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Note on finding an optimal deflation for quadratic
matrix polynomials
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Abstract. This paper is concerned with the way to find an optimal deflation for the
eigenvalue problem associated with quadratic matrix polynomials. This work is a re-
sponse of the work by Tisseur et al. Linear Algebra Appl., 435:464—479, 2011, and solves
one of open problems raised by them. We build an equivalent unconstrained optimiza-
tion problem on eigenvalues of a hyperbolic quadratic matrix polynomial of order 2,
and develop a technique that transforms the quadratic matrix polynomial to an equiv-
alent one that is easy to solve. Numerical tests are given to illustrate several properties
of the problem.
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1 Introduction

Given a quadratic matrix polynomial

Q(λ)=λ2M+λC+K,

where M,C,K∈Rn×n with M nonsingular. Its associated quadratic eigenvalue problem
is

Q(λ)x=0,yHQ(λ)=0,

where λ is an eigenvalue and x,y are its corresponding (right) eigenvector and left eigen-
vector respectively. An eigenvalue is of positive type, if yHQ′(λ)x= yH(2λM+C)x> 0;
An eigenvalue is of negative type, if yHQ′(λ)x=yH(2λM+C)x<0.

Suppose that λ(Q), the spectra of Q(λ), is {λ1,. . .,λ2n}. Deflating two distinct eigen-
values λ1,λ2 is to construct a new quadratic matrix polynomial

Q̃(λ)=

[
Qd(λ)

q(λ)

]
=λ2

[
Md

m

]
+λ

[
Cd

c

]
+

[
Kd

k

]
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such that λ(q)={λ1,λ2},λ(Qd)={λ3,. . .,λ2n}. Usually, in the two eigenvalues, one is of
positive type, and the other is of negative type. If M,C,K are symmetric, and λ1∈λ(Q)
but λ1 is nonreal, then λ1 ∈ λ(Q), and in this case, it is usually required to deflate this
conjugate pair together.

The deflation technique is very useful and popular in computing the eigenvalues of
a matrix, so that it is hoped to be used for computing the eigenvalues of quadratic ma-
trix polynomials. However, as far as we know, not many works discussed on this topic.
Meini [5] discussed a deflation method coupled in her so-called “shift-and-deflate” tech-
nique. Tisseur et al. [6] presented a general way to deflate two distinct eigenvalues of
quadratic matrix polynomials if the corresponding eigenvectors are given.

Here we briefly describe the idea of the method introduced by Tisseur et al. First they
developed a method to deflate a quadratic polynomial for two given eigenvalues whose
eigenvectors are parallel. Then they invented a way to transform a quadratic polynomial
for two given eigenvalues whose eigenvectors are nonparallel into a new one that has
two eigenvalues whose eigenvectors are parallel, i.e., transform this case into the solved
case.

The new quadratic matrix polynomial produced by the deflation may have a signif-
icantly large condition number compared to the original quadratic matrix polynomial.
For the special case that M,C,K are symmetric, Tisseur et al. gave an optimal choice to
minimize the condition number for the parallel case, but for the nonparallel case, in [6,
Section 3], they reported:

Identifying which solution minimizes the condition number κ2(T)=‖T‖2‖‖T−1‖2
remains an open problem.

Here T is a related transformation matrix, of which the detailed form will be given below.
The aim of this paper is to solve this problem. First this problem is formulated and

simplified in Section 2, which induces a constrained optimization problem on the eigen-
values of a hyperbolic quadratic matrix polynomial of order 2. Next we parameterize (or
equivalently nondimensionalize) it and obtain an unconstrained optimization problem in
Section 3. Then we calculate the gradient and the Hessian matrix of the objective function
in Section 4. Then we make several numerical tests to show the properties of this prob-
lem and suggest a technique that transforms it to an equivalent problem whose objective
function is easy to solve, as is shown in Section 5. Finally some concluding remarks is
given in Section 6.

Notation. Throughout this paper, In (or simply I if its dimension is clear from the con-
text) is the n×n identity matrix. For any scalar, vector, or matrix X, <X and =X are its
real part and imaginary part respectively; while ‖X‖2 and ‖X‖∞ are its spectral norm and
sum-of-row norm. For any matrix X, λ(X) represents its spectra, and λ∗(X) represents
the set consisting of all its nonzero eigenvalues. For any real symmetric matrix X, X�0
(X� 0) means that X is positive (semi-)definite, and X≺ 0 (X� 0) if −X� 0 (−X� 0).
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By X⊗Y we denote the Kronecker product of two matrices X,Y. For any set S, S⊥ is its
orthogonal complement.

2 Simplify the problem

First we state the problem.
Given a symmetric quadratic matrix polynomial Q(λ)=λ2M+λC+K with M non-

singular, where (λ1,x1) and (λ2,x2) are its two eigenpairs of opposite types. Write

(Λ,X)=



([
λ1 0
0 λ2

]
,
[

x1 x2

])
, if λ1 and λ2 are real,([

<λ1 =λ1

−=λ1 <λ1

]
,
[
<x1 =x1

])
, if λ1=λ2 are nonreal and x1= x2.

If x1,x2 are nonparallel vectors, then the transformation T is

T= I2n+

[
abT adT

a f T ahT

]
,

where

a=
Xp
‖Xp‖2

,
[
b f d h

]
=(In−

zzT

zTz
)BA++U(I4−AA+)+

zwT

zTz
=: V∈Rn×4.

Here U can be any matrix with zTU=0, and

A=
1
2


2αM αC 0
αC 2αK 0
0 2αM αC
0 αC 2αK

, B=−
[
Ma Ca Ka

]
,

where αM,αC,αK are aTMa,aTCa,aTKa respectively. Also z∈Rn,w∈R4 are given by

z=XΛp−
eT
` XΛp−1

eT
` a

a, w=
1

eT
` a


eT
` XΛp−1

eT
` a‖Xp‖2
eT
` XΛq

eT
` Xq−1

,

where e` is a column of In that makes |eT
` a|=‖a‖∞, and

p=
γ

λ1−λ2

[
1
−1

]
, γ=1 or i to make p real, q=Λp−(λ1+λ2)p.



4 X. Liang / CSIAM Trans. Appl. Math., x (202x), pp. 1-21

The optimization problem to be solved is

min
U∈Rn×4 :zTU=0

κ2(T). (2.1)

Besides, a,V,A,B,z,w have the properties below, which has been shown in [6]:

zTV=wT, VA=B, wTA= zTB; (2.2)

aTB+aT
0 A=0 where a0=

[
1 0 0 1

]T ; (2.3)
A has full column rank. (2.4)

In the following, we will simplify the problem.
Define a linear mapping

rs : Rn×2m →R2n×m

Z=
[
Z1 Z2

]
7→ rs(Z)=

[
Z1
Z2

]
,

which satisfies
rs(XY)=(I2⊗X)rs(Y), ∀X,Y. (2.5)

Let

A0= I2⊗a=
[

a 0
0 a

]
, B0= rs(V)=

[
b f
d h

]
,

and then
T= I2n+A0BT

0 .

To solve the optimization problem Eq. (2.1), we need to compute ‖T‖2 and ‖T−1‖2 first,
or equivalently, the minimal and maximal eigenvalues of TTT. Note that

TTT= I2n+A0BT
0 +B0AT

0 +A0BT
0 B0AT

0

= I2n+
[
A0 B0

][BT
0 B0 I2
I2 0

][
A0 B0

]T .

Since AT
0 A0=(aTa)I2= I2, noticing λ∗(XY)=λ∗(YX),∀X,Y,

λ∗(TTT− I2n)=λ∗

([
A0 B0

][BT
0 B0 I2
I2 0

][
A0 B0

]T
)

=λ∗

([
BT

0 B0 I2
I2 0

][
A0 B0

]T[A0 B0
])

=λ∗

([
BT

0 B0 I2
I2 0

][
I2 AT

0 B0
BT

0 A0 BT
0 B0

])
=λ∗

([
BT

0 B0 I2
I2 0

][
I2 0

BT
0 A0 I2

][
I2 0
0 BT

0 B0−BT
0 A0AT

0 B0

][
I2 AT

0 B0
0 I2

])
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=λ∗

([
I2 AT

0 B0
0 I2

][
BT

0 B0 I2
I2 0

][
I2 0

BT
0 A0 I2

][
I2 0
0 BT

0 B0−BT
0 A0AT

0 B0

])
=λ∗

([
BT

0 B0+BT
0 A0+AT

0 B0 BT
0 B0−BT

0 A0AT
0 B0

I2 0

])
.

Due to the relationship between the eigenvalues of a quadratic matrix polynomial and its
linearization, λ∗(TTT− I2n)=λ(H̃), where

H̃(λ)=−λ2 I2+λ(BT
0 B0+BT

0 A0+AT
0 B0)+(BT

0 B0−BT
0 A0AT

0 B0).

Note that

H(λ) :=−H̃(λ−1)

=(λ−1)2 I2−(λ−1)(BT
0 B0+BT

0 A0+AT
0 B0)−(BT

0 B0−BT
0 A0AT

0 B0)

=λ2 I2−λ(BT
0 B0+BT

0 A0+AT
0 B0+2I2)+(I2+BT

0 A0+AT
0 B0+BT

0 A0AT
0 B0)

=λ2 I2−λ(BT
0 B0+BT

0 A0+AT
0 B0+2I2)+(I2+AT

0 B0)
T(I2+AT

0 B0). (2.6)

We can see the eigenvalues of H are also the eigenvalues of TTT, and the other eigenval-
ues of TTT are 1. Since AT

0 A0= I2,

H(1)=−BT
0 B0+BT

0 A0AT
0 B0=−BT

0 (I2n−A0AT
0 )B0�0. (2.7)

Hence H(λ) is a semi-hyperbolic quadratic matrix polynomial (see, e.g. [2]), which im-
plies

λ(H)={λi,i=1,2,3,4} satisfying 0≤λ1≤λ2≤1≤λ3≤λ4.

Here λ1≥0 is guaranteed by the fact λ1 is an eigenvalue of TTT. Thus,

κ2(T)=

√
λ4

λ1
.

Now the problem is to compute the maximal and minimal eigenvalues of H. Note that
by Eqs. (2.6) and (2.7),

H(λ)=λ2 I2−λ
[
(I2+AT

0 B0)
T(I2+AT

0 B0)+ I2−H(1)
]
+(I2+AT

0 B0)
T(I2+AT

0 B0) (2.8)

The next step is to calculate AT
0 B0 and BT

0 B0.
First, we simplify V. Write

a⊥=
1
2
[
αC −2αM 2αK −αC

]T .

Then it is easy to check aT
⊥A= 0. By Eq. (2.4), namely the fact A has full column rank,

A+=(AT A)−1AT, and I4−AA+=
a⊥aT

⊥
aT
⊥a⊥

. Thus, by Eq. (2.2),

V=BA+− zzT

zTz
BA++U

a⊥aT
⊥

aT
⊥a⊥

+
zwT

zTz
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=BA++
zwT

zTz
(I4−AA+)+U

a⊥aT
⊥

aT
⊥a⊥

=BA++

(
zwT

zTz
+U

)
a⊥aT

⊥
aT
⊥a⊥

.

Note that
{Ua⊥ : zTU=0}={z}⊥=:U .

Then
V=BA++vaT

⊥, (2.9)

where

v=
wTa⊥

aT
⊥a⊥zTz

z+u,u∈U ,

or equivalently,
v∈{v∈Rn : vTzaT

⊥a⊥=wTa⊥}. (2.10)

Then we simplify AT
0 B0. By Eq. (2.3),

aTBA+=−aT
0 AA+=−aT

0 (I4−
a⊥aT

⊥
aT
⊥a⊥

)=−aT
0 . (2.11)

Thus,

AT
0 B0=(I2⊗a)Trs(V) by Eq. (2.5)

= rs(aTV) by Eq. (2.9)

= rs(aTBA++aTvaT
⊥) by Eq. (2.11)

= rs(−aT
0 )+aTvrs(aT

⊥).

Write

S=
1
2

[
2αM αC
αC 2αK

]
, J=

[
0 −1
1 0

]
.

It is easy to see that rs(aT
⊥)=SJ. Therefore,

AT
0 B0=−I2+aTvSJ. (2.12)

Next we simplify BT
0 B0. By Eq. (2.5),

B0= rs(V)= rs(B(ATA)−1AT)+rs(vaT
⊥)=(I2⊗B(ATA)−1)rs(AT)+(I2⊗v)rs(aT

⊥).

It is easy to see that rs(AT)=(p0⊗ I2)S where p0=
[
1 0 1

]T
= e1+e3. Thus

B0= rs(V)=(I2⊗B(AT A)−1)(p0⊗ I2)S+(I2⊗v)SJ=: (I2⊗v)SJ+DS,
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where
D=(I2⊗B(AT A)−1)(p0⊗ I2). (2.13)

Besides, by Eq. (2.11),

(I2⊗aT)DS=(I2⊗aT)rs(BA+)= rs(aTBA+)=−I2. (2.14)

Then

BT
0 B0=[(I2⊗v)SJ+DS]T[(I2⊗v)SJ+DS]

=−JS(I2⊗vTv)SJ+SDT(I2⊗v)SJ− JS(I2⊗vT)DS+SDTDS

=−vTvJS2 J+SDT(I2⊗v)SJ− JS(I2⊗vT)DS+SDTDS,

and by Eqs. (2.7) and (2.12),

H1 :=−JH(1)J

=−[vTv−(aTv)2]S2− JSDT(I2⊗v)S+S(I2⊗vT)DSJ+ JSDTDSJ+ I2−aTv(JS−SJ).

Turn back to Eq. (2.8). Substituting Eq. (2.12),

H(λ)=λ2 I2−λ[I2−(aTv)2 JS2 J−H(1)]−(aTv)2 JS2 J

=−J
(

λ2 I2−λ[I2+(aTv)2S2−H1]+(aTv)2S2
)

J.

To sum up, the optimization problem Eq. (2.1) is equivalent to:

min
v∈Rn :vTzaT

⊥a⊥=wTa⊥
κ2(T)= min

v∈Rn :vTzaT
⊥a⊥=wTa⊥

√
λ4

λ1
(2.15)

where 0≤λ1≤λ2≤1≤λ3≤λ4 are four eigenvalues of the hyperbolic quadratic
polynomial

−JH(λ)J=λ2 I2−λ[I2+(aTv)2S2−H1]+(aTv)2S2

and

H1:=I2−[vTv−(aTv)2]S2−JSDT(I2⊗v)S+S(I2⊗vT)DSJ+JSDTDSJ−aTv(JS−SJ).
(2.16)

3 Parameterize the problem

First we give a lemma to show the relationship between hyperbolic quadratic matrix
polynomial and its eigenvalues.
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Lemma 3.1. For any two hyperbolic quadratic matrix polynomial H(i)(λ) = λ2 I+λB(i)+C
satisfying B(i)�0,C�0, let λ

(i)
min and λ

(i)
max be their minimal and maximal eigenvalues respectively.

If B(1)�B(2), then λ
(1)
min≥λ

(2)
min,λ(1)

max≤λ
(2)
max.

Proof. Since the polynomial is hyperbolic, for any vector x satisfying xTx=1, we can well
define

ρ±(x) :=
1
2

(
−xTBx±

√
(xTBx)2−4xTCx

)
.

Then
∂ρ+(x)

∂(xTBx)
=

1
2
(−1+

2xTBx
2
√
(xTBx)2−4xTCx

)=
−ρ+(x)√

(xTBx)2−4xTCx
≤0.

Thus, B(1)�B(2) implies xTB(1)x≥xTB(2)x for all x. Then, ρ
(1)
+ (x)≤ρ

(2)
+ (x). As a result, by

the Courant-Fischer min-max theorem of hyperbolic quadratic matrix polynomials [1],
λ
(1)
max=maxρ

(1)
+ (x)≤maxρ

(2)
+ (x)=λ

(2)
max.

Similarly,

∂ρ−(x)
∂(xTBx)

=
1
2
(−1− 2xTBx

2
√
(xTBx)2−4xTCx

)=
ρ−(x)√

(xTBx)2−4xTCx
≥0.

Then, ρ
(1)
− (x)≥ρ

(2)
− (x), and λ

(1)
min=minρ

(1)
− (x)≥minρ

(2)
− (x)=λ

(2)
min.

We may continue simplifying the optimization problem.
First, we know the minimal v must lie in {a,Ma,Ca,Ka}. Otherwise, let

v=v0+v⊥ where v0∈{a,Ma,Ca,Ka},v⊥∈{a,Ma,Ca,Ka}⊥.

Then aTv=aTv0,BTv=BTv0, which implies (I2⊗vT)D=(I2⊗vT
0 )D by Eq. (2.13). However,

vTv=vT
0 v0+vT

⊥v⊥≥vT
0 v0. By Lemma 3.1, κ2(T;v)≥κ2(T;v0).

Let
Ba =B+a

[
αM αC αK

]
, B̃a =Ba(AT A)−1. (3.1)

It is easy to check aTBa=0 and BTBa=BT
a Ba. Since the minimal v must lie in {a,Ma,Ca,Ka},

we can write
v= ξa+ B̃aỹB, where ξ∈R,ỹB∈R3. (3.2)

thus, by Eq. (2.14),

aTv= ξ, vTv= ξ2+ ỹT
BB̃T

a B̃aỹB, (I2⊗vT)DS=−ξ I2+(I2⊗ ỹT
BB̃T

a )DS. (3.3)

Substituting Eq. (3.3) into Eq. (2.16),

H1= I2− ỹT
BB̃T

a B̃aỹBS2− JSDT(I2⊗ B̃aỹB)S+S(I2⊗ ỹT
BB̃T

a )DSJ+ JSDTDSJ.
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Clearly,
In = aaT+ B̃aB̃+

a +B⊥B+
⊥ ,

where B⊥ is a basis of {a,Ma,Ca,Ka}⊥. Thus,

DSJ=(I2⊗[aaT+ B̃aB̃+
a +B⊥B+

⊥ ])DSJ
by Eq. (2.13)

=(I2⊗aaT)DSJ+(I2⊗[B̃aB̃+
a +B⊥B+

⊥ ])(I2⊗B(ATA)−1)(p0⊗ I2)SJ
by Eq. (2.14)

=−(I2⊗a)J+(I2⊗ B̃aB̃+
a B(AT A)−1)(p0⊗ I2)SJ

by Eq. (3.1)

=−(I2⊗a)J+
(

I2⊗ B̃aB̃+
a (B̃a−a

[
αM αC αK

]
(ATA)−1)

)
(p0⊗ I2)SJ

by aTBa = aT B̃a =0

=−(I2⊗a)J+(I2⊗ B̃a)(p0⊗ I2)SJ.

Then

−JSDTDSJ=−J(I2⊗aTa)J− JS(pT
0⊗ I2)(I2⊗ B̃T

a B̃a)(p0⊗ I2)SJ

= I2− JS(pT
0⊗ I2)(I2⊗ B̃T

a B̃a)(p0⊗ I2)SJ

=: I2+SDT
a DaS,

where Da =(I2⊗ B̃a)(p0⊗ I2)SJS−1, and by aT B̃a =0,

−S(I2⊗ ỹT
BB̃T

a )DSJ=S(I2⊗ ỹT
BB̃T

a a)J−S(I2⊗ ỹT
BB̃T

a B̃a)(p0⊗ I2)SJ

=−S(I2⊗ ỹT
BB̃T

a B̃a)(p0⊗ I2)SJ

=−S(I2⊗ ỹT
BB̃T

a )DaS,

which gives

H1= I2− ỹT
BB̃T

a B̃aỹBS2+S(I2⊗ ỹT
BB̃T

a )DaS+SDT
a (I2⊗ B̃aỹB)S− I2−SDT

a DaS

=−S(Da−(I2⊗ B̃aỹB))
T(Da−(I2⊗ B̃aỹB))S

=−SDT
y DyS,

(3.4)

where Dy =Da−(I2⊗ B̃aỹB). Note that

Da =(I2⊗ B̃a)(p0⊗ I2)SJS−1

=(I2⊗Ba(AT A)−1)(p0⊗ I2)SJS−1=(I2⊗Ba)R.

where calculation tells

R=(I2⊗(AT A)−1)(p0⊗ I2)SJS−1=δ

[
r −e1
e3 r−e2

]
,
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in which I3=
[
e1 e2 e3

]
, and

δ=
4

4αKαM−α2
C

, r=
1

2(2α2
M+2α2

K+α2
C)

 2αC(αM+αK)
4α2

K+α2
C

−2αC(αM+αK)

.

Thus, writing yB =(AT A)−1ỹB and y= r− 1
δ yB,

Dy =(I2⊗Ba)R−(I2⊗BayB)=δ(I2⊗Ba)

[
y −e1
e3 y−e2

]
.

Then, letting BW =BT
a Ba =BTB−

[
αM αC αK

]T[
αM αC αK

]
,

DT
y Dy =δ2

[
yTBWy (e3−e1)

TBWy
(e3−e1)

TBWy yTBWy−2eT
2 BWy

]
+δ2

[
eT

3 BWe3 −eT
2 BWe3

−eT
2 BWe3 eT

2 BWe2+eT
1 BWe1

]
=: δ2(Wy+We).

(3.5)

Note that
[

y −e1
e3 y−e2

]
has full column rank, because otherwise y‖ e1,(y−e2)‖ e3, which is

a contradiction. Thus DT
y Dy�0 and then by Eq. (3.4) H1 =−SDT

y DyS≺0, which implies
λ2<1<λ3.

On the other hand, by Eq. (3.2),

v= ξa+BayB = ξa+δBa(r−y), ξ∈R,y∈R3.

Then the only constraint on v, namely Eq. (2.10), is

wTa⊥
aT
⊥a⊥

=vTz= ξaTz+δzTBar−δzTBay,

or equivalently,
zT

a y= ξ+β,

where

za =
δBT

a z
aTz

, β= zT
a r− wTa⊥

aTzaT
⊥a⊥

.

Also,
−JH(λ)J=λ2 I2−λ

(
I2+δ2S(Wy+We)S+ξ2S2)+ξ2S2.

To sum up, the constrained optimization problem Eq. (2.1), or Eq. (2.15), is equivalent
to this unconstrained optimization problem:
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min
y∈R3

κ2(T)=min
y∈R3

√
λ4

λ1
(3.6)

where 0≤λ1≤λ2<1<λ3≤λ4 are four eigenvalues of the hyperbolic quadratic
polynomial

−JH(λ)J=λ2 I2−λ[I2+δ2SWeS+δ2SWyS+(zT
a y−β)2S2]+(zT

a y−β)2S2, (3.7)

and

Wy =(yTBWy)I2+

[
0 (e3−e1)

TBWy
(e3−e1)

TBWy −2eT
2 BWy

]
.

4 Analyze the problem

It might be possible to have an explicit solution of the unconstrained optimization prob-
lem Eq. (3.6), but it must be complicated and difficult to use in practice. Note that H(λ) is
of order 2, we can directly use some numerical optimization method to reach the minimal
point ymin and the minimum κ2(T;ymin).

If zT
a y=β, then−JH(λ)J=λ2 I2−λ(I2−H1), which implies that λ1=λ2=0 and κ2(T)=

+∞. Hence the whole domain is split into two connected domains: {y : zT
a y < β} and

{y : zT
a y> β}. Then we may use optimization methods to try to attain the local minimum

in both of the two domains.
Most optimization methods require the gradient and the Hessian of the objective

function, and we calculate it theoretically.
First try to obtain those for the eigenvalues. For any eigenpair of Eq. (3.7), it holds that

−JH(λ)Jx = 0, and without loss of generally, xTx = 1. Let W = δ2(We+Wy),ξ = zT
a y−β,

and then
−JH(λ)J=λ2 I2−λ(I2+SWS+ξ2S2)+ξ2S2. (4.1)

Taking differential on both sides gives

−Jd(H(λ)) Jx− JH(λ)Jdx=0, (4.2)

and
0= xT JH(λ)Jdx=−xT Jd(H(λ)) Jx.

Thus,

0=−xT
(

2λdλI2−dλ[I2+SWS+ξ2S2]−λ[SdWS+2ξdξS2]+2ξdξS2
)

x.

Write t :=Sx=
[
τ1 τ2

]T, and noticing xTx=1,

0=2λdλ−dλ[1+tTWt+ξ2tTt]−λ[tTdWt+2ξdξtTt]+2ξdξtTt,
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and then

dλ=
λtTdWt+2(λ−1)ξdξtTt

2λ−[1+tTWt+ξ2tTt]
.

Note that dξ= zT
a dy and by Eq. (3.5),

dWt=δ2d
(
(yTBWy)I2+

[
0 (e3−e1)

TBWy
(e3−e1)

TBWy −2eT
2 BWy

])
t

=δ2td
(

yTBWy
)
+δ2

[
0 (e3−e1)

TBW dy
(e3−e1)

TBW dy −2eT
2 BW dy

]
t

=2δ2tyTBW dy+δ2
[

τ2(e3−e1)
T

τ1(e3−e1)
T−2τ2eT

2

]
BW dy

=δ2(2tyT+ET
t )BW dy,

where
Et :=

[
τ2(e3−e1) τ1(e3−e1)−2τ2e2

]
.

Then

tT dWt=2δ2[(tTt)y+
1
2

Ett]TBW dy=2δ2[(tTt)y+τ1τ2(e3−e1)−τ2
2 e2]

TBW dy,

and we have

dλ=
2λδ2[(tTt)y+τ1τ2(e3−e1)−τ2

2 e2]TBW+2(λ−1)tTtξzT
a

2λ−[1+tTWt+ξ2tTt]
dy,

which implies

∇λ=2
λδ2BW [(tTt)y+τ1τ2(e3−e1)−τ2

2 e2]+(λ−1)tTtξza

2λ−[1+tTWt+ξ2tTt]
.

Writing τW := tTWt, then

∇λ=2
λδ2BW [(tTt)y+τ1τ2(e3−e1)−τ2

2 e2]+(λ−1)tTtξza

2λ−[1+τW+ξ2tTt]
,

and
d(∇λ)=

∂∇λ

∂λ
dλ+

∂∇λ

∂ξ
dξ+

∂∇λ

∂τ1
dτ1+

∂∇λ

∂τ2
dτ2+

∂∇λ

∂τW
dτW . (4.3)

Let
σ :=2λ−[1+tTWt+ξ2tTt], g :=λδ2BW [(tTt)y+

1
2

Ett]+(λ−1)tTtξza, (4.4)

then
∇λ=2

g
σ

. (4.5)
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Putting

∂∇λ

∂λ
=

2
σ2

(
(δ2BW [(tTt)y+

1
2

Ett]+tTtξza)σ−2g
)

,

∂∇λ

∂ξ
=

2
σ2

(
(λ−1)tTtzaσ+2tTtξg

)
,

∂∇λ

∂τ1
=

2
σ2

(
(λδ2BW [2τ1y+τ2(e3−e1)]+2(λ−1)τ1ξza)σ+ξ22τ1g

)
,

∂∇λ

∂τ2
=

2
σ2

(
(λδ2BW [2τ2y+τ1(e3−e1)−2τ2e2]+2(λ−1)τ2ξza)σ+ξ22τ2g

)
,

∂∇λ

∂τW
=

2
σ2 g,

dτW =2tTWdt+tT dWt,

into Eq. (4.3) gives

d(∇λ)=
2
σ2

((
(δ2BW [(tTt)y+

1
2

Ett]+tTtξza)σ−2g
)

2
gT

σ
dy+

(
(λ−1)tTtzaσ+2tTtξg

)
zT

a dy

+2σλδ2BWytT dt+σλδ2BW Et dt+2σ(λ−1)ξzatT dt+2ξ2gtT dt

+g
(

2tTWdt+2δ2[(tTt)y+
1
2

Ett]TBW dy
))

=:
2
σ2

(
Gy dy+Gt dt

)
,

(4.6)
where

Gy =

(
(δ2BW [(tTt)y+

1
2

Ett]+tTtξza)σ−2g
)

2
gT

σ
+
(
(λ−1)tTtzaσ+2tTtξg

)
zT

a

+2gδ2[(tTt)y+
1
2

Ett]TBW

by δ2BW [(tTt)y+
1
2

Ett]=
1
λ
[g−(λ−1)tTtξza]

=(
4
λ
− 4

σ
)ggT+

2
λ

tTtξ(zagT+gzT
a )+σ(λ−1)tTtzazT

a

by −xT JH(λ)Jx=λ2−λ(2λ−σ)+ξ2tTt=0⇒σ−λ=− ξ2tTt
λ

=
4

σλ

ξ2tTt
−λ

ggT+
2
λ

tTtξ(zagT+gzT
a )+σ(λ−1)tTtzazT

a

=σtTt
(
−(za−

2ξ

σλ
g)(za−

2ξ

σλ
g)T+λzazT

a

)
,
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and
Gt =2gtTW+2(σλδ2BWy+σ(λ−1)ξza+ξ2g)tT+σλδ2BW Et. (4.7)

Then we calculate dt. By Eq. (4.2), dx satisfies −JH(λ)Jdx= Jd(H(λ)) Jx, which gives

−JH(λ)Jdx= Jd(H(λ)) Jx

=−2λdλx+dλ[I2+SWS+ξ2S2]x+λSdWSx+2λξdξS2x−2ξdξS2x

=(1−2λ)dλx+dλ[SWS+ξ2S2]x+λSdWSx+2(λ−1)ξdξS2x.

Note that xT Jx=0,xT dx=0 and x∈R2. Hence dx=η Jx holds for some η. Moreover, since
x is an eigenvector of the matrix−JH(λ)J corresponding to 0, Jx has to be its eigenvector
corresponding to a positive eigenvalue ω, and

ω=(Jx)T(−JH(λ)J)(Jx)=(Jx)T[λ2 I2−λ(I2+SWS+ξ2S2)+ξ2S2](Jx)

=λ2−λ(1+sTWs+ξ2sTs)+ξ2sTs,

where s :=SJx=SJS−1t. Thus

(Jx)T(−JH(λ)J)(η Jx)=−dλxT J[SWS+ξ2S2]x−λxT JSdWSx−2(λ−1)ξdξxT JS2x,

and

η=
−dλxT J[SW+ξ2S]t−λxT JSdWt−2(λ−1)ξdξxT JSt

ω

=
−2 gT dy

σ xT J[SW+ξ2S]t−λxT JS(2δ2tyTBW dy+δ2ET
t BW dy)−2(λ−1)ξzT

a dyxT JSt
ω

=
−2 xT J[SW+ξ2S]t

σ gT−2λδ2(xT JSt)yTBW−λδ2xT JSET
t BW−2(λ−1)ξ(xT JSt)zT

a

ω
dy

=
2 sTWt+ξ2sT t

σ gT+2λδ2sTtyTBW+λδ2sTET
t BW+2(λ−1)ξsTtzT

a

ω
dy.

Since by Eq. (4.7),

gt :=Gts=2gtTWs+2(σλδ2BWy+σ(λ−1)ξza+ξ2g)tTs+σλδ2BW Ets

=2(tTWs+ξ2tTs)g+σ[2λδ2tTsBWy+2(λ−1)tTsξza+λδ2BW Ets],

we have

η=
gT

t
σω

dy. (4.8)
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Moreover,

gt =2(tTWs+ξ2tTs)g+σ[2λδ2tTsBWy+2(λ−1)tTsξza+λδ2BW Ets]
by Eq. (4.4)

=2(tTWs+ξ2tTs)g+σ[2
tTs
tTt

(g−λδ2BW
1
2

Ett)+λδ2BW Ets]

=2(tTWs+ξ2tTs+
σtTs
tTt

)g+
σ

tTt
λδ2BW Et[(tTt)s−(tTs)t]. (4.9)

Note that

(tTt)s−(tTs)t=[(tTt)I2−ttT]s=−JttT Js=−Jt(xTSJSJx)=−JtxT(−4
δ

I2)x=
4
δ

Jt,

and

0= xT(−JT H(λ)J)Jx= xT(λ2 I2−λ[I2+SWS+ξ2S2]+ξ2S2)Jx=−λ[tTWs+ξ2tTs]+ξ2tTs,

which gives

tTWs=
(1−λ)ξ2tTs

λ
. (4.10)

Note that by Eq. (4.4)

ξ2tTt+σλ=2λ2−λ[1+tTWt+ξ2tTt]+ξ2tTt=λ2. (4.11)

Substituting Eqs. (4.10) and (4.11) into Eq. (4.9) gives

gt =Gts=2(
ξ2

λ
tTs+

σtTs
tTt

)g+
4σ

tTt
λδBW Et Jt

=2tTs(
ξ2

λ
+

σ

tTt
)g+

4σ

tTt
λδBW Et Jt

=2
λ

tTt
[tTsg+2σδBW Et Jt].

Noticing by Eq. (4.8)

dt=Sdx=ηSJx=ηs=
(

gT
t

σω
dy
)

s,

Eq. (4.6) becomes

d(∇λ)=
2
σ2

(
σtTt

(
λzazT

a −(za−
2ξ

σλ
g)(za−

2ξ

σλ
g)T
)

dy+
gtgT

t
σω

dy

)
,

and

∇2λ=
2
σ2

(
σtTt

(
λzazT

a −(za−
2ξ

σλ
g)(za−

2ξ

σλ
g)T
)
+

gtgT
t

σω

)
. (4.12)
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Following this, we may easily have ∇λ4,∇λ1 and then

∇κ=
λ1∇λ4−λ4∇λ1

2λ2
1κ

=
κ

2

(
∇λ4

λ4
−∇λ1

λ1

)
, (4.13)

with κ=κ2(T), which can be used in the optimization methods. Moreover,

∇2κ=

(
∇λ4

λ4
−∇λ1

λ1

)
∇κT

2
+

κ

2

(
∇2λ4

λ4
−∇λ4∇λT

4

λ2
4
−∇

2λ1

λ1
+
∇λ1∇λT

1

λ2
1

)
=

κ

2

(
2∇κ∇κT

κ2 +
∇2λ4

λ4
−∇λ4∇λT

4

λ2
4
−∇

2λ1

λ1
+
∇λ1∇λT

1

λ2
1

)
=

κ

2

(
∇2λ4

λ4
−∇

2λ1

λ1
− 2∇λ1∇κT

λ1κ
− 2∇κ∇λT

1
κλ1

− 2∇κ∇κT

κ2

)
, (4.14)

of which the last equality holds for ∇λ4
λ4

=2∇κ
κ +∇λ1

λ1
by Eq. (4.13).

5 Solve the problem

Usually optimization methods converge to the local minimal point or stationary point,
which would not be the global minimal point. It is well known that optimization methods
performing on convex functions always converge to the unique global minimal point.
Hence we would like to know whether the objective function is convex in its connected
domain. However, numerical tests do not support that.

Example 5.1 (Convex Test). All the numerical tests in the paper are implemented in
MATLAB R2017a. We randomly generate three symmetric matrices M,C,K (not neces-
sarily positive definite), where M=UTΛU in which U is generated by the MATLAB code
rand(10), and Λ is diagonal and each diagonal entry follows the uniform distribution on
[−0.5,0.5]. Then we pick its two eigenpairs of different types, and calculate the related
unconstrained optimization problem Eq. (3.6).

Then we randomly generate 1000 points where any coordinate follows the uniform
distribution [−100,100]. For each point we compute its Hessian matrix ∇2κ, and then
compute its minimal eigenvalue λmin. Here the gradient ∇κ and the Hessian ∇2κ are
generated according to Eq. (4.13) and Eq. (4.14) respectively. Specially, if the point (nearly)
locates in the hyperplane zT

a y=β, then we simply discard the pair, or equivalently let the
minimal eigenvalue be +∞. Then we find the minimal λmin of the 1000 pairs.

The procedure above will be repeated 1000 times. The distribution of the 1000 mini-
mal λmin is shown below.

(−108,−106) (−106,−104) (−104,−103) (−103,−102) (−102,−100)
27 294 351 255 73

The numerical test suggests us that the objective function is hardly convex.
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Although the objective function may be not convex, the global minimal point can still
be converged if it is pseudoconvex. A function f : S⊂Rn→R is called pseudoconvex, if
f (y1)< f (y2)⇒ (y1−y2)T∇ f (y2)<0 for any y1,y2∈S. A function f (y) pseudoconvex on
S has this property: if y0∈S is a stationary point, then y0 is a global minimal point; if y0
is a local minimal point, then y0 is a global minimal point. If ∇2 f (y) is positive definite
on the subspace {∇ f (y)}⊥, then f is pseudoconvex. In detail, we will judge whether
ZH∇2κZ� 0, where Z is an orthonormal basis matrix of the orthogonal complement of
∇κ, and ZT∇κ= 0. Specially Z= I3 if ∇κ= 0. More information can be found in classic
textbooks (e.g. [3]), or this early paper [4].

Numerical tests imply the objective function κ2(T) with respect to y is pseudoconvex
in its connected domain for a few instances.

Example 5.2 (Pseudoconvex Test). The whole process is nearly the same as in Exam-
ple 5.1, but rather than the minimal eigenvalue of ∇2κ, we calculate the minimal eigen-
value λ̃min of ZH∇2κZ.

The distribution of the 1000 minimal λ̃min is shown below.

(−106,−102) (−102,−10−2) (−10−2,−10−6) (−10−6,−10−11) (10−13,10−8)
97 595 275 26 7

The numerical test suggests us that the objective function is pseudoconvex for a few
instances only.

Although in most instances the objective function is likely not to be pseudoconvex,
for any given problem, namely given the quadratic matrix polynomial Q(λ) and its two
eigenpairs to be deflated, we are able to transform it into an equivalent problem whose
associated tiny-scale unconstrained optimization problem with a pseudoconvex objective
function.

Recall the problem setting in the beginning of Section 2. Note that a is determined by
the eigenvectors only. Thus, performing an affine transformation on the eigenvalue does
not change either a or the eigenvectors to be deflated. In details, the problem

Q̃(λ)=
1
ν2

1
Q(ν1λ+ν2)=λ2M+λ

2ν2M+C
ν1

+
ν2

2 M+ν2C+K
ν2

1
=: λ2M+λC̃+K̃ (5.1)

will be treated instead. However,

α̃C = aTC̃a=
2ν2αM+αC

ν1
, α̃K = aTK̃a=

ν2
2αM+ν2αC+αK

ν2
1

.

It is not difficult to make α̃C =0,|αM|= |α̃K|. In fact,

ν2=−
αC

2αM
, ν1=

√
|4αMαK−α2

C|
2αM

6=0.
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Moreover, write χ=sign(4αMαK−α2
C), and then α̃K =χαM.

Since the deflation works on eigenvectors only, the tiny-scale unconstrained optimiza-
tion problem must have the same form, except the terms involving αC,αK. Hence in the
following, we will directly use αC,αK rather than α̃C,α̃K, and all the notation will be kept.
Now

δ=
1

α2
Mχ

, S=αM

[
1

χ

]
.

So |αM|= 1√
|δ|

. The involving hyperbolic quadratic polynomial, namely Eq. (4.1), is

−JH(λ)J=λ2 I2−λ[I2+SWS+ζ2S2]+ζ2S2=λ2 I2−λ[(1+
ζ2

χδ
)I2+SWS]+

ζ2

χδ
I2.

Since I2 and SWS can be simultaneously diagonalizable by an orthonormal matrix, that
hyperbolic quadratic polynomial is diagonalizable by an orthonormal matrix, which im-
plies: 1) an eigenvector corresponding to a positive-type eigenvalue has to be that corre-
sponding to a negative-type eigenvalue; 2) the eigenvectors corresponding to two positive-
type eigenvalues are orthogonal. There are two cases to be considered.

Case 1: λ1,λ4 cannot share a same eigenvector, which implies that λ1,λ3 share a same
eigenvector x1 and λ2,λ4 share a same eigenvector x4 satisfying xT

4 x1=0.
Since xT

1 x1=xT
4 x4=1, without loss of generality, assume x1= Jx4. Then tT

4 t4=xT
4 S2x4=

1
χδ , and similarly tT

1 t1 =
1

χδ . Thus, λ1λ3 =
ξ2

χδ = λ2λ4 and then λ1
λ2

= λ4
λ3

, which implies
λ1=λ2,λ3=λ4. This tells λ1,λ4 share a same eigenvector vector, a contradiction.

Case 2: λ1,λ4 share a same eigenvector. Since xT
1 x1 = xT

4 x4 =1, without loss of gener-
ality, assume x1=x4, then t1= t4,s1= s4. Then tT

4 s4=xT
4 S2 Jx4=0,tT

4 t4=xT
4 S2x4=

1
χδ . Also,

σ4=−σ1=λ4−λ1, gt4 = gt1 =4χδ2σ4λ4BW Et4 Jt4 by Eq. (4.9).
By Eqs. (4.5) and (4.13),

∇κ

κ
=

1
2

(
∇λ4

λ4
−∇λ1

λ1

)
=

g4

σ4λ4
− g1

σ1λ1

=δ2BW [
tT
4 t4

σ4
y+

1
2σ4

Et4 t4]+(1− 1
λ4

)
tT
4 t4

σ4
ξza−δ2BW [

tT
1 t1

σ1
y+

1
2σ1

Et1 t1]−(1−
1

λ1
)

tT
1 t1

σ1
ξza

=δ2BW [(
1

χδσ4
− 1

χδσ1
)y+

1
2σ4

Et4 t4−
1

2σ1
Et4 t4]+[

1
χδσ4

− 1
χδσ1

− 1
χδλ4σ4

+
1

χδλ1σ1
]ξza

=
1

χδσ4

(
δ2BW [2y+χδEt4 t4]+[2−( 1

λ4
+

1
λ1

)]ξza

)
.

By ZT ∇κ
κ =0,

δ2ZTBW [2y+χδEt4 t4]= [
1

λ4
+

1
λ1
−2]ξZTza,

and then
2ξ

σ4λ4
ZTg4=

2ξ

σ4λ4

(
λ4δ2ZTBW [

1
χδ

y+
1
2

Et4 t4]+
λ4−1

χδ
ξZTza

)
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=
2ξ

σ4λ4

(
λ4

2χδ
[

1
λ4

+
1

λ1
−2]ξZTza+

λ4−1
χδ

ξZTza

)
=

ξ2

χδσ4λ4

(
λ4

λ1
−1
)

ZTza

=
λ1λ4

(λ4−λ1)λ4

(
λ4

λ1
−1
)

ZTza by
ξ2

χδ
=λ1λ4

=ZTza.

Similarly, 2ξ
σ1λ1

ZTg1=ZTza. Thus, by Eqs. (4.12) and (4.14),

ZT∇2κZ=
κ

2
ZT
(
∇2λ4

λ4
−∇

2λ1

λ1

)
Z=κZT

(
2

χδσ4
zazT

a +
1
σ3

4
[

1
λ4ω4

+
1

λ1ω1
]gt4 gT

t4

)
Z�0.

Moreover, in the generic case, except several critical points

rank(ZT∇2κZ)= rank(ZT [za gt4

]
)=2,

which implies ZT∇2κZ�0.
To sum up, the objective function of this transformed problem Eq. (5.1) is pseudocon-

vex. Then, optimization methods would effectively attain the global minimum in either
of the two connected domains. When using optimization method to solve the problem,
we may start at one initial y with zT

a y > β and another initial y with zT
a y < β. As long

as the problem is pseudoconvex, the two numerical solutions come out fast. After that,
we may pick the better one in the two. Please note that this transforming technique is
implemented for the pseudoconvexity, so it would produce a structure-preserving trans-
formation for the deflation whose condition is worse than that of the untransformed one.

Example 5.3 (Convergence Test). The unconstrained optimization problem Eq. (3.6) is
built as in Example 5.1.

Then we randomly generate 100 points where any coordinate follows the uniform
distribution [−100,100]. Then we use each point as the initial point and perform both the
quasi-Newton method and the trust-region method to observe the convergence behavior.
All the options of the methods are set in default by MATLAB. Among those, the tolerance
of the difference of the function value is 10−6, and the iteration will stop if the number of
iterations reaches 300.

The procedure above will be repeated 1000 times. Two rounds of the procedure are
made for the untransformed problem and the transformed problem. The data of the
numerical tests are shown below.
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problem method domain min attained iterations func. evaluations
max min mean max min mean

untransformed
trust-region zT

a y>β 502 300 10 28.2 301 11 29.2
zT

a y<β 498 300 11 28.5 301 12 29.5

quasi-Newton zT
a y>β 489 68 1 13.1 280 14 43.3

zT
a y<β 511 70 1 13.0 187 13 43.2

transformed
trust-region zT

a y>β 468 300 4 28.0 301 5 29.5
zT

a y<β 532 300 5 28.4 301 6 29.4

quasi-Newton zT
a y>β 496 65 1 13.4 300 8 39.2

zT
a y<β 504 70 1 13.5 300 10 39.1

From the data, we know that generally the quasi-Newton method uses fewer itera-
tions but more function evaluations in the sense of the average case and the worst case.
However, the trust-region method needs the (numerical) Hessian. Since the number of
function evaluations needed by the quasi-Newton method does not exceed twice of that
need by the trust-region method, the quasi-Newton method is faster than the trust-region
methods according to the data.

It seems that in many cases the minimums are attained in different connected domain
by the two methods. Actually in fact, the minimums are nearly the same, which can be
illustrated by the distribution of the relative difference of the 1000 pairs of minimums
obtained by trust-region and quasi-Newton, namely κtrust-region−κquasi-Newton

κtrust-region
given below.

problem (−2,−1) (−1,−10−2) (−10−2,0) (0,10−2) (10−2,1)
untransformed 0 153 44 115 688

transformed 1 33 39 365 562

From the data, we can see the minimums found by the trust-region method is between
half and twice those found by the quasi-Newton method, which would produce little
affect on the condition number; in most cases, the quasi-Newton method is a little better
than the trust-region.

On the other hand, from the data above, we know performing on the transformed
problem costs slightly less than performing on the untransformed problem. However,
if we compare the minimums found for the untransformed and transformed problems,
namely κuntransformed

κtransformed
give below,

(10−5,0.1) (0.1,1) (1,10) (10,100) (100,1000) (1000,105)
30 123 299 396 135 17

we may discover that in most cases performing on the transformed problems is likely
to find out a much better structure-preserving transformation than performing on the
untransformed problems.

To sum up, a good choice is to use the quasi-Newton method to solve the uncon-
strained optimization problem Eq. (3.6) induced by the transformed quadratic matrix
polynomial.

Besides, from the data, we can see the minimum has no preference on the connected
domain, which makes us have to compute on them both.
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6 Concluding remarks

We have built a tiny-scale unconstrained optimization problem and suggested using op-
timization methods to solve it, which make it successful to find an optimal deflation for
symmetric quadratic matrix polynomials. This would be a good answer to the question
asked by Tisseur et al. [6]. However, it is quite natural to ask whether this method can
be used for asymmetric problems. It is likely that some analogues would hold, but to
ensure this is left for future work. In addition, investigating the theoretical solution to
the unconstrained optimization problem would be also valuable to consider in future.
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