomial ¢y (X). Thus, comparing (622)
and ([6.23)), we get the following relation:

(6.25) (D, fpl = =fp,
where p =0,1,...,m— 1 and the elements f, are the Chevalley generators
of sl,,, which act on F'*: see Section E4l Formula ([623) should be viewed

mK’

as an equality of operators on ]-'fn’)g. Note also that (623) and ([@24]) give
the following formula:

(6.26) D(|2,0)) = —(no(A°) + [A*]) [, 0).
6.6. Proof of Theorem [6.10. Set

=1y
(6.27) v=-— f (wp — wo).

p=1

Note that by ([B.9) we have v € P because
-1
7= (sp1— — wo)-
p=1
We have a(y) = —(A,a)/h for each root « of sl;. Let K be the algebraic closure
of the field K = C((w)). We may view v as the element y(w) in Tp(K). We have

(6.28) a=ad(y) (ay,)

Next, a short computation using the standard identification of w, — wy with the
{-tuple

(6.29) (1P0°7P) — pt=1(1%)

shows that 7 belongs to Q%% if and only if the /-charge s has weight 0, i.e.,
ZPGZ[ sp = 0. In this case we have v € T;(K). In other words, v is a cochar-

acter of T;. Thus the element &, of the affine symmetric group ég is well-defined.

Assume from now on that s has weight 0. To simplify the exposition, we’ll only
give the proof of the theorem in this case. This will be done in several steps. The
proof for arbitrary weight d is similar; see Remark for more details.

Step 1. We first relate [O(T)] to the level one gl,-module V4. To any level one
weight p of gl, we associate the level m weight p’ given by
-1

(6.30) W =muwg+ Zup(wp —wp), where p=uwy+ Z fp(wp
p=1
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Then by ([@4) we have

(6.31) A(s,m) = & (wo)'s
where §(s,m) € P?l is as in (@I6). Using this and (6I%) we get an sl,, X H-module
isomorphism

FO = P Ve o @V @ (V2 €5 (wo)])

AEA(£,m)o
Thus, by (@I7), (6I]) and ([GI9) we have
(6.32) Fp = VEler (o),

o~

where the bracket indicates the weight subspace for the gl,-action of level 1. Since
the map (B20) yields an isomorphism [O(T')] = F, (=)

m.o> We also get an isomorphism
(6.33) [O()] = VEr (&) (wo))-

Step 2. We show that for each n the isomorphism (633)) restricts to an isomorphism
(6.34) [OT)] = V& (€ (wo) — nd).

For any p € P! we need to compute the weight of |u, s) in the right-hand side of
(632)). By (6.22) there exists |A,0) € .7-}(0) such that A* = p and 7(A¢) = s. Then
by applying Remark 7] to the sly-action on ]-'éo) and by ([6.23) we see that

wt(|A, 0)) = wt(|A%, 0)) — [A*]d.
In other words we have
wt (|, s)) = wt(|0, s)) — |u|d = wt(]0, s)) — nd.

Here the symbol wt denotes the weight with respect to the level one gNIZ—action. This
implies the equality (6.34)), because the weight of [0, s) is £ Y(wp) by the following
lemma. Note that the proofs of Lemmas [6.17] [6.12] below are postponed to
the end of the section.

Lemma 6.11. Let A € P.
(a) If X° is an {-core such that T(X¢) = s, then ng(A°) = $(7,7).

(b) The element |0,s) is an extremal weight vector of the module ]:7(3,)@ = Vfo[e
with the weight £ (wo).

Step 3. Recall from Proposition that for all 7, 7 we have
dimgr; ;(I',) = dim[O(L')]; ;-
Therefore to prove the theorem we are reduced to showing that

H T wo

dim[O(Ta)]i; = Y dim(V;fwo — né, j] @ Homa V7, V1)),
i

where the sum is over all weights p € P¢ such that (u, p) = —2i.
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Step 4. Recall that

In this step we prove that
(6.35) dim [O(T')]e ; = dim (V8" [wy — 16, j]).
Note that ~ ~
dim (V) [wo — né, j]) = dim (V) [€] " (wo) — nd, j])

because the m-th Casimir operator 0,, commutes with the vy-action on Vfgf (since

~

the actions of $ and sl; commute). Therefore it is enough to prove that under

[634) we have

(6.36) [OT)e; = V& (€5 (wo) — 16, 5].

Recall that by definition [O(T',,)]e ; is the eigenspace of eigenvalue j for the action
of the Casimir operator 0 associated with the $-action of level m¢ on [O(T")]. By
the discussion in Section [6.5 under ([6.34]) this action is sent to the action of the

m-th Casimir operator (G.21]) associated with the $)-action on Vf;‘ of level £. So

the equation (636) follows from the definition of V.2 (€5 (wo) — nd, 5].

Step 5. Next, consider the case i = 0. Let ©,, ¢ be the image of

» Y wo

(6.37) P Vifwo — né, j] © Homs (VE, VL)
i

under the canonical maps fo ®Homa(Vﬁ‘;‘, VU?OI‘Z) — Vj’o[@. Here i runs over the set of
all weights in P% with (fi, i) = 0. In this step we prove that the image of [O(I',)]o,;
by (6:34)) is isomorphic to ©,, ¢ as a vector space. To do that, observe first that by
the definition of [O(T'},,)]o,; the map ([6.34) takes [O(I',)]o,; onto the subspace

(6.38) Vfole [57_1(‘*)0) —nd] N @ Vy(at,0) @ V2l ® V@E([f\,m)-
AEA(L,m)o

Note that vy(xt g ® Vol ® V;A(If\ym) is the submodule of .7:7(37)2 = Vf;igenerated by
the vector |0, A) for the level m action of gl,. Note also that a,, =~ gl, by Remark
Finally, the set of weights of Vfg" is

(6.39) Wt(VgO‘e) ={wy+8 : B¢ qu}7
see Section [£.3] and we have the following lemma.

Lemma 6.12. (a) We have v € P_i“’“ if and only if V' € P_Eg[e.
(b) We have {V' : v € P;° AWEVE)Y = {5(A\,m) : A€ A, m)o}.

Thus, by Lemmas [6.1T] the subspace ([638) of Vf:f‘-’ (€5 (wo) — nd) is indeed
equal to

(6.40) @ Vo [ (wo) — nd, ],
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1014 P. SHAN AND E. VASSEROT

where the sum is over all extremal welghts v in Pu“’o N Wt(V.3 [’3) and V;“’O is

identified with the a,,-submodule of Vwo generated by a nonzero extremal weight
vector of weight . Now, let us consider the space ©,,¢. Recall that (f, i) = 0 if and

only if i is an extremal weight of V3 [‘ . Further the weight subspace corresponding

to an extremal weight is one- dlmensmnal; see Section L3l Thus ©,,¢ is equal to
the sum

(6.41) P Vi wo — nd, 41,

where fi runs over the set of all extremal weights such that Vf(f‘ contains an a-
primitive vector of weight fi. For such a weight fi, let v; be an a-primitive vector

of weight fi. Then fol is identified with the a-submodule of ngo[e generated by vj.
Now, recall from (6.28) that

a=ad(y) (ay,)
Thus, the definition of A% in Section yields

&, (ji) € P} = jie P,

Thus the v-action yields a linear automorphism of Vfgz such that

7_1(V;w0 [f;l(wo) - név]]) = vai(ﬂ)[wo - n(svj]a Vi e PJC:UO'

Thus (640) is equal to 6, ¢ by the following lemma.

Lemma 6.13. For all weights u in P 0N Wt(VglE) the module V5 contains an
Oy, -primitive vector of weight i, where i is the unique extremal weight in Ppote
associated with .
Step 6. Now we prove the general case. Fix the integers n,j. Let O,, ; be the image
of
P Vilwo — nd, j] © Homg (V& VEk),
o

under the canonical maps V& ® Homg(VE, Vi3 [2) — V3L %' Here the sum is over all
weights 7 € P{ such that (7,7) = —2i. On the other hand, let ©;, ; be the image
of

@ VCle &5 “Hwo) —nd,jl ® Homg,, (Vﬂa‘“O , V(gze)7

. ™ Ay al gl .
under the canonical map V. ®@Homg,, (Vﬁ 0 V) — V.5, where the sum is over

all weights 1 € Pi“o such that (fi, i) = —2¢. Then the same argument as in Step
5 implies that
G)TM' = 771(6:171’)’

1

since the composition by the automorphism =+ of V(folf yields a linear isomorphism

Homa(Vg(ﬂ), Vjo[f) = Homg,, (Vﬂu“’” , V“?O[Z).
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Let us prove that (6.34) maps [O(T',)];; onto O], ;. The proof of Step 5 implies
that (6.34) maps [O(I',)]o,; onto O}, 5. By (6.I0) we have
U™ (sln)i ([O(Tn)]o) = [O(Tn)]i;-
By ([625) we also have
U™ (slm)i (©,0) C 7,45
because the actions of ;[m and d,, commute with each other. Therefore, we have
[O(Fn)]z,] C @fn?z
On the other hand, Step 4 implies that
Jj = @ 941,1
>0
Thus we have the equality [O(T';)]:; = ©;, ;. The theorem is proved. O
Proof of Lemma [611l A direct computation shows that

‘
1 2
§<%7> 5 Z«%
p=1
Now, consider the partition A\ = (Aq1,...,Ag¢). We choose k to be large enough
such that A\gy = 0. Write
i—1l=al+0b, 0KV, <l—1.

The number of 0-nodes in the i-th row of the Young diagram associated with A€ is
equal to a; + a;. So, by definition of ng(A¢), we have

—_

ke
no(A°) = Z(ai +al).
i=1
We have y
Za/‘ _ —k(—k+ 1)6.
i=1 ' 2

By the definition of the bijection 7 in Section [6.5] see also [25] sec. 2.1], we have

ke
Zai = Z (=k+2)+-+sp)
i=1

p=1

¢
1 —k+1)¢
_ 1y kCREDE
p=1

This proves part (a). For part (b), note that (a) and (6.24)) yield

D0, 5)) = ~5 (1. )]0, ).

Further |0, s) is a weight vector for the level one representation of g?[[ with the weight
wo — ; see [35] (28)]. Thus |0, s) is a weight vector for the level one representation
of gl, with the weight

e,

£§l(wo):wo—7—2
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1016 P. SHAN AND E. VASSEROT

The latter is an extremal weight; see Section A3l O

Proof of Lemma 6121 Part (a) is easy and is left to the reader. It follows from the
formula for a,,, in Remark Next, we concentrate on part (b). By (GI3), the
set of all dominant integral weights of sl, of level m is

-1
{30 m) s Xe Al,m)} = {(m =M+ X)wo +D>_(Ap = Aps1)wp : A€ A(L,m)}
p=1
—{mwo—i—z Ap+1) —wp) : A€ A(L,m)}.
Set 8 = Z ( — Ap+1) (Wp —wp) with A € A(¢, m). Identifying wy, —wo with the

{-tuple (IBZQI), a short computation shows that 8 € Q%" if and only if A belongs to
the subset A(¢,m)y of A(¢,m). Therefore, by ([€39), we have

um) = Ae Albm)o} = {/ + ve W(VEn), v/ e PIYY.
Thus, part (b) follows from part (a). 0

Proof of Lemma [613l Fix a weight p in Pi‘”" N Wt(Vf(f"). Recall that

1<u, 14)0.

N:M_2

Fix a nonzero element v € ngo[‘ of weight ji. We must prove that v is a,,-primitive.
The argument is taken from [IT], sec. 6.2]. By Remark 6.9l it is enough to prove

that f + v is not a weight of V(f(,[‘ for any element v in the set
{appt+1, if—o1p+md : p=1,2,...,0—1}.
In fact, since fi € P_E;, for such a v we have
(p+v,p+v)=(vv)+2(4,v)=2+2(v) >0.
Therefore fi + v is not a weight of V.3 g, by Section 3] ]

Remark 6.14. Now, assume that the ¢-charge s has any weight d, i.e., that we have
Zp s, = d, where d may be nonzero. Thus 7 belongs to P*" but not necessarily to

Q*". So it defines an element &, in the extended affine Weyl group
St =&y x P,
Thus it acts on P as in ([#4) and we have again
A(s,m) = & (wo)"-
Thus, by [@I7), (6I]) and ([GI9) we have
F = Vil 67 o))

Now, the left-hand side is identified with [O(T")] by (&20). Further, the extended
affine Weyl group is isomorphic to the semi-direct product 2 x &y, where =
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P /Q%" is the group of automorphisms of the Dynkin diagram of f:\[[; see, e.g., [5l
(3.1.6)]. Its braid group acts on the sum

1

-1
[ ~
@Va?dea Wd = Wdmodt — §<wdmodlvwdmodf> = gwdmodefwo(WO)a
d=0

such that the action of the braid group of ég preserves each summand. A direct
computation using ([6.29) shows that 7 € Wgmod ¢ —wo +Q%*. Thus, for each integer
n > 0 we get an isomorphism

(6.42) VI [e (wp) — ] = V' [wo — no).

d
So using ([GI8)) we get an isomorphism
d) _ yrql, _ 10l
]:m,E - demode - V@d )

where the second equality is given by a shift on the weight. Now, Lemma [6.T1] has

the following analogue. The weight of |0, s), regarded as an element in Vfdl‘jmde, is
_ 1
& Hwo) + §<wdmod€7wdmod6>5-

Thus its weight in Vaf’;e is & Y(wp). Using the same argument as in Step 2 and
([642) this implies that
_ 179!
[O(T,)] = Vuf‘of[wo —nd].

We can use this isomorphism to identify the filtration on the left-hand side in the
same way as above. For example, note that ([6.42]) identifies

D Ve ) — b )@ Homa, (Vi VEY)
REPLS0 s (i, fiy=—2i
with
D Vilwo — nd, 5] © Homg (VE, V).
DEPS; (5,0)=—2i

The same proof as in Lemma [6.12(b) yields that

(/' : ve P AWKVEY ) ={4(\m) : A€ A(L,m)d}.

Wd mod £

Further, under the action of wgmed ¢ — wo, viewed as an element of the braid group

of é;t, Lemma [6.13] implies that the set Pi“’“ N Wt(N Lfd[{mde) is in bijection with

the set of highest weights of the a,,-submodules in Vfdlz. The details are left to the
reader.

APPENDIX A. REMINDER ON HECKE ALGEBRAS

A.1. Affine Hecke algebras. '{’he affine Hecke algebra of type GL,, with param-
eter ( € C* is the C-algebra H¢(n) generated by the symbols X1, Xs,..., Xy,
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1018 P. SHAN AND E. VASSEROT

T1,Ts,...,T,_1 modulo the defining relations

XinZXin, 1<z,]<n

Tin:chriv j;é’L,Z-f—].,

TXiT = (Xip1, 1<i<n—1,
TZ‘TJ‘ = :Z}TZ, |Z —j| > 2,
TTinTi =Ti1 TiTivq, 1<i<n-—2.

For I c {1,2,...,n—1}let I:I< (I) € H¢(n) be the corresponding parabolic subalge-
bra. It is generated by the elements T;, X; withi € I, j = 1,2,...,n. For a reduced
expression w = s;, S, - - - §;, of an element w € &,, we write T, = T;,T;, - - - T;,. We
abbreviate T;; = T,,. Let Dy be the set of minimal length representatives of the
left cosets in &,,/&;. We'll abbreviate Dy j = DI_1 NDy. For x € Dy ; the map

Grrzg = Gp-11ny, W " wz

defines a length-preserving homomorphism. Hence there is a C-algebra isomorphism
He(INaJ) = He(z ' INT), Tur Totner  Xj > Xo-1(j)-
Let
Rep(H¢ (271N J)) = Rep(He(I NaJ)), M —"M
be the corresponding twist functor. The following is well known; see, e.g., [28]

thm. 1].

Lemma A.1 (Affine Mackey theorem). Let M € Rep(H¢(J)). The module
Hc(n)
Res (I) Ind (J)(M)

admits a filtration with subquotients isomorphic to

HC (I) x HC(J)

IndHc(m n Res He(o-11nJ) (M),

one for each x € Dy ;. The subquotients are taken in any order refining the Bruhat
order on Dr j. In particular we have the inclusion

A (1) . (J) He(n) 1 He(n)
(mJ)Rs (mJ)( )CRes (I)Id (])(M).

A.2. Cyclotomic Hecke algebras. The cyclotomic Hecke algebra H¢(n, ¢) asso-
ciated with T';, and the parameters (,v1,va,...,v, € C* is the quotient of I:IC(n)
by the two-sided ideal generated by the element

(Xl - ’Ul)(Xl — ’UQ) N (Xl — ’U@).

We’ll denote the image of the generator X; in H¢(n,¢) by the symbol T,. For a
subset I C {0,1,...,n—1} we define I'; C T, as the subgroup & if 0 & I, or as the
subgroup generated by &\ oy and {v1;y € I'} otherwise. This yields all parabolic
subgroups of I';,. We consider also the parabolic subalgebra H¢(I,¢) C H¢(n,¥)
which is the subalgebra generated by the elements T; with ¢ € I. Recall that
To = X1. To unburden the notation, we abbreviate

H(Fn) = HC(n7€)7 H(&,,) = HC(m)7 H(I;) = HC(L E)

Ind .
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For I ={0,1,...,n+m}\ {n} we also write
H(Fn,m) = H(FI) C H(Fn+m)
Note that
H(T,,m) ~H(,) @ H(G,,).

A.3. Induction/restriction for cyclotomic Hecke algebras. We’ll abbreviate

H _ H(T») H _ H(T»)
Ind,, = IndH(Fnil)7 Res,, = ResH(Fnil),
H _ H(Tpnymr) H _ H(Tntmr)
(A1) Ind,, (ynry = IndH(Fnimr)), Res,, (mr) = ResH(Fﬂ:mr)),
Mndy, gy = Indgyp" "7, HRes,, mr = Respy ™).

We also write
HInd(y,ry = MIndgr" : Rep(H(S},)) — Rep(H(S,n,)),
HRes(r) = HResggf :Rep(H(G,,,)) = Rep(H(S7,)).
Now, we consider the Mackey decomposition of the functor
HResn im0 Ind,, 1 : Rep(H(Ty.m)) — Rep(H(Typm_1)).
A short computation shows that a set of representatives of the double cosets in
Crtm—1\Tntm/Tnm
is {Vn+m>Snn+m @ v €T'}. For
I={0,....n+m—-1}\{n—-1,n}, J={0,....n+m—-2}\{n—1}
we have
H(T;) € H(Ton), H(Dy) = H(To 1) C Hup o).
Further, there is an algebra isomorphism
o: H('y) = H('1), Tw = Tows—, Xi = Xsi,

where s = $,8,41 " Spym—1. For each i, p we write X? = (X;)?. We have the
following decomposition. It is well known in the case m = 1; see, e.g., [21], lem. 7.6.1]
in the degenerate case.

Proposition A.2. (a) We have an isomorphism of H(I' 4 p—1)-modules

H(Fn+m) = @ @ H(Fn+m—1) T’j,n-&-m X;j

0<p<L1<j<n+m
(b) We have an isomorphism of (H(Tpnym—1), H(Ty 1)) -bimodules
H(m) = Hwgm—1) Tonsm H(Lnm) @ @ H(Tpm—1) X5 4 H(m)-
0<p<t
(¢) There are isomorphisms of (H(Tpim—1), H(I'y m))-bimodules
H(Fn+M—1) Tn,n+mH(Fn,m) = H(Fn+m—1> ®H(Fn71,m) H(Fn,m)v
H(F7L+wz—1) X£+mH(Fn,m) = H(Fn+m—1> ®H(Fn,m71) H(Fn,m)a

where the algebra homomorphism H(T'y,—1 ) — H(I'y, ) is given by .
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Proof. Part (a) is standard; see, e.g., [21} lem. 7.6.1] in the degenerate case. Let us
concentrate on (b). Write t;; = T;T;_1---T; for 1 <i < j, and t;; = 1 for ¢ > j.
By (a) we are reduced to proving the following identities:

(AQ) @ @ H n+m— 1 n+m 1]X *H(Fn+mfl)thrmfl,nH(Fn,m)a
o<p<l1<j<n

@ @ n+m 1 thrm 1] @ H n+m— 1 X n+m H(Fn,m)-

0<p<t n<]<n+m 0<p<t
We have
(A4) Ulngm—1n = tngm—1n @), u©w€HTr_1m),
because for i =1,2,...,n— 1 and j € J \ {0} we have
Tjtntm—1n = tntm—10Ts() = tntm-1,00(T}),
Xitntm—1,n = trtm—1,nXi = tngm—1,n9(Xi).
Hence, by (a), the right-hand side of (A.2)) is
— D P HCwin) b1 B oy X

0<p<t 1<5<n

p
@ @ n+m 1 H(Fn—Lm) tn+m—1,n tn—l,j Xj
o<p<l1<jsn

@ @ n+m 1 tn+m—1,j X;D
0<p<t 1<5<n
This proves [A.2). Next, a short calculation involving the relation
X7 Ty = T; X7 € CX;, Xj14]
proves that the sum
Z Z HT4m—1) tn+m—1,ij
o<p<tn<j<n+m

is indeed a direct sum; i.e., it is equal to the left-hand side of (A3)). Thus the
identity (A23)) follows from the following equalities:

H(Fnerfl) Xngm H(Fn,m) = Z H(Fner*l) X7I’Z+m Tja"er

n<j<n+m

Z H(Fn-i-m—l) X7I;+m tn+m—1,j

n<j<n+m

= Z H(Fn+m—1) tn+m—1,jX§)-

n<j<n+m

Finally, let us prove (¢). To prove the second claim, note that the left mul-
tiplication by the element X? +m» Which is invertible, yields an isomorphism of
(H(Tpqm—1), H(Ty,m))-sub-bimodules of H(I'y 4 ):

H(Fnerfl)H(F ) er;erH(Fnerfl)H(Fn,m) = H(Fnerfl)XnerH(r )
Finally, the obvious epimorphism

925 : H(Fnerfl) ®H(Fn,m_1) H(Fn,m) — H(Fnerfl) H(Fn,m)
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is also invertible. The reason is the following: consider the canonical isomorphisms
H{T, ) ~H{T,) @ H(&,,), HT, m1) ~HT,) @ H(S,,—1).
By applying part (a) to H(&,,) we see that

n+m
H(Fn,m) = @ H(Fn,m—l),rj,n+m-

Jj=n+1
Therefore the left-hand side of ¢ is a free left H(I';,4,—1)-module with basis {1 ®
Tjn+m;n < j<n+m}, and the sum Z?LTH H( )y tm—1)Tjntm in HTppp) is
direct by (a) again. So ¢ is also injective. To prove the first claim in (c¢) we define
a map

H(Fn+m—1) X H(Fn,m) — H(Fn+m—1) Tn,n—i—m H(Fn,m)7
(U, v) = Utptm—1,nV.

By (A4) this map factors to a surjective homomorphism

w : H(Fn+mfl) ®H(Fn—1,m) H(Fn,m) — H(Fn+mfl) Tn,n+m H(Fn,m)

Since we have
H{T, ) ~H{T,) @ H(&,,), HT,-1m)~H({T,—1) @ H(G,,),

by applying (a) to H(T',,) we see that the left-hand side of ¢ is a free H(T s, 41m—1)-
module on the basis

1@ty 1;X), 1<j<n, 0<p<L
But 1 maps these elements to

thrm*l,jX]pﬂ 1<j<n, 0<p< L.
Further, the latter are H(T',, ., —1)-linearly independent in H(T',,4.,,,) by (a) again.
Therefore 1) is injective. We are done. (Il

APPENDIX B. REMINDER ON (-SCHUR ALGEBRAS

B.1. The quantized modified algebra. Let v be a formal variable. The quan-
tized modified algebra U(n) of gl,, is the associative Q(v)-algebra with generators
E;, F;, where i =1,...,n—1 and 1, where A € Z", with the defining relations [26],
sec. 23]

1x1, = 6x,uln,

EiFj — FiE; = 045 3 5[Xi — Aigalla,

Eilx = 1xya, Ei

I\F; = Filxta,,

EiEj = E‘jE‘Z if 4 7é j + 1, EEEJ — (7) + ’U_I)EiEjEi + EJEE =0 else,

FiFj = FjFi if 4 7& jE1, FiQFj — (U + ’U_l)FiFjFi + FjFiQ =0 else.

Here [m] is the usual v-analogue of m for any m € N, and «; € Z" is the root
0,...,0,1,—-1,0,...,0) with 1 at the i-th spot. The comultiplication of U(n) is
the Q(v)-algebra homomorphism

A:Um) = [[(On)1, @ Un)1y)
AN
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given by
o ALY =TTy srr Ly  Lar,
o A(Eily) = [Tmypns (Bily @ Ly + 00215 @ Eilyn),

L4 A(Fz]-)\) = H)\:)\’+)\//(Fi1>\’ 2y 'U_(ai’)\//)]_)\// =+ ]_)\/ & Fi]-)\”)~

Set A = Z[v,v~t]. The integral quantized modified algebra is the A-subalgebra
U4(n) € U(n) generated by the 1y’s and all quantum divided powers Ei(d), Fi(d).
The comultiplication yields an A-algebra homomorphism

Uu(n) = [[(Uam)1y @ Ua(n)iy).

AN

For € € C* we consider the C-algebra

U.(n) = Ua(n) @4 Clv,v 1]/ (v —e).

For V, V' € Rep(Uc(n)) let sy,y : V@V’ — V'@V be the permutation v @ v’ —
v' @ v. An R-matriz is a C-linear endomorphism Ry v of V ® V’/ such that the
composed map

Rv,v = sy, o Ryy

is an isomorphism of U,(n)-modules V® V' — V' ® V. We fix an R-matrix Ry v
as follows:

Ryv/(v@v)=Rv®d), R=IIO,
I = He_(A’A/) 1\ ® 1y, éE H(I-Je(n)l)\ébﬁe(n)l)\/).
AN AN

Here, the element © is defined as in [26] sec. 32]. We call R the universal R-
matriz. To avoid confusion we may write R, for R. We’ll write Ry, again for the
braiding of right Ue(n)—modules V, V'. If € is a primitive 2d-th root of 1, then we

have ¢?* = (—1)9. Hence the quantum Frobenius homomorphism [26, sec. 35.1] is a
C-algebra homomorphism

Fr:U.(n) - ﬁ(_l)d(n)

such that

. Fr(Ei(m)lx) = Ei(m/d)l)\/d if m € dZ and A € dZ™, and 0 otherwise,

° Fr(Fi(m)lA) = Fi(m/d)lA/d if m € dZ and \ € dZ™, and 0 otherwise.
The formulas in [26] sec. 3.1.5] imply that

A o Fr = FroA.

Proposition B.1. We have (Fr @ Fr)(R.) = R(_1y¢ = HAM\,(—l)d()"X)(lA ® 1y).
Proof. To avoid confusion we’ll write ©,, II. for ©, II. If n = 2 the proposition

follows from the formula [26] sec. 4.1.4]. More precisely, since
k

ée - H Z(—1)k€7k(k71)/2{k}6F(k)1)\ ® E(k)lk” {k}e = H(gl — 672-),

AN k20 i=1
we have the following formula:

(B.1) (FroFr)(0.) = [[ (1 @ 1y).
PV
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Further, in U(_l)d(n) ® U(_l)d(n) we also have

(B.2) (FroFr)(M) = [[(-D*) (15 @ 1)
AN
and
(B.3) O e =[[r@ly), M_ye= ][00 @ 1x).
PV AN

This proves the formula for n = 2. Now, let n be any integer > 2. The braid group
of &, acts on Uc(n) via the operators 17y, T5y,..., T}/ 1 ; in [26 sec. 41]. For
1=1,2,...,n—1 we set
= k(k— k k
Si=Ti@Th, ie= (- V2D 0 B,
k>0

For a reduced decomposition s;, s;, - - - 8;,. of the longest element in &,,, the universal
R-matrix is given by the following formula (see [22], thm. 3]):

O = [[0(x@1n), Oc=5;" S S 0,.0) -+ S;  (6i,_, )0, e
AN

Thus (B3) yields

(:)(,1)4 = H(l)\ ® 1)\/).
AN

Since the braid group action is compatible with the quantum Frobenius homomor-
phism, see [26] sec. 41.1.9], by (BI) we also have

(FroFr)(0.) = [[(1x @ 1y).
AN
Finally, a direct computation yields
(Fr@Fr)() = [ (-0 (15 @ 1y) = Ty,
AN

This proves the proposition. O

Remark B.2. Tt is proved in [26] prop. 33.2.3] that the assignment
Eily — (=142 By o By e (<) DA gy 1, 1,

yields a C-algebra isomorphism Uy (n) — [.J(,l)d(n). Thus we can regard Fr as a

map U,(n) — Uj(n). Note that the isomorphism above does not commute with
the comultiplication.

B.2. The (-Schur algebra. Recall the set A(n, m) from Section Bl The v-Schur
algebra S(n,m) is the associative Q(v)-algebra with 1 generated by E;, F;, where
i=1,...,n—1and by 1), where A € A(n,m), modulo the defining relations [I0}
thm. 2.4]

1x1, = 6x,uln, ZA 1,=1,

EiFj — FiE; = 055 3 5 [N — Aigalla,

Eilx = 1xto, B if A+ a; € A(n,m), 0 else,

IZNE; = Elx_qo, if A\—a; € A(n,m), 0 else,

Fily =1y_o,F; if \—a; € A(n,m), 0 else,
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o 1\ F;, = Filyqa, if A+ a; € A(n,m), 0 else,
e E,E;=FE;E;ifi#j+1, E?E; — (v+v Y)E,E;E; + E;E? = 0 else,
o FiF; =F;F;ifi#j+1, FFj — (v+v Y)F,F;F; + F;F? = 0 else.
The integral v-Schur algebra is the A-subalgebra S 4(n,m) C S(n,m) generated

by the 1,’s and all quantum divided powers Ei(d), Fi(d). In other words, we have a
canonical isomorphism

Sa(n,m) =1, Ua(m)ly, Im= > 1x
AEA(n,m)

The comultiplication of U 4(n) factors through an A-algebra homomorphism
(B.4) A:Su(nm)—» P Saln,m)@Ssn,m").
m=m’+m’’
For (,e € C* with ( = €2 we consider the C-algebra
S¢(n,m) =84(n,m) ®4 Clv,v™']/(v —¢)
=1,,U.(n)L,,
Indeed S¢(n, m) depends only on ¢ and not on the choice of e. If ¢ is a primitive d-th

root of 1, we choose € to be a primitive 2d-th root of 1. Then the quantum Frobenius
homomorphism Fr : Uc(n) — Uj(n) factors through a C-algebra homomorphism

(B.5) Fr: S¢(n,dm) — S1(n,m).
Note that we have used the identification U(_l)d(n) = U, (n) in Remark

B.3. The module category of S¢(n,m). Recall the set Z" from Section 3.8 For
A€ 7y, let Ag\f and Lg{ denote the Weyl module and the simple module with
highest weight A in Rep(U(n)). See [31], [1] for the details. Set

A(n,m); = A(n,m)NZ7.

The category Rep(S¢(n,m)) is equivalent to the full subcategory of Rep(U.(n))
consisting of the modules such that all constituents have a highest weight in the set
A(n,m),. Parshall and Wang [3I] were the first to show that the (-Schur algebra
is quasi-hereditary. It is quasi-hereditary with respect to the dominance order, the
standard objects being the modules AY with A € A(n,m). Here, for A € A(n,m)4,
we write
AY =AY, 15 =1Y,

regarded as objects in Rep(S¢(n,m)).
B.4. The Schur functor. Assume that n > m. There is a C-algebra isomorphism
[10, sec. 11]

Hc(m) = fSc(n,m) f, f=1amon-m).
Thus the vector space T¢(n,m) = S¢(n,m)f is a (S¢(n, m), He(m))-bimodule, and

S¢(n
Ve(n,m) = fSc(n,m) is a (H¢(m), S¢(n, m))-bimodule. Consider the triple of
adjoint functors (®y, &*, D, ):

®* : Rep(S¢(n,m)) = Rep(H¢(m)), M — fM,
@, : Rep(H¢(m)) — Rep(S¢(n,m)), N = Homp, (m)(Ve(n,m), N),
@ : Rep(H¢(m)) — Rep(S¢(n,m)), M = T¢(n,m) @, (m) M.
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We call ®* the Schur functor. 1t is a quotient functor; i.e., it is exact and the counit
®* ®, — 1 is invertible. The double centralizer property holds; i.e., we have

SC (na m) = EndH< (m) (VC (n7 m))

Equivalently, the functor ®* is fully faithful on projectives, or, equivalently again,
the unit P — &, ®*(P) is invertible whenever P is projective. See [32 prop. 4.33]
for the details. Since ®* is a quotient functor, the functor ®, takes projectives to
projectives and the unit 1 — ®*®, is an isomorphism of functors. For m = m/+m"
the comultiplication (B4) yields a functor

(B.6) @ : Rep(S¢(n,m’)) @ Rep(S¢(n,m")) — Rep(S¢(n, m)).

) : H — H¢ (m)
We’ll abbreviate * Indy,s = IndHC(m,)®HC(mN)~

Proposition B.3. (a) We have a (S¢(n,m), H¢(m') @ He(m'"))-bimodule isomor-
phism can : T¢(n,m')@T¢(n,m"”) — T¢(n,m). For M’ € Rep(H¢(m')), M" €
Rep(H¢(m")) the map can yield an isomorphism

can : &, (M Ind, (M @ M")) — &(M")R2®(M").

(b) We have an isomorphism of (H¢(m') @ He(m”), S¢(n, m))-bimodules can :
Ve(n,m")@Ve(n,m") = V¢(n,m). For M’ € Rep(H¢(m')), M € Rep(H¢(m))
the map can yields an isomorphism

can : @, (M Ind,y v (M @ M")) = 0, (M) 2P, (M").

Proof. By definition T¢(n,m) is the v-tensor space in [8], def. 2.6]. According to [7]
sec. 3.3, 4.4] it is identified with the m-th tensor power of the natural representation
of the (modified) quantized enveloping algebra of gl,,, in such a way that the H(m)-
action comes from the R-matrix; see also [17]. This proves part (a). Part (b) follows
also by taking the dual spaces. (Il

Corollary B.4. We have an isomorphism
can : FInd,, pr (D*M' @ ®*M") — &*(M'&M")
for M'" € Rep(S¢(n,m’)) and M" € Rep(S¢(n,m”)).

Proof. For M’ € Rep(S¢(n,m’)) and M" € Rep(S¢(n, m”)), Proposition B3 yields
an isomorphism

&M nd,r (M’ @ *M") = ,0* M2, 0* M".
Composing it with ®* we get an isomorphism
HInd,y i (M @ @*M") = &* (2,2 M'@®,&*M").
Composing it with the unit 1 — ®,9* we get a functorial map
O (M'&M") — HInd,y g (M’ @ &* M),

which is invertible whenever M’, M" are projectives, because the unit is invertible
on projective modules. Thus it is always invertible, because ®* and HInd,,,’ .~ are
exact and because there are enough projectives in Rep(S¢(n, m)). O
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B.5. The braiding and the Schur functor. For M’ € Rep(H¢(m’')) and M" €
Rep(H¢(m”)) the R-matrix yields an isomorphism of S¢(n, m)-modules

R(IZ'*]\/I’,@*M” N (I)*M/®<I>*M” — (P*M//@)(I)*M,.

Let 7 € &,,, be the unique element such that

e 7 is minimal in the coset (S, X Gy )T(S v X Gy ),
o we have 77 1S, X G )T = G X Sy

We have the following formula in He(m):
(B.7) T, (" ®h")y=(h @h")T,, K e€Hc(m'),h" € He(m").
Thus there is a unique functorial H(m)-module isomorphism
Sar v s EInd,y g (M @ M) — B nd,pr r (M" @ M)
given by
Sy (h@ (V' @0")) =hTr @ (v @0'), heHe(m),v € M',v" € M".

Proposition B.5. For M’ € Rep(H¢(m')), M" € Rep(H¢(m")) the following
square is commutative:

<I>*(S ’ //)
5 Ind, o (M @ M) ——5 & HInd,r e (M” @ M)

can l/ Canl

M &b, M" Reowst? ot O, M"&®, M’

Proof. We abbreviate H = H¢(m), H = H¢(m'), H' = He(m"”), V = V¢(n,m),
V' =V¢(n,m') and V" = V¢(n,m"). First, we have a commutative square

VH®V/ RVN v/ V/®v//
(B.8) l l
\% - v,

where the lower map is the left multiplication with 7. See [I7] and the discussion
in the proof of Proposition In particular, we have

RV”’V/ (h//v// ® h/U/) _ (hll ® h/)RV”’V/ (v/ ® U”),
VeV W eV KWeH, heH
Therefore, the composition with Ry v yields a linear map
Hompgu (V, M @ M") = &2 Ind,s (M @ M")
— Homprgp (V, M” @ M') = &2 Ind,, e (M" @ M').

The commutativity of the square (B.8]) implies that this map is equal to @, (Sas7,ar7).
It is easy to see that this map also coincides with Re, ar e, m- O
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Corollary B.6. For M’ € Rep(S¢(n,m')), M" € Rep(S¢(n,m")) the following
square is commutative:

S«I:*M’,@*M”

H Ind,ys o (9 M @ &* M) H Ind,r o (8 M @ &* M)

Cal‘ll canl
. D (Rpsr agrr) .
@*(M’@M”) MM @*(M“@M’).
Proof. Use the same argument as in the proof of Corollary [B.4l O

Let r >1and i =1,2,...,7 — 1. For M € Rep(H¢(m)) we consider the automor-
phism of the H¢(mr)-module ¥ Ind,,~) (M®") given by
(B 9) SM,i _ HIndgC(mr)(:l@i—l ® SM,M ® 1®T‘—i—1),

' H = H(m)®! @ He(2m) @ He(m)® L.

For M € Rep(S¢(n,m)) we consider the automorphism of the S¢(n,mr)-module
M®" given by

(B.10) Rars = 1871 @R @197 7171,

Corollary B.7. For M € Rep(S¢(n,m)), r > 1 andi=1,2,...,7 — 1 we have a
commutative square with invertible vertical maps

Sa*(n),i

H Ind(mr) ‘b*(M)®T H Ind(mr) @*(M)®r

! l

o (M) o Rari) o (M),

B.6. The braiding and the quantum Frobenius homomorphism. Recall
that if ¢ is a primitive d-th root of 1, then the quantum Frobenius homomorphism
(BF) yields a functor

Fr* : Rep(S1(n,m)) = Rep(S(_1ya(n,m)) — Rep(S¢(n,dm)).
Here we have identified S(_1ya(n,m) and Si(n,m) as in Remark B2l Let m/, m” >
0 with m = m’ +m”. By Proposition Bl for M € Rep(S(_1)a(n,m)), M' €
Rep(S(_1ya(n, m’)) the braiding operator
RM,M’ : M®M/ — M/(X)M
is the composition of the permutation sas 5 and of the operator
Ry = [ (1)) (1aé10).
AN
Proposition B.8. Forr >1,4,j =1,2,...,r — 1, and M € Rep(S(_1ya(n,m))
the following relations hold in Ends(il)d(mmr)(M@T):

e R3 =1,
® RmiRuj =R iR if j #1—1,i+1,
* RuiRuiv1Rmi = Rt RuiRoir if e # 1 — 1.
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Proof. The first relation is obvious by the definition of the braiding operator; see
above. The other relations are consequences of the general properties of a braiding.
|

Further, the functor Fr* is a braided tensor functor; i.e., we have the following.
Proposition B.9. For M € Rep(S(_yy(n,m’)), M" € Rep(S(_1)a(n,m")) we
have a functorial isomorphism Fr*(M&M') = Fr*(M)® Fr*(M’) in Rep(S¢(n, dm))
such that Fr* (RM,M/) = RFr*(M),Fr*(M’)~

Proof. This is obvious by Proposition [B.1l O

B.7. The algebra S¢(m). We’ll abbreviate S¢;(m) = S¢(m,m). If n > m the
algebra S¢(n,m) is Morita equivalent to S¢(m); see, e.g., [8, lem. 1.3]. Thus ® can
be viewed as a functor (choosing n > m =m’ +m”)

@ : Rep(S¢(m')) @ Rep(S¢(m”)) — Rep(S¢(m)).
If ¢ is a primitive d-th root of 1, then the quantum Frobenius homomorphism can

be viewed as a functor (choosing n > dm)

Fr* : Rep(S1(m)) = Rep(S(_1)¢(m)) — Rep(S¢(dm)).

APPENDIX C. REMARKS ON THE FOCK SPACE

We record here some remarks concerning the Fock space. They have not been
used in the paper. First, there is a tautological C-linear isomorphism C™ ® C* =
c™. Tt yields C-linear isomorphisms V,, o — Ve and F, ¢ — Fine. Recall that

Fme is equipped with a level 1 action of sly,,, and that F,, , is equipped with a
level (¢,m) action of sl,, x sl,. Now, there is a well-known Lie algebra inclusion

(5L % 817)/(m(1,0) — £(0,1)) C 8lpg,  (1,0) = £1,  (0,1) — m1.

This inclusion intertwines the f/s\[m X ;[z action on Fp, ¢ and the f/y\[mg action on
Fmye = Fme. Further, we want to compare the sl,, action on F,,, with the
level one sl, action on F,, ¢ given in the beginning of this section. The C-linear
isomorphisms (6.10) and (6I7) yield a C-linear isomorphism

(C].) Fiﬁfm,lzfmf'

The right-hand side is e(iuipped with a level 1 action of ;[mg, and the left-hand side
with a level 1 action of sl,. Consider the following elements in sl,,, ® C[ew, w~!]:

m—1 m
e(i+km) = e @@ + Y ejirjom @@
j=1 j=m—it1

1<i<m, keZ.
For z € sl,, ® Clw,w '] and p,q¢ = 1,2,...,¢ we define the element 29 ¢
5l ® Clow, w1 by

m m
2PV =N e oty gtg-m © iy for w= ) e ®ay;.
i,5=1 4,j=1
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The following claim is proved by a direct computation, which is left to the reader.

Proposition C.1. (a) There is a Lie algebra inclusion sly C sl given by
1—1, e,9w — x(r)(p’Q), p,gq=1,2,....0, reZ.

(b) The map (CIl) intertwines the sly action on Fy and the sl action on Finp.

INDEX OF NOTATION
1.3: Z(A), Irr(A), Rep(A), Irr(A), [A], D*(A), D*(A), (m), A® B, 1F.
2.1: W, b, ¢, HW), Ry, Ry, O(W), A, O(W,b), HW,b).
2.2: X{, Xwr, X0 X
2.3: Wy, mp, Indy, Resy, OIndVng, ORes%b, Supp(M), spe, *M.
3.1: |\, A(4,n), Pn, N, I(N), 2x, mA, Zg, P, PE, T, PV, PL.
3.2: &y, T, Vi Sijy Sis Sijs Xp» 8 Ty Ty T
3.3z, yi, H(Ty), h, hy.
3.4: A, wy, sly, 1, €y, fpy €pg, 51, D, U(sly), U™ (sly), U™ (sly),..
3.5: L.
3.6: Ay, Ly, Py, ®Ind,, “Res,, OIndm(mr), OResm(mr), °Indy, mrs CResp s
OInd(mr) , ORes(mr) .
3.7 H(T,), ¢, vy, KZ, S.
3.8: H¢(m), S¢(m), *, A(m)4, 277, AY, @, R, O(&), Rep(S¢).
3.9: D, (2), b, eq, fq, E, F, &g, fq, s =(sp), ]:(S)
3.10: X7, X1, X7j, Xij, Xijcen, Irr(O( )) igs Fij(Tn), gr(Tn), gr;;(I'n),
Fz,-(rn)v Fe j(Ty), grz,o(r ), gr (Fn) i,j(Tn)°
3.11: E, F.
4.1: R(6), R("), A, ch, Sy, P, Py.
4.2: 9,1, b, 0, U®), U (9), U (H)r, bx, by, by, by, V2, 0, VP[]

4.3: gl gy, PR, Poim, POl il pllo pSlo pstn pste st b,
@', P, V], Ty by Sy €, B(w)-

4.4: Ap, 7, P), Py, Py, Sup, Sa, ch, 7, 25, A

4.5: €;, Fm, Vin, .7-',(,11)7 ug, A, d).

4.6: &, Foupy Vine, wi, Y(s,m), F, mf’ I\, 8), ng(A), A(s,m).

5.1: O(I'), by, Homp(s,,,)(®; Lima A, Ax, A, A

5.2: A*, A, Ay, 7, B, O, 7.

5.3: Ray«, Ray,, Ria,\,*7 RiaM, ay, Ay« Q!

5.4: PI(O(T,)).

5.5: B, B, He, Ot &) Tw, ay, v.

5.6: ax(L).

6.2: [O(I')]e;, [O)]i

6.3: Ap qy ClA7 AJr, PJr, V

(D))ij» [OT0)]i;-
s Oms VA -

[0
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6.4: Y(\,m), A(L,m), A(,m)q, \'.

6.5: \*, A% T(X9), ea(X).

6.6: 11/, &5, Og.

A.1: H¢(n), Xi, Ty, He(I), T, Tij, D1, Dy

A.2: He(n,0), Ty, T';, He(1,0), H(T,), H(S,,), H(T';).

A.3: HInd,,, HRes,, HIndn’(mT), HResn’(mr), HIndan7 HResz7 HInd(mr),
HRes(r).-

B.1: U(n), 1, [m], A, A, €, syv/, Ryv/, Rvyr, 11, O, Fr.

B.2: S(n,m), Sa(n,m), S¢c(n,m).

B.3: AY, LY, A(n,m), Af, Lf.

B.4: f, &, ®,, &), &.

B.5: Sy

B.6: Fr*.

B.7: Sc(m).
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