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GRADED DECOMPOSITION MATRICES OF v-SCHUR
ALGEBRAS VIA JANTZEN FILTRATION

PENG SHAN

ABSTRACT. We prove that certain parabolic Kazhdan-Lusztig polynomials cal-
culate the graded decomposition matrices of v-Schur algebras given by the
Jantzen filtration of Weyl modules, confirming a conjecture of Leclerc and
Thibon.
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INTRODUCTION

Let v be a r-th root of unity in C. The v-Schur algebra S,(n) over C is a finite
dimensional quasi-hereditary algebra. Its standard modules are the Weyl modules
W, (A) indexed by partitions A of n. The module W, (X) has a simple quotient
L, (). See Section 9] for more details.

The decomposition matrix of S,(n) is given by the following algorithm. Let
F, be the Fock space of level one. It is a Q(g)-vector space with a basis {|\)}
indexed by the set of partitions. Moreover, it carries an action of the quantum
enveloping algebra U, (f/:\[r) Let LT (resp. L™) be the Z[g]-submodule (resp. Z[qg~}]-
submodule) in F; spanned by {|A)}. Following Leclerc and Thibon [LT1l Theorem
4.1], the Fock space F, admits two particular bases {G }, {G} } with the properties
that

GY =|\) mod ¢L*, Gy =|\) mod ¢ L.
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JANTZEN FILTRATION 213

Let dx.(q), exn(g) be the elements in Z[g] such that

G =Y (@), Gy =D exu(—q ).
A Iz

For any partition A write A’ for the transposed partition. Then the Jordan-Holder
multiplicity of L, (u) in W, (X) is equal to the value of dy/,/(¢) at ¢ = 1. This result
was conjectured by Leclerc and Thibon [LTIl Conjecture 5.2] and has been proved
by Varagnolo and Vasserot [VVI].

We are interested in the Jantzen filtration of W, (\) [JM]:

Wo(\) = J'W,(\) D J*W,(\) D ...

It is a filtration by S,(n)-submodules. The graded decomposition matrix of S, (n)
counts the multiplicities of L, (u) in the associated graded module of W, (A). The
graded version of the above algorithm was also conjectured by Leclerc and Thibon
[LT1, Conjecture 5.3]. Our main result is a proof of this conjecture under a mild
restriction on v.

Theorem 0.1. Suppose that v = exp(2wi/k) with kK € Z and k < —3. Let A\, u be
partitions of n. Then

(0.1) v (9) = DI WoN)/TFW,(N) : Lu(w)]g'

i>0

Let us outline the idea of the proof. We first show that certain equivalence
of highest weight categories preserves the Jantzen filtrations of standard modules
(Proposition [[.§]). By constructing such an equivalence between the module cate-
gory of the v-Schur algebra and a subcategory of the affine parabolic category O
of negative level, we then transfer the problem of computing the Jantzen filtration
of Weyl modules into the same problem for parabolic Verma modules (Corollary
214). The latter is solved using Beilinson-Bernstein’s techniques (Sections @ [ ().

1. JANTZEN FILTRATION OF STANDARD MODULES

1.1. Notation. We will denote by A-mod the category of finitely generated mod-
ules over an algebra A, and by A-proj its subcategory consisting of projective
objects. Let R be a commutative noetherian C-algebra. By a finite projective
R-algebra we mean an R-algebra that belongs to R-proj.

A R-category C is a category whose Hom sets are R-modules. All the functors
between R-categories will be assumed to be R-linear, i.e., they induce morphisms
of R-modules on the Hom sets. Unless otherwise specified, all the functors will be
assumed to be covariant. If C is abelian, we will write C -proj for the full subcategory
consisting of projective objects. If there exists a finite projective algebra A together
with an equivalence of R-categories F' : C =2 A-mod, then we define C N R-proj to
be the full subcategory of C consisting of objects M such that F'(M) belongs to
R-proj. By Morita theory, the definition of C N R-proj is independent of A or F.
Further, for any C-algebra homomorphism R — R’ we will abbreviate R'C for the
category (R’ ®g A)-mod. The definition of R/C is independent of the choice of A
up to equivalence of categories.

For any abelian category C we will write [C] for the Grothendieck group of C. Any
exact functor F' from C to another abelian category C’ yields a group homomorphism
[C] — [C'], which we will again denote by F'.
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A C-category C is called artinian if the Hom sets are finite dimensional C-vector
spaces and every object has a finite length. The Jordan-Hélder multiplicity of a
simple object L in an object M of C will be denoted by [M : L].

We abbreviate ® = ®¢ and Hom = Homcg.

1.2. Highest weight categories. Let C be a R-category that is equivalent to
the category A-mod for some finite projective R-algebra A. Let A be a finite set
of objects of C together with a partial order <. Let C® be the full subcategory
of C consisting of objects which admit a finite filtration such that the successive
quotients are isomorphic to objects in

{DeU|D e A, U € R-proj}.
We have the following definition; see [R] Definition 4.11].

Definition 1.1. The pair (C, A) is called a highest weight R-category if the follow-
ing conditions hold:

the objects of A are projective over R,

we have Ende(D) = R for all D € A,

given D+, Dy € A, if HOH’IC(Dl,Dg) 7é 0, then Dy < Do,

if M € C satisfies Home (D, M) =0 for all D € A, then M =0,

given D € A, there exists P € C-proj and a surjective morphism f : P — D
such that ker f belongs to C2. Moreover, in the filtration of ker f only
D' ® U with D' > D appears.

The objects in A are called standard. We say that an object has a standard
filtration if it belongs to C®. There is another set V of objects in C, called costandard
objects, given by the following proposition.

Proposition 1.2. Let (C,A) be a highest weight R-category. Then there is a set
V = {DV|D € A} of objects of C, unique up to isomorphism, with the following
properties:
(a) the pair (C°P,V) is a highest weight R-category, where V is equipped with
the same partial order as A,
R ZfZZO anlezDg,

(b) for D1, Dy € A we have Exti(Dy, DY) =
0 else

See Rl Proposition 4.19].

1.3. Base change for highest weight categories. From now on, unless other-
wise specified we will fix R = C[[s]], the ring of formal power series in the variable
s. Let p be its maximal ideal and let K be its fraction field. For any R-module M,
any morphism f of R-modules and any i € N we will write
M(p') = M ®r (R/p'R), Mg =M®p K,
f(9") = f ®r (R/p'R), [k =[®rK.
We will abbreviate
C(p) = R(p)C, Cx =KC.

Let us first recall the following basic facts.
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JANTZEN FILTRATION 215

Lemma 1.3. Let A be a finite projective R-algebra. Let P € A-mod.

(a) The A-module P is projective if and only if P is a projective R-module and
P(p) belongs to A(p)-proj.

(b) If P belongs to A-proj, then we have a canonical isomorphism

Hom (P, M)(p) = Hom () (P(p), M(p)), ¥V M € A-mod.
Further, if M belongs to R-proj, then Hom 4 (P, M) also belongs to R-proj.
We will also need the following theorem of Rouquier [R, Theorem 4.15].

Proposition 1.4. Let C be a R-category that is equivalent to A-mod for some
finite projective R-algebra A. Let A be a finite poset of objects of CN R-proj. Then
the category (C,A) is a highest weight R-category if and only if (C(p), A(p)) is a
highest weight C-category.

Finally, the costandard objects can also be characterized in the following way.

Lemma 1.5. Let (C, A) be a highest weight R-category. Assume that V'={YD|D¢€
A} is a set of objects of C N R-proj such that for any D € A we have
(D)(p) = D(p)", ('D)x = Dk.

Then we have VD =2 DY € V.

Proof. We prove the lemma by showing that V' has the properties (a), (b) in
Proposition[[L2'with ¥ D playing the role of DV. This will imply that VD = DY € V.
To check (a) note that V() is the set of costandard modules of C(p) by assumption.
So (C(p)°P, V'(p)) is a highest weight C-category. Therefore (C°P, V') is a highest
weight R-category by Proposition [[4l Now, let us concentrate on (b). Given Dy,

Dy € Ay let P, =0 — P, — --- — Py be a projective resolution of Dy in C. Then
Extg (D1, Y Ds) is the cohomology of the complex

Cs = Home (P, Y D3).

Since D; and all the P; belong to R-proj and R is a discrete valuation ring, by the
Universal Coefficient Theorem the complex

Po(p) =0 = Pu(p) = - = Po(p)

is a resolution of D1(p) in C(p). Further, each P;(p) is a projective object in C(p)
by Lemma [[3(a). So Exte,)(D1(p), " D2(p)) is given by the cohomology of the
complex

Ca() = Home(p,) (Pa(g0), " Da(p))-
Again, by the Universal Coefficient Theorem, the canonical map
Hi(Co)(p) — Hi(C(p)s)
is injective. In other words, we have a canonical injective map
(1.1) Extg (D1, ¥ Da)(p) — Exteg) (Di(p), Y Da(p)).
Note that each R-module C; is finitely generated. Therefore Exts (D, Y Dy) is also

finitely generated over R. Note that if i > 0, or i = 0 and D1 # Da, then the
right hand side of (L)) is zero by assumption. So Exti(D1,VDs)(p) = 0, and
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hence Exté(Dl, VDs) = 0 by Nakayama’s lemma. Now, let us concentrate on the
R-module Home (D, VD) for D € A. First, we have

Home(D,VD)®r K = Home, (Dk,(YD)k)
= Endc, (Dk)
— Ende(D)®p K
(1.2) = K.

Here the second equality is given by the isomorphism Dg = (VD)k and the last
equality follows from End¢(D) = R. Next, note that Home (D, Y D)(p) is included
into the vector space Home () (D(p), Y D(p)) = C by (). So its dimension over
C is less than one. Together with (2] this yields an isomorphism of R-modules
Home (D, VD) = R, because R is a discrete valuation ring. So we have verified that
V' satisfies both properties (a) and (b) in Proposition Therefore it coincides
with V and VD is isomorphic to DV. O

1.4. The Jantzen filtration of standard modules. Let (Cc, Ac) be a highest
weight C-category and (C, A) be a highest weight R-category such that (Cc, Ac) =
(C(p), A(p)). Then any standard module in A¢ admits a Jantzen type filtration
associated with (C,A). It is given as follows.

Definition 1.6. For any D € A let ¢ : D — DV be a morphism in C such that
#(p) # 0. For any positive integer i let

(1.3) m;: DY — DY /p' DY
be the canonical quotient map. Set
D' =ker(mio¢) C D, J'D(p)= (D' + pD)/pD.
The Jantzen filtration of D(p) is the filtration
D(p) = J°D(p) > J'D(p) > -+

To see that the Jantzen filtration is well defined, one notices first that the mor-
phism ¢ always exists because Home (D, DY) (p) = R(p). Further, the filtration is
independent of the choice of ¢. Because if ¢’ : D — DV is another morphism such
that ¢'(p) # 0, the fact that Home(D, DY) = R and ¢(p) # 0 implies that there
exists an element a in R such that ¢’ = a¢. Moreover, ¢'(p) # 0 implies that a is

invertible in R. So ¢ and ¢’ define the same filtration.

Remark 1.7. If the category Ck is semi-simple, then the Jantzen filtration of any
standard module D(p) is finite. In fact, since End¢(D) = R we have Ende, (Dg) =
K. Therefore Dk is an indecomposable object in Cx. So the semi-simplicity of
Ck implies that Dk is simple. Similarly, D}, is also simple. So the morphism
¢x : Dk — DY, is an isomorphism. In particular, ¢ is injective. Now, consider the
intersection

ﬂ J'D ﬂ (D' + pD)/pD.

Since we have D D DZH, the intersection on the right hand side is equal to
((N; D) + pD)/pD. The injectivity of ¢ implies that (), D' = ker ¢ is zero. Hence
N; J'D(p) = 0. Since D(p) € C(p) has a finite length, we have J'D(p) = 0 for i
large enough.
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1.5. Equivalences of highest weight categories and Jantzen filtrations.
Let (C1,A1), (Co,As) be highest weight R-categories (resp. C-categories or K-
categories). A functor F : C; — Cs is an equivalence of highest weight categories if
it is an equivalence of categories and if for any Dy € Ay there exists Dy € Ay such
that F(D1) = D,. Note that for such an equivalence F' we also have

(1.4) F(Dy) =Dy,

because the two properties in Proposition which characterize the costandard
objects are preserved by F'.

Let F: C; — Cy be an exact functor. Since C; is equivalent to A-mod for some
finite projective R-algebra A, the functor F is represented by a projective object P
in Cy, i.e., we have F' = Homg, (P, —). Set

F(p) = Home, (o) (P(p), —) : Ci(p) — Ca(p).

Note that the functor F'(gp) is unique up to equivalence of categories. It is an exact
functor, and it is isomorphic to the functor Home, (P, —)(p); see Lemma [[L3 In
particular, for D € A; there are canonical isomorphisms

(1.5) F(D)(p) = F(p)(D(p)), F(DY)(p) = F(p)(D"(p)).

Proposition 1.8. Let (C1, A1), (Co, Ag) be two equivalent highest weight R-categor-
ies. Fiz an equivalence F' : C; — Co. Then the following holds.

(a) The functor F(p) is an equivalence of highest weight categories.

(b) The functor F(p) preserves the Jantzen filtration of standard modules, i.e.,
for any Dy € Ay let Dy = F(Dq) € Ay, then

F(p)(J'Di(p)) = J'Da(p), VieN.
Proof. (a) If G : C3 — C; is a quasi-inverse of F, then G(p) is a quasi-inverse of
F(p). So F(p) is an equivalence of categories. It maps a standard object to a

standard one because of the first isomorphism in ().
(b) The functor F' yields an isomorphism of R-modules

Home, (Dlv DY) = Home, (F(Dl)v F(DY))a
where the right hand side identifies with Home, (D2, DY) via the isomorphism (4).
Let ¢1 be an element in Home, (D1, DY) such that ¢1(p) # 0. Let
¢2 = F(¢1): D2 — Dy
Then we also have ¢2(p) # 0.

For a = 1,2 and i € N let m,; : DY — DY (p") be the canonical quotient map.
Since F is R-linear and exact, the isomorphism F(D)) = Dy maps F(p'DY) to
©'DY and induces an isomorphism

F(Dy (") = D3 (¢").
Under these isomorphisms the morphism F(m; ;) is identified with 72 ;. So we have
F(D}) = F(ker(mi;0¢1))
= ker(F(m) o F(¢1))
ker(wzﬂi ¢} ¢2)
D,

I
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Now, apply F' to the short exact sequence
(1.6) 0 — 9Dy — D} + pD1 — J'D1(p) — 0,
we get
F(J'Di(p)) = (F(D})+ pF(D1))/pF (D)
J'Dy(p).
Since F(J'D1(p)) = F(p)(J'D1(p)), the proposition is proved. O

12

2. AFFINE PARABOLIC CATEGORY O AND v-SCHUR ALGEBRAS

2.1. The affine Lie algebra. Fix an integer m > 1. Let Gy D By D T be respec-
tively the linear algebraic group GL,,(C), the Borel subgroup of upper triangular
matrices and the maximal torus of diagonal matrices. Let gg D by D tg be their Lie
algebras. Let
g=00®C[t,t"'|®Cl®Cd

be the affine Lie algebra of gg. Its Lie bracket is given by
(€@t +x1+y0, & @tP+2'1+y'0] = [¢, €@t TP +ad,,—p tr(£€)1+bye @t° —ay €t
where tr : go — C is the trace map. Set t =ty ® C1 @ CO.

For any Lie algebra a over C, let U(a) be its enveloping algebra. For any C-
algebra R, we will abbreviate ap = a ® R and U(ag) =U(a) ® R.

In the rest of the paper, we will fiz once for all an integer ¢ such that
(2.1) k=c+mE Zco.

Let U, be the quotient of U(g) by the two-sided ideal generated by 1 — ¢. The
U-modules are precisely the g-modules of level c.

Given a C-linear map A : t — R and a gg-module M we set
(2.2) My={ve M|hv=Ah)v, ¥het}

Whenever M), is nonzero, we call A\ a weight of M.
We equip t* = Homg(t, C) with the basis €1, ..., €y, wo, 6 such that e,... ey, €
5 is dual to the canonical basis of to,
0(0) =wo(1) =1, wo(to®CI) =0d(tx ®C1)=0.
Let (o : e) be the symmetric bilinear form on t* such that
(€ 1 €j) =055, (wo:0)=1, & Cds:0)=(t§ & Cwp:wy) =0.
For h € t* we will write ||h]|> = (h : h). The weights of a U,-module belong to
F={Aet | (A:0) =c}.
Let a denote the projection from t* to tj. Consider the map
(2.3) z:t"=>C
such that A — z(\)d is the projection t* — Cd.

Let II be the root system of g with simple roots a; = ¢; —€;41 for 1 <i<m—1
and ap = § — Z;’;}l ;. The root system Iy of gg is the root subsystem of II
generated by a1,...,q,,_1. We will write IIT, HS‘ for the sets of positive roots in
II, I1y, respectively.

The affine Weyl group & is a Coxeter group with simple reflections s; for 0 <
i < m — 1. It is isomorphic to the semi-direct product of the symmetric group &g
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with the lattice ZIIy. There is a linear action of & on t* such that & fixes wy, d,
and acts on t§ by permuting ¢;’s, and an element 7 € ZII; acts by

(24) 7(6) =96, T(wo)=T+wo—(T:7)5/2, TA)=A—(T:A)d, VAIEL.

Let po be the half sum of positive roots in IIy and p = pg + mwy. The dot action
of & on t* is given by w - A = w(A + p) — p. For A € t* we will denote by G(A) the
stabilizer of A in & under the dot action. Let [ : & — N be the length function.

2.2. The parabolic Verma modules and their deformations. The subset I
of II defines a standard parabolic Lie subalgebra of g, which is given by

qg=go®C[t] ®Cla Co.

It has a Levi subalgebra
[=go®ClaCo.

The parabolic Verma modules of U, associated with q are given as follows. Let A
be an element in

AT={Aet|(A:a)eN, Vaecllf}.

Then there is a unique finite dimensional simple go-module V() of highest weight
a(A). It can be regarded as a lF-module by letting h € C1 @& C9 act by the scalar
A(h). Tt is, furthermore, a g-module if we let the nilpotent radical of q act trivially.
The parabolic Verma module of highest weight A is given by

M, (\) = U(g) @u(q) V(N).

It has a unique simple quotient, which we denote by L ().
Recall that R = C[[s]] and g is its maximal ideal. Set

c=c+s and k=k+s.

They are elements in R. Write U for the quotient of U(gr) by the two-sided ideal
generated by 1 —c. So if M is a U-module, then M(p) is a U,-module. Now, note
that R admits a qp-action such that go ® C[t] acts trivially and t acts by the weight
swg. Denote this qr-module by R,,. For A € AT the deformed parabolic Verma
module My (X) is the gg-module induced from the qr-module V() ® Rgy,. It is a
U-module of highest weight A + swp, and we have a canonical isomorphism

M (M) (p) = M(A).
We will abbreviate Ay = A + swy and will write
W ={A A e 7}
Lemma 2.1. The gx-module My(A\) g = My () @g K is simple.

Proof. Assume that My (\)k is not simple. Then it contains a nontrivial submod-
ule. This submodule must have a highest weight vector of weight us for some
€ AT, u# X By the linkage principle, there exists w € & such that u, = w - .
Therefore w fixes wy, so it belongs to &y. But then we must have w = 1, because
A, € AT. So A = p. This is a contradiction. O
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2.3. The Jantzen filtration of parabolic Verma modules. For A € AT the
Jantzen filtration of M (\) is given as follows. Let o be the R-linear anti-involution
on gg such that

cléxt")y="¢at™ o1)=1, o(0)=20.
Here £ € go and ¢ is the transposed matrix. Let gg act on Hompg(My()), R) via
(xf)(v) = f(o(z)v) for & € gr, v € Myk(A). Then
(2.5) DM (\) = €D Homp(Mi(N),, R)
S
is a gg-submodule of Hompg(My(N), R). It is the deformed dual parabolic Verma
module with highest weight ;. The As-weight spaces of My (A) and DMy (A) are
both free R-modules of rank one. Any isomorphism between them yields, by the
universal property of Verma modules, a gr-module morphism
¢ : My (A) = DMy (M)

such that ¢(p) # 0. The Jantzen filtration (J*M, (X)) of M, (A) defined by [J] is
the filtration given by Definition using the morphism ¢ above.

2.4. The deformed parabolic category O. The deformed parabolic category O,
denoted by Oy, is the category of Uy-modules M such that
o M =@, M with M, € R-mod,
e for any m € M the R-module U(qgr)m is finitely generated.
It is an abelian category and contains deformed parabolic Verma modules. Replac-
ing k by x and R by C we get the usual parabolic category O, denoted 0.
Recall the map z in (23). For any integer r set

= {p € 1 — 2(n) € Zso).
Define jt* in the same manner. Let "O, (resp. "Ok) be the Serre subcategory of

O, (resp. Ok) consisting of objects M such that M, # 0 implies that 1 belongs to
"% (resp. 1t*). Write "AT = AT N 7t*. We have the following lemma.

Lemma 2.2. (a) For any finitely generated projective object P in "Oyx and any
M € "Oy the R-module Homro, (P, M) is finitely generated and the canonical map

Homo, (P, M)(p) — Homro, (P(p), M(p))

is an isomorphism. Moreover, if M is free over R, then Homso, (P, M) is also free
over R.
(b) The assignment M — M(p) yields a functor

TOk — TO,{.

This functor gives a bijection between the isomorphism classes of simple objects and
a bijection between the isomorphism classes of indecomposable projective objects.

For any A € "A™ there is a unique finitely generated projective cover "P,()) of
L,;(A) in "O,;; see [RW]| Lemma 4.12]. Let Ly (A), "Px(A) be respectively the simple
object and the indecomposable projective object in "Ox that map respectively to
L, (N), P;(X\) by the bijections in Lemma 2.2/(b).

Lemma 2.3. The object "Px(X) is, up to isomorphism, the unique finitely generated
projective cover of Ly (\) in "Ox. It has a filtration by deformed parabolic Verma
modules. In particular, it is a free R-module.
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The proof of Lemmas and 23] can be given by imitating [F Section 2].
There, Fiebig proved the analogue of these results for the (nonparabolic) deformed
category O by adapting arguments of [RW]. The proof here goes in the same way,
because the parabolic case is also treated in [RW]. We left the details to the reader.
Note that the deformed parabolic category O for reductive Lie algebras has also
been studied in [St].

2.5. The highest weight category k. Fix a positive integer n < m. Let P,
denote the set of partitions of n. Recall that a partition A of n is a sequence of
integers Ay > --- > A, = 0 such that Z:’;l A; = n. We associate A with the
element Y _" | A\ie; € t, which we denote again by A. We will identify P, with a
subset of AT by the following inclusion:

(A A+ 2po)

2K

We will also fix an integer r large enough such that P, is contained in "A™. Equip

AT with the partial order < given by A = u if and only if there exists w € & such
that = w - A and a(u) — a(\) € NII$. Let < denote the dominance order on P,

(2.6) Pn— AT, N X+ cwp — J.

given by
Adp = > N<D py, Y1<i<m
j=1 j=1
Note that for A\, u € P,, we have
(2.7) A== A<y,

because A\ < p implies that y— \ € NHS‘ , which implies that
Zuj—Z)\j:<u—)\,61+'~'+q> >0, v1i<i<m.
j=1 j=1

Now consider the following subset of "A™:
E={ue \"|p=w-\for some w € &,\ € P,}.
Lemma 2.4. The set E is finite.

Proof. Since P, is finite, it is enough to show that for each A € P,, the set &-AN"AT
is finite. Note that for w € &g and 7 € ZIIy we have z(wt - \) = z(7 - A). By (24)
we have

K A + P2 A + P2
“A)=2z(A) — = 1 = Il—=11%).
A N) = 20 = S (Il + LR - | 2L R)
If z(7-\) <r, then
A+p9 2 A+D 9
— < —(r—z(A —|*.
I+ 2P < == 20) + L
There exists only finitely many 7 € ZII; which satisfies this condition, hence the
set F is finite. O

Let &, be the full subcategory of "O, consisting of objects M such that
pe€™AY, n¢ E = Homw, ("P.(u), M) =0.
Note that since "P, (i) is projective in "O,, an object M € "0y, is in & if and only

if each simple subquotient of M is isomorphic to L (i) for p € E. In particular &,
is abelian and it is a Serre subcategory of "O,. Furthermore, &£, is also an artinian
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category. In fact, each object M € &, has a finite length because F is finite and
for each p € E the multiplicity of L, (x) in M is finite because dim¢M,, < co. Let
g’ denote the Lie subalgebra of g given by

g =go®C[t,t" ] @ C1.

Forgetting the d-action yields an equivalence of categories from &, to a category of
g’-modules; see [So, Proposition 8.1] for details. Since  is negative, this category
of g’-modules is equal to the category studied in [KL2].

Lemma 2.5. (a) For A € E, p € "A" such that [M,;(\) : L ()] # 0 we have p € E
and p = .
(b) The module "P.()\) admits a filtration by U,.-modules
7”P,%(/\):P()Dljl3"'DP[:O

such that Py/ P is isomorphic to M(\) and P;/P;11 =2 M (u;) for some p; = A.

(c) The category Ex is a highest weight C-category with standard objects M, (),
A € E. The indecomposable projective objects in &, are the modules "Py(\) with
Ae L.

Proof. Let U, be the quantized enveloping algebra of gy with parameter v =
exp(27i/k). Then the Kazhdan-Lusztig tensor equivalence [KL2, Theorem IV.38.1]
identifies £, with a full subcategory of the category of finite dimensional U,-
modules. It maps the module M, () to the Weyl module of U, with highest weight
a(). Since v is a root of unity, part (a) follows from the strong linkage principle
for Uy,; see [Anl Theorem 3.1]. Part (b) follows from (a) and [KL2l Proposition
1.3.9]. Finally, part (c) follows directly from parts (a), (b). O

Now, let us consider the deformed version. Let & be the full subcategory of "Oy
consisting of objects M such that
pe€ANT, u¢ E = Homwo, ("Pc(u), M) = 0.
Lemma 2.6. An object M € "Oy belongs to & if and only if M (p) belongs to E.
In particular Myx(\) and "Px(X) belong to Ex for A € E.

Proof. By Lemma (a) for any p € "AT the R-module Homro, ("Py(1), M) is
finitely generated and we have
Hom-o, ("Pi(p), M)(p) = Homvo, ("Pre(p), M(p))-

Therefore Homro, ("Pk(1), M) is nonzero if and only if Homro, ("P, (1), M(p)) is
nonzero by Nakayama’s lemma. So the first statement follows from the definition
of & and &,;. The rest follows from Lemma Z5](c). O

Let
Pu(BE) = @ "Pc(N),  Pu(B) = P "P(V).

AEE AEE
We have the following corollary.

Corollary 2.7. (a) The category Ex is abelian.
(b) For M € & there exists a positive integer d and a surjective map

P (E)®T — M.
(¢) The functor Homro, (Px(E), —) yields an equivalence of R-categories
5k = Endrok(Pk(E))OP -mod .
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Proof. Let M € &, N € "Oy. First assume that N C M. For p € "A™ if
Homro, ("Pk(1t), N) # 0, then Homro, ("Py (1), M) # 0, so u belongs to E. Hence
N belongs to &. Now, if N is a quotient of M, then N(p) is a quotient of M (p).
Since M (p) belongs to &, we also have N(p) € ;. Hence N belongs to & by
Lemma This proves part (a). Let us concentrate on (b). Since M € & we
have M(p) € &;. The category &, is artinian with P,;(E) a projective generator.
Hence there exists a positive integer d and a surjective map

f:P(E)% — M(p).

Since Pi(E)®? is projective in 'Oy, this map lifts to a map of Uk-modules f:
P (E)®? — M such that the following diagram commutes

R(B)® L

|

Pu(E)® L M (p).

Now, since the map f preserves weight spaces and all the weight spaces of P (E)®"
and M are finitely generated R-modules, by Nakayama’s lemma, the surjectivity
of f implies that f is surjective. This proves (b). Finally part (c) is a direct
consequence of parts (a) and (b) by Morita theory. O

Proposition 2.8. The category Ex is a highest weight R-category with standard
modules My (1), p € E.

Proof. Note that Endro, (Px(E))°P is a finite projective R-algebra by Lemmas
and 23] Since &, is a highest weight C-category by Lemma[2.5]c), the result follows
from Proposition [[.41 a

2.6. The highest weight category Ay. By definition P,, is a subset of E. Let
Ay be the full subcategory of & consisting of the objects M such that
Homro, (Mk(A),M) =0, VYA€E, \¢Pp,.
We define the subcategory A, of £; in the same way. Let
A= (M) NP}, An = (Mu(N) [ A€ P}
Recall that £ C "A™ is equipped with the partial order <, and that P, C E. We

have the following lemma.

Lemma 2.9. The set P, is an ideal in E, i.e., for N € E, u € Pyp, if A X u, then
we have A € Py,.

Proof. Let A € E and u € P, and assume that A < . Recall that E C ", so we
can write a(\) = Y.7", \je;. Since E C "AT we have \; € Z and \; > \jy1. We
need to show that A, € N. Since A <y there exist r; € N such that a(p) — a(N\) =
ZI’;}I ria;. Therefore we have A\, = iy + 71 = 0. O

Now, we can prove the following proposition.

Proposition 2.10. The category (Ax,Ax) is a highest weight R-category with
respect to the partial order < on P,. The highest weight category (Ax(p), Ax(p))
given by base change is equivalent to (A, A,;).
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Proof. Since & is a highest weight R-category and P, is an ideal of E, [R], Proposi-
tion 4.14] implies that (Ay, Ayk) is a highest weight R-category with respect to the
partial order < on P,. By (27) this implies that (Ax, Ax) is also a highest weight
R-category with respect to <. Finally, the equivalence Ayx(p) = A, follows from
the equivalence & (p) = &,; and loc. cit. O

2.7. Costandard objects of Ayx. Consider the (contravariant) duality functor D
on Oy given by

(2.8) DM = ) Homg(M,,R),
pER™
where the action of U, on DM is given as in Section 23] with the module M ()

there replaced by M. Similarly, we define the (contravariant) duality functor D on
O, by

(2.9) DM = @B Hom(M,,C),

pER*
with the U,;-action given in the same way. This functor fixes the simple modules in
O,.. Hence it restricts to a duality functor on A,;, because A,; is a Serre subcategory
of O. Therefore (A, Ax) is a highest weight category with duality in the sense of
[CPS]. Tt follows from [CPS| Proposition 1.2] that the costandard module M, (\)Y
in A, is isomorphic to DM, ().

Lemma 2.11. The costandard module My (\)Y in Ay is isomorphic to DMy ()
for any A € P,.

Proof. By definition we have a canonical isomorphism
(DMic(N))(p) = D(Mi(N)) = M (M)

Recall from Lemma 2.1 that My () is a simple Uy g-module. Therefore we have
(DM (M) k = Mg(N) k. So the lemma follows from Lemma applied to the
highest weight category (Ay, Ax) and the set {DMy(\) |\ € P, }. O

2.8. Comparison of the Jantzen filtrations. By Definition for any A € P,
there is a Jantzen filtration of M, () associated with the highest weight category
(Ak, Ax). Lemma 2TT] implies that this Jantzen filtration coincides with the one
given in Section

2.9. The v-Schur algebra. In this section let R denote an arbitrary integral do-
main. Let v be an invertible element in R. The Hecke algebra 5%, over R is an
R-algebra, which is free as a R-module with basis {T}, |w € Gy}, the multiplication

is given by
TonTwy = Twqwss if l(wlwg) = l(wl) + l(wg),
(Ts, + 1)(Ts, —v) =0, 1<i<m-1.
Next, recall that a composition of n is a sequence u = (u1,...,u1q) of positive

integers such that Zle w; = n. Let X, be the set of compositions of n. For
w € &, let &, be the subgroup of &y generated by s; for all 1 < i < d — 1 such
that ¢ # pq +--- 4+ p; for any j. Write

Z, = Z T, and Yu = Z (_V)il(w)Tuw

weS, weS,
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The v-Schur algebra Sy of parameter v is the endomorphism algebra of the right
H-module P x,76,. We will abbreviate

Ay = S, -mod.

HEX,

Consider the composition w of n such that w; = 1 for 1 < i < n. Then x4, =
F6,. So the Hecke algebra J%, identifies with a subalgebra of S, via the canonical
isomorphism 4, = End s, (74,).

For A € P, let X be the transposed partition of A\. Let ¢, be the element in
Sy given by @i (h) = zxh for h € x554, and ¢y (z,74,) = 0 for any composition
1 # w. Then there is a particular element wy € &g associated with A such that
the Weyl module W, () is the left ideal in S, generated by the element

A\ = 50/\Tw,\y>\’ S Sv-
See [IM] for details. We will write
Ay ={Wy(AN) | A€ Pp}.

2.10. The Jantzen filtration of Weyl modules. Now, set again R = C[[s]]. Fix
v =exp(2mi/k) € C and v = exp(2mi/k) € R.

Below we will consider the v-Schur algebra over C with the parameter v, and the
v-Schur algebra over R with the parameter v. The category (A,,A,) is a highest
weight C-category. Write L, () for the simple quotient of W, (A). The canonical
algebra isomorphism S, (p) = S, implies that (A,,Ay) is a highest weight R-
category and there is a canonical equivalence

(Av(p); Av(p)) = (Ay, Ay).

We define the Jantzen filtration (J‘W, (X)) of W,(A\) by applying Definition
to (Ay,Ay). This filtration coincides with the one defined in [JM], because the
contravariant form on W5 () used in [JM]’s definition is equivalent to a morphism
from Wy (\) to the dual standard module Wy (A)Y = Hompg(Wy (A), R).

2.11. Equivalence of Ay and A,. In this section we will show that the highest
weight R-categories Ay and A, are equivalent. The proof uses rational double affine
Hecke algebras and Suzuki’s functor. Let us first give some reminders. Let h = C™,
let y1,...,yn be its standard basis and x1, ..., T, € h* be the dual basis. Let H,
be the rational double affine Hecke algebra associated with &,, with parameter 1/x.
It is the quotient of the smash product of the tensor algebra T'(h @ h*) with C&,,
by the relations

[yi, ] =1+ % D sy lyiw) = —si, 1Sij<n, i# )
J#i
Here s;; denotes the element of &, that permutes ¢ and j. Denote by B, the
category O of Hy/, as defined in [GGORJ. It is a highest weight C-category. Let
{Bx(A)| A € P,} be the set of standard modules.
Now, let V' = C™ be the dual of the vectorial representation of go. For any
object M in A, consider the action of the Lie algebra go ® C|[z] on the vector space

T(M)=V®"® M C[b)
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given by
n
@z vemef) =) {H)emezlf+ve ()t )me f
i=1
for £ € go, a € N, v € V®", m € M, f € C[h]. Here &) is the operator on V&"
that acts on the i-th copy of V by & and acts on the other copies of V' by identity.
Suzuki defined a natural action of H; /. on the space of coinvariants

&.(M) = Ho(go ® C[z], T(M)).
The assignment M — €&, (M) gives a right exact functor
¢.: A, — B..
See [Su] or [VV2 Section 2] for details. We have
€. (Mi(A) = Be(N),

and &, is an equivalence of highest weight categories [VV2, Theorem A.5.1].

Next, we consider the rational double affine Hecke algebra H, . over R with
parameter 1/k. The category O of H; is defined in the obvious way. It is a
highest weight R-category. We will denote it by Bx. The standard modules will be
denoted by Bi(\). The Suzuki functor over R,

@k:Ak—>Bk, M'—)Ho(g()@(C[z],T(M)).
is defined in the same way. It has the following properties.

Lemma 2.12. (a) We have €y (My(\)) = Bk(A) for A € P,.
(b) The functor € restricts to an evact functor AL — BE.
(c) The functor & maps a projective generator of Ax to a projective generator

Of Bk.

Proof. The proof of part (a) is the same as in the nondeformed case. For part
(b), since €y is right exact over Ay, it is enough to prove that for any injective
morphism f: M — N with M, N € AL the map

Cr(f) : Ex(M) — Ex(N)
is injective. Recall from Lemma 2] that the Uy x-module My (\)k is simple for
any A. So the functor
Cx i Ax k= Br
is an equivalence. Hence the map

Cx(f)®r K : € x(Mk) = € x(Nk)

is injective. Since both €y (M) and €x(N) are free R-modules, this implies that
€k (f) is also injective. Now, let us concentrate on (c). Let P be a projective
generator of Ayx. Then P(p) is a projective generator of A,. Since &, is an
equivalence of categories, we have €,(P(p)) is a projective generator of B,;. By (b)
the object € (P) belongs to Bﬁ, so it is free over R. Therefore by the Universal
Coefficient Theorem we have

(€ (P))(p) = €(P(p))-
Hence €y (P) is a projective object of Bx. Note that for any A € P, there is a
surjective map P — My (\). The right exact functor €y sends it to a surjective
map €y (P) — By (A). This proves that €x(P) is a projective generator of Bx. O
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Proposition 2.13. Assume that k < —3. Then there exists an equivalence of
highest weight R-categories

A =5 Ay,
which maps My (X) to Wy () for any A € P,,.

Proof. We first give an equivalence of highest weight categories
D . Ak — Bk

as follows. Let P be a projective generator of Ay. Then @ = €x(P) is a projective
generator of By by Lemma 212|c). By Morita theory we have equivalences of
categories

Hom 4, (P, —) : Ax = End 4, (P)°P -mod,
Homp, (Q, —) : Bx — Endp, (Q)°" -mod .
We claim that the algebra homomorphism
(2.10) End, (P) = Ends, (@), f - €x(f),

is an isomorphism. To see this, note that we have

Q(p) = €x(P(p)), (Enda,(P))(p) = Enda, (P(p)),
(Endg, (Q))(p) = Endp, (Q(p))-

Since &, is an equivalence, it yields an isomorphism

Enda, (P(p)) = Ends, (Q(p)), f— €u(f).

Since both End 4, (P) and Endg, (Q) are finitely generated free R-modules, by
Nakayama’s lemma the morphism (ZI0]) is an isomorphism. In particular, it yields
an equivalence of categories

End 4, (P)°P? -mod = Endp, (Q)°P -mod .
Combined with the other two equivalences above, we get an equivalence of categories
®: Ay — By.
It remains to show that
(Mg (M) = Bk(N), A€ Pp.
Note that the functor €y yields a morphism of finitely generated R-modules
Homg, (Q, ®(Mk(}))) = Endp, (Q)° @gnd4, (p)or Homa, (P, Mi(}))
—  Hompg, (Q, €x(Mk(N)))
= Hompg, (Q, Bk(N)).
Let us denote it by ¢. Note also that we have isomorphisms
Hom, (P, M (A))(p) = Homuy, (P(p), Mx(X)),
Homgp, (Q, Bi(A))(p) = Homp, (Q(p), Bx(})),

and note that &, is an equivalence of categories. So the map ¢(p) is an isomorphism.
Furthermore, Homp, (Q, Bx())) is free over R, so Nakayama’s lemma implies that
¢ is also an isomorphism. The preimage of ¢ under the equivalence Homg, (Q, —)
yields an isomorphism
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Finally, if v # —1, i.e,, Kk < —3, then by [R, Theorem 6.8] the categories By
and A, are equivalent highest weight R-categories with By (A) corresponding to
Wy (A\). This equivalence composed with ® gives the desired equivalence in the
proposition. O

Corollary 2.14. Assume that k < —3. Then for any \, i € P, and i € N we have
(2.11) [ Mo (N) /T M (N) = Li(p)] = [T Wo(N) /T TIW(A) = Ly ()]
Proof. This follows from the proposition above and Proposition [[.8 O

To prove the main theorem, it remains to compute the left hand side of 211]).
This will be done by generalizing the approach of [BB]| to the affine parabolic case.
To this end, we first give some reminders on Z-modules on affine flag varieties.

3. GENERALITIES ON Z-MODULES ON IND-SCHEMES

In this section, we first recall basic notion for Z-modules on (possibly singular)
schemes. We will also discuss twisted Z-modules and holonomic Z-modules. Then
we introduce the notion of Z-modules on ind-schemes following [BD] and [KV].

3.1. Reminders on Z-modules. Unless specified otherwise, all the schemes will
be assumed to be of finite type over C, quasi-separated and quasi-projective. Al-
though a large number of statements are true in a larger generality, we will only use
them for quasi-projective schemes. For any scheme Z, let 7 be the structure sheaf
over Z. We write O(Z) for the category of quasi-coherent &'z-modules on Z. Note
that we abbreviate &z-module for sheaf of &7-modules over Z. For f : Z — Y
a morphism of schemes, we write f,, f* for the functors of direct and inverse im-
ages on O(Z), O(Y). If f is a closed embedding and .# € O(Y'), we consider the
quasi-coherent & z-module

fott = f71 Home, (f.07, 4).

It is the restriction to Z of the subsheaf of .# consisting of sections supported
scheme-theoretically on f(Z) C Y.

Let Z be a smooth scheme. Let Zz be the ring of differential operators on
Z. We denote by M(Z) the category of right Zz-modules that are quasi-coherent
as Oz-modules. It is an abelian category. Let 5 denote the sheaf of differential
forms of highest degree on Z. The category of right Zz-modules is equivalent to the
category of left Zz-modules via 4 — Qz Qp, . Let i : Y — Z be a morphism
of smooth schemes. We consider the (Zy,i~!%z)-bimodule

.@Y-}.Z = i*.@Z = Oy ®Z‘71ﬁz 7 1_@2.
We define the following functors:
i M(Z) > M(Y), M= Qy Ry (Dyoz Ra, (Qz Re, H)),
le . M(Y) — M(Z), M Z*(/// Py 9Y->Z)-

For any .# € M(Y) let .#? denote the underlying &y-module of .#. Then we
have

(M) =i (M)
If 7 is a locally closed affine embedding, then the functor i, is exact. For any

closed subscheme Z’ of Z, we denote by M(Z, Z’) the full subcategory of M(Z)
consisting of Zz-modules supported set-theoretically on Z/. If i : ¥ — Z is a
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closed embedding of smooth varieties, then by a theorem of Kashiwara, the functor
ie yields an equivalence of categories

(3.1) M(Y) = M(Z,Y).

We refer to [HTT] for more details about Z-modules on smooth schemes
Now, let Z be a possibly singular scheme. We consider the abelian category
M(Z) of right Z-modules on Z with a faithful forgetful functor

M(Z) = O(Z), M — H°

as in [BDL 7.10.3]. If Z is smooth, it is equivalent to the category M(Z) above; see
[BD 7.10.12]. For any closed embedding i : Z — X there is a left exact functor

!

i M(X) - M(Z)
such that (i'(.#))? = i'(#7) for all 4. Tt admits an exact left adjoint functor
ie : M(Z) - M(X).

In the smooth case these functors coincide with the one before. If X is smooth,
then i, and i' yield mutually inverse equivalences of categories

(3.2) M(Z) = M(X, Z)

such that i' o i, = Id; see [BD] 7.10.11]. Note that when Z is smooth, this is
Kashiwara’s equivalence [B)). We will always consider Z-modules on a (possibly
singular) scheme Z which is given an embedding into a smooth scheme. Finally, if
7Y — Z is a locally closed affine embedding and Y is smooth, then we have the
following exact functor

(3.3) jo=1i'0(i0j)e: M(Y) = M(Z).
Its definition is independent of the choice of 7.

3.2. Holonomic Z-modules. Let Z be a scheme. If Z is smooth, we denote by
M}, (Z) the category of holonomic Zz-modules; see e.g., [HIT'T] Definition 2.3.6].
Otherwise, let i : Z — X be a closed embedding into a smooth scheme X. We
define M, (Z) to be the full subcategory of M(Z) consisting of objects .# such
that ¢e.# is holonomic. The category M (Z) is abelian. There is a (contravariant)
duality functor on My (Z) given by

D:My(Z) = Mu(2), M i (Ux @y Gty (ietl, Vx)).

For a locally closed affine embedding i : ¥ — Z with Y a smooth scheme, the
functor i, given by [B3]) maps M, (Y) to M (Z). We put

i1=DoigoD: My(Y) - M,(2).
There is a canonical morphism of functors
Y1l = .
The intermediate extension functor is given by
ie : Mp(Y) = Mp(2), M —Im((MH): 0l — iel).

Note that the functors i,, i1 are exact. Moreover, if the embedding 4 is closed, then
1) is an isomorphism of functors 4y = i,.
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3.3. Weakly equivariant Z-modules. Let T be a linear group. For any T-
scheme Z there is an abelian category M7T(Z) of weakly T-equivariant right 2-
modules on Z with a faithful forgetful functor

(3.4) MT(Z) - M(Z).

If Z is smooth, an object .# of M (Z) is an object .# of M(Z) equipped with a
structure of T-equivariant & z-module such that the action map 4 ®g, Y7z — A
is T-equivariant. For any T-scheme Z with a T-equivariant closed embedding ¢ :

~

Z — X into a smooth T-scheme X, the functor i, yields an equivalence M” (Z) =
M7 (X, Z), where M? (X, Z) is the subcategory of M7”(X) consisting of objects
supported set-theoretically on Z.

3.4. Twisted Z-modules. Let T be a torus, and let t be its Lie algebra. Let
7 : Z' — Z be a right T-torsor over the scheme Z. For any object .# € M”(Z)
the 0z-module 7, (.#?) carries a T-action. Let

M= ()T
be the & z-submodule of 7, (.#7) consisting of the T-invariant local sections. We
have
0z, 4" =12, .4)7.
For any weight A € t* we define the categories MS‘(Z ), M*(Z) as follows.

First, assume that Z is a smooth scheme. Then Z' is also smooth. So we have
a sheaf of algebras on Z given by

D% = (2211,

and .#% is a right @;—module for any .# € MT(Z"). For any open subscheme
U C Z the T-action on m~(U) yields an algebra homomorphism

(3.5) 5. UL) = T(U,2)),

whose image lies in the center of the right hand side. Thus there is also an action
of U(t) on .#T commuting with the @;—action. For A € t* let my C U(t) be the
ideal generated by

{h+X(h) | h € t}.
We define M*(Z) (resp. M:\(Z)) to be the full subcategory of M7 (Z1) consisting
of the objects ./ such that the action of my on M7 is zero (resp. nilpotent). In

particular M*(Z) is a full subcategory of M*(Z) and both categories are abelian.
We will write

(3.6) T(Z,.#) = T(Z,.47), Y. cM\2).

Now, let Z be any scheme. We say that a T-torsor 7 : ZT — Z is admissible if
there exists a T-torsor XT — X with X smooth and a closed embedding i : Z — X
such that ZT = Xt xx Z as a T-scheme over Z. We will only use admissible
T-torsors. Let M*(X, Z), M*(X, Z) be respectively the subcategories of M*(X),
MS‘(X) consisting of objects supported on ZT. We define M*(Z), MS‘(Z) to be the
full subcategories of M” (Z") consisting of objects .# such that i,(.#) belongs to
M X, 2), M:\(X, 7)) respectively. Their definition only depends on .
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Remark 3.1. Let Z be a smooth scheme. Let M(@;) be the category of right
@;—modules on Z that are quasi-coherent as &'z-modules. The functor

(3.7) MT(zh) 3 ML), s ot
is an equivalence of categories. A quasi-inverse is given by 7*; see e.g., [BBl Lemma
1.8.10].

Remark 3.2. We record the following fact for a further use. For any smooth T-torsor
7 Z' — Z, the exact sequence of relative differential 1-forms

Q) — Qi — ler/z —0
yields an isomorphism
Qg =7"(Qz) ®e, Qzt/z7-

Since 7 is a T-torsor we have indeed

Qzt)7 = Oz
as a line bundle. Therefore we have an isomorphism of &;:-modules

Qz’f = W*(QZ).
Below, we will identify them whenever needed.

3.5. Twisted holonomic Z-modules and duality functors. Let 7 : ZT — Z
be an admissible T-torsor. We define MT (Z1) to be the full subcategory of M” (Z1)
consisting of objects .# whose image via the functor (3.4) belongs to M,(Z ). We
define the categories M7 (Z), M7 (Z) in the same manner.

Assume that Z is smooth. Then the category MT(Z") has enough injective
objects; see e.g., [Kasl Proposition 3.3.5] and the references there. We define a
(contravariant) duality functor on M (ZT) by

imzt
D’ . MZ(ZT) — MZ(ZT), M QZ]‘ ®6’ZT cga.l’tldvl[nTl(sz)(e/f, ng).
We may write D’ = D’,. Note that by Remark and the equivalence (B71) we
have
imzt
(3.8) (D) = Q7 ®0, EutGr? (M1 TY), Y M € MT(ZY).
For any A € t* the functor D' restricts to (contravariant) equivalences of categories
(3.9) D' MMZ) = MM (Z), D MMZ) = M (Z);

see e.g., [BBl Remark 2.5.5(iv)]. In particular, if A = 0, then I’ yields a duality on
MY (Z1). Tt is compatible with the duality functor D on My (Z) defined in Section
via the equivalence

d:MUZ) = Mu(2), M H1
given by ([B.1). More precisely, we have the following lemma.
Lemma 3.3. We have ® oD =Do .

The proof is standard, and is left to the reader.
Similarly, for an admissible T-torsor 7 : Z! — Z with an embedding i into a
smooth T-torsor XT — X, we define the functor

D' - ME(ZT) = ME(ZT), it — i' Dy (ia(A)).
Its definition only depends on 7. The equivalence ([89) and Lemma [33] hold again.
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A weight X\ € t* is integral if it is given by the differential of a character e :
T — C*. For such a A we consider the invertible sheaf .#2 € O(Z) defined by

L(U,.23)={y eT(x '(U). Oz) | 7(zh™") = *()y(2), (w,h) € 7~ (U) x T}
for any open set U C Z. We define the following translation functor:
0N My (ZY) > M (ZY), M M Do, T(LY).
It is an equivalence of categories. A quasi-inverse is given by ©@~*. For any u € t*
the restriction of ©* yields equivalences of categories
(3.10) 0 : M(Z) = METNZ), ©r: M (Z) — M (2).
We define the duality functor on Mi(Z ) to be
D:MMNZ) = MMZ), M — 0% ol ().

It restricts to a duality functor on M7 (Z), which we denote again by D. To avoid
any confusion, we may write D = D*. The equivalence ©” intertwines the duality
functors, i.e., we have

(3.11) DM 0 ©* = ©* o DM

For any locally closed affine embedding of T-torsors i : Z — Y with Z smooth,
we define the functor

it =DoiyoD: MNZ) — MAY).

As in Section B.2] we have a morphism of exact functors 1 : 4, — i, which is an
isomorphism if ¢ is a closed embedding. The intermediate extension functor i, is
defined in the same way.

Remark 3.4. Assume that Z is smooth. Let .# € M)(Z). Put p = 0 in BI0).
Using the equivalence ® we see that .#7 is a right module over the sheaf of algebras

Dy =L, R0, V7 D6, L.
Furthermore, we have
D) = Qz 6, ©0, 25 D0, EutGy 7 (M1, D7)
by Lemma B3 and BI1]), compare [KT1] (2.1.2)].

3.6. Injective and projective limit of categories. Let us introduce the follow-
ing notation. Let A be a filtering poset. For any inductive system of categories
(Ca)aca with functors iag : Co — Cg, @ < 3, we denote by 2@ C, its inductive
limit, i.e., the category whose objects are pairs («, M) with « € A, M,, € C,, and

Homaiiny c,, (@, Ma), (B, Np)) = lim Home, (iay (Ma), igy(Np))-

v2a,B

For any projective system of categories (Co)aca with functors j.g : Cg — Ca,
a < B, we denote by 2limC,, its projective limit, i.e., the category whose objects
are systems consisting of objects M, € C, given for all @ € A and isomorphisms
Jap(Mg) — M, for each a < 8 and satistying the compatibility condition for each
a < f < ~y. Morphisms are defined in the obvious way. See e.g., [KV] 3.2, 3.3].
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3.7. The -modules on ind-schemes. An ind-scheme X is a filtering inductive
system of schemes (X4)aea with closed embeddings ias : Xo — X for a < S
such that X represents the ind-object “lim”X,. See [KS|, 1.11] for details on ind-
objects. Below we will simply write hgl for “lim”, hoping this does not create
any confusion. The categories O(X,) form a projective system via the functors

iilﬂ : O(Xg) = O(X,). Following [BD| 7.11.4] and [KV], 3.3] we define the category
of O-modules on X as
O(X) = 2lim O(X,).
It is an abelian category. An object .# of O(X) is represented by
M= (Mo, Pap gty — M)

where ./, is an object of O(X,) and ¢ag, @ < §, is an isomorphism in O(X,).
Note that any object .# of O(X) is an inductive limit of objects from O(X,).
More precisely, we first identify O(X,) as a full subcategory of O(X) in the fol-
lowing way: since the poset A is filtering, to any .#, € O(X,) we may associate a
canonical object (A5) in O(X) such that A3 = ing.(A,) for a < 8 and the struc-
ture isomorphisms ¢g-, 8 < 7, are the obvious ones. Let us denote this object in
O(X) again by .#,. Given any object # € O(X) represented by A4 = (My, pas),
these A, € O(X), a € A, form an inductive system via the canonical morphisms
Mo — M. Then, the ind-object liﬂ///a of O(X) is represented by .#. So, we
define the space of global sections of .# to be the inductive limit of vector spaces

(3.12) (X, ) :@F(Xa,%a).

We will also use the category O(X ) defined as the limit of the projective system
of categories (O(Xa),i}5); see [BDL 7.11.3] or [KV] 3.3]. Note that the canonical
isomorphisms i},;0x, = Ox, yield an object (Ox,)aca in O(X). We denote
this object by Ox. An object .# € O(X) is said to be flat if each %, is a flat
OUx,-module. Such a & yields an exact functor

(3.13) O(X) = OX), M~ Moy F = (Ma®6x, Fa)acA-

For .Z € O(X) the vector spaces I'(X,,.%,) form a projective system with the
structure maps induced by the functors i}, 5- We set

(3.14) D(X, F) = mD(Xa, Fa).

3.8. The Z-modules on ind-schemes. The category of Z-modules on the ind-
scheme X is defined as the limit of the inductive system of categories (M(X,), inge);
see e.g., [KV] 3.3]. We will denote it by M(X). Since M(X,,) are abelian categories
and i,pe are exact functors, the category M(X) is abelian. Recall that an object
of M(X) is represented by a pair («, .#,) with o € A, 4, € M(X,). There is an
exact and faithful forgetful functor
M(X) = O(X), M = (o, My) = M7 = (iape(Ms)?)s>a-
The global sections functor on M(X) is defined by
D(X,.#)=T(X,.#%).

Next, we say that X is a T-ind-scheme if X = ligXa with each X, being
a T-scheme and i,3 : Xo — Xp being T-equivariant. We define MT(X) to
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be the abelian category given by the limit of the inductive system of categories
(M?(X,),40pe). The functors (B4 for each X,, yield an exact and faithful functor
(3.15) MT(X) — M(X).

The functor I' on M7 (X) is given by the functor I' on M(X).

Finally, given a T-ind-scheme X = ligXa let 7 : X' — X be a T-torsor over
X, ie., 7 is the limit of an inductive system of T-torsors m, : X — X,. We
say that 7 is admissible if each of the 7, is admissible. Assume this is the case.
Then the categories M*(X,,), M*(X,) form, respectively, two inductive systems
of categories via 7,5.. Let

MM(X) = 2im MY (X,),  MY(X) = 2lim M (X,).
They are abelian subcategories of M”(XT). For any object .# = (o, #,) of
M7 (X1), the Ox,-modules (inges)" with 3 > a give an object of O(X). We
will denote it by .#T. The functor
MY (X" - OX), A — .t
is exact and faithful. For ./ ¢ MS‘(X ) we will write
(3.16) D(4) =T(X,.#").
Note that it is also equal to I'(XT,.#)T. We will consider the following categories
M(X) = 2lim M (X,), M (X) = 2lim M (X,.).
Let Y be a smooth scheme. A locally closed affine embedding i : ¥ — X is the
composition of an affine open embedding i; : ¥ — Y with a closed embedding
iz : Y — X. For such a morphism the functor i : M} (Y) — M (X) is defined by
ie = ie Oi1e, and the functor 4, : M (Y) — M (X) is defined by i, = ie 0 i11.
3.9. The sheaf of differential operators on a formally smooth ind-scheme.
Let X be a formally smootH] ind-scheme. Fix B > ain A. Let Ziff 5, be the
O x5 x x,-submodule of #omc(Ox,,,iap«Ox,) consisting of local sections supported
set-theoretically on the diagonal X, C X x X,. Here Homc(Ox,,iap«0Ox,)
denotes the sheaf of morphisms between the sheaves of C-vector spaces associated
with Ox, and iap.O0x,,. As a left Ox -module Ziff 5 , is quasi-coherent; see e.g.,
[BBI Section 1.1]. So it is an object in O(X,). For 8 < v the functor ig- and the
canonical map Ox. — igy«Ox, yield a morphism of Ox _ -modules
%Om(c(ﬁxﬁ,iag*ﬁxa) — %Om@(ﬁxv,iav*ﬁxa).
It induces a morphism Ziff 5, — Ziff, , in O(X,). The Ox_ -modules Ziff 5 ,,
B > a, together with these maps form an inductive system. Let
Diff o, = hgn Diff 5o € O(Xa).
BZa
The system consisting of the Ziff ,’s and the canonical isomorphisms iy, 5 Ziff 3 —

iff , is a flat object in O(X); see [BD, 7.11.11]. We will call it the sheaf of
differential operators on X and denote it by Zx. It carries canonically a structure
of Ox-bimodules, and a structure of algebra given by

giﬁ'y,B@ﬁXﬂ ‘@iﬁﬁ,a%‘@iﬁ'y,a’ (gaf)Hgofa O‘Sﬂgﬁy

1See [BD) 7.11.1] and the references there for the definition of formally smooth.
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Any object 4 € M(X) admits a canonical right Zx-action given by a morphism
(3.17) M Qe Dx — M
in O(X) which is compatible with the multiplication in Zx.

4. LOCALIZATION THEOREM FOR AFFINE LIE ALGEBRAS OF NEGATIVE LEVEL

In this section we first consider the affine localization theorem which relates right
2-modules on the affine flag variety (an ind-scheme) to a category of modules over
the affine Lie algebra with integral weights and a negative level. Then we compute
the Z-modules corresponding to Verma and parabolic Verma modules. All the
constructions here hold for a general simple linear group. We will only use the case
of SL,,, since the multiplicities on the left hand side of (2II) that we want to
compute are the same for sl,,, and gl,,. We will use, for sl,,, the same notation as
in Section 2 for gl,,,. In particular go = sl,, and t is now given the basis consisting
of the weights ¢; — €;41 with 1 < ¢ < m — 1. We identify P, as a subset of { via
the map

Po—= 5 A= Am) = > (A —n/m)e;.
=1

Finally, we will modify slightly the definition of g by extending C[t,t~1] to C((t)),
i.e., from now on we set

g=00®C((¢t)) ® C1® Co.

The bracket is given in the same way as before. We will again denote by b, n, q,
etc., the corresponding Lie subalgebras of g.

4.1. The affine Kac-Moody group. Consider the group ind-scheme LG, =
Go(C((¢))) and the group scheme LTGy = Go(C|[[t]]). Let I C LT Gy be the Iwahori
subgroup. It is the preimage of By via the canonical map LGy — Gy. For z € C*
the loop rotation t — 2zt yields a C*-action on LGy. Write

LGy = C* x LGy.

Let G be the Kac-Moody group associated with g. It is a group ind-scheme which
is a central extension

1—><C*—>G—>f50—>1;
see e.g., [Ku2l Section 13.2]. There is an obvious projection pr : G — LGy. We set
B=pr '(I), Q=pr Y (LTGo), T =pr (Tp).
Finally, let N be the prounipotent radical of B. We have
g = Lie(G), b=1Lie(B), q=Lie(Q), t=Lie(T), n=Lie(N).
4.2. The affine flag variety. Let X = G/B be the affine flag variety. It is a

formally smooth ind-scheme. The enhanced affine flag variety X' = G/N is a
T-torsor over X via the canonical projection

(4.1) T XT = X

The T-action on X' is given by gN + gh™'N for h € T, g € G. The T-torsor T is
admissible; see the end of Section A1l The ind-scheme XT is also formally smooth.
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For any subscheme Z of X we will write ZT = 7=1(Z). The B-orbit decomposition
of X is
X =] Xu X, = BiB/B,
wes
where w is a representative of w in the normalizer of T in G. Each X, is an affine
space of dimension [(w). Its closure X,, is an irreducible projective variety. We
have

X, = |_| Xur, X =limX,.

w' <w

4.3. Localization theorem. Recall the sheaf of differential operators Py €
O(XT). The space of sections of Zx+ is defined as in (BI4). The left action of
G on XT yields an algebra homomorphism

(4.2) 6 U(g) = T(XT, Dx4).

Since the G-action on X' commutes with the right T-action, the image of the map
above lies in the T-invariant part of I'(Xt, Zx+). So for .# € MT(X') the Zy-
action on .# given by ([B.I7) induces a g-actiond on .#* via 6;. In particular the
vector space I'(.#) as defined in (3.I6)) is a g-module. Let M(g) be the category of
g-modules. We say that a weight A € t* is antidominant (resp. dominant, regular)
if for any o € II'T we have (A : a) < 0 (resp. (A: ) >0, (\:a) #0).

Proposition 4.1. (a) The functor
I:MX)— M(g), AT (H)
is exact if A+ p is antidominant.
(b) The functor
I MMNX) = M(q), 4 —T(H)
is exact if A+ p is antidominant.

Proof. A proof of part (a) is sketched in [BD, Theorem 7.15.6]. A detailed proof
can be given using similar techniques as in the proof of the Proposition below.
This is left to the reader. See also [FGl Theorem 2.2] for another proof of this result.

Now, let us concentrate on part (b). Let .# = («, .#,) be an object in M*(X). By
definition the action of my on .#7 is nilpotent. Let .#, be the maximal subobject
of .# such that the ideal (my)"™ acts on .Z, by zero. We have .#,,_, C .#, and
M = hg///n Write RFT(X, —) for the k-th derived functor of the global sections
functor I'(X, —). Given n > 1, suppose that

R'(X, #)) =0, Vk>0.
Since Ay, 11/ My, is an object of M*(X), by part (a) we have
R'T(X, (Myyir ] M,)T) =0, Vi >0.
The long exact sequence for RT'(X, —) applied to the short exact sequence
0 — M —> M — (Mir ) M) — 0

2More precisely, here by g-action we mean the g-action on the associated sheaf of vector spaces
(#1)C; see Step 1 of the proof of Proposition for details.
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implies that RFT(X, ///;r 4+1) = 0 for any k& > 0. Therefore by induction the vector
space R*I'(X,.#) vanishes for any n > 1 and k > 0. Finally, since the functor
RFT(X, —) commutes with direct limits (see e.g., [I'T, Lemma B.6]), we have

R'T(X,. ") = lim R*T(X,.4]) =0,  Vk>0. O
4.4. The category O, and Verma modules. For a tmodule M and X € t* let
(4.3) M;={meM|(h—Ah)"m=0,Vhet, N> 0}

We call a t-module M a generalized weight module if it satisfies the conditions

M= M;,

A€t
dimc M3 < oo, Vet
Its character ch(M) is defined as the formal sum
(4.4) ch(M) = dimc(Mj)e.
Aets

Let O be the category consisting of the /(g)-modules M such that
e as a t-module M is a generalized weight module,
e there exists a finite subset & C t* such that M5 # 0 implies that A €
=4 Z:r;?)l Zgoai.
The category O is abelian. We define the duality functor D on @) by

(4.5) DM = @ Hom(Mj, C),

AEL*
with the action of g given by the involution o; see Section Let O, be the full
subcategory of O consisting of the g-modules on which 1 — (k — m) acts locally
nilpotently. The category O,. is also abelian. It is stable under the duality functor,
because o(1) = 1. The category O, is a Serre subcategory of O,. For \ € 4* we
consider the Verma module

Ni(A) = U(8) Ru(p) Ca.
Here C, is the one-dimensional b-module such that n acts trivially and t acts by
A. It is an object of O,. Let L,(\) be the unique simple quotient of N, (\). We

have DL, (\) = L.(\) for any A. A simple subquotient of a module M € O, is
isomorphic to L, (\) for some A € ,t*. The classes [L,(\)] form a basis of the vector

space [Oy], because the characters of the L, (\)’s are linearly independent.
Denote by A the set of integral weights in #£*. Let A € A and w € &. Recall the
line bundle .#3} ~from Section Let

(4.6) szui‘ = QX:L @)ﬁxT W*(f)éw).
It is an object of Mj(X,,) and
D(ey) = .

Let i, : X] — XT be the canonical embedding. It is locally closed and affine. We
have the following objects in M7 (X),

*‘Zflﬁ!:iw!("%ﬁ% ) Ziw!.(djj), %u);\o:ium("z{)\)

w'e w
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We will consider the Serre subcategory Mp (X) of M (X) generated by the simple
objects &\, for w € &. It is an artinian category. Since D(&Z)\,) = 27\, the

w'e w!e?

category M} (X) is stable under the duality. We have the following proposition.
Proposition 4.2. Let A € A such that A + p is antidominant. Then
(a) D() = Nu(w - ),
L.(w-\) ifw is the shortest element in wS(A),
<c>r(m.>:{ (w- ) if ey

w 0 else.

The proof of the proposition will be given in Appendix [Al It relies on results of
Kashiwara-Tanisaki [KT1] and uses translation functors for the affine category O.

4.5. The parabolic Verma modules. Let “S be the set of the longest repre-
sentatives of the cosets Gp\S. Let wy be the longest element in &y. Recall the
following basic facts.

Lemma 4.3. For w € & if w- X € AT for some A\ € A with X\ + p antidominant,
then w € 9&. Further, if w € 96 then we have

(a) the element w is the unique element v in Sow such that 1Ij C —v(II),

(b) for any v € &y we have l(vw) = l(w) — I(v),

(c) the element wow is the shortest element in Sow.

The Q-orbit decomposition of X is given by
X= || VY. Y,=QuB/B.
weRS

Each Y, is a smooth subscheme of X, and X, is open and dense in Y,,. The closure
of Y, in X is an irreducible projective variety of dimension /(w) given by

Y= |_| \
w €&, w' <w

Recall that Y,/ = 771(Y,,). The canonical embedding j, : Y,/ — XT is locally
closed and affine; see Remark [5.2(b). For A € A and w € 9& let

(4.7) 933} = QYJ Qo W*(f{/‘w).
We have the following objects in M (X)
‘%M! = jw!(%ﬁ;)a <%i\ulo = jw!-(%i\u)v 931)1\;. = ]wO(‘%ﬁ;)

w
Now, consider the canonical embedding r : X — V.. Since r is open and affine,
we have r* = 7' and the functors

(T!,T! =7r"r,)

form a triple of adjoint functors between the categories Mi(Yw) and Mé(Xw).
Note that r*(%)) = ).

Lemma 4.4. For A € A and w € & the following holds.
(a) The adjunction map rr* — 1d yields a surjective morphism in Mp(Yy,),

(4.8) () — B,
(b) The adjunction map Id — rer* yields an injective morphism in Mﬁ(Yw),
(4.9) B = ro( ).
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Proof. We will only prove part (b). Part (a) follows from (b) by applying the duality
functor D. To prove (b), it is enough to show that the ﬁYJ) -module morphism

(4.10) (B)7 — (rer* ()7

is injective. Since r is an open embedding, the right hand side is equal to r,r* ((935‘,)0)
Now, consider the closed embedding

i:Y) - XI — vl
The morphism (I0) can be completed into the following exact sequence in O(Y,}),
0 — i ((2)7) = (2)7 = ra*((22)°);
see e.g., [HTT, Proposition 1.7.1]. The &y;-module (#2)7 is locally free. So it

has no subsheaf supported on the closed subscheme Y, — X{. We deduce that
ii'((#5)?) = 0. Hence the morphism (EI0) is injective. O

Lemma 4.5. For A € A and w € S we have
%)\ ~ f%}\

w!e wle*
Proof. By applying the exact functor j,e to the map ([@3) we see that %,, is a
subobject of @7, in M (X). In particular %, is a simple subobject of 7,; so
it is isomorphic to @),. O

Proposition 4.6. Let A € A such that A + p is antidominant, and let w € 9&.
(a) If there exists a € 11§ such that (w(\ + p) : o) =0, then

(%)) = 0.
(b) We have
(wA+p):a)#0, Vaclll <<= w-AeAt.
In this case, we have
D(Z) = Mo(w-A),  T(Z,) =DMy(w-\).
(c) We have
L.(w-X) ifw is the shortest element in wS(N),

0 else.

F(‘%L\)'o) = {

Proof. The proof is inspired by the proof in the finite type case; see e.g., [M|
Theorem G.2.10]. First, by Kazhdan-Lusztig’s algorithm (see Remark [6.3)), the
following equality holds in [M{(X)]:

(4.11) [Za] =Y (1)@l
y€ES

Since A+ p is antidominant, the functor I is exact on My (X) by Proposition ELT}(a).
Therefore we have the following equalities in [O]:

L@ = Y (D)'@I(A)]

yEGo

(4.12) D M ATIY))

yE€Go
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Here the second equality is given by Proposition 4.2l Now, suppose that there exists
a € II§ such that (w(X+ p) : @) = 0. Let s, be the corresponding reflection in &.
Then we have
SqW - A =wW- A.

By Lemma [£3|(b) we have I(w) = I(sqw) + 1. So the right hand side of (ZI2)
vanishes. Therefore we have I'(%},) = 0. This proves part (a). Now, let us
concentrate on part (b). Note that A + p is antidominant. Thus by Lemma [3|a)
we have (w(\+ p) : a) € N for any « € II]. Hence

(wA+p):a)#0 = (wA+p):a)21 <= (w-A:a)=0.

By consequence (w(A+p):a) # 0 for all @ € II] if and only if w - A belongs
to AT. In this case, the right hand side of [@I2) is equal to [My(w - )] by the
BGG-resolution. We deduce that

(4.13) [D(B4)] = [Mic(w - N)].

Now, applying the exact functor j; to the surjective morphism in (@8] yields a
quotient map %, — . in M*(X). The exactness of I implies that T'(%2),) is
a quotient of N, (w-\) = I'(«72). Since M, (w - \) is the maximal g-locally-finite
quotient of N, (w - \) and T'(#,)) is g-locally finite, we deduce that ['(#))) is a
quotient of M, (w - A). So the first equality in part (b) follows from [I3]). The
proof of the second one is similar. Finally, part (c) follows from Lemma and
Proposition a

Remark 4.7. Note that if w € 96 is a shortest element in w&(\), then we have
(wA+p):a) # 0 for all @ € IIJ. Indeed, if there exists a € IIJ such that
(w(A\+p):a) =0. Let s = wls,w. Then s belongs to &()\). Therefore we
have [(ws") > l(w). But ws’ = sqw and s, € &g, by Lemma 3] we have [(ws") =
l(sqw) < l(w). This is a contradiction.

5. THE GEOMETRIC CONSTRUCTION OF THE JANTZEN FILTRATION

In this part, we give the geometric construction of the Jantzen filtration in the
affine parabolic case by generalizing the result of [BB].

5.1. Notation. Let R be any noetherian C-algebra. To any abelian category C we
associate a category Cr whose objects are the pairs (M, pps) with M an object of C
and pps : R — Ende(M) a ring homomorphism. A morphism (M, uar) — (N, pn)
is a morphism f : M — N in C such that un(r)o f = f o up(r) for r € R. The
category Cg is also abelian. We have a faithful forgetful functor

(5.1) for:Cr —C, (M, pupr) — M.
Any functor F': C — C’ gives rise to a functor
Fr:Cr—Ch, (M, pn)— (F(M), )

such that pupar)(r) = F(un(r)) for 7 € R. The functor Fg is R-linear. If F' is
exact, then Fg is also exact. We have for o Fr = F o for. Given an inductive
system of categories (Cq,iag), it yields an inductive system ((Co)r, (iag)r), and we
have a canonical equivalence

(2limy Ca) e = 21im((Ca) ):
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5.2. The function f,. Let Q' = (Q,Q) be the commutator subgroup of Q. It
acts transitively on Y| for w € 2G. We have the following lemma.

Lemma 5.1. For any w € 9GS there exists a reqular function f,, : VL — C such
that f,1(0) = ?L -Y] and

fw(qzh™) = e“’flw‘)(h)fw(x), qe€Q, zeY), heT.

Proof. Let V denote the simple g-module of highest weight wy. It is integrable,
hence it admits an action of G. Let vg € V be a nonzero vector in the weight space
Vio- It is fixed under the action of @’. So the map

e: G-V, g—glu

maps QB to Bi~lvg for any w € ®S. Let V(w™!) be the U(b)-submodule of V/
generated by the weight space V,,-1,,. We have B tvg C V(w™'). Recall that
for w' € 9SG we have

w<w = (W) <w?

(5.2) = (W) vy € n s

see e.g., [Ku2, Proposition 7.1.20]. Thus, if w’ < w, then ¢(Qu'B) C V(w™1).
The C-vector space V(w™!) is finite dimensional. We choose a linear form 1, :
V(w~') — C such that

Lo(w ™ vg) #0 and I, (i) = 0.
Set fu = ly 0. Then for g € Q', h € T, u € N we have
fulgoh™u) = L,(u hi vg)
= " O (B)ly (b )
= ) (i),

A similar calculation together with (5.2) yields that f,,(Qu’'B) = 0 for w’ < w.
Hence f,, defines a regular function on |_|w/<w Q' B which is invariant under the

right action of N. By consequence it induces a regular function f,, on YL which
has the required properties. O

Remark 5.2. (a) The function f,, above is completely determined by its value on
the point wN/N, hence is unique up to scalar.

(b) The lemma implies that the embedding j,, : Y,/ — X1 is affine.

(c) The function f,, is an analogue of the function defined in [BBl Lemma 3.5.1]
in the finite type case. Below we will use it to define the Jantzen filtration on %),.

Note that [BB]’s function is defined on the whole enhanced flag variety (which is

a smooth scheme). Although our f,, is only defined on the singular scheme 7;,

this does not create any problem, because the definition of the Jantzen filtration is
local (see Section [5.1]), and each point of 7}; admits a neighborhood V' which can
be embedded into a smooth scheme U such that f,, extends to U. The choice of
such an extension will not affect the filtration; see [BBl Remark 4.2.2(iii)].
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5.3. The Z-module Z). Fix A € A and w € 96. In the rest of Section [ we
will abbreviate

j:jwv f = fun ﬂ:%i\” %l :‘%wh etc.

Following [BB] we introduce the deformed version of #. Recall that R = C[[s]] and
p is the maximal ideal. Let x denote a coordinate on C. For each integer n > 0 set
R(™ = R(p"). Consider the left Pc~-module

g — (Ocr ® R(n))xs

It is a rank one Oc- ® R(™-module generated by a global section z® such that
the action of P« is given by x0,(z°) = s(z®). The restriction of f yields a map
Y} — C*. Thus f*.# is a left gyj ® R™-module. So we get a right @YJJ ®@R™-
module

B = B ®0, , from.

Lemma 5.3. The right QYJ ® R -module B is an object of Mi(Yw).

Proof. Since R(™ is a (C—algebra of dimension n and £ is locally free of rank one
over ﬁyf the ﬁyf -module Z™ is locally free of rank n. Hence it is a holonomic

@Y+ -module. Note that the Z¢--module .# (™ is weakly T-equivariant such that z*
is a T-invariant global section. Since the map f is T-equivariant, the @YT module

=7 is also Weakly T-equivariant. Let f* be the global section of f*.# (" given
by the image of z* under the inclusion

(s, 7™y c o, frorm).

Then f* is T-invariant. It is nowhere vanishing on Y,{. Thus it yields an isomor-
phism of &}, + ® R™-modules

from o~ Oyy ® R
By consequence we have the following isomorphism
(BT = m(n*(Qy, Ry, f;fw)ééﬁyjj frznT
= Qy, ®oy, L. oy, m(f* I T
>~ Qy, Doy, L5, oy, (Ov, ® RM™).

See Remark 3.2 for the first equality. Next, recall from (B.5]) that the right T-action
on Y, yields a morphism of Lie algebras

8 it = DY, Dyp).
The right @,T,w—module structure of f*(.#(™) is such that
(£ 6e(h))(m) = sw™ wo(=h) f*(m), ¥ m €Y.
So the action of the element
h+ A(R) + sw™twy(h) € U(t) @ R™

on (™)' via the map 6, vanishes. Since the multiplication by s on (Z(™)t is
nilpotent, the action of the ideal m, is also nilpotent. Therefore 2™ belongs to
the category Mp(Yy,). O
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It follows from the lemma that we have the following objects in Mé (X)
@!(n) = i (g(n)), g!(y) _ j!.(g(n)), {@EH) _ j.(%("))-
5.4. Deformed parabolic Verma modules. Fix A € A and w € @& as before.
Let n > 0. If w- A € AT we will abbreviate
My = My(w- ). M= My(w- ). M =Mi(g"). DM = (DMi)(").

Note that the condition is satisfied when w is a shortest element in w&(\); see
Remark (7]

Proposition 5.4. Assume that A + p is antidominant and that w is a shortest
element in w&(N). Then there are isomorphisms of grm)-modules

r(#™) =M™, r(#")=DM".
The proof will be given in Appendix [Bl

5.5. The geometric Jantzen filtration. Now, we define the Jantzen filtration
on %, following [BB| Sections 4.1,4.2]. Recall that %™ is an object of M} (Y,,).
Consider the map

1 R™ — End (#™),  plr)(m) =rm,

M3 (Ya)

where m denotes a local section of Z(™). Then the pair (Z™), i) is an object of the
category M} (V) gy defined in Section .1 We will abbreviate 2™ = (2 ).
Fix an integer a > 0. Recall the morphism of functors v : ji — jo,. We consider the
morphism

Y(a,n) : %!(n) — %’Sn)

in the category Mé (X) gy given by the composition of the chain of maps

, ()
(5.3) %(H) a( %(n) Y(#) %

The category Mi(X)R(n) is abelian. The obvious projection R — R~V yields
a canonical map

Coker(¢(a,n)) — Coker(¢(a,n — 1)).

By [B, Lemma 2.1] this map is an isomorphism when n is sufficiently large. We
define

(5.4) 7*(%B) = Coker(y)(a,n)), n>0.

This is an object of Mi (X)py. We view it as an object of Mi(X) via the forgetful
functor (BI). Now, let us consider the maps

a: B — (B, B:r1'(B)— 1°(B)
in Mi (X) given as follows. First, since
70() = Coker(b(#™)) and () = Coker((#™) o ji(u(s)),

there is a canonical projection mH(B) — 7°(B). We define 3 to be this map. Next,
the morphism ¢ (%™) maps ji(s(#™)) to Im(¢)(1,n)). Hence it induces a map

(B )s(BM)) = 7 (B), 0> 0.
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Composing it with the isomorphism % = %™ /s(%(™) we get the map a. Let u'
denote the R(™-action on 7!(%). Then by [B] the sequence

(5.5) 0— B -5 7'(B) 2 1(B) — 0,
is exact and « induces an isomorphism
By — Ker(p' (s) : 7' (B) — 71(RB)).
The Jantzen filtration of % is defined by
(5.6) J () = Ker(u*(s)) NIm(u'(s)), Viz=0.

5.6. Comparison of the Jantzen filtrations. Fix A € A and w € 9&. Consider
the Jantzen filtration (J'M,) on M, as defined in Section 23l The following
proposition compares it with the geometric Jantzen filtration on 4.

Proposition 5.5. Assume that A + p is antidominant and that w is a shortest
element in wS(\). Then we have

J'M, =T(J'%), Yi=D0.
Proof. By Proposition [L.6(b) and Proposition (5.4 we have
I(#) =M, T(@#B™)=m" T1(8")=DM™".
So the map
¢ =T(p(B™)) : T(B") = T(B™).

identifies with a g -module homomorphism
o™ M - DM,

Consider the projective systems (Mlin))7 (DMlﬁn)), n > 0, induced by the quotient
map R — R Their limits are respectively My and DMy. The morphisms
#"™ . n >0, yield a morphism of gz-modules

¢ = Jz@qs(") : My — DM

such that

o(p) = ¢! =T (¥(2)).
The functor T is exact by Proposition {1l So the image of ¢(p) is I'(A,). It is
nonzero by Proposition 6{(c). Hence ¢ satisfies the condition of Definition [[L6] and
we have

J' M, = ({z € Mx|¢(z) € s' DM} + sMy) /s M.
By Lemma 2.1] and Remark [[.7] the map ¢ is injective. So the equality above can
be rewritten as
J'M,, = (¢(My) N s'DMy + s(My))/s¢(My).

Now, for a > 0 let

d(a,n) : M — DM™
be the gprx)-module homomorphism given by the composition

p(s") T

(5.7) M M DM,

Then we have I'(¢(a,n)) = ¢(a,n). Since T is exact, we have

Coker(¢(a,n)) = I'(Coker(¢(a, n))).
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So the discussion in Section and the exactness of I' yields that the canonical
map

Coker(¢p(a,n)) — Coker(p(a,n — 1))

is an isomorphism if n is large enough. We deduce that
DMy /s* My = Coker(¢(a,n)) =T'(7*(A)), n>0;

see ([4)). The action of u(s) on DMy /s*¢(My) is nilpotent, because p(s) is nilpo-
tent on DMlin). Furthermore, I" maps the exact sequence (5.0 to an exact sequence

(5.8) 0 — M, — DMy /s¢p(My) — DMy /p(My) — 0,
and the first map yields an isomorphism
M, = Ker (u(s) : DMy /s¢p(Myx) — DMy /sp(My)).

Note that since DMy is a free R-module, for x € DMy if sz € s¢(My), then
x € ¢(My). So by ([E8) and the exactness of T', we have for i > 0,

D(J') = Ker(u(s)) N Im(u(s)')
= (¢p(Mi) N s'DMy + s¢(Mi))/sp(My)
J' M.
The proposition is proved. O

6. PROOF OF THE MAIN THEOREM

6.1. Mixed Hodge modules. Let Z be a smooth scheme. Let MHM(Z) be the
category of mixed Hodge modules on Z [Sal. It is an abelian category. Each object
A of MHM(Z) carries a canonical filtration

Wetl = - WrE M SWdt -
called the weight filtration. For each k € Z the Tate twist is an auto-equivalence
(k) : MHM(Z) - MHM(Z), A — (k)

such that W*(#(k)) = W**t2k(_#). Let Perv(Z) be the category of perverse
sheaves on Z with coefficient in C. There is an exact forgetful functor

o: MHM(Z) — Perv(Z).
For any locally closed affine embedding i : Z — Y we have exact functors
i1, ie : MHM(Z) - MHM(Y)

which correspond via g to the same named functors on the categories of perverse
sheaves.

If Z is not smooth we embed it into a smooth variety ¥ and we define MHM(Z)
as the full subcategory of MHM(Y) consisting of the objects supported on Z. It is
independent of the choice of the embedding for the same reason as for Z-modules.
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6.2. The graded multiplicities of %;\!. in %’f‘ul. Now, let us calculate the multi-
plicities of a simple object %’;‘,. in the successive quotients of the Jantzen filtration
of %), for x, w € G with x < w.

We fix once for all an element v € &, and we consider the Serre subcategory
M} (X,) of M}(X,) generated by the objects ), with w < v, w € &. The

wle

de Rham functor yields an exact fully faithful functor
DR : M} (X,) — Perv(X,).

See e.g., [KTTL Section 4]. Let MHM,(X,) be the full subcategory of MHM(X,)
consisting of objects whose image by o belong to the image of the functor DR.
There exists a unique exact functor

n: MHM,(X,) = M)(X,)
such that DRon = p. An object .# in MHM(X,) is pure of weight i if we have
Wk////kalll{ = 0 for any k # i. For any w € &, w < v, there is a unique
simple object @7 in MHM(X,,) pure of weight [(w) such that n(</)) = </.; see
e.g. [KT2]. Let

Ty = (WD), T = (iw)ie(F),
They are objects of MHM(X,) such that
() = ), N(Agh) = )

w w!le*
Now, assume that w € & and w < v. Recall that 8 € M*(Y,,), and that
#2, € M*(X) can be viewed as an object of M*(X,). We define similarly the
objects #) € MHM(Y,,) and £, #,, € MHM,(X,) such that

w!? w!e

77(%)3;!) ‘% 1y T/(‘%w’o) ‘% le*

w: w:

The object %73), has a canonical weight filtration W*®. We set J*2), = %2, for
k < 0. The following proposition is due to Gabber and Beilinson- Bernsteln [BB
Theorem 5.1.2, Corollary 5.1.3].

Proposition 6.1. We have n(W' @)=k ) ) = k5, in M} (X,) for all k € Z.

So the problem that we posgd at the beginning of the section reduces to calculate
the multiplicities of %2, in %), in the category MHM(X,). Let ¢ be a formal
parameter. The Hecke algebra H,(6) of & is a Z[q, g ']-algebra with a Z[q, ¢~ ']-
basis {T }wee whose multiplication is given by

T’wlng = Tw1w2, if l(wlwg) = l(w1) + l(’LUQ),

(Ty, + 1)(Ts, —q) =0, 0<i<m-—1.

On the other hand, the Grothendieck group [MHM,(X,)] is a Z|[q, ¢~ !]-module
such that

¢“[ M) =[M(~k)], ke, #cMHM((X,).
For x € 6 with < v consider the closed embedding

¢z :pt — X,, pt— 2B/B.
There is an injective Z[q, ¢~ ]-module homomorphism; see e.g., [KT2, (5.4)],
U [MHMO(Y )] —  J(6),

— 3OS (—UFHEE (AT,

<V kEZ
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The desired multiplicities are given by the following lemma.

Lemma 6.2. For w € °S we have

V(20 = > (—D)!T@R, (),

mEQG,mgw
where Py ., € Z[q,q~ "] is the Kazhdan-Lusztig polynomial.

Proof. Since the choice for the element v above is arbitrary, we may assume that
w < v. By the definition of ¥ we have

(6.1) V() = (1T,
By [KL1], [KTI], we have

(62) (['Q{w'o l(w Z Pac wT

reS

Next, for z € Y6 with z < v we have

V(2N = Y D (DMH (BT,

yeG ke
(6.3) = (D' YT,
y€6o
Since by Lemma we have
e wle

the following equalities hold

V(%)) = V()

= (_1) Hw) Z Z Pygc,wTy:c

€8, x<w yeSy

= (_1)1(111) Z PIJﬂ,U Z T,

T€QS, r<w yeSy

= > () @T@P, w(BY).

€S, r<w
Here the third equality is given by the well-known identity,

Pyow = Prw, ye€ Gy, z €96, < w. O
Remark 6.3. Let € 96. Since VU is injective, the equation (6.3)) yields that

[#0]= Y (1)@ ep).

y€So

By applying the functor 7 we get the following equality in [M7(X)]:

(6.4) (23] = > (1)@ ey,

y€So
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6.3. Proof of Theorem Recall from (28] that we view P, as a subset of
AT. By Corollary 2.14] Theorem [0.T]is a consequence of the following theorem.

Theorem 6.4. Let A\, p be partitions of n. Then for any negative integer K we
have

(6.5) Ay (q) =Y [T M(N) /T M (N) = Lie(p)lq'

>0
Here dy,(q) is the polynomial defined in the introduction with v = exp(2mi/k).
Proof. Let v € A such that v+ p is antidominant. We may assume that p, A belong

to the same orbit of v under the dot action of &; see (A7T). For any p € ATN(S-v)
let w(p), be the shortest element in the set

W), &) = {we & | p=w-v}.

Note that w(),&(v) is contained in Y& by Lemma A3l We fix v € & such that
v 2 w(y), for any v € Pp. Let q'/? be a formal variable. We identify ¢ = (¢'/?)2.
Let Py ., be the Kazhdan-Lusztig polynomial normalized as follows:

Pyw(q) = q(l(w)—l(w))/2pm’w(q—1/2),

Let Qw,w be the inverse Kazhdan-Lusztig polynomial given by

Z Qaz,z(_Q)pw,w(Q) = 6z,wa z,we 6.
€S

Then by ([@.1)), (62) we have
[y] = > qUITDNRQ, (a7 V)], Ve

wes
By Remark [6.3] we see that
6.6) [#2) = Y (D (1) OgUeDRG, (7)) [Bh], Vo€ 08,
we?s €60
Now, let
MG (X)), = MG (K] 92 ZI 20772, 04, = (0] @2 Zg /2. 472,
We have a Z[q, ¢~ !]-module homomorphism
e [MHMo(X,)] —  [M{(Xo)lg,
) — Y (Wi W a)g .
i€Z
Note that e([#,]) = ¢"*)/2[#Y,,] and by Proposition .1 we have
e([B0) = > (I B/ T B O IP we S, <o
ieN
Next, let

(M. (N)]g = Z[JiMH()‘)/Ji+1MR()‘)]q7i/2-
ieN
Then by Proposition 5.5 we have

Le([B5),0) = a2 ML (V)]
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On the other hand, by (6.6]) we have
FE([«@ZJ(,\)U!D
=3 (Z( DIOGURNINIZQ ) (~g%) el )

weQG s€6y

S (3 ()OI 2G L (g7 ) ) g L ),

HEP, s€6,

Here in the second equality we have used Proposition [.6](c) and the fact that P, is
an ideal in A™. Note that I[(sw()),) = l(w(\),) —(s) for s € &y by Lemma [L3{(b).
We deduce that

Mg = D (D2 a7 Qa7 L)

HEP, s€G,

By [Ll Proposition 5], we have
d)\’,u’(q_l/Q) = Z (_ _1/2)l( )Q )\),,,’LU(;L) ( 1/2),

se€By
see also the beginning of the proof of Proposition 6 in loc. cit., and [LT2] Lemma
2.2] for instance. We deduce that

STIMN /T Mg =Y da g (@)L ().

€N HEP
The theorem is proved. (Il

Remark 6.5. The g-multiplicities of the Weyl modules W, (X\) have also been con-
sidered in [Ar] and [RT]. Both papers are of combinatorial nature, and are very
different from the approach used here. In [Ar] Ariki defined a grading on the g-Schur
algebra and he proved that the g-multiplicities of the Weyl module with respect to
this grading is also given by the same polynomials dy. ,-. However, it not clear to
us how to relate this grading to the Jantzen filtration.

Remark 6.6. The radical filtration C*(M) of an object M in an abelian category C
is given by putting C°(M) = M and C**1(M) to be the radical of C*(M) for i < 0.
It follows from [BBl Lemma 5.2.2] and Proposition [5.5 that the Jantzen filtration
of %, coincides with the radical filtration. If A € A such that A+ p is antidominant
and regular, then the exact functor T is faithful; see [BD), Theorem 7.15.6]. In this
case, we have
D(C*(#)) = C*(T(A)) = C* My (M.

So the Jantzen filtration on M (\) coincides with the radical filtration. If we have
further A € P,, and xk < —3, then by the equivalence in Proposition 213 we deduce
that the Jantzen filtration of W, (\) also coincides with the radical filtration. This
is compatible with recent result of Parshall-Scott [PS], where they computed the
radical filtration of W, (A) under the same assumption of regularity here but without
assuming k < —3. We conjecture that for any A the Jantzen filtration on M, ()
coincides with the radical filtration.

Remark 6.7. The results of Sections ] Bl [Glhold for any standard parabolic subgroup
Q@ of G with the same proof. In particular, it allows us to calculate the graded de-
composition matrices associated with the Jantzen filtration of the parabolic Verma
modules in more general cases.
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APPENDIX A. KASHIWARA-TANISAKI’S CONSTRUCTION, TRANSLATION
FUNCTORS AND PROOF OF PROPOSITION

The goal of this appendix is to prove Proposition We first consider the case
when A + p is regular. In this case, the result is essentially due to Kashiwara and
Tanisaki [KTI]. However, the setting of loc. cit. is slightly different from the one
used here. So we will first recall their construction and adapt it to our setting to
complete the proof of the proposition in the regular case. Next, we give a geometric
construction of the translation functor for the affine category O inspired from [BG],
and apply it to deduce the result for singular blocks. We will use the same notation
as in Section [

A.1. The Kashiwara affine flag variety. Recall that II is the root system of g
and IIT is the set of positive root. Write II= = —II". For o € II we write

go={ze€g|[hz]=ah)z, Vhet}
For any subset Y of IIT, II~ we set respectively

n(Y) = @ Oas n (Y) = @ Jo-

aeY aeY
For a = Z?l_ol h;a; € TI we write ht(a) = 22161 h; and for [ € N we set
I ={aell” | ht(a) < -1}, n, =n (II,).
Consider the group scheme L~Go = Go(C[[t™']]). Let B~ be the preimage of By
by the map
L Gy — Go, f,_l — 0,

where B, is the Borel subgroup of G opposite to By. Let N~ be the prounipotent
radical of B~. Let N, C B~ be the group subscheme given by
Ny = ki%lexp(nf/n;)-

Let X be the Kashiwara affine flag variety; see [K|. It is a quotient scheme
X = G /B, where G is a coherent scheme with a locally free left action of
B~ and a locally free right action of B. The scheme X is coherent, prosmooth,
nonquasi-compact, locally of countable type, with a left action of B~. There is a
right T-torsor

7: X" =Gy /N = %

For any subscheme Z of X let ZT be its preimage by 7. Let

be the B~ -orbit decomposition. Then X is covered by the following open sets

=] |z
v<w
For each w there is a canonical closed embedding X,, — X¥*. Moreover, for any
integer [ that is large enough, the group N, acts locally freely on X*, XvT, the
quotients
p=NoEe x = N\
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are smooth schemesﬁ, and the induced morphism

(A.1) Xy — X

is a closed immersion. See [KT1l Lemma 2.2.1]. Furthermore, we have
-t _ % w
X, = X xxp X0,

In particular, we get a closed embedding of YL — X, into the T-torsor %}UT — X
This implies that the T-torsor 7 : XT — X is admissible. Finally, let

[ AL SN TR U SN I

be the canonical projections. They are affine morphisms.

A.2. The category H:\(X). Fix w,y € & with y > w. For l; > I3 large enough,
the functor

(phlz)' : Mz(xlylvyw) — Mz(%i,yw)

yields a filtering projective system of categories, and we set

HA (X7, X,,) = 2lim M (X}, X,,).
l

For z > y let j,. : Xvt — %1 be the canonical open embedding. It yields a map
Jyz : %?T — XTT for each I. The pull-back functors by these maps yield, by base
change, a morphism of projective systems of categories

(M (X7, X))t = (MR (XY, X))
Hence we get a map
HM(%°,X,) — HMXY, X,,).

As y, z varies these maps yield again a projective system of categories and we set

HY(X,,) = 2lim HN(XY, X,,).

yZ2w

Finally, for w < v the category H (X ) is canonically a full subcategory of H (X,).
We define

H(X) = 2ling HY(X.,,).

This definition is inspired from [KTI], where the authors considered the categories
M (X7, X,,) instead of the categories M%(%;’,Yw) Finally, note that since the
category HS‘(YM) is equivalent to Mi(%;’,yw) for y, [ large enough, and since
the latter is equivalent to Mi(yw) (see Section [B]), we have an equivalence of
categories

3For [ large enough the scheme X}’ is separated (hence quasi-separated). To see this, one uses
the fact that X* is separated and applies [T'T}, Proposition C.7].
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A.3. The functors I' and T. For an object M of H:\(X)7 there exists w € &
such that .7 is an object of the subcategory H*(X,). Thus .# is represented by a
system (M) ysw, 1, with .# € M} (XY, X,,) and [ large enough. For l; > I there
is a canonical map
(plllz)*(kﬁl?i) - (plllz)O(L%l?i) = L%lz

It yields a map (see (B.4) for the notation)

L(xy,.4)) — T(X], ).
Next, for y, z > w and [ large enough, we have a canonical isomorphism

DX}, 4)) =T(X}, A7).
Following [KT1], we choose a y > w and we set

P() = im T (XY, A7),
l

This definition does not depend on the choice of w, y. Now, regard .Z as an
object of M7(X). Recall the object .#T € O(X) from Section B4l Suppose that

AT is represented by a system (#))y>. with .Zf € O(X, ) By definition we
have ./ = (i'.#)7, where i denotes the closed embedding X — .’{ ; see (A).

Therefore we have

F(vi ///yﬁ) = F(Yy’ Z'(j{ly)w

(A2) C @A),
Next, recall that we have
D(A) =T (X, A7) = im (X, .4,)).
y

So by first taking the projective limit on the right hand side of (A2]) with respect
to | and then taking the inductive limit on the left hand side with respect to y we
get an inclusion

L(A) CT(A).
It identifies T'(.#) with the subset of I'(.#)
subschemes (of finite type) of X.

The vector space I'(.#) has a g-action; see [KT1l Section 2.3]. The vector space

TI'(#) has also a g-action by Section 3] The inclusion is compatible with these
g-actions. Following loc. cit., let

consisting of the sections supported on

T(#) ()
be the set of t-finite elements. It is a g-submodule of T'(.7).

A.4. The regular case. In this subsection we prove Proposition in the regular
case. More precisely, we prove the following result.

Proposition A.1. Let A € A be such that A+ p is antidominant and regular. Then
we have isomorphisms of g-modules

(A3) F(”va)'\) = Nﬁ(v'/\)’ F(*Q{UA-) = DNK(U'/\)v (%'-) = R(U')‘)v VoveG.
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Proof. By |[KT1l, Theorem 3.4.1] under the assumption of the proposition we have
isomorphisms of g-modules.

f(ﬁfv)'\) = NR(U ’ )‘)7 F(JZ{'U);) = DNH(’U : /\)a F(%ﬁ'\o) = Ln(v ’ )‘)7 Vv € 6.

We must check that for § =!, e, or le, the g-submodules F(;zf/;fﬁ) and f(ﬂvﬁ) of
f(%)&) are equal. Let us first prove this for § = e. We will do this in several steps.

Step 1. Following [KT1] we first define a particular section 9 in T'(Z))). Let w be
a nowhere vanishing section of Qx,. It is unique up to a nonzero scalar. Let t}
be the nowhere vanishing section of £3 such that ¢*(uob) = e~*(b) for u € N,
b € B. Then w ® t* is a nowhere vanishing section of &M over X,. Now, for
y > v and [ large enough, let ¢ : X, — X} be the composition of the locally
closed embedding X, — X, and the closed embedding X, — X} in (A). We will
denote the corresponding embedding X — %?T again by 7;. Note that (i}’.(;zfv)‘))l

represents the object <77 in HS‘(X ). Therefore we have
D(er)) = m DR, i ().
1

Consider the canonical inclusion of ﬁ%ly-modules

(AN — il ().
Let 9, € D(XY,i%, (})T) be the image of w ® ¢t* under this map. The family (9;)
defines an element
9 € D(e,).

Step 2. Let V¥ = yB~-B/B. It is an affine open set in X¥. For [ large enough, let V}
be the image of V¥ in X via the canonical projection X¥ — X7. Write j/ : V}Y — X}
for the inclusion. Note that VY = N~ /N, as affine spaces. Therefore, if | is large
enough such that II;” C II” NvlI™, then the right qu—module structure on /M
yields an isomorphism of sheaves of C-vector spaces over V,,

G Ox,) UM (I NoI) /) S 57 (i (#)),
fep — (9 f) alp).

This yields an isomorphism of t-modules

(A4) D () = U™ /0) @ Cn
see [KT1, Lemma 3.2.1]. By consequence we have an isomorphism of t-modules
(A.5) D) = (mU(n~ /n;)) @ Cyon.

l

Step 3. Now, let us prove I'(#\) = ['(#)). First, by (A4) the space
D(x7,i%, (<)) is tlocally finite. So (A2) implies that I'(<Z}) is the inductive
limit of a system of t-locally finite submodules. Therefore it is itself t-locally finite.
Hence we have

D(ys) € T(,).

To see that this is indeed an equality, note that if m € f‘(f%’\,) is not t-locally finite,
then by ([(A5]) the section m is represented by an element in

T&nll(n_/nf) ® Cy.n
1
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which does not come from U(n~) ® C,,.5 via the obvious map. Then one sees that
m cannot be supported on a finite dimensional scheme, i.e., it cannot belong to
I'(«7). This proves that

D() = T(y).

ve

Now, we can prove the other two equalities in the proposition. Since A + p is
antidominant, by Proposition @I[a) the functor I is exact on M*(X). So I'(2,)
is a g-submodule of I'(7)}). Therefore all the elements in I'(7),) are t-finite, i.e.,
we have

D(,) C T(,)-

On the other hand, by [KT1l Theorem 3.4.1] we have
T(,) C T()).

vle

Therefore, Step 3 yields that each section in T'(Z),) is supported on a finite di-

vle
mensional scheme, and hence belongs to I'(<7)),). We deduce that
(A.6) D() = T(,)-

Finally, since ,Q/U’} has a finite composition series whose constituents are given by
N, for w < v. Since both I and T are exact functors on M (X); see Proposition
1] and [KT1], Corollary 3.3.3, Theorem 3.4.1]. We deduce from (A.G) that I'(.<7))
is t-locally finite, and the sections of I'(«Z)) are supported on finite dimensional

subschemes. Therefore we have
D())) = T(a2)).
The proposition is proved. ([l

A.5. Translation functors. In order to compute the images of 7)) and <7, in
the case when A + p is not regular, we need the translation functors. For A € t*
such that A+ p is anti-dominant, we define O,  to be the Serre subcategory of O,
generated by L (w-A) for all w € &. The same argument as in the proof of [DGK|
Theorem 4.2] yields that each M € O,; admits a decomposition
(A7) M = @M& M* € O, 5,
where A\ runs over all the weights in t* such that A + p is antidominant. The
projection

pry :O0p = Ok, M= M,
is an exact functor. Fix two integral weights A, u in t* such that A + p, u + p are
antidominant and the integral weight v = A — p is dominant. Assume that \ € t*,
then p belongs to ./ t* for an integer k' < k. Let V(v) be the simple g-module of

highest weight v. Then for any M € O, the module M ® V(v) belongs to 0..
Therefore we can define the following translation functor:

0" : O — Opr, M= pry(MaV());
see [Kul]. Note that the subcategory (7)5, » of O is stable under the duality D,
because D fixes simple modules. We have a canonical isomorphism of functors
(A.8) 0" oD =Do§".
Indeed, it follows from (@3] that D(M @ V(v)) = D(M) @ D(V(v)) as g-modules.
Since V(v) is simple, we have DV (v) = V(v). The equality (A8) follows.
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On the geometric side, recall the T-torsor 7 : XT — X. For any integral weight
A € t* the family of line bundles f% (see SectionBA]) with w € & form a projective

system of €-modules under restriction, yielding a flat object .Z* of C)(X) Note
that 7*(£?) is a line bundle on XT. For integral weights A, xz in t* the translation
functor

N MY (X) - MY(X), M~ M Do, (L),
is an equivalence of categories. A quasi-inverse is given by ©#~*. By the projection
formula we have

(A.9) ONTH(AL) = Aby, for 1=l le e

wi
Now, assume that p + p is antidominant. Consider the exact functor
' M*(X)—M(g), A —T(A)
as in Proposition Il Note that if p + p is regular, then I' maps &', to L, (v - )
by Proposition [AJl Since the subcategory O, of M(g) is stable under extension,
the exact functor I' restricts to a functor
[ M(X) = Oy
The next proposition is an affine analogue of [BG, Proposition 2.8].
Proposition A.2. Let A, u be integral weights in t* such that X + p, p+ p are
antidominant and v = X\ — u is dominant. Assume further that u + p is regular.
Then the functors
0" oT : MK(X) = Opx CM(g) and To®O”: MY(X)— M(g)
are isomorphic.

Proof. We will prove the proposition in several steps.

Step 1. First, we define a category Sh(X) of sheaves of C-vector spaces on X and

we consider g-modules in this category. To do this, for w € & let Sh(X,,) be
the category of sheaves of C-vector spaces on X,. For w < z we have a closed
embedding iy, 5 : X — X4, and an exact functor

iyt Sh(X,) = Sh(X,), F iy, (F),
where i}, ,(.F) is the subsheaf of .7 consisting of the local sections supported set-
theoretically on X,,. We get a projective system of categories
(Sh(Xw), iyq)-

w,T
Following [BDl 7.15.10] we define the category of sheaves of C-vector spaces on X
to be the projective limit

Sh(X) = 2lim Sh(X,).

This is an abelian category. By the same arguments as in the second paragraph of
Section 3.7 the category Sh(X,,) is canonically identified with a full subcategory
of Sh(X), and each object .# € Sh(X) is a direct limit

F = hﬂﬁw, Zw € Sh(X,,).
The space of global sections of an object of Sh(X) is given by
DX, 7) = I [ (X0, 7).
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Next, consider the forgetful functor

O(X,) = Sh(X,), A~ #C.

Recall that for # € O(X) we have .4 = @%w with .#,, € O(X,,). The tuple
of sheaves of C-vector spaces

lim i, . (), w € S,
r>w

gives an object in Sh(X). Let us denote it by .#C. The assignment .# + .#C
yields a faithful exact functor

O(X) — Sh(X)
such that
(A.10) D(X, ) =T(X,.#%);

see ([BI2) for the definition of the left hand side. Now, let # = (.%,,) be an object
in Sh(X). The vector spaces End(.%,,) form a projective system via the maps

End(%,) — End(Fy), [~ i\, (f)-

We set
(A.11) End(%) = Jim End(%#,).

We say that an object & of Sh(X) is a g-module if it is equipped with an algebra
homomorphism

U(g) — End(F).
For instance, for .# € MT(XT) the object (.#7)C of Sh(X) is a g-module via the
algebra homomorphism

(A.12) 6 :U() = T(XT, Dx+).
See the beginning of Section [£3]

Step 2. Next, we define G-modules in O(X) A standard parabolic subgroup of G
is a group scheme of the form P = @ x¢, FPo with Py a parabolic subgroup of Gj.
Here the morphism @ — GY is the canonical one. We fix a subposet /& C & such
that for w € S the subscheme X,, C X is stable under the P-action and

X = hg X
weFe

We say that an object .% = (%) of O(X) has an algebraic P-action if %, has
the structure of a P-equivariant quasicoherent 5 -module for w € S and if the
isomorphism iy, .7, = .7, is P-equivariant for w < x. Finally, we say that 7 is a
G-module if it is equipped with an action of the (abstract) group G such that for

any standard parabolic subgroup P, the P-action on .% is algebraic.

We are interested in a family of G-modules ¥ in O(X) defined as follows. Fix a
basis (m;);en of V(v) such that each m; is a weight vector of weight v; and v; > v;
implies j < 4. By assumption we have vy = v. For each i let V? be the subspace of
V(v) spanned by the vectors m; for j <i. Then

Vocvicvic...
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is a sequence of B-submodule of V(). We write V> = V(v). For 0 < i < oo we
define a Ox-module #¥ on X such that for any open set U C X we have

LU, 7%) ={f :p7"(U) = V' | f(gb™") =bf(9), g€ Gu, be B},
where p : Goo — X is the quotient map. Let ¥, be the restriction of 7§ to X,,.
Then (¥ )yes is a flat G-module in O(X). We will denote it by ¥%. Note that
since V(v) admits a G-action, the G-module ¥ € O(X) is isomorphic to the

G-module Ox ® V(v) with G acting diagonally. Therefore, for .# € M{(X) the
projection formula yields a canonical isomorphism of vector spaces

D)V = DX, #4HeV()
(A.13) = (X, 4" @0, V™).
On the other hand, we have
L (#) = T(X, (Mo, 7 (L))
(A.14) = (X, M @6, L7).

Our goal is to compare the g-modules I'(©”(.#)) and the direct factor 6”(I'(.#)
of D'(.#) @V (v). To this end, we first define in Step 3 a g-action on (#T ®4, ¥*)¢
for each 7, then we prove in Steps 4-6 that the inclusion

(A.15) (Mt 9o, LN = (M @6, V)©
induced by the inclusion .#¥ = ¥ C ¥ splits as a g-module homomorphism in
Sh(X).

Step 3. Let P be a standard parabolic subgroup of G, and let p be its Lie al-
gebra. Let & C & be as in Step 2. The P-action on #? yields a Lie algebra
homomorphism
p— End(¥)), Vwe’s.

Consider the g-action on (.#1)C given by the map ¢; in (AI2)). Note that for w < z
in &, any element ¢ € p maps a local section of ., supported on X,, to a local
section of .#] with the same property. In particular, for w € & we have a Lie
algebra homomorphism

(A.16) p — End((.4], ®ox, YOG, = (mev= mev+me ),

where m denotes a local section of ., v denotes a local section of 7). These
maps are compatible with the restriction

End((A) @0y V)®) = End((A) @6 7)), [ iy ()
They yield a Lie algebra homomorphism
p = End((AT @6, 7).
As P varies, these maps glue together yielding a Lie algebra homomorphism
(A.17) g — End((AT @6, 7).
This defines a g-action on (#T ®4, #*)C such that the obvious inclusions
(M @e, VO C (M ®6, V) C -

are g-equivariant. So (AI5)) is a g-module homomorphism. Note that the flatness
of 7 yields an isomorphism in O(X):

(A.18) M @o, VM R, V' 2 M 06, L.
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Step 4. In order to show that the g-module homomorphism ([ATH) splits, we con-
sider the generalized Casimir operator of g. Identify t and t* via the pairing (e : e).
Let p¥ € t be the image of p. Let h; be a basis of ty, and let h* be its dual basis
in ty with respect to the pairing (e : ®). For £ € gg and n € Z we will abbreviate
€M) = ¢@t" and € = €9, The generalized Casimir operator is given by the formal
sum

(A.19) € =2p¥ +Z hihi+201+ Y ejiei+ Y 3 e Vel 4373 pimp(
1<j n=1i#j n=>1l 14

see e.g., [Kal, Section 2.5]. Let §;(€) be the formal sum given by applying ¢; term by

term to the right hand side of (A19). We claim that §;(€) is a well defined element

in I'(XT, Z2x1), i.e., the sum is finite at each point of XT. More precisely, let
—{e”\@<j}u{eﬂ, |z7éjn 1},

and let e be the base point of XT. We need to prove that the sets

={{€X[a(&)(ge) #0}, g€G,
are finite. To show this, consider the adjoint action of G on g

Ad: G — End(g), ¢+ Ad,,

and the G-action on Zy; € O(XT) induced by the G-action on Xt. The map 8, is
G-equivariant with respect to these actions. So for £ € g and g € G we have

a(8)(ge) #0 <= di(Adg-1(8))(e) # 0.
Furthermore, the right hand side holds if and only if Ad,-1(&) ¢ n. Therefore
g ={{eX | Adg-1(£) ¢ n}
is a finite set, the claim is proved. By consequence € acts on the g-module (.#1)¢
for any .# € MZ?(XT). Next, we claim that the action of € on the g-module
(M @g, V)C is also well defined. It is enough to prove this for (# @4, 7).
By (A6) the action of € on (A ®¢, 7/°°)C is given by the operator

CRl+lee— Y e - > B @b
nEZL,i#£] neEZL,i

Since for both .#" and #>°, at each point, there are only finitely many elements
from ¥ which act nontrivially on it, the action of € on the tensor product is well
defined.

Step 5. Now, let us calculate the action of € on (ZT ®4, £")C. We have
Ad,1(€)=¢, VYVged.

Therefore the global section 0;(€) is G-invariant and its value at e is

amc)@g::5m2pv4-§:iﬁh,+2a1xe)

On the other hand, the right T-action on X yields a map
6 it = D(XT, Dyy).

Since the right T-action commutes with the left G-action, for any h € t the global
section 0, (h) is G-invariant. We have d,(h)(e) = —d;(h)(e) because the left and
right T-actions on the point e are inverse to each other. Therefore the global
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sections 0;(€) and §,(—2p¥ + Y, h'h; + 201) takes the same value at the point e.
Since both of them are G-invariant, we deduce that

51(€) = 6,(=2pY + Y _h'h; +201).

Recall from Section [3:4] that for A € t* and .# € M*(X) the operator §,(—2p" +
>, hih; +201) acts on . by the scalar

—M=2pY + > hh; +201) = || A+ p|[2 = [[p]*.

Therefore ¢ acts on .#% by the same scalar. In particular, for .# € M*(X)
and i € N, the element € acts on 4T ®g, L7 by ||+ vi + p||*> — ||p|[>. Note
that the isomorphism (A.18) is compatible with the g-actions. So € also acts by
|+ vi+pll? = lpll* on (AT @6y V)M @6, V7T
Step 6. Now, we can complete the proof of the proposition. First, we claim that
(A.20) A+ pllP = (1ol = Il +vi + ol 1> = [p]* <= vi=wv.
The “if” part is trivial. For the “only if” part, we have by assumption

lutv+pl* = lu+vi+pll?

= v+l +llv—vill = 2p+v+pv—w).

Since v—v; € NI and p+v+p = A+p is antidominant, the term —2(\ + p : v — ;)
is positive. Hence the equality implies that || —v;||> = 0. So v — v; belongs to Nd.
But (A+p:d) =k < 0. So we have v = ;. This proves the claim in (A20). A

direct consequence of this claim and of Step 5 is that the g-module monomorphism
(A15) splits. It induces an isomorphism of g-modules

(A.21) (MY @oy %) =praD( M @p V), M € MG(X).

Finally, note that the vector spaces isomorphisms (AI3) and (A4) are indeed
isomorphisms of g-modules by the definition of the g-actions on (Zt ®4, 7)€
and (AT ®g, £7)C. Therefore (A21) yields an isomorphism of g-modules

T(0" () = 0" (T (). O

Remark A.3. We have assumed p + p regular in Proposition in order to have
I(M}(X)) C O, . Tt follows from Proposition that this inclusion still holds
if ;4 + p is not regular. So Proposition [A.2] makes sense without this regularity
assumption, and the proof is the same in this case.

A.6. Proof of Proposition By Proposition [A]] it is enough to prove the
proposition in the case when A 4 p is not regular. Let w;, 0 < ¢ < m — 1, be the
fundamental weights in t*. Let

where the sum runs over all ¢ = 0,...,m — 1 such that (A\+p: «;) = 0. The
weight v is dominant. Let g = A —v. Then p + p is an antidominant weight. It is,
moreover, regular, because we have

(+pra)y=AN+pra;)—v:a) <0, 0<i<m-—1L
Let " = (u+ p:d). So Propositions [A]] and the equation (A29) imply that
D(2) = 0" (Nos (w0 ), D(da) = 0 (L)), T(2) = 6/ (D N (1 12).

w
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So parts (a) and (c) follow from the properties of the translation functor 8 given
in [Kull Proposition 1.7]. Part (b) follows from (a) and the equality (AS). O

APPENDIX B. PROOF OF PROPOSITION [5.4]

In this appendix, we prove Proposition 5.4l We will first study localization of
deformed Verma modules; see Lemmas and [B.3l Then we use them to deduce
the parabolic version. In this appendix we will keep the notation of Section Bl In
particular, recall that j = j,,, f = fw, etc.

B.1. Deformed Verma modules. Fix A € A and w € ¥S. Let n > 0 be an
integer. For v = xw € & with z € &, let 7, : X] — Y,/ be the canonical inclusion.
We have ¢, = j or;. The tensor product

(B.1) A\ =) @ rifr I

is equal to r*(2™). By Lemma it is an object of Mi(XU). We consider the
following objects in M7 (X):
A = i), ) = ine( M), A = e ).
For ;1 € & we have defined the Verma module N, (p) in Section 4l The
deformed Verma module is the Uy-module given by

Nk(/’é) = U(g) ®M(b) R;H—swo-

Here the b-module R, 4., is a rank one R-module over which t acts by p 4+ swo,
and n acts trivially. The deformed dual Verma module is

DNk(/'[/) = @ HomR(Nk(/'[/))\aR)v
A€ t*
see (25). We will abbreviate

N (1) = Naclw)(™), DN (1) = DNic(w) ().
For any R(™-module (resp. R-module) M let u(s*) : M — M be the multiplication
by s and write s'M for the image of u(s*). We define a filtration
F°M=(F°M >F'M>F’M>..)
on M by putting F'M = s'M. We say that it is of length n if F*M = 0 and
Fn=1M # 0. We set
g M=Pe'M, o' M=FM/FTM.
>0
For any gprm-module M let ch(M) be the tpm-module image of M by the forgetful

functor.

Lemma B.1. If A + p is antidominant, then we have an isomorphism of tgem)-
modules

ch(I'(#3))) = ch(DN (v - \)).

Proof. The proof is very similar to the proof of Proposition [A-1l We will use the
notation introduced there.
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Step 1. Consider the nowhere vanishing section f* of (f*.#(™)" over Y,,. Its re-
striction to X, yields an isomorphism
(") = Qx, ®oy, £, @ R™.

Let w be a nowhere vanishing section of Qx,, and let ¢* be the nowhere vanishing
section of .£3 over X, such that ¢*(uib) = e *(b) for u € N, b € B. Then the

global section w ® t* @ f* of ,;zfv(n) defines an element
0° e T'(Z3))
in the same way as o is defined in the first step of the proof of Proposition [A 1l
Step 2. Let us show that
ch(T(#2")) = ch(DN{ (v - \)).

The proof is the same as in the second step of the proof of Proposition [A.1l The
right @;r(“—module structure on (fxaﬂ,(n))f yields an isomorphism of sheaves of C-vector
spaces over V,,

(i O0x,) UM (I NoII7)) /) @ R™ S 57 (if, (2,)1),
fRpr — ((195~f)~6l(p))7".
This yields an isomorphism of tpm) -modules

ch(D(XY, if, (/™)) = ch(U(n™ /o) @ R, ).

Therefore we have

(B.2) ch(D(72")) = ch((mU(n/u;)) @ B, ., )
l
and
ch(T(#))) = chUm )@ R, )
(B.3) = ch(DN(v- ).

Step 3. In this step, we prove that F(%(:l)) = f(,zzfv(f)) as gprm-modules. Since
both of them are gg)-submodules of f(ﬁ/v(." )). It is enough to prove that they are

equalNas vector spaces. Consider the filtration F'® (%(")) on JZZ)(H). It is a filtration
in M*(X,) of length n and

g’ (M) =), 0<i<n—1.
Since 4,6 1S exact and

RT(F)) = RT()) =0, Yi>0,

the functor I' o i, commutes with the filtration. Therefore both the filtrations
F*T (%)) and F*T(#L”) have length n and

o' T(#D) =T())), o' T(#)=T()), 0<i<n-—1.
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By Step 3 of the proof of Proposition [A] we have I'(#}) = T'(#}). We deduce
that all the sections in I‘(%(." )) are t-finite and all the sections in f(.;zfv(.")) are
supported on finite dimensional subschemes. This proves that

D(A3)) = T(A3).

We are done by Step 2. |
Lemma B.2. If A + p is antidominant there is an isomorphism of gpx)-modules
DA% = DN (v \).

Proof. Note that

DN (v ) = €D Homp(Ni(v- M), R)(6")
3SR e
= P Hompm (N (v N, R™).
HERL*
For p € &¢* let I‘(,;z%(n)) be the weight space as defined in (Z2)). By Lemma [B.1]

we have
D)) = @ D)y,

S

because the same equality holds for DNI((") (v-A). So we can consider the following
gr(m-module

(B.4) DI(#3) = @ Hompen (T(3a),, R™).
pER*

It is enough to prove that we have an isomorphism of gp ) -modules
DI(#3)) = N (v - A).
By (B.4) we have
(B.5) ch(DI'(#3)) = ch(T(#3)).
Together with Lemma [B.I] this yields an isomorphism of R(™-modules
N (0 N rtawy = (DI(737)

By the universal property of Verma modules, such an isomorphism induces a mor-
phism of gpm-module

v AFswo

o N (v )) = D).
We claim that for each y € &* the R(™-module morphism
fu: N (0N, = (DD())),,

given by the restriction of ¢ is invertible. Indeed, by Lemma [BI and (BE), we
have

ch(DI (%)) = ch(DN (v - X)) = ch(N (v \)).
So
N (v-A), = (DI(£)),,
as R(-modules. On the other hand, Proposition yields that the map
p(p) = ¢ oo (R™ /pR™) : Ny(v-A) — DI ()
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is an isomorphism of g-modules. So ¢,(p) is also an isomorphism. Since the
R(™-modules Nlin) (v-A), and (DF(JZ%U(IL)))M are finitely generated, Nakayama’s
lemma implies that ¢, is an isomorphism. So ¢ is an isomorphism. The lemma is
proved. O

Lemma B.3. If A+ p is antidominant and v is a shortest element in v&S(X), then
there is an isomorphism of g -modules

I(e\) = N (v 2).
Proof. We abbreviate v = v - A. The lemma will be proved in three steps.

Step 1. Recall the character map from (4]). Note that since I' and 4, are exact,
and

gr ") = ()",

we have an isomorphism of t-modules
(B.6) gr(er,(”) = D(a)*".

Next, since the action of s on F(szv(!n)) is nilpotent, for any p € t* we have

dime ((/y")z) = dime ((er T(,{") ).

We deduce that as a t-module I‘(;afv(!")) is a generalized weight module and
(B.7) ch(D(/")) = ch(gr T (")) = nch [ ().
On the other hand, we have the following isomorphism of t-modules
(B.8) er NV (v) = No(w)®".
Therefore we have

ch(N{" (1)) = nch(Ny(v)).
Since I'(«7)) = N, (v) as g-modules by Proposition 2] this yields
(B.9) ch(T(Z")) = ch(N ().
Further, we claim that there is an isomorphism of R")-module

(B.10) T =N (W) Vet

v!

Note that F(,Q/v(!n))ﬁ is indeed an R(™-module because the action of s on F(szv(!"))
is nilpotent. To prove the claim, it suffices to notice that for any finitely generated
R-modules M, M’ we have that M is isomorphic to M’ as R("™)-modules if and
only if gr' M = gr* M’ for all i. So the claim follows from the isomorphisms of

t-modules (B.6), (B.8) and Proposition L2l

Step 2. In this step, we prove that as a tpm)-module

F(JZ{(”))D — R(")

v! v+swo

where R™

v+swo

Let us consider the canonical morphisms in Mi(X ):

is the rank one R("™-module over which t acts by the weight v+ swp.

%('n) %('n)( %(:1).

Ve
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Since T' is exact on M* (X), we deduce the following chain of gp»-module mor-
phisms

D( ) — 2 T( )L D).

vle

Consider the following tg» -morphisms given by the restrictions of «, 8
D()o " D))y D)5
We claim that a,, and 3, are isomorphisms. Note that by (B we have
dirn«;f‘(;ziv(!"))~ = ndimcI(#)); = n.

By Le{mmawe also have dimCI’(,va(Zl )) » = n. Next, consider the exact sequence
in Mj(X.),

0— Fitlg(™W o Fig™ gt 7™ 0.
Applying the functor i, to it yields a surjective morphism

iv!o(Fidv(n))/iv!O(FHldv(n)) — dute (g1’ %(n))~

Since ivg.(FiegzZ,(n)) = Fi(ivl.(m,(n))) and gri 7" = A, we deduce a surjective
morphism
gri%(")%%)‘ 0<i<n—-1.

vle les
Applying the exact functor I' to this morphism and summing over 7 gives a surjective
morphism of g-modules

v gr D) = T(,)®".

vle

Since v is minimal in v&(\), by Proposition 2(c) the right hand side is equal to
L, (v). We deduce from the surjectivity of v that

dimel(Y); = dimegr (&),

dime (L, (v)5)®™

- n.

WV

It follows that the epimorphism «, and the monomorphism (3, are isomorphisms.
The claim is proved. So we have an isomorphisms of tpn)-modules

B, 00y : T(")s = D(3);.
In particular, we deduce an isomorphisms of tp»)-modules
(Vo tso = DAL )
because
D( A ) vvswn C (A G))5,  for =16,
By Lemma B2l we have

F(fgfv(on))VJrswo = R(n)

v+swo*

We deduce an isomorphism of tzn)-modules

F(%(ﬁ))”_swo _ R(”)

v! v+swp*
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Step 3. By the universal property of Verma modules and Step 2, there exists a
morphism of gpm-modules

o N W) = T,
For any j € t* this map restricts to a morphism of R(™-modules
o N 0)p = Ty )
By Step 1, the R-modules on the two sides are finitely generated and they are
isomorphic. Further, the induced morphism
() : Nu(v) = D))

is an isomorphism by Proposition So by Nakayama’s lemma, the morphism ¢,
is an isomorphism for any p. Therefore ¢ is an isomorphism. The lemma is proved.

O

Remark B.4. The hypothesis that v is a shortest element in v&(\) is probably not
necessary but this is enough for our purpose.

B.2. Proof of Proposition 5.4l Consider the canonical embedding r : X, — Y,I.
We claim that the adjunction map yields a surjective morphism

(B.11) rr*(B™) — B™,

Indeed, an easy induction shows that it is enough to prove that gr’(rr*(2™)) —
grt ™) is surjective for each i. Since the functors 7, 7, are exact and gr* (™ = A,
this follows from Lemma[4Ya). Note that r*(#() = 5™ So the image of B11)
by the exact functor I' o j; is a surjective morphism

(B.12) INCAR IS N7
By Lemma [B:3] we have I’(.;zfu()?)) = Nl((n). Since the gpm-module F(%fn)) is g-
locally finite and Mlin) is the largest quotient of Nlin) in Ok, the morphism (B12)
induces a surjective morphism

p: Ml((") — F(%!(n)).
Further, by Proposition .6lb) the map

p(p) : My, — T'(%)

is an isomorphism. The same argument as in Step 1 of the proof of Lemma
shows that for each p1 € t* the generalized weight spaces (Mlin)) i and I‘(f@!(")) [ are
isomorphic as R(™-modules. We deduce that ¢ is an isomorphism by Nakayama’s
lemma. This proves the first equality. The proof for the second equality is similar.
We consider the adjunction map

(B.13) B 5 ror*(B™).

It is injective by Lemma H4b) and the same arguments as above. So by applying
the exact functor I' o j,, we get an injective morphism

o' F(%’Sn)) — DMIER).

Again, by using Proposition L6lb) and Nakayama’s lemma, we prove that ¢’ is an
isomorphism. (Il
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INDEX OF NOTATION
C N R-proj, R'C.
CA A, V, DV.
R=C[[s]], p, K, M(p"), M, f(¢), fx, C(p), Ck.
J'D(p).
F(p).
Go, Bo, T, 90, bo, t0, 9, t, 1, 0, ¢, K = c+m, agr, U,, My, &, t*, 0, wo,
€i, (o:0), [|h]|%, &, a, 2, 10, Lo, 1T, 11T, a;, &, &g, w- A, po, p, S(N),
[:6—N.
q, [, AT, M, (M), L.(N), ¢, k, Ui, Mic(N), A, 1™
o, DMy (N), JiM,.g()\).
Ok, O, 15, 1", 7Oy, Ok, "AT, P (N), Lic(N), "Pic(N).
Pn, 2, S, B, &, o, &y Pu(E), Po(E).
Ax, A, Ay, A,
D.
ey, Sy, Av, Wo (), Ay.
v =exp(2mi/K), v = exp(2mi/k), J"W,(X).
H, ., B., Bc(N), €, Hy )y, By, €k, Bi()).
Oz, O2), fu, [, [, Dz, M(Z), Qz, Dy 7, #C, M(Z,Z'), i*, is, i
Mh(Z), D, 41, ile-
MT(Z), MT(X, Z).
MY, DL, 8, my, MMNZ), MMNZ), MMN(X, Z), MM(X, Z), M(2})).
MZ(Z1), M) 2Z), M)N(2), IV, £, ©*, D =D*, 7).
2lim Co, 2lim C,.
X = lim Xo, O(X), T(X,.4) (for 4 € O(X)), O(X), Ox, - B0, 7,
[(X,7) (for Z € O(X)).
M(X) (with X an ind-scheme), .# ¢, T\(X,.#) (for # € M(X)), MT(X),
M*(X), MNX), T(#) (for 4 € MM X)), MMX), M}X), iy, ia.
Px (with X a formally smooth ind-scheme).
G,B,Q, T, N, g, b, n.
X =G/B, Xt = G/N, m: Xt — X, Xu, w, X0
& :U(g) = T(XT, Zx1), M(g), T
My, ch(M), O, O, Nio(N), Ly(N), A, 2, iy SN, SN,
S, wo, Y, Y, Jus By, By Bores Brve, 71 X, — Y.
Cr, upm, for, Fg.
Q/7 f'w
i, f, B, B, I x5 o, B B B B
M,, My, M, DM,
(a,n), 7(B), J(A).

Ay
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6.1: MHM(Z), W*., (k), Perv(Z), o.

6.2: Mé(yv)a DR7 MHMO(YU)a m, szui\v JZ{;))\“ ;1);\!.5 @'ﬁ\)a @2\;!’ @2\;!.5 q, ’%](G)a
Tw, \I’, Px,wa

Al I, n(Y), n=(Y), I, n,, N, N, X, XT, xv, xp, %;“T, Diylys DI

A.2: H\Xv, X,), HNX,,), H\(X).

A.3: T(4), T ().

A5 O, pry, V(v), 07, 27, 020,

B.1: r,, %(n), JZ{v(!n)v AR %(.n), Nic(1), Rysewos DNk(), Nlin) (1), DNlin)(“)’

vie ?

stM, F*M, gr M, ch(M).
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