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Abstract

Given an element in the first homology of a rational homology 3–
sphere Y , one can consider the minimal rational genus of all knots in
this homology class. This defines a function Θ on H1(Y ;Z), which was
introduced by Turaev as an analogue of Thurston norm. We will give a
lower bound for this function using the correction terms in Heegaard Floer
homology. As a corollary, we show that Floer simple knots in L-spaces
are genus minimizers in their homology classes, hence answer questions of
Turaev and Rasmussen about genus minimizers in lens spaces.

1 Introduction

Heegaard Floer homology, introduced by Ozsváth and Szabó [16], has been
very successful in the study of low-dimensional topology. One important feature
of Heegaard Floer homology which makes it so useful is that it gives a lower
bound for the genus of surfaces in a given homology class. In dimension 3, it
determines the Thurston norm [22]. In dimension 4, the adjunction inequality
[18] gives a lower bound to the genus of surfaces which is often sharp, and the
concordance invariant [21] gives a lower bound to the slice genus of knots. Such
kind of results have been known before in Donaldson theory and Seiberg–Witten
theory [5, 6, 7, 11, 8], but the combinatorial nature of Heegaard Floer homology
makes the corresponding results easier to use in many problems.

In this paper, we will study a new type of genus bounds. Suppose that
Y is a closed oriented 3–manifold, there is a kind of “norm” function one can
define on the torsion subgroup of H1(Y ;Z). To define it, let us first recall the
rational genus of a rationally null-homologous knot K ⊂ Y defined by Calegari
and Gordon [3].
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Suppose that K is a rationally null-homologous oriented knot in Y , and
ν(K) is a tubular neighborhood of K. A properly embedded oriented connected

surface F ⊂ Y \
◦
ν(K) is called a rational Seifert surface for K, if ∂F consists

of coherently oriented parallel curves on ∂ν(K), and the orientation of ∂F is
coherent with the orientation of K. The rational genus of K is defined to be

||K|| = min
F

max{0,−χ(F )}

2|[µ] · [∂F ]|
,

where F runs over all the rational Seifert surfaces for K, and µ ⊂ ∂ν(K) is the
meridian of K.

The rational genus is a natural generalization of the genus of null-homologous
knots. Moreover, given a torsion class in H1(Y ), one can consider the minimal
rational genus for all knots in this torsion class. More precisely, given a ∈
TorsH1(Y ), let

Θ(a) = min
K⊂Y, [K]=a

2||K||.

This Θ was introduced by Turaev [28] in a slightly different form. Turaev
regarded Θ as an analogue of Thurston norm [27], in the sense that it measures
the minimal normalized Euler characteristic of a “folded surface” representing
a given class in H2(Y ;Q/Z).

In [28], Turaev gave a lower bound for Θ in terms of his torsion function.
When b1(Y ) > 0, Turaev’s torsion function is a kind of Euler characteristic of
Heegaard Floer homology [17], so his lower bound can be reformulated in terms
of Heegaard Floer homology. (One can even expect to get a better bound with
Heegaard Floer homology.) When b1(Y ) = 0, the relationship between Turaev’s
torsion function and Heegaard Floer homology is not very clear in the literature.
Nevertheless, our following theorem gives an independent lower bound in terms
of the correction terms d(Y, s) in Heegaard Floer homology [19].

Theorem 1.1. Suppose that Y is a rational homology 3–sphere, K ⊂ Y is a
knot, F is a rational Seifert surface for K. Then

1 +
−χ(F )

|[∂F ] · [µ]|
≥ max

s∈Spinc(Y )

{
d(Y, s+ PD[K])− d(Y, s)

}
. (1)

The right hand side of (1) only depends on the manifold Y and the homology
class of K, so it gives a lower bound for 1+Θ(a) for the homology class a = [K].

We find Theorem 1.1 quite interesting because it unveils some topological in-
formation contained in Heegaard Floer homology of rational homology spheres.
Such information is relatively rare in the literature comparing to the case of
manifolds with positive b1, where one can get useful information like Thurston
norm [22] and fibration [13].

Theorem 1.1 is particularly useful when Y is an L-space and the homology
class contains a Floer simple knot. Recall that a rational homology 3–sphere Y
is an L-space if rankĤF (Y ) = |H1(Y ;Z)|. A rationally null-homologous knot

K in a 3–manifold Y is Floer simple if rankĤFK(Y,K) = rankĤF (Y ).
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Theorem 1.2. Suppose that Y is an L-space, K is a Floer simple knot in Y .
If K1 is another knot in Y with [K1] = [K] ∈ H1(Y ;Z), then

||K|| ≤ ||K1||.

An important class of L-spaces is lens spaces. The question of computing
Θ for lens spaces was first considered by Turaev [28]. The lower bound given
by Turaev (for any manifold) is always less than 1, but the value of Θ can be
much larger than 1 even for lens spaces. For example, if a ∼ p

2 , using (16) in
Section 5 we get a lower bound ∼ p

4 for Θ(a) in L(p, 1). So Turaev’s bound is
not sharp for lens spaces.

Hedden [4] and Rasmussen [26] observed that for any 1–dimensional homol-
ogy class in a lens space, there exists a knot in this homology class which is Floer
simple. Let U0 ∪U1 be a genus 1 Heegaard splitting of a lens space L(p, q), and
let D0, D1 be meridian disks in U0, U1 such that ∂D0∩∂D1 consists of exactly p
points. A knot in L(p, q) is called simple if it is either the unknot or the union of
two arcs a0 ⊂ D0 and a1 ⊂ D1. Up to isotopy there is exactly one simple knot
in each homology class in H1(L(p, q)), and every simple knot is Floer simple.

Rasmussen [26] conjectured that simple knots are genus minimizers in their
homology classes, and verified this conjecture for dual Berge knots. In fact,
he proved that primitive knots in L-spaces with rational genus less than 1

2 are
genus minimizing. As a consequence of our Theorem 1.2, we verify Rasmussen’s
conjecture in general.

Corollary 1.3. Simple knots in lens spaces are genus minimizers in their ho-
mology classes.

Remark 1.4. Rasmussen also conjectured that simple knots are the unique

genus minimizers in their homology classes. As pointed out in [4, 26], the
uniqueness of genus minimizers in lens spaces would imply the Berge Conjecture
on lens space surgeries [2].

Unlike the Heegaard Floer bound for Thurston norm, our bound for Θ is
not always sharp. For example, suppose K ⊂ Y is a knot in a homology sphere
such that the half degree of its Alexander polynomial is equal to its genus g.
Let p ≥ 4g − 2 be an integer, Yp(K) be the manifold obtained by p–surgery on
K, and K ′ ⊂ Yp(K) be the dual knot of the surgery. Then the lower bound
given by Turaev on Θ([K ′]) in Yp(K) is 2g−1

p
, and can be obviously realized [28,

Section 6.2]. In this case, the bound given by Theorem 1.1 is not always sharp
(see Section 5). Nevertheless, using Heegaard Floer homology we will prove the
following result.

Proposition 1.5. Suppose that K ⊂ S3 is a knot with genus g, and that p ≥
2g is an integer, then the dual knot K ′ ⊂ S3

p(K) is a genus minimizer in its

homology class. Namely, Θ([K ′]) = 2g−1
p

.

This paper is organized as follows. In Section 2 we will give the necessary
background on Heegaard Floer homology. We will focus on the construction of
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the knot Floer homology of rationally null-homologous knots. In Section 3, we
prove a symmetry relation in knot Floer homology. In Section 4, we prove Theo-
rem 1.1 by analyzing the knot Floer chain complex of rationally null-homologous
knots. In Section 5, we apply Theorem 1.1 to some examples, thus prove The-
orem 1.2 and Proposition 1.5.

Acknowledgements. The first author wishes to thank Jacob Rasmussen for
asking the question which motivated this work. The first author was partially
supported by an AIM Five-Year Fellowship, NSF grant number DMS-1103976
and an Alfred P. Sloan Research Fellowship. The second author was supported
by a Simons Postdoctoral Fellowship.

2 Preliminaries

2.1 Correction terms in Heegaard Floer homology

Heegaard Floer homology, introduced by Ozsváth and Szabó [16], is an in-
variant for closed oriented Spinc 3–manifolds (Y, s), taking the form of a col-

lection of related homology groups as ĤF (Y, s), HF±(Y, s), and HF∞(Y, s).
There is a U–action on Heegaard Floer homology groups. When s is torsion,
there is an absolute Maslov Q–grading on the Heegaard Floer homology groups.
The U–action decreases the grading by 2.

For a rational homology 3–sphere Y with a Spinc structure s, HF+(Y, s)
can be decomposed as the direct sum of two groups: the first group is the
image of HF∞(Y, s) ∼= Z[U,U−1] in HF+(Y, s), which is isomorphic to T + =
Z[U,U−1]/UZ[U ], and its minimal absolute Q–grading is an invariant of (Y, s),
denoted by d(Y, s), the correction term [19]; the second group is the quotient
modulo the above image and is denoted by HFred(Y, s). Altogether, we have

HF+(Y, s) = T + ⊕HFred(Y, s).

The correction term satisfies

d(Y, s) = d(Y, Js), d(−Y, s) = −d(Y, s), (2)

where J : Spinc(Y ) → Spinc(Y ) is the conjugation on Spinc(Y ), and −Y is Y
with the orientation reversed.

2.2 Relative Spinc structures

Let M be a compact 3–manifold with boundary consisting of tori. Let v1
and v2 be two nowhere vanishing vector fields on M , whose restriction on each
component of ∂M is the outward normal vector field. We say v1 and v2 are
homologous, if they are homotopic in the complement of a ball in M , and the
homotopy is through nowhere vanishing vector fields which restrict to the out-
ward normal vector field on ∂M . The homology classes of such vector fields are
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called relative Spinc structures onM , and the set of all relative Spinc structures
is denoted by Spinc(M,∂M), which is an affine space over H2(M,∂M).

When K is an oriented knot in a closed oriented 3–manifold Y , let M =

Y \
◦
ν(K). Then we also denote Spinc(M,∂M) by Spinc(Y,K).

Remark 2.1. There are several different conventions in the literature for the
boundary condition of vector fields representing a relative Spinc structure. In
[23, 14], the restriction of the vector fields on the boundary is tangent to the
boundary. Our treatment in this paper is the one taken in [24].

Suppose K is an oriented rationally null-homologous knot in a closed mani-
fold Y 3, (Σ,α,β, w, z) is a doubly-pointed Heegaard diagram associated to the
pair (Y,K). There is a map

sw,z : Tα ∩ Tβ → Spinc(Y,K),

defined in [24]. We sketch the definition of sw,z as follows.
Let f : Y → [0, 3] be a Morse function corresponding to the Heegaard dia-

gram, ∇f is the gradient vector field associated to f . Let γw be the flowline
of ∇f passing through w, which connects the index-zero critical point to the
index-three critical point. Similarly, define γz. Suppose x ∈ Tα ∩ Tβ , then
γ
x
denotes the union of the flowlines connecting index-one critical points to

index-two critical points, and passing through the points in x.
We construct a nowhere vanishing vector field v. Outside a neighborhood

ν(γw ∪ γz ∪ γ
x
), v is identical with ∇f . Then one can extend v over the balls

ν(γ
x
). We can also extend v over ν(γw ∪ γz), so that the closed orbits of v,

which pass through w and z, give the oriented knot K = γz − γw. There may
be many different choices to extend v over ν(γw ∪ γz), we choose the extension
as in [24, Subsection 2.4].

Now we let sw,z(x) be the relative Spinc structure given by v|
Y \

◦

ν(K)
. It is

easy to check that sw,z is a well-defined map.

Let u be a vector field on S1 × D2 as described in [24, Subsection 2.2].
More precisely, u is the inward normal vector field on the boundary torus, u
is transverse to the meridian disks in the interior of S1 × D2, and the core of
S1 × D2 is a closed orbit of u. Given ξ ∈ Spinc(Y,K), let v be a vector field
representing ξ, then we can glue v and u together to get a vector field on Y ,
which represents a Spinc structure on Y . Hence we get a map

GY,K : Spinc(Y,K) → Spinc(Y ).

We call GY,K(ξ) the underlying Spinc structure of ξ. It is shown in [24] that

GY,K(sw,z(x)) = sw(x).
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2.3 Knot Floer homology of rationally null-homologous

knots

Suppose that K is a rationally null-homologous knot in a closed 3–manifold
Y . Let

(Σ,α,β, w, z)

be a doubly pointed Heegaard diagram for (Y,K). Fix a Spinc structure s on
Y and let ξ ∈ Spinc(Y,K) be a relative Spinc structure whose underlying Spinc

structure is s. Let CFK∞(Y,K, ξ) be an abelian group freely generated by
triples [x, i, j] with

x ∈ Tα ∩ Tβ , sw(x) = s

and
sw,z(x) + (i − j)PD[µ] = ξ. (3)

The chain complex is endowed with the differential

∂∞[x, i, j] =
∑

y∈Tα∩Tβ

∑

{φ∈π2(x,y)|µ(φ)=1}

#(M̂(φ))[y, i − nw(φ), j − nz(φ)].

The homology of (CFK∞(Y,K, ξ), ∂∞) is denoted HFK∞(Y,K, ξ).
The grading j gives a filtration on CFK0,∗(Y,K, ξ), the associated graded

complex is denoted ĈFK(Y,K, ξ).
Given a knot K in a rational homology sphere Y , let F be a rational Seifert

surface for K, then there is an affine map A : Spinc(Y,K) → Q satisfying

A(ξ1)−A(ξ2) =
〈ξ2 − ξ1, [F ]〉

|[∂F ] · [µ]|
. (4)

This map can be defined and determined by (4), once we fix the value of A at
a ξ0 ∈ Spinc(Y,K) .

Let
BY,K =

{
ξ ∈ Spinc(Y,K)

∣∣∣ ĤFK(Y,K, ξ) 6= 0
}
.

Let
Amax = max{A(ξ)| ξ ∈ BY,K}, Amin = min{A(ξ)| ξ ∈ BY,K}.

We reformulate [14, Theorem 1.1] for knots as follows.

Theorem 2.2. Suppose K is a knot in a rational homology sphere Y , F is a
minimal genus rational Seifert surface for K, then

−χ(F ) + |[∂F ] · [µ]|

|[∂F ] · [µ]|
= Amax −Amin.

Suppose K ⊂ Y is a rationally null-homologous knot. We say that K is
rationally fibered, if the complement of K is a surface bundle over S1, and the
fiber is a rational Seifert surface for K.
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Theorem 2.3. Suppose K ⊂ Y is a rationally null-homologous knot, F is a
rational Seifert surface for K. Then the complement of K fibers over S1 with
fiber F if and only if the group

⊕

ξ∈Spinc(Y,K),A(ξ)=Amax

ĤFK(Y,K, ξ)

is isomorphic to Z.

Proof. This follows from [12], [14, Proposition 5.15], and the fact that a knot is
rationally fibered if and only if any of its cables is rationally fibered.

2.4 Rational domains and the relative rational bigrading

When s is a torsion Spinc structure over Y , as in Ozsváth–Szabó [20] there
is an absolute Q–grading on CFK∞(Y,K, ξ) and the induced complexes. Let

ĤFKd(Y,K, ξ) be the summand of ĤFK(Y,K, ξ) at the absolute grading d.
We first recall Lee–Lipshitz’s construction of the relativeQ–grading [9]. Sup-

pose D1, . . . , DN are closures of the components of Σ − α − β, thought of as
2–chains. Suppose ψ =

∑
i aiDi for some rational numbers ai, and let ∂αψ

be the intersection of ∂ψ with α, then ∂∂αψ is a rational linear combination
of intersection points between α and β curves. We say ψ is a rational domain
connecting x = (x1, . . . , xg) ∈ Tα ∩ Tβ to y = (y1, . . . , yg) ∈ Tα ∩ Tβ , if

∂∂αψ = y1 + · · ·+ yg − (x1 + · · ·+ xg).

If ψ =
∑

i aiDi is a rational domain connecting x to y with nw(ψ) = 0, then
we define the Maslov index 1

µ(ψ) =
∑

i

ai
(
e(Di) + nx(Di) + ny(Di)

)
,

where e(Di) is the Euler measure of Di as defined by Lipshitz [10].
The following lemma is contained in the last paragraph of [9, Section 2].

Lemma 2.4 (Lee–Lipshitz). Suppose ψ is a rational domain connecting x to y

with nw(ψ) = 0, then
Gr(x)−Gr(y) = µ(ψ).

There is a similar formula for the relative Alexander grading.

Lemma 2.5. Suppose ψ is a rational domain connecting x to y, then

A(x) −A(y) = nz(ψ)− nw(ψ).

1Unfortunately, we use µ to denote both the Maslov index of a rational domain and the

meridian of a knot. This should not cause confusion in our current paper.
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Proof. Let F be a rational Seifert surface for K. By (4) and [16, Lemma 2.19],

A(x)− A(y) =
〈PD[∂ψ], [F ]〉

|[∂F ] · [µ]|

=
[∂ψ] · [F ]

|[∂F ] · [µ]|

which is the rational linking number between ∂ψ and K. This linking number
can also be computed by [ψ] · [K] = nz(ψ)− nw(ψ).

3 Symmetries in knot Floer homology

Suppose that K is a rationally null-homologous knot in a 3–manifold Y . Let

Γ1 = (Σ,α,β, w, z)

be a doubly pointed Heegaard diagram for (Y,K). Then

Γ2 = (−Σ,β,α, z, w)

is also a Heegaard diagram for (Y,K). We call Γ2 the dual diagram of Γ1. Let
siw,z(x) be the associated relative Spinc structure for the diagram Γi. We define

a map J̃ : BY,K → Spinc(Y,K) as follows. If

s1w,z(x) = ξ,

for some x, then define
J̃ξ = J̃Γ1ξ = s2z,w(x).

Lemma 3.1. The map J̃ does not depend on the diagram Γ1.

Proof. This follows from the standard procedure of proving the invariance of

ĤFK(Y,K, ξ). Suppose Γ1,Γ
′
1 are two different diagrams for (Y,K), then they

are connected by the following types of moves:
• isotopies of the α and the β without crossing w, z,
• handleslides amongst the α or the β,
• stabilizations.
Then the dual diagrams Γ2 and Γ′

2 are also related by the corresponding moves.

Tracing these moves, the proof of the invariance of ĤFK(Y,K, ξ) implies that

J̃Γ1 = J̃Γ′

1
.

Lemma 3.2. Suppose ξ ∈ BY,K, then

GY,K(J̃ ξ) = JGY,K(ξ) + PD[K].
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Proof. Suppose ξ = s1w,z(x), then GY,K(ξ) = s1w(x), hence JGY,K(ξ) = s2w(x).

On the other hand, J̃ξ = s2z,w(x), so GY,K(J̃ξ) = s2z(x). By [16, Lemma 2.19]
or [26, Equation (1)],

s2z(x) = s2w(x) + PD[K].

So our conclusion holds.

The following theorem is an analogue of [20, Proposition 3.10]. We have
been informed that some cases of the theorem are already contained in [1].

Theorem 3.3. Let s be a Spinc structure over Y , and let ξ ∈ Spinc(Y,K) be a
relative Spinc structure with underlying Spinc structure s.
(a) There is an isomorphism of chain complexes

ĈFK(Y,K, ξ) ∼= ĈFK(Y,K, J̃ξ).

(b) The map J̃ maps BY,K into BY,K, and J̃2 = id.
(c) If s is a torsion Spinc structure, then there is an isomorphism of absolutely
graded chain complexes:

ĈFK∗(Y,K, ξ) ∼= ĈFK∗+d(Y,K, J̃ξ),

where d = A(J̃ ξ)−A(ξ).

Proof. (a) If φ is a holomorphic disk in Γ1 connecting x to y, then φ gives rise
to a holomorphic disk φ in Γ2 connecting x to y. Topologically, φ is just −φ.

The above argument implies that ĈFK(Y,K, ξ) ∼= ĈFK(Y,K, J̃ξ) as chain
complexes.

(b) The isomorphism in (a) implies that J̃ maps BY,K into BY,K .

If ξ ∈ BY,K is represented by x in Γ1, then J̃ξ ∈ BY,K is represented by x in

Γ2. Using Lemma 3.1, J̃2ξ = J̃Γ2 J̃ξ is represented by x in Γ1.

(c) Since s is torsion, there exists an absolute Q–grading on ĈF (Y, s), hence

an induced absolute Q–grading on ĈFK(Y,K, ξ). Since the isomorphism in (a)
preserves the relative grading, there exists a rational number d, such that

ĈFK∗(Y,K, ξ) ∼= ĈFK∗+d(Y,K, J̃ξ).

It is clear that the number d does not depend on the choice of the Heegaard

diagram, because both ĤFK(Y,K, ξ) and ĤFK(Y,K, J̃ξ) are nontrivial abso-
lutely graded groups.

Using (a), we get two isomorphisms which increase the Maslov grading by
d:

g1 : ĈFK(Γ1, ξ) → ĈFK(Γ2, J̃ξ),

g2 : ĈFK(Γ2, ξ) → ĈFK(Γ1, J̃ξ).
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Since both Γ1 and Γ2 represent (Y,K), there is a grading preserving chain
homotopy equivalence

f : ĈFK(Γ1, ξ) → ĈFK(Γ2, ξ).

Suppose x1 in Γ1 is a generator for ĈFK(Γ1, ξ), let x2 = g1(x1) in Γ2. Let
y2 in Γ2 be a generator which contributes to f(x1), and let y1 = g2(y2) in Γ1.
Since g1, g2 increase the grading by d and f is grading preserving, we have

Gr(x1) = Gr(y2) = Gr(y1)− d = Gr(x2)− d. (5)

Since s is torsion and [K] is rationally null-homologous, Js+ PD[K] is also
torsion. Using Lemma 3.2, we conclude that there exists a rational domain ψ1

in Γ1 connecting y1 to x1, such that nw(ψ1) = 0. By Lemma 2.4 and (5), we
see that

µ(ψ1) = Gr(y1)−Gr(x1) = d. (6)

Moreover, by Lemma 2.5

nz(ψ1) = A(y1)−A(x1) = A(J̃ξ)−A(ξ). (7)

Noting that ψ2 = (−ψ1)−nz(ψ1)(−Σ) is a rational domain in Γ2 that connects
y2 to x2 with nz(ψ2) = 0, and that µ(−Σ) = 2 in Γ2, we have

Gr(y2)−Gr(x2) = µ(ψ2) = µ(ψ1)− 2nz(ψ1). (8)

It follows from (6), (8) and (5) that

µ(ψ1) + (µ(ψ1)− 2nz(ψ1)) = 0.

Hence
µ(ψ1) = nz(ψ1),

so it follows from (6) and (7) that d = A(J̃ ξ)−A(ξ).

For any s ∈ Spinc(Y ), let

ĤFK(Y,K, s) =
⊕

ξ∈Spinc(Y,K), GY,K(ξ)=s

ĤFK(Y,K, ξ).

Corollary 3.4. Suppose K is a rationally null-homologous knot in Y , s is a
Spinc structure over Y . Then there is an isomorphism

ι : ĤFK(Y,K, s) ∼= ĤFK(Y,K, Js+ PD[K]).

If s is torsion, and ξ ∈ Spinc(Y,K) ∈ G−1
Y,K(s), then the restriction of ι on

ĤFK(Y,K, ξ) is homogeneous of degree A(J̃ ξ)−A(ξ).

Proof. This follows from Theorem 3.3 and Lemma 3.2.
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Lemma 3.5. Suppose ξ1, ξ2 ∈ BY,K, then

J̃ξ1 − J̃ξ2 = −(ξ1 − ξ2) ∈ H2(Y,K).

Proof. Suppose ξ1, ξ2 are represented by intersection points x,y. Let a be a
multi α arc connecting y to x, b be a multi β arc connecting x to y. By [16,

Lemma 2.19], ξ1 − ξ2 is represented by a + b, and J̃ξ1 − J̃ξ2 is represented by
(−b) + (−a). So our conclusion holds.

Corollary 3.6. Suppose ξ ∈ BY,K, then A(ξ) = Amax if and only if A(J̃ξ) =
Amin.

Proof. If A(ξ) ≥ A(η) for all η ∈ BY,K, then Lemma 3.5 shows that A(J̃ ξ) ≤

A(J̃η) for all η ∈ BY,K. Since J̃ surjects onto BY,K , A(J̃ ξ) = Amin.

Remark 3.7. If we choose the affine map A such that Amax = −Amin, then
the above corollary implies that A(J̃ξ) = −A(ξ).

4 A lower bound for Θ

In this section, we will prove Theorem 1.1. For simplicity, we will work over
a fixed field F. (A priori, the correction terms defined over different fields may
not be the same, but they have similar properties. When F = Q, the correction
terms are the same as the original correction terms defined over Z.)

4.1 Computing correction terms from CFK∞

Fix a doubly pointed Heegaard diagram Γ1 = (Σ,α,β, w, z) and consider the
associated knot Floer chain complex CFK∞(Y,K, ξ) with GY,K(ξ) = s. Recall
that CFK∞(Y,K, ξ) is an abelian group freely generated by triples [y, i, j] with

y ∈ Tα ∩ Tβ

and
sw,z(y) + (i− j)PD[µ] = ξ.

LetG = GY,K be a set of generators of ĤFK(Y,K), such that each generator
is supported in a single relative Spinc structure and a single Maslov grading. By
[25, Lemma 4.5], CFK∞(Y,K, ξ) is homotopy equivalent to a chain complex

whose underlying abelian group is ĤFK(Y,K, ξ)⊗F[U,U−1], so we may assume
CFK∞(Y,K, ξ) is generated by generators [x, i, j] satisfying that every x is in
G.

Since Y is a rational homology sphere, HF∞(Y, s) ∼= F[U,U−1]. Fix a
sufficiently large integer N . Let Gs ⊂ CFK∞(Y,K, ξ) be the set that consists
of all homogeneous chains that represent U−N ∈ HF∞(Y, s):

Gs =



X =

∑

x∈G,i,j∈Z

ax,i,j [x, i, j]

∣∣∣∣∣∣
[X ] = U−N ∈ HF∞(Y, s),Gr[x, i, j] = d(Y, s) + 2N
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where Gr is the absolute Maslov grading.

Lemma 4.1. With the above notation,

N = min
X∈Gs

max
[x,i,j]∈X

i.

Here, [x, i, j] ∈ X means that the coefficient of [x, i, j] in the chain X is nonzero.

Proof. For X ∈ Gs, let I(X) = max[x,i,j]∈X i. Then,

U I(X)+1 ·X =
∑

ax,i,j[x, i − I(X)− 1, j − I(X)− 1] = 0 ∈ HF+(Y, s)

since i− I(X)− 1 < 0. Hence, N ≤ I(X), ∀X ∈ Gs.
On the other hand, let X0 ∈ Gs be a chain with I(X0) = minX∈Gs

I(X). We
claim that

U I(X0) ·X0 6= 0 ∈ HF+(Y, s),

which would imply N ≥ I(X0). We prove the claim by contradiction: If not,
there is a Z ∈ CFK∞(Y,K) of homogeneous grading

Gr(Z) = d(Y, s) + 2N − 2I(X0) + 1

such that ∂Z = U I(X0) ·X0 in the quotient complex CFK+(Y,K, ξ) = C{i ≥ 0}.
Equivalently, in CFK∞(Y,K, ξ) we have

U I(X0) ·X0 − ∂Z =
∑

bx,i,j[x, i, j]

where all i < 0. Let X ′ = X0 − ∂(U−I(X0)Z). It is clear from the construction
thatX ′ ∈ Gs and I(X

′) < I(X0). This contradicts the assumption that I(X0) =
minX∈Gs

I(X).
Therefore, we proved N = I(X0) = minX∈Gs

I(X).

Proposition 4.2. With the same assumption,

d(Y, s) = max
X∈Gs

min
[x,i,j]∈X

Gr(x). (9)

Proof. Since X =
∑
ax,i,j[x, i, j] is homogeneous, we have Gr(x) = Gr(X)− 2i.

Therefore,

d(Y, s) = Gr(X)− 2N

= Gr(X)− 2 min
X∈Gs

max
[x,i,j]∈X

i

= max
X∈Gs

min
[x,i,j]∈X

(Gr(X)− 2i)

= max
X∈Gs

min
[x,i,j]∈X

Gr(x).
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4.2 More symmetries

Recall that the chain complex CFK∞(Y,K, ξ) can be viewed at the same

time as CFK∞(Y,K, J̃ξ) associated to the Heegaard diagram

Γ2 = (−Σ,β,α, z, w).

There is a natural identification between intersection points in Γ1 and Γ2, and
this can be extended to a chain isomorphism f : CFK∞

Γ1
(Y,K) → CFK∞

Γ2
(Y,K)

given by f([x, i, j]) = [x, j, i], where x ∈ Tα ∩ Tβ , and i, j ∈ Z denote the
filtration with respect to w, z respectively.

Lemma 4.3. Under the isomorphism f , the set Gs is identified with the set
of all homogeneous generators that represent U−M ∈ HF∞(Y, Js+PD[K]) for
some large integer M , associated to the Heegaard diagram Γ2.

Proof. By Lemma 3.2, the map

f : CFK∞(Y,K, ξ) → CFK∞(Y,K, J̃ξ)

descends to
f : CF∞(Y, s) → CF∞(Y, Js+ PD[K]).

Moreover, since f is a chain isomorphism, each element of f(Gs) must represent
a certain generator U−M ∈ HF∞(Y, Js+ PD[K]) for some M .

Finally, we need to prove that the elements in f(Gs) are homogeneous.
Let Grk denote the grading pertaining to the Heegaard diagram Γk. Sup-
pose [x1, i1, j1] and [x2, i2, j2] contribute to X =

∑
ax,i,j [x, i, j] ∈ Gs, then

Gr1([x1, i1, j1]) = Gr1([x2, i2, j2]). Since x1 and x2 belong to the same Spinc

structure, there exists a topological disk φ in Γ1 connecting them. By adding an
appropriate multiple of Σ, we may further assume that nw(φ) = i1 − i2. Thus,
µ(φ) = 0 according to the Maslov index formula. Moreover, since [x1, i1, j1] and
[x2, i2, j2] satisfy (3), we have

s1w,z(x1) + (i1 − j1)PD[µ] = s1w,z(x2) + (i2 − j2)PD[µ],

which implies that (as in Lemma 2.5)

nz(φ) − nw(φ) + (i1 − j1) = (i2 − j2).

So nz(φ) = j1−j2. Consequently, the disk −φ connects [x1, i1, j1] and [x2, i2, j2]
in the Heegaard diagram Γ2. As the Maslov index of φ is invariant under the
reversion of orientation,

Gr2([x1, j1, i1])−Gr2([x2, j2, i2]) = µ(φ) = 0.

This proved the elements in f(Gs) are homogeneous in Gr2.
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Applying Lemma 4.1 to f(Gs), the set of homogeneous generators that rep-
resent U−M ∈ HF∞(Y, Js+ PD[K]), we conclude:

M = min
X∈Gs

max
[x,i,j]∈X

j.

With the same argument as in Proposition 4.2, this leads to the following anal-
ogous correction term formula.

d(Y, Js+ PD[K]) = max
X∈Gs

min
[x,i,j]∈X

Gr2(x). (10)

4.3 Proof of Theorem 1.1

Our proof is based on the following elementary principle.

Lemma 4.4. For any bounded sequence of pairs (ai, bi) ∈ (a, b) + Z2, where
(a, b) ∈ R2, we have

|min
i
ai −min

i
bi| ≤ max

i
|ai − bi|,

|max
i
ai −max

i
bi| ≤ max

i
|ai − bi|.

Proof. The condition that (ai, bi) ∈ (a, b) + Z2 is bounded allows us to take
minimum and maximum. Assume a = am = mini ai and b = bk = mini bi.
Then,

a− b = am − bk ≤ ak − bk;

and
b− a = bk − am ≤ bm − am.

It readily follow that
|a− b| ≤ max

i
|ai − bi|.

The second inequality follows from the first by replacing ai, bi with −ai,−bi.

To bound |d(Y, s) − d(Y, Js + PD[K])|, we apply Lemma 4.4 twice to the
equations (9) and (10). In the first round, let the pair

(aX , bX) =
(

min
[x,i,j]∈X

Gr1(x), min
[x,i,j]∈X

Gr2(x)
)

and X ∈ Gs be the index of the sequence. We get

∣∣∣d(Y, s)− d(Y, Js+ PD[K])
∣∣∣ ≤ max

X∈Gs

∣∣∣ min
[x,i,j]∈X

Gr1(x) − min
[x,i,j]∈X

Gr2(x)
∣∣∣.

In the second round, let the pair

(ax, bx) = (Gr1(x),Gr2(x))
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and x ∈ G be the index of the sequence. We get

∣∣∣ min
[x,i,j]∈X

Gr1(x)− min
[x,i,j]∈X

Gr2(x)
∣∣∣ ≤ max

[x,i,j]∈X

∣∣∣Gr1(x)−Gr2(x)
∣∣∣.

Plugging the second inequality to the first, we obtain:

|d(Y, s)− d(Y, Js+ PD[K])| ≤ max
x∈G

|Gr1(x) −Gr2(x)|. (11)

The proof of Theorem 3.3 (b) implies that

Gr2(x) −Gr1(x) = A(J̃sw,z(x)) −A(sw,z(x)).

Recall that at the beginning of this section, we assumed that ĤFK(Y,K) was
generated by x ∈ G, Theorem 2.2 then implies that the right hand side of (11)
is bounded from above by the left hand side of (1). So (11) implies

|d(Y, Js+ PD[K])− d(Y, s)| ≤ 1 +
−χ(F )

|[∂F ] · [µ]|
.

By (2), d(Y, s) = d(Y, Js). So we get

1 +
−χ(F )

|[∂F ] · [µ]|
≥ max

s∈Spinc(Y )

{
d(Y, Js+ PD[K])− d(Y, Js)

}

= max
s∈Spinc(Y )

{
d(Y, s+ PD[K])− d(Y, s)

}
.

This finishes the proof of Theorem 1.1.

5 Applications

In this section, we apply Theorem 1.1 to compute Θ for certain homology
classes in two types of manifolds: L-spaces and large surgeries on knots in S3.

5.1 Floer simple knots in L-spaces

Proposition 5.1. Suppose Y is an L-space, K is a Floer simple knot in Y , F is
a genus minimizing rational Seifert surface for K. Then the Euler characteristic
of F is determined by the formula

1 +
−χ(F )

|[∂F ] · [µ]|
= max

s∈Spinc(Y )

{
d(Y, s+ PD[K])− d(Y, s)

}
. (12)

Proof. As in the proof of Theorem 1.1, the right hand side of (12) is equal to

max
s∈Spinc(Y )

{
d(Y, Js+ PD[K])− d(Y, s)

}
.
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As Y is an L-space and K is Floer simple, for any s ∈ Spinc(Y ), there exists a
ξs ∈ Spinc(Y,K) such that

ĤFK(Y,K, ξs) ∼= ĤFK(Y,K, s) ∼= ĤF (Y, s) ∼= Z.

Corollary 3.4 implies that J̃ξs = ξJs+PD[K], and

A(J̃ξs)−A(ξs) = d(Y, Js+ PD[K])− d(Y, s).

Since ĤFK(Y,K) is supported in these ξs’s, our conclusion follows from The-
orem 2.2 and Corollary 3.6.

Proof of Theorem 1.2. This follows from Theorem 1.1 and Proposition 5.1.

Proposition 5.2. Suppose K is a Floer simple knot in an L-space Y . Then K
is a rationally fibered knot if and only if the right hand side of (12) is achieved
by exactly one s ∈ Spinc(Y ).

Proof. This follows from Theorem 2.3, Corollary 3.6 and the proof of Proposi-
tion 5.1.

Corollary 5.3. Suppose K1,K2 are two Floer simple knots in an L-space Y
with [K1] = [K2] ∈ H1(Y ;Z), then K1 and K2 have the same rational genus,
and K1 is rationally fibered if and only if K2 is rationally fibered.

Proof. This follows from Propositions 5.1 and 5.2 by observing that the right
hand side of (12) only depends on the homology class [K].

5.2 Large surgeries on knots

In this subsection, we will consider another case of the rational genus bound.
Suppose that K is a knot in a homology sphere Y . Let Yp(K) be the manifold
obtained by p–surgery onK, and letK ′ ⊂ Yp(K) be the dual knot of the surgery.
We can isotope K ′ to be a curve on ∂ν(K ′) = ∂ν(K) such that this curve is
isotopic to the meridian µ of K. We always orient K ′ such that the orientation
coincides with the standard orientation on µ. If F is a Seifert surface forK, then
F (or −F if one cares about the orientation) is also a rational Seifert surface

for K ′. So 2g(K)−1
p

is an upper bound for Θ([K ′]). Theorem 1.1 gives a lower

bound for Θ([K ′]), which we will compute.
The set of Spinc structures Spinc(Yp(K)) is in one-to-one correspondence

with H2(Yp(K)) ∼= Z/pZ. However, this correspondence is generally not canon-
ical. Ozsváth and Szabó [20] specified an identification of Spinc(Yp(K)) with
Z/pZ as follows. Let F ⊂ Y be a Seifert surface for K, W : Yp(K) → Y be the

2–handle cobordism, and F̂ ⊂ W be the surface obtained from F by capping
off ∂F with the cocore of the 2–handle. For any i ∈ Z, let xi ∈ Spinc(W ) be the
Spinc structure satisfying that

〈c1(xi), [F̂ ]〉 = 2i− p.
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Now we define a map σ : Spinc(Yp(K)) → Z/pZ by

σ(xi|Yp(K)) ≡ i (mod p).

This map is well-defined, and is the identification we want.
By [18], the Spinc cobordism (W, xi) : (Yp(K), i) → Y induces an isomor-

phism
F∞
(W,xi)

: HF∞(Yp(K), i) → HF∞(Y ),

which shifts the grading by −(2i−p)2+p

4p . Using the definition of correction terms,
we see that

d(Y )− d(Yp(K), i) ≡
−(2i− p)2 + p

4p
(mod 2). (13)

When Y is an L-space, there is a more precise formula relating d(Y ) and
d(Yp(K), i) in [15], which we briefly describe below. From CFK∞(Y,K), one
can define two sequences of nonnegative integers Vk, Hk, k ∈ Z satisfying that

Vk = H−k, Vk ≥ Vk+1 ≥ Vk − 1, Vg(K) = 0. (14)

When Y is an L-space, the correction terms of Yp(K) can be computed by the
formula

d(Yp(K), i) = d(Y ) + d(L(p, 1), i)− 2max{Vi, Hi−p}. (15)

From [19] we know that

d(L(p, 1), i) =
(2i− p)2 − p

4p
(16)

when 0 ≤ i ≤ p. Using (15), when 0 ≤ i < p, we get

d(Yp(K), i+ 1)− d(Yp(K), i)

=
(2i+ 2− p)2 − p

4p
− 2max{Vi+1, Hi+1−p} −

(
(2i− p)2 − p

4p
− 2max{Vi, Hi−p}

)

=
2i+ 1− p

p
− 2max{Vi+1, Vp−1−i}+ 2max{Vi, Vp−i}.

Applying Theorem 1.1, we see that Θ([K ′]) is bounded from below by

max
i∈{0,1,...,p−1}

{
2i+ 1− 2p

p
− 2max{Vi+1, Vp−1−i}+ 2max{Vi, Vp−i}

}
. (17)

The bound given by (17) is not always sharp, as there are nontrivial knots
with Vk = 0 whenever k ≥ 0. In this case the result of (17) is − 1

p
. However, we

can still compute Θ([K ′]) for large surgeries on knots in S3.
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Lemma 5.4. Suppose that Y, Z are two homology spheres, and K ⊂ Y and
L ⊂ Z are two knots. Let p be a positive integer, K ′ ⊂ Yp(K) and L′ ⊂
Zp(L) be the dual knots of the surgeries. If there is an orientation preserving
homeomorphism f : Yp(K) → Zp(L) with f∗[K

′] = [L′], then the induced map
on the Spinc structures

f⋆ : Spinc(Yp(K)) → Spinc(Zp(L))

is given by the identity map of Z/pZ.

Proof. From the identification Spinc(Yp(K)) ∼= Z/pZ described before, we can
conclude that the conjugation J on Spinc(Yp(K)) is given by

J(i) ≡ −i (mod p).

Since f is a homeomorphism, one should have

f⋆J = Jf⋆. (18)

Moreover, the homology class [K ′] corresponds to 1 ∈ H1(Yp(K)) ∼= Z/pZ, and
a similar result is true for [L′]. Since f∗[K

′] = [L′], f⋆ should satisfy

f⋆(i+ 1)− f⋆(i) = 1. (19)

When p is odd, the only affine isomorphism on Z/pZ satisfying (18) and (19) is
the identity, so our conclusion holds in this case.

When p = 2n is even, the affine isomorphisms satisfying (18) and (19) are
the identity and i 7→ i + p

2 , we only need to show that the latter case cannot
happen. Otherwise, we should have

d(Yp(K), i) = d(Zp(L), i+ n), i ∈ Z/(2nZ).

By (13), we get

d(Y ) +
2(i− n)2 − n

4n
≡ d(Z) +

2i2 − n

4n
(mod 2), when 0 ≤ i ≤ n.

So
d(Y )− d(Z) ≡ i−

n

2
(mod 2), when 0 ≤ i ≤ n. (20)

Noting that the correction term of a homology sphere is always an even integer,
so the right hand side of (20) is even for any i = 0, . . . , n, which is impossible.

Proof of Proposition 1.5. If K ′ is not genus minimizing, then there exists a knot
L′ ⊂ S3

p(K) with [L′] = [K ′] and ||L′|| < ||K ′||. There is a natural isomorphism
H1(∂ν(L

′)) ∼= H1(∂ν(K
′)). Let µL be the slope on L′ corresponding to the

meridian of K under the previous isomorphism. Let Z be the manifold obtained
from S3

p(K) by µL–surgery on L′, and let L be the dual knot. Then it is
elementary to check that Z is a homology sphere, S3

p(K) = Zp(L) and g(L) <
g(K).
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By Lemma 5.4, we have

HF+(S3
p(K), i) ∼= HF+(Zp(L), i), for any i ∈ Z/pZ. (21)

Since p > 2g(K)− 1 > 2g(L)− 1, it follows from [20, Theorem 4.4] that

HF+(S3
p(K), g(K)) ∼= HF+(S3), HF+(Zp(L), g(K)) ∼= HF+(Z).

By (21), we have HF+(Z) ∼= HF+(S3), hence Z is an L-space.
Since p > 2g(L)− 1 and g(K)− 1 ≥ g(L), we have

HF+(S3
p(K), g(K)− 1) ∼= HF+(Zp(L), g(K)− 1) ∼= HF+(Z). (22)

For C = CFK∞(S3,K), consider the natural short exact sequence

0 −−−−→ C{i < 0, j ≥ g(K)− 1} −−−−→ C{i ≥ 0 or j ≥ g(K)− 1} −−−−→ C{i ≥ 0} −−−−→ 0,

which induces a long exact sequence

· · · −−−−→ ĤFK(K, g(K)) −−−−→ HF+(S3
p(K), g(K)− 1)

vg(K)−1
−−−−−→ HF+(S3) −−−−→ · · · .

We have HF+(S3) ∼= T + := Z[U,U−1]/UZ[U ]. By (22),

HF+(S3
p(K), g(K)− 1) ∼= HF+(Z) ∼= T +.

Hence vg(K)−1 is equivalent to UVg(K)−1 : T + → T +. As ĤFK(K, g(K)) 6= 0
[22], we have Vg(K)−1 > 0. By (14), Vg(K)−1 = 1 and Vg(K) = 0.

In (17), letting i = g(K)− 1 and using the fact that p ≥ 2g(K), we get

Θ([K ′]) ≥
2g(K)− 2 + 1− 2p

p
− 2Vg(K) + 2Vg(K)−1 =

2g(K)− 1

p
,

which contradicts the assumption that K ′ is not genus minimizing.
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[11] J. Morgan, Z. Szabó, C. Taubes, A product formula for the Seiberg–
Witten invariants and the generalized Thom conjecture, J. Differential
Geom. 44 (1996), no. 4, 706–788.

[12] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007),
no. 3, 577–608.

[13] Y. Ni, Heegaard Floer homology and fibred 3–manifolds, Amer. J. Math.
131 (2009), no. 4, 1047–1063.

[14] Y. Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13
(2009), no. 5, 2991–3019.

[15] Y. Ni, Z. Wu, Cosmetic surgeries on knots in S3, to appear in J. Reine
Angew. Math., available at arXiv:1009.4720.
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[22] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol.
8 (2004), 311–334.
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