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Identifying knot types of polymer conformations by machine learning
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We investigate the use of artificial neural networks (NNs) as an alternative tool to current analytical methods
for recognizing knots in a given polymer conformation. The motivation is twofold. First, it is of interest to
examine whether NNs are effective at learning the global and sequential properties that uniquely define a knot.
Second, knot classification is an important and unsolved problem in mathematical and physical sciences, and
NNs may provide insights into this problem. Motivated by these points, we generate millions of polymer
conformations for five knot types: 0, 31, 41, 51, and 52, and we design various NN models for classification.
Our best model achieves a five-class classification accuracy of above 99% on a polymer of 100 monomers. We
find that the sequential modeling ability of recurrent NNs is crucial for this result, as it outperforms feed-forward
NNs and successfully generalizes to differently sized conformations as well. We present our methods and suggest
that deep learning may be used in specific applications of knot detection where some error is permissible.
Hopefully, with further development, NNs can offer an alternative computational method for knot identification
and facilitate knot research in mathematical and physical sciences.
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I. INTRODUCTION

Knotting is a common phenomenon occurring in everyday
objects and polymers [1,2], including DNA [3,4] and proteins
[5,6]. The prevalence of knots has attracted the interest of
scientists from a broad range of disciplines, not only math-
ematicians but also polymer physicists studying the effect of
knotting on polymer conformations and dynamics [7–10]. In
addition, molecular biologists are interested in the roles of
knotting in the biological functions of protein knots [11,12]
and DNA knots [13,14], and chemists are motivated to synthe-
size knotted molecules [15] and investigate their special catal-
ysis [16]. From the viewpoint of materials, knotted structures
can be designed and used for practical applications [17–21].
Furthermore, recently technologists have encountered DNA
knots in nanopore sequencing [22–24] and nanochannel-based
genome mapping [25–27].

Addressing a wide range of problems about knots is based
on one foundation: precise and efficient identification of the
knot type for a given conformation. The knot recognition or
classification problem is the most fundamental problem in
knot theory, which asks whether two given knots are equiva-
lent. Like many other problems in the theory of computation,
there are two aspects of the questions that one wants to
answer: (i) Is the problem algorithmically decidable? (ii) If
so, what is the complexity? Question (i) was first answered
in the affirmative by Haken [28] using his theory of a normal
surface [29]. Unfortunately, the algorithm has an exponential
running time; and indeed, no efficient algorithm is known
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for question (ii). Even for the special case of the unknot
recognition problem, it is unknown whether a polynomial time
algorithm exists.

The classical approach to knot classification is to develop
invariants that are shared by equivalent knots. Some of the
well-known invariants include (i) the Alexander, Jones, and
other knot polynomial invariants [30–32]; (ii) the Heegaard-
Floer, Khovanov, and other knot homology invariants [33,34].
Typically, there is a tradeoff between complexity and the
ability to recognize knots. For instance, while it takes poly-
nomial time to compute the Alexander polynomial, there are
infinitely many inequivalent knots that share the same Alexan-
der polynomial of the unknot. On the other hand, although
both Heegaard-Floer and Khovanov homology can recognize
the unknot [35], the computation time of those homologies is
extremely large.

In this work, we attempt to determine knot types for given
conformations based on machine learning, which is different
from the above-described methods based on analytic theory.
Machine learning models are trained via a data-processing
task, and the learning takes place by adjusting to the feedback
signal during training [36,37]. Deep learning is a specific
subfield of machine learning, with an emphasis on succes-
sive layers of data representations [38–40]. In deep learning,
these layered data-encoding models are referred to as neural
networks (NNs). Recently, deep learning has been applied to
mathematical and physical sciences research [41], including
solving partial differential equations [42,43] and performing
Monte Carlo simulations [44,45]. In this knot type classi-
fication problem, we designed our neural networks under a
supervised learning process: neural networks are trained on a
dataset of samples with known classification, and the trained
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FIG. 1. Two visual representations of the same circular polymer
conformation in simulation. The task of this work is to recognize
knots in such a circular polymer conformation. (a) Touching-bead
model of a circular polymer in simulation. (b) The representation of
a polymer conformation by rods.

models are applied to recognize the class of unseen samples,
thus achieving generalization to new data.

The motivation of this work is twofold. First, knot type
is a global and sequential property that depends on the ar-
rangement of monomer positions of a polymer. This property
is different from other local properties of polymer conforma-
tions, e.g., polymer structures and monomer packing [46]. It
is of great interest to examine whether neural networks are
effective at addressing these global and sequential properties.
There is active ongoing development of NN methods, and
it is beneficial to find out which ones are most suitable for
the knot classification problem. Second, knot classification
is an important and unsolved problem in mathematical and
physical sciences. If NNs can successfully classify knots, they
may provide new insights into solving the knot classification
problem.

II. METHODS AND MODEL ARCHITECTURE

A. Generation of polymer conformations with various
knot types

We perform Monte Carlo simulations to sample equi-
librium conformations of single circular polymers in

confinement [47,48]. We model the polymer as a string
of beads (Fig. 1). Bead-bead interactions are described by
hard-core repulsion. The hardcore diameter Dbead equals the
bond length, a, while a is used as the unit length. To gen-
erate sufficient numbers of knotted conformations for rela-
tively short polymers, we sample polymer conformations in
high-knotting-probability regimes. Accordingly, we impose
a moderate bending potential and spherical confinement. A
bending potential is applied to produce a persistence length
of 4a. For polymers with lengths of Lpolymer = 60, 80, and
100, we use the surrounding spherical confinement of di-
ameters of D = 9a, 10a, and 11a, respectively. The Monte
Carlo simulation starts with a random circular conformation.
In every Monte Carlo step, we perform a trial crankshaft
move to update the conformation. Note that the crankshaft
move is a global move, which can modify the knot type
of the conformation. As a result, the knot type evolves during
the simulation. We calculate the self-correlation time of the
knot type, which is approximately 5.4 × 103 steps. Accord-
ingly, we save one conformation every 104 steps so that
the saved conformations are usually uncorrelated with each
other. For every sampled polymer conformation, we analyze
its knot type through the Alexander polynomials [49]. We
sample 2 × 105 or 2 × 106 polymer conformations for each
of five knot types: 0, 31, 41, 51, and 52. See examples of
conformations in Fig. 2. More details about Monte Carlo sim-
ulations can be found in our previous studies [50–53] and in
Appendix A.

B. Preprocessing of polymer conformations

The polymer conformation is represented by the trajec-
tory of its monomer positions, i.e., XY Z coordinates of all
monomers. The generated XY Z coordinates can have a wide
spread of values. To improve NN performance, we con-
vert the trajectory of positions to their relative increments
from the previous coordinate (Fig. 3). For example, a tra-
jectory of X -coordinates [0, 0.8, 0.5, 1.4, 2.2] is converted
to [+0.8,−0.3,+0.9,+0.8]. Since the bond length, i.e., the

Knot types

FIG. 2. Five knot types that are to be classified. The five diagrams at the top display the simple representations of these five knot types. The
five diagrams at the bottom are examples of conformations generated by our Monte Carlo simulations. The knot types of these conformations
are usually too complicated to be identified visually, and we train neural networks to recognize knots in these circular polymers.

022502-2



IDENTIFYING KNOT TYPES OF POLYMER … PHYSICAL REVIEW E 101, 022502 (2020)

FIG. 3. Left: An example of polymer conformation with Lpolymer = 100. Right: The inputs of this conformation for neural networks.
�x, �y, �z represent the changes in monomer positions in the x, y, and z directions at every step, e.g., from the fifth to the sixth monomer.

distance between two adjacent monomers, is a unit length,
this conversion yields an additional benefit of scaling the
data in the [0, 1] range, akin to normalization. Normalization
is a common preprocessing technique that ensures that the
input sequence has a stable mean and variance, which in
turn prevents large error gradient values from accumulating,
and prevents the training process from becoming numerically
unstable [54].

C. Feed-forward neural network

Many NN architectures have been developed, with specific
optimizations for the nature of the task at hand. To examine
which NN architecture is more effective in knot classification,
we test both a feed-forward neural network (FFNN) and a
recurrent neural network (RNN). In a feed-forward neural
network, input coordinates are flattened and routed to the
first layer, from where the information flows unidirectionally
until the output layer. In [46], the authors successfully use
a nearly identical setup to recognize different properties of
polymers. These models are conceptually simple and fast to
train (Fig. 4).
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FIG. 4. The feed-forward architecture used in this work. 3D
coordinates are flattened and sent through layers of p, q, . . . , r fully
connected neurons, abbreviated FC(p), FC(q), FC(r), etc. The output
layer contains sigmoid-activated neurons for C classes, performing
the softmax operation to output class probabilities for yc. Please see
Appendix B for technical details on neural networks.

D. Recurrent neural network

Recurrent neural network (RNN) models are suited for data
with an inherent order, especially time-series data, such as
price movement in financial forecasting, sensor readings, but
also natural language processing and machine translation, and
sequence data in general [55]. In our case, knotting is a global
and sequential property of the chain; the causality between
each segment determines the knot type. This motivates us to
treat it as an ordered sequence and experiment with recurrent
neural networks.

We use a refined formulation of RNN called long short-
term memory (LSTM) (Fig. 5) introduced by Hochreiter and
Schmidhuber [56]. The number of cells in one LSTM layer of
an NN equals the size of the representation, e.g., the polymer
length in this work. LSTM cells carry an internal state (in-
tuitively called memory), which captures the full history of
preceding steps and tries to model their interdependencies.
Information update in the state is controlled by gates that
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LSTM
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LSTM

LSTM

LSTM
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LSTM

LSTM
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FC(C)
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Bidirectional
LSTM(q)
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...

...

sequence

info passed

FIG. 5. LSTM-based recurrent neural network used in our work.
Input x(t )

i represents the t th step of input sequence xi. The first
layer of LSTM(p) cells accepts three-dimensional inputs, and pro-
duces p-dimensional outputs, which are passed downstream. The
LSTM(q) layer is bidirectional, which scans the sequence forward
and backward. Data flow from layer to layer, as well as between cells
within layers, capturing sequentiality. The last layer contains sigmoid
neurons, outputting C class probabilities yc, basing its predictions on
the hidden state of the final recurrent layer’s T th cell.
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FIG. 6. Feed-forward and RNN models trained with polymers of length Lpolymer = 100 were used to predict five knot types on 1 million
unseen test data. Predicted labels of the five knot types were plotted against true labels in a confusion matrix. The five knot type labels are knot
0, 31, 41, 51, and 52. The cells in the confusion matrix contain both the percentage of accurate predictions and the absolute number of data
instances in parentheses. The colorbar represents percentage values from 0 to 1 with a blue colormap. (a) The feed-forward network is able to
predict with accuracy between 67.6% and 75.3%; (b) the RNN model is able to classify the polymers to their correct knot types consistently at
above 99%.

determine what to keep, what to forget, and what to pass on to
the output. The term gate is used to show that information
flowing in is regulated (via pointwise multiplication), i.e.,
input values are amplified or attenuated as needed. Gates are
parametrized by trainable weights, which define the cell’s
behavior. Specifics are omitted in this explanation, which is
aimed at giving a general intuition. Please see Appendix B for
technical details on neural networks.

Bidirectional RNNs were introduced by Schuster and Pali-
wal [57] and appropriated for LSTM by Graves and Schmid-
huber in 2005 [58]. The bidirectional layer is an important
element as it sends information both forward and backward
between sequence steps, effectively processing the sequence
from both ends. We want to leverage this forward and back-
ward context-awareness to improve the predictive power of
the model when applied to knots in polymer chains, as the
knot type is the same regardless of how the sequence is
flipped.

It should be noted that the number of steps is not an
intrinsic property of the model. This allows neural networks
trained on one polymer length to be applied to other polymer
lengths. Figure 5 shows the LSTM network in its unrolled
form, where the vertical axis is expanded to match sequence
steps, but the same trained cell is reused across the layer. For
Lpolymer = 100, there would be 100 cells laid out vertically
in each layer. Every next layer would introduce cells of
differently sized hidden states, learning new representations
and giving the network its depth. More on deep RNNs can be
found in [59].

This dependence on adjacent steps of the sequence is lost
in the FFNN model. Our approach contains stacked layers
of LSTM cells, each taking a sequence in and outputting a
transformed sequence for the next layer. The bidirectional

layer sends information both forward and backward between
the steps, effectively processing the polymer chain from both
ends. LSTM cells support multivariate input at each sequence
step, hence flattening is not needed. The same gradient descent
process is utilized to find the parameters of LSTM cells.

E. Implementation of neural networks

We implement our networks using Keras [60] with a Ten-
sorflow 2.0 backend [61,62] and GPU support. For model de-
velopment, we randomly partition the corresponding dataset
into 72%, 18%, and 10% portions as training data, holdout
validation data, and test data, respectively. The model is
trained using the training dataset, with the training progress
monitored by the holdout validation set. Models that achieve
the best performance on the validation set during training are
saved later for evaluation on test data.

F. Evaluation of performance

We evaluate the performance of knot identification using
the confusion matrix as shown in Figs. 6 and 7. In the
confusion matrix, each column represents the instances of a
predicted knot type while each row represents the ground truth
knot type. We use accuracy as our main metric of success,
defined as the sum of the diagonal elements divided by the
total sum of the confusion matrix.

III. RESULTS AND DISCUSSION

A. Accuracy in knot identification

We train neural networks (NNs) to identify polymer knot
conformations with the five knot types shown in Fig. 2.
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FIG. 7. The LSTM-based RNN model from Fig. 6(b) generalizing to predict knot types on polymers of variable length. The model was
trained using polymer length Lpolymer = 100 and was asked to predict knot type labels on 1 million Lpolymer = 60 polymers and 1 million
Lpolymer = 80 polymers. Predicted labels of the five knot types were plotted against true labels in the confusion matrix. The five knot type labels
are knot 0, 31, 41, 51, and 52. The cells in the confusion matrix contain both the percentage of accurate predictions and the absolute number
of data instances in parentheses. The colorbar represents percentage values from 0 to 1 with a yellow-green colormap. Left is the confusion
matrix for Lpolymer = 60 and right is for Lpolymer = 80, and both generalizations yield good accuracy.

The evaluation of trained NNs on unseen new test data is
presented in Fig. 6, which contains two confusion matrices.
The confusion matrices consist of both correct (diagonal)
and wrong (off-diagonal) predictions of knot types. For the
wrong predictions, we observe some bias, such as mislabeling
between knots 51 and 52, and between unknots and knot 31.
By tuning the NN architecture and increasing the dataset size,
mislabeling becomes rare and we achieve an overall accuracy
above 99%. For simplicity, we focus on the overall accuracy.

Table I displays the results obtained from various datasets
and NN models. The accuracy strongly depends on the NN

architecture, the training dataset size Ndata, and the polymer
length Lpolymer. We discuss the dependence of the prediction
accuracy on these factors in the following paragraphs.

First, accuracy depends on the NN architecture. We find
that RNNs can achieve a substantially higher accuracy than
FFNNs. For instance, in the case of Nknot = 5, Lpolymer = 100,
Ndata = 2 × 106, the RNN achieves an accuracy of 99.59%,
compared to the feed-forward NN, which only reaches an
accuracy of 71.25%. The better performance of the RNN in
identifying the knot type is understandable for the following
reasons. The knot type of a polymer depends on the overall

TABLE I. Polymer length, dataset size, and design of the neural network. Dataset size is the number of polymers per knot type. Models
were trained using 72% of the dataset, with the training progress monitored on the 18% hold-out validation dataset. All models were trained
to classify five knot types: knot 0, 31, 41, 51, and 52.

Polymer Length Dataset sizea NN architecture Number of parameters Training accuracy Validation accuracy

60 200 000 Feed-forward 428 685 81.62% 80.23%
60 200 000 Recurrent 862 625 99.17% 98.51%

80 200 000 Feed-forward 464 685 50.00% 43.38%
80 200 000 Recurrent 862 625 98.20% 95.85%

100 200 000 Feed-forward 2 073 185 48.73% 47.59%
100 2 000 000 Feed-forward 1 696 885 72.05% 71.25%b

100 200 000 Recurrent 729 415 98.15% 91.66%
100 2 000 000 Recurrent 889 385 99.90% 99.59%c

aNumber of polymers per knot type, Nknot = 5.
bTest dataset evaluation results for this feed-forward model shown in Fig. 6(a).
cTest dataset evaluation results for this RNN model shown in Fig. 6(b).
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shape, which manifests in the sequential order of monomer
positions, not their individual values. As described in Sec. II,
the LSTM cell is deliberately designed for learning sequential
causation in ordered data.

Second, accuracy decreases as polymer length grows. For
instance, in the case of the RNN, Ndata = 2 × 105, and Nknot =
5, accuracy decreases from 98.51% to 95.85% and 91.66%
for polymer lengths of 60, 80, and 100, respectively. While
the polymer length increases linearly, the conformation space
grows rapidly, and accordingly the complexity of classifica-
tion increases. As will be shown in the following section, the
trained RNN for a longer polymer can be applied to a shorter
polymer.

Lastly, accuracy improves with the training dataset size.
As observed for the RNN, Nknot = 5, Lpolymer = 100, accuracy
goes from 91.66% to 99.59% as the dataset expands from
2 × 105 to 2 × 106 conformations. It is well known that
the training set size limits the maximum performance and
the generalization of a machine learning model. From the
practical viewpoint of applying NNs in identifying knot types,
it is useful to know how many conformations are needed in
training to achieve a threshold accuracy for a given polymer
length and the number of knot types.

B. Generalization of the RNN model to sublength polymers

A practical machine learning model should generalize well
to new data outside of the training set. We have demonstrated
the generalization power of the RNN model trained with
Lpolymer = 100, as it successfully predicts knot types in unseen
polymers of the same length. Here we present a broader
generalization of the RNN model trained with Lpolymer =
100 to identify knots in sublength polymers, Lpolymer =
60 and 80, i.e., data of different length than the training
data.

As mentioned in Sec. II D, RNN models accept sequence
inputs of any length. Our LSTM-based RNN model from
Fig. 6(b), trained on Lpolymer = 100 is, without any mod-
ification, capable of ingesting polymer conformations of
Lpolymer = 60 and 80. We have tested it and compiled the re-
sults of our trials in confusion matrices in Fig. 7. The LSTM-
based RNN model is able to predict with accuracy above 98%
for length Lpolymer = 60, and accuracy above 97% for length
Lpolymer = 80. The new inputs of sublength polymers differ
considerably from what the network saw at training time,
which further demonstrates the effectiveness of NNs in this
problem.

C. Control experiment

One concern with a difficult-to-interpret system such as
neural networks is that there is no direct indication of what
high-level concepts are being learned. We were not certain
whether our NN learns the real topological attributes of a
knot, or if it is just memorizing the data or picking up features
other than the knot type, e.g., conformational size. To clarify
this issue to some extent, we design a control experiment.
We randomly divide 2 million polymer conformations with
the same knot type 31 into two equally sized groups, and we
train a binary classifier using our RNN design. As shown in

FIG. 8. Comparison of a real classification and a control experi-
ment. Knot0-Knot31 refers to the data set of 1 million conformations
of unknot and 1 million conformations of knot 31 (a real classifica-
tion). Knot31-Knot31 refers to the data of 2 million conformations
of knot 31 with two dummy labels (a control experiment). An
epoch is an iteration over the entire training and validation data.
Each epoch trains on 1 600 000 samples and validates on 400 000
samples.

Fig. 8, the NN is unable to start converging, at an accuracy of
∼50%, which is the baseline performance of a random guess.
In contrast, the same NN achieves an above 95% accuracy
for two groups of conformations with knot types of 0 and 31.
Such a result suggests that no feature other than knot types of
polymer conformations is learned by NN in the classification
of conformations.

D. Interpretation of results

The feasibility of our RNN model to work not only on un-
seen, but also variable-length inputs, suggests that the learned
abstractions are useful and sufficiently general. The knot’s
global and sequential properties are accounted for.

We find that two factors play important roles in achieving
a high accuracy. First, LSTM-based RNN performs signif-
icantly better than FFNN. We conjecture that the multiple
layers of our LSTM models learn a hierarchical representation
of a polymer conformation as composed of smaller curves
and shape artifacts, and they are sequenced on multiple levels.
Second, feeding NN with the differences in positions between
adjacent monomers performs better than feeding absolute
positions of all monomers. It is likely that this transformation
simplifies input space.

E. Computational efficiency

To evaluate the computational efficiency of the RNN,
we compare the average computational time of determining
knot types by the Alexander polynomials and the RNN. For
polymer conformations with Lpolymer = 100, the average com-
putational time of determining the knot type of one polymer
by the Alexander polynomials is approximately 3 × 10−3 s,
regardless of the knot type. For the same set of polymer
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conformations with Lpolymer = 100, the average computational
time of determining the knot type by NN is approximately
1.5 × 10−4 s, regardless of the knot type. So the RNN is
about 20 times faster than the Alexander polynomials for these
polymer conformations. Note that the RNN model is par-
allelized and runs on many GPU cores, while the com-
putation of the Alexander polynomials runs on a single
CPU core.

IV. CONCLUSION

In conclusion, this work demonstrates the effectiveness
of NNs in identifying knot types of polymer conformations.
Broadly speaking, knots represent a global and sequential
property of polymer conformations, which are different from
other local conformational properties [46]. This work pro-
vides insights on addressing global conformational properties
using NNs, and it confirms that RNN is a more effective
design for this problem.

Knot classification is still an unsolved problem, partic-
ularly for complex knots. In this work, the trained NN is
only capable of identifying simple knots with limited poly-
mer lengths. Hopefully, future studies can extend the ca-
pability, and eventually help solve the knot classification
problem.
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APPENDIX A: MORE DETAILS ABOUT THE
GENERATION OF POLYMER CONFORMATIONS

More details about the generation of polymer conforma-
tions can be found in Fig. 9.

APPENDIX B: NEURAL NETWORK DETAILS

Considering that it is an early stage for the applications
of neural networks in physical science research, we present
the basic knowledge of neural networks and some techni-
cal details in this Appendix, which should help others to
reproduce our results and apply deep learning in their own
research.

1. Building blocks of neural networks

On a high level, supervised learning for classification
involves training a model f on data containing inputs
(x1, x2, . . . , xN ) and associated class labels (y1, y2, . . . , yN ).
It assumes that there is a continuity of operations defined
by parameters θ that can be learned from data, and used
to transform an input to the labeled output. It also defines
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FIG. 9. Top: Evolution of the crossing number of the knot type,
Ncross, during the Monte Carlo simulation. Here, Ncross represents the
minimum crossing number for a knot type, e.g., 5 for the 52 knot.
Middle: The autocorrelation of Ncross as a function of the simulation
time. The correlation time is approximately 5.4 × 103 steps. Bottom:
The distribution of knot types in our simulation of the polymer
L = 100 and Lp = 4a confined in a sphere with a diameter of
D = 11a.

a loss function L(y, ŷ) that quantifies the error between the
predicted label ŷ and the true label y. Applying the model
gives a prediction ŷi = f (xi|θ ). Training a model means
finding parameters θ that minimize the loss L per data
point.

The basic building block of a neural network is a neuron,
depicted in Fig. 10. The parameters θ of the model thus
become the weights w = (w1,w2, . . . ,wn) and biases b of
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activation

function

output

FIG. 10. The neuron calculates a weighted sum of the inputs, and
passes the result through a nonlinear activation function a(wT x + b),
to scale the output in the [0, 1] range. Many neurons are connected
together in a neural network.

each neuron. The nonlinear activation function is an important
part as it enables the network to approximate any function,
as shown by Cybenko [63], who used the smooth sigmoid
[Eq. (B1)] activation, while we use the computationally faster
ReLU [Eq. (B2)]. The neuron’s operation can thus be summa-
rized as

1

1 + exp(−∑
i wixi − b)

Sigmoid, (B1)

max

(
0,

∑
i

wixi − b

)
ReLU. (B2)

Since each polymer 3D sequence can be categorized into
one of the five knot type categories, this problem is treated as a
multiclass classification problem [55], and categorical cross-
entropy or multiclass log loss [64] [Eq. (B3)] is used as the
loss function L,

L(y, ŷ) = −
M∑

c=1

ŷc ln(yc), (B3)

where M is the number of class labels c, ŷc is the predicted
probability of the label belonging to class c, and y is true prob-
ability distribution over class labels. The cross-entropy-based
loss function computes the distance between the predicted
probability distribution of the labels and the ground-truth
distribution.

2. Optimization of neural networks

Training is done by an optimizer, using an iterative process
called gradient descent. The performance of the network
is measured by the cost function C, which factors in the
combined losses on all data points. An example cost function
averages the losses, C = 1/N

∑N
i=1 L(yi, ŷi ). The optimizer

makes small perturbations in θ across the network, in an
optimization bid to minimize C. Since Eqs. (B1) and (B2)
are a differentiable function, the whole network is end-to-end
differentiable (for ReLU, the derivative at x = 0 is taken to be
0). This allows the optimizer to compute partial derivatives for
each neuron, ∇Cn

w = ∂C/∂w and ∇Cn
b = ∂C/∂b for neuron n.

The derivatives can be propagated backward from the output
to the input via the backpropagation algorithm laid out in

FIG. 11. The confusion matrix of applying the RNN model
trained from the conformations of Lp = 4a to the conformations with
Lp = 2a.

[65]. The modern computational implementation is highly
optimized, but further details are outside the scope of this
paper. The update of parameters in a training step can be
expressed as

w → w′ = w − η∇Cw, (B4)

b → b′ = b − η∇Cb, (B5)

where η is the learning rate set by the optimizer. The training
time and quality depend on the choice of the learning rate.
We use optimization schemes that support adaptive learning
rates such as Adam [66] and Hinton’s RMSprop [67]. The
model is considered trained when the weight updates become
sufficiently small.

APPENDIX C: NN ACCURACY FOR POLYMER
CONFORMATIONS WITH A DIFFERENT BENDING

STIFFNESS

In the body of the paper, the polymer conformations are
generated with a persistence length Lp = 4a. To examine
whether our NN also works for polymer conformations with a
different bending stiffness, we generate 20 000 conformations
of Lpolymer = 100 and Lp = 2a for each of the five knot types.
Then, we apply the RNN model trained from conforma-
tions with Lp = 4a to classify these new conformations with
Lp = 2a. The prediction accuracy is above 99% for every
knot type. The confusion matrix for predicting the Lp = 2a
polymers is shown in Fig. 11. These results suggest that the
prediction accuracy of our NN is insensitive to the bending
stiffness.
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