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Abstract4

As a variant of the classical trust-region method for unconstrained optimization, the cubic5

regularization of Newton method introduces a cubic regularization term in the surrogate ob-6

jective to adaptively adjust the updating step and deals with cases with both indefinite and7

definite Hessians. It has been demonstrated that the cubic regularization of Newton method8

enjoys a good global convergence and is an efficient solver for the unconstrained minimization.9

The main computational cost in each iteration is to solve a cubic regularization subproblem.10

The Newton iteration is a common and efficient method for this task, especially for small-11

to medium-size problems. For large size problems, a Lanczos type method was proposed in12

[Cartis, Gould and Toint, Math. Program., 127:245–295(2011)]. This method relies on a Lanc-13

zos procedure to reduce the large-scale cubic regularization subproblem to a small one and14

solve it by the Newton iteration. For large and ill-conditioned problems, the Lanczos method15

still needs to produce a large dimensional subspace to achieve a relatively highly accurate16

approximation, which declines its performance overall. In this paper, we first show that the17

cubic regularization subproblem can be equivalently transformed into a quadratic eigenvalue18

problem, which provides an eigensolver alternative to the Newton iteration. We then establish19

the convergence of the Lanczos method and also propose a nested restarting version for the20

large scale and ill-conditioned case. By integrating the nested restarting Lanczos iteration21

into the cubic regularization of Newton method, we verify its efficiency for solving large scale22

minimization problems in CUTEst collection.23
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1 Introduction27

For the unconstrained minimization28

min
x∈Rn

f(x), (1.1)29

where f : Rn → R and its Hessian ∇2f(x) ∈ Rn×n satisfies

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2, ∀x,y ∈ Rn,
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[27] proposes a variant of the classical trust-region method [9, 35], namely, a cubic regularization30

of Newton method. Let 0 < L0 ≤ L. At the current iterate xk, the method solves the following31

cubic regularization model:32

min
h∈Rn

{
m(h) := f(xk) +∇f(xk)Th +

1

2
hT∇2f(xk)h +

Mk

6
‖h‖32

}
, (1.2)33

with a properly chosen Mk ∈ [L0, 2L]; whenever f(xk + h) ≤ m(h), the iterate xk is updated to34

xk+1 = xk+h. The global convergence and local quadratic convergence of this iteration are proved35

in [27]. Moreover, efficient variants and modifications have been extensively discussed in [7, 8]. In36

particular, [7, 8] show that there is flexibility in using certain symmetric approximates Hk ∈ Rn×n37

of the Hessian matrix ∇2f(xk) where the nice global and local convergence can still be guaranteed.38

Moreover, it is shown in [8] that an adaptive cubic regularization of Newton method needs at most39

O(ε−3/2) function- and gradient-evaluations to achieve an approximation xk with ‖∇f(xk)‖2 ≤ ε40

for a given accuracy ε. This improves the worst-case complexity [19] of the traditional second-order41

trust-region method where O(ε−2) iterations are required to have ‖∇f(xk)‖2 ≤ ε.42

The above cubic regularization of Newton method, as was claimed in [7, 8], can be viewed as an43

adaptive version of the classical trust-region method [9], where the rules for updating Mk are justi-44

fied by an analogy to trust-region methods; in particular, Mk might be regarded as the reciprocal45

of the trust-region radius. Instead of imposing a trust-region ‖h‖ ≤ ∆ for the well-definiteness46

when ∇2f(xk) is indefinite, the cubic regularization model (1.2) introduces a regularization term47

Mk

3 ‖h‖2In to ∇2f(xk) to adaptively adjust the solution h both for the indefinite case and for the48

definite case. It can be seen that when ∇2f(xk) is indefinite, the solution h cannot be of infinite49

norm as the regularization term Mk

3 ‖h‖2In will enforce the modified Hessian ∇2f(xk)+ Mk

3 ‖h‖2In50

to be positive definite, and hence the solution of (2.1) is well-defined.51

Regarding the update xk+1 = xk + h in the cubic regularization of Newton method, we note52

that the main computational step lies in solving the cubic regularization model (1.2). This is similar53

to the trust-region method where the primary computation is to solve the so-called trust-region54

subproblem (TRS)55

min
‖h‖W≤∆

hT∇f(xk) +
1

2
hT∇2f(xk)h (1.3)56

where W is a proper positive definite weighted matrix. The TRS has been well-understood in57

theory (see e.g., [9, 21, 22, 26, 28, 38]) and many efficient numerical methods have been proposed58

which can be basically grouped into factorization-based algorithms for small-to-medium sized dense59

problems (see, e.g., [1, 22, 23, 26]) and factorization-free algorithms for large scale and sparse60

problems (see, e.g., [14, 17, 21, 30, 31, 32, 33, 34, 35, 37, 40, 41]). One of the most widely known61

factorization-based methods is the Moré-Sorensen method [26], which is a Newton method for62

solving the associated Lagrange multiplier. Another approach proposed recently in [1] generalizes63

[14] and translates TRS into certain eigenvalue problems. For large scale TRS or when the Hessian64

matrix ∇2f(xk) is only available through its action ∇2f(xk)z on a vector z, a Krylov subspace65

method, namely the generalized Lanczos Trust-Region method (GLTR), was proposed by Gould66

et al. [15] (see also [9, Chapter 5]). The convergence of GLTR has been recently established in67

[5, 6, 18, 40, 41] and reveals the linear convergence in the worst case scenario [41, 5].68

The purpose of this paper is to develop efficient methods for (1.2). A recent work by Lieder69

[25] extends [1] for TRS and proposes an equivalent 2(n + 1) dimensional generalized eigenvalue70

problem to solve (1.2). In this paper, we shall first introduce an equivalent (n + 1) dimensional71

quadratic eigenvalue problem (QEP) for (1.2). By the new QEP, on the one hand, efficient Krylov72

subspace methods working on Rn+1 such as the second-order Arnoldi process (SOAR) [2] can73

be directly applied to solve (1.2), and provides new forms of 2(n + 1) dimensional generalized74

eigenvalue problems for (1.2) on the other hand. The equivalent reformulations in the form of75

generalized eigenvalue problem and QEP provide relations of (1.2) with the eigenvalue problem76

and also offer numerical schemes to solve (1.2), especially for small to- medium size cases. For77

large size problems or the cases when only the action ∇2f(xk)z of ∇2f(xk) on a vector z is78

available, we discuss Lanczos methods [7, Section 6.2] for (1.2). Previously, the linear convergence79

of this Lanczos method has been established in [5, 6], and we will sharpen this convergence result80
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by developing a new convergence analysis; furthermore, we will also design an efficient restarting81

scheme for this Lanczos method to obtain accurate approximation for ill-conditioned instances182

of (1.2). The resulting approach consists of a nested restarting procedure and is able to alleviate83

numerical difficulties of the basic Lanczos method [5, 6] caused by the dimension increment of the84

underlying Krylov subspace in the Lanczos process. As a practical application, we will integrate85

the nested restarting Lanczos method for (1.2) to solve large scale minimization problems (1.1)86

from CUTEst collection [16]. Our numerical experience demonstrates that the nested restarting87

Lanczos method can be an efficient approach to deal with ill-conditioned inner subproblems (1.2)88

and improves the overall performance of the cubic regularization of Newton method.89

We organize the paper in the following way: in section 2, we first provide basic properties of90

(1.2). Section 3 then introduces a QEP and establishes the equivalence. The presentation of the91

Lanczos method of (1.2) is given in section 4 where we shall establish the linear convergence in the92

worst case, and also propose a nested restarting version for ill-conditioned problems. Numerical93

verification of our restarting Lanczos method will be carried out in section 5, and final conclusions94

are drawn in section 6.95

Notation. We use the following notation system in this paper. Vectors are generally referred96

to be column vectors and are typeset in bold lower case letters; in particular, ei ∈ Rn is the ith97

column of the identity matrix In. For a matrix A ∈ Rm×n, its Moore-Penrose inverse and its98

column range space of A are presented by A† and span(A), respectively. The dimension of span(A)99

is given by dim(span(A)). To facilitate the presentation, we shall conveniently adopt the MATLAB100

format to access the entries of vectors and matrices: A(i,j) is (i, j)th entry of A, and A(k:`,i:j) is101

the submatrix of A that contains intersections of row k to row ` and column i to column j. For a102

square matrix A, the set of all eigenvalues and the determinant are denoted by eig(A) and det(A),103

respectively. Finally, K`(A,x) stands for the `th Krylov subspace and any h ∈ K`(A,x) can be104

expressed by h = p(A)x, where p ∈ P` is a polynomial with degree no higher than `.105

2 The cubic regularization model106

For the simplicity of presentation, we omit the subscript k in (1.2), and also denote

g = ∇f(xk), σ = Mk/2, H = Hk ≈ ∇2f(xk).

Thus, we focus on the following minimization:107

min
h∈Rn

{
m(h) := gTh +

1

2
hTHh +

σ

3
‖h‖32

}
. (2.1)108

The following result generalizes the well-known sufficient and necessary conditions (Gay [13] and109

Moré and Sorensen [26]) for the trust-region subproblem to (2.1).110

Theorem 2.1. ([7, Theorem 3.1] and [27, Theorem 10]) Any hopt is a global minimizer of (2.1)111

over Rn if and only if it satisfies the system of equations112

(H + λoptIn)hopt = −g, (2.2)113

where λopt = σ‖hopt‖2 and H + λoptIn is positive semidefinite. If H + λoptIn is positive definite,114

then hopt is unique.115

By Theorem 2.1, we know that λopt ≥ −θ+1 where116

− θ+1 := max(0,−θ1) and θ1 = θ2 = · · · = θp < θp+1 ≤ · · · ≤ θn (2.3)117

are the ordered eigenvalues2 of H and H = UΘUT is its spectral decomposition with U =118

[u1, . . . ,un] orthonormal. Notice that the value λopt plays a similar role with the Lagrangian119

1A problem (1.2) is said to be ill-conditioned if the matrix ∇2f(xk) +
Mk
3
‖hopt‖2In is ill-conditioned, where

hopt is the minimizer of (1.2); see Theorem 4.1.
2In our discussion, without loss of generality, we assume that p < n. When p = n, then Theorem 2.1 implies

that hopt is parallel to g, and hopt can be obtained by solving a one-dimensional minimization.
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multiplier for the trust-region subproblem; thus, in what follows, we will also call λopt as the La-120

grangian multiplier for the problem (2.1). Now, by the fact λopt = σ‖hopt‖2, whenever λopt > −θ1,121

λopt can be found via the system:122

λopt = σ‖hopt‖2 = σ‖(H + λoptIn)−1g‖2,123

or124

λ2opt = σ2gT(H + λoptIn)−2g = tT(Θ + λoptIn)−2t =

n∑
j=1

t2j
(θj + λopt)2

, (2.4)125

where t = σUTg = [t1, . . . , tn]T. Introduce the system126

q(λ) := λ2 −
n∑
j=1

t2j
(θj + λ)2

, (2.5)127

and we have q(λopt) = 0.128

We next present results for special cases: g = 0 and λopt = max(0,−θ1).129

Theorem 2.2. For (2.1) with σ > 0, we have130

(i) if g = 0, then λopt = −θ+1 ;131

(ii) λopt = 0 if and only if g = 0 and H is positive semidefinite;132

(iii) λopt = −θ1 if and only if133

g ⊥ E1 = span([u1, . . . ,up]) and − θ1 ≥ σ‖(H − θ1In)†g‖2, (2.6)134

where E1 is the eigenspace associated with the smallest eigenvalue θ1 = · · · = θp of H.135

Proof. For (i), we know that when −θ1 ≤ 0, then by (2.2), the assumption λopt > 0 leads to136

hopt = 0, which contradicts with 0 < λopt = σ‖hopt‖2 = 0. Therefore, when −θ1 ≤ 0, we have137

λopt = max(0,−θ1) = 0. For −θ1 > 0, by a similar argument, we conclude λopt = −θ+1 = −θ1.138

For (ii), if λopt = 0, by 0 = λopt = σ‖hopt‖2 and the semidefiniteness of H + λoptIn, we have139

hopt = 0, and θ1 ≥ 0; therefore, 0 = Hhopt = −g. The converse is from (i).140

For (iii), we first consider the necessity for λopt = −θ1. If θ1 = 0, then by (ii), we know that
(2.6) holds. If λopt = −θ1 > 0, then optimality condition (2.2) implies that g ⊥ E1, and also all the
solutions to the system (2.2) can be given by h = −(H − θ1In)†g + u where u ∈ E1 is arbitrary.
Also, the condition −θ1 = λopt = σ‖hopt‖2 gives

θ21 = σ2
[
‖(H − θ1In)†g‖22 + ‖u‖22

]
=

n∑
i=p+1

t2i
(θi − θ1)2

+ σ2‖u‖22, with t = σUTg = [t1, . . . , tn]T.

Consider the function141

q̃(λ) = λ2 −
n∑

i=p+1

t2i
(θi + λ)2

. (2.7)142

It is easy to see that q̃(λ) → +∞ as λ → +∞, and q̃′(λ) > 0 for λ ∈ [−θ1,+∞). Thus,143

q̃(−θ1)−σ2‖u‖22 = 0 for some u holds only if−θ1 ≥ σ‖(H−θ1In)†g‖2, and in this case, furthermore,144

the optimal solution hopt = −(H − θ1In)†g + u where u is any eigenvector of H corresponding to145

θ1 with ‖u‖22 = θ21/σ
2 − ‖(H + λIn)†g‖22.146

For the sufficiency, −θ1 ≥ σ‖(H − θ1In)†g‖2 first implies that −θ1 ≥ 0. Assume λopt > −θ1.
Then hopt = −(H + λoptIn)−1g and g ⊥ E1 lead to hopt ⊥ E1, and therefore,

θ21 < λ2opt = σ2‖hopt‖22 = σ2gT(H + λoptIn)−2g =

n∑
i=p+1

t2i
(θi + λopt)2

≤
n∑

i=p+1

t2i
(θi − θ1)2

.

But
∑n
i=p+1

t2i
(θi−θ1)2 = σ2‖(H − θ1In)−1g‖22, and by assumption, we have θ21 < λ2opt ≤ θ21, a147

contradiction. Thus we conclude λopt = −θ1.148
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By (iii) of Theorem 2.2, as in the trust-region subproblem [9, 1, 20, 41], we define the “hard”149

case and “easy” case for the cubic regularization model (2.1).150

Definition 2.1. For (2.1) with σ > 0, we say it is “hard” case (or the degenerate case) if condition151

(2.6) holds. For the hard case, λopt = −θ1 and any optimal solution hopt is of the form152

hopt = −(H − θ1In)†g + u (2.8)153

where u is any eigenvector of H corresponding to θ1 with ‖u‖22 = θ21/σ
2 − ‖(H + λIn)†g‖22. The154

“easy” case (or the non-degenerate case) is characterized by the opposite of the hard case, and155

λopt > max(0,−θ1).156

3 An associated quadratic eigenvalue problem (QEP)157

Apart from Newton’s iteration for computing the root λopt of q(λ) = 0, analogous to the trust-158

region subproblem [1], we can also translate (1.2) into an eigenvalue problem, for which accurate159

solution can be efficiently obtained when n is of small- to medium-size. In particular, by (2.4), we160

can transform the solution λopt into the following quadratic eigenvalue problem3 (QEP):161

G(λ) := λ2In+1 + 2λ

[
0 0
0 H

]
+

[
0 σgT

σg H2

]
=

[
λ2 σgT

σg (λIn +H)2

]
. (3.1)162

To see the relation more clearly, using again the spectral decomposition H = UΘUT and

denoting K =

[
0 1
U 0

]
, we have

G̃(λ) := KTG(λ)K =

[
UT(λI +H)2U t

tT λ2

]
=

[
(λI +Θ)2 t

tT λ2

]

=


(λ+ θ1)2 t1

. . .
...

(λ+ θn)2 tn
t1 · · · tn λ2

 .
Denote the eigenvalues of G(λ) by eig(G(λ)) and eig(H) = {θ1, . . . , θn}. Noting for all λ 6∈ eig(−H),
we have the determinant

detG(λ) = det G̃(λ) = det

[
(λI +Θ)2 t

tT λ2

]
= det(λI +Θ)2 det(λ2 − tT(λI +Θ)−2t)

=

(
λ2 −

n∑
i=1

t2i
(λ+ θi)2

)
n∏
i=1

(λ+ θi)
2 (3.2)

= q(λ)

n∏
i=1

(λ+ θi)
2 (3.3)

= λ2
n∏
i=1

(λ+ θi)
2 −

n∑
i=1

t2i
∏
j 6=i

(λ+ θj)
2, (3.4)

and (3.4) is also valid for all λ because (3.4) is a continuous function of λ. This implies that all163

the eigenvalues of G(λ) which are not in eig(−H) are the zeros of q(λ) = 0, i.e., the solutions to164

(2.4). This gives the connection between (2.4) and the QEP (3.1).165

3A pair (λ,x) with x 6= 0 is an eigenpair of a polynomial eigenvalue problem P (λ) = Pmλm + · · ·+ P1λ+ P0 if
P (λ)x = 0. When m = 2 and m = 1, we say it is a quadratic and generalized eigenvalue problem, respectively.
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3.1 The largest real eigenvalue of G(λ) and the associated eigenvector166

We next show that the Lagrangian multiplier λopt can be found by solving the largest real eigenvalue167

of the QEP (3.1).168

Theorem 3.1. For (2.1) with σ > 0, the Lagrangian multiplier λopt associated with the global169

optimal solution hopt of (2.1) is the largest real eigenvalue of G(λ).170

Proof. We consider two cases.171

Case I: g 6⊥ E1 where E1 given in (2.6) is the eigenspace associated with the smallest eigenvalue172

of H. In this case, we know that there exists at least one ti 6= 0 for some 1 ≤ i ≤ p, and thus by173

(3.4), for λ > −θ+1 , we have det(G(λ)) = q(λ)
∏n
i=1(λ+ θi)

2 where q(λ) is defined in (2.5) and174

q(λ) = λ2 −
∑

ti 6=0, 1≤i≤p

t2i
(θ1 + λ)2

−
n∑

i=p+1

t2i
(θi + λ)2

 → +∞, as λ→ +∞
< 0 as λ→ 0
→ −∞, as λ→ −θ1

. (3.5)175

Therefore, together with the monotonicity of q(λ) on (−θ+1 ,+∞), we know that there is a unique176

solution in (−θ+1 ,+∞) for det(G(λ)) = 0, which by Theorem 2.2 is λopt.177

Case II: g ⊥ E1. In this case, by (3.4), we know that −θ1 ∈ eig(G(λ)), and also ti = 0 for all178

1 ≤ i ≤ p. If g = 0, then eig(G(λ)) = {−θ1,−θ1, . . . ,−θn,−θn, 0}, and the largest eigenvalue is179

−θ+1 . According to Theorem 2.2 (i), the claim of this theorem is true.180

For g 6= 0, by (3.4), for λ > −θ+1 , we have det(G(λ)) = q̃(λ)
∏n
i=1(λ+ θi)

2 where q̃(λ) is given
by (2.7). Note that q̃(λ) → +∞ as λ → +∞, and is monotonically increasing on [−θ+1 ,+∞).
If −θ1 ≤ 0, then −θ+1 = 0 and by noting q̃(0) < 0, we know that there is a unique solution in
(−θ+1 ,+∞) for det(G(λ)) = 0, which by Theorem 2.2 is λopt. Otherwise, −θ1 > 0 and −θ+1 = −θ1.
Note that

q̃(−θ1) = θ21 −
n∑

i=p+1

t2i
(θi − θ1)2

= θ21 − σ2‖(H − θ1In)†g‖22.

Therefore, if q̃(−θ1) < 0, then there is still a unique solution in (−θ+1 ,+∞) for det(G(λ)) = 0,181

which by Theorem 2.2 is just λopt. But if q̃(−θ1) ≥ 0, then there is no solution in (−θ+1 ,+∞) for182

det(G(λ)) = 0, and the largest real eigenvalue of G(λ) is therefore −θ1. The latter case corresponds183

to the hard case.184

We next show that the solution hopt of (2.1) can be obtained from the eigenpair (λopt, z)185

associated with the largest real eigenvalue λopt of G(λ).186

Theorem 3.2. For (2.1) with σ > 0, suppose z = [α;y] ∈ Rn+1 is the normalized eigenvector of187

G(λ) associated with the largest real eigenvalue λopt. Then we have188

(i) if α 6= 0, then hopt = (Hy + λopty)/(σα) is the solution to (2.1);189

(ii) if α = 0, then λopt = −θ1, y is an eigenvector of H associated with −λopt and hopt =
(H + λoptIn)†g + ηy is the solution to (2.1), where

η = ±
√
λ2opt − σ2‖(H + λoptIn)†g‖22.

Proof. By G(λopt)z = 0, we have190

λ2optα+ σgTy = 0, and σαg + (H + λoptIn)2y = 0. (3.6)191

For (i), we first consider the case λopt > −θ1, which by the second equation in (3.6) implies
hopt = (Hy + λopty)/(σα) satisfies (H + λoptIn)hopt = −g; moreover, by (3.6) again, we know
that σ‖hopt‖2 = λ, and according to Theorem 2.1, the claim is true. For the case λopt = −θ1,
Theorem 2.2 (iii) indicates that g ⊥ E1, and thus, the second equation in (3.6) implies

−(H + λoptIn)†g = (Hy + λopty)/(σα).
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Moreover, by (3.6) and α 6= 0, we have ‖(H + λoptIn)†g‖2 = −θ1/σ, and hence hopt = (Hy +192

λopty)/(σα) is the solution to (2.1). We remark that this case (λopt = −θ1 and α 6= 0) only193

happens if g ⊥ E1 and −θ1 = σ‖(H − θ1In)†g‖2.194

For (ii), we first know ‖y‖2 = 1, and also (3.6) reduces to σgTy = 0 and (H+λIn)2g = 0. The195

largest real eigenvalue of G(λ) in this case must be −θ1 because otherwise y = 0. Thus, y ∈ E1196

and by Theorem 2.2 (iii), we know that the solution in this case is hopt = −(H + λoptIn)†g + ηy197

with η as claimed.198

In practice, similar to [1], when |α| 6= 0 is close to zero, we can use

hopt = sign(α)

∣∣∣∣λoptσ
∣∣∣∣ Hy + λopty

‖Hy + λopty‖2

instead of hopt = (Hy + λopty)/(σα) to compute the solution hopt.199

3.2 All the eigenvalues of G(λ)200

We take a close look at the eigenvalues of G(λ) in this subsection. We separate our discussion into201

two scenarios: the generic case when θi are distinct and the remaining special case.202

3.2.1 The generic case: θi are distinct203

In this situation, by (3.4), we have det(G(−θi)) = −t2i
∏
j 6=i(θj − θi)2, and it is clear that

ti = 0⇐⇒ det(G(−θi)) = 0⇐⇒ −θi ∈ eig(G(λ)).

When all ti 6= 0 for all i = 1, 2, . . . , n, then eig(G(λ)) ∩ eig(−H) = ∅, and moreover, 0 6∈
eig(G(λ)), because, otherwise by (3.4), det(G(0)) = −

∑n
i=1 t

2
i

∏n
i=1 θ

2
i 6= 0, implying 0 /∈ eig(G(λ)),

a contradiction. Write q(λ) = λ2δ(λ), where

δ(λ) := 1−
n∑
i=1

t2i
λ2(λ+ θi)2

, and δ′(λ) = 2

n∑
i=1

(2λ+ θi)t
2
i

λ3(λ+ θi)3
.

According to (3.3), the zeros of δ(λ) are the eigenvalues of G(λ). To have a clear picture of the204

distribution of the eigenvalues, based on the signs of δ(λ) and δ′(λ), we draw a diagram of the func-205

tion δ(λ) in Figure 3.1 as an illustration for the case θ1 > 0. In this illustration, the branches in the206

intervals (−θn,−θn−1), (−θn−1,−θn−2), (−θ1, 0) represent three types of eigenvalues respectively:207

two different real eigenvalues, two same real eigenvalues, and two conjugate complex eigenvalues.208

Together with (−∞,−θn) and (0,∞), these n + 2 intervals contain 2n + 2 zeros in total. Clearly209

there exists unique real eigenvalue of G(λ) larger than max(0,−θ1), and according to Theorem 2.1,210

this real eigenvalue is just λopt. We remark that this case, i.e., ti 6= 0 for all i, is the easy case of211

(2.1) by Definition 2.1.212

For the case when ti = 0 for i ∈ I ⊂ {1, . . . , n}, we know that −θi is an eigenvalue of G(λ).213

To obtain other eigenvalues, we consider G̃Ic(λ) = ITIcG̃(λ)IIc , where IIc is a matrix consisting of214

ej for j ∈ {1, . . . , n} \ I. The eigenvalues of G̃Ic(λ) can be treated in the case above. If |I| = n,215

namely g = t = 0 (implying that 0 is also an eigenvalue of G(λ)), there is no real eigenvalue of216

G(λ) larger than max(0,−θ1), and according to Theorem 2.1, λopt = max(0,−θ1). Otherwise,217

|I| < n, and there exists a unique real eigenvalue, say χ, of G(λ) larger than max(0,−θi)i/∈I . For218

this case, if 1 6∈ I, then χ is the largest real eigenvalue of G(λ) which is just λopt (the easy case)219

according to Theorem 2.1, while 1 ∈ I, χ and −θ1 are two eigenvalues. The latter case leads to220

the easy case when χ > −θ1 and the hard case χ ≤ −θ1 by Definition 2.1.221

3.2.2 The special case222

We now assume that the distinct values of θi are µ1, . . . , µm with m < n. First we consider the223

subset I1 ⊂ {1, . . . , n} where θi = µ1 for any i ∈ I1.224
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δ(λ) = 0

δ(λ) = 1
0−θ1· · ·−θn−2−θn−1−θn

Figure 3.1: δ(λ) on the case θ1 > 0

When ti = 0 for all i ∈ I1, then by (3.2)225

det(G(λ)) =

λ2 −∑
i/∈I1

t2i
(λ+ θi)2

 (λ+ µ1)2|I1|
∏
i/∈I1

(λ+ θi)
2.226

Thus, −µ1 is an eigenvalue of G(λ) with (algebraic) multiplicity 2|I1|. Analogous to the generic227

case, the other eigenvalues can be obtained by considering G̃Ic1(λ) = ITIc1G̃(λ)IIc1 .228

Otherwise (i.e.,
∑
i∈I1 t

2
i 6= 0), we have by (3.2) that229

det(G(λ)) =

λ2(λ+ µ1)2 −
∑
i/∈I1

(λ+ µ1)2t2i
(λ+ θi)2

−
∑
i∈I1

t2i

 (λ+ µ1)2(|I1|−1)
∏
i/∈I1

(λ+ θi)
2.230

Thus, −µ1 is an eigenvalue of G(λ) with (algebraic) multiplicity 2(|I1| − 1), and the other eigen-231

values can be obtained by considering G̃Ĩc1
(λ) =

[
(λ+ µ1)2 s1e

T
n

s1en ITIc1G̃(λ)IIc1

]
, where s21 =

∑
i∈I1 t

2
i .232

The above arguments can be continuously applied to µ2, . . . , µm to obtain all the eigenvalues233

of G(λ) and the details are omitted.234

3.3 Associated generalized eigenvalue problems235

In a recent work by Lieder [25], it is shown that the optimal λopt is the largest real eigenvalue of236

the following generalized eigenvalue problem:237

M(λ) =


0 0 0 −gT

0 σIn 0 −H
0 0 σ 0
−g −H 0 0

− λ


0 0 1 0
0 0 0 In
1 0 0 0
0 In 0 0

 ∈ R2(n+1)×2(n+1). (3.7)238

It is known that a QEP can be linearized to various types of generalized eigenvalue problem (see239

e.g., [36]). Thus, our QEP (3.1) can lead us to other generalized eigenvalue problems. For example,240

L(λ) =

[
−A 0
0 In+1

]
− λ

[
B In+1

In+1 0

]
=: A− λB ∈ R2(n+1)×2(n+1) (3.8)241

8



where

B =

[
0 0
0 2H

]
, A =

[
0 σgT

σg H2

]
.

We will see in the next theorem that the eigenpair of G(λ) associated with λopt can be equivalently242

obtained via a generalized eigenvalue problem.243

Theorem 3.3. ([24, Theorem 4.1]) Let L(λ) be given by (3.8), then we have244

(1) The set of eigenvalues of G(λ) is the same as that of the matrix pencil A− λB.245

(2) The inertia (i.e., the number of the positive, zero, and negative eigenvalues respectively) of246

B is (n+ 1, 0, n+ 1).247

(3) If (λ, z) is an eigenpair of G(λ), then

(
λ,

[
z
λz

])
is an eigenpair of L(λ).248

(4) If

(
λ,

[
z
t

])
is an eigenpair of L(λ), then (λ, z) is an eigenpair of G(λ) and t = λz.249

Remark 3.1. It should be pointed out that even though both (3.7) and (3.8) are 2(n+ 1) dimen-250

sional generalized eigenvalue problems, (3.7) is preferable as it does not involve H2. However, our251

QEP (3.1) has the following advantages.252

1) The QEP (3.1) is of dimension (n + 1) and efficient Krylov subspace methods working on253

Rn+1 such as the second-order Arnoldi process (SOAR) [2] can be directly applied to solve254

(1.2).255

2) The QEP (3.1) is more flexible. First, there are various types of generalized eigenvalue256

problems that can be derived from (3.1) by linearization [36]. For instance, by taking the257

advantage of the coefficient matrix In+1 in the term λ2 in (3.1), another commonly used258

linearization in the literature [36] leads to the following standard eigenvalue problem:259

Cy = λy, C =

[
−B −A
In+1 0

]
, y =

[
λx
x

]
.260

Secondly, in many applications of the cubic regularization of Newton method for (1.1), the
BFGS update [28] will be used to approximate the inverse of the Hessian matrix, where only

Ĥ = H−1 is available. In this situation, by noting

det


[

1
H−1

]
G(λ)

[
1

H−1

]
︸ ︷︷ ︸

=:Ĝ(λ)

 = det(H−2) · det(G(λ)),

we have a QEP involving just Ĥ:261

Ĝ(λ) = λ2
[

0 0

0 Ĥ2

]
+ 2λ

[
0 0

0 Ĥ

]
+

[
0 σgTĤ

σĤg In

]
,262

and the optimal λopt can be computed by finding the largest real eigenvalue of Ĝ(λ).263

4 A Lanczos method264

We next discuss a Lanczos type procedure introduced in [7, Section 6.2] for solving (1.2). The265

approach is analogous to the generalized Lanczos trust-region (GLTR) method proposed in [15] for266

the trust-region problem. GLTR is an efficient Lanczos type method for large-scale minimization267
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problems and its convergence analysis was recently established in [41, 42] and efficient restarting268

techniques are developed in [40]. For the cubic regularization model (2.1), the approach begins269

with forming an `-th Krylov subspace K`(H, g) = span(Q`) via the standard Lanczos process270

(Algorithm 1) for ` less than the grade τ of g with respect to H (i.e., τ is the smallest number271

that the Lanczos process breaks at step 6), and we have272

HQ` = Q`S` + γ`q`+1e
T
` , Q`e1 = g/‖g‖2, (4.1)273

where274

S` = QT
` HQ` =


δ0 γ1

γ1 δ1
. . .

. . .
. . . γ`
γ` δ`

275

is tridiagonal, Q` = [q1, q2, . . . , q`] is orthogonal.

Algorithm 1 The standard Lanczos Process

It computes an orthogonal basis matrix Q` of K`(H, g).

1: set q0 = 0, γ0 = 0, q1 = g/‖g‖2;
2: for j = 1, 2, . . . , ` do
3: t = Hqj , δj−1 = qT

j t;
4: t = t− δj−1qj − γj−1qj−1, γj = ‖t‖2;
5: if γj = 0 then
6: break;
7: else
8: qj+1 = t/γj ;
9: end if

10: end for

276

The approximation h` ∈ Rn at the `-th step is obtained by277

h` = argmin
h∈K`(H,g)

m(h), (4.2)278

which, by denoting h ∈ K`(H, g) by h = Q`s with s ∈ R`, can be solved equivalently as the279

following smaller sized cubic regularization model:280

min
s∈R`
{‖g‖2eT1 s +

1

2
sTS`s +

σ

3
‖s‖32}. (4.3)281

Denote the solution of (4.3) by sopt,`, which can be obtained by solving the associated eigenvalue282

problem discussed in Theorem 3.2. Also, we have h` = Q`sopt,`, and the corresponding Lagrangian283

multiplier is284

λ` = σ‖h`‖2 = σ‖sopt,`‖2. (4.4)285

4.1 Convergence286

To establish the convergence results of {m(h`)} and {h`}, we first have the following lemmas.287

Lemma 4.1. Suppose g 6⊥ E1 where E1 is the eigenspace of H associated with the smallest eigen-288

value θ1. Then we have289

(i) Before the breakdown at step 6 in Algorithm 1, it holds that S` + λ`I` � 0, where S` is the290

tridiagonal matrix given in (4.1) and λ` is given by (4.4);291

(ii) If the standard Lanczos process (Algorithm 1) breaks at the τ -th step, then λopt = λτ and292

hτ = hopt.293
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Proof. For i), we note that S` is irreducible, and then by [15, Theorem 5.3] (see also [29, Theorem294

7.9.5]), any eigenvector v of S` satisfies vTe1 6= 0. Thus, by Theorem 2.2 (iii), we know that (4.3)295

is an easy case and the associated λ` is strictly larger than the smallest eigenvalue of S`.296

We prove ii) by showing that λopt = λτ . According to Theorem 2.1, the assumption of g 6⊥ E1
and the arguments in (3.5), it follows that λopt and λτ are the largest real roots to the systems

q(λ) = λ2 − σ2‖(H + λIn)−1g‖22 = 0, and q̂(λ) = λ2 − σ2‖g‖2‖(Sτ + λIτ )−1e1‖22 = 0,

respectively. Indeed, in this case we can show that q(λ) = q̂(λ) for any λ 6∈ eig(H), and hence

λopt = λ̂τ . To this end, by assumptions, we know that span(Qτ ) = Kτ (H, g) is an invariant
subspace of H (implying eig(Sτ ) ⊆ eig(H)), which contains the eigenvectors associated with the
smallest eigenvalue θ1 of H. So the smallest eigenvalue of Sτ is θ1 and HQτ = QτSτ leading to

(H + λIn)Qτ = Qτ (Sτ + λIτ ).

Thus for any λ 6∈ eig(H), we get from Qτe1 = g/‖g‖2 that

(H + λIn)−1g = (H + λIn)−1Qτe1‖g‖2 = Qτ (Sτ + λIτ )−1e1‖g‖2

which leads to q(λ) = q̂(λ), and the conclusion follows.297

The linear convergence of λ` in (4.4) to λopt has been previously discussed in [5, 6], in which298

the proof follows similarly as that for the trust-region subproblem. Here, following the argument in299

[41] for the trust-region subproblem, we provide a different way which can render sharper bounds300

(refer to Remark 4.2) for the approximate objective function value as well as the solution.301

Lemma 4.2. Under the assumption of Lemma 4.1, let L be any subspace of Rn with dim(L) ≥ 1
and c be the solution to minh∈Lm(h). Then for any nonzero vector h ∈ L, we have

0 ≤ m(c)−m(hopt) ≤ 2‖Hopt‖2‖h− hopt‖22, (4.5)

‖c− hopt‖2 ≤ 2
√
κ‖h− hopt‖2, (4.6)

where Hopt = H + λoptIn and κ =
θn+λopt

θ1+λopt
.302

Proof. Let h ∈ L be any nonzero vector and let v = h
λopt

‖h‖2σ ∈ L. Define m = v−hopt. Since c is

the minimizer, we have

0 ≤ m(c)−m(hopt) ≤ m(v)−m(hopt)

= gTm + mTHhopt +
1

2
mTHm +

σ

3
(‖v‖32 − ‖hopt‖32)

= −λoptmThopt +
1

2
mTHm, (Hhopt = −g − λopthopt, ‖v‖2 = ‖hopt‖2)

=
1

2
mT(H + λoptIn)m

≤ 1

2
‖Hopt‖2‖m‖22, (4.7)

where the last equality is due to the fact mThopt = −‖m‖22/2 which follows from

hT
opthopt = vTv = (hopt + m)T(hopt + m) = hT

opthopt + 2mThopt + ‖m‖22.

Furthermore, ‖m‖2 = ‖v − hopt‖2 ≤ ‖v − h‖2 + ‖h− hopt‖2, and

‖v − h‖2 =

∥∥∥∥h− h
λopt
‖h‖2σ

∥∥∥∥
2

= ‖h‖2 ·
∥∥∥∥1− λopt

‖h‖2σ

∥∥∥∥
2
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=

∥∥∥∥‖h‖2 − λopt
σ

∥∥∥∥
2

= ‖‖h‖2 − ‖hopt‖2‖2 , (‖hopt‖2 =
λopt
σ

)

≤ ‖h− hopt‖2.

Thus, ‖m‖2 ≤ 2‖h− hopt‖2, and together with (4.7), the claim (4.5) follows.303

Now we consider (4.6). Denote by QL an orthonormal basis of L. Let304

c = QLh̃L = argmin
h∈L

m(h), where h̃L = argmin
h̃∈Rdim(L)

m(QLh̃).305

By Theorem 2.1, we know306

(QT
LHQL + λLI)h̃L = −QT

Lg, λL = σ‖h̃L‖2, QT
LHQL + λLI � 0,307

where λL is the corresponding Lagrangian multiplier satisfying λL = σ‖c‖2. Since

m(c)−m(hopt)

= gT(c− hopt) +
1

2
cTHc− 1

2
hT
optHhopt +

σ

3
‖c‖32 −

σ

3
‖hopt‖32

= −hT
opt(H + λoptI)(c− hopt) +

1

2
cT(H + λoptI)c− 1

2
hT
opt(H + λoptI)hopt

− 1

2
λopt‖c‖22 +

1

2
λopt‖hopt‖2 +

σ

3
‖c‖32 −

σ

3
‖hopt‖32

=
1

2
(c− hopt)

T(H + λoptI)(c− hopt)

− 1

2
λopt

(
λL
σ

)2

+
1

2
λopt

(
λopt
σ

)2

+
σ

3

(
λL
σ

)3

− σ

3

(
λopt
σ

)3

=
1

2
(c− hopt)

T(H + λoptI)(c− hopt) +
1

6σ2
(λ3opt − 3λoptλ

2
L + 2λ3L)

=
1

2
(c− hopt)

T(H + λoptI)(c− hopt) +
1

6σ2
(λopt − λL)2(λopt + 2λL)

≥ 1

2
(θ1 + λopt)‖c− hopt‖22,

together with (4.5), we have (4.6).308

Lemma 4.3 (Bernstein [3]). Given φ > 1, the best approximating polynomial p`(x) ∈ P` of 1
x−φ

in [−1, 1] satisfies

1

x− φ
− p`(x) =

(
φ+

√
φ2 − 1

)−`
φ2 − 1

cos(`α+ β),

where P` denotes the set of all polynomials with degree no higher than `, α and β are such that309

x = cosα and φx−1
x−φ = cosβ, and moreover,310

ε`(φ) := min
℘∈P`

max
−1≤x≤1

∣∣∣∣℘(x)− 1

x− φ

∣∣∣∣ =

(
φ+

√
φ2 − 1

)−`
φ2 − 1

. (4.8)311

With these preliminary results, we are able to show the convergence of the Lanczos approach312

(4.2).313

Theorem 4.1. Suppose g 6⊥ E1 where E1 is the eigenspace of H associated with the smallest
eigenvalue θ1 and hopt is the minimizer of (2.1). Let h` be the solution to (4.2). Then hτ = hopt

where τ is the grade of g with respect to H, and for any 1 ≤ ` < τ , we have

0 ≤ m(h`)−m(hopt) ≤ 2‖Hopt‖2ζ2` , (4.9)
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‖h` − hopt‖2 ≤ 2
√
κζ`, (4.10)

where Hopt = H + λoptIn,314

ζ` =
2‖g‖2ε`(φ)

θn − θ1
, (4.11)315

ε`(φ) is defined by (4.8) and316

φ =
κ+ 1

κ− 1
= 1 + 2

θ1 + λopt
θn − θ1

> 1 (4.12)317

with κ = (θn + λopt)/(θ1 + λopt) being the condition number of Hopt.318

Proof. We apply Lemma 4.2 with L = K`(H, g) and c = h`. In particular, we search a vector
h ∈ K`(H, g) that is closest to hopt in 2-norm:

min
h∈K`(H,g)

‖h− hopt‖2

= min
℘∈P`
‖℘(H)g + U(Θ + λoptIn)−1UTg‖2,

(
h = ℘(H)g ∈ K`(H, g)

)
= min
℘∈P`
‖℘(Θ)ĝ + (Θ + λoptIn)−1ĝ‖2 (ĝ = [ĝ1, . . . , ĝn]T = UTg)

= min
℘∈P`

√√√√ n∑
i=1

(
℘(θi) +

1

θi + λopt

)2

· ĝ2i

≤ min
℘∈P`

max
θ1≤θ≤θn

∣∣∣∣℘(θ) +
1

θ + λopt

∣∣∣∣ · ‖g‖2. (4.13)

In the following, we seek an optimal polynomial given in (4.13) with the aid of Lemma 4.3. First,
note that the linear transformation

θ(x) = −θn − θ1
2

x+
θ1 + θn

2

maps x ∈ [−1, 1] one-to-one and onto θ ∈ [θ1, θn]; thus,

min
℘∈P`

max
θ1≤θ≤θn

∣∣∣∣℘(θ) +
1

θ + λopt

∣∣∣∣
= min
℘∈P`

max
−1≤x≤1

∣∣∣∣∣℘(θ(x))− 2

(θn − θ1)(x− θ1+θn+2λopt

θn−θ1 )

∣∣∣∣∣
=

2

θn − θ1
× min
℘∈P`

max
−1≤x≤1

∣∣∣∣∣ (θn − θ1)℘(θ(x))

2
− 1

x− θ1+θn+2λopt

θn−θ1

∣∣∣∣∣
=

2

θn − θ1
× min
ψ∈P`

max
−1≤x≤1

∣∣∣∣ψ(x)− 1

x− φ

∣∣∣∣ , (
with ψ(x) = (θn−θ1)℘(θ(x))

2

)
=

2ε`(φ)

θn − θ1
with φ given by (4.12). Consequently, we can combine the above with (4.5) and (4.13) to get (4.9).319

The inequality (4.10) also follows directly from (4.6) and and the proof is completed.320

Remark 4.1. It is noted that φ+
√
φ2 − 1 > φ > 1 since φ > 1, and for φ given by (4.12),321

φ+
√
φ2 − 1 =

√
κ+ 1√
κ− 1

. (4.14)322

Therefore, ε`(φ) converges linearly to zero with the linear factor
(√

κ+1√
κ−1

)−1
as ` increases, and323

consequently, ‖h` − hopt‖2 converges to 0 linearly with the linear factor
(√

κ+1√
κ−1

)−1
, while the324

objective function value m(h`) converges to m(hopt) linearly with the linear factor
(√

κ+1√
κ−1

)−2
.325
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We finally can provide the worst case convergence of the associated λ`.326

Theorem 4.2. Under the assumptions of Theorem 4.1, it follows that327

|λ3` − λ3opt| ≤ 12σ2‖Hopt‖2ζ2` + 6σ2‖g‖2
√
κζ`, (4.15)328

where ζ` is given by (4.11).329

Proof. By (H + λoptIn)hopt = −g and λopt = σ‖hopt‖2, we have

λ3opt = −σ2(gThopt + hT
optHhopt)

= −σ2(2m(hopt)− gThopt −
2

3
σ‖hopt‖32)

= −σ2(2m(hopt)− gThopt) +
2

3
λ3opt

leading to
λ3opt = −3σ2(2m(hopt)− gThopt).

Similarly, by

(S` + λ`I`)sopt,` = −‖g‖2e1, λ` = σ‖sopt,`‖2 = σ‖h`‖2, hT
` Hh` = sTopt,`S`sopt,`

and hT
` g = ‖g‖2sTopt,`e1, it follows that

λ3` = −3σ2(2m(h`)− gTh`).

Consequently, the conclusion follows from Theorem 4.1.330

Remark 4.2. In [5, 6], the linear convergence of the Lanczos iteration is also discussed. In331

particular, it is shown that332

0 ≤ m(h`)−m(hopt) ≤ 36[m(0)−m(hopt)]e
−4`√
κ . (4.16)333

The right-hand size of (4.16) is a very simple form of upper bound in [5, 6]. Ignoring the constants
that are independent on ` in (4.9) and (4.16), and using (4.8) and (4.14), we note that the ratio
factor related with ` is

[υ(κ)]` :=

[
e
−4√
κ
/(√κ− 1√

κ+ 1

)2
]`

which satisfies υ(κ) = e
−4√
κ(√

κ−1√
κ+1

)2 > 1. Figure 4.1 illustrates the values e
−4√
κ ,
(√

κ−1√
κ+1

)2
and υ(κ) with334

respect to 0 < 1
κ < 1.335

For the hard case, we remark that the approximation h` will not provide sufficient accuracy336

because the condition g ⊥ E1 implies h` ∈ span(Q`) ⊥ E1, and thus h` will never contain the337

component u ∈ E1 given in (2.8). Similar to the hard case in TRS, the Lanczos procedure should338

restart after breakdown (i.e., ` = τ) with new starting vector orthogonal to span(Qτ ) [15]. We339

omit the further detailed discussions on this situation and refer to [15, 41, 5, 6].340

4.2 A nested restarting procedure341

Revealed by (4.9) and (4.10), the convergence of h` could be slow when the condition number κ342

is large. In this case, a large ` is required for an accurate approximation h`. However, as the343

dimension ` of K`(H, g) continuously gets large, the orthogonality of Q` deteriorates and memory344

requirement increases; moreover, the computational costs for solving the reduced problem (4.2)345

also grow and the numerical stability decreases. An effective treatment for this situation is to346

restart the Lanczos process, which is the topic of this subsection.347
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Figure 4.1: The values e
−4√
κ ,
(√

κ−1√
κ+1

)2
and υ(κ) w.r.t. 1

κ .

4.2.1 Restart the Lanczos procedure348

Suppose (h(k), λ(k)) is the current approximation pair of (hopt, λopt) and define the residual349

r(k) = Hh(k) + λ(k)h(k) + g. (4.17)350

We aim at finding the correction (d(k), ρ(k)) so that hopt = h(k) +d(k) and λopt = λ(k) + ρ(k). The351

conditions (2.2) and (4.17) imply352

d(k) = −(H + λoptIn)−1r(k) − ρ(k)(H + λoptIn)−1h(k). (4.18)353

The vectors (H+λoptIn)−1r(k) and ρ(k)(H+λoptIn)−1h(k) cannot be obtained due to the unknown
λopt and ρ(k). However, we can produce a subspace where these vectors lie. Specifically, using the
fact K(H + λoptIn, r) = K(H, r) for any vector r, we have

d(k) = −(H + λoptIn)−1r(k) − ρ(k)(H + λoptIn)−1h(k)

≈ p(H)r(k) + p̂(H)h(k)

∈ Kki(H, r(k)) +Kmi(H,h
(k)), (4.19)

where p and p̂ are certain polynomials of properly chosen degree ki − 1 and mi − 1, respectively.354

This implies that we can construct the subspace Kki(H, r(k)) + Kmi(H,h
(k)) for the correction355

d(k) and restart the Lanczos process at (h(k), λ(k)). In particular, we solve the following to update356

h(k) by the solution of357

min
h∈h(k)+Kki (H,r(k))+Kmi (H,h

(k))
m(h). (4.20)358

We shall show in our numerical results in section 5 that the second Krylov subspace Kmi(H,h
(k))359

will improve significantly the convergence; in practice, a small dimension mi is usually sufficient.360

An orthonormal basis matrix U (k) of Kki(H, r(k)) + Kmi(H,h
(k)) can be obtained by first361

computing the orthonormal basis of Kki(H, r(k)) and then augment it to have U (k) by, for example362

[40, Algorithm 3.3], the (modified) Gram-Schmidt process.363

4.2.2 Acceleration by a nested restarting procedure364

The previous restarting procedure continues with h(k+1) as a solution to (4.20) and λ(k+1) =365

σ‖h(k+1)‖2. This is the basic restarting Lanczos method for (1.2). For TRS, the convergence of366
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this version has been established in [40]. Also, it is shown that this basic restarting procedure can367

be further improved by a nested restarting structure originally proposed in [11] (see also [10]) for368

the nonsymmetric linear system in the GMRES framework. Recently the nested restarting Lanczos369

approach is also applied to solve the maximal correlation problem arising in applied statistics [39].370

To describe this nested restarting scheme, we denote by h̊
(k+1)

the solution of (4.20) and let371

h̊
(k+1)

= h(k) + d̊
(k)

:= argmin
h∈h(k)+Kki (H,r(k))+Kmi (H,h

(k))

m(h) (4.21)372

where ki and mi are preset dimensions of the Krylov subspaces Kki(H, r(k)) and Kki(H,h
(k)),373

respectively. The idea of the nested restarting in [11] is to refine h̊
(k+1)

by finding an improved374

approximation h(k+1) in the affine set h̊
(k+1)

+ span(D(k)) where D(k) = [̊d
(k−p+1)

, . . . , d̊
(k)

] ∈375

Rn×p contains the previous p correction vectors d̊
(j)

for j = k − p+ 1, . . . , k. That is,376

h(k+1) = h(k) + d(k) := argmin
h∈h(k)+span(D(k))

m(h). (4.22)377

One can see that h(k+1) is a better approximation than h̊
(k+1)

because h̊
(k+1)

∈ h(k) + span(D(k))378

(corresponding to p = 1). Algorithm 2 summarizes the nested restarting Lanczos method for (1.2).379

Algorithm 2 A nested restarted Lanczos method for (1.2)

1: Choose ε > 0, p > 0 and let h(0) = 0, r(0) = g, D(−1) = [ ], k = 0;
2: while ‖r(k)‖2 > ε and k < kmax do

3: Compute h̊
(k+1)

by (4.21);

4: Set D(k) = [D(k−1), h̊
(k+1)

− h(k)];
5: Delete the first column of D(k) if D(k) has p+ 1 columns;
6: Compute h(k+1) by (4.22) and λ(k+1) = σ‖h(k+1)‖2;

7: Set r(k+1) = Hh(k+1) + λ(k+1)h(k+1) + g and k = k + 1;
8: end while

4.2.3 Solve the inner subproblem380

Notice that the two inner subproblems (4.21) and (4.22) in Algorithm 2 have the same formulation:381

min
h∈h(k)+V

m(h) (4.23)382

where V = Kki(H, r(k)) +Kmi(H,h
(k)) for (4.21) and V = span(D(k)) for (4.22), respectively. Let383

V ∈ Rn×v be orthonormal basis matrix of V, and represent h ∈ V by h = V v. Then the minimizer384

ĥ = V v̂ of (4.23) can be solved by finding385

v̂ = argmin
v∈Rv

{
1

2
vTTv + nTv +

σ

3

(√
‖V Th(k) + v‖22 + c2

)3
}

386

where T = V THV ∈ Rv×v, n = V T(g + Hh(k)) and c2 = ‖h(k)‖22 − ‖V Th(k)‖22 ≥ 0. Noting387

from V = Kki(H, r(k)) +Kmi(H,h
(k)) and h(k) ∈ span(V ), we know the associated c2 = ‖h(k)‖22−388

‖V Th(k)‖22 = ‖h(k)‖22 −‖h
(k)‖22 = 0. Denote z = V Th(k) + v and b = n− TV Th(k) to rewrite the389

above to390

ẑ = argmin
z∈Rv

{
m̂(z) := bTz +

1

2
zTTz +

σ

3

(√
‖z‖22 + c2

)3
}
. (4.24)391

The resulting problem (4.24) is of a similar form as the original (1.2) except for the new parameter392

c2 ≥ 0. Following the argument for establishing Theorem 2.1 (see [7, Theorem 3.1]), we next393

provide a necessary and sufficient optimality condition for the global solution of (4.24).394
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Theorem 4.3. ẑ ∈ Rv is a global minimizer of (4.24) if and only if (T + λ̂Iv)ẑ + b = 0 and395

T + λ̂Iv is symmetric positive semi-definite, where λ̂ = σ
√
‖ẑ‖22 + c2. Moreover, if T + λ̂Iv is396

positive definite, then ẑ is unique.397

Proof. The proof follows similarly from that of [7, Theorem 3.1], and thus we omit the details.398

The value λ̂opt can be obtained by expressing ẑ = −(T + λ̂Iv)
−1b and solving from λ̂ =

σ

√
‖(T + λ̂Iv)−1b‖22 + c2 if λ̂ > −λ1(T ), where (λ1(T ),w1) is an eigenpair of T associated with

the smallest eigenvalue λ1(T ). The case for λ̂ = −λ1(T ) implies that ẑ = −(T + λ̂Iv)
†b+ ξw1 and

ξ can be determined by λ̂ = σ

√
‖(T + λ̂Iv)†b + ξw1‖22 + c2 = σ

√
‖(T + λ̂Iv)†b‖22 + ξ2‖w1‖22 + c2.

Let T = WΞWT be the eigen-decomposition of T and define

ψ(λ) = ‖(T + λIv)
−1b‖22 =

ν∑
i=1

$2
i

(λi(T ) + λ)2
, $i = eTi Wb,

then we can apply the Newton iteration to the system (see [7])399

φ(λ) =
1√
ψ(λ)

− σ√
λ2 − c2σ2

= 0, (4.25)400

for the general case λ̂ > −λ1(T ) and analogously for λ̂ = −λ1(T ) by including the eigenpair401

(λ1(T ),w1). Note that λ̂ = σ
√
‖ẑ‖22 + c2 > σc and we use σc as a lower bound for the approxi-402

mation λ of λ̂.403

The Newton iteration for the system (4.25) involves the derivative of φ(λ), and for this, we first404

have405

ψ′(λ) = −2z(λ)T(T + λIv)
−1z(λ), with z(λ) = (T + λIv)

−1b; (4.26)406

thus, if T+λIv = L(λ)L(λ)T is the Cholesky decomposition of T+λIv with λ > −λ1(T ), the deriva-407

tive ψ′(λ) = −2‖L(λ)−1z(λ)‖22 at λ can be computed via first solving z(λ) from L(λ)L(λ)Tz(λ) = b408

and then solving l(λ) from L(λ)l(λ) = z(λ). This gives ψ′(λ) = −2‖l(λ)‖22. With ψ′(λ), we further409

have410

φ′(λ) =
‖l(λ)‖22
‖z(λ)‖32

+
σλ√

(λ2 − c2σ2)3
> 0, ∀λ > −λ1(T ). (4.27)411

Therefore, for the current approximation λ of λ̂opt, the Newton step computes a correction ∆λ412

and updates the approximation as λ+∆λ where413

∆λ =
a
λ

(
‖z(λ)‖2 −

√
a
σ

)
‖z(λ)‖2 + σ

√
a3

λ
‖l(λ)‖22
‖z(λ)‖22

, where a = λ2 − c2σ2. (4.28)414

5 Numerical results415

In this section, we will report numerical results of the nested restarting Lanczos algorithm to416

illustrate two aspects: (a) its performance for solving the cubic model (1.2), and (b) the perfor-417

mance for the minimization (1.1) when it serves as an inner solver for the subproblems of the cubic418

regularization of Newton method.419

The MATLAB code of Algorithm 2 is labeled as nrLan cubic. Numerical experiments are
conducted in the environment of MATLAB R2015b and Ubuntu 20.04 system on a 64-bit PC with
an Intel Core(TM) I5 8550U CPU (3.0GHz) and 8GB of RAM. As a stopping criterion, for the given
tolerance ε = 10−6 and the maximun number kmax = 10000, nrLan cubic terminates whenever
the relative residual4 is no greater than ε, or the iteration k exceeds the maximum number, i.e.,

res :=
‖r(k)‖∞
‖g‖∞

=
‖(H + λ(k)In)h(k) + g‖∞

‖g‖∞
≤ ε, or k > kmax.

4We choose res :=
‖r(k)‖∞
‖g‖∞

as the relative residual is because approximately we have (H + λ(k)In)h
(k) ≈ −g.
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Table 5.1: Numerical results of nrLan cubic with different values of ki and mi

ki mi
n = 1000, σ = 0.1 n = 1000, σ = 0.05

Iterouter Prod res CPU Iterouter Prod res CPU
20 2 33 1115 9.40e-7 0.51 71 1989 1.00e-6 0.68
30 10 21 1181 7.51e-7 0.46 45 2165 8.04e-7 0.71
30 20 20 1320 8.73e-7 0.53 43 2493 9.95e-7 0.83
30 30 19 1439 5.46e-7 0.56 42 2842 9.39e-7 0.94
50 2 15 1091 7.14e-7 0.46 30 1886 5.82e-7 0.65
50 10 14 1134 6.74e-7 0.48 28 1988 7.06e-7 0.73
50 30 13 1293 9.64e-7 0.60 28 2508 4.19e-7 0.93
50 50 13 1513 8.77e-7 0.70 27 2927 3.03e-7 1.15
80 2 10 1066 4.78e-7 0.49 19 1813 8.82e-7 0.73
80 10 10 1130 4.06e-7 0.55 19 1949 7.55e-7 0.78
80 30 10 1290 1.48e-7 0.63 17 2067 9.23e-7 0.88
80 50 10 1450 5.53e-7 0.71 18 2498 9.83e-7 1.09
80 80 9 1529 6.08e-7 0.77 16 2656 8.12e-7 1.30
100 2 9 1123 2.28e-7 0.52 17 1947 5.05e-7 0.80
100 10 9 1179 1.74e-7 0.55 16 1956 9.22e-7 0.88
100 50 9 1459 1.12e-7 0.73 14 2214 8.54e-7 1.04
100 80 8 1488 5.08e-7 0.81 13 2393 8.89e-7 1.24
100 100 8 1608 3.74e-7 0.89 14 2814 3.04e-7 1.51
150 2 7 1167 1.59e-7 0.60 12 1932 8.21e-7 0.93
150 10 7 1207 1.90e-7 0.63 12 2012 3.57e-7 1.01
150 50 7 1407 9.37e-8 0.84 11 2211 8.04e-7 1.22
150 100 7 1657 7.16e-8 1.08 11 2661 2.69e-7 1.65
150 150 6 1606 5.40e-7 1.14 10 2810 7.80e-7 1.96

Before the evaluation of the two aspects of nrLan cubic, we first carry out numerical tests420

to demonstrate two crucial integrations of nrLan cubic, namely the double Krylov subspaces in421

(4.21) and the nested structure in (4.22). For this purpose, we choose an appropriate parameter pair422

(ki,mi) for nrLan cubic, and verify the contribution of the second Krylov subspace Kmi(H,h
(k))423

and the nested structure (Lines 4–6 in Algorithm 2). The test problems for this purpose are from424

randomly generated H and g as used in [40], i.e.,425

H = GGT − In, G = randn(n), g = randn(n, 1). (5.1)426

Also, we choose two values for σ, i.e., σ = 0.1 and σ = 0.05.427

In Table 5.1, we report the numerical results of nrLan cubic with various parameters, where428

Iterouter, Prod and CPU stand for the number of iterations, the number of matrix-vector products429

and the consuming CPU time in second. It tells that the number of iterations decreases as ki and430

mi increase in general. However, as the dimension of the projected subproblems of (4.21) and431

(4.22) get larger as well, the efficiency overall does not improve consistently. A good choice of432

parameters indicated by this testing is ki = 50 and mi = 2.433

We next show that the additional Krylov subspace Kmi(H,h
(k)) and the nested structure are434

two crucial integrations for the performance of the algorithm. First, by setting mi = 2 and mi = 0,435

we report in Figure 5.1 the average quantities from nrLan cubic over 20 random test problems436

(with the same settings for H and g as (5.1)) with and without using this additional Krylov437

subspace Kmi(H,h
(k)), respectively. One can clearly see that the additional information from438

Kmi(H,h
(k)) improves the performance substantially.439

For the nested structure, we similarly run nrLan cubic by enabling and disabling this nested440

structure (Lines 4–6 in Algorithm 2) on 20 random instances. The average numerical results441

are plotted in Figure 5.2, which also demonstrate the importance of the nested structure for442

nrLan cubic.443
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5.1 Performance for the cubic model (1.2)444

Now, we carry out numerical evaluation to illustrate the first aspect of nrLan cubic, namely, its445

performance for solving the cubic model (1.2). For this purpose, we compare nrLan cubic using446

the associated parameters447

p = min(100, n), ki = min(50, n), mi = 2.448

with the basic Lanczos method (labeled as Lan cubic) [7, 8]. We test four instances of model449

(2.1) on dimension n = 5000, 8000 and parameter σ = 0.1, 0.05, where H and g are generated450

randomly as (5.1). In Figures 5.3 and 5.4, we demonstrate how the computed relative residual of451

each algorithm behaves against the number of matrix-vector products. It can be seen from Figures452

5.3 and 5.4 that, for all instances, nrLan cubic consumes less CPU time to reach the stopping453

criterion than Lan cubic. The saving computational cost is from the requirements in dealing with454

smaller projected subproblems (4.3) than those of Lan cubic, and this saving compensates the455

slight increase of the matrix-vector products in nrLan cubic. More numerical comparisons on the456

two implementations will be reported in the next subsection for solving the minimization problem457

(1.1).458
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Figure 5.4: Residuals for H = GGT − In

5.2 Performance for minimization on the CUTEst collection459

In this subsection, we turn to the second aspect of nrLan cubic for solving the minimization460

problem (1.1). We conduct this testing by choosing unconstrained optimization problems from the461

CUTEst5 collection [16], when nrLan cubic is embedded in the cubic regularization framework [7,462

8]. In particular, we denote by Lan cubic(500) and Lan cubic(1000) the basic Lanczos method [7,463

8] that restarts in every 500 and 1000 steps (i.e., the dimension of the underlying Krylov subspace),464

respectively. To clearly indicate the minimization solvers with different inner solver for (1.2), we465

use min nrLan cubic, min Lan cubic(500), min Lan cubic(1000), and min Nt cubic to represent466

the overall minimization solver where our nrLan cubic, Lan cubic(500), Lan cubic(1000) and the467

Newton method [7, 8] are used for solving subproblems (1.2) in the cubic regularization framework468

[7, 8], respectively.469

All algorithms are coded in MATLAB, and the cubic framework as well as min Lan cubic(500),470

min Lan cubic(1000), and Newton iteration min Nt cubic are translated from Manopt(MATLAB)6471

[4] by removing the manifold structure. Manopt(MATLAB) is a toolbox for optimization on mani-472

folds. Specifically, min Lan cubic(500) and min Lan cubic(1000) are modified from arc lanczos.m473

in Manopt(MATLAB), while min Nt cubic is from minimize cubic newton.m. The outer-loop474

5It is available at https://github.com/ralna/CUTEst.
6It is available at https://www.manopt.org/.
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iteration of the cubic regularization algorithm terminates if the relative residual reso is no more475

than 10−6 and CPU time is no greater than the maximum CPU time 3600 seconds, i.e.,476

reso :=
‖g(j)‖∞
‖g(0)‖∞

≤ 10−6 and CPU time ≤ 3600(s),477

where j denotes the j-th outer-loop iteration in the cubic regularization framework. As the cu-478

bic regularization subproblem needs not to be solved accurately at each iteration j, we adaptively479

tighten the inner tolerance ε for all inner solvers nrLan cubic, Lan cubic(500) and Lan cubic(1000),480

and Nt cubic in a same strategy.481

The set of test minimization problems is systematically chosen from the CUTEst collection.482

Specifically, we set relevant options in the following table for the resulting problems.483

Objective function type : Q S O
Constraints type : *
Regularity : ∗
Degree of available derivatives : 2
Problem interest : ∗
Explicit internal variables : ∗
Number of variables : in [100, 99999999]
Number of constraints : ∗

484

where Q = quadratic type, S = sum of square type, O = other type (nonlinear, non-constant,485

etc.), ∗ = everything goes, in [100, 99999999] = 100 ≤ n ≤ 99999999, and “Degree of available486

derivatives =2” means the analytic second-order Hessian is used.487

It should be mentioned that most of the resulting problems from the above choice consist of a488

particular parameter; in this case, for each problem, we select one value in the given set for this489

parameter so that the dimension n of the resulting problem is the largest one in [2000, 15000].490

For those that do not have a value of the parameter corresponding to n in [2000, 15000], we then491

remove them from the resulting set. As a result, 81 problems are selected for testing, and the492

detailed information about these problems is listed in Table 6.1 in Appendix.493

From the numerical results of the set of 81 test problems, we find that all the test solvers494

fail to obtain approximations within the given stopping criterion for the problems FLETCBV3,495

FLETCHBV, GENHUMPS, INDEF, NONMSQRT; therefore, we did not record them in our nu-496

merical report in Figure 5.5 where the relative residuals reso and CPU time are plotted. In par-497

ticular, the left subfigure in Figure 5.5 demonstrates reso for each problem (in 76 test problems)498

indexed by the x-axis. It can be seen then that the number of failure cases for min nrLan cubic,499

min Lan cubic(500), min Lan cubic(1000), and min Nt cubic is 6, 8, 10, and 8, respectively. This500

subfigure also reveals that the Newton iteration min Nt cubic is able to achieve higher accurate501

solutions for most test problems. However, in term of efficiency, the right subfigure in Figure 5.5,502

which is a demonstration of numerical results for the performance in the format of Dolan and Moré503

[12], implies that min nrLan cubic in general is more efficient than the other three.504
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Our final remark on the solvers is from the observation of two test problems SSBRYBND505

(n = 5000) and SSCOSINE (n = 10000). Figure 5.6 provides the details on how the relative506

residual reso of each algorithm behaves against the number of outer iteration j. In particular, for507

SSBRYBND and SSCOSINE, we notice that the relative residuals reso of min Nt cubic decrease to508

10−6 rapidly. This is an indicator showing that highly accurate approximations for the subproblems509

(1.2) can be helpful for the outer-loop convergence. This fact can also be seen by the results from510

min Lan cubic(500) and min Lan cubic(1000), in which the Lanczos process stops earlier and511

then restarts. This produces approximations of low accuracy for (1.2). In such problems where the512

subproblems (1.2) encounter ill-conditioned cases but relatively highly accurate approximations513

are still desired in the outer-loop iteration, our proposed min nrLan cubic can help as they have514

demonstrated in SSBRYBND and SSCOSINE.515
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6 Conclusions516

In this paper, we made two numerical contributions to the cubic regularization of Newton method.517

We first established an (n+1) dimensional equivalent QEP for the cubic regularization subproblem518

(1.2) and derive two new 2(n+1) dimensional equivalent generalized eigenvalue problems by means519

of linearization of QEP. Our second contribution is on the Lanczos method for (1.2) for the large520

scale minimization. A new and sharp convergence result on the basic Lanczos method [7, 8] was521

established, and a nested restarting version was proposed to handle ill-conditioned cases. Our522

22



numerical experience indicates that the nested restarting Lanczos iteration can be helpful for the523

large scale minimization problem, especially in which ill-conditioned subproblems may emerge.524
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Appendix612

Table 6.1: Information on test problems selected from the CUTEst collection
Problem Parameter n Problem Parameter n Problem Parameter n

ARWHEAD N=5000 5000 BDQRTIC N=5000 5000 BOX N=10000 10000

BROYDN7D N/2=5000 10000 BRYBND UB=1 5000 CHAINWOO NS=4999 10000

COSINE N=10000 10000 CRAGGLVY M=2499 5000 CURLY10 N=10000 10000

CURLY20 N=10000 10000 CURLY30 N=10000 10000 DIXMAANA M=3000 9000

DIXMAANB M=3000 9000 DIXMAANC M=3000 9000 DIXMAAND M=3000 9000

DIXMAANE M=3000 9000 DIXMAANF M=3000 9000 DIXMAANG M=3000 9000

DIXMAANH M=3000 9000 DIXMAANI M=3000 9000 DIXMAANJ M=3000 9000

DIXMAANK M=3000 9000 DIXMAANL M=3000 9000 DIXMAANM M=3000 9000

DIXMAANN M=3000 9000 DIXMAANO M=3000 9000 DIXMAANP M=3000 9000

DIXON3DQ N=10000 10000 DQDRTIC N=5000 5000 DQRTIC N=5000 5000

EDENSCH N=2000 2000 EIGENALS N=50 2550 EIGENBLS N=50 2550

EIGENCLS M=25 2652 ENGVAL1 N=5000 5000 FLETBV3M KAPPA=0.0 5000

FLETCBV2 KAPPA=0.0 5000 FLETCBV3 KAPPA=0.0 5000 FLETCHBV KAPPA=0.0 5000

FMINSRF2 P=100 10000 FMINSURF P=75 5625 FREUROTH N=5000 5000

GENHUMPS ZETA=20.0 5000 INDEF ALPHA=1000.0 5000 INDEFM N=10000 10000

LIARWHD N=10000 10000 MODBEALE N/2=1000 2000 MOREBV N=5000 5000

MSQRTALS P=70 4900 MSQRTBLS P=70 4900 NCB20 N=5000 5010

NCB20B N=5000 5000 NONCVXU2 N=10000 10000 NONCVXUN N=10000 10000

NONDIA N=10000 10000 NONDQUAR N=10000 10000 NONMSQRT P=70 4900

OSCIGRAD N=10000 10000 POWELLSG N=10000 10000 POWER N=5000 5000

QUARTC N=10000 10000 SBRYBND N=5000 5000 SCHMVETT N=10000 10000

SCOSINE N=10000 10000 SCURLY10 N=10000 10000 SCURLY20 N=10000 10000

SCURLY30 N=10000 10000 SINQUAD N=10000 10000 SPARSINE N=10000 10000

SPARSQUR N=10000 10000 SPMSRTLS M=3334 10000 SROSENBR N/2=5000 10000

SSBRYBND N=5000 5000 SSCOSINE N=10000 10000 TESTQUAD N=5000 5000

TOINTGSS N=10000 10000 TQUARTIC N=10000 10000 TRIDIA DELTA=1.0 5000

WOODS NS=2500 10000 YATP1LS N=100 10200 YATP2LS N=100 10200
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