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Abstract

Based on work of Rasmussen [Ras03], we construct a concordance
invariant associated to the knot Floer complex, and exhibit examples in
which this invariant gives arbitrarily better bounds on the 4-ball genus
than the Ozsvath-Szabé 7 invariant.

1 Introduction
The 4-ball genus of a knot K C 5% is
g4(K) = min{g(¥) | ¥ smoothly embedded in B* with 9% = K},

where g(X2) denotes the genus of the surface . The 4-ball genus gives a lower
bound on the unknotting number of a knot (that is, the minimal number of
crossing changes needed to obtain the unknot). We say knots K; and K» are
concordant if g4 (K 1# — Ko) = 0, where — K5 denotes the reverse of the mirror
image of Ko.

In [OS03c], Ozsvath-Szabé defined a concordance invariant, 7, that gives a
lower bound for the 4-ball genus of a knot. This invariant is sharp on torus knots,
giving a new proof of the Milnor conjecture, originally proved by Kronheimer-
Mrowka using gauge theory [KM93]

The knot Floer homology package [OS04a, Ras03] associates to a knot K a
Z.®Z-filtered chain complex over the ring F[U, U ~!], where F denotes the field of
two elements and U is a formal variable. We denote this complex CFK*(K).
The invariant 7 depends only on a single Z-filtration, and forgets the module
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structure. By studying the module structure together with the full Z & Z-
filtration, we obtain a concordance invariant, v+, which gives a better bound
on the 4-ball genus than 7, in the sense that

7(K) < vT(K) < g4(K). (1.1)

Moreover, the gap between 7 and v can be made arbitrarily large.

Theorem 1. For any positive integer p, there exists a knot K with 7(K) > 0
and
T(K) +p < v (K) = ga(K).

Remark 1.1. The invariant v is closely related to the sequence of local h in-
variants of Rasmussen [Ras03, Section 7], which Rasmussen uses to give bounds
on the 4-ball genus; indeed, v corresponds to the first place in the sequence
where a zero appears.

In Proposition 3.7, we also show that the gap between v+ and the knot signature
can be made arbitrarily large.

In the case of alternating knots (or, more generally, quasi-alternating knots),
the invariant vT is completely determined by the signature of the knot.

Theorem 2. Let K C S be a quasi-alternating knot. Then,

0
vH(K) = { _# if o(K) < 0.

We also have the following result when K is strongly quasipositive. See
[Hed10] for background on strongly quasipositive knots.

Proposition 3. If K is strongly quasipositive, then
vI(K) = 7(K) = ga(K) = g(K).

Proof. [Hed10, Theorem 1.2] states that 7(K) = g4(K) = g(K) if and only if K
is strongly quasipositive. Since 7(K) < v+ (K) < g4(K), the result follows. [J

Organization. In Section 2, we define the invariant v+ and prove various
properties. In Section 3, we construct an infinite family of knots in order to
prove Theorem 1. Throughout, we work over F = Z/2Z.
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2 The invariant v

Heegaard Floer homology, introduced by Ozsvath and Szab6 [OS04b], is
an invariant for closed oriented Spin® 3-manifolds (Y, s), taking the form of a



collection of related homology groups: ﬁ(Y, s), HFX(Y,s), and HF>®(Y,s).
There is a U-action on the Heegaard Floer homology groups HF* and HF>.
When s is torsion, there is an absolute Maslov Q—grading on the Heegaard Floer
homology groups. The U-action decreases the grading by 2.

For a rational homology 3-sphere Y with a Spin¢ structure s, HF*(Y,s)
can be decomposed as the direct sum of two groups: the first group is the
image of HF*>(Y,s) = F[U,U~1] in HF*(Y,s), which is isomorphic to 7+ =
F[U, U~ /UF[U], and its minimal absolute Q—grading is an invariant of (Y,s),
denoted by d(Y, s), the correction term [OS03a]; the second group is the quotient
modulo the above image and is denoted by H Fieq(Y,s). Altogether, we have

HFT(Y,s) =T @& HFea(Y,s).

We briefly recall the large N surgery formula of [OS04a, Theorem 4.4]. We
use the notation of [NW10]. Let CFK*(K) denote the knot Floer complex
of K, which takes the form of a Z @ Z-filtered, Z-graded chain complex over
F[U,U~1]. The U-action lowers each filtration by one. We will be particularly
interested in the quotient complexes

Af =C{max{i,j —k} >0} and B"=C{i>0}

where i and j refer to the two filtrations. The complex BT is isomorphic to
CF*(S®). There is a map
v,j : Az — BT
defined by projection. One can also define a map
+. 4+ +
hi Al =B

defined by projection to C{j > k}, followed by shifting to C{j > 0} via the
U-action, and concluding with a chain homotopy equivalence between C{j > 0}
and C{i > 0}. These maps correspond to the maps induced on HF* by the
two handle cobordism from S3 (K) to S* [OS04a, Theorem 4.4].

Similarly, one can consider the subquotient complexes

Ay, = C{max{i,j —k} =0} and B =C{i=0}=CF(5%
and the maps R R R N
agtAk—)B and hkAk—)B
The invariant 7 is defined in [OS03c] to be

7(K) = min{k € Z | ¢, induces a nontrivial map on homology},

where ¢ : C{i = 0,57 < k} — 6’?‘(83) denotes inclusion. A slightly stronger
concordance invariant, v, is defined in [OS11, Definition 9.1] to be

V(K) = min{k € Z |0y : Ay — 6'?'(53) induces a nontrivial map in homology}.

The invariant v(K) gives a lower bound for g4(K) and is equal to either 7(K)
or 7(K) + 1; in particular, in many cases v gives a better 4-ball genus than .
___We can further refine these bounds by considering maps on CF7 rather than
CF.



Definition 2.1. Define v*(K) by
vH(K) = min{k € Z| v : A} — CFT(S%), vf(1)=1}.

Here, 1 denotes the lowest graded generator of the subgroup 7+ in the homology
of the complex.

According to [NW10], the definition of v+ (K) is equivalent to the smallest
k such that Vi = 0, where V} is the U-exponent of ’U;— at sufficiently high
gradings. We can define Hj, similarly in terms of hg. By [NW12, Equation
(13)] and [HLZ12, Lemma 2.5], the V4’s and Hy’s satisfy
He =V (2.1)
H,. =V, +k
Vi —=1< Vi1 < Vi

and are related to the correction terms in the surgery formula [NW10, Proposi-
tion 1.6]:

Proposition 2.2. Suppose p,q >0, and fir 0 <i <p—1. Then

d(Sy,,(K),i) = d(L(p, q),i) — 2 max{V} s}, H s} (2.4)

We have the following properties for v7.
Proposition 2.3. The invariant v* satisfies:
1. vT is a smooth concordance invariant.
2. vT(K) >0, and the equality holds if and only if Vo = 0.
3. vH(K) > v(K)>71(K).

Proof. To see 1, note that V’s are determined by the d-invariants of the surg-
ered manifolds S3(K) [NW10, Proposition 2.11], and the d-invariants are con-
cordance invariants. To see 2, note that V_; > H_; = Vi > 0 by Equations
(2.1) and (2.2). To see 3, chase the commutative diagram

Ay —2 AF

ﬁ"l U;l

B I, B+
O

The v+ invariant can be computed explicitly for quasi-alternating knots, a
generalization of alternating knots introduced in [MOO08]. In fact, Theorem 2
states that v is completely determined by the signature of the knot, just as

the 7 invariant:
if o(K) >0,

0
+ K) =
v (K) {-"@ if o(K) < 0.




Proof of Theorem 2. Let K be quasi-alternating. By [OS03b, Corollary 1.5]
and [MOOS, Theorem 2], d(S{(K)) = 0 when o(K) > 0. This proves that
vT(K) = 0 when o(K) > 0. On the other hand, the proof of Theorem 1.4 of
[OS03b], together with [MOO08, Theorem 2], implies that for any s > 0,

H§s+%72(Aj) = HF;5+%72(S3)-
In particular, if we let s = —0 /2 when o(K) < 0, then
He o(A3) = HFS_,(5%) =0,

Here, the gradings of the homology of both sides are inherited from the grading
on CFK*(K). Thus, the generator of T+ C H.(A) has grading —2V;. In
light of the vanishing of the homology group H<_2(A), we must have Vi = 0.
So

vI(K)<s=—-0(K)/2

from the definition. We also know that
vI(K)>7(K)=-0(K)/2
for a quasi-alternating knot K. Hence, v (K) = —o(K)/2. O

Next, we show that vT also give a lower bound for the four-ball genus of a
knot.

Proposition 2.4. v (K) < g4(K)

Proof. This follows from [Ras03, Corollary 7.4]. The function hj(K) in [Ras03]
is the same as V4 in [NW10]. O

Remark 2.5. [Ras03, Corollary 7.4] states that g4(K) > Vi + k for all k& <
g4(K), so one might wonder if other V},’s can give stronger 4-ball genus bounds.
However, since Vj — 1 < Viqq < Vj, it follows that v+ is the best 4-ball genus
bound obtainable from the sequence of V}’s.

3 Four-ball genus bound

In this section, we exhibit some examples of knots whose v' invariant is
arbitrarily better than the corresponding 7 invariant. Hence, the vT invariant
indeed gives us significantly improved four-ball genus bound for some particular
knots. We will show that for any integer n > 2, there exists a knot K with
7(K) > 0 and

7(K) +n=v"(K) = gs(K).

Let K, 4 denote the (p, g)-cable of K, where p denotes the longitudinal wind-
ing. Without loss of generality, we will assume throughout that p > 0. Let T}, ,
denote the (p, ¢)-torus knot (that is, the (p, ¢)-cable of the unknot), and T}, g:m.n
the (m,n)-cable of T}, ;. We begin with a single example of a knot for which v
gives a better 4-ball genus bound than 7.



Proposition 3.1. Let K be the knot Ts o# — T2 3,25. We have
T(K) =0, v(K)=1, and v (K)=2.

Proof. The torus knot T5 ¢ is an L-space knot, as is 75 3.25 [Hed09, Theorem
1.10], so their knot Floer complexes are completely determined by their Alexan-
der polynomials [OS05, Theorem 1.2] (cf. [Homll, Remark 6.6]). We have
that

A ()=t —t"+ 5 —* +¢* —* + 4> —t + 1

and
AT2,3;2,5 (t) = AT2,3 (tQ) : AT2,5 (t)
=8 "+t —t+ 1.

Furthermore, we have that CFK*>°(—K) =2 CFK>(K)* [0S04a, Section 3.5],
where CFK*(K)* denotes the dual of CFK*(K). Thus, CFK*(=T33.25) is
generated over F[U, U~1] by

[yanv _4]5 [y17_17_4]5 [ylv_lv_l]a [y37_37_1]5 [y47_470]7

where we write [y, i, j] to denote that the generator y has filtration level (i, j).
The differential is given by

Yo = 11
Oy2 = y1 +ys3
0Yys = y3.

The complex CFK*>(T5 ) is generated by

[1'0,0,4], [1'1,1,4.], [$27173]7 [$37273]7 [1'4,2,2],
['I5a 37 2]7 [Iﬁa 37 1]7 [I77 45 1]5 ['I87 45 O]

The differential is given by

8I1 = X0 —+ X2

0x3 = To + X4

0xs = x4 + Tg

0r7 = xg + 3.
The complexes CFK*®(—T53,25) and CFK> (T ) are depicted in Figures
1 and 2, respectively. (More precisely, CF K consists of the complexes pictured
tensored with F[U, U~1], where U lowers i and j each by 1.) In particular, we
see that 7(—T»3.25) = —4 since yo generates the vertical homology, and that

7(T29) = 4 since xo generates the vertical homology. Since 7 is additive under
connected sum, it follows that

T(=T23,2,5#T2,9) = 0,



Yso————e Y2
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Figure 1: CFK>® (-T2 3.25)
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Figure 2: CFK*>(Ts,9)
as desired.
The knot Floer complex satisfies a Kiinneth formula [OS04a, Theorem 7.1]:
CFK™ (K #K2) = CFK> (K1) @pp,u-1) CFK™(K3).

In particular, we may compute CFK> (T3 9# — Tz 3,25) as the tensor product
of CFKOO(T279) and CFKOO(—TQ)3;275) N where

[z,1, 5] ® [y, k, €] = [zy,i + k,j + £].

The generators, filtration levels, and differentials in the tensor product are
listed below.

0[x0Yo, 0, 0] = zoy1
Olz1yo, 1,0] = z1y1 + ZoYo + T2yo



Olrryo, 4, —3] = x7y1 + Teyo + Yo

Olrsyo, 4, —4] = rsy1

dlroy1,—1,0] =0
O[z1y1,0,0] = oy1 + w291

O[x2y1,0,—1] =0

Olzsyr, 1, —1] = xoy1 + zan

Olray1,1,-2] =0

Olzsy1,2, —2] = zay1 + w61

d[zeyr,2,—-3] =0

Olz7y1,3, —3] = wey1 + w31

Olrsy1,3,—4] =0

O[zoy2, —1,3] = xoy1 + Toys

= X4Y1 + T4Y3

0lz6Yy2,2,0] = 6y1 + T6Y3

[
[
[
[
[
[

J
]
]
J
J
]
]
]
]
]
]
J
J
]
]
J
]
]
O[z2y2,0,2] = m2y1 + T2y3
J
]
]
]
]
]
]
]
J
]
]
J
]
]
J
J
]
9 ]

[
d[zoys, —4,3] =0
Olr1ys, —3,3] = woys + T2ys3
Olrays, —3,2] =0
O[zsys, —2,2] = x2ys + T4ys
O[zays, —2,1] =0
Olzsys, —1,1] = z4y3 + T6ys3
O[zeys,—1,0] =0
O[z7ys3,0,0] = x6ys + 3Y3
Olrsys,0,—1] =0
Olroys, —4,4] = zoy3
Olz1ys, —3,4] = x1y3 + Toys + T2y
[

= X5Y1 + T5Y3 + TaY2 + TeY2

0z7y2,3,0] = z7y1 + T7y3 + TeY2 + TaY2



We perform the following change of basis on CFK®(Too# — Tz 3.25). In
the linear combinations below, we have ordered the terms so that the first basis
element has the greatest filtration and thus determines the filtration level of the
linear combination.

20 = ZoYo
21 = ToY1
Z2 = ToY2 + T1Y3 + T3Y3 + Tays
23 = T1Y2

Z4 = T2Y2 + T3Y3 + T1Y1 + TaYa

Z5 = Z3Y2 + TsYa + T1Yo

Z6 = T4Y2 + TsYz + T3Y1 + TeYa + T2Yo
Z7 = TsY2 + T7Ys + T3Yo

zg = TeY2 + T7Y3 + TsY1 + TaYo

29 = T7Y2

Z10 = Z8Y2 + T7Y1 + TaYo + Ts

211 = T8Y3

212 = T8Y4

Wh = Toi41Ya i=0,1,2,3

Wi = Toiya i=0,1,2,3

wh = T2:y3 i=0,1,2,3

wz3 = X2i+1Y3 + T2i12Y4 1=0,1,2,3
witt = o190 i=0,1,2,3
wi+4 = T2i+1Y1 + T2iYo 1=0,1,2,3
wit? = Toi 01 i=0,1,2,3
witt = 29,1090 i=0,1,2,3.

See Figure 3.

Notice that the basis elements {z;};2, generate a direct summand C of
CFK™(Ts9# — T 3.25). See Figure 4. Since the total homology of this sum-
mand is non-zero, this summand determines both v and v*. We write A\s and
AT to refer to the associated subquotient complexes of C.



Figure 3: CFK™(Ty 9# — T2 3.2,5) after a change of basis

The vertical homology of C' is generated by zg. The generator zo in C{i = 0}
is not the image of any cycle in Ag. On the other hand, zo is non-zero in H,(A;).
Hence V(TQ_’Q# — T273;275) =1.

The cycle zg generates H,(C). Moreover, the cycle Uzg is non-zero in
H, (A;r); see Figure 5. The cycle Uzg is a boundary in A; as in Figure 6, while
the cycle zg is non-zero in H,(AF). It follows that v+ (Th o# — Th3.25) = 2, as
desired. O

Corollary 3.2. Let K =Ty 5#2T5 3# — T2,3.25. Then
T(K) =0, v(K)=1, and v'(K)=2.
Proof. By [HKL, Theorem B.1],
CFK® (T 5#2T53) X CFK*®(To9) @ A,

where A is acyclic (i.e., its total homology vanishes). Since acyclic summands
do not affect 7, v, and vT, the result follows. O

Lemma 3.3. Let K = T275#2T273# — T273;275. Then g4(K) = 2.

10
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Figure 4: The relevant summand of CEK ™ (Ty o# — T2 3:2.5)

Figure 5: The generators {Uz;} in AT

Proof. When p, ¢ > 0, the genus of T, 4 is equal to %. We can construct

a genus 4 Seifert surface F' for —T53.05 = (—T2,3)—2,5 by taking two parallel
copies of the genus one Seifert surface for —75 3 and connecting them with 5
half-twisted bands. The knot —T5 3#71_, 5 sits on F'. To see this, consider one
copy of the Seifert surface for —75 3 together with the half-twisted bands and a

11



Figure 6: The generators {Uz;} in AJ

small neighborhood of a segment connecting the ends of the bands.

Take the boundary sum of F' with the genus two Seifert surface for 75 5 and
with two copies of the genus one Seifert surface for 753 to obtain a surface
F’. The surface F’ is a genus 8 Seifert surface for K. The genus 6 slice knot
J = T 3#T o 5#15 3715 5 sits on this surface. Performing surgery along
J on F' in B* yields a genus two slice surface for K. Since v*(K) = 2 and
v (K) < g4(K), it follows that g4(K) = 2. O

In order to prove the main theorem, we will consider certain cables of the
knot K = T 5#2T5 37 — T2 3.2,5. We first compute 7 of these cables.

Lemma 3.4. Let K be the knot T s #2T5 s# — T2 3,2.5. Then

3p(p—1
T(Kpsp-1) = 7]9@2 )
Proof. Recall from [Hom12, Definition 3.4] that the invariant e(K) is defined to
be —1 if 7(K) < v(K). The equality then follows from [Hom12, Theorem 1],
which states that if e(K) = —1, then
(p—D(g+1)

() = p7(K) + L0

Proposition 3.5. Let K be the knot Ty s#2T5 s# — T2 3.05. Then

p(3p—1)

1.
5 +

v (Kpap-1) = ga(Kpzp—1) =

12



Proof. Let p,q > 0. For a cable knot K, 4, there is a reducible surgery
SS(](KZD#I) = Ss/p(K)#L(pa q)

We apply the surgery formula (2.4) for the above knot surgery when K is the
unknot. Note that max{V;, H;_,,} = V; when 0 < i < & since V; = H_; and
H; 1 < H;. Thus, we have

d(L(pg,1),4) = 2Vi(Tp.q) = d(L(q,p), p1(i)) + d(L(p, q), p2(7)) (3.1)

for all 0 <4 < BL

Here, we identify the Spin® structure of a rational homology sphere by an
integer ¢ as in [NW10], and p;(i) and p2(i) are the projection of the Spin®
structure to the two factors of the reducible manifold. In particular, we can
identify p;(i) with some integers between 0 and ¢ — 1 and po(é) with some
integers between 0 and p — 1.

We can also apply (2.4) for an arbitrary knot K. We have

d(L(pQ7 1)7 Z) - 2Vvi(KP,q) = d(L(CLp)?pl (7’)) -2 ma'X{VLPIT(”J (K)7 HLM(;)*QJ (K)}
+d(L(p, q), (7).

for all 4 < EL.
Compared with Equation (3.1) and using the fact V;(Tp,4) > 0, we deduce

that for all i < &2,

Vi(KILQ) = Vi(Tp,q)"’_maX{VLPlT(“J(K)vHL%J(K)}
Z maX{VLLWJ (K)a Htpl(i)*‘” (K)}

From now on, let us specialize to the case when K is the knot T5 s #2715 s# —
Ty 325 and ¢ = 3p — 1. We claim that

maxtVinw) Ay pu=) ) > 0

To see this, note that Vo(K), Vi(K) > 0 as vT(K) = 2. When 0 < p;(i) < 2p,

VLpl_@)J (K) > 0. Otherwise, 2p < p1(i) < ¢ = 3p — 1, and then HLplquJ (K) >

0 since H_j, = V4, and Vp(K), V1(K) > 0.
Hence, V;(K) ) > 0 for all i < ZL. This implies that

VJF(Kp’gp,l) Z Zw + 1.
On the other hand,
—1)(¢g—1
91(Kp) < pya() + LD,

13



since one can construct a slice surface for K, ; from p parallel copies of a slice
surface for K together with (p—1)q half-twisted bands. By Lemma 3.3, g4(K) =
2, so when ¢ = 3p — 1, the right-hand side of the above inequality is @ +1.
Hence

3p—1 3p—1
I% +1 < vt (Kpsp-1) < ga(Kpzp—1) < p(pT) +1,
so v (Kp3p-1) = ga(Kp3p-1) = M + 1. U

Note that vT (Kp)3p_1) - T(Kp73p_1) =p+1for K = T2)5#2T273# — T2)3;275.
This proves Theorem 1.

A similar argument shows that v gives a sharp four-ball genus bound for
certain other cable knots as well.

Proposition 3.6. Let K be a knot with vt (K) = g4(K) = n, then

p(2n —1p—1)

1.
5 +

vt (Kp,(2n71)p71) = 94(Kp,(2n71)p71) =
Proof. Let g = (2n — 1)p — 1. We proved
Vi(KP-,q) > maX{VLL(i)J (K)v HLPI“)*QJ (K)}
P I3

We claim that

maX{VLPI_(“JaHLm(i)*qJ} > 0.
To see this, note that V;(K) > 0 for all i < n. When 0 < pi(i) < np,
VLPIT@)J(K) > 0. Otherwise, np < pi(i) < ¢ = (2n — 1)p — 1, and then
HLm(;)—qJ (K) > 0. Hence, V;(Kp 4) > 0 for all i < BL. This implies that

’/+(Kp7q) > n +1

2
(I e VY
2
On the other hand,
p—1)(g—1
0u(pe) < pou(i) + 2D
-D((2n-1)p—2
I ¢ )((n2 )p—2)
_ op@e-np-1
2
So I/+(Kp,(2n71)p71) = 94(Kp,(2n71)p71) = 1)((271_721)1)_1) + 1. O

We conclude by showing that the knot signature cannot detect the four-ball
genus of the knots used in Theorem 1. Recall that

1K) < ga(K).

14



Proposition 3.7. Let K =T5 s#2T5 3% — 153,20.5. Then for p >0,

1
§|U(Kp,3pfl)| +2p — 2 < ga(Kp3p—1)-
Proof. We have that 0(T2,4) = 1 — ¢. By [Shi71, Theorem 9],

[ a(Ty,) if p is even
o(Kpq) = { o(K)+0(T,,) ifpisodd.

Thus, 0(T 3,2,5) = —4 and since signature is additive under connected sum,

0(Tos#2T2 3% — Toz2,5) = —4 +2(=2) — (—4)
=—4.
We showed in Lemma 3.3 that g4(K) = 2, so for K, the signature is indeed

strong enough to detect the four-ball genus. However, we will now show that it
is not strong enough to detect the four-ball genus of K 3,—1. We have that

|0(Kp,3p—1)| < |U(K)| + |0(Tp,3p—1)|
<4+(p-1)@3p-2)
= 3p*> —5p +6,

where the second inequality follows from the fact that when p,q > 0,

0(Tp,q)| < 294(Tppq) = (p—1)(q = 1).
On the other hand,
294(Kpap—1) = 3 —p+2,
SO
|U(Kp-,3pfl)| +4p—-4< 294(Kp.,3p71)-
O

Recall from Proposition 3.5 that g4 (Kp 3p—1) = v (Kp 3p—1). A consequence

of Proposition 3.7 is that the gap between 1o and v* can be made arbitrarily

2
large.
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